
Form Methods Syst Des (2013) 42:221–261
DOI 10.1007/s10703-012-0176-y

Loop summarization using state and transition invariants

Daniel Kroening · Natasha Sharygina · Stefano Tonetta ·
Aliaksei Tsitovich · Christoph M. Wintersteiger

Published online: 18 October 2012
© Springer Science+Business Media New York 2012

Abstract This paper presents algorithms for program abstraction based on the principle of
loop summarization, which, unlike traditional program approximation approaches (e.g., ab-
stract interpretation), does not employ iterative fixpoint computation, but instead computes
symbolic abstract transformers with respect to a set of abstract domains. This allows for an
effective exploitation of problem-specific abstract domains for summarization and, as a con-
sequence, the precision of an abstract model may be tailored to specific verification needs.
Furthermore, we extend the concept of loop summarization to incorporate relational ab-
stract domains to enable the discovery of transition invariants, which are subsequently used
to prove termination of programs. Well-foundedness of the discovered transition invariants
is ensured either by a separate decision procedure call or by using abstract domains that are
well-founded by construction.

We experimentally evaluate several abstract domains related to memory operations to
detect buffer overflow problems. Also, our light-weight termination analysis is demonstrated
to be effective on a wide range of benchmarks, including OS device drivers.
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1 Introduction

Finding good abstractions is key to further extension of the applicability of formal methods
to real problems in software and hardware engineering. Building a concise model that rep-
resents the semantics of a system with sufficient precision is the objective of research in this
area.

Loops in programs are the Achilles’ heel of program verification. Sound analysis of all
program paths through loops requires either an explicit unwinding or an over-approximation
(of an invariant) of the loop.

Unwinding is computationally too expensive for many industrial programs. For instance,
loops greatly limit the applicability of bounded model checking (BMC) [8]. In practice, if
the bound on the number of loop iterations cannot be pre-computed (the problem is unde-
cidable by itself), BMC tools simply unwind the loop a finite number of times, thus trading
the soundness of the analysis for scalability. Other methods rely on sufficiently strong loop
invariants; however, the computation of such invariants is an art. Abstract interpretation [22]
and counterexample-guided abstraction refinement (CEGAR) [12] use saturating procedures
to compute over-approximations of the loop. For complex programs, this procedure may re-
quire many iterations until the fixpoint is reached or the right abstraction is determined.
Widening is a remedy for this problem, but it introduces further imprecision, yielding spu-
rious behavior.

Many approximation techniques furthermore assume that loops terminate, i.e., that every
execution reaches the end of the loop after a finite number of iterations. Unfortunately, it is
not the case for many real applications (some loops are even designed to be infinite). Thus,
(non-) termination should be taken into account when constructing approximations.

In this paper, we focus on effective program abstraction and, to that end, we propose a
loop summarization algorithm that replaces program fragments with summaries, which are
symbolic abstract transformers. Specifically, for programs with no loops, an algorithm pre-
cisely encodes the program semantics into symbolic formulæ. For loops, abstract transform-
ers are constructed based on problem-specific abstract domains. The approach does not rely
on fixpoint computation of the abstract transformer and, instead, constructs the transformer
as follows: an abstract domain is used to draw a candidate abstract transition relation, giving
rise to a candidate loop invariant, which is then checked to be consistent with the seman-
tics of the loop. The algorithm allows tailoring of the abstraction to each program fragment
and avoids any possibly expensive fixpoint computation and instead uses a finite number of
relatively simple consistency checks. The checks are performed by means of calls to a SAT
or SMT-based decision procedure, which allows to check (possibly infinite) sets of states
within a single query. Thus, the algorithm is not restricted to finite-height abstract domains.

Our technique is a general-purpose loop and function summarization method and sup-
ports relational abstract domains that allow the discovery of (disjunctively well-founded)
transition invariants (relations between pre- and poststates of a loop). These are employed
to address the problem of program termination. If a disjunctively well-founded transition in-
variant exists for a loop, we can conclude that it is terminating, i.e., any execution through a
loop contains a finite number of loop iterations. Compositionality (transitivity) of transition
invariants is exploited to limit the analysis to a single loop iteration, which in many cases
performs considerably better in terms of run-time.

We implemented our loop summarization technique in a tool called LOOPFROG and we
report on our experience using abstract domains tailored to the discovery of buffer overflows
on a large set of ANSI-C benchmarks. We demonstrate the applicability of the approach to
industrial code and its advantage over fixpoint-based static analysis tools.
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Due to the fact that LOOPFROG only ever employs a safety checker to analyze loop
bodies instead of unwindings, we gain large speedups compared to state-of-the-art tools that
are based on path enumeration. At the same time, the false-positive rate of our algorithm is
very low in practice, which we demonstrate in an experimental evaluation on a large set of
Windows device drivers.

Outline This paper is structured as follows. First, in Sect. 2 we provide several basic def-
initions required for reading the paper. Then, Sect. 3 presents our method for loop summa-
rization and sketches the required procedures. Next, in Sect. 4 the algorithm is formalized
and a proof of its correctness is given. Background on termination and the algorithm ex-
tension to support termination proofs is presented in Sect. 5. Implementation details and an
experimental evaluation are provided in Sect. 6. Related work is discussed in Sect. 7. Finally,
Sect. 8 gives conclusions and highlights possible future research directions.

2 Loop invariants

Informally, an invariant is a property that always holds for (a part of) the program. The
notion of invariants of computer programs has been an active research area from the early
beginnings of computer science. A well-known instance are Hoare’s rules for reasoning
about program correctness [38]. For the case of looping programs fragments, [38] refers
to loop invariants, i.e., predicates that hold upon entry to a loop and after each iteration.
As a result, loop invariants are guaranteed to hold immediately upon exit of the loop.1 For
example, “p-a ≤ length(a)” is a loop invariant for the loop in Fig. 1.

Important types of loop invariants that are distinguished and used in this work are state
invariants and transition invariants.

Formally, a program can be represented as a transition system P = 〈S, I,R〉, where:

• S is a set of states;
• I ⊆ S is the set of initial states;
• R ⊆ S × S is the transition relation.

We use the relational composition operator ◦ which is defined for two binary relations Ri ⊆
S × S and Rj ⊆ S × S as

Ri ◦ Rj := {(
s, s ′) ∈ S × S ∃s ′′ ∈ S .

(
s, s ′′) ∈ Ri ∧ (

s ′′, s ′) ∈ Rj

}
.

To simplify the presentation, we also define R1 := R and Rn := Rn−1 ◦ R for any relation
R : S × S.

Fig. 1 The example of a
program and its program graph

1Here we only consider structured loops or loops for which the exit condition is evaluated before an iteration
has changed the state of any variables.
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Note that a relation R is transitive if it is closed under relational composition, i.e., when
R◦R ⊆ R. The reflexive and non-reflexive transitive closures of R are denoted as R∗ and R+
respectively. The set of reachable states is then defined as R∗(I ) := {s ∈ S | ∃s ′ ∈ I . (s ′, s) ∈
R∗}.

We now discuss two kinds of invariants, state invariants and transition invariants. For
historical reasons, state invariants are often referred to simply as invariants; we will use the
term “state invariant” when it is necessary to stress its difference to transition invariants.

Definition 1 (State invariant) A state invariant V for program P represented by a transition
system 〈S, I,R〉 is a superset of the reachable state space, i.e., R∗(I ) ⊆ V .

In contrast to state invariants that represent the safety class of properties, transition in-
variants, introduced by Podelski and Rybalchenko [50], enable reasoning about liveness
properties and, in particular, about program termination.

Definition 2 (Transition invariant [50]) A transition invariant T for program P represented
by a transition system 〈S, I,R〉 is a superset of the transitive closure of R restricted to the
reachable state space, i.e., R+ ∩ (R∗(I ) × R∗(I )) ⊆ T .

State and transition invariants can be used together during loop summarization to
preserve both safety- and liveness-related semantics of a loop in its abstraction. Our
experiments with a static analyser tailored to buffer overflows focus on state invari-
ants, while our experiments with termination analysis mainly use transition invari-
ants.

3 Loop summarization with state invariants

Algorithm 1 presents an outline of loop summarization. The function SUMMARIZE traverses
the control-flow graph of the program P and calls itself recursively for each block with
nested loops. If a block is a loop without nested loops, it is summarized using the function
SUMMARIZELOOP and the resulting summary replaces the original loop in P ′. Thereby,
outer loops also become loop-free, which enables further progress.

The function SUMMARIZELOOP computes the summaries. A very imprecise over-
approximation is to replace a loop with a program fragment that “havocs” the state by set-
ting all variables that are (potentially) modified during loop execution to non-deterministic
values. To improve the precision of these summaries, we strengthen them by means of (par-
tial) loop invariants. SUMMARIZELOOP has two subroutines that are related to invariant
discovery: PICKINVARIANTCANDIDATES, which returns a set of “invariant candidates”
depending on an abstract interpretation selected for the loop and ISSTATEINVARIANT,
which establishes whether a candidate is an actual loop invariant (a state invariant in this
case).

Note that this summarization algorithm only uses state invariants and does not take loop
termination into account. State invariants over-approximate the set of states that a loop can
reach but do not provide any information about the progress of the loop. Thus, the summaries
computed by the algorithm are always terminating program fragments. The abstraction is a
sound over-approximation, but it may be too coarse for programs that contain unreachable
paths. We address this issue in Sect. 5.
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Algorithm 1: Routines of loop summarization

SUMMARIZE(P )1

input: program P2

output: Program summary3

begin4

foreach Block B in CONTROLFLOWGRAPH(P ) do5

if B has nested loops then6

B :=SUMMARIZE(B)7

else if B is a single loop then8

B :=SUMMARIZELOOP(B)9

endif10

end11

return P12

end13

SUMMARIZELOOP(L)14

input: Single-loop program L (over variable set X)15

output: Loop summary16

begin17

I := 18

foreach Candidate C in PICKINVARIANTCANDIDATES(L) do19

if ISSTATEINVARIANT(L, C) then20

I := I ∧ C21

endif22

end23

return “Xpre := X;havoc(X);assume(I (Xpre) =⇒ I (X));"24

end25

ISSTATEINVARIANT(L, C)26

input: Single-loop program L (over variable set X), invariant candidate C27

output: TRUE if C is an invariant for L; FALSE otherwise28

begin29

return UNSAT(¬(L(X,X′) ∧ C(X) ⇒ C(X′)))30

end31

4 Summarization using symbolic abstract transformers

In the following subsections we formally describe the steps of our summarization approach.
We first present necessary notation and define summarization as an over-approximation of
a code fragment. Next, we show that a precise summary can be computed for a loop-free
code fragment, and we explain how a precise summary of a loop body is used to obtain
information about the computations of the loop. Finally, we give a bottom-up summarization
algorithm applicable to arbitrary programs.
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4.1 Abstract interpretation

To formally state the summarization algorithm and prove its correctness we rely on abstract
interpretation [22]. It constructs an abstraction of a program using values from an abstract
domain by iteratively applying the instructions of a program to abstract values until a fix-
point is reached. Formally:

Definition 3 A program graph is a tuple G = 〈PL,E,pli ,plo, L, C〉, where

• PL is a finite non-empty set of vertices called program locations;
• pli ∈ PL is the initial location;
• plo ∈ PL is the final location;
• E ⊆ PL×PL is a non-empty set of edges; E∗ denotes the set of paths, i.e., the set of finite

sequences of edges;
• L is a set of elementary commands;
• C : E → L associates a command with each edge.

A program graph is often used as an intermediate modeling structure in program analysis.
In particular, it is used to represent the control-flow graph of a program.

Example 1 To demonstrate the notion of a program graph we use the program fragment in
Fig. 1 as an example. On the left-hand side, we provide the program written in the program-
ming language C. On the right-hand side, we depict its program graph.

Let S be the set of states, i.e., the set of valuations of program variables. The set of
commands L consists of tests L T and assignments L A , i.e., L = L T ∪̇L A , where:

• a test q ∈ L T is a predicate over S (q ⊆ S);
• an assignment e ∈ L A is a map from S to S.

A program P is then formalized as the pair 〈S,G〉, where S is the set of states and G is
a program graph. We write L∗ for the set of sequences of commands. Given a program P ,
the set paths(P ) ⊆ L∗ contains the sequence C(e1), . . . , C(en) for every 〈e1, . . . , en〉 ∈ E∗.

The (concrete) semantics of a program is given by the pair 〈A,τ 〉, where:

• A is the set of assertions of the program, where each assertion p ∈ A is a predicate over
S (p ⊆ S); A(⇒, false, true,∨,∧) is a complete Boolean lattice;

• τ : L → (A → A) is the predicate transformer.

An abstract interpretation is a pair 〈Â, t〉, where Â is a complete lattice of the form
Â(�,⊥,,�,�), and t : L → (Â → Â) is a predicate transformer. Note that 〈A,τ 〉 is a
particular abstract interpretation called the concrete interpretation. In the following, we as-
sume that for every command c ∈ L, the function t (c) (predicate transformer for command
c) is monotone (which is the case for all natural predicate transformers). Given a predicate
transformer t , the function t̃ : L∗ → (Â → Â) is recursively defined as follows:

t̃ (p)(φ) =
{

φ if p is empty

t̃ (e)(t (q)(φ)) if p = q; e for a q ∈ L, e ∈ L∗.

Example 2 We continue using the program in Fig. 1. Consider an abstract domain where
abstract state is a four-tuple 〈pa, za, sa, la〉. The first member, pa is the offset of the pointer
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p from the base address of the array a (i.e., p − a in our example), the Boolean za holds if
a contains the zero character, the Boolean sa holds if a contains the slash character, la is the
index of the first zero character if present. The predicate transformer t is defined as follows:

t (p = a)(φ) = φ[pa := 0] for any assertion φ;
t (∗p = 0)(φ) = φ ∧ (pa �= la) for any assertion φ;
t (∗p == 0)(φ) = φ ∧ za ∧ (pa ≥ la) for any assertion φ;
t (∗p ==′ /′)(φ) = φ ∧ sa for any assertion φ;
t (∗p !=′ /′)(φ) = φ for any assertion φ;

t (∗p = 0)(φ) =
{

φ[za := true, la := pa] if φ ⇒ (pa < la)

φ[za := true] otherwise;
t (p++)(φ) = φ[pa := pa + 1] for any assertion φ.

(We used φ[x := v] to denote an assertion equal to φ apart from the variable x that takes
value v.)

Given a program P , an abstract interpretation 〈Â, t〉 and an element φ ∈ Â, we define the
Merge Over all Paths MOPP (t, φ) as

MOPP (t, φ) :=
⊔

π∈paths(P )

t̃ (π)(φ).

Given two complete lattices Â(�,⊥,,�,�) and Â′(�′,⊥′,′,�′,�′), the pair of func-
tions 〈α,γ 〉, with α : Â → Â′ and γ : Â′ → Â is a Galois connection iff α and γ are mono-
tone and satisfy:

for all φ ∈ Â : φ � γ
(
α(φ)

)

for all φ′ ∈ Â′ : α(
γ
(
φ′)) �′ φ′.

An abstract interpretation 〈Â, t〉 is a correct over-approximation of the concrete interpre-
tation 〈A,τ 〉 iff there exists a Galois connection 〈α,γ 〉 such that for all φ ∈ Â and p ∈ A, if
p ⇒ γ (φ), then α(MOPP (τ,p)) � MOPP (t, φ) (i.e., MOPP (τ,p) ⇒ γ (MOPP (t, φ))).

4.2 Computing abstract transformers

In order to implement abstract interpretation for a given abstract domain, an algorithmic de-
scription of the abstract predicate transformer t (p) for a specific command p ∈ L is required.
These transformers are frequently hand-coded for a given programming language and a
given domain. Reps et al. describe an algorithm that computes the best possible (i.e., most
precise) abstract transformer for a given finite-height abstract domain automatically [53].
Graf and Saïdi’s algorithm for constructing predicate abstractions [31] is identified as a spe-
cial case.

The algorithm presented by Reps et al. has two inputs: a formula Fτ(q), which represents
the concrete semantics τ(q) of a command q ∈ L symbolically, and an assertion φ ∈ Â. It
returns the image t (q)(φ) of the predicate transformer t (q). The formula Fτ(q) is passed
to a decision procedure, which is expected to provide a satisfying assignment to the vari-
ables. The assignment represents one concrete transition (p,p′) ∈ A × A. The transition is
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abstracted into a pair (φ,φ′) ∈ Â × Â, and a blocking constraint is added to remove this
satisfying assignment. The algorithm iterates until the formula becomes unsatisfiable. An
instance of the algorithm for the case of predicate abstraction is the implementation of SAT-
ABS described in [15]. SATABS uses a propositional SAT-solver as decision procedure for
bit-vector arithmetic. The procedure is worst-case exponential in the number of predicates,
and thus, alternatives have been explored. In [40, 43] a symbolic decision procedure gener-
ates a symbolic formula that represents the set of all solutions. In [44], a first-order formula
is used and the computation of all solutions is carried out by an SMT-solver. In [9], a similar
technique is proposed where BDDs are used in order to efficiently deal with the Boolean
component of Fτ(q).

4.3 Abstract summarization

The idea of summarization is to replace a code fragment, e.g., a procedure of the program,
by a summary, which is a representation of the fragment. Computing an exact summary of
a program (fragment) is undecidable in the general case. We therefore settle for an over-
approximation. We formalize the conditions the summary must fulfill in order to have a
semantics that over-approximates the original program.

We extend the definition of a correct over-approximation (from Sect. 4.1) to programs.
Given two programs P and P ′, we say that P ′ is a correct over-approximation of P iff for
all p ∈ A(⇒, false, true,∨,∧), MOPP (τ,p) ⇒ MOPP ′(τ,p).

Definition 4 (Abstract summary) Given a program P , and an abstract interpretation 〈Â, t〉
with a Galois connection 〈α,γ 〉 with 〈A,τ 〉, we denote the abstract summary of P by
Sum〈Â,t〉(P ). It is defined as the program 〈U,G〉, where U denotes the universe of program
variables and G = 〈{vi, vo}, {〈vi, vo〉}, vi, vo, {a}, C〉 and {a} together with C(〈vi, vo〉) = a,
where a is a new (concrete) command such that τ(a)(p) = γ (MOPP (t, α(p))).

Lemma 1 If 〈Â, t〉 is a correct over-approximation of 〈A,τ 〉, the abstract summary
Sum〈Â,t〉(P ) is a correct over-approximation of P .

Proof Let P ′ = Sum〈Â,t〉(P ). For all p ∈ A,

MOPP (τ,p) ⇒ γ
(
MOPP

(
t, α(p)

))
[by def. of correct over-approx.]

= τ(a)(p) [by Definition 4]

= MOPP ′(τ,p) [MOP over a single-command path]. �

The following sections discuss our algorithms for computing abstract summaries. The
summarization technique is first applied to particular fragments of the program, specifically
to loop-free (Sect. 4.4) and single-loop programs (Sect. 4.5). In Sect. 4.6, we use these pro-
cedures as subroutines to obtain the summarization of an arbitrary program. We formalize
code fragments as program sub-graphs.

Definition 5 Given two program graphs G = 〈V,E,vi, vo, L, C〉 and G′ = 〈V ′,E′,
v′

i , v
′
o, L′, C′〉, G′ is a program sub-graph of G iff V ′ ⊆ V , E′ ⊆ E, and C′(e) = C(e) for

every edge e ∈ E′.
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4.4 Summarization of loop-free programs

Obtaining MOPP (t, φ) is as hard as assertion checking on the original program. Neverthe-
less, there are restricted cases where it is possible to represent MOPP (t, φ) using a symbolic
predicate transformer.

Let us consider a program P with a finite number of paths, in particular, a program whose
program graph does not contain any cycles. A program graph G = 〈V,E,vi, vo, L, C〉 is
loop-free iff G is a directed acyclic graph.

In the case of a loop-free program P , we can compute a precise (not abstract) summary by
means of a formula FP that represents the concrete behavior of P . This formula is obtained
by converting P to static single assignment (SSA) form, whose size is linear in the size of
P (this step is beyond the scope of this work; see [14] for details).

Example 3 We continue the running example (Fig. 1). The symbolic transformer of the loop
body P ′ is represented by:

((∗p =′ /′ ∧ a′ = a[∗p = 0]) ∨ (∗p �=′ /′ ∧ a′ = a
)) ∧ (

p′ = p + 1
)
.

Recall the abstract domain from Example 2. We can deduce that:

1. if m < n, then MOPP ′(t, (pa = m ∧ za ∧ (la = n) ∧ ¬sa)) = (pa = m + 1 ∧ za ∧ la =
n ∧ ¬sa)

2. MOPP ′(t, za) = za .

This example highlights the generic nature of our technique. For instance, case 1 of the
example cannot be obtained by means of predicate abstraction because it requires an infi-
nite number of predicates. Also, the algorithm presented in [53] cannot handle this example
because assuming the string length has no a-priori bound, the lattice of the abstract interpre-
tation has infinite height.

4.5 Summarization of single-loop programs

We now consider a program that consists of a single loop.

Definition 6 A program P = 〈U,G〉 is a single-loop program iff G = 〈V,E,vi , vo, L, C〉
and there exists a program sub-graph G′ and a test q ∈ L T such that

• G′ = 〈V ′,E′, vb, vi, L′, C′〉 with
– V ′ = V \ {vo},
– E′ = E \ {〈vi, vo〉, 〈vi, vb〉},
– L′ = L \ q ,
– C′(e) = C(e) for all e ∈ E′,
– G′ is loop-free.

• C(〈vi, vb〉) = q , C(〈vi, vo〉) = q .
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We first record the following simple lemma.

Lemma 2 Given a loop-free program P , and an abstract interpretation 〈Â, t〉, if
MOPP (t,ψ) � ψ , then, for all repetitions of loop-free paths of a program P , i.e., for all
π ∈ (paths(P ))∗, t̃ (π)(ψ) � ψ .

Proof If MOPP (t,ψ) = ⊔
π∈paths(P ) t̃ (π)(ψ) � ψ , then, for all paths π ∈ paths(P ),

t̃ (π)(ψ) � ψ . Thus, by induction on repetitions of loop-free paths, for all paths π ∈
(paths(P ))∗, t̃ (π)(ψ) � ψ . �

The following can be seen as the “abstract interpretation analog” of Hoare’s rule for
while loops.

Theorem 1 Given a single-loop program P with guard q and loop body P ′, and an ab-
stract interpretation 〈Â, t〉, let ψ be an assertion satisfying MOPP ′(t, t (q)(ψ)) � ψ and let
〈Â, tψ 〉 be a new abstract interpretation s.t.

MOPP (tψ ,φ) =
{

t (q)(ψ) if φ � ψ

 elsewhere.

If 〈Â, t〉 is a correct over-approximation, then 〈Â, tψ 〉 is also a correct over-approximation.

Proof If φ � ψ ,

α
(
MOPP (τ,p)

) � MOPP (t,p)
[〈Â, t〉 is a correct over-approximation

]

=
⊔

π∈paths(P )

t̃ (π)(φ) [by definition of MOP]

�
⊔

π∈paths(P )

t̃ (π)(ψ) [φ � ψ]

=
⊔

π∈(q;π ′)∗,π ′∈paths(P ′)
t̃
((

π ′;q)∗)
(ψ) [P is a single-loop program]

=
⊔

π∈(q;π ′)∗,π ′∈paths(P ′)
t̃
(
(q)∗)(t̃

((
π ′)∗)

(ψ)
) [by definition of t̃]

� t (q)

( ⊔

π∈(q;π ′)∗,π ′∈paths(P ′)
t̃
((

π ′)∗)
(ψ)

)
[t is monotone]

� t (q)(ψ) [by Lemma 2]

Otherwise, trivially α(MOPP (τ,p)) �  = MOPP (tψ ,φ). �

In other words, if we apply the predicate transformer of the test q and then the transformer
of the loop body P ′ to the assertion ψ , and we obtain an assertion at least as strong as ψ ,
then ψ is a state invariant of the loop. If a stronger assertion φ holds before the loop, the
predicate transformer of q applied to φ holds afterwards.
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Theorem 1 gives rise to a summarization algorithm. Given a program fragment and an
abstract domain, we heuristically provide a set of formulas, which encode that a (possibly
infinite) set of assertions ψ are invariant (for example, x ′ = x encodes that every ψ defined
as x = c, with c a value in the range of x, is an invariant). We apply a decision procedure to
check if the formulas are unsatisfiable (see ISSTATEINVARIANT(L,C) in Algorithm 1).

The construction of the summary is then straightforward: given a single-loop program P ,
an abstract interpretation 〈Â, t〉, and a state invariant ψ for the loop body, let 〈Â, tψ 〉 be the
abstract interpretation as defined in Theorem 1. We denote the summary Sum〈Â,tψ 〉(P ) by

SlS(P, Â, tψ) (Single-Loop Summary).

Corollary 1 If 〈Â, t〉 is a correct over-approximation of 〈A,τ 〉, then SlS(P, Â, tψ) is a
correct over-approximation of P .

Example 4 We continue the running example from Fig. 1. Recall the abstract domain in
Example 2. Let P ′ denote the loop body of the example program and let q denote the loop
guard. By applying the symbolic transformer from Example 3, we can check that the fol-
lowing conditions hold:

1. MOPP ′(t, t (q)(φ)) � φ for any assertion ((pa ≤ la) ∧ za ∧ ¬sa).
2. MOPP ′(t, t (q)(φ)) � φ for the assertion za .

Thus, we summarize the loop with the following predicate transformer:

(
za → z′

a

) ∧ ((
(pa ≤ la) ∧ za ∧ ¬sa

) → ((
p′

a = l′a
) ∧ z′

a ∧ ¬s ′
a

))
.

4.6 Summarization for programs with multiple loops

We now describe an algorithm for over-approximating a program with multiple loops that
are possibly nested. Like traditional algorithms (e.g., [58]), the dependency tree of program
fragments is traversed bottom-up, starting from the leaves. The code fragments we consider
may be function calls or loops. We treat function calls as arbitrary sub-graphs (see Defi-
nition 5) of the program graph, and do not allow recursion. We support irreducible graphs
using loop simulation [2].

Specifically, we define the sub-graph dependency tree of a program P = 〈U,G〉 as the
tree 〈T ,>〉, where

• the set of nodes of the tree are program sub-graphs of G;
• for G1,G2 ∈ T , G1 > G2 iff G2 is a program sub-graph of G1 with G1 �= G2;
• the root of the tree is G;
• every leaf is a loop-free or single-loop sub-graph;
• every loop sub-graph is in T .

Algorithm 2 takes a program as input and computes its summary by following the struc-
ture of the sub-graph dependency tree (Line 3). Thus, the algorithm is called recursively
on the sub-program until a leaf is found (Line 5). If it is a single loop, an abstract do-
main is chosen (Line 11) and the loop is summarized as described in Sect. 4.5 (Line 13).
If it is a loop-free program, it is summarized with a symbolic transformer as described in
Sect. 4.4 (Line 16). The old sub-program is then replaced with its summary (Line 7) and the
sub-graph dependency tree is updated (Line 8). Eventually, the entire program is summa-
rized.
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Algorithm 2: Arbitrary program summarization

SUMMARIZE(P )1

input : program P = 〈U,G〉
output: over-approximation P ′ of P

begin2

〈T ,>〉 := sub-graph dependency tree of P ;3

Pr := P ;4

for each G′ such that G > G′ do5

〈U,G′′〉 := SUMMARIZE(〈U,G′〉);6

Pr := Pr where G′ is replaced with G′′;7

update 〈T ,>〉;8

end9

if Pr is a single loop then10

〈Â, t〉 := choose abstract interpretation for Pr ;11

/* Choice of abstract interpretation defines set of
candidate assertions ψ, which are checked to hold in
the next step. */
ψ := test state invariant candidates for t on Pr ;12

P ′ := SlS(Pr , Â, tψ);13

/* Those ψ that hold on Pr form the single-loop
summary (SlS). */

end14

else15

/* Pr is loop-free */
P ′ := Sum〈A,τ 〉(Pr);16

end17

return P ′18

end19

Theorem 2 SUMMARIZE(P ) is a correct over-approximation of P .

Proof We prove the theorem by induction on the structure of the sub-graph dependency tree.
In the first base case (Pr is loop-free), the summary is precise by construction and is thus

a correct over-approximation of P .
In the second base case (Pr is a single loop), by hypothesis, each abstract interpretation

chosen at Line 11 is a correct over-approximation of the concrete interpretation. Thus, if P

is a single-loop or a loop-free program, P ′ is a correct over-approximation of P (resp. by
Theorem 1 and by definition of abstract summary).

In the inductive case, we select a program subgraph G′ and we replace it with G′′,
where 〈U,G′′〉 = Summarize(〈U,G′〉). Through the induction hypothesis, we obtain that
〈U,G′′〉 is a correct over-approximation of 〈U,G′〉. Thus, for all p ∈ A, MOP〈U,G′〉(τ,p) ⇒
MOP〈U,G′′〉(τ,p). Note that G′′ contains only a single command g.

We want to prove that for all p ∈ A, MOPP (τ,p) ⇒ MOPP ′(τ,p) (for readability, we
replace the subscript “(πi;πg;πf ) ∈ paths(P ), πg ∈ paths(〈U,G′〉), and πi ∩ G′ = ∅” with
∗ and “π ∈ paths(P ), and π ∩ G′ = ∅” with ∗∗):
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MOPP (τ,p)

=
⊔

π∈paths(P )

τ̃ (π)(p) [by definition of MOP]

=
⊔

∗
τ̃ (πf )

(
τ̃ (πg)

(
τ̃ (πi)(p)

)) ∪
⊔

∗∗
τ̃ (π)(p)

[
G′ is a subgraph

]

⇒
⊔

∗
τ̃ (πf )

(
MOP〈U,G′′〉

(
τ̃ ,

(
τ̃ (πi)(p)

))) ∪
⊔

∗∗
τ̃ (π)(p)

[
G′′ is an over-approx.

]

=
⊔

∗
τ̃ (πf )

(
MOP〈U,(G′′;πi )〉(τ,p)

) ∪
⊔

∗∗
τ̃ (π)(p) [by definition of MOP]

=
⊔

π∈paths(P )

MOPπ [g/πg ](τ,p) [by induction on length of paths]

=
⊔

π∈paths(P ′)
MOPπ (τ,p)

[
by definition of π ′]

= MOPπ ′(τ,P ) [by definition of MOP] �

The precision of the over-approximation is controlled by the precision of the symbolic
transformers. However, in general, the computation of the best abstract transformer is an ex-
pensive iterative procedure. Instead, we use an inexpensive syntactic procedure for loop-free
fragments. Loss of precision only happens when summarizing loops, and greatly depends
on the abstract interpretation chosen in Line 11.

Note that Algorithm 2 does not limit the selection of abstract domains to any specific type
of domain, and that it does not iterate the predicate transformer on the program. Furthermore,
this algorithm allows for localization of the summarization procedure, as a new domain may
be chosen for every loop. Once the domains are fixed, it is also straightforward to monitor
the progress of the summarization, as the number of loops and the cost of computing the
symbolic transformers are known—another distinguishing feature of our algorithm.

The summarization can serve as an over-approximation of the program. It can be trivially
analyzed to prove unreachability, or equivalently, to prove assertions.

4.7 Leaping counterexamples

Let P ′ denote the summary of the program. The program P ′ is a loop-free sequence of
symbolic summaries for loop-free fragments and loop summaries. A counterexample for
an assertion in P ′ follows this structure: for loop-free program fragments, it is identical to
a concrete counterexample. Upon entering a loop summary, the effect of the loop body is
given as a single transition in the counterexample: we say that the counterexample leaps
over the loop.

Example 5 Consider the summary from Example 4. Suppose that in the initial condition,
the buffer a contains a null terminating character in position n and no ′/′ character. If we
check that, after the loop, pa is greater than the size n, we obtain a counterexample with
p0

a = 0,p1
a = n.

The leaping counterexample may only exist with respect to the abstract interpretations
used to summarize the loops, i.e., the counterexample may be spurious in the concrete inter-
pretation. Nevertheless, leaping counterexamples provide useful diagnostic feedback to the
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programmer, as they show a (partial) path to the violated assertion, and contain many of the
input values the program needs to violate the assertion. Furthermore, spurious counterexam-
ples can be eliminated by combining our technique with counterexample-guided abstraction
refinement, as we have an abstract counterexample. Other forms of domain refinement are
also applicable.

5 Termination analysis using loop summarization

In this section we show how to employ loop summarization with transition invariants to
tackle the problem of program termination.

5.1 The termination problem

The termination problem (also known as the uniform halting problem) is has roots in
Hilbert’s Entscheidungsproblem and can be formulated as follows:

In finite time, determine whether a given program always finishes running or could
execute forever.

Undecidability of this problem was shown by Turing [59]. This result sometimes gives
rise to the belief that termination of a given program can never be proven. In contrast, nu-
merous algorithms that prove termination of many realistic classes of programs have been
published, and termination analysis now is at a point where industrial application of termi-
nation proving tools for specific programs is feasible.

One key fact underlying these methods is that termination may be reduced to the con-
struction of well-founded ranking relations [60]. Such a relation establishes an order be-
tween the states of the program by ranking each of them, i.e., by assigning a natural number
to each state such that for any pair of consecutive states si, si+1 in any execution of the
program, the rank decreases, i.e., rank(si+1) < rank(si). The existence of such an assign-
ment ensures well-foundedness of the given set of transitions. Consequently, a program is
terminating if there exists a ranking function for every program execution.

Podelski and Rybalchenko proposed disjunctive well-foundedness of transition invari-
ants [50] as a means to improve the degree of automation of termination provers. Based
on this discovery, the same authors together with Cook gave an algorithm to verify pro-
gram termination using iterative construction of transition invariants—the Terminator al-
gorithm [17, 18]. This algorithm exploits the relative simplicity of ranking relations for a
single path of a program. It relies on a safety checker to find previously unranked paths
of a program, computes a ranking relation for each of them individually, and disjunctively
combines them in a global (disjunctively well-founded) termination argument. This strategy
shifts the complexity of the problem from ranking relation synthesis to safety checking, a
problem for which many efficient solutions exist (mainly by means of reachability analysis
based on Model Checking).

The Terminator algorithm was successfully implemented in tools (e.g., the TERMINA-
TOR [18] tool, ARMC [51], SATABS [21]) and applied to verify industrial code, most
notably, Windows device drivers. However, it has subsequently become apparent that the
safety check is a bottleneck of the algorithm, consuming up to 99 % of the run-time [18, 21]
in practice. The runtime required for ranking relation synthesis is negligible in comparison.
A solution to this performance issue is Compositional Termination Analysis (CTA) [41].
This method limits path exploration to several iterations of each loop of the program. Tran-
sitivity (or compositionality) of the intermediate ranking arguments is used as a criterion to
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determine when to stop the loop unwinding. This allows for a reduction in run-time, but in-
troduces incompleteness since a transitive termination argument may not be found for each
loop of a program. However, experimental evaluation on Windows device drivers confirmed
that this case is rare in practice.

The complexity of the termination problem together with the observation that most loops
have, in practice, (relatively) simple termination arguments suggests the use of light-weight
static analysis for this purpose. In particular, we propose a termination analysis based on the
loop summarization algorithm described in Sect. 3. We build a new technique for termina-
tion analysis by (1) employing an abstract domain of (disjunctively well-founded) transition
invariants during summarization and (2) using a compositionality check as a completeness
criterion for the discovered transition invariant.

5.2 Formalism for reasoning about termination

As described in Sect. 2, we represent a program as a transition system P = 〈S, I,R〉, where:

• S is a set of states;
• I ⊆ S is the set of initial states;
• R ⊆ S × S is the transition relation.

We also make use of the notion of (disjunctively well-founded) transition invariants (Def-
inition 2, p. 224) introduced by Podelski and Rybalchenko [50].

Definition 7 (Well-foundedness) A relation R is well-founded (wf.) over S if for any non-
empty subset of S, there exists a minimal element (with respect to R), i.e., ∀X ⊆ S . X �=
∅ =⇒ ∃m ∈ X,∀s ∈ X, (s,m) /∈ R.

The same does not hold for the weaker notion of disjunctive well-foundedness.

Definition 8 (Disjunctive Well-foundedness [50]) A relation T is disjunctively well-founded
(d.wf.) if it is a finite union T = T1 ∪ · · · ∪ Tn of well-founded relations.

The main result of the work [50] concludes program termination from the existence of
disjunctively well-founded transition invariant.

Theorem 3 (Termination [50]) A program P is terminating iff there exists a d.wf. transition
invariant for P .

This result is applied in the Terminator2 algorithm [18], which automates construction of
d.wf. transition invariants. It starts with an empty termination condition T = ∅ and queries
a safety checker for a counterexample—a computation that is not covered by the current
termination condition T . Next, a ranking relation synthesis algorithm is used to obtain a
termination argument T ′ covering the transitions in the counterexample. The termination
argument is then updated as T := T ∪ T ′ and the algorithm continues to query for coun-
terexamples. Finally, either a complete (d.wf.) transition invariant is constructed or there
does not exist a ranking relation for some counterexample, in which case the program is
reported as non-terminating.

2The Terminator algorithm is referred to as Binary Reachability Analysis (BRA), though BRA is only a
particular technique to implement the algorithm (e.g., [21]).
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5.3 Compositional termination analysis

Podelski and Rybalchenko [50] remarked an interesting fact regarding the compositional-
ity (transitivity) of transition invariants: If T is transitive, it is enough to show that T ⊇ R

instead of T ⊇ R+ to conclude termination, because a compositional and d.wf. transition in-
variant is well-founded, since it is an inductive transition invariant for itself [50]. Therefore,
compositionality of a d.wf. transition invariant implies program termination.

To comply with the terminology in the existing literature, we define the notion of com-
positionality for transition invariants as follows:

Definition 9 (Compositional Transition Invariant [41, 50]) A d.wf. transition invariant T is
called compositional if it is also transitive, or equivalently, closed under composition with
itself, i.e., when T ◦ T ⊆ T .

This useful property did not find its application in termination analysis until 2010. To
understand its value we need to look closer at the transitive closure of program’s transi-
tion relation R. The safety checker in the Terminator algorithm verifies that a candidate
transition invariant T indeed includes R+ restricted to the reachable states. Note that the
(non-reflexive) transitive closure of R is essentially an unwinding of program loops:

R+ = R ∪ (R ◦ R) ∪ (R ◦ R ◦ R) ∪ · · · =
∞⋃

i=1

Ri.

Thus, instead of searching for a d.wf. transition invariant that is a superset of R+, we
can therefore decompose the problem into a series of smaller ones. We can consider a series
of loop-free programs in which R is unwound k times, i.e., the program that contains the
transitions in R1 ∪ · · · ∪ Rk . As was shown in [41], if there is a d.wf. Tk with

⋃k

j=1 Rj ⊆ Tk

and Tk is also transitive, then Tk is a compositional transition invariant for P .
This idea results in an algorithm that constructs d.wf. relations Ti for incrementally deep

unwindings of P until it finally finds a transitive Tk , which proves termination of P . In [41],
this algorithm was named Compositional Termination Analysis (CTA).

5.4 From TERMINATOR via CTA to a light-weight static analysis

TERMINATOR is a complete algorithm (relative to completeness of the ranking procedure).
Note that CTA is not even complete relative to the completeness of the ranking procedure
for terminating programs even if they are finite-state. This is due to the fact that T is not
guaranteed to ever become transitive, even if it contains R+.

The TERMINATOR strategy can be seen as a “proof by construction”: it explicitly builds
the valid terminating argument for every path in a program. CTA combines “proof by con-
struction” with a “proof by induction”: it first tries to construct a base step and then check the
inductiveness. Inductive proofs are hard to find, and the implementation reported in [41] can
only compute very simple inductive arguments. However, as it was shown in [41], for loops
in industrial applications such as Windows device drivers, that CTA performs considerably
better than TERMINATOR.

This observation suggests an even more light-weight proof strategy—from a mix of
“proof by construction” with “proof by induction” to a pure “proof by induction”: we pro-
pose to replace ranking synthesis-based transition invariant discovery with abstract domain-
based transition invariant discovery. Instead of a complex base case, we “guess” several
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variants of the loop using lightweight static analysis methods and then check if the inductive
argument happens to hold as well. This method is of course incomplete, but avoids expensive
path enumeration inside the safety checker. We apply a variant of our loop summarization
algorithm with specific relational domains for this purpose.

5.5 Loop summarization with transition invariants

We introduce a method that allows transition invariants to be included for strengthening of
loop summaries. This increases the precision of the summaries by allowing loop termination
to be taken into account.

According to Definition 2, a binary relation T is a transition invariant for a program P

if it contains R+ (restricted to the reachable states). Note, however, that transitivity of T is
also a sufficient condition when T is only a superset of R:

Theorem 4 A binary relation T is a transition invariant for the program 〈S, I,R〉 if it is
transitive and R ⊆ T .

Proof From transitivity of T it follows that T + ⊆ T . Since R ⊆ T it follows that R+ ⊆ T . �

This simple fact allows for an integration of transition invariants into the loop summa-
rization framework by a few adjustments to the original algorithm. Consider line 19 of Algo-
rithm 1 (p. 225), where candidate invariants are selected. Clearly, we need to allow selection
of transition invariants here, i.e., invariant candidates now take the relational form C(X,X′),
where X′ is the post-state of a single iteration of L.

What follows is a check for invariance of C over L(X,X′), i.e., a single unwinding of
the loop. Consider the temporary (sub-)program 〈S,S,L〉 to represent the execution of the
loop from a non-deterministic entry state. A transition invariant for this program is required
to cover L+, which, according to Theorem 4, is implied by L ⊆ C and transitivity of C. The
original invariant check in ISTRANSITIONINVARIANT establishes L ⊆ C, when the check
for unsatisfiability receives the more general formula L(X,X′) ∧ C(X,X′) as a parameter.
The summarization procedure furthermore requires a slight change to include a check for
compositionality. The resulting procedure is Algorithm 3.

5.6 Termination checks

The changes to the summarization algorithm allow for termination checks during summa-
rization through application of Theorem 3, which requires a transition invariant to be dis-
junctively well-founded. This property may be established by allowing only disjunctively
well-founded invariant candidates, or it may be checked by means of decision procedures
(e.g., SMT solvers where applicable).

According to Definition 8, the well-foundedness of each of the disjuncts of a candidate
relation T must be established in order to ensure that it is d.wf. This can be done by an ex-
plicit encoding of the well-foundedness criteria given in Definition 7. However, the resulting
formula contains quantifiers. As a consequence, the obtained decision problem is frequently
beyond the capabilities of state-of-the-art solvers.

5.7 The difference between TERMINATOR, CTA and loop summarization-based
termination

The complexity of establishing well-foundedness of a transition invariant hints at the expla-
nation of a major difference between our new algorithm and TERMINATOR/CTA. The latter
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Algorithm 3: Loop summarization with transition invariants

SUMMARIZELOOP-TI(L)1

input: Single-loop program L with a set of variables X2

output: Loop summary3

begin4

T := 5

foreach Candidate C in PICKINVARIANTCANDIDATES(L) do6

if ISTRANSITIONINVARIANT(L, C) ∧ ISCOMPOSITIONAL(C) then7

T := T ∧ C8

end9

end10

return “Xpre := X;havoc(X);assume(T (Xpre,X));"11

end12

ISTRANSITIONINVARIANT(L, C)13

input: Single-loop program L (with entry state X and post-iteration state X′),14

invariant candidate C

output: TRUE if C is a transition invariant for L; FALSE otherwise15

begin16

return UNSAT(¬(L(X,X′) ∧ C(X,X′) ⇒ C(X,X′)))17

end18

ISCOMPOSITIONAL(C)19

input: Invariant candidate C(X,X′)20

output: TRUE if C is compositional; FALSE otherwise21

begin22

return UNSAT(¬(C(X,Y ) ∧ C(Y,X′) ⇒ C(X,X′)))23

end24

construct the transition invariant using the abstraction-refinement loop such that it is already
disjunctively well-founded, while we allow any transition invariant to be discovered, though,
later it needs to be checked for well-foundedness. Note that even if the discovered transition
invariant is not well-founded, it is still a valid transition invariant and can therefore be used
to improve the precision of summaries.

However, the research in size-change termination for functional languages [5]3 suggests
that a small set of templates for ranking relations is enough to cover many classes of pro-
grams. Besides, the expensive well-foundedness check can be completely omitted if we em-
ploy specialized abstract domains that produce only well-founded candidates for transition
invariants. This is the approach we take in the following section.

Example 6 Consider the program in Fig. 2. The symbolic transformer for the loop body
is: φL := x ′ = x + 1. Also consider the relation “>” for a pair x ′ and x as a candidate

3We discuss the relation of our method to size-change termination in Sect. 7.2.1.
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i n t x = 0 ;
whi le ( x <255)
x ++;

Fig. 2 An example of a terminating loop with a strictly increasing iterator

relation Tc . Tc is indeed a transition invariant if the following formula is unsatisfiable:

x < 255 ∧ x ′ = x + 1 ∧ ¬(
x ′ > x

)
.

The formula is UNSAT, i.e., the invariant holds, and x ′ > x is added to the symbolic trans-
former as a transition invariant. Since the relation is compositional and d.wf. (we explain
the reason for this later), the loop is marked as terminating.

5.8 Invariant candidate selection

We now propose a set of specialized candidate relations, which we find useful in practice,
as demonstrated in the following section. We focus on transition invariants for machine-
level integers (i.e., finite integers with overflows) for a bit-precise analysis of programs
implemented in low-level languages such as ANSI-C.

In contrast to other work on termination proving with abstract domains (e.g., [6]), we do
not aim for general domains like Octagons and Polyhedra. Although fast in computation,
they are not designed for termination and d.wf. and compositionality checks for them can
be costly. Instead we focus on domains that

• generate few, relatively simple candidate relations;
• allow for efficient d.wf. and compositionality checks.

Arithmetic operations on machine-level integers usually allow overflows, e.g., the in-
struction i = i + 1 for a pre-state i = 2k − 1 results in a post-state i ′ = −2k−1 (when repre-
sented in two’s-complement). If termination of the loop depends on machine-level integers,
establishing well-foundedness of a relation over it is not straightforward, as increasing/de-
creasing sequences of numbers of this kind can be affected by overflow/underflow. However,
we can use the following theorem to simplify the discovery of a d.wf. transition invariant.

Theorem 5 If T : K × K is a strict order relation for a finite set K ⊆ S and is a transition
invariant for the program 〈S, I,R〉, then T is well-founded.

Proof If T is a transition invariant, then for all pairs (k1, k2) ∈ K × K . Thus, it is total
over K . Non-empty finite totally-ordered sets always have a least element and, therefore,
T is well-founded. �

The proof uses the fact that, when checking T for being a transition invariant, we implic-
itly enumerated all the pairs of pre- and post-states to discover if any of them violates the
order.

A total strict-order relation is also transitive, which allows for an alternative (stronger)
criterion than Theorem 3:

Corollary 2 A program terminates if it has a transition invariant T that is also a finite
strict-order relation.
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This corollary allows for a selection of invariant candidates that ensures (disjunctive)
well-foundedness of transition invariants. An explicit check is therefore not required. An
example of such a candidate appears in Example 6.

Note that strictly ordered and finite transition invariants exist for many programs in prac-
tice: machine-level integers or strings of fixed length have a finite number of possible distinct
pairs and strict natural or lexicographical orders are defined for them as well.

6 Experimental evaluation

This section first presents LOOPFROG—a tool that implements loop summarization and
serves as a basis for our experiments. Next, we evaluate the implementation to detect buffer
overflows in ANSI-C programs. We finally demonstrate the applicability of loop summa-
rization to termination analysis.

6.1 The LOOPFROG tool

The theoretical concept of symbolic abstract transformers is implemented and put to use by
our tool LOOPFROG. Its architecture is outlined in Fig. 3. As input, LOOPFROG receives a
model file, extracted from software sources by GOTO-CC.4 This model extractor features
full ANSI-C support and simplifies verification of software projects that require complex
build systems. It mimics the behavior of the compiler, and thus ‘compiles’ a model file using
the original settings and options. Switching from compilation mode to verification mode is
thus frequently achieved by changing a single option in the build system. As suggested by
Fig. 3, all other steps are fully automated.

Fig. 3 Architecture of
LOOPFROG

4http://www.cprover.org/goto-cc/.

http://www.cprover.org/goto-cc/
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The resulting model contains a control flow graph and a symbol table, i.e., it is an inter-
mediate representation of the original program in a single file. For calls to system library
functions, abstractions containing assertions (pre-condition checks) and assumptions (post-
conditions) are inserted. Note that the model also can contain the properties to be checked
in the form of assertions (calls to the ASSERT function).

Preprocessing The model, instrumented with assertions, is what is passed to the first stage
of LOOPFROG. In this preprocessing stage, the model is adjusted in various ways to increase
performance and precision. First, irreducible control flow graphs are rewritten according to
an algorithm due to Ashcroft and Manna [2]. As in compilation, small functions are inlined.
This increases the model size, but also improves the precision of subsequent analysis. After
this, LOOPFROG runs a field-sensitive pointer analysis. The information obtained this way is
used to generate assertions over pointers, and to eliminate pointer variables in the program
where possible. LOOPFROGautomatically adds assertions to verify the correctness of pointer
operations, array bounds, and arithmetic overflows.

Loop summarization Once the preprocessing is finished, LOOPFROG starts to replace
loops in the program with summaries. These are shorter, loop-free program fragments that
over-approximate the original program behavior. To accomplish this soundly, all loops are
replaced with a loop-free piece of code that “havocs” the program state, i.e., it resets all
variables that may be changed by the loop to unknown values. Additionally, a copy of the
loop body is kept, such that assertions within the loop are preserved.

While this is already enough to prove some simple properties, much higher precision is
required for more complex ones. As indicated in Fig. 3, LOOPFROG makes use of prede-
fined abstract domains to achieve this. Every loop body of the model is passed to a set of
abstract domains, through each of which a set of potential invariants of the loop is derived
(heuristically).

The choice of the abstract domain for the loop summarization has a significant impact
on the performance of the algorithm. A carefully selected domain generates fewer invariant
candidates and thus speeds up the computation of a loop summary. The abstract domain has
to be sufficiently expressive to retain enough of the semantics of the original loop to show
the property.

Checking invariant candidates All potential invariants obtained from abstract domains al-
ways constitute an abstract (post-)state of a loop body, which may or may not be correct in
the original program. To ascertain that a potential invariant is an actual invariant, LOOPFROG

makes use of a verification engine. In the current version, the symbolic execution engine of
CBMC [14] is used. This engine allows for bit-precise, symbolic reasoning without ab-
straction. In our context, it always gives a definite answer, since only loop-free program
fragments are passed to it. It is only necessary to construct an intermediate program that
assumes a potential invariant to be true, executes a loop body once and then checks if the
potential invariant still holds. If the verification engine returns a counterexample, we know
that a potential invariant does not hold; in the opposite case it can be a loop invariant and it
is subsequently added to a loop summary, since even after the program state is havoced, the
invariant still holds. LOOPFROG starts this process from an innermost loop, and thus there
is never an intermediate program that contains a loop. In case of nested loops, the inner
loop is replaced with a summary before the outer loop is analyzed. Owing to this strategy
and the small size of fragments checked (only a loop body), small formulas are given to the
verification engine and an answer is obtained quickly.
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Table 1 Examples of abstract domains tailored to buffer-overflow analysis

# Constraint Meaning

1 ZTs String s is zero-terminated

2 Ls < Bs Length of s (Ls ) is less than the size of the allocated buffer (Bs )

3 0 ≤ i ≤ Ls Bounds on integer variables i (i is non-negative, i is bounded by buffer size,
etc.) k is an arbitrary integer constant4 0 ≤ i

5 0 ≤ i < Bs

6 0 ≤ i < Bs − k

7 0 < offset(p) ≤ Bs Pointer offset bounds

8 valid(p) Pointer p points to a valid object

Verifying the abstraction The result, after all loops have been summarized, is a loop-free
abstraction of the input program. This abstract model is then handed to a verification engine
once again. The verification time is much lower than that required for the original program,
since the model does not contain loops. As indicated by Fig. 3, the verification engine used
to check the assertions in the abstract model may be different from the one used to check
potential invariants. In LOOPFROG, we choose to use the same engine (CBMC).

6.2 An abstract domain for safety analysis of string-manipulating programs

In order to demonstrate the benefits of our approach to static analysis of programs with
buffer overflows, the first experiments with LOOPFROG were done with a set of abstract
domains that are tailored to buffer-related properties. The constrains of the domains are
listed in Table 1.

We also make use of string-related abstract domains instrumented into the model similar
to the approach by Dor et al. [25]: for each string buffer s, a Boolean value zs and integers
ls and bs are tracked. The Boolean zs holds if s contains the zero character within the buffer
size bs . If so, ls is the index of the first zero character, otherwise, ls has no meaning.

The chosen domains are instantiated according to variables occurring in the code frag-
ment taken into account. To lower the number of template instantiations, the following sim-
ple heuristics can be used:

1. Only variables of appropriate type are considered (we concentrate on string types).
2. Indices and string buffers are combined in one invariant only if they are used in the

same expression, i.e., we detect instructions which contain p[i] and build invariants that
combine i with all string buffers pointed to by p.

As shown in the next section these templates have proven to be effective in our experi-
ments. Other applications likely require different abstract domains. However, new domain
templates may be added quite easily: they usually can be implemented with less than a hun-
dred lines of code.

6.3 Evaluation of loop summarization applied to static analysis of buffer-intensive
programs

In this set of experiments we focus on ANSI-C programs: the extensive buffer manipula-
tions in programs of this kind often give rise to buffer overruns. We apply the domains from
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Table 2 Effectiveness of various
static analysis tool in Zitser et
al. [61] and Ku et al. [42]
benchmarks: detection rate R(d),
false positive rate R(f ), and
discrimination rate R(¬f |d)

R(d) R(f ) R(¬f |d)

LOOPFROG 1.00 0.38 0.62

=, �=, ≤ 1.00 0.44 0.56

Interval domain 1.00 0.98 0.02

Polyspace 0.87 0.50 0.37

Splint 0.57 0.43 0.30

Boon 0.05 0.05 0

Archer 0.01 0 0

Uno 0 0 0

LOOPFROG [42] 1.00 0.26 0.74

=, �=, ≤[42] 1.00 0.46 0.54

Table 1 to small programs collected in benchmarks suites and to real applications as well.
All data was obtained on an 8-core Intel Xeon with 3.0 GHz. We limited the run-time to
4 hours and the memory per process to 4 GB. All experimental data, an in-depth description
of LOOPFROG, the tool itself, and all our benchmark files are available on-line for experi-
mentation by other researchers.5

6.3.1 Evaluation on the benchmark suites

The experiments are performed on two recently published benchmark sets. The first one,
by Zitser et al. [61], contains 164 instances of buffer overflow problems, extracted from the
original source code of sendmail, wu-ftpd, and bind. The test cases do not contain
complete programs, but only those parts required to trigger the buffer overflow. According
to Zitser et al., this was necessary because the tools in their study were all either unable to
parse the test code, or the analysis used disproportionate resources before terminating with
an error ([61], p. 99). In this set, 82 tests contain a buffer overflow, and the rest represent a
fix of a buffer overflow.

We use metrics proposed by Zitser et al. [61] to evaluate and compare the precision of
our implementation. We report the detection rate R(d) (the percentage of correctly reported
bugs) and the false positive rate R(f ) (the percentage of incorrectly reported bugs in the
fixed versions of the test cases). The discrimination rate R(¬f |d) is defined as the ratio of
test cases on which an error is correctly reported, while it is, also correctly, not reported in
the corresponding fixed test case. Using this measure, tools are penalized for not finding a
bug, but also for not reporting a fixed program as safe.

The results of a comparison with a wide selection of static analysis tools6 are summa-
rized in Table 2. Almost all of the test cases involve array bounds violations. Even though
Uno, Archer and BOON were designed to detect these type of bugs, they hardly report
any errors. BOON abstracts all string manipulation using a pair of integers (number of
allocated and used bytes) and performs flow-insensitive symbolic analysis over collected
constraints. The three tools implement different approaches for the analysis. BOON and
Archer perform a symbolic analysis while UNO uses Model Checking. Archer and UNO are

5http://www.cprover.org/loopfrog/.
6The data for all tools but LOOPFROG, “=, �=, ≤”, and the Interval Domain is from [61].

http://www.cprover.org/loopfrog/
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flow-sensitive, BOON is not. All three are interprocedural. We observe that all three have a
common problem—the approximation is too coarse and additional heuristics are applied in
order to lower the false positive rate; as a result, only few of the complex bugs are detected.
The source code of the test cases was not annotated, but nevertheless, the annotation-based
Splint tool performs reasonably well on these benchmarks. LOOPFROG and the implemen-
tation of the Interval Domain are the only entrants that report all buffer overflows correctly
(a detection rate of R(d) = 1). With 62 %, LOOPFROG also has the highest discrimination
rate among all the tools. It is also worth to note that our summarization technique performs
quite well when only few relational domains are used (the second line of Table 2). The third
line in this table contains the data for a simple interval domain, not implemented in LOOP-
FROG, but as a abstract domain used in SATABS model checker as a part of pre-processing;
it reports almost all checks as unsafe.

The second set of benchmarks was proposed by Ku et al. [42]. It contains 568 test
cases, of which 261 are fixed versions of buffer overflows. This set partly overlaps with
the first one, but contains source code of a greater variety of applications, including the
Apache HTTP server, Samba, and the NetBSD C system library. Again, the test programs
are stripped down, and are partly simplified to enable current model checkers to parse them.
Our results on this set confirm the results obtained using the first set; the corresponding
numbers are given in the last two lines of Table 2. On this set the advantage of selecting
property-specific domains is clearly visible, as a 20 % increase in the discrimination rate
over the simple relational domains is witnessed. Also, the performance of LOOPFROG is
much better if specialized domains are used, simply because there are fewer candidates for
the invariants.

The leaping counterexamples computed by our algorithm are a valuable aid in the design
of new abstract domains that decrease the number of false positives. Also, we observe that
both test sets include instances labeled as unsafe that LOOPFROG reports to be safe (1 in [61]
and 9 in [42]). However, by manual inspection of the counterexamples for these cases, we
find that our tool is correct, i.e., that the test cases are spurious.7 For most of the test cases
in the benchmark suites, the time and memory requirements of LOOPFROG are negligible.
On average, a test case finishes within a minute.

6.3.2 Evaluation on real programs

We also evaluated the performance of LOOPFROG on a set of large-scale benchmarks, that
is, complete un-modified program suites. Table 3 contains a selection of the results.

These experiments clearly show that the algorithm scales reasonably well in both mem-
ory and time, depending on the program size and the number of loops contained. The time
required for summarization naturally depends on the complexity of the program, but also to
a large degree on the selection of (potential) invariants. As experience has shown, unwisely
chosen invariant templates may generate many useless potential invariants, each requiring a
test by the SAT-solver.

In general, the results regarding the program assertions shown to hold are not surprising;
for many programs (e.g., texindex, ftpshut, ginstall), our selection of string-specific domains
proved to be quite useful. It is also interesting to note that the results on the ftpshut program
are very different on program versions 2.5.0 and 2.6.2: This program contains a number
of known buffer-overflow problems in version 2.5.0, and considerable effort was spent on

7We exclude those instances from our benchmarks.
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Table 4 Comparison between LOOPFROG and an interval domain: The column labeled ‘Total’ indicates the
number of properties in the program, and ‘Failed’ shows how many of the properties were reported as failing;
‘Ratio’ is Failed/Total

Suite Benchmark Total LOOPFROG Interval domain

Failed Ratio Failed Ratio

bchunk bchunk 96 8 0.08 34 0.35

freecell-solver make-gnome-freecell 145 40 0.28 140 0.97

freecell-solver make-microsoft-freecell 61 30 0.49 58 0.95

freecell-solver pi-make-microsoft-freecell 65 30 0.46 58 0.89

gnupg make-dns-cert 19 5 0.26 19 1.00

gnupg mk-tdata 6 0 0.00 6 1.00

inn encode 42 11 0.26 38 0.90

inn ninpaths 56 19 0.34 42 0.75

ncompress compress 204 38 0.19 167 0.82

texinfo makedoc 83 46 0.55 83 1.00

wu-ftpd ckconfig 1 1 1.00 1 1.00

wu-ftpd ftpcount 61 7 0.11 47 0.77

wu-ftpd ftpshut 63 13 0.21 63 1.00

wu-ftpd ftpwho 61 7 0.11 47 0.77

fixing these bugs for the 2.6.2 release; an effort clearly reflected in our statistics. Just like in
this benchmark, many of the failures reported by LOOPFROG correspond to known bugs and
the leaping counterexamples we obtain allow us to analyze those faults. Merely for reference
we list CVE-2001-1413 (a buffer overflow in ncompress) and CVE-2006-1168 (a buffer
underflow in the same program), for which we are easily able to produce counterexamples.8

On the other hand, some other programs (such as the ones from the freecell-solver suite)
clearly require different abstract domains, suitable for heap structures other than strings.
The development of suitable domains and subsequent experiments, however, are left for
future research.

6.3.3 Comparison with the interval domain

To highlight the applicability of LOOPFROG to large-scale software and to demonstrate
its main advantage, we present a comparative evaluation against a simple interval domain,
which tracks the bounds of buffer index variables, a technique often employed in static anal-
ysers. For this experiment, LOOPFROG was configured to use only two abstract domains,
which capture the fact that an index is within the buffer bounds (#4 and #5 in Table 1). As
apparent from Table 4, the precision of LOOPFROG in this experiment is far superior to that
of the simple interval analysis.

To evaluate scalability, we applied other verification techniques to this example.
CBMC [14] tries to unwind all the loops, but fails, reaching the 2 GB memory limit. The
same behavior is observed using SATABS [16], where the underlying model checker (SMV)
hits the memory limit.

8The corresponding bug reports may be obtained from http://cve.mitre.org/.

http://cve.mitre.org/
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Table 5 Templates of abstract domains used to draw transition invariant candidates

# Constraint Meaning

1 i′ < i

i′ > i

A numeric variable i is strictly decreasing (increasing)

2 x′ < x

x′ > x

Any loop variable x is strictly decreasing (increasing)

3 sum(x′, y′) < sum(x, y)

sum(x′, y′) > sum(x, y)

Sum of all numeric loop variables is strictly decreasing
(increasing)

4 max(x′, y′) < max(x, y)

max(x′, y′) > max(x, y)

min(x′, y′) < min(x, y)

min(x′, y′) > min(x, y)

Maximum or minimum of all numeric loop variables is
strictly decreasing (increasing)

5 (x′ < x ∧ y′ = y) ∨
(x′ > x ∧ y′ = y) ∨
(y′ < y ∧ x′ = x) ∨
(y′ > y ∧ x′ = x)

A combination of strict increase or decrease for one of
loop variables while the remaining ones are not
updated

6.4 Evaluation of loop summarization applied to termination analysis

For a proof of concept we have implemented loop termination analysis within our static an-
alyzer LOOPFROG. As before, the tool operates on the program models produced by GOTO-
CC model extractor; ANSI-C programs are the primary experimental target.

We implemented a number of domains based on strict-order numeric relations, thus,
following Corollary 2, additional checks for compositionality and d.wf.-ness of candidate
relations are not required. The domains are listed in Table 5. Here we report the results for
the two most illustrative schemata:

LOOPFROG 1: domain #3 in Table 5. Expresses the fact that a sum of all numeric vari-
ables of a loop is strictly decreasing (increasing). This is the fastest approach, because it
generates very few (but large) invariant candidates per loop.

LOOPFROG 2: domain #1 in Table 5. Expresses that numeric variables are strictly decreas-
ing (increasing). Generates twice as many simple strict-order relations as there are variables
in a loop.

As a reference point, we used a termination prover built upon the CBMC and SAT-
ABS [16] framework. This tool implements Compositional Termination Analysis (CTA) [41]
and the Binary Reachability Analysis used in the TERMINATOR algorithm [17]. For both
the default ranking function synthesis methods were enabled—templates for relations on
bit-vectors with SAT-based enumeration of coefficients; for more details see [21].

We experimented with a large number of ANSI-C programs including:

• The SNU real-time benchmark suite that contains small C programs used for worst-case
execution time analysis [56];

• The Powerstone benchmark suite as an example set of C programs for embedded systems
[54];

• The Verisec 0.2 benchmark suite [42];
• The Jhead 2.6 utility;
• The Bchunk 1.2.0 utility;
• Windows device drivers (from the Windows Device Driver Kit 6.0).
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All experiments were run on an Ubuntu server equipped with Dual-Core 2 GHz Opteron
2212 CPU and 4 GB of memory. The analysis was set to run with a timeout of 120 minutes
for all loops at once (LOOPFROG) or of 60 minutes per loop (CTA and TERMINATOR).

The results for Powerstone, SNU, Jhead and Bchunk are presented in Tables 6, 7, 8
and 10. Each table in columns 3 to 5 reports the quantity of loops that were proven as ter-
minating (T), potentially non-terminating (NT) and time-out (TO) for each of the compared
techniques.

The time in column 6 is computed only for loops noted in T and NT; loops with timeout
are not included in the total time. Instead, ‘+’ is used to denote the cases where at least one
time-out occurred.

The results for the Verisec 0.2 benchmark suite are given in aggregated form in Table 9.
The suite consists of a large number of stripped C programs that correspond to known se-
curity bugs. Although each program has very few loops, the variety of loop types is fairly
broad and, thus, is interesting for analysis.

The aggregated data on experiments with Windows device drivers is provided in Table 11.
The benchmarks are grouped according to the harness used upon extraction of a model
with GOTO-CC. Note that we skip the benchmarks where no loops are detected. Thus, the
groups in Table 11 may differ in the numbers of benchmarks/loops. Furthermore, we do not
report TERMINATOR results here, as it was shown in [41] that CTA outperforms it on this
benchmark set.

Discussion Note that direct comparison of LOOPFROG in time with iterative techniques
like CTA and TERMINATOR is not fair. The latter methods are complete at least for finite-
state programs, relative to the completeness of ranking synthesis method (which is not com-
plete by default in the current CTA/TERMINATOR implementation for scalability reasons).
Our loop summarization technique on the other hand is a static analysis which aims only for
conservative abstractions. In particular, it does not try to prove unreachability of a loop or
of preconditions that lead to non-termination.

The timing information provided here serves as a reference that allows to compare efforts
of achieving the same result. Note that:

• LOOPFROG spends time enumerating invariant candidates, provided by the chosen ab-
stract domain, against a path of one loop iteration. Compositionality and d.wf. checks are
not required for the chosen domains.

• CTA spends time (1) unwinding loop iterations, (2) discovering a ranking function for
each unwounded path and (3) checking compositionality of a discovered relation.

• TERMINATOR spends time (1) enumerating all paths through the loop and (2) discovering
a ranking function for each path.

The techniques can greatly vary in time of dealing with a particular loop/program. CTA
and TERMINATOR give up on a loop once a they hit a path on which ranking synthesis fails.
LOOPFROG gives up on a loop if it runs out of transition invariant candidates to try. In a few
tests this leads to an advantage for TERMINATOR (huff and engine in Table 6), however,
we observe in almost all other tests that the LOOPFROG technique is generally cheaper
(often in orders of magnitude) in computational efforts required for building a termination
argument.

Tables 7, 6 and 8 show that loop summarization is able to prove termination for the same
number of loops as CTA and TERMINATOR, but does so with less resource requirements. In
particular it demonstrates that a simple strict order relation for all numeric variables of the
loop (Table 5, domain #1) is, in practice, as effective as CTA with default ranking functions.
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Table 6 Powerstone benchmark suite

Benchmark Method T NT TO Time

adpcm
11 loops

LOOPFROG 1 8 3 0 59.66

LOOPFROG 2 10 1 0 162.75

CTA 8 3 0 101.30

TERMINATOR 6 2 3 94.45 +
bcnt
2 loops

LOOPFROG 1 0 2 0 2.63

LOOPFROG 2 0 2 0 2.82

CTA 0 2 0 0.79

TERMINATOR 0 2 0 0.30

blit
4 loops

LOOPFROG 1 0 4 0 0.16

LOOPFROG 2 3 1 0 0.05

CTA 3 1 0 5.95

TERMINATOR 3 1 0 3.67

compress
18 loops

LOOPFROG 1 5 13 0 3.13

LOOPFROG 2 6 12 0 33.92

CTA 5 12 1 699.00 +
TERMINATOR 7 10 1 474.36 +

crc
3 loops

LOOPFROG 1 1 2 0 0.15

LOOPFROG 2 2 1 0 0.21

CTA 1 1 1 0.33 +
TERMINATOR 2 1 0 14.58

engine
6 loops

LOOPFROG 1 0 6 0 2.40

LOOPFROG 2 2 4 0 9.88

CTA 2 4 0 16.20

TERMINATOR 2 4 0 4.88

fir
9 loops

LOOPFROG 1 2 7 0 5.99

LOOPFROG 2 6 3 0 21.59

CTA 6 3 0 2957.06

TERMINATOR 6 2 1 193.91 +
g3fax
7 loops

LOOPFROG 1 1 6 0 1.57

LOOPFROG 2 1 6 0 6.05

CTA 1 5 1 256.90 +
TERMINATOR 1 5 1 206.85 +

huff
11 loops

LOOPFROG 1 3 8 0 24.37

LOOPFROG 2 8 3 0 94.61

CTA 7 3 1 16.35 +
TERMINATOR 7 4 0 52.32

jpeg
23 loops

LOOPFROG 1 2 21 0 8.37

LOOPFROG 2 16 7 0 32.90

CTA 15 8 0 2279.13

TERMINATOR 15 8 0 2121.36
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Table 6 (Continued)

Benchmark Method T NT TO Time

pocsag
12 loops

LOOPFROG 1 3 9 0 2.07

LOOPFROG 2 9 3 0 6.91

CTA 9 3 0 10.39

TERMINATOR 7 3 2 1557.57 +
qurt
2 loops

LOOPFROG 1 0 2 0 3.56

LOOPFROG 2 1 1 0 11.67

CTA 1 1 0 30.77

TERMINATOR 0 0 2 0

ucbqsort
15 loops

LOOPFROG 1 1 14 0 0.79

LOOPFROG 2 2 13 0 2.06

CTA 2 12 1 71.73 +
TERMINATOR 9 5 1 51.08 +

v42
12 loops

LOOPFROG 1 0 12 0 82.84

LOOPFROG 2 0 12 0 2587.22

CTA 0 12 0 73.57

TERMINATOR 1 11 0 335.69

Columns 3 to 5 state number of loops proven to terminate (T), possibly non-terminate (NT) and time-out
(TO) for each benchmark. Time is computed only for loops noted in T and NT; ‘+’ is used to denote testcases
cases where at least one time-outed loop occurred

The results on the considerably larger Windows device drivers (Table 11) lead to similar
conclusions.

The comparison demonstrates some weak points of the iterative analysis:

• Enumeration of all paths through the loop can require many iterations or even can be
infinite for infinite state systems (as are most of realistic programs).

• The ranking procedures can often fail to produce a ranking argument; but if it succeeds,
a very simple relation is often sufficient.

• The search for a compositional transition invariant sometimes results in an exponential
growth of the number of loop unrollings (in case of CTA).

LOOPFROG does not suffer from the first problem: the analysis of each loop requires a
finite number of calls to a decision procedure. The second issue is leveraged by relative sim-
plicity of adding new abstract domain over implementing complex ranking function method.
The third issue is transformed into generation of suitable invariant candidates, which, in
general, may generate many candidates, which slows the procedure down. However, we can
control the order of candidates by prioritizing some domains over the others, and thus, can
expect simple ranking arguments to be discovered first.

The complete results of these experiments as well as the LOOPFROG tool are available at
www.verify.inf.usi.ch/loopfrog/termination.

7 Related work

This section is divided into two parts: the first covers research related to summarization
while the second one relates our work to other termination analysis techniques.

http://www.verify.inf.usi.ch/loopfrog/termination


Form Methods Syst Des (2013) 42:221–261 251

Table 7 SNU real-time benchmarks suite

Benchmark Method T NT TO Time

adpcm-test
18 loops

LOOPFROG 1 13 5 0 470.05

LOOPFROG 2 17 1 0 644.09

CTA 13 3 2 260.98 +
TERMINATOR 12 2 4 165.67 +

bs
1 loop

LOOPFROG 1 0 1 0 0.05

LOOPFROG 2 0 1 0 0.12

CTA 0 1 0 12.22

TERMINATOR 0 1 0 18.47

crc
3 loops

LOOPFROG 1 1 2 0 0.17

LOOPFROG 2 2 1 0 0.26

CTA 1 1 1 0.21 +
TERMINATOR 2 1 0 13.88

fft1k
7 loops

LOOPFROG 1 2 5 0 0.36

LOOPFROG 2 5 2 0 0.67

CTA 5 2 0 141.18

TERMINATOR 5 2 0 116.81

fft1
11 loops

LOOPFROG 1 3 8 0 3.68

LOOPFROG 2 7 4 0 4.98

CTA 7 4 0 441.94

TERMINATOR 7 4 0 427.36

fir
8 loops

LOOPFROG 1 2 6 0 2.90

LOOPFROG 2 6 2 0 8.48

CTA 6 2 0 2817.08

TERMINATOR 6 1 1 236.70 +
insertsort
2 loops

LOOPFROG 1 0 2 0 0.05

LOOPFROG 2 1 1 0 0.06

CTA 1 1 0 226.45

TERMINATOR 1 1 0 209.12

jfdctint
3 loops

LOOPFROG 1 0 3 0 5.61

LOOPFROG 2 3 0 0 0.05

CTA 3 0 0 1.24

TERMINATOR 3 0 0 0.98

lms
10 loops

LOOPFROG 1 3 7 0 2.86

LOOPFROG 2 6 4 0 10.49

CTA 6 4 0 2923.12

TERMINATOR 6 3 1 251.03 +
ludcmp
11 loops

LOOPFROG 1 0 11 0 96.73

LOOPFROG 2 5 6 0 112.81

CTA 3 5 3 3.26 +
TERMINATOR 3 8 0 94.66

matmul
5 loops

LOOPFROG 1 0 5 0 0.15

LOOPFROG 2 5 0 0 0.09

CTA 3 2 0 1.97

TERMINATOR 3 2 0 2.15
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Table 7 (Continued)

Benchmark Method T NT TO Time

minver
17 loops

LOOPFROG 1 1 16 0 2.57

LOOPFROG 2 16 1 0 7.66

CTA 14 1 2 105.26 +
TERMINATOR 14 1 2 87.09 +

qsort-exam
6 loops

LOOPFROG 1 0 6 0 0.67

LOOPFROG 2 0 6 0 3.96

CTA 0 5 1 45.92 +
TERMINATOR 0 5 1 2530.58 +

qurt
1 loop

LOOPFROG 1 0 1 0 8.02

LOOPFROG 2 1 0 0 13.82

CTA 1 0 0 55.65

TERMINATOR 0 0 1 0.00

select
4 loops

LOOPFROG 1 0 4 0 0.55

LOOPFROG 2 0 4 0 3.56

CTA 0 3 1 32.60 +
TERMINATOR 0 3 1 28.12 +

sqrt
1 loop

LOOPFROG 1 0 1 0 0.60

LOOPFROG 2 1 0 0 5.10

CTA 1 0 0 15.28

TERMINATOR 0 0 1 0.00

Table 8 Jhead-2.6 utility
Benchmark Method T NT TO Time

jhead
8 loops

LOOPFROG 1 1 7 0 23.78

LOOPFROG 2 4 4 0 78.93

CTA 3 5 0 42.38

TERMINATOR 2 4 2 208.78 +

Table 9 Aggregated data on Verisec 0.2 suite

Method T NT TO Time

244 loops in 160
benchmarks

LOOPFROG 1 33 211 0 11.38

LOOPFROG 2 44 200 0 22.49

CTA 34 208 2 1207.62 +
TERMINATOR 40 204 0 4040.53

7.1 Work related to loop summarization

The body of work on analysis using summaries of functions is extensive (see a nice survey
in [30]) and dates back to Cousot and Halbwachs [23], and Sharir and Pnueli [55]. In a lot
of projects, function summaries are created for alias analysis or points-to analysis, or are
intended for the analysis of program fragments. As a result, these algorithms are either spe-
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Table 10 Bchunk 1.2.0 utility
Benchmark Method T NT TO Time

bchunk
9 loops

LOOPFROG 1 3 6 0 1.67

LOOPFROG 2 3 6 0 31.16

CTA 3 6 0 53.03

TERMINATOR 4 5 0 91.13

Table 11 Aggregated data of the comparison between LOOPFROG and CTA on Windows device drivers

Benchmark group Method T NT TO Time

SDV FLAT DISPATCH HARNESS
557 loops in 30 benchmarks

LOOPFROG 1 135 389 33 1752.1

LOOPFROG 2 215 201 141 10584.4

CTA 166 160 231 25399.5
SDV FLAT DISPATCH STARTIO
HARNESS 557 loops in 30
benchmarks

LOOPFROG 1 135 389 33 1396.0

LOOPFROG 2 215 201 141 9265.8

CTA 166 160 231 28033.3

SDV FLAT HARNESS
635 loops in 45 benchmarks

LOOPFROG 1 170 416 49 1323.0

LOOPFROG 2 239 205 191 6816.4

CTA 201 186 248 31003.2

SDV FLAT SIMPLE HARNESS
573 loops in 31 benchmarks

LOOPFROG 1 135 398 40 1510.0

LOOPFROG 2 200 191 182 6814.0

CTA 166 169 238 30292.7

SDV HARNESS DRIVER CREATE
9 loops in 5 benchmarks

LOOPFROG 1 1 8 0 0.1

LOOPFROG 2 1 8 0 0.2

CTA 1 8 0 151.8

SDV HARNESS PNP DEFERRED
IO REQUESTS 177 loops in 31
benchmarks

LOOPFROG 1 22 98 57 47.9

LOOPFROG 2 66 54 57 617.4

CTA 80 94 3 44645.0
SDV HARNESS PNP IO
REQUESTS
173 loops in 31 benchmarks

LOOPFROG 1 25 94 54 46.6

LOOPFROG 2 68 51 54 568.7

CTA 85 86 2 15673.9

SDV PNP HARNESS SMALL
618 loops in 44 benchmarks

LOOPFROG 1 172 417 29 8209.5

LOOPFROG 2 261 231 126 12373.2

CTA 200 177 241 26613.7

SDV PNP HARNESS
635 loops in 45 benchmarks

LOOPFROG 1 173 426 36 7402.2

LOOPFROG 2 261 230 144 13500.2

CTA 201 186 248 41566.6

SDV PNP HARNESS UNLOAD
506 loops in 41 benchmarks

LOOPFROG 1 128 355 23 8082.5

LOOPFROG 2 189 188 129 13584.6

CTA 137 130 239 20967.8
SDV WDF FLAT SIMPLE
HARNESS
172 loops in 18 benchmarks

LOOPFROG 1 27 125 20 30.3

LOOPFROG 2 61 91 20 202.0

CTA 73 95 4 70663.0
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cialized to particular problems and deal with fairly simple abstract domains or are restricted
to analysis of parts of the program. An instance is the summarization of library functions
in [30]. In contrast, our technique aims at computing a summary for the entire program, and
is applicable to complex abstract domains.

The same practical motivation, sound analysis of ANSI-C programs, drives our work and
the work behind Frama-C project [29]. In particular, the PhD work of Moy [49] even targets,
among others, the same set of benchmarks—Verisec [42] and Zitser’s [61] test suites. To
tackle them with the Frama-C tools, Moy employs a number of techniques that discover pre-
and post-conditions for loops as well as loop invariants. He combines abstract interpretation-
based invariant inference with weakest precondition-based iterative methods such as the
Suzuki-Ishihata algorithm [57]. The latter one, induction iteration, applies weakest precon-
dition computation to a candidate loop invariant iteratively until an inductive invariant is
found. Thus, loop summarization can be seen as 1-step application of the induction-iteration
method, in which “weakest precondition” is replaced with “strongest postcondition”.9

Note that application of the Suzuki-Ishihata algorithm to string operation-intensive pro-
grams (as our benchmarks are) often leads to non-terminating iterative computation since
there is no guarantee to obtain an inductive invariant from a candidate. To avoid this un-
certainty, we are interested only in those candidates that can be proven to be an inductive
invariant in a single step. We claim that a careful choice of candidates would contribute more
to precision and scalability of analysis. In fact, our results on the aforementioned benchmark
suites support this claim. We analyze Zitser’s benchmark suite in a matter of seconds and
are able to discharge 62 % of bug-free instances, while Frama-C does not complete any of
test cases within a 1 hour limit. When applied to a smaller programs of the Verisec test suite
both tools are able to discharge 74 % of bug-free test cases; LOOPFROG required almost no
time for this analysis.

LOOPFROG shares a lot of its concept and architecture with Houdini, an annotation as-
sistant for ESC/Java [27]. Houdini was first created as a helper to ESC/Java; the goal was
to lower the burden of manual program annotation (sufficient annotation is critical for the
application of ESC/Java). Similar to loop summarization, Houdini “magically” guesses a
set of candidate relations between program variables and then discharges or verifies them
one by one using the ESC/Java as a refuter. Verified candidates are added to the program as
annotations and are used later by the main ESC/Java check in the same way as symbolic ex-
ecution makes use of summaries when it runs over a loop-free program. However, there are
also numerous differences between the two tools. Houdini is designed to be applied to any
program module or a routine in a library while our summarization concentrates deliberately
on loops. Houdini adds annotations to the program, while LOOPFROG replaces each loop
with the summary, thus keeping the cost of analysis for every consecutive loop as low as for
the inner-most one.

Houdini as well as LOOPFROG generate a lot of candidates that help to address buffer
access checks. For instance, it generates 6 different comparison relations for each integral
type and a constant in a program. While experimenting with LOOPFROG, we found such an
abstract domain of arbitrary relations to be effective, though very expensive. The result are
too many useless candidates. Therefore we prefer problem-tailored domains that generate
fewer candidates.

Furthermore, as we show in Sect. 5, LOOPFROG extends candidates selection to those
that relate two different valuations of the same program variable, e.g., before and after a loop

9However, the choice of transformer, i.e., “pre-condition” or “post-condition”, is irrelevant if only one step is
performed.
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iteration. This allows discovering not only safety, but also liveness-related loop invariants;
in particular loop termination can be proven with the help of this addition.

A series of work by Gulwani et al. [34, 35] uses loop invariant discovery for the purpose
of worst-case execution time (WCET) analysis. One of the approaches (reported as the most
effective in practice) employs template-based generation of invariant candidates. Starting
from the inner-most loop, a bound of the loop’s maximal resources usage is computed.
Therefore, it can be seen as a loop summarization with domains tuned for WCET-analysis
rather then string-operations as in LOOPFROG.

The Saturn tool [1] computes a summary of a function with respect to an abstract domain
using a SAT-based approach to improve scalability. However, summaries of loop-bodies are
not created. In favor of scalability, Saturn simply unwinds loops a constant number of times,
and thus, is unsound as bugs that require more iterations are missed.

SAT-solvers, SAT-based decision procedures, and constraint solvers are frequently
applied in program verification. Notable instances are Jackson’s Alloy tool [39] and
CBMC [14]. The SAT-based approach is also suitable for computing abstractions, as, for
example, in [1, 15, 53] (see detailed discussion in Sect. 4.2). The technique reported here
also uses the flexibility of a SAT-based decision procedure for a combination of theories to
compute loop summaries.

Our technique can be used for checking buffer overruns and class-string vulnerabili-
ties. There exist a large number of static analysis tools focusing on these particular prob-
lems. In this respect, the principal difference of our technique is that it is a general purpose
abstraction-based checker which is not limited to special classes of faults.

A major benefit of our approach is its ability to generate diagnostic information for failed
properties. This is usually considered a distinguishing feature of model checking [13] and,
sometimes, extended static checking [28], but rarely found in tools based on abstract inter-
pretation. Most model checkers for programs implement a CEGAR approach [4, 37], which
combines model checking with counterexample-guided abstraction refinement. The best-
known instance is SLAM [4], and other implementations are BLAST [37], MAGIC [10],
and SATABS [16], which implement predicate abstraction.

Recently, a number of projects applied counterexample-guided refinement to refine ab-
stract domains other than predicate abstraction. Manevich et al. [48] formalize CEGAR for
general powerset domains; Beyer et al. [7] integrate the TVLA system [47] into BLAST
and use counterexamples to refine 3-valued structures to make shape analysis more scal-
able; Gulavani and Rajamani devised an algorithm for refining any abstract interpreta-
tions [32, 33] by combining widening with interpolation. Our procedure is also able to
generate counterexamples with respect to the abstract domain and could be integrated into
a CEGAR loop for automatic refinement. As LOOPFROGdoes not perform domain refine-
ment, but instead computes an abstraction for a given domain using SAT, it is more closely
related to the work on computing abstractions with abstract conflict driven clause learning
(ACDCL) [26].

7.2 Work related to termination

Although the field of program termination analysis is relatively old and the first results date
back to Turing [60], recent years have seen a tremendous increase in practical applications of
termination proving. Two directions of research enabled the efficacy of termination provers
in practice:

• transition invariants by Podelski and Rybalchenko [50], and
• the size-change termination principle (SCT) by Lee, Jones and Ben-Amram [45],
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where the latter has its roots in previous research on termination of declarative programs.
Until very recently, these two lines of research did not intersect much. The first systematic
attempt to understand their common traits is a recent publication by Heizmann et al. [36].

7.2.1 Relation to size-change termination principle

Termination analysis based on the SCT principle usually involves two steps:

1. Construction of an abstract model of the original program in the form of size-change
graphs (SC-graphs), and

2. Analysis of the SC-graphs for termination.

SC-graphs contain abstract program values as nodes and use two types of edges, along
which values of variables must decrease, or decrease or stay the same. No edge between
nodes means that none of the relations can be ensured. Graphs G which are closed under
composition with itself, are called idempotent, i.e., G;G = G.10

Lee et al. [45] identify two termination criteria based on a size-change graph:

1. The SC-graph is well-founded, or
2. The idempotent components of an SC-graph are well-founded.

An SC-graph can be related to transition invariants as follows. Each sub-graph corre-
sponds to a conjunction of relations, which constitutes a transition invariant. The whole
graph forms a disjunction, resulting in a termination criterion very similar to that presented
as Theorem 3: if an SC-graph is well-founded then there exists a d.wf. transition invariant.
Indeed, Heizmann et al. [36] identify the SCT criterion as strictly stronger than the argument
via transition invariants [50]. In other words, there are terminating programs for which there
are no suitable SC-graphs that comply with the termination criteria above.

The intuition behind SCT being a stronger property comes from the fact that SC-graphs
abstract from the reachability of states in a program, i.e., the SC-graph requires termination
of all paths regardless of whether those paths are reachable or not. Transition invariants, on
the other hand, require the computation of the reachable states of the program. In this re-
spect, our light-weight analysis is closely related to SCT, as it havocs the input to individual
loop iterations before checking a candidate transition invariant.

The domains of SC-graphs correspond to abstract domains in our approach. The initial
inspiration for the domains we experimented with comes from a recent survey on ranking
functions for SCT [5]. The domains #1–4 in Table 5 encode those graphs with only down-
arcs. Domain #5 has down-arcs and edges that preserve the value. However, note that, in
order to avoid well-foundedness checks, we omit domains that have mixed edge types.

Program abstraction using our loop summarization algorithm can be seen as construc-
tion of size-change graphs. The domains suggested in Sect. 5.8 result in SC-graphs that are
idempotent and well-founded by construction.

Another relation to SCT is the second SCT criterion based on idempotent SC-
components. In [36] the relation of idempotency to some notion in transition invariant-based
termination analysis was stated as an open question. However, there is a close relation be-
tween the idempotent SC-components and compositional transition invariants (Definition 9,
p. 236) used here and in compositional termination analysis [41]. The d.wf. transition in-
variant constructed from idempotent graphs is also a compositional transition invariant.

10In this discussion we omit introducing the notation necessary for a formal description of SCT; see Lee
et al. [36, 45] for more detail.
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7.2.2 Relation to other research in transition invariant-based termination

The work in Sect. 5 is a continuation of the research of transition invariants-based termina-
tion proving methods initiated by [50]. Methods developed on the basis of transition invari-
ants rely on an iterative abstraction refinement-like construction of d.wf. transition invariants
[17, 18, 41]. Our approach is different, because it aims to construct a d.wf. transition invari-
ant without refinement. Instead of ranking function discovery for every non-ranked path, we
use abstract domains that express ranking arguments for all paths at the same time.

Chawdhary et al. [11] propose a termination analysis using a combination of fixpoint-
based abstract interpretation and an abstract domain of disjunctively well-founded relations.
The abstract domain they suggest is of the same form as domain #5 in Table 5. However
their technique attempts iterative computation of the set of abstract values and has a fixpoint
detection of the form T ⊆ R+, while in our approach it is enough to check T ⊆ R, combined
with the compositionality criterion. This allows more abstract domains to be applied for
summarization, as each check is less demanding on the theorem prover.

Dams et al. [24] present a set of heuristics that allow heuristic inference of candidate
ranking relations from a program. These heuristics can be seen as abstract domains in our
framework. Moreover, we also show how candidate relations can be checked effectively.

Cook et al. [20] use relational predicates to extend the framework of Reps et al. [52] to
support termination properties during computation of inter-procedural program summaries.
Our approach shares a similar motivation and adds termination support to abstract domain-
based loop summarization. However, we concentrate on scalable non-iterating methods to
construct the summary while Cook et al. [20] rely on a refinement-based approach. The same
argument applies in the case of Balaban et al.’s framework [3] for procedure summarization
with liveness properties support.

Berdine et al. [6] use the Octagon and Polyhedra abstract domains to discover invariance
constraints sufficient to ensure termination. Well-foundedness checks, which we identify as
an expensive part of the analysis, are left to iterative verification by an external procedure
like in the TERMINATOR algorithm [18] and CTA [41]. In contrast to these methods, our
approach relies on abstract domains which are well-founded by construction and therefore
do not require explicit checks.

Dafny, a language and a program verifier for functional correctness [46], employs a very
similar method to prove a loop (or a recursive call) terminating. First, each Dafny type
has an ordering, values are finite, and, except for integers, values are bounded from below.
Second, Dafny offers a special decrease predicate. Now, if one can provide a tuple of
variables, each bounded from below, for which decrease holds (a termination metric),
then termination can be concluded. A termination metric can be given by a developer or
guessed using predefined heuristics. Effectively, this method maps one to one to strict order
relational domains used in LOOPFROG.

It is interesting to note one particular case in Dafny: if an unbounded integer variable is
used in a termination metric, then an additional invariant is required to bound the integer
from below. LOOPFROG usually deals with machine integers, which are bounded by design.

Altogether, successful application of the relatively simple predefined heuristics in Dafny
and our experiments supports the main claim of Sect. 5: light-weight analysis based on
simple heuristics is often sufficient to prove many loops terminating.

8 Conclusion and future work

The discovery of an appropriate abstraction is a fundamental step in establishing a suc-
cessful verification framework. Abstraction not only reduces the computational burden of
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verification, but also makes it possible to analyze in a sound manner infinite-state software
models.

The proposed loop summarization algorithm is a step towards understanding of what is
a right abstraction, how it should be discovered and used to enable efficient analysis of pro-
grams by formal verification tools. The algorithm computes an abstract model of a program
with respect to a given abstract interpretation by replacing loops and function calls in the
control flow graph by their symbolic transformers. The run-time of the new algorithm is lin-
ear in the number of looping constructs in a program and a finite number of (relatively sim-
ple) decision procedure calls is used for discovery of every abstract symbolic transformer.
Therefore, it addresses the problem of the high complexity of computing abstract fixpoints.

The procedure over-approximates the original program, which implies soundness of the
analysis, but, as any other abstraction-based technique, it can introduce false positives on the
consequent phase of analysis of the constructed abstract model. An additional benefit of the
technique is its ability to generate leaping counterexamples, which are helpful for diagnosis
of the error or for filtering spurious warnings. The conducted experimental evaluation within
an analysis framework for buffer overflows demonstrates the best error-detection and error-
discrimination rates when comparing to a broad selection of static analysis tools.

Loop summarization algorithm also can be effectively employed to perform light-weight
program termination analysis. For a sequential program, termination of all loops is enough
to conclude program termination, therefore we focused our analysis on individual loops. The
new algorithm is based on loop summarization and employs relational abstract domains to
discover transition invariants for loops. It uses compositionality of a transition invariant as
a completeness criterion, i.e., that a discovered transition invariant holds for any execution
through the loop. If such an invariant exists and it is (disjunctively) well-founded, then the
loop is guaranteed to terminate. Well-foundedness can be checked either by an application
of a quantifier-supporting decision procedure or be ensured by construction. In the latter
case an abstract domain for producing candidates for transition invariants should be chosen
appropriately.

Note, that, although this algorithm is incomplete (because a compositional transition in-
variant does not always exist and the ability to discover transition invariants is restricted by
expressiveness of the selected abstract domains), our evaluation demonstrates its effective-
ness. We applied our new termination analysis to numerous benchmarks including Windows
device drivers and demonstrated high scalability as well as a level of precision that matches
to the state-of-the-art path-based algorithms such as TERMINATOR and CTA.

In contrast to other methods, our algorithm performs both loop summarization and tran-
sition invariant inference at the same time, thus, both safety- and liveness properties of
loop semantics are preserved. Also, it utilizes a family of simple, custom abstract domains
whereas other works in termination analysis often use off-the-shelf domains; it seems very
interesting to note that simpler domains can go a long way in solving those problems, while
keeping computational costs low.

For future research we would like to highlight two specific directions:

(1) Problem-specific abstract domains for termination (liveness) analysis Additional rela-
tional abstract domains should be considered for termination (liveness) analysis in areas
where it is appropriate. Possible applications include:

• Verification of liveness properties in protocol implementations with abstract domains
used to reason about message ordering.

• Verification of liveness properties in concurrent programs with abstract domains em-
ployed to reason about the independence of termination from thread scheduling or
the execution progress over all threads.
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A recent attempt to build a bridge between transition invariants-based termination
analysis and size-change termination by Heizmann et al. [36] suggests that the well-
studied size-change graphs can be adopted as abstract domains.

As a stand-alone theoretical problem we see the definition of a class of systems and
properties for which termination (liveness) can be proved by induction, i.e., by guessing
and proving the base step (discovery of a transition invariant) and proving the inductive
step (compositionality of a transition invariant).

(2) Combined state/transition invariants abstract domains for conditional termination (live-
ness) Cook et al. aim to compute a loop precondition that implies termination and use it
to establish conditional termination [19]. A combination of state and transition invari-
ants can be used for similar purposes.

We also plan to investigate whether a negative result of a transition invariant candi-
date check can be used to derive a counterexample for termination or a precondition.
For instance, the failure to ensure the total order between all values of an iterator in a
loop may be a hint that an integer overflow leads to non-termination.
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