
Contributing Authors

António J. Esteves received the DEng degree and the MSc degree from Uni-
versity of Aveiro. Since 1995, he is working on his PhD thesis on Digital
Systems. He has been a researcher in INESC-Aveiro. His research interests
focus on hardware/software partitioning and high-level synthesis. He is author
of several articles published on international conferences and books. Since
1993, he is a lecturer of the Department of Informatics, University of Minho.

João M. Fernandes received the DEng degree and the MSc degree from
U.Minho, and since 1995 he is working towards his PhD thesis on Computer
Engineering. He has been a researcher in U.Bristol and, since 1991, he is a
lecturer of the Department of Informatics, University of Minho. His research
interests focus on hardware/software codesign and object-oriented methodolo-
gies for embedded systems development and he has published several articles
on conferences, journals and books.

Ricardo J. Machado received the DEng degree from U.Porto and received
the MSc degree from U.Minho. Since 1997, he is working on his PhD thesis
on Computer Engineering. He has been a researcher in INESC-Porto and in
ENSEA-Paris and has worked in Texas Instruments. His research interests
focus on hardware/software codesign and embedded real-time systems. He is
author of several articles published on international conferences, journals and
books and he is also co-author of 1 Texas Instruments international patent.
Since 1996, he is a lecturer of the Department of Informatics, University of
Minho.

Henrique D. Santos is an Auxiliary Professor of the Department of Informatics,
University of Minho, where he has taugh since 1985. In 1996, he got his PhD
on Computer Engineering from University of Minho. His research interests

xiii

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55605800?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Chapter 2

AN EVOLUTIONARY APPROACH TO THE USE
OF PETRI NET BASED MODELS

From Parallel Controllers to HW/SW Codesign

Ricardo J. Machado, João M. Fernandes, António J. Esteves, Henrique D.
Santos
Dept. of Informatics, School of Engineering, University of Minho

4700-320 Braga, Portugal

rmac@dsi.uminho.pt

Abstract The main purpose of this article is to present how Petri Nets (PNs) have been
used for hardware design at our research laboratory. We describe the use of PN
models to specify synchronous parallel controllers and how PN specifications
can be extended to include the behavioural description of the data path, by using
object-oriented concepts. Some hierarchical mechanisms which deal with the
specification of complex digital systems are highlighted. It is described a design
flow that includes, among others, the automatic generation of VHDL code to syn-
thesize the control unit of the system. The use of PNs as part of a multiple-view
model within an object-oriented methodology for hardware/software codesign
is debated. The EDgAR-2 platform is considered as the reconfigurable target
architecture for implementing the systems and its main characteristics are shown.

Keywords: Petri Nets, Hardware Design, Reconfigurable Architecture, HW/SW Codesign

Introduction

The control unit and the data path must both be considered by the specifica-
tion model and the CAD environment, in order to fully specify a digital control
system. The behaviour of the control unit of a digital system is usually de-
scribed with a Finite State Machine (FSM). Whenever the system functionality
presents concurrent activities, the specification of the system becomes more
problematic and awkward, if we only use FSM-based techniques.

5



6 HARDWARE DESIGN AND PETRI NETS

To specify a parallel controller using FSM techniques, there are, at least,
two alternatives: (1) serially-linked controllers can be obtained by identifying
sub-routines in the specification, or (2) concurrently-linked controllers should
be connected with semaphore bits or common lines (Pardey and Bolton, 1991).
These solutions are generally awkward to apply, and can result in inefficient
implementations due to the pre-partitioning, which limits the concurrency to
the number of FSMs used. It is also hard to verify for parallel synchronization
problems, such as deadlocks or multiple-sourcing.

Among the existing modelling paradigms, the PN-based one allows an easy
specification of cooperative subsystems (Murata, 1989). PNs are associated
with a graphical notation, which is easy to understand and a system modelled
with a PN might benefit from a mathematical theory to formally check its
properties (Valette et al., 1983).

1. PARALLEL CONTROLLERS

A development methodology for digital systems must provide tools for
system specification, modelling and implementation. System specification in-
cludes the description of the expected behaviour (functionality) of the digital
system. Modelling involves constructing a mathematical formalism embody-
ing the specified system behaviour. This formalism can be manipulated and
analysed to determine properties of the system which are not necessarily ap-
parent from the initial problem statement, usually written in a natural language,
such as english. The modelling formalism may also be adopted for the system
specification, when there is a close correspondence between the system model
and its specification.

Several researchers have shown that PNs are a powerful formalism to model
the behaviour of parallel systems, namely, parallel digital controllers. A mark-
ing of the PN is equivalent to a global state of the modelled system (node in the
reachability graph) and a change of the marking corresponds to a state transi-
tion (edge in the reachability graph). A detailed analysis of the model, based
on a set of well established methods, allows the detection of a large number of
design errors prior to the system implementation.

Several types of PNs were proposed to model digital systems, either by
imposing restrictions to a basic formalism, or by adding extensions to it. PN-
based controllers can be best modelled by safe PNs, which can be viewed
as a natural extension to FSMs, providing an easy migration path from FSM
to PN-based specifications. To effectively model parallel controllers using
safe Place/Transition nets (Murata, 1989), the following modifications were
proposed (Fernandes, 1994): (1) logic expressions are assigned to transitions
(the guards); (2) Moore type output signals are associated to places, while
Mealy type output signals are related to transitions, to represent the controller



An Evolutionary Approach to the Use of Petri Net based Models 7

actions; (3) transitions firing are synchronized with the active edge of a (global)
clock; and (4) enabling and inhibitor arcs are supported.

The resulting PN type is called Synchronous Interpreted PN (SIPN), which
can be used to specify the control unit of synchronous digital systems. Some PN
formalisms, namely STGs (Signal Transition Graphs) (Yakovlev et al., 1996b),
were also proposed to specify asynchronous digital circuits (Yakovlev et al.,
1996a). To execute an SIPN, all the enabled transitions at a given moment wait
for a clock pulse and then all fire to produce a new marking. Fig. 2.1 presents
an SIPN example, where xi are input signals and yi are output signals.

p2 p3

p4 p5

t2 t3 t4

t5

y3 y2

y2

y1

y1x1

x2 x3 x3

x3’

p1

t1

Figure 2.1 An SIPN specification of a controller.

A software framework was developed at our laboratory (Fernandes, 1994),
to accept an SIPN-based controller specification, written in the ConPar lan-
guage, in order to validate the properties of the controller and to allow the PN
model animation. Validation of models is important if they are to evolve into
implementations, so a compiler was also included in the framework to generate
the corresponding VHDL code (Fernandes et al., 1997). This code can feed
standard ECAD packages for simulation and synthesis purposes.

1.1 THE CONPAR DESCRIPTION LANGUAGE

PNs can also be viewed as formal models for logic rule-based specifications
They make the straightforward link between algebraic numerical methods and
the symbolic mathematical logic based methods of specification, optimisation,
verification and synthesis. The rule-based form of specification can be consid-
ered as an alternative textual form of timing diagram description. The causality
among signals is explicitly given in terms of local, relevant inputs, outputs and
state changes.



8 HARDWARE DESIGN AND PETRI NETS

The ConPar description language, which is an extension to a previously
defined language called PNSF (Kozlowski, 1993), was developed to specify
SIPN-based controllers, supporting macroplaces. In ConPar notation, a
transition is described as a conditional rule:

�label� : �PreConditions� j- �PostConditions� ;

The precondition and postcondition are respectively formed from input and
output place symbols. When the preconditions of a rule are satisfied (hold),
the postconditions are made true (they will hold). Logical conjunction of all
related discrete states is assumed when the precondition contains more than
one discrete state symbol.

For example, the transition t1 in Fig. 2.1 has input place p1, output places
p2 and p3, it is guarded by input x1 and the output signal y1 is activated when
the transition is enabled. In ConPar notation, this transition is described as
follows:

t1: p1 * x1 |- p2 * p3 * y1;

1.2 THE VHDL COMPILER

The ConPar description language corresponds to an intermediate repre-
sentation that links the SIPN model to the corresponding VHDL description.
This transformation (from ConPar to VHDL) can be obtained automatically
by using a VHDL compiler already developed.

To obtain an efficient implementation, the PN is directly mapped into boolean
equations without explicitly enumerating all possible global states and global
state changes (Adamski, 1991). The specification is given in terms of the local
states changes (local transitions) and one-hot code state assignment is used
(Pardey and Bolton, 1991).

A VHDL textual PN specification of parallel controllers was proposed in
(Pardey and Bolton, 1991), which describes a VHDL template with ASSERT
statements to enable the syntatic and semantic correctness of the model to
be tested. Experimental results, developed at Inmos in a practical design,
achieved a 50% area reduction and a 40% speed improvement over the best
FSM synthesis. In this work, this VHDL template was adopted for automatic
code generation.

The VHDL code generated by our compiler is more readable than the one
created with the CAMAD approach (Peng, 1992), where the VHDL code is
not directly related to the original PN specification. This may cause some
implementation inefficiency, since the PN is transformed into an FSM (which
is built with the same algorithm as the reachability graph) and then translated
into VHDL code using a CASE statement inside a PROCESS.

Examples on the use of SIPNs, the ConPar language and the CAD en-
virnonment can be found in (Fernandes and Proença, 1994); (Fernandes et al.,



An Evolutionary Approach to the Use of Petri Net based Models 9

1995a); (Fernandes et al., 1995b). The complete grammar for the ConPar is
described in (Fernandes et al., 1997)

2. PARALLEL CONTROLLERS + DATA PATH

The SIPN model was developed, aiming just the specification of the control
part of the digital system: the data path of the system can not be described with
the mechanisms available on the model. In some situations, this is considered
to be a severe limitation, since it does not allow the integrated development
of the whole hardware part of the system. For instance, the simulation task
may become difficult because the information on the data path may have to be
obtained from different simulation environments.

To overcome this limitation, the shobi-PN model (Machado, 1996), which is
an extension to the SIPN model, was developed. The shobi-PN model supports
hierarchy and allows objects to be used for specifying the data path resources.
A full digital system can be specified and tested, following a structured and
incremental approach.

The shobi-PN model presents the same characteristics as the SIPN model,
in what concerns synchronism and interpretation, but adds new mechanisms by
supporting object-oriented modelling ideas and new hierarchical constructs, in
both the control unit and the data path. This model embodies concepts present
in Synchronous PNs (David and Alla, 1992), Hierarchical PNs (Fehling, 1993),
Coloured PNs (Jensen, 1992), and Object-Oriented PNs (Lakos, 1995).

In the shobi-PN model, the tokens represent objects that model data path
resources. The instance variables represent the information that is processed
on the data path and the methods are the interface between the control unit
and the data path. The tokens may be considered as coloured, if SIPN tokens
are viewed as uncoloured (the SIPN places are safe). Each token models a
structure of the data path.

A node (a transition or a place) invokes the tokens’ methods, when the tokens
arrive at that node. Nevertheless, only the methods that have a direct relation
with the hardware control signals are directly invoked in the PN. There are
additional methods available at the objects’ interface that are not used by the
PN. These methods are invoked by the simulation software to visualize the
contents of a data path structure in any state of the PN.

Each arc is associated with one or more colours which indicate the types of
objects that are allowed to pass through that arc. This means that, for each data
path structure, there is a well-defined path on the PN. This restriction simplifies
the PN and limits the capacity of some places, since it is not needed that objects,
that are not invoked, unnecessarily traverse the PN.

Hierarchy can be introduced in the specifications in two different ways. The
control unit is modelled by the PN structure, and to introduce the hierarchy



10 HARDWARE DESIGN AND PETRI NETS

on the controller, macronodes (representing sub-PNs) may be used. The data
path resources are represented by the internal structure of the tokens, and the
hierarchy can be introduced by aggregation (composition) of several objects
inside one single token (a macrotoken) or by using the inheritance of methods
and data structures.

2.1 SYNTHESIS OF THE CONTROLLER

For simulation purposes, the shobi-PN specification can be used directly,
but to synthesize the control unit, the control part of a shobi-PN is transformed
into an SIPN. This mapping is possible if it ensured that there is a structural
compatibility in the control unit representation. Other topics, such as the PN
reinitializations and the simultaneity on the invocation of different methods on
the same node, are also important for the mapping but they are not considered
in this paper: for details please refer to (Machado, 1996).

To ensure the structural compatibility of the control unit representation in
the SIPN and shobi-PN models, it is imposed that the skeleton of the shobi-PN
is structurally equivalent to a SIPN without reinitializations. The following
concepts used for shobi-PNs are introduced: (1) Control Net: set of contiguous
nodes and arcs of the shobi-PN that structurally corresponds to the SIPN without
reinitilizations; (2) Control Track: path defined by a token in the Control Net;
(3) Control Nodes: nodes (places or transitions) of the Control Net; (4) Control
Arcs: arcs of the Control Net; (5) Closing Track: path defined by a token
outside the Control Net; (6) Closing Nodes: nodes of a Closing Track; (7)
Closing Arcs: arcs of a Closing Track; (8) Closing Cycle: path defined by the
movement of a token in the shobi-PN. It is composed by a Control Track and
also, if applicable, by a Closing Track. It can be identified by the tracking
of the colour associated with all the arcs of the cycle; (9) Associated Net:
SIPN structurally equivalent to the Control Net after the introduction of the
reinitilizations for the uncoloured tokens.

These concepts can be more easily understood by using the shobi-PN in
Fig. 2.2(a) to specify a simple control sequence, with two objects/tokens to
model two structures of the data path.

In this example, the control net is composed by the following set of nodes
ft�� p�� t�� p�� t�g and by the arcs that directly link them. It defines the skeleton
of the shobi-PN. The control track for token a consists of ft�� p�� t�g, while
the control track for token b consists of ft�� p�� t�g. The closing track for the
token a consists of ft�� pc�� t�g and for token b consists of ft�� pc�� t�g. The
closing cycles for tokens a and b are ft�� p�� t�� pc�g and ft�� p�� t�� pc�g,
respectively.

Mapping the shobi-PN into the associated net is made by transforming k-
limited places into safe places. A safe place generates, whenever marked,



An Evolutionary Approach to the Use of Petri Net based Models 11

p1

t2

p2

t3

a.WR_y1(H)

t1

p1

t2 pr1

p2

y2

t3

y1

t1

pc2

pc1

a

a

a

b

b

b

b

a

a.RD_x1(L)

a.RD_x2(H)

b.RD_x3(H) b.WR_y3(H)

b.WR_y2(H)

b.WR_y3(H)

NOT x1

x2

x3 y3

y3

in1

fn1

Figure 2.2 (a) shobi-PN for a simple control sequence and (b) its corresponding SIPN.

all the control signals associated to the methods invoked in the corresponding
place in the shobi-PN. As an example, consider the SIPN in Fig. 2.2(b).

2.2 REPLICA MECHANISM

Whenever several methods that use the same data structures are concurrently
invoked to a given token in different nodes, it is necessary to support a replica
mechanism. This mechanism allows a token to be replicated as many times as
needed, so that it is structurally possible to concurrently invoke methods to the
same token, but in distinct areas of the PN. This mechanism can be used as an
elegant solution for a complex problem (the multiple-sourcing) that could be
alternatively, but innefficiently, solved at the algorithmic level, by changing the
PN structure.

This mechanism becomes indispensable when the modelling of the data path
by hierarchical aggregation is not possible. The replica are the only solution
to ensure the parallelism inherent to the data path structure, if the mechanism
does not destroy the tokens’ data structures consistency.

With the shobi-PN model, it is possible to easily model complex behaviours
of hardware systems (data path and controller) by decomposing the global
model, even if the sub-structures have a parallel time-evolution.

SOFHIA (Software for Hierarchical Architectures), a CAD environment that
covers all the design phases, was also developed to directly support the shobi-
PN model (Machado et al., 1997a). Examples on the use of shobi-PNs and the



12 HARDWARE DESIGN AND PETRI NETS

SOFHIA CAD environment can be found in (Machado et al., 1997b); (Machado
et al., 1998a); (Machado et al., 1998b)

3. HARDWARE/SOFTWARE CODESIGN
METHODOLOGY

A methodology to system development based on the operational approach is
essential to guarantee that complex systems can be addressed (Zave, 1984). The
main idea of this approach is based on an executable specification that evolves
through transformational refinements to obtain the final implementation.

Object-oriented models (usually multiple view models covering the system’s
object, dynamic, and functional perspectives) are expected to fully address the
above requirements, since they allow the easy refinement of application-domain
objects during the whole process. However, there is no established methodol-
ogy for hardware/software codesign that exploits the benefits of object-oriented
system modelling techniques.

MOOSE is a graphical/textual method which is geared towards the develop-
ment of embedded computer systems and leads to codesign after the system as a
whole has been investigated through the use of abstract and executable models
(Morris et al., 1996). MOOSE uses a multiple view model for specifying the
systems: OIDs (Object Interaction Diagrams) which are DFD-like diagrams
for functional modelling, Domain Model for object modelling, and STD (State
Transition Diagrams) to model the dynamic behaviour of the system.

Our methodology is based on MOOSE, with the following modifications:
(1) STDs are replaced by shobi-PNs, which allow an easy handling of concur-
rency within the dynamic management of the system’s objects; (2) the MOOSE
paradigm follows essentially the waterfall process model, whilst we proposed
a more iterative approach in the definition of the committed and the platform
architectures, since we include the HDL/HLL generation in the partitioning
phase (Fig. 2.3); (3) an umbrella testbed is included to cover all the devel-
opment phases, to allow behavioural co-simulation, partitioning co-simulation
and implementation co-verification; (4) MOOSE bases partitioning on the de-
signer experience and intuition, while we use an automatic partitioning based
on heuristics and an iterative refinement through resources area and time esti-
mation; and (5) a target architecture (EDgAR-2) is used for the hardware parts
implementation.

The parallel capabilities of PNs are essentially used during the partitioning
activities, which refine the executable specifications towards an equivalent
CFSMD model (specified by an HDL) to map it into the hardware reconfigurable
components (section 4.).



An Evolutionary Approach to the Use of Petri Net based Models 13

View
Model

Multiple

Requirements

Obtaining

Requirements

Conceptualise

Architecture

DEVELOPMENT

TEST

Generate

Executable

Specification

Behavioural

Co-Simulation

Partitioning

HDL

Implementation
Software

Compilation

Manipulation

Code

Hardware
Implementation

Partitioning

Co-Simulation Co-Verification

A
rc

hi
te

ct
ur

e

Pl
at

fo
rm

A
rc

hi
te

ct
ur

e

C
om

m
it

HLL

Sy
nt

he
si

s

C
on

fi
gu

ra
tio

n

SY
ST

E
M

ANALYSIS PARTITIONING IMPLEMENTATION

HLL

Figure 2.3 The proposed methodology.

4. EDGAR-2: THE RECONFIGURABLE TARGET
ARCHITECTURE

4.1 THE ARCHITECTURE

EDgAR-2 is an FPGA/CPLD based system used for hardware/software code-
sign and rapid system prototyping. The EDgAR-2 is the successor of the
EDgAR. Both systems were developed at our laboratory. The EDgAR was first
conceived as part of a stand alone emulation tool for digital systems (Esteves
et al., 1997). The EDgAR-2 is an enhancement architecture, including updated
and powerful devices, with In System Programmable (ISP) property and a PCI
bus interface, which allow it to be a reconfigurable hardware block in a host
PC, implementing a codesign machine or even a high versatile prototype tool
for digital design.

Programmable logic devices (PLDs) can be divided into two classes: one
based on coarse grain two level logic blocks, with guaranteed time delay
(CPLDs), typically used for control paths or time critical circuits; the other
based on fine grain multi level logic blocks (FPGAs), typically used for data
paths or space critical circuits (Santos, 1996).

Since each PLD class is suitable to implement complementary parts in a
typical digital system, the EDgAR-2 includes devices of both types. The basic
architecture element (Fig. 2.4) is a module composed of an array of 4 Processor
Modules (PMs), including each one a control unit and a data path unit. The
PMs are interconnected in a linear way with dedicated buses, forming a PM
pipeline. Both sides of the array are available to interconnect several EDgAR-2



14 HARDWARE DESIGN AND PETRI NETS

boards, in a larger array or pipeline. Each PM is implemented with a Xilinx
4010E FPGA (Xilinx, 1996) — data path — and a 211SP MACH (AMD, 1995)
— control path. In what concerns the host PC, each PM is linked to one byte
from the 32 bits PCI data bus. In this way, the software module in a codesign
realisation can access all the 4 PMs during the same bus cycle, assuming it is
possible to manage the common address space in that way. The PCI bus is
also used to (re)programme the FPGAs, using the same connectivity, while the
CPLDs, for that purpose, use a dedicated independent bus based in a parallel
port.

PM1

PM4

ControlUp4

ControlDwn1

Address Bus Data Bus

Control1

Control4

CPLD4

CPLD1 FPGA1

FPGA4

...

ControlUp1

PCI Controller

PCI Bus

...

DataUp1

ControlDwn4 DataDown4

Figure 2.4 The EDgAR-2 architecture.

The main EDgAR-2 characteristics can be summarised as follows: (1) fully
in system programmable; (2) flexible clock schemes (respecting to frequency
and source), with a limited support for asynchronous problems; (3) polling and
interrupt mechanism for communication with the host system; (4) PCI burst
mode support; (5) pipeline structure; and (6) scalable architecture.

Because EDgAR-2 is full in system programmable, it supports the recon-
figurable paradigm. Together with a real time operating system (RTOS) and a



An Evolutionary Approach to the Use of Petri Net based Models 15

custom PCI based computer architecture, the obtained machine is a powerful
tool to solve time critical problems. However, during the initial phase and for
validation purposes, the prototype operates only under control of the Windows
NT (tm) operating system, using a proprietary device driver.

4.2 THE COMPUTATIONAL MODEL

The EdgAR-2 architecture was designed to directly accommodate a finite
state machine with data path (FSMD) model (Gajski et al., 1994). This model is
basically an extension to the well known FSM model, with a data path to support
a higher level of data abstraction, including primitive variable objects and the
associated logical and arithmetic operators. From the structural point of view,
and taking into account the respective properties, the FSMD model is composed
of 2 components: an FSM controller and a data path. This (FSM controller, data
path) pair can be called a Processor Element (PE) and is directly mapped into
an EDgAR’s PM. Since the architecture can support several FSMDs, both at the
PM level — PE cluster without connection restrictions — and the board level —
one dimensional PE cluster array -, the model naturally includes concurrency,
and it can be renamed as concurrent FSMD (CFSMD).

Furthermore, if the development system supports hierarchy, it is possible
to work at an architecture level (Gajski and Kuhn, 1983) using models such
as the Hierarchical Concurrent FSMDs (HCFSMD) or even the Program State
Machine (PSM) (Gajski et al., 1997). These last two models can also be used
for modelling at the system level. However, because PLD devices waste a lot
of space implementing the (re)programmability feature, the logical resources
become critical, which is a restriction to use higher abstraction levels. This
issue around the level of abstraction and the resources consumed is essentially
the same we find in the software domain concerning the high level languages
vs. assembly languages. From this point of view, EDgAR-2 can be compared
with a computer with a few kbytes of memory.

From the above discussion, and despite EDgAR-2 model supports higher
level of abstractions, the CFSMD model seems to be the best choice, allowing
concurrent descriptions at the RTL level. This decision affects the complexity of
the development tools, and can impose some restrictions to the implementation
of codesign methodologies, having EDgAR-2 as the target hardware.

As stated before, pipeline is also supported by the computational model of
the architecture. At the outer level EDgAR-2 can be defined as a pipeline of PE
clusters, with each cluster formed by arbitrary concurrent PEs. This architecture
is well suited, for instance, to a production line with several interdependent
machines, each with a set of concurrent processes. At the PE level pipeline
is not explicit in the architecture, but especially the FPGAs easily allow the
addition of pipeline stages to the data path. To what concerns the control



16 HARDWARE DESIGN AND PETRI NETS

path, typically it is not profitable to introduce pipeline stages, due to the faster
operation of the 2-level logic CPLDs.

To summarise, the target hardware defines an elementary PE architecture,
comprising: (1) an FSM controller block (CPLDs) — supporting registers
and two-level logic. This block does not include enough memory to be
micro-programmed. The micro-programmability would allow a microproces-
sor model, which is not needed because the host has a processor. (2) a data path
block (FPGAs) — supporting logic and arithmetic operators up to 32 bits wide,
data structures with low complexity (up to � � �kbyte) and the common logic
structures (MUXs, decoders, registers, ALUs up to 32). A system is composed
of an arbitrary number of concurrent PEs, forming clusters, eventually linked
in a pipeline structure.

4.3 THE COMMUNICATION MODEL

At a high level of abstraction two communication class mechanisms can
be identified: message passing and shared memory. Some of the operations
typically found in a message passing mechanism are: point-to-point commu-
nication (one to one relation), broadcasting (one to all relation), scatter (one
node sends a distinct messages for each node), gather (one node gets a distinct
messages from each node) (Xu and Hwang, 1996). Shared memory evolves
the coordinated access of all processes to a common memory space, requiring
the definition of arbitration rules. EDgAR-2 does not include a large common
memory, and so it imposes severe restrictions to the implementation of shared
memory mechanisms.

At a lower level of abstraction, a physical topology imposes more or less
restrictions to the implementation of the above communication mechanisms.
Some of the topologies commonly used on systems like the EDgAR-2 are:
(1) chain — all nodes, except the two end nodes, communicates with two
neighbours, building a chain; (2) ring — a chain topology, where the two end
nodes are connected; (3) n-dimensional mesh — every node communicates
with its adjacent ones, building a n-dimensional cube; (4) centralised or star —
a topology where one single node (concentrator) connects to all the others; (5)
hierarchical or tree — the connections between nodes present an hierarchical
or tree-like structure; (6) complete or fully connected topology — every node
communicates to all the others; and (7) an irregular topology.

These topologies can be explicitly defined in the architecture design, or im-
plemented in software or even trough programmable routing devices, allowing
topology changes.

To what concerns EDgAR-2, it is necessary to distinguish the communication
between processes running on hardware, on software and on both hardware and
software. The processes running on hardware must conform to the CFSMD



An Evolutionary Approach to the Use of Petri Net based Models 17

computational model proposed. If this model is not restricted, it requires a fully
connected topology at the PE level. Both the CPLDs and FPGAs programmable
structures are very rich in terms of in chip interconnections, allowing, for most
applications, a fully connected topology at the PE cluster level. To implement
the same topology at the PM level it is necessary to use larger chips with much
more pins, which imposes a higher cost and a higher complexity of the PCB
routing.

The analysis of the CFSMD model for several problems — (embedded)
control systems domain — showed that only a small number of systems will
justify a fully connected topology. So it was decided to provide the architecture
of the EDgAR-2 with the following combined topology: a fully connected or
centralised topology at the PE cluster level, with a chain (or optionally a ring)
topology at the PM or system level.

The processes running on software naturally use the mechanisms supported
by the host operating system. This issue has no influence in the EDgAR-2’s
model and will not be more detailed here. Finally, in a codesign environment,
there will be hardware processes communicating with software processes. As
described before, the host can access all the PMs through a PCI bus. For
complexity reasons and because typically EDgAR-2 works as a coprocessor,
the PCI interface does not implement Bus Master operations. This decision
implicitly give to the software processes the control over hardware processes.
This corresponds to the centralised mechanism defined above. Fig. 2.5 shows
the communication model just described.

Any communication involving EDgAR-2 can be synchronous or asyn-
chronous. The later requires some type of handshake, while the former just
requires a signal from the sender to the receiver. Besides, there will be some
type of protocol, which is naturally limited by the amount of resources avail-
able. Typically, a communication should be restricted to a register transfer with
a request/acknowledge handshake. If a more elaborated protocol and/or hand-
shake is required, its specification must be described, making it in an additional
PE.

Using the communication topology described, higher level communication
models can be implemented. The decision of which model to use will be
done by the development methodology (however, it is not difficult to realise
a complex communication protocol which could waste most of the EDgAR-
2 resources). Some guidelines for this decision are described here. First,
communication models based on large memory utilisation are not supported
due to the lack of memory on the EDgAR-2 board. Second, the broadcasting
operation used on the message-passing model is not suitably supported to
other levels rather than PE cluster level, because it will require the architecture
to allow simultaneous write operations to all devices, which is not the case
— to execute a message broadcasting a time overhead is imposed by the



18 HARDWARE DESIGN AND PETRI NETS

...

FSMDs

Concurrent

Concurrent

FSMDs

FSMDs

HOST

Multi

Processor

PE cluster

PE cluster

PE cluster

Concurrent

Hardware Software

Figure 2.5 The EDgAR-2 communication model.

required sequence of point-to-point communications. Third, it is necessary
to use low complexity communication protocols, in order to achieve a good
balance between communication resources and processing resources.

5. CONCLUSIONS

This paper has presented the evolution of a family of PN-based models to
allow the specification of sequential and parallel controllers, with or without
data path, and has also shown how is it possible to use them within a wider
methodology for hardware/software codesign. PNs are viewed as a fundamental
component of a multiple-view model to deal with parallel and concurrent
behavioural specification at system-level design. The whole methodology is
object-oriented and follows the operational approach to allow the generation
of executable specifications and transformational refinements to obtain the
hardware and software solutions for system implementation. The codesign



An Evolutionary Approach to the Use of Petri Net based Models 19

target architecture is also presented, which includes a CPLD/FPGA-based ISP
board and a host PC with real-time multiprocessing capabilities. The target
architecture proposed offers an interesting low cost environment to research on
codesign methodologies and on hardware rapid-prototyping for a broad range
of time critical problems.

References

Adamski, M. (1991). Parallel Controller Implementation using Standard PLD
Software. In Moore, W. R., and Luk, W., editors, FPGAs. Abingdon EE&CS
Books.

AMD (1995). MACH 1, 2, 3 and 4 Family Data Book. Advanced Micro Devices.
David, R., and Alla, H. (1992). Petri Nets & Grafcet; Tools for modelling

discrete event systems. Prentice-Hall, UK. ISBN 0-13-327537-X.
Esteves, A. J., Fernandes, J. M., and Proença, A. J. (1997). EDgAR: A Platform

for Hardware/Software Codesign. In Embedded System Applications, Ed.
C. Baron, J.-C. Geffroy and G. Motet, Kluwer Academic Publishers, Boston,
USA, pp. 19–32.

Fehling, R. (1993). A Concept of Hierarchical Petri Nets with Building Blocks.
In Rozenberg, G., editor, Advances in Petri Nets 1993, vol. 674 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 148–68.

Fernandes, J. M. (1994). Petri Nets and VHDL in the Specification of Parallel
Controllers. MSc thesis, Dept. Informatics, University of Minho, Braga,
Portugal. (in portuguese)

Fernandes, J. M., Adamski, M., and Proença, A. J. (1997). VHDL Genera-
tion from Hierarchical Petri Net Specifications of Parallel Controller. IEE
Proceedings: Computers and Digital Techniques, 144:127–37.

Fernandes, J. M., Pina, A. M., and Proença, A. J. (1995a). Concurrent Execution
of Petri Nets based on Agents. In 1st Workshop on Object-Oriented Program-
ming and Models of Concurrency within the XVI International Conference
on Applications and Theory of Petri Nets, Torino, Italy.

Fernandes, J. M., Pina, A. M., and Proença, A. J. (1995b). Simulation and Syn-
thesis of Parallel Controllers based on Petri Nets. In VII Simṕosio Brasileiro
de Arquitetura de Computadores — Processamento de Alto Desempenho
(SBAC-PAD’95), pp. 481–92, Canela, Brazil. (in Portuguese).

Fernandes, J. M., and Proença, A. J. (1994). Petri Nets in the Specification
and Validation of Parallel Controllers. In 1o. Encontro Nacional do Coĺegio
de Engenharia Electrot́ecnica, pp. 113–8, Ordem dos Engenheiros, Lisboa,
Portugal. (in portuguese).

Gajski, D. and Kuhn, R. (1983). Guest’s editors introduction: New VLSI Tools.
IEEE Computer, 16:11–4.



20 HARDWARE DESIGN AND PETRI NETS

Gajski, D., Marchioro, G., and Zhu, J. (1997). Essential Issues in Codesign,
pp. 1–45. Kluwer Academic Publishers.

Gajski, D. D., Dutt, N. D., and Wu, A. C.-H. (1994). High-Level Synthesis:
Introduction to Chip and System Design. Kluwer Academic Publishers, 3
edition.

Jensen, K. (1992). Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use, vol. I. Springer-Verlag, Berlin, Germany.

Kozlowski, T. (1993). Petri-net-based CAD tools for parallel controller syn-
thesis. MSc thesis, University of Bristol, England.

Lakos, C. (1995). The Object Orientation in Object Petri Nets. In 1st Workshop
on Object-Oriented Programming and Models of Concurrency within the
16th International Conference on Applications and Theory of Petri Nets,
Torino, Italy.

Machado, R. J. (1996). Hierarchy in Object-Oriented Petri Nets for the Spec-
ification of Digital Systems. MSc thesis, Dep. Inforḿatica, Universidade do
Minho, Braga, Portugal. (in Portuguese).

Machado, R. J., Fernandes, J. M., and Proença, A. J. (1997a). SOFHIA: A
CAD Environment to Design Digital Control Systems. In Kloos, C. D. and
Cerny, E., editors, XIII IFIP Conference on Computer Hardware Description
Languages and Their Applications (CHDL’97), pp. 86–8, Toledo, Spain.
Chapman & Hall.

Machado, R. J., Fernandes, J. M., and Proença, A. J. (1997b). Specification
of Industrial Digital Controllers with Object-Oriented Petri Nets. In IEEE
International Symposium on Industrial Electronics (ISIE’97), vol. 1, pp. 78–
83, Guimarães, Portugal.

Machado, R. J., Fernandes, J. M., and Proença, A. J. (1998). An Object-Oriented
Model for Rapid Prototyping of Data Path/Control Systems — A Case
Study. In 9th IFAC Symposium on Information Control in Manufacturing
(INCOM’98), vol. 2, pp. 269–74, Nancy and Metz, France.

Machado, R. J., Fernandes, J. M., and Proença, A. J. (1998). Hierarchical
Mechanisms for High-level Modelling and Simulation of Digital Systems.
In 5th IEEE International Conference on Electronics, Circuits and Systems
(ICECS’98), vol. 3, pp. 229–32, Lisbon, Portugal.

Morris, D., Evans, G., Green, P., and Theaker, C. (1996). Object-Oriented Com-
puter Systems Engineering. Applied Computing. Springer-Verlag, London,
U.K. ISBN 3-540-76020-2.

Murata, T. (1989). Petri Nets: Properties, Analysis and Applications. Proceed-
ings of the IEEE, 77(4):541–80.

Pardey, J. and Bolton, M. (1991). Logic Synthesis of Synchronous Parallel
Controllers. Proceedings of the IEEE International Conference on Computer
Design, pp. 454–7.



An Evolutionary Approach to the Use of Petri Net based Models 21

Peng, Z. (1992). Digital System Simulation with VHDL in a High-level Syn-
thesis System. Microprocessing and Microprogramming, 35:263–70.

Santos, H. D. (1996). Specification and Analysis Methodologies of Digital
Systems: Development of an APA (GLiTCH) controller. PhD thesis, De-
partamento de Informática, Universidade do Minho, Braga, Portugal. (in
portuguese).

Valette, R., Courvoisier, M., Bigou, J., and Albukerque, J. (1983). A Petri Net
Based Programmable Logic Controller. In IFIP First International Confer-
ence on Computer Applications in Production and Engineering.

Xilinx (1996). The Programmable Logic Data Book. Xilinx.
Xu, Z. and Hwang, K. (1996). Modelling Communication Overhead: MPI and

MPL Performance on the IBM SP2. IEEE Parallel & Distributed Technology,
pp. 9–23.

Yakovlev, A., Koelmans, A., Semenov, A., and Kinniment, D. (1996a). Mod-
elling, Analysis and Synthesis of Asynchronous Control Circuits Using Petri
Nets. INTEGRATION: the VLSI Journal, (21):143–70.

Yakovlev, A., Lavagno, L., and Sangiovanni-Vincentelli, A. (1996b). A unified
signal transition graph model for asynchronous control circuit synthesis.
Formal Methods in System Design, (9):139–188.

Zave, P. (1984). The Operational versus the Conventional Approach to Software
Development. Communications of the ACM, 27(2):104–18.


