15 research outputs found

    Proving termination using abstract interpretation

    Get PDF
    PhDOne way to develop more robust software is to use formal program verification. Formal program verification requires the construction of a formal mathematical proof of the programs correctness. In the past ten years or so there has been much progress in the use of automated tools to formally prove properties of programs. However many such tools focus on proving safety properties: that something bad does not happen. Liveness properties, where we try to prove that something good will happen, have received much less attention. Program termination is an example of a liveness property. It has been known for a long time that to prove program termination we need to discover some function which maps program states to a well-founded set. Essentially we need to find one global argument for why the program terminates. Finding such an argument which overapproximates the entire program is very difficult. Recently, Podelski and Rybalchenko discovered a more compositional proof rule to find disjunctive termination arguments. Disjunctive termination arguments requires a series of termination arguments that individually may only cover part of the program but when put together give a reason for why the entire program will terminate. Thus we do not need to search for one overall reason for termination but we can break the problem down and focus on smaller parts of the program. This thesis develops a series of abstract interpreters for proving the termination of imperative programs. We make three contributions, each of which makes use of the Podelski-Rybalchenko result. Firstly we present a technique to re-use domains and operators from abstract interpreters for safety properties to produce termination analysers. This technique produces some very fast termination analysers, but is limited by the underlying safety domain used. We next take the natural step forward: we design an abstract domain for termination. This abstract domain is built from ranking functions: in essence the abstract domain only keeps track of the information necessary to prove program termination. However, the abstract domain is limited to proving termination for language with iteration. In order to handle recursion we use metric spaces to design an abstract domain which can handle recursion over the unit type. We define a framework for designing abstract interpreters for liveness properties such as termination. The use of metric spaces allows us to model the semantics of infinite computations for programs with recursion over the unit type so that we can design an abstract interpreter in a systematic manner. We have to ensure that the abstract interpreter is well-behaved with respect to the metric space semantics, and our framework gives a way to do this

    Multi-dimensional Rankings, Program Termination, and Complexity Bounds of Flowchart Programs

    Get PDF
    International audienceProving the termination of a flowchart program can be done by exhibiting a ranking function, i.e., a function from the program states to a well-founded set, which strictly decreases at each program step. A standard method to automatically generate such a function is to compute invariants for each program point and to search for a ranking in a restricted class of functions that can be handled with linear programming techniques. Previous algorithms based on affine rankings either are applicable only to simple loops (i.e., single-node flowcharts) and rely on enumeration, or are not complete in the sense that they are not guaranteed to find a ranking in the class of functions they consider, if one exists. Our first contribution is to propose an efficient algorithm to compute ranking functions: It can handle flowcharts of arbitrary structure, the class of candidate rankings it explores is larger, and our method, although greedy, is provably complete. Our second contribution is to show how to use the ranking functions we generate to get upper bounds for the computational complexity (number of transitions) of the source program. This estimate is a polynomial, which means that we can handle programs with more than linear complexity. We applied the method on a collection of test cases from the literature. We also show the links and differences with previous techniques based on the insertion of counters

    Bounding the Computational Complexity of Flowchart Programs with Multi-dimensional Rankings

    Get PDF
    Proving the termination of a flowchart program can be done by exhibiting a ranking function, i.e., a function from the program states to a well-founded set, which strictly decreases at each program step. A standard method to automatically generate such a function is to compute invariants for each program point and to search for a ranking in a restricted class of functions that can be handled with linear programming techniques. Our first contribution is to propose an efficient algorithm to compute ranking functions: It can handle flowcharts of arbitrary structure, the class of candidate rankings it explores is larger, and our method, although greedy, is provably complete. Our second contribution is to show how to use the ranking functions we generate to get upper bounds for the computational complexity (number of transitions) of the source program, again for flowcharts of arbitrary structure. This estimate is a polynomial, which means that we can handle programs with more than linear complexity. We applied the method on a collection of test cases from the literature. We also point out important extensions, mainly to do with the scalability of the algorithm and, in particular, the integration of techniques based on cutpoints

    Program Termination and Worst Time Complexity with Multi-Dimensional Affine Ranking Functions

    Get PDF
    A standard method for proving the termination of a flowchart program is to exhibit a ranking function, i.e., a function from the program states to a well-founded set, which strictly decreases at each program step. Our main contribution is to give an efficient algorithm for the automatic generation of multi-dimensional affine nonnegative ranking functions, a restricted class of ranking functions that can be handled with linear programming techniques. Our algorithm is based on the combination of the generation of invariants (a technique from abstract interpretation) and on an adaptation of multi-dimensional affine scheduling (a technique from automatic parallelization). We also prove the completeness of our technique with respect to its input and the class of rankings we consider. Finally, as a byproduct, by computing the cardinal of the range of the ranking function, we obtain an upper bound for the computational complexity of the source program, which does not depend on restrictions on the shape of loops or on program structure. This estimate is a polynomial, which means that we can handle programs with more than linear complexity. The method is tested on a large collection of test cases from the literature. We also point out future improvements to handle larger programs

    Loop summarization using state and transition invariants

    Get PDF
    This paper presents algorithms for program abstraction based on the principle of loop summarization, which, unlike traditional program approximation approaches (e.g., abstract interpretation), does not employ iterative fixpoint computation, but instead computes symbolic abstract transformers with respect to a set of abstract domains. This allows for an effective exploitation of problem-specific abstract domains for summarization and, as a consequence, the precision of an abstract model may be tailored to specific verification needs. Furthermore, we extend the concept of loop summarization to incorporate relational abstract domains to enable the discovery of transition invariants, which are subsequently used to prove termination of programs. Well-foundedness of the discovered transition invariants is ensured either by a separate decision procedure call or by using abstract domains that are well-founded by construction. We experimentally evaluate several abstract domains related to memory operations to detect buffer overflow problems. Also, our light-weight termination analysis is demonstrated to be effective on a wide range of benchmarks, including OS device driver

    Termination, correctness and relative correctness

    Get PDF
    Over the last decade, research in verification and formal methods has been the subject of increased interest with the need of more secure and dependable software. At the heart of software dependability is the concept of software fault, defined in the literature as the adjudged or hypothesized cause of an error. This definition, which lacks precision, presents at least two challenges with regard to using formal methods: (1) Adjudging and hypothesizing are highly subjective human endeavors; (2) The concept of error is itself insufficiently defined, since it depends on a detailed characterization of correct system states at each stage of a computation (which is usually unavailable). In the process of defining what a software fault is, the concept of relative correctness, the property of a program to be more-correct than another with respect to a given specification, is discussed. Subsequently, a feature of a program is a fault (for a given specification) only because there exists an alternative to it that would make the program more-correct with respect to the specification. Furthermore, the implications and applications of relative correctness in various software engineering activities are explored. It is then illustrated that in many situations of software testing, fault removal and program repair, testing for relative correctness rather than absolute correctness leads to clearer conclusions and better outcomes. In particular, debugging without testing, a technique whereby, a fault can be removed from a program and the new program proven to be more-correct than the original, all without any testing (and its associated uncertainties/imperfections) is introduced. Given that there are orders of magnitude more incorrect programs than correct programs in use nowadays, this has the potential to expand the scope of proving methods significantly. Another technique, programming without refining, is also introduced. The most important advantage of program derivation by correctness enhancement is that it captures not only program construction from scratch, but also virtually all activities of software evolution. Given that nowadays most software is developed by evolving existing assets rather than producing new assets from scratch, the paradigm of software evolution by correctness enhancements stands to yield significant gains, if we can make it practical

    Automatic program analysis using Max-SMT

    Get PDF
    This thesis addresses the development of techniques to build fully-automatic tools for analyzing sequential programs written in imperative languages like C or C++. In order to do the reasoning about programs, the approach taken in this thesis follows the constraint-based method used in program analysis. The idea of the constraint-based method is to consider a template for candidate invariant properties, e.g., linear conjunctions of inequalities. These templates involve both program variables as well as parameters whose values are initially unknown and have to be determined so as to ensure invariance. To this end, the conditions on inductive invariants are expressed by means of constraints (hence the name of the approach) on the unknowns. Any solution to these constraints then yields an invariant. In particular, if linear inequalities are taken as target invariants, conditions can be transformed into arithmetic constraints over the unknowns by means of Farkas' Lemma. In the general case, a Satisfiability Modulo Theories (SMT) problem over non-linear arithmetic is obtained, for which effective SMT solvers exist. One of the novelties of this thesis is the presentation of an optimization version of the SMT problems generated by the constraint-based method in such a way that, even when they turn out to be unsatisfiable, some useful information can be obtained for refining the program analysis. In particular, we show in this work how our approach can be exploited for proving termination of sequential programs, disproving termination of non-deterministic programs, and do compositional safety verification. Besides, an extension of the constraint-based method to generate universally quantified array invariants is also presented. Since the development of practical methods is a priority in this thesis, all the techniques have been implemented and tested with examples coming from academic and industrial environments. The main contributions of this thesis are summarized as follows: 1. A new constraint-based method for the generation of universally quantified invariants of array programs. We also provide extensions of the approach for sorted arrays. 2. A novel Max-SMT-based technique for proving termination. Thanks to expressing the generation of a ranking function as a Max-SMT optimization problem where constraints are assigned different weights, quasi-ranking functions -functions that almost satisfy all conditions for ensuring well-foundedness- are produced in a lack of ranking functions. Moreover, Max-SMT makes it easy to combine the process of building the termination argument with the usually necessary task of generating supporting invariants. 3. A Max-SMT constraint-based approach for proving that programs do not terminate. The key notion of the approach is that of a quasi-invariant, which is a property such that if it holds at a location during execution once, then it continues to hold at that location from then onwards. Our technique considers for analysis strongly connected subgraphs of a program's control flow graph and thus produces more generic witnesses of non-termination than existing methods. Furthermore, it can handle programs with unbounded non-determinism. 4. An automated compositional program verification technique for safety properties based on quasi-invariants. For a given program part (e.g., a single loop) and a postcondition, we show how to, using a Max-SMT solver, an inductive invariant together with a precondition can be synthesized so that the precondition ensures the validity of the invariant and that the invariant implies the postcondition. From this, we build a bottom-up program verification framework that propagates preconditions of small program parts as postconditions for preceding program parts. The method recovers from failures to prove validity of a precondition, using the obtained intermediate results to restrict the search space for further proof attempts.Esta tesis se centra en el desarrollo de técnicas para construir herramientas altamente automatizadas que analicen programas secuenciales escritos en lenguajes imperativos como C o C++. Para realizar el razonamiento sobre los programas, la aproximación tomada en esta tesis se basa en un conocido método basado en restricciones utilizado en análisis de progamas. La idea de dicho método consiste en considerar plantillas que expresen propiedades invariantes candidatas, p.e., conjunciones de desigualdades lineales. Estas plantillas contienen tanto variables del programa como parámetros cuyos valores son inicialmente desconocidos y tienen que ser determinados para garantizar la invariancia. Para este fin, las condiciones sobre invariantes inductivos son expresadas mediante restricciones sobre los valores desconocidos. Cualquier solución a estas restricciones llevan a un invariante. En particular, si desigualdades lineales son los invariantes objetivo, las condiciones pueden ser transformadas en restricciones aritméticas sobre los valores desconocidos mediante el lema de Farkas. En el caso general, un problema de Satisfactibilidad Modulo Teorías (SMT) sobre aritmética no-lineal es obtenido, para el cual existen resolvedores eficientes. Una de las novedades de esta tesis es la presentación de una versión de optimización de los problemas SMT generados por el método tal que, incluso cuando son insatisfactibles, se puede obtener cierta información útil para refinar el análisis del programa. En particular, en este trabajo se muestra como la aproximación tomada puede usarse para probar terminación de programas, probar la no terminación de programas y realizar verificación por partes de la corrección de programas. Además, también se describe una extensión del método basado en restricciones para generar invariantes universalmente cuantificados sobre arrays. Debido a que el desarrollo de métodos prácticos es una prioridad en esta tesis, todas las técnicas han sido implementadas y probadas con ejemplos extraídos del entorno académico e industrial. Las principales contribuciones de esta tesis pueden resumirse en: 1. Un nuevo método basado en restricciones para la generación de invariantes universalmente cuantificados sobre arrays. También se explica extensiones del método para aplicarlo a arrays ordenados. 2. Un técnica novedosa basada en Max-SMT para probar terminación. Gracias a expresar la generación de funciones de ranking como problemas de optimización Max-SMT, donde a las restricciones se les asigna diferentes pesos, se generan cuasi-funciones de ranking, funciones que casi satisfacen todas las condiciones que garantizan la existencia de una relación bien fundada, en ausencia de funciones de ranking. Además, Max-SMT facilita la combinación del proceso de construcción de un argumento de terminación con la tarea habitualmente necesaria de generar invariantes de apoyo. 3. Un método basado en restricciones y Max-SMT para probar que un programa no termina. El concepto clave del método es el de cuasi-invariante, que es una propiedad tal que si se cumple una vez en un punto del programa durante la ejecución, entonces continúa cumpliendose en ese punto desde entonces en adelante. Nuestra técnica considera en su análisis subgrafos fuertemente conexos del grafo de control de flujo del programa y produce testigos de no terminación más genéricos que otros métodos existentes. Además, es capaz de tratar programas con no determinismo. 4. Una técnica automatizada de verificación por partes de propiedades de corrección de un programa basada en cuasi-invariantes. Dado una parte de un programa (p.e., un único bucle) con una postcondición, se muestra como, usando Max-SMT, puede sintetizarse un invariante inductivo junto a una precondición que garantiza la validez del invariante y que el invariante implica la postcondición. Apartir de esto, se describe una infraestructura de verificación de programas de abajo a arriba que propaga precondiciones
    corecore