
Proving termination using abstract interpretation
Chawdhary, Aziem A.

 

 

 

 

 

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author

 

 

For additional information about this publication click this link.

https://qmro.qmul.ac.uk/jspui/handle/123456789/420

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/30695122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://qmro.qmul.ac.uk/jspui/handle/123456789/420


QUEEN MARY UNIVERSITY OF LONDON

Proving Termination
using

Abstract Interpretation

by

Aziem A. Chawdhary

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in the
School of Electronic Engineering and Compter Science

October 2010



Declaration of Authorship

I, Aziem Chawdhary, declare that this thesis titled, ‘Proving Termination using Abstract Inter-

pretation’ and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree at this

University.

� Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

� Where I have consulted the published work of others, this is always clearly attributed.

� Where I have quoted from the work of others, the source is always given. With the excep-

tion of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed:

Date:

i



“Seek knowledge from the cradle to the grave.”

Attributed to the Prophet Muhammad (pbuh).



Abstract

One way to develop more robust software is to use formal program verification. Formal program

verification requires the construction of a formal mathematical proof of the programs correct-

ness. In the past ten years or so there has been much progress in the use of automated tools

to formally prove properties of programs. However many such tools focus on proving safety

properties: that something bad does not happen. Liveness properties, where we try to prove

that something good will happen, have received much less attention. Program termination is

an example of a liveness property. It has been known for a long time that to prove program

termination we need to discover some function which maps program states to a well-founded

set. Essentially we need to find one global argument for why the program terminates. Finding

such an argument which overapproximates the entire program is very difficult. Recently, Podel-

ski and Rybalchenko discovered a more compositional proof rule to find disjunctive termination

arguments. Disjunctive termination arguments requires a series of termination arguments that

individually may only cover part of the program but when put together give a reason for why

the entire program will terminate. Thus we do not need to search for one overall reason for

termination but we can break the problem down and focus on smaller parts of the program.

This thesis develops a series of abstract interpreters for proving the termination of imperative

programs. We make three contributions, each of which makes use of the Podelski-Rybalchenko

result.

Firstly we present a technique to re-use domains and operators from abstract interpreters for

safety properties to produce termination analysers. This technique produces some very fast

termination analysers, but is limited by the underlying safety domain used.

We next take the natural step forward: we design an abstract domain for termination. This

abstract domain is built from ranking functions: in essence the abstract domain only keeps track

of the information necessary to prove program termination. However, the abstract domain is

limited to proving termination for language with iteration.

In order to handle recursion we use metric spaces to design an abstract domain which can handle

recursion over the unit type. We define a framework for designing abstract interpreters for live-

ness properties such as termination. The use of metric spaces allows us to model the semantics

of infinite computations for programs with recursion over the unit type so that we can design



an abstract interpreter in a systematic manner. We have to ensure that the abstract interpreter is

well-behaved with respect to the metric space semantics, and our framework gives a way to do

this.
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Chapter 1

Introduction

Building correct and reliable software systems is extremely difficult. The lack of sound en-

gineering principles for the design and construction of software is a major problem. Bugs in

software can have significant impact in the modern world.

One possible way for dealing with the unreliability of software is formal program verification.

Formal program verification tries to produce a formal, mathematical proof of a program’s cor-

rectness. Ideally we would like to find proofs for full functional correctness: a proof that the

program does what is intended. We would also like to do this automatically. There has been

much work in automatic program verification in the last thirty years. However in the past decade

or so there have been a number of significant advances [5, 8, 38] - so much so, that automatic

program verification is beginning to have an impact in real-world software development.

Static analysis is one piece in the formal program verification jigsaw that has made significant

impact in recent years [5, 25, 37, 38]. A static analysis attempts to discover various properties

of a program without executing the program. These properties can be classed into two main

categories: safety properties and liveness properties [1, 27, 40]. A safety property states that

“something bad will not happen”. Safety properties can be expressed as a reachability question:

can this program reach an error memory state from some initial starting state? Examples of

safety properties include accessing memory which has been de-allocated or division by zero.

There has been much work on automatically proving safety properties.

A liveness property, on the other hand, states that “something good will eventually happen”.

This is a much more difficult property to check: a liveness property is a set of potentially infi-

nite traces whose falsity cannot be witnessed by finite traces, whereas safety properties can be

falsified by finite traces alone [1]. Most previous liveness analyses have focused on finite state

systems: model checking logics such as CTL or LTL for example [16]. But for infinite state

systems, such as computer software, there has not been much progress.

1
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This thesis develops static analyses for termination, a specific liveness property. In the past

many researchers viewed program termination as an impossible problem mainly due to Turing’s

proof of undecidability of the Halting Problem. However, if one only asks for a sound but not

necessarily complete solution then the halting problem is not a barrier to a sound termination

analyser: when the analyser returns a positive answer it means that the program terminates.

However if the analyser returns a negative answer that means the program could or could not

terminate.

Proving safety properties is undecidable but recent work has shown that we can have useful

safety analysers. However to analyse infinite state systems such as software, safety analyses

have to make use of abstraction techniques. This use of abstraction means that most practical

safety analyses are sound but not complete. This successful use of abstraction is safety analyses

shows that similar ideas could be used for liveness analyses for infinite state systems.

It has been known for a long time that one way of proving that a program terminates is to

a measure on the program which constantly decreases on each iteration through the program.

More formally one has to find a mapping from program states into some well-founded set [56].

Essentially one needs to find some global termination argument which covers the entire program.

A breakthrough was made by Podelski and Rybalchenko [47, 49] who developed a proof rule to

help find disjunctive termination arguments: smaller measures which cover part of the program,

but put together they give a reason for why the entire program terminates. Instead of searching

for a global termination argument which overapproximates the entire program, the Podelski-

Rybalchenko results allows us to search for smaller termination arguments which individually

overapproximate part of a program but collectively they overapproximate the entire program.

The Podelski-Rybalchenko result fits naturally with path-sensitive static analyses, which is a

requirement for proving termination. It also fits in naturally with counter-example guided ab-

straction refinement (CEGAR [15]), a successful technique in static analysis of infinite state

systems. CEGAR works by iteratively checking to see if the property to be checked holds for

a given program. If the answer is no, then a counterexample to the property is extracted and

then analysed to see if it really is a counterexample or whether extra facts need to be added

to the proof in order to remove the counterexample. This process continues until all spurious

counterexamples are removed or there is a counterexample which really does show that property

does not hold for a given program.

TERMINATOR [19, 20], a tool produced at Microsoft Research, was the first practical termi-

nation analyser to make use of the Podelski-Rybalchenko rule. TERMINATOR uses counter

example guided abstraction refinement (CEGAR) to produce termination arguments and was

used very successfully in proving termination of low-level systems code in Windows device
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drivers. However, TERMINATOR like many CEGAR based approaches, has to check the validity

of termination arguments it produces, which is a computationally expensive task.

This difficulty was the initial motivation for using abstract interpretation [23] to define termi-

nation analysers. Abstract interpretation is a framework for defining sound and valid static

analyses. Thus using abstract interpretation we do not need to check the validity of any ter-

mination arguments the abstract interpreter produces: they are valid by construction. In this

thesis we chart the progression of a series of works defining abstract interpreters for termination

properties. All these abstract interpreters make use of the Podelski-Rybalchenko result.

In this thesis we will be defining a number of abstract interpreters for program termination. Each

of the abstract interpreters is built on the Podelski-Rybalchenko result. We will design abstract

domains specifically to prove program termination. It should be noted that when the analyses

in this thesis fail to prove termination, this does not imply non-termination of the program. In

order to see if the program is indeed non-terminating one would need to manually inspect the

code to see if this is indeed the case or use a specific non-termination analyser [36].

1.1 Outline

• We will first present some background material on automatically proving program termi-

nation. In particular we will present the Podelski-Rybalchenko result in Section 2.1.3,

and then briefly explain how TERMINATOR works in Section 2.2. We will then present

work [7] that converts abstract interpreters for safety properties into termination analysers

in Section 3. 1

Although the termination analysers produced using this approach were extremely fast

there were a number of troublesome issues:

1. Reusing abstract operations designed to find safety properties could result in the ter-

mination analyser having to compute information not relevant to termination. Also

since many of the abstract domains are infinite, in order to guarantee that the anal-

yser terminates they make use of acceleration techniques to ensure the analyser ter-

minates. However these acceleration techniques are designed with safety properties

in mind, and making use of them for termination analysis often results in crucial

information being lost.
1The author worked on the implementation but not on the theoretical work. This is why we have put this in the

background section
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2. Many safety abstract interpreters are also designed to be path insensitive, that is they

do not keep explicit information for each path through the program. Since termina-

tion requires that every path through the program terminates to get a useful termi-

nation analyser we require that the analysis maintains information about each path

explicitly: we require the analysis to be path sensitive. Many safety analyses do not

maintain such information, but merge information from many paths in order to be

computationally efficient. There is no canonical answer regarding the best approach

to maintaining such path sensitive information . There have been heuristics to try

to extract path sensitive assertions from analyses which do not maintain such infor-

mation [42, 52], but performing tractable and useful analyses with path sensitivity is

still an open research problem.

• In Chapter 4 we address the concerns from the previous approach. We start from scratch:

we design abstract domains specifically for program termination. Since we need to find

well-founded relations to prove program termination, the abstract domain consists of as-

sertions that overapproximate a well-founded relation. In essence we only keep the infor-

mation necessary to prove program termination and we disregard any information that is

irrelevant to finding a termination argument. We maintain disjunctions but do not need

acceleration techniques to ensure we get an answer, avoiding a problem with the approach

presented in Section 3. We provide a framework for designing abstract domains based for

proving termination and provide an instance. We then compare the implementation to

existing termination provers.

One issue with this approach is that the soundness proof for relating a concrete trace

semantics with an abstract domain for termination is non-trivial. The solution in this

chapter has to relate greatest fixpoints in the concrete trace semantics with least fixpoints

in the abstract interpreter. This is highly specific and non-standard and the proof is built on

tricks that are non-extensible. As a consequence we can only provide abstract interpreters

for languages with iteration and not recursion.

• In order to find a more elegant soundness proof we turn to metric spaces in Chapter 5.

We make novel use of metric spaces in the concrete semantics and relate this semantics to

abstract domains based on ranking functions.

The use of metric spaces allows us to use Banach’s unique fixpoint theorem [54]: a con-

tractive function on a complete metric space has a unique fixpoint. In comparison to the

previous approach we now need to relate a unique fixpoint in the concrete semantics with

a least fixpoint in the abstract interpreter; we do not have to try to relate greatest fixpoints

to least fixpoints.
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However the use of metric spaces means that we have to design the abstract interpreter

carefully to ensure that it is sound. We again provide a framework and an instance before

showing a number of example analyses of programs.

The metric space used is based on sets of traces and follows previous work on metric

spaces for programming language semantics [13, 57]. The concrete semantics is then

defined as contractive functions on this metric space which gives us a unique fixpoint.

An important point is that since we are using Banach’s Fixpoint theorem, the fixpoint

computation for loops and recursive functions can start from anywhere in the metric space:

we do not require a distinct ’bottom’ element as is the usual case in standard abstract

interpretation theory.

Since we require a complete metric space in order to apply Banach’s Fixpoint Theorem,

we cannot use the standard powerset of traces. This is because the standard powerset of

traces is not a complete metric space. So we have to work in a restricted powerset of

traces. This means that we have to take care to design the abstract interpreter in order to

overapproximate this restricted metric space. The framework defined in Chapter 5 defines

conditions on both the concrete and abstract semantics which ensures we are designing

sound analysers over the concrete metric semantics.

Each of these chapters provide frameworks from which we can build many termination analy-

sers. Thus in this thesis we are presenting a methodology for designing a termination analyser.

We define instances in each of the three frameworks to show that the methods can produce

analysers which give meaningful results.



Chapter 2

Technical Background

In this chapter we will present preliminary and background information. In Section 2.1.3 will

first define the Podelski-Rybalchenko result. We will then give a brief overview of TERMI-

NATOR in Section 2.2, which was the first termination analyser to make use of the Podelski-

Rybalchenko result. Since we are defining abstract interpreters, we will provide a brief overview

of abstract interpretation in Section 2.3.

2.1 Preliminaries

2.1.1 Well-Ordered Sets

To prove the termination of a program we need to find some measure that decreases and is

bounded. The theory of well-ordered sets is the foundation for proving termination is many

practical termination analysers. We will define some basic notions of well-ordered sets.

Definition 2.1 (Total-Order). A set X with an order ≤ is a total order iff the order is reflexive,

antisymmetric, transitive and total.

Definition 2.2 (Well-Ordered Set). (X,≤) is a well order iff it is a total order and every non-

empty subset of X has a least element.

Mapping into a well-ordered set gives us the mathematical apparatus needed in order to define

when a program is terminating.

6
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2.1.2 Ranking Function and Ranking Relations

Traditional methods for proving the termination of a program involved showing that there is a

function from the set of program states to some well-ordered set. Such a function is called a

ranking function. This technique was first presented by Turing [56].

Definition 2.3 (Ranking Function). A ranking function is a function f with a range to a well-

ordered set.

Example 2.1. An example of a ranking function is f : N→ N defined by

f(x) =

 0 if x = 0

x− 1 otherwise

Since N is a well-ordered set with the usual ≤ order, f is a ranking function.

From the ranking function we can define a ranking relation:

Definition 2.4 (Ranking Relation). Given a ranking function f : X → Y we can define f ’s

ranking relation, rank(f) as follows:

rank(f) = { (s, t) | f(s) > f(t) }

Example 2.2. Suppose that we have states σ : V ar → N. The assertion below is a relation

that represents a program that decrements x until x is non-positive.

′x > x ∧ x > 0

Here the pre-primed variable denotes the value of x is a previous state and the non-primed

variable denotes the current value. The above assertion can be seen as a relation over program

states:

{ (s, t) | s(x) > t(x) ∧ t(x) > 0 }

To prove this program terminating we need to find a ranking function whose ranking relation

overapproximates the relation above. The ranking function f defined about in example 2.1 is

one such function.

Rank function synthesis is an algorithm that given a relation attempts to find a ranking function

which overapproximates it.
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Definition 2.5 (Rank Function Synthesis). Given a relationR, a rank function synthesis engine

tries to find a ranking function f such that:

R ⊆ rank(f)

Rank function synthesis tries to find a ranking function, whose ranking relation overapproxi-

matesR. To see why rank function synthesis is relevant to program termination consider relation

R as representing the transition relation of a program. In order to prove that R does not repre-

sent infinite computations it is enough to show that some ranking relation overapproximates R.

Using rank function synthesis we can find such a ranking relation. Note however that in practice

rank function synthesis usually only works for cases where R represents a non-loop program. If

the program has complicated control flow then it is difficult to find a ranking relation/function

that proves R terminating. However a recent mathematical result has changed this.

In [48], Podelski and Rybalchenko show that rank function synthesis is complete for ranking

relations over linear constraints. This result together with the next result is the foundation for

the termination analysers we produce in this thesis. We use RFS to denote a rank function

synthesis algorithm.

2.1.3 Podelski-Rybalchenko Result

Some recent advances in proving termination have used a result discovered by Podelski and

Rybalchenko. The result gives a proof rule for proving that a relation is well-founded.

Theorem 2.6 (Podelski-Rybalchenko Result). Suppose we have a binary relation R ⊆ S×S.

Let T1, T2, ..., Tn be a finite set of binary relations Ti ⊆ S×S such that each Ti is well-founded.

Then R is well-founded iff:

R+ ⊆ T1 ∪ ... ∪ Tn

The theorem states that to prove a relationR is well-founded, we need to find a finite set of well-

founded relations that overapproximate the non-reflexive, transitive closure of R. The proof can

be found in [50]. The Podelski-Rybalchenko result means that we no longer have to search for

one global ranking function for the whole program. We can now reduce the problem to finding

a ranking function for each path through the program, a much simpler task. We refer to the set

T1 ∪ ... ∪ Tn as the termination argument.
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01 while(x > 0 && y > 0) {
02 if (*) {
03 x = x - 1;
04 } else {
05 y = y - 1;
06 }

FIGURE 2.1: Example for Podelski-Rybalchenko Result

We now present an example to motivate why the Podelski-Rybalchenko result is useful in figure

Fig.2.1 To prove this program terminating prior to the Podelski-Rybalchenko result we need to

find a lexicographic ranking function that would show that variables x and y are decreasing and

bounded by the 0. For the simple example above this is possible to do automatically [11], but

for more complicated examples finding such lexicographic ranking functions is difficult. Using

the Podelski-Rybalchenko result we just need to find a ranking function for each branch in the

example individually. Thus looking at the first branch decrementing x, the ranking function

is simply x, and for the second branch it is simply y. The key point is that we can look at

each branch independently and generate a ranking function that combined together cover all

behaviours of the program.

2.2 TERMINATOR

As mentioned previously TERMINATOR [19, 20] was the first practical static analyser to make

use of the Podelski-Rybalchenko result. We will briefly explain how the TERMINATOR works.

We include this section on TERMINATOR for comparison purposes but we will not be using

TERMINATOR within the thesis.

Terminator works by starting with an empty candidate termination argument T0. It tries to prove

termination of the program using this termination argument. If it fails it finds a counterexam-

ple for why the proof fails, and using this counterexample it tries to generate a well-founded

relation, Ti+1 which overapproximates it and adds this relation to the set of candidate termina-

tion arguments. As TERMINATOR iterates through this process it goes through the following

sequence:
R+ ⊆ T0

...

R+ ⊆ T0 · · · ∪ Ti
R+ ⊆ T0 · · · ∪ Ti ∪ Ti + 1
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01 T := ∅
02 repeat
03 ifR+ ⊆ T then
04 report program terminates
05 else
06 r := a binary relation such that r ⊆ R+ but r ⊆ T
08 if r is not well-founded then
09 report not terminating
10 else
11 W := RFS(r)
12 T := T ∪W
13 end

FIGURE 2.2: TERMINATOR algorithm
.

where each Ti is generated by looking at counterexamples generated in the previous iteration,

and the subset inclusion check is performed by a safety analyser (SLAM [5]). If the termination

arguments Ti are continually generated then TERMINATOR may diverge.

The algorithm is shown in Fig. 2.2 first presented in [19, 20]. TERMINATOR user abstraction

refinement to find termination arguments which overapproximate the program. Abstraction re-

finement [4, 6, 33, 37] works by iteratively finding counterexamples to the property attempting

to be proven. The counterexamples are then analysed to see if they are spurious, in which case

an assertion is added to the set of properties proven so far to rule out the counterexample. If

the counterexample is not spurious then it is a real counterexample to the property, and thus

the program does not satisfy the property. This cycle continues until either we get a positive or

negative answer, or else the analysers diverges.

Initially in TERMINATOR starts with the empty set as the initial termination argument (line 01).

TERMINATOR then performs the following until it finds a termination argument or a counterex-

ample to program termination:

• In line 03 TERMINATOR checks to see if the relation R is covered by the current ter-

mination argument T . This step checks to see if the termination argument T is a valid

argument: that is it checks to see if T overapproximates the relational meaning of the pro-

gram. If it does, we have found a termination argument, otherwise TERMINATOR finds a

counterexample to termination. (Line 06 ) This counterexample is a relation which is a

valid path in the program but is not covered by the termination argument found so far.

• To see if this path is a terminating path we check to see if it is well-founded (line 08).

This can be done using a rank function synthesis engine RFS. If it is not well-founded,

we have found a path in the program for which we cannot prove termination and so we

report that we have failed (line 09).
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• If it is well-founded, we generate a ranking relation (using RFS) which overapproximates

the relation r and then add it to our termination argument (lines 11 and 12).

Line 03 is computationally expensive; TERMINATOR is checking that the set of well-founded

relations it has found so far does indeed overapproximate the program. We refer to this step as

the inclusion check of the Podelski-Rybalchenko result. One way to improve the performance

of TERMINATOR is to try and remove this inclusion check, which we address in this thesis by

using abstract interpretation.

2.3 Abstract Interpretation

Abstract interpretation [23] is a technique to design sound abstract programming language se-

mantics with respect to more concrete semantics. Abstract interpretation has been used very

successfully for static analysis of programs. Since abstract interpretation provides a sound and

systematic way to design abstract semantics, proving the soundness of static analysis which use

abstract interpretation is much more simple: they are sound by construction. In this section

we will provide an overview of abstract interpretation and define some of the terminology and

concepts which are used in this thesis.

2.3.1 General Overview

A static analysis using abstract interpretation has two main components: a concrete semantics

and an abstract semantics. There techniques for deriving an abstract semantics in a systematic

manner from the concrete semantics [22], however we will not be making use of such techniques.

In this thesis we design a concrete semantics and an abstract semantics and establish a soundness

condition between them.

Abstract interpretation is based on the theory of partial orders and monotone functions on these

partial orders. We first provide some general definitions before showing a general recipe for

defining abstract interpreters. We will then provide an example abstract interpreter for a simple

while language which analyses parity information.

2.3.2 Lattices and Partial Orders

Like many programming language semantics, abstract interpretation is based on mathematical

structures built on partial orders and functions on these mathematical structures. In this section

we will give a brief overview of the mathematics underlying abstract interpretation.



Technical Background 12

A partial order is a set C with a binary relation v on C that satisfies:

• Reflexivity: ∀c ∈ C : c v c

• Transitivity: ∀c1, c2, c3 ∈ C : c1 v c2 ∧ c2 v c3 → c1 v c3

• Anti-symmetry: ∀c1, c2.c1 v c2 ∧ c2 v c1 → c1 = c2

Given a set a X ⊆ C, we say that y ∈ C is an upper bound for X if we have ∀x ∈ X.x v y.

Likewise we can define y to be a lower bound of X if ∀x ∈ X.y v x. A least upper bound,

written as tX is defined as

X v tX ∧ ∀y ∈ C.X v y → tX v y

and the greatest lower bound ,written as u, is defined as:

uX v X ∧ ∀y ∈ C.y v X → y v uX

Definition 2.7 (Lattice). A lattice is a partial order for which least upper bounds and greatest

lower bounds exists for all non-empty finite subsets of C. The lattice is called complete if least

upper bounds and greatest lower bounds exist for all subsets of C. The lattice also has greatest

and lowest elements, denoted by > and ⊥ respectively, and these as are given by: > = tC and

⊥ = uC.

2.3.3 Functions on Partial Orders

We can define functions on a lattice. A function f : C → C on a lattice C is monotone if:

∀x, y ∈ C.x v y → f(x) v f(y)

Another useful property is continuity. A function is continuous if:

∀X ⊆ C.f(tX) = tF (X)

The foundation of abstract interpretation is the computation of fixpoints on lattices and partial

orders. The concrete and abstract semantics of recursive and looping constructs are defined using

fixpoints. In order to have precise results from the abstract interpreter, we usually interpret these

constructs using the least fixpoint. We begin by defining what a fixpoint is:
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Definition 2.8. A fixpoint of a function F : D → D is an element of the domain x ∈ D such

that F (x) = x.

Abstract interpretation makes use of the well-known fixpoint theorem by Tarksi, which gives us

a computational way of computing a least fixpoint.

Theorem 2.9 (Tarskis Fixpoint Theorem). The set of fixpoints of a monotone function F on a

complete lattice (D,v,⊥,>,t,u) is a non-empty, complete lattice ordered by v. The least

fixpoint is given by:

lfp(F ) = u{x ∈ D | F (x) v x}

The greatest fixpoint is given by:

gfp(F ) = t{x ∈ D | x v F (x)}

One way of computing the least fixpoint is to start iterating F from the least element in the

abstract domain until we reach a fixpoint:

F (⊥), F (F (⊥)), F 3(⊥), ...

Since the order on the abstract domain reflects the precision between elements, the least fixpoint

is usually the most precise answer an abstract interpreter could give us. However for compu-

tational reasons (the abstract domain may be infinite for example) the sequence generated by

Fn(⊥) may not stabilise. In order to ensure that the fixpoint computation terminates we can

consider another way of ensuring that we reach a fixpoint. The intuition is to replace the se-

quence Fn(⊥) by another computation sequence which is guaranteed to terminate. This new

sequence uses an acceleration operator called widening.

Definition 2.10 (Widening Operator). A widening operator is a function O : A× A→ A such

that for all a1, a2 ∈ A, a1 v a1Oa2 and a2 v a1Oa2, and for all increasing chains a0 v a1 v ...,

the chain y0 = a0, ..., yi+1 = yiOai+1 eventually stabilises.

Using a widening operator we can now define a fixpoint computation sequence which will ter-

minate and overapproximates the least fixpoint:

A0 = ⊥
Ai + 1 = Ai if F (Ai) v Ai

= AiOF (Ai) otherwise
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The key point about the widening is that we sacrifice some information in order to for the abstract

interpreter to return an answer - even if that answer is >.

2.3.4 Concrete Domains

As mentioned previously, we need to define a concrete domain and an abstract domain. The

concrete domain is the reference semantics with which we define the abstract interpreter (using

the abstract domain). In essence the concrete domain is used to prove that the abstract interpreter

is sound.

• A concrete domain C with a partial order vC

• A bottom element ⊥C and a top element >C .

• A join operator tC . The join operator is used when computing the semantics of a program

point with multiple input paths, such as exits from loops or the entry points of while loops.

• A function [[−]] : C → C which defines the semantics of each operation in the program-

ming language.

As a running example we will define a concrete domain based on sets of states. We define

a state σ : V ar → Z, where V ar is a set of variables. The set of all states, which is the

concrete domain, is denoted by Σ. The order on this domain is simply the subset order, ⊆.

The bottom element is the empty set ∅ and the top element is the set of all states Σ. The join

operator is simply set union, ∪. As an example of a semantic function which could be defined

for assignment statements we have:

[[x := e]]S = {σ[x 7→ [[e]]s] | σ ∈ S}

where the notation σ[x 7→ v] means the state s where x has been remapped to have the value v.

2.3.5 Abstract Domains

Having defined a concrete domain, we now need to define an abstract domain which over-

approximates the concrete domain.

• An abstract domain A with partial order vA.

• A bottom element ⊥A and top element >A. The top element corresponds to the case that

the abstract interpreter could not prove or discover the property.
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• A join operator tA.

• A function [[−]]] : A → A which defines the abstract semantics of the language.

Like the concrete semantics there are [[−]]] is built from operations for the constructs in the

language. In the case of loops or recursive function definitions we use fixpoints of some function

which models the body of the loop or function. However in the abstract domain the computation

of this fixpoint may not converge so we use acceleration techniques such as widening operators.

An example of an abstract domain is the interval domain. The interval domain for a single

variable is defined as:

Interval = {[l, h] | l, h ∈ Z∞ ∧ l ≤ h}

where Z∞ = Z ∪ {−∞,∞}, is the set of integers with plus and minus infinity symbols. The

lattice is ordered by:

[l1, h1] vA [l2, h2] iff l2 ≤ l1 ∧ h1 ≤ h2.

This is then lifted over to the lattice we would use in the abstract interpreter for intervals:

Σ# = V ars→ Interval

which is an abstraction of concrete states in the previous example: to each integer it assigns the

interval the variable resides in. We can now define a function which evaluates expressions with

respect to the interval domain. This function is then used to give the abstract semantics for the

language begin analysed:

eval(σ, var) = σ(var)

eval(σ, int) = [int, int]

eval(σ,E1opE2) = absop(eval(σ,E1), eval(σ,E2))

where the abstract operator absop is defined as:

absop([l1, h1], [l2, h2]) = [l1opl2, h1oph2]

Using these operators we can then define semantics for commands in the language. For example

for assignment we could define the abstract semantics to be:

[[x := e]]]σ# = σ#[x 7→ eval(e)]
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2.3.5.1 Disjunctive Analyses

For computational reasons many abstract interpreters do not keep explicit states for each possible

path through the program. In order to for the abstract interpreter to terminate, they may merge

information together. For example, suppose at a program point n there are three possible paths

from the entry point of the program. A non-disjunctive analysis might infer that a variable x is

within the range [1, 100]. This abstraction of the possible values x could have could be quite

coarse. A disjunctive analysis might be able to infer more precise information about the range

of values x could have, such as:

x ∈ ([1, 10] ∨ [12, 20] ∨ [98, 100])

Each of the disjuncts might correspond to one of the three paths that reach program point n. So

a disjunctive analysis is much more precise than a non-disjunctive analysis, but comes at a great

computational cost.

2.3.6 Relating Abstract and Concrete Domains

In order to show that the abstract semantics overapproximates the concrete semantics we need

some way of linking the two. One way is to have a concretization function, which takes an

element of the abstract domain and returns an element of the concrete domain which it overap-

proximates. More formally, a concretization function is a map γ : A → C. This concretization

function must be monotone with respect to the order in the abstract and concrete.

In the running example, we could define a concretization function to be:

γ(σ#) = {σ | σ#(x) = [i, j] =⇒ ∀x ∈ V ar.i ≤ σ#(x) ≤ j}

The concretization relates abstract states with the set of states it overapproximates - given an

abstract state, we return the set of states where each variable is contained within the range given

in the abstract state.

Now we have the three main ingredients we need to define an abstract interpreter: a concrete

semantics, an abstract semantics and a concretization function relating the two. To show that the

abstract semantics is sound with respect to the concrete semantics we need to prove a theorem

such as the following:

∀a ∈ A. [[P ]](γ(a)) v γ([[P ]]]a)
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Such a theorem establishes that all possible answers given by the abstract interpreter are sound

with respect to the concrete semantics: any behaviour reported by the abstract interpreter is a

possible behaviour by the program.



Chapter 3

Liveness Analyses from Safety

Analyses

In this short chapter we will give a short summary of a technique to convert an abstract inter-

preter [23] for safety properties into a termination analyzer. The work is based on a paper [7]

published in 2007.1. A safety analysis computes a set of invariants at each program point. These

invariants over-approximate the set of reachable states at that program point. We describe an

algorithm that uses a safety analysis to produce a liveness analysis, specifically a termination

analysis.

The algorithm can take any abstract interpretation based program analysis and produce a termi-

nation analysis using the results of the program analysis. As it can use any abstract interpreta-

tion, this method produces many different termination analyzers, by converting safety analyses

into termination analyses.

3.1 The Algorithm

We will now describe the algorithm that is defined in Fig. 3.1. The algorithm takes in a program

P , a set of locations L for which we will try to prove local termination lemmas, and starting

abstract input state I]. The algorithm requires the following:

• SAFETYANALYSIS: The safety analyzer we will be using
1The author of this thesis worked on the implementations for the paper. The theoretical work was done by the

co-authors. For this reason the proofs of soundness will not be included in this thesis, but the experimental results
and outline of the algorithm will be included. For more detail the reader should refer to the paper [7]

18
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01 TERMINATIONANALYSIS(P,L, I]) {
02 SAs := SAFETYANALYSIS(P, I])
03 foreach ` ∈ L {
04 LTPreds[`] := true

05 foreach q ∈ SAs such that pc(q) = ` {
06 TAs := SAFETYANALYSIS(P, STEP(P, {SEED(q)}))
07 foreach r ∈ TAs {
08 if pc(r) = ` ∧ ¬WELLFOUNDED(r) {
09 LTPreds[`] := false

10 }
11 }
12 }
13 }
14 return LTPreds
15 }

FIGURE 3.1: Parameterized termination analysis algorithm
.

• STEP: A single-step operation over the abstract domain of SAFETYANALYSIS. This op-

eration usually corresponds to an abstract operation over primitive commands

We also have to define two extra operations, which are not usually given by the safety analysis.

• SEED: An operation that converts elements of the abstract domain of SAFETYANALYSIS

into assertions over pairs of program states In essence we are converting a safety assertion

into a liveness assertion using this operation.

• WELLFOUNDED: An operation that tries to find a well-founded relation that over-approximates

a given assertion over pairs of program states.

Once we have all these ingredients we can define a termination analyzer. We givea brief outline

of the algorithm in Fig 3.1:

1. We first run SAFETYANALYSIS to get invariants at each program location (line 02). We

denote the results of the static analysis at program point n using SAn.

2. For each of the program locations (line 03) (in our cut-point set), we take the invariant

and perform a seeding operation using SEED to get a relation over program states (line

06). The results of the analysis are stored in an array SAs, whose indices correspond to

program locations.

3. We then take a ’step’ in the program analyzer starting from this new assertion, and then

re-run the original program analysis starting from the seeded state (line 06). We need

to perform the step operation in order to over-approximate the non-reflexive, transitive

closure, as required by the Podelski-Rybalcheko result. The results from this step in
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the analysis are denoted by TAn, which is result from the second run of the analysis at

program point n. These results are stored in an array TAs.

4. Once we have run the analysis, we then check to see if the resulting assertions are well-

founded (line 08). This is done by calling some rank function synthesis engine. Note that

we do not need to receive a ranking function from the rank function synthesis engine, we

just need to know if the assertions generated are well-founded.

3.1.1 Safety Analyses

We assume that we are using an abstract interpretation, that soundly over-approximate the pro-

grams concrete semantics. The abstract interpretation consists of two parts: a STEP operation

that over-approximates a single step transition in the program and SAFETYANALYSIS that over-

approximates the reflexive transitive closure of the program. Usually SAFETYANALYSIS is

defined in terms of STEP, but we do not require this to be so. Standard techniques in abstract

interpretation such as widening and narrowing could be used: all we require is the output of the

abstract interpreter. Proving termination is very path sensitive, so we use powerset domains or

use standard techniques to lift to powerset domains [42, 52] in order to have disjunctive infor-

mation. The algorithm still works if we do not have a powerset (disjunctive) domain, but more

often than not we will not be able to prove termination.

3.1.2 Seeding

Seeding is an operation we must define on the abstract domain. Seeding is commonly used

for recording computational history in states and is analogous to the use of ghost variables

in program logics. Since safety abstract interpreters overapproximate states on programs nad

liveness analyses overapproximate relations on states, we need an operation to lift assertions on

states to assertions on relations. The seeding operation performs this lifting.

Seeding is usually a simple addition or modification to the abstract domain of the safety anal-

ysis. The seeding operation has to be tailored for each safety analysis being used to generate a

termination analysis.

Seeding has to lift a assertion over states to an assertion over pairs of states. To do this we

will assume that there are two types of variable in the abstract domain: program variables and

logical variables. The program variables correspond to variables used in the program. Logical

variables are variables that are not manipulated by the program, through primitive commands
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such as assignment. These two sets are disjoint. The definition of seed is:

SEED(A) = A ∧
∧

v∈V ar
‘v = v

where ‘v is a logical variable. SEED defines the initial liveness assertion. Intuitively, the primed

logical variables record the previous value of the variable, and unprimed variables correspond

to the current value. The addition of equalities between variables and the corresponding primed

variables takes a ’snapshot’ of the memory, so that when we run the analysis again we will try

to keep track of the relationship between variables over the execution of a program loop.

This new seeded assertion is now liveness assertion: a binary relation on states:

γ(A) = {(s, t) | pc(s) = pc(t) ∧ ((‘s, t) |= A)}

For example, suppose we have a the assertion A = x < y ∧ y > 0 which represents the set

of states where the value of x is less than the value of y and y is greater than 0. Seeding this

assertion gives us:

SEED(A) = x < y ∧ y > 0 ∧ ‘x = x ∧ ‘y = y

Which now represents a relation between states: the value of x and y has not changed, but

the current value of x is less than y and the current value of y is greater than 0. The key

point is that the new primed variables are logical variables, that the abstract interpreter does not

distinguish from any other variable. In a sense we are tricking the analysis to produce assertions

over relations on states rather than just states. The seeding operation is deliberately simple: the

seeded assertion is only a starting point for liveness analysis.

3.1.3 Checking Well-Foundedness

Recent work has shown that generating ranking functions is complete for linear expressions. In

all the implementations that we have produced we have used RANKFINDER [48]. Other tools

that could be used include POLYRANK [10, 12]. The choice of safety analysis will affect the

choice of which rank function synthesis engine to be used. If the underlying safey analysis

performs is based on linear arithmetic relationships between program variables then we need a

rank function synthesis engine which produces linear ranking functions.

This, together with the choice of SEED operation give us much flexibility allowing us to produce

many instances of our algorithm.
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01 while (x>0 && y>1) {
02 if (nondet()) {
03 x = x - 1;
04 } else {
05 y = y - 1;
06 }
07 }

FIGURE 3.2: Example program fragment.

3.2 Illustrative example

In this section we will use the program in Fig. 3.2 while stepping through the TERMINATIO-

NANALYSIS algorithm in Fig. 3.1. We will use a safety analysis based on the Octagon [43]

domain, which can express conjunctions of inequalities of the form ±x+±y ≤ c for variables

x and y and constant c. The safety analysis will return a set of invariants at each program point.

An assertion holds at program point ` if and only if it is always valid at the beginning of the line,

before executing the code contained at that line. Also note that to prove the termination of the

loop we only need to prove termination at program point 02, the top of the loop, so we will set

L = {02}.

Given a set of locations L, the parameterized termination analysis attempts to establish termina-

tion arguments for each location ` ∈ L, when the program P is run from starting states satisfying

the input condition I].

• Safety analysis (Line 2 of Fig. 3.1): We start by running a safety analysis using the

Octagon domain (possibly with a disjunction-recovering post-analysis). We will set the

starting point of the safety analysis as: I] = (pc = 0) From this starting point the analysis

produces:

SA02 , pc = 0 ∧ x ≥ 1 ∧ y ≥ 1

We write SAn to represent the safety invariant at program point n discovered by the safety

analysis. SA02, represents the set of states:

{s | s(pc) = 02 ∧ s(x) ≥ 1 ∧ s(y) ≥ 1}

• Inferring liveness assertions (Lines 6 and 6) We take all of the disjuncts in the safety

assertion at location 02 (in this case there is only one, SA02) and convert them into binary

relations from states to states:

SEED(SA02) = (pc = 02 ∧ ‘pc = 02 ∧ x ≥ 1 ∧ y ≥ 1 ∧ ‘x = x ∧ ‘y = y)
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SEED(SA02) is a state that uses primed variables not used in the program: these variables

can be thought of as logical constants. However, in another sense, SEED(SA02) can be

thought of as a binary relation on program states:

{(s, t) | s(pc) = t(pc) = 02

∧ s(x) = t(x)

∧ s(y) = t(y)

∧ t(x) ≥ 1

∧ t(y) ≥ 1 }

Notice that we’re using ‘x to represent the value of x in s, and x to represent the value of

x in t.

We then step the program once from SEED(SA02) with STEP, approximating one step of

the program’s semantics, giving us:

‘pc = 02 ∧ pc = 03 ∧ x ≥ 1 ∧ y ≥ 1 ∧ ‘x = x ∧ ‘y = y

The program counter has been incremented, and since we have passed through a non-

deterministic choice, nothing is done to variables. Finally, we run SAFETYANALYSIS

again with this new state as the starting state, and the isolated subprogram O as the pro-

gram, which gives us a set of variant assertions at locations 02, 03,.... that corresponds

to the set TAs in the TERMINATIONANALYSIS algorithm of Fig. 3.1. The assertions

produced at program location 2 are:

TAA02 , (‘pc = 02 ∧ pc = 02 ∧ x ≥ 1 ∧ y ≥ 1 ∧ ‘x ≥ x+ 1 ∧ ‘y ≥ y)

TAB02 , (‘pc = 02 ∧ pc = 02 ∧ x ≥ 1 ∧ y ≥ 1 ∧ ‘x ≥ x ∧ ‘y ≥ y + 1)

The union of these two relations

TAA02 ∨ TAB02

forms the liveness assertion for line 02 in P : a superset of the possible transitions from

states at 02 to states also at line 02 reachable in 1 or more steps of the program’s execution.

The disjunction TAA02 ∨ TAB02 is a superset of the non-reflexive transitive closure of the

program’s transition relation restricted to pairs of reachable states both at location 02.

One important aspect of this technique is that the analysis is not aware of the intended

meaning of variables like ‘x and ‘y: it simply treats them as symbolic constants. It does

not know that the assertions are representing relations.

• Proving local termination predicates: We have computed such a finite set: TAA02, TAB02,

We know that the union of these three relations over-approximates the transitive closure
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of the transition relation of the program P limited to states at location 02. Furthermore,

each of the relations are, in fact, well-founded. Thus, we can reason that the program

will not visit location 02 infinitely, by using the Podelski-Rybalchenko result. The fi-

nal step is to prove that the relations TAA02, TAB02 are well-founded. Because these

relations are represented as a conjunction of linear inequalities, they can be automati-

cally proved well-founded by rank function synthesis engines such as RANKFINDER [48]

or POLYRANK [10, 12]. To see why TAA02 is well-founded, we can argue as follows:

‘x ≥ x + 1 means that the variable x has decreased in value: x ≥ 1 provides a lower

bound. Hence we cannot repeat TAA02 infinitely often. A similar argument holds for

TAB02.

3.3 Implementation

We will now present two related instances of our algorithm, both of which are based on safety

analyzers for numerical properties. The purpose of this section is to give the reader a picture for

the state of the art in termination proving. In general the CEGAR approach of TERMINATOR

is slow but precise, while the abstract interpretation based on safety analyses are faster but less

precise.

The Polyhedra [26] and Octagon [43] domains are two important numerical abstract domains

for program analysis. The polyhdera domain is the more expressive but costly in terms of

computation. The octagon domain is less expressive but faster. The polyhedra domain can

express affine inequalities of the form:
∧
j

∑
i αijXi ≤ βj , while the octagon domain can

express inequalities of the form ±X ± Y ≤ c.

3.3.1 Results

We have implemented two analyzers: one based on the Octagon Domain and the other on the

Polyhedra Domain. The results are listed in Fig 3.3. We compared the results with two existing

termination provers: one based on POLYRANK [9] and TERMINATOR [20]. We will now explain

the symbols in Fig 3.3. A X means that a proof of termination was found, † means that a false

counterexample to termination was found. T/O means that the analyzer hit the timeout threshold

that was set at 500 seconds. � means that a termination bug was found. The tools referred to in

the table are:

O) OCTATERM is the termination analysis induced by OCTANAL [44] composed with a post-

analysis phase (see below). OCTANAL is included in the Octagon domain library distri-

bution. During these experiments OCTATERM was configured to return “Terminating” in
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1 2 3 4 5 6
O 0.11 X 0.08 X 6.03 X 1.02 X 0.16 X 0.76 X
P 1.40 X 1.30 X 10.90 X 2.12 X 1.80 X 1.89 X

PR 0.02 X 0.01 X T/O - T/O - T/O - T/O -
T 6.31 X 4.93 X T/O - T/O - 33.24 X 3.98 X

(a) Results from experiments with termination tools on arithmetic examples from
the Octagon Library distribution.

1 2 3 4 6 7
O 0.30 † 0.05 † 0.11 † 0.50 † 0.10 † 0.17 †
P 1.42 X 0.82 X 1.06 † 2.29 † 2.61 † 1.28 †

PR 0.21 X 0.13 X 0.44 X 1.62 X 3.88 X 0.11 X
T 435.23 X 61.15 X T/O - T/O - 75.33 X T/O -

8 9 10 11 12
O 0.16 † 0.12 † 0.35 † 0.86 † 0.12 †
P 0.24 † 1.36 X 1.69 † 1.56 † 1.05 †

PR 2.02 X 1.33 X 13.34 X 174.55 X 0.15 X
T T/O - T/O - T/O - T/O - 10.31 †

(b) Results from experiments with termination tools on arithmetic examples from
the POLYRANK distribution.

1 2 3 4 5
O 1.42 X 1.67 � 0.47 � 0.18 X 0.06 X
P 4.66 X 6.35 � 1.48 � 1.10 X 1.30 X

PR T/O - T/O - T/O - T/O - 0.10 X
T 10.22 X 31.51 � 20.65 � 4.05 X 12.63 X

6 7 8 9 10
O 0.53 X 0.50 X 0.32 X 0.14 � 0.17 X
P 1.60 X 2.65 X 1.89 X 2.42 � 1.27 X

PR T/O - T/O - T/O - T/O - 0.31 X
T 67.11 X 298.45 X 444.78 X T/O - 55.28 X

(c) Results from experiments with termination tools on small arithmetic examples
taken from Windows device drivers. Note that the examples are small as
they must currently be hand-translated for the three tools that do not accept
C syntax.

FIGURE 3.3: Experimental results for Four Termination Analyzers
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the case that each of the assertions inferred entailed their corresponding local termination

predicate. The WFCHECK operation was based on RANKFINDER.

P) POLYTERM is the termination analysis similarly induced from an safety analysis POLY based

on the New Polka Polyhedra library [39].2

PR) A script suggested in [9] that calls the tools described in the POLYRANK distribution [10,

12] with increasingly expensive command-line options.

T) TERMINATOR [20].

These tools, except for TERMINATOR, were all run on a 2GHz AMD64 processor using Linux

2.6.16. TERMINATOR was executed on a 3GHz Pentium 4 using Windows XP SP2. Using dif-

ferent machines is unfortunate but somewhat unavoidable due to constraints on software library

dependencies, etc. Note, however, that TERMINATOR running on the faster machine was still

slower overall, so the qualitative results are meaningful.

Fig. 3.3 contains the results from the experiments performed with these provers. For example,

Fig. 3.3(a) shows the outcome of the provers on example programs included in the OCTANAL

distribution. Example 3 is an abstracted version of heapsort, and Example 4 of bubblesort. In

this case OCTATERM is the clear winner of the tools. POLYRANK performs poorly on these

cases due to the fact that any fully-general translation scheme from programs with full-fledged

control-flow graphs to POLYRANK’s input format will at times confuse the domain-specific

rank-function search heuristics used in POLYRANK.

Fig. 3.3(b) contains the results from experiments with the four tools on examples from the

POLYRANK distribution.3 The examples can be characterized as small but famously difficult

(e.g. McCarthy’s 91 function). We can see that, in these cases, neither TERMINATOR nor the

induced provers can beat POLYRANK’s hand-crafted heuristics. POLYRANK is designed to sup-

port very hard but also carefully expressed examples. In this case each of these examples from

the POLYRANK distribution are written such that POLYRANK’s heuristics find a termination

argument.

Fig. 3.3(c) contains the results of experiments on fragments of Windows device drivers. These

examples are small because we currently must hand-translate them before applying all of the

tools but TERMINATOR. In this case OCTATERM again beats the competition. However, we

should keep in mind that the examples from this suite that were passed to TERMINATOR con-

tained pointer aliasing, whereas aliasing was removed by hand in the translations used with

POLYRANK, OCTATERM and POLYTERM.
2POLY uses the same code base as OCTANAL but calls an OCaml module for interfacing with New Polka, provided

with the OCTANAL distribution.
3 Note also that there is no benchmark number 5 in the original distribution. We have used the same numbering

scheme as in the distribution so as to avoid confusion.
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From these experiments we can see that the technique of inducing termination analyses with

TERMINATIONANALYSIS is promising. For programs of medium difficulty (i.e. Fig. 3.3(a)

and Fig. 3.3(c)), OCTATERM is many orders of magnitude faster than the existing program

termination tools for imperative programs.

3.3.2 Conclusion

We have outlined an algorithm to convert a safety analysis into a termination analysis, a form

of liveness analysis. The algorithm is generic and makes as few assumptions as possible about

the underlying safety analysis. The termination provers produced using the algorithm are ex-

tremely fast, comparable to state of the art termination provers. The technique presented here

is completely automatic. The algorithm takes in a program and tries to produce a termination

argument. A key point of this technique is that no work needs to be done on producing new ab-

stract transformers, or widening operators in order to produce a termination analyser; we re-use

the existing power of the underlying safety analysis. The termination provers produced using

this technique are extremely fast, There are however a number of problems with the approach

presented in this chapter.

Since we are trying to prove program termination, we really need an safety analysis which is

disjunctive - it returns a set of invariants at each program point rather than just performing join

operations to return one invariant. Due to computational concerns many safety analyses are

not disjunctive, but also perform widening and narrowing operations in order to ensure that the

analysis terminates. We have a technique for extracting disjunctive information after an safety

analysis has been completed, but since widening and narrowing operators may have been used

during the safety analysis, this technique is limited. If the safety analysis is not disjunctive, then

its widening operator will not have been designed with disjunction in mind, and so we will lose

a lot of information which could potentially be useful for proving termination.

As we re-use the operations of the safety analyses, we are dependent on the acceleration methods

used such as widening operators. These widening operators have been designed for proving

invariant assertions. This means that, very often, for complicated programs they lose too much

information which could be useful in finding a termination argument.We are also dependent

on the results of the fixpoint computation performed by the safety analysis. We are using the

safety analysis as a black box. It might be useful if we could do operations within the fixpoint

computation loop in order to keep information necessary for proving termination.

In the next chapter we will address this issue by designing an abstract domain specifically for

proving termination and also performing some operations during the fixpoint computation to

help find a termination argument.



Chapter 4

Ranking Abstractions

In the previous chapter, we described a way of using an existing safety analysis, such as Oc-

tagon [44] or Polyhedra [26] analyses, to construct a new termination analysis, by borrowing

the abstract operators from the safety analysis. The advantage to this approach is that the re-

sulting termination analysis is very fast, when compared to the specialized program termination

provers such as TERMINATOR [19].

However, the approach has one serious shortcoming. The constructed termination analysis often

discards the information necessary for termination proofs. As a result, the resulting termination

analysers fail to prove termination of some programs for which proving termination shoud be

possible. The cause of this shortcoming is that the underlying safety analyses are not designed

for termination, so their abstract operators do not necessarily track information related to ter-

mination proofs. For instance, a usual safety analysis is not disjunctive, meaning that it uses

a very crude over-approximation of disjunction. Although the non-disjunctiveness makes the

analysis fast, it forces the analysis to combine information from multiple execution paths of a

program, but keeping such path-sensitive information often turns out to be important for termi-

nation proofs. The paper [7] reporting the approach in Chapter 3, proposed an ad-hoc technique

to amend this precision problem, but this technique works only in some cases.

In this chapter 1, we describe abstract interpreters specially designed for proving termination.

The abstract interpreters are as accurate as TERMINATOR and as fast as the analyses in Chap-

ter 2.3.6. To achieve the high accuracy, the abstract interpreters are fully disjunctive, and they

can track disjunction precisely. The abstract interpreters avoid a well-known problem of being

fully disjunctive, namely using too many disjuncts, by ensuring that every disjunct keeps only

the information relevant to termination proofs. Specifically, we use ranking function synthesis

engines to identify termination-relevant information of each disjunct. The high performance of
1This work was published in [14]

28
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01 while (x>0 && y>1) {
02 if (nondet()) {
03 x := x - 1;
04 y := *;
05 } else {
06 y := y - 1;
07 }
08 }

FIGURE 4.1: Example Program

the abstract interpreters is achieved by using an overapproximating fixpoint computation, which

automatically guarantees that the analysis results overapproximate the concrete meaning of pro-

grams. The algorithm of TERMINATOR does not have such automatic guarantee, so it has to

perform an expensive additional inclusion check.

4.1 Informal Description of the Analysis

In this section we informally describe the termination analysis using an example. Later, in

Section 4.2, we provide a more formal description.

Consider the program in Figure 4.1. This program illustrates the limitation of known termination

analyses. The Octagon-based and Polyhedra-based termination analyses in Chapter 2.3.6 and

the paper [7] can quickly (in comparison to TERMINATOR) infer that the relation ‘x ≥ 0∧‘x ≥ x
holds between any state at ` = 2 and any previous state at ` = 2, where ‘x and x denote previous

and current values of x respectively. (Note that ‘x is denoting some previous value of x, and not

necessarily the last value). Unfortunately, this relation is insufficient to prove termination of the

loop, as it is not (disjunctively) well-founded—the condition sufficient for proving termination

as required by the Podelski-Rybalchenko result 2.1.3.

In contrast TERMINATOR can prove the example terminating, but at a great computational cost.

TERMINATOR finds the following disjunctively well-founded relation at ` = 2:

(‘x ≥ 0 ∧ ‘x− 1 ≥ x) ∨ (‘y ≥ 0 ∧ ‘y − 1 ≥ y)

To find this relation TERMINATOR performs three rounds of refinement on the relation itself and

9 rounds of abstraction/refinement for the checking of the 3 candidate assertions, resulting in

the discovery of 21 transition predicates.
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The termination analyses in this chapter gives us TERMINATOR’s accuracy at the speed of the

Octagon-based termination analysis. The new analysis finds the relation

(‘x ≥ 0 ∧ ‘x− 1 ≥ x) ∨ (‘y ≥ 0 ∧ ‘y − 1 ≥ y ∧ ‘x = x)

in 0.02s.

Concretely, the new analysis uses a disjunctive domain of ranking relations conjoined with the

information about unchanged variables. That is: disjunctions of relations of the form ϕe ∧ VX ,

where

VX
def
=

∧
x∈X

‘x = x, ϕe
def
= ‘e ≥ 0 ∧ ‘e− 1 ≥ e,

and ‘e is the expression e with all variables x replaced by their corresponding pre-primed ver-

sions ‘x. Let R represent the transition relation of the loop body of our program in DNF:

R
def
= R1 ∨ R2,

R1
def
= ‘x > 0 ∧ ‘y > 0 ∧ x = ‘x− 1,

R2
def
= ‘x > 0 ∧ ‘y > 0 ∧ x = ‘x ∧ y = ‘y − 1.

Our analysis begins by taking each disjunct in R and performing rank-function synthesis on it.

In this case we get

RFS(R1) = x and RFS(R2) = y.

For each disjunct, the analysis also computes a set of variables whose values do not change. In

this example, it determines that R1 can change both x and y, but R2 does not change variable x.

Thus, we begin our analysis with the initial abstract state δ0
def
= ϕx ∨ (ϕy ∧ V{x}), that is,

δ0 = (‘x ≥ 0 ∧ ‘x− 1 ≥ x) ∨ (‘y ≥ 0 ∧ ‘y − 1 ≥ y ∧ ‘x = x).

Note that δ0 overapproximates the loop body R.

The meaning of this initial abstract state (i.e. γ(δ0)) is set of all finite sequences of program

states sisi+1 . . . si+n such that

(
si(x) ≥ 0 ∧ si(x)− 1 ≥ si+n(x)

)
∨(

si(y) ≥ 0 ∧ si(y)− 1 ≥ si+n(y) ∧ si(x) = si+n(x)
)
.

The analysis then computes the next abstract state δ1 that overapproximates the relational com-

position of δ0 and R. It takes each disjunction from δ0 and each disjunction from R, composes
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E ::= x | r | E + E | r × E
B ::= E = E | E 6= E | E ≤ E | E < E | B ∧B | B ∨B | ¬B
a ::= x := E | x := ∗
C ::= a | C;C | C[]C | if B C C | while B C

FIGURE 4.2: Syntax of the Programming Language

them, performs rank function synthesis, infers variables that do not change, and constructs the

union of the new ranking relations together with δ0. In this case we find:

RFS(ϕx;R1) = x RFS(ϕx;R2) = x

RFS((ϕy ∧ V{x});R1) = x RFS((ϕy ∧ V{x});R2) = y

We also find that the last composition ((ϕy ∧ V{x});R2) does not change x. Thus,

δ1 =
(
δ0 ∨ ϕx ∨ ϕx ∨ ϕx ∨ (ϕy ∧ V{x})

)
= δ0.

Since δ0 is a fixpoint and δ0 overapproximates R, we know that ∀i > 0. Ri ⊆ δ0, that is, R+ ⊆
δ0. Thus, because δ0 is disjunctively well-founded, the result by Podelski and Rybalchenko [50]

tells us that R is well-founded—meaning that the loop of our program guarantees termination.

Note that rank function synthesis is extremely efficient, meaning that our implementation of the

analysis can compute the relation δ0 for ` = 2 as fast as the Octagon-based termination analyzer

(i.e. in 0.02s) [7]. In contrast to the Octagon-based analyzer, however, we compute a relation

that is sufficiently strong to establish termination.

To sum up, the essence of our method is that we symbolically execute the body of the loop,

and then perform abstraction by calling a rank synthesis engine. This in effect abstracts all

information except those that are relevant to termination.

4.2 Formal Framework

4.2.1 Programming Language and Concrete Semantics

In this chapter we consider a simple while language with no procedures, where all variables store

rational numbers. Let Vars be a finite set of program variables x, y, z, . . . and let r represent

rational numbers. The syntax of the language is given in Figure 4.2.

We have two forms of assignments: normal assignment x := E and non-deterministic random

assignment x := ∗. The non-deterministic assignment is used to model features of a common
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[[C]] ∈ P(T )

[[x := E]]
def
= {ss′ | (s, s′[x 7→ [[E]]s])}

[[x := ∗]] def
= {ss′ | (s, s′[x 7→ r]) ∧ r ∈ P }

[[C1;C2]]
def
= seq([[C1]], [[C2]])

[[C1[]C2]]
def
= [[C1]] ∪ [[C2]]

[[if B C1 C2]]
def
= seq({ss | [[B]]s = true}, [[C1]]) ∪ seq({ss | [[B]]s = false}, [[C2]])

[[while B C]]
def
= let T0 = seq

(
{ss | [[B]]s = true}, [[C]]

)
F = λT. States ∪ seq(T0, T )

in seq
(

gfix F, {ss | [[B]]s = false}
)

FIGURE 4.3: Concrete Collecting Semantics of Programs

programming language, such as C, that are not covered by the language in 4.2. We also point

out that the language includes a non-deterministic choice C1[]C2 and that all variables in our

language store rational numbers.

The semantics of our language is given in terms of traces. Let States to be the set of maps from

variables to rational numbers:

States
def
= Vars→ Rationals

which is ranged over by s. And let T be the set of nonempty finite or infinite sequences of states:

T def
= States+ ∪ States∞

Define a composition operator seq for sequence sets in T :

seq : P(T )× P(T )→ P(T )

seq(T, T ′)
def
= {τsτ ′ | τs ∈ (T ∩ States+) ∧ sτ ′ ∈ T ′} ∪ (T ∩ States∞).

Here we use τ to mean possibly empty finite or infinite sequences of states. We will keep this

usage of τ throughout this chapter.

Following Cousot’s work [22], we define the concrete collecting trace semantics, where a com-

mand C means a subset of T . The semantics appears in Figure 4.3. In the figure, we assume a

standard interpretation of expressions [[E]] and booleans [[B]]. For non-deterministic assignment,

we assign the variable x one of a rational number from a large but finite set of rationals P . By

selecting a value from a finite set of rationals we avoid theoretical issues with regards to non-

determinism and rational numbers. We use greatest fixpoints in the semantics of loops in order

to include infinite execution traces of loops if they exist. If we used the least fixpoint we would
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exclude all infinite traces, so all programs would be considered terminating. The semantics de-

fined is a standard one in the field of abstract interpretation [22], and we believe this justifies

this definition using greatest fixpoints.

4.2.2 Abstract Domain

Our abstract interpreter is parameterized by a domain for representing relations on states. The

parameter domain has to satisfy the following:

1. A set D and a concretization function γr : D → P(States × States) (where the target

P(States× States) is ordered by the subset relation).

2. An abstract identity element did in D, that satisfies

∆States ⊆ γr(did)

where ∆States is the identity relation on States. The identity element plays the role of

bottom elements in abstract interpretation.

3. An operator RFS : D → Pfin(D) ] {>}, which synthesizes ranking functions (where

Pfin(D) denotes the set of all finite subsets of D) . We assume the following two condi-

tions for this operator:

(a) RFS computes an overapproximation:

RFS(d) 6= > =⇒ γr(d) ⊆
⋃
{γr(d′) | d′ ∈ RFS(d)}.

(b) RFS(d) denotes a well-founded relation:

RFS(d) 6= > =⇒
⋃
{γr(d′) | d′ ∈ RFS(d)} is well-founded.

The RFS operator is the key to producing a termination analyser: it will attempt to dis-

cover reasons why the program terminates by trying to synthesize ranking functions.

4. An abstract transfer function trans(a) for each atomic commands a (i.e., a ≡ (x := E)

or a ≡ (x := ∗)). The function trans(a) has type D → Pfin(D), and satisfies

∀d ∈ D. (γr(d); [[a]]) ⊆
⋃
{γr(d′) | d′ ∈ trans(a)(d)}
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where the semicolon means the usual composition of relations and [[a]] is the concrete

semantics of a seen as a relation on states (which is possible because [[a]] consists of

traces of length 2.).

5. An abstract composition operator comp : D ×D → D such that

γr(d); γr(d
′) ⊆ γr(comp(d, d′)).

6. A function filterB : D → D for each boolean expression B such that

{(s, s′) | (s, s′) ∈ γr(d) ∧ [[B]]s′ = true} ⊆ γr(filterB(d)).

Intuitively we have a set D of relations, some of which are well-founded. This set comes with

an algorithm RFS, which overapproximates a relation by a ranking relation. It also has three

operators—trans, comp and filterB , that soundly model all the atomic commands, concrete

relation composition and the filtering of states by the boolean conditionB in loops or conditional

statements. One example of D is the set of conjunction of linear constraints. In this case, we

can use a linear rank synthesis engine, such as RANKFINDER, and define RFS as will be shown

in Section 4.4.

The abstract domainA of our analyzer is constructed using the parameter domain D as follows:

A def
= (Pfin(D))> (i.e., Pfin(D) ] {>}).

It is ordered by the the subset order v extended with >. That is, for A,A′ ∈ A, we have that

A v A′ ⇐⇒ (A′ = >) ∨ (A,A′ ∈ Pfin(D) ∧ A ⊆ A′).

Each abstract element A in A denotes a set of traces (i.e., finite or infinite sequences of states).

The element > denotes the set of all traces, including infinite ones, and non-> elements A

denote a set of finite nonempty traces whose initial and final states are related by some d in A.

For non-> elements A, let γr(A) be
⋃
{γr(d) | d ∈ A}, the disjunction of d’s in A. Recall that

T is the set of all nonempty traces:

T = States+ ∪ States∞.
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The formal meaning of A is given by a concretization function γ:

γ : A → P(T )

γ(A)
def
=

{
T if A = >
{s.τ ′.s | s[γr(A)]s′} otherwise

where |τ | is the length of the trace τ , and proj(τ, n) is the n-th state of the trace τ , and notation

s[r]s′ means that s, s′ are related by r. For instance, when [x : n, y : m] is a state mapping x

and y to n and m, a finite trace

[x : 1, y : 1][x : 2, y : 2][x : 5, y : 3][x : −2, y : 2]

belongs to γ({‘x−1 ≥ x, ‘y−1 ≥ y}), because x has a smaller value in the final state than in

the initial state.

Our domain A is a complete lattice. The join of a family {Ai}i∈I of elements in A is given by

the union of all Ai’s, if none of Ai’s is > and the union is finite. Otherwise, the join is >.

4.2.3 Generic Abstract Interpreter

We now define a generic abstract interpreter in a denotational style, which uses the abstract

domain from the previous section.

For functions f : D → A and g : D ×D → A, let f †, g† be their liftings to A:

f † : A → A

f †(A)
def
= if (A=>) then > else

⊔
d∈A f(d)

g† : A×A → A

g†(A,B)
def
= if (A=>∨B=>) then > else

⊔
d∈A,d′∈B{g(d, d′)}.

Using these liftings, we define the generic abstract interpreter, which is shown in Figure 4.4.2

The argument A of the interpreter represents a set of finite or infinite traces that happen before

the command c. The abstract interpreter computes an overapproximation of all traces that are

obtained by continuing the execution of c from the end of traces in A.

2In the definition, we view RFS, trans(a), filterB as functions of type D → (Pfin(D))>.
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[[C]]] : A → A

[[a]]]A
def
= (trans(a))†A

[[C1;C2]]]A
def
= ([[C2]]] ◦ [[C1]]])A

[[C1[]C2]]]A
def
= [[C2]]]A t [[C1]]]A

[[if B C1 C2]]]A
def
= ([[C1]]] ◦ filter†B)A t ([[C2]]] ◦ filter†¬B)A

[[while B C]]]A
def
= let F = λA′. (RFS† ◦ [[C]]] ◦ filter†B)({did} tA′)

As = {did} tA
in filter†¬B

(
comp†(As, fix F )

)
FIGURE 4.4: Generic Abstract Interpreter

We assume that we have a fixpoint operator, denoted fix. This operator takes a function of the

form (RFS† ◦ F ) : A → A, and returns an abstract element A in the image of RFS† such that

A = > ∨
(
A 6= > ∧ (RFS† ◦ F )A 6= > ∧ γr((RFS† ◦ F )A) ⊆ γr(A)

)
.

We could use the standard fixpoint iteration to define fix. Concretely, fix (RFS† ◦ F ) is defined

by the limit of the sequence {An} where A0 = {} and An+1 = An t (RFS† ◦ F )(An).3 The

limit satisfies the above condition, because all pre-fixpoints A of (RFS† ◦ F ) (that are in the

image of RFS†) do so. However, it is not mandatory to use this standard iteration. In fact, a

more optimized fix operator is used in the abstract interpreter of Section 4.4.

The most interesting case of the abstract interpreter is the loop. The best way to understand this

case is to assume that fix is the standard fixpoint operator and to see a sequence generated during

the iterative fixpoint computation:

A0 = {},

A1 = A0 t (RFS† ◦ F ){did}
= (RFS† ◦ F ){did}

A2 = A1 t (RFS† ◦ F )
(
{did} t (RFS† ◦ F ){did}

)
= (RFS† ◦ F ){did} t (RFS† ◦ F )2{did},

A3 = A2 t (RFS† ◦ F )
(
{did} t (RFS† ◦ F ){did} t (RFS† ◦ F )2{did}

)
= (RFS† ◦ F ){did} t (RFS† ◦ F )2{did} t (RFS† ◦ F )3{did},

. . .

Here we used the fact that RFS† ◦ F preserves t. Note that in each step, we apply the lifted

rank-synthesis algorithm RFS† to the analysis result of the loop body F (An). This application

of RFS keeps only termination relevant information from F (An) and discards anything not

3This countable sequence reaches a limit, since it is increasing and the height of A is the first countable ordinal
ω.
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relevant to termination. To see why this is the case, proving program termination requires a set

of ranking functions which overapproximate the program; the use of the RFS operator generates

these ranking functions that are required to prove program termination.

One should also note that the input A is not used in this fixpoint computation at all. As the

expansion of A3 shows, the fixpoint computation effectively starts with (RFS† ◦F ){did}, which

means the results of running the loop body once on all states. The inputA, together with {did}, is

pre-composed later to the computed fixpoint. This change of the starting point is crucial for the

soundness of our abstract interpreter, because it ensures that the analyzer overapproximates the

relation between any states (not just initial states) at a loop and the following states at the same

loop (so that we can apply a known termination proof rule based on disjunctively well-founded

relations [50]).

Our definition does not ensure the termination of the generic abstract interpreter, because the fix

operator might diverge. This divergence problem, however, will not appear in the concrete in-

stances of the abstract interpreter considered in the chapter; we will show that all those instances

terminate.

Given a program C, the abstract interpreter works as follows:

ANALYSIS(c)
def
= let A = [[C]]]({did})

in if (A 6= >) then (return “Terminates”) else (return “Unknown”).

Theorem 4.1 (Soundness). If ANALYSIS(C) returns “Terminate”, then all traces in [[C]] are

finite. Hence, C terminates on all states.

4.3 Soundness

In this section, we prove the soundness of our abstract interpreter, stated in Theorem 4.1.

One challenge for proving the soundness theorem is to deal with greatest fixpoints in the con-

crete semantics of loops, because our abstract interpreter uses an overapproximation of least

fixpoints. Our first step of the proof is, therefore, to rewrite the concrete trace semantics such

that the new semantics does not change the meaning of any commands, but interprets loops in

terms of least fixpoints.

We define an operator repeat which maps a trace set T to the set of infinite traces τ satisfying

the following condition: there are infinitely many finite traces s0τ0s1, s1τ1s2, . . . in T such that

(τ = s0τ0s1τ1 . . .) ∧ (∀n. |snτnsn+1| ≥ 2) ∧ (∀n. snτnsn+1 ∈ T ).
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We call a trace set T progressing if and only if all traces in T are of length at least 2.

Proposition 4.2 (Fixpoints Correspondence). For all functions F on P(T ), if F is of the form

λT. States ∪ seq(T0, T ) for some trace set T0, and T0 is progressing, then

(gfixF ) = (lfixF ) ∪ repeat(T0).

Proof. We first prove that

(gfixF ) ⊇ (lfixF ) ∪ repeat(T0).

We will show that (lfixF ) ∪ repeat(T0) is a post-fixpoint of F . Then, the required relationship

will follow, because the greatest fixpoint of the monotone function F is also the greatest post-

fixpoint.

We notice two facts about seq, which follow from the definitions of seq and repeat:

1. seq(T0,
⋃
i∈I T

′
i ) =

⋃
i∈I seq(T0, T

′
i ) for all nonempty I .

2. seq(T0, repeat(T0)) ⊇ repeat(T0).

Using these facts, we show that (lfixF ) ∪ repeat(T0) is a post-fixpoint of F :

F ((lfixF ) ∪ repeat(T0))

= States ∪ seq(T0, (lfixF ) ∪ repeat(T0)) (∵ Def. of F )

= States ∪ seq(T0, lfixF ) ∪ seq(T0, repeat(T0)) (∵ Fact 1 of seq)

= F (lfixF ) ∪ seq(T0, repeat(T0))

= (lfixF ) ∪ seq(T0, repeat(T0))

⊇ (lfixF ) ∪ repeat(T0) (∵ Fact 2 of seq).

Next, we prove

(gfixF ) ⊆ (lfixF ) ∪ repeat(T0).

Pick a trace τ in gfixF . Since gfixF is a fixpoint of F ,

τ ∈ States ∪ seq(T0, (gfixF )).
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If τ is in States, it should belong to lfixF , because States is a subset of lfixF . Otherwise, there

are two possibilities. The first possibility is that τ is an infinite trace in T0. In this case, τ should

again belong to lfixF as well, because T0 ∩ States∞ is a subset of seq(T0, States), which is

included in lfixF . The second possibility is that τ can be decomposed into a finite prefix τ ′s

and a suffix τ ′′ such that

τ = τ ′sτ ′′ ∧ τ ′s ∈ T0 ∧ |τ ′s| ≥ 2 ∧ sτ ′′ ∈ gfixF.

The third conjunct |τ ′s| ≥ 2 above is obtained from the second, using the fact that T0 is pro-

gressing. If we apply the same reasoning to sτ ′′ recursively, then either we generate a finitely

many traces s1τ1s2, s2τ2s3, . . ., smτm such that

τ = s1τ1s2...smτm ∧

(∀0 < n < m. |snτnsn+1| ≥ 2 ∧ snτnsn+1 ∈ T0) ∧ smτm ∈ lfixF.

This implies that τ is in the result of applying seq(T0,−) to lfixF m-times; since this result is

a subset of lfixF , trace τ has to be in lfixF . Or, there are infinitely many finite traces s1τ1s2,

s2τ2s3, . . ., such that

τ = s1τ1s2τ2s3 . . . ∧ (∀n > 0. |snτnsn+1| ≥ 2 ∧ snτnsn+1 ∈ T0).

This implies that τ belongs to repeat(T0). Thus, in both cases, we have shown that trace τ is in

(lfixF ) ∪ repeat(T0), as required. �

Using the proposition, we simplify the semantics of the loops, which we will use in the remain-

der of this section:

Corollary 4.3. For all loops whileBC, we have that

[[while B C]] = let T0 = seq({ss | [[B]]s = true}, [[C]])

F = λT. States ∪ seq
(
T0, T

)
in seq((lfixF ) ∪ repeat(T0), {(s, s) | [[B]]s = false})

Proof. The trace set T0 is progressing. Function F is of the form in Proposition 4.2, thus:

(gfixF ) = (lfixF ) ∪ repeat(T0).
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This allows us to replace gfixF ) with (lfixF ) ∪ (repeat(T0) in the definition for while. �

The remainder of the soundness proof consists of three steps. Firstly, it builds a relational seman-

tics, and shows how the relational semantics is related to the original trace semantics. Next, we

prove that our abstract interpreter overapproximates the relational semantics. Finally, we com-

bine the results of the previous two steps and derive the soundness of the abstract interpreter.

The following three subsections explain these three steps separately.

4.3.1 Relational Semantics

The relational semantics is an abstraction of the concrete trace semantics, based on the domain

of relations on States. We factor the soundness proof of the generic analyzer through the sound-

ness of this relational semantics, because firstly this factoring simplifies the proof and secondly

the relational semantics describes the limit of our generic analyzer; it is more precise than all

instances of our analyzer.

The relational semantics interprets commands using the domain of relations extended with >:

Rels>
def
= P>(States× States) (= P(States× States) ] >).

This domain is ordered by the subset order extended with >, and forms a complete lattice. The

meaning of each element in the domain is given by the concretization map γ:

γ : Rels> → P(T )

γ(r)
def
=

{
{ sτs′ | τ is finite ∧ s[r]s′) } if r ∈ Rels

T otherwise.

Define a binary operator rseq on Rels>, which overapproximates the sequential composition

operator seq for trace sets:

rseq : Rels> × Rels> → Rels>

rseq(r, r′)
def
=

{
r; r′ if r 6= > and r′ 6= >
> otherwise.

Lemma 4.4. For all r and r′ in Rels>,

seq(γ(r), γ(r′)) ⊆ γ(rseq(r, r′)).
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LCM ∈ Rels>

Lx := EM def
= { (s, s[x 7→ [[E]]s]) | s ∈ States }

Lx := ∗M def
= { (s, s[x 7→ r]) | s ∈ States ∧ r ∈ P }

where P is a large, finite set of rationals

LC1;C2M
def
= rseq(LC1M, LC2M)

LC1[]C2M
def
= LC1M t LC2M

Lif B C1 C2M
def
= rseq

(
{(s, s) | [[B]]s = true}, LC1M

)
t rseq

(
{(s, s) | [[B]]s = false}, LC2M

)
Lwhile B CM def

= let r0 = rseq
(
{(s, s) | [[B]]s = true}, LCM

)
r = lfix λr. rseq

(
r0, ∆States t r

)
in if (r 6= > ∧ DISJWELLFOUNDED(r))

then rseq
(

∆States t r, {(s, s) | [[B]]s = false}
)

else >

FIGURE 4.5: Relational Semantics of Programs

Proof. If r or r′ is >, so is rseq(r, r′). The lemma, then, easily follows. Suppose that both

r, r′ are relations on States. Pick τ from seq(γ(r), γ(r′)). Since γ(r) and γ(r′) both contain

only finite traces, τ should be of the form τ ′sτ ′′, where τ ′s and sτ ′′ are finite traces belonging,

respectively, to γ(r′) and γ(r′). By the definition of γ, the first and last states of τ ′s are related

by r, and those states of sτ ′′ are related by r′. Thus, the first and last states of τ has to be related

by r; r′. This means that τ ∈ γ(rseq(r, r′)), as required. �

Call a relation r ∈ Rels disjunctively well-founded if and only if there are finitely many well-

founded relations r1, . . . , rn satisfying

r ⊆ r1 ∪ . . . ∪ rn.

Let DISJWELLFOUNDED(r) be a predicate on Rels that holds precisely when its argument r is

disjunctively well-founded. Recall that ∆States is the identity relation on states. The relational

semantics of commands is shown in Figure 4.5.

The soundness of the relational semantics relies on the result by Podelski and Rybalchenko,

applied to traces directly. We recall the slightly modified version of 2.6 below:

Lemma 4.5 (Podelski and Rybalchenko). Let r be a disjunctively well-founded relation. For

every trace τ , if proj(τ, n)[r]proj(τ,m) for all 1 ≤ n < m ≤ |τ | (where |τ | is∞ in case that τ

is infinite), the trace τ is finite.
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Proof. The proof of the lemma follows from the known proof of Podelski and Rybalchenko.

We put the proof here, in order to make this thesis self-contained. Consider finitely many well-

founded relations r1, . . . , rk. Pick r such that r ⊆ r1 ∪ . . . ∪ rk. For the sake of contradiction,

suppose that there is an infinite trace τ satisfying

∀n,m. 1 ≤ n < m =⇒ proj(τ, n) [r] proj(τ,m).

Define a function f that maps each pair (n,m) of indices with n < m to an integer i such that

proj(τ, n)[ri]proj(τ,m). Such a function should be well-defined, because proj(τ, n)[r]proj(τ,m)

and r ⊆ r1 ∪ . . . ∪ rk. Since there are only finitely many ri’s, by infinite Ramsey’s theorem,

there exist infinite subtrace τ ′ of τ and rl such that

∀n,m. (1 ≤ n < m) =⇒ proj(τ ′, n)[rl]proj(τ ′,m).

Note that for all indices n, states proj(τ ′, n) and proj(τ ′, n+1) are related by rl. Thus, rl cannot

be well-founded, which contradicts our assumption on rl. �

Proposition 4.6 (Soundness of Relational Semantics). For all commands C,

[[C]] ⊆ γ(LCM).

Proof. Define a relation L ⊆ P(T )× Rels> by

T [L]r ⇐⇒ T ⊆ γ(r).

With this relation, we can rewrite the main claim of this proposition by

∀C. [[C]] [L] LCM.

We will show this in the proof.

Our proof relies on the four important properties of L. The first is that L is closed, downward

for the left parameter and upward for the right parameter:

(T ′ ⊆ T ∧ T [L]r ∧ r v r′) =⇒ T ′[L]r′.
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The other three are the preservation of L by various operators. Relation L is preserved by

the interpretations of atomic commands in the trace and relational semantics, the sequential

composition operators for P(T ) and Rels>, and the join operators for P(T ) and Rels>. That is,

1. [[a]][L]LaM for all atomic commands a;

2. for all T, T ′ ∈ P(T ) and r, r′ ∈ Rels>,

T [L]r ∧ T ′[L]r′ =⇒ seq(T, T ′)[L]rseq(r, r′);

3. for all families {Ti}i∈I and {ri}i∈I with the same index set I ,

(∀i ∈ I. Ti[L]ri) =⇒
(⋃
i∈I

Ti
)

[L]
(⊔
i∈I

ri
)
.

Now, we prove the main claim of the proposition, by induction on the structure of C. All cases

except the while loops follow from the four properties of L and the induction hypothesis. For

instance, consider the case that C is a conditional statement (ifBC1C2). By the induction

hypothesis, [[C1]][L]LC1M and [[C1]][L]LC1M. Furthermore,

{ss | [[B]]s = true} [L] {(s, s) | [[B]]s = true} and

{ss | [[B]]s = false} [L] {(s, s) | [[B]]s = false}.

Thus, we have that

seq( {ss | [[B]]s = true}, [[C1]] ) ∪ seq( {ss | [[B]]s = false}, [[C2]] )

[L]

rseq( {ss | [[B]]s = true}, LC1M ) t rseq( {ss | [[B]]s = false}, LC2M ).

because both the sequencing operators and the join operators preserve L. This gives the propo-

sition for (ifBC1C2).

Finally, consider the remaining case that C is whileBC ′. Let

T0 = seq({ss | [[B]]s = true}, [[C ′]]), F = λT. States ∪ seq(T0, T ),

r0 = rseq({(s, s) | [[B]]s = true}, LC ′M), G = λr.∆States t rseq(r0, r).
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where ∆States is the identity relation on States. Define G′ to be λr. rseq(r0,∆States t r) and ri

to be lfixG′. We will prove that

1. lfix F [L] lfix G;

2. (lfixG) v (∆States t ri);

3. repeat(T0) = ∅ if ri is disjunctively well-founded.

The proposition follows from these three. To see this, first consider the case that ri is > or

it is not disjunctively well-founded. In this case, LCM is >, so T1[L]LCM for all trace sets T1.

The proposition follows from this. Next consider the other case that ri is a disjunctively well-

founded relation on states. By the third property above, repeat(T0)[L]∅. Since L is upward

closed on the right and it preserves the join operators,

(
lfix F ∪ repeat(T0)

)
[L]
(
∆States t ri t ∅

)
.

This implies the required

seq
(

lfix F ∪ repeat(T0), {ss | [[B]]s = false}
)

[L]

rseq
(

∆States t lfixG′, {(s, s) | [[B]]s = false}
)
,

because {ss | [[B]]s = false} [L] {(s, s) | [[B]]s = false} and the sequential composition

operators preserve L.

The first about the least fixpoints of F and G is a standard result. It holds because (1) F and

G map L-related values to L-related values; (2) the empty trace set ∅ and the empty relation ∅

are related by L; (3) both finitary and infinitary join operators preserve L; and (4) F and G are

continuous. The second holds because ∆States t ri is a fixpoint of G:

G(∆States t ri) = ∆States t seq(r0,∆States t ri) (∵ Def. of G)

= ∆States t seq(r0,∆States t lfixG′) (∵ Def. of ri)

= ∆States t lfixG′ (∵ G′ = λr. seq(r0,∆States t r))

= ∆States t ri (∵ Def. of ri).

For the third, assume that ri is disjunctively well-founded. For the sake of contradiction, suppose

that repeat(T0) is not empty. Pick a trace τ in repeat(T0). By the definition of repeat, there are
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infinitely many finite traces s0τ0s1, s1τ1s2, . . . such that

τ = s0τ1s1τ2s2... ∧ (∀n. |snτnsn+1| ≥ 2 ∧ snτnsn+1 ∈ T0).

We will prove that the subtrace s0s1 . . . of τ satisfy

∀n,m. 1 ≤ n < m =⇒ sn[ri]sm.

This gives the desired contradiction; it implies that τ is finite because ri is disjunctively well-

founded (Lemma 4.5), but τ belongs to repeat(T0) that contains only infinite traces. Let H

be λT. seq(T0, T ). Recall that States[L]∆States. Notice that functions H and G′ maps L-

related values to L-related ones, because of the induction hypothesis and the preservation and

closedness properties of L. Thus, we have that

∀n. Hn(States) [L]G′n(∆States).

Also note that for all n,m with 1 ≤ n < m, finite trace

snτn+1 . . . τmsm

is in Hm−n(States). From these two observations and the definition of L, it follows that

snτn+1sn+1τn+1 . . . τmsm ∈ γ(G′m−n(∆States)).

The right hand side of this inequality is the same as γ(G′m−n(∅)), so that it is a subset of

γ(lfixG′). Therefore,

snτn+1sn+1τn+2 . . . τmsm ∈ γ(ri),

which means sn[ri]sm, as desired. �

4.3.2 Overapproximation Result

Consider a generic abstract interpreter. Let A be the abstract domain of the abstract interpreter.

For each A ∈ A, define γr(A) ∈ Rels> by

γr(A)
def
=

{
> if A = >⋃
{γr(d) | d ∈ A} otherwise.
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Proposition 4.7. The generic abstract interpreter overapproximates the relational semantics.

That is, for all commands C and abstract values A ∈ A,

rseq(γr(A), LCM) v γr([[C]]](A)).

Proof. We prove the proposition by induction on the structure of C. Since [[C]]] preserves >,

when A is >, the inequality of the proposition holds. Thus, in this proof, we focus on non->

abstract elements. Pick an abstract element A inA−{>}. Consider the case that C is an atomic

command a. View the concrete semantics [[a]] of a as a relation on states. Then,

rseq(γr(A), LaM) = γr(A); [[a]] (∵ Def. of rseq)

= (
⋃
{γr(d) | d ∈ A}); [[a]] (∵ Def. of γr(A))

=
⋃
{γr(d); [[a]] | d ∈ A} (∵ −; r distributes over ∪)

v
⊔
{γr(d′) | d ∈ A ∧ d′ ∈ trans(a)(d)} (∵ Condition on trans)

= γr(trans(a)†A)

= γr([[a]]]A) (∵ Def. of the abs. interpreter).

The cases that C is a sequential composition, a non-deterministic choice or a conditional state-

ment follow easily from the induction hypothesis, the associativity of rseq, the preservation of

t by rseq and the soundness condition on filter. In the below, we prove the cases of sequential

composition and conditional statement:

rseq(γr(A), LC1;C2M) v rseq(γr(A), rseq(LC1M, LC2M))

v rseq(rseq(γr(A), LC1M), LC2M) (∵ Associativity of rseq)

v rseq(γr([[C1]]](A)), LC2M) (∵ Ind. Hypo.)

v γr([[C2]]]([[C1]]](A))) (∵ Ind. Hypo.).
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Let bt = {(s, s) | [[B]]s = true} and bf = {(s, s) | [[B]]s = false}.

rseq(γr(A), Lif B C1 C2M)

v rseq(γr(A), rseq(bt, LC1M) t rseq(bf , LC2M))

= rseq(γr(A), rseq(bt, LC1M)) t rseq(γr(A), rseq(bf , LC2M)) (∵ rseq preserves t)

= rseq(rseq(γr(A), bt), LC1M) t rseq(rseq(γr(A), bf ), LC2M) (∵ Associativity of rseq)

= rseq(γr(filter†B(A)), LC1M) t rseq(γr(filter†¬B(A)), LC2M) (∵ Soundness of filter)

v γr([[C1]]](filter†B(A))) t γr([[C2]]](filter†¬B(A))) (∵ Ind. Hypo.)

v γr
(
[[C1]]](filter†B(A)) t [[C2]]](filter†¬B(A))

)
(∵ Monotonicity of γr)

= γr([[if B C1 C2]]](A)).

Now, it remains to prove the inductive step for the loop case, i.e., C = whileBC ′. Let

bt = {(s, s) | [[B]]s = true},

r0 = rseq(bt, LC ′M),

G = λr. rseq(r0,∆States t r),

ri = lfixG,

H = λA. (RFS† ◦ C ′ ◦ filter†B)({did} tA),

Ai = fixH

where fix is the fixpoint operator of the abstract interpreter. First, we prove that

∆States v γr({did}) ∧ ri v γr(Ai).

The first conjunct follows from the soundness condition on did. For the second conjunct, we

will show that the least fixpoint ri of G is also the least fixpoint of K = λr.rseq(∆States t

r, r0) and that γr(Ai) is a pre-fixpoint of K. Since K is a monotone function on a com-

plete lattice, this implies that the least fixpoint ri of K is less than or equal to γr(Ai). To

show the coincidence between least fixpoints of G and K, we note that both G and K are

continuous, so their least fixpoints can be computed by the limit of two countable sequences

tn≥0G
n({}) and tn≥0K

n({}). Let L be λr.rseq(r0, r). Then, for all k ≥ 0, we have that

rseq(r0, L
k(∆States)) = Lk+1(∆States) and also that rseq(Lk(∆States), r0) = Lk+1(∆States).

(The second equality can be proved by induction on k.) Using induction on n, we prove that for

all n ≥ 0,

Gn({}) = Kn({}) = t1≤k≤nL
k(∆States).
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The base case is {} = {}, so it holds. The inductive case holds as well, because

Gn+1({}) = rseq(r0,∆States tGn({}))

= rseq(r0,∆States t (t1≤k≤nL
k(∆States)))

= rseq(r0,∆States) t (t1≤k≤nrseq(r0, L
k(∆States)))

= rseq(r0,∆States) t (t1≤k≤nL
k+1(∆States))

= L(∆States) t (t1≤k≤nL
k+1(∆States))

= (t1≤k≤n+1L
k(∆States)),

and
Kn+1({}) = rseq(∆States tKn({}), r0)

= rseq(∆States t (t1≤k≤nL
k(∆States)), r0)

= rseq(∆States, r0) t (t1≤k≤nrseq(Lk(∆States), r0))

= rseq(∆States, r0) t (t1≤k≤nL
k+1(∆States))

= rseq(r0, ∆States) t (t1≤k≤nL
k+1(∆States))

= L(∆States) t (t1≤k≤nL
k+1(∆States))

= (t1≤k≤n+1L
k(∆States)).

We have just shown that the least fixpoints of F and G are the limits of the same countable

sequence. Thus, they must be the same. We move on to the proof that γr(Ai) is a pre-fixpoint

of K.

K(γr(Ai)) = rseq(∆States t γr(Ai), rseq(bt, LC ′M)) (∵ Def. of K)

v rseq(γr({did}) t γr(Ai), rseq(bt, LC ′M)) (∵ ∆States v γr({did}))

v rseq(γr({did} tAi), rseq(bt, LC ′M)) (∵ γr is monotone)

v rseq(rseq(γr({did} tAi), bt), LC ′M) (∵ Associativity of rseq)

v rseq(γr(filterB({did} tAi)), LC ′M) (∵ Soundness of filterB)

v γr(([[C
′]]] ◦ filterB)({did} tAi)) (∵ Ind. Hypo)

v γr((RFS† ◦ [[C ′]]] ◦ filter†B)({did} tAi)) (∵ Soundness of RFS)

= γr(H(Ai)) (∵ Def. of H)

v γr(Ai) (∵ Ai = fixH , and Condition on fix).

Next, we show that ifAi is not>, ri has to be a disjunctively well-founded relation on states. To

see this, recall that fixH is in the image of RFS†, and suppose that Ai(= fixH) is not >. Then,

Ai should be a finite set of d’s, each of which denotes a well-founded relation via γr. Thus,
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γr(Ai) is a finite union of well-founded relations. From this and ri v γr(Ai), it follows that ri

is disjunctively well-founded.

Finally, we prove the loop case. If Ai is >, so is [[whileBC ′]]]A. Thus, the proposition holds.

Assume that Ai is not >. Then, by what we have just shown, ri is a disjunctively well-founded

relation. Using this and letting bf = {(s, s) | [[B]]s = false}, we prove the loop case:

rseq(γr(A), LwhileBC ′M)

= rseq(γr(A), rseq(∆States ∪ ri, bf )) (∵ ri is disj. well-founded)

v rseq(γr(A), rseq(γr({did}) t γr(Ai), bf )) (∵ Mono. of rseq)

v rseq(γr(A), rseq(γr({did} tAi), bf )) (∵ γr is monotone)

v rseq(γr(A), γr(filter¬B({did} tAi))) (∵ Soundness of filter¬B)

v γr(comp†(A, filter¬B({did} tAi))) (∵ Soundness of comp)

= γr([[whileBC
′]]](A)). (∵ Def. of the abstract interpreter).

�

4.3.3 Proof of Theorem 4.1

We can now prove Theorem 4.1 easily. First, note that the generic analyzer overapproximates

the concrete trace semantics. For all commands c,

[[c]] v γ(LCM) (∵ Prop. 4.6)

= γ(rseq(∆States, LCM)) (∵ Def. of rseq)

v γ(γr([[C]]]{did})) (∵ Prop. 4.7)

= γ([[C]]]{did}).

We use two kinds of γ above; γ in the last line is a map from A to the sets of traces, and γ in all

the other places is a map from Rels> to the set of traces.

Observe that γ(A) can contain infinite traces only when A is >. By combining these two

observations, we can conclude that if ANALYSIS(C) returns “Terminates”, [[C]] does not contain

any infinite traces, that is, C terminates.

4.4 Linear Rank Abstraction

The linear rank abstraction is an instance of our generic abstract interpreter, parametrized by the

domain of linear constraints and a linear ranking synthesis algorithm RANKFINDER [48].
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Let r represent rational numbers. Consider constraints ϕ defined by the grammar below:

E ::= x | ‘x | x′ | r | E + E | r × E
P ::= E = E | E 6= E | E < E | E > E | E ≤ E | E ≥ E
ϕ ::= P | true | ϕ ∧ ϕ

This grammar ensures that all the constraints are the conjunction of linear constraints. Note

that a constraint can have three kinds of variables; a normal variable x denoting the current

value of program variable x; a pre-primed variable ‘x storing the initial value of x; post-primed

variables y′ that usually denotes values which at some moment variables during computation.

We assume that there are finitely many normal variables (Vars) and finitely many pre-primed

variables (‘Vars), and that there is a one-to-one correspondence between these two kinds of

variables. For post-primed variables, however, we assume an infinite set.

Each constraint denotes a relation on States. For each state s, let ‘s be a function from ‘Vars to

Rationals such that for every pre-primed variable ‘x, ‘s(‘x) is s(x) for the corresponding normal

variable x. The meaning function γr of constraints ϕ is defined as follows:

γr(ϕ)
def
= {(s0, s1) | (‘s0, s1 |= ∃X ′.ϕ)}

where X ′ is the set of post-primed variables in ϕ and |= is the usual satisfaction relation in first-

order logic. Note that all post-primed variables in the constraint ϕ are implicitly existentially-

quantified. The post-primed variables are logical variables which may relate the pre-primed and

non-primed variables in an assertion. Thus the post-primed variables are crucial in order for

us to maintain some relationship between the value of a variable in the current state and the

previous state.

The linear rank abstraction uses the set of constraints ϕ as the parameter set D of the generic

abstract interpreter. The identity element did is the identity relation

did
def
=

∧
x∈Vars

‘x=x.

Assume that we are given an enumeration x0, . . . , xn of all program variables in Vars. Call an

expression E normalized, when (1) E does not contain any pre or post primed variables and (2)

it is of the form ai0 ×xi0 + . . . aik ×xik + a with ai0 = 1 or −1 and i0 < i1 . . . < ik. Note that

in a normalized expression E, the coefficient of the first variable in E according to the given
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enumeration is 1 or −1. Conceptually, RANKFINDER implements a function of the type:4

D → ({(E, r) | E is normalized and r is a positive rational}) ] {>}.

The output > indicates that the algorithm fails to discover a ranking function, because (the im-

plementation of) the algorithm is incomplete or the input constraint defines a non-well-founded

relation between pre-primed variables and normal variables. The other output (E, r) means that

the algorithm succeeds in finding a ranking function that overapproximates the given constraint.

Concretely, for a normalized expression E and a positive rational r, let

TE,r
def
= (‘E ≥ 0 ∧ ‘E−r ≥ E),

where expression ‘E is E with all normal variables x replaced by corresponding pre-primed

variables ‘x. The output (E, r) of RANKFINDER(ϕ) means that

(∃X ′.ϕ) =⇒ TE,r

where X ′ is the set of all post-primed variables in ϕ.

Assume that we have chosen a fixed positive rational dec that is very small (in particular smaller

than 1). Using RANKFINDER and dec, we define the operator RFS as follows:

RFS(ϕ)
def
=


{} if ϕ ` false

{TE,dec} else if RANKFINDER(ϕ)=(E, r) and r ≥ dec

> otherwise

where ` is a sound (but not necessarily complete) theorem prover. Note that the result of RFS

is always of the form TE,dec, so the second subscript of T is not necessary. In the rest of this

chapter, we write TE for TE,dec.

The abstract transfer functions for atomic commands and filterB are defined following Floyd’s

strongest postcondition semantics:

[[x := ∗]]]ϕ def
= {ϕ[x′/x]} (x′ is fresh)

[[x := E]]]ϕ
def
= {ϕ[x′/x] ∧ x=(E[x′/x])} (x′ is fresh)

filterB(ϕ)
def
= if (ϕ ∧B ` false) then {}

else {ϕ0, . . . , ϕn | ϕ0 ∨ . . . ∨ ϕn = norm(ϕ ∧B)}.

4Usually the implementation of linear rank synthesis returns a tuple (E, r, b) where E is an expression without
any pre or post primed variable whose value is decreasing, r is a decrement, and b is a lower bound ofE. Our abstract
interpreter picks the absolute value a of the coefficient of the first variable xi in E, transforms E/a to a normal form
E′, and regards (E′ − b/a, r/a) as an output from RANKFINDER.
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Here norm is the standard transformation that takes a formula in the propositional logic and

transforms the formula to disjunctive normal form. Substitution for E[x′/x] is defined as:

‘x[x′/x] = ‘x

x′[x′/x = x′

r[x′/x] = r

x[x′/x] = x′

(E1 + E2)[x′/x] = E1[x′/x] + E2[x′/x]

(r × E) = r × E[x′/x]

For expressions P substitution is defined as:

(E1 op E2)[x′/x] = E1[x′/x] op E2[x′/x]

where op ∈ {=, 6=, <,>,≤,≥}, and for ϕ substitution is defined as:

true[x′/x] = true

(ϕ1 ∧ ϕ2)[x′/x] = ϕ1[x′/x] ∧ ϕ2[x′/x]

Next, we define the abstract composition comp. Let fresh be an operator on constraints ϕ that

renames all post-primed variables fresh. Let ‘Vars be the set of pre-primed variables. The

abstract composition is defined as follows

comp(ϕ0, ϕ1)
def
= let

(
ϕ2 = fresh(ϕ1)

)
in
(
ϕ0[Y ′/Vars] ∧ ϕ2[Y ′/‘Vars]

)
.

The variable set Y ′ in the definition denotes a set of fresh post-primed variables, that has as many

elements as Vars. The two substitutions there replace a normal variable x and the corresponding

pre-primed variable ‘x by the same post-primed variable x′.

We have a lemma which relates the comp operator and relational composition.

Lemma 4.8.

γr(ϕ0); γr(ϕ1) = γr(comp(ϕ0, ϕ1))

Proof. We will first show that γr(ϕ0); γr(ϕ1) ⊆ (γr(comp(ϕ0, ϕ1))).

Let (s0, s1) ∈ γr(ϕ0); γr(ϕ1). This implies that there exists a state s2 such that:

(s0, s2) ∈ γr(ϕ0)

(s2, s1) ∈ γr(ϕ1)
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By the definition of γr:

(′s0, s2) |= ∃X ′.ϕ0

(′s2, s1) |= ∃X ′.ϕ1

which implies that

(′so, s1) |= ∃X ′.ϕ0[Y ′/V ars] ∧ ϕ2[Y ′/‘V ars]

where ϕ2 = fresh(ϕ1). This step is justified as the renaming of the variable corresponds to

finding a common state between the two relations represented by ϕ0 and ϕ1. This then gives us

the necessary result, by the definition of γr and comp.

(s0, s1) ∈ γr(comp(ϕ0, ϕ1))

Now we will show that γr(comp(ϕ0, ϕ1)) ⊆ γr(ϕ0); γr(ϕ1). Let (s0, s1) ∈ γr(comp(ϕ0, ϕ1)).

This implies that:

(‘s0, s1) |= ∃X ′.ϕ0[Y ′/V ars] ∧ ϕ2[Y ′/‘V ars]

where ϕ2 = fresh(ϕ1). This implies that there exists a state s2 such that

(‘s0, s2) |= ∃X ′ϕ0

(‘s2, s1) |= ∃X ′.ϕ1

The result then follows from these two facts to give:

(s0, s2) ∈ γr(ϕ0)

(s2, s1) ∈ γr(ϕ1)

which gives (s0, s1) ∈ γr(ϕ0); γr(ϕ1) are required. �

Finally, we specify a fix operator. For each function (RFS† ◦ F ) on sets of constraints ϕ, let

{Gn}n be the standard fixpoint iteration sequence: G0 = {} andGn+1 = Gnt(RFS†◦F )(Gn).

Given G, our fix operator returns the first Gn such that

Gn=> ∨
(
Gn 6=> ∧ Gn+1 6=> ∧ ∀ϕ ∈ Gn+1.∃ϕ′ ∈ Gn. ϕ ` ϕ′

)
.
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This definition assumes that some Gn satisfies the above property. If such a Gn does not exist,

the fix operator is not defined, so the abstract interpreter can diverge during the fixpoint com-

putation. In Theorem 4.10, we will discharge this assumption and prove the termination of the

linear rank abstraction.

Example 4.1. Consider the program C below:

while (x > 0 ∧ y > 0) (x:=x−1 [] y:=y−1).

Given C, the abstract interpreter starts the fixpoint computation from the empty set A0 = {}.

The first iteration of the fixpoint computation is done in two steps. First, it applies the abstract

transfer function of the loop body to {did} ∪A0 = {did}:

(
[[(x:=x−1 [] y:=y−1)]]] ◦ filter†x>0∧y>0

)
({did})

= [[x:=x−1 [] y:=y−1]]]{did ∧x>0∧ y>0}

= [[x:=x−1]]]{did ∧x>0∧ y>0} ∪ [[y:=y−1]]]{did ∧x>0∧ y>0}

= [[x:=x−1]]]{‘x=x∧‘y=y ∧x>0∧ y>0} ∪ [[y:=y−1]]]{‘x=x∧‘y=y ∧x>0∧ y>0}

= { ‘x=x′ ∧‘y=y ∧x′>0∧ y>0∧x=x′−1, ‘x=x∧‘y=y′ ∧x>0∧ y′>0∧ y=y′−1 }.

Next, the abstract interpreter calls RANKFINDER twice with each of the two elements in the re-

sult set above. These function calls return x and y, from which the abstract interpreter constructs

two ranking relations below:

Tx
def
= (‘x≥ 0 ∧ ‘x−dec ≥ x) and Ty

def
= (‘y≥ 0 ∧ ‘y−dec ≥ y).

The result A1 of the first iteration is {Tx, Ty}.

The second fixpoint iteration computes:

A1 t (RFS† ◦ [[x:=x−1 [] y:=y−1]]] ◦ filter†x>0∧y>0)A1.

We show that the abstract element on the right hand side of the join, denoted A′2, is again A1, so

that the fixpoint computation converges here. To compute A′2, the analyzer first transforms A1
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according to the abstract meaning of the loop body. This results in a set with four elements:

{ Tx[x′/x] ∧ x′>0 ∧ y>0 ∧ x=x′−1,

Tx[y′/y] ∧ x>0 ∧ y′>0 ∧ y=y′−1,

Ty[x
′/x] ∧ x′>0 ∧ y>0 ∧ x=x′−1,

Ty[y
′/y] ∧ x>0 ∧ y′>0 ∧ y=y′−1 }.

The first two elements come from transforming Tx according to the left and right branches of the

loop body. The other two elements are obtained similarly from Ty. Next, the abstract interpreter

calls RANKFINDER with all the four elements above. These four calls return x, x, y and y,

which represent well-founded relations Tx, Tx, Ty, Ty. Thus, A′2 is the same as Tx and Ty, and

the fixpoint computation stops here.

After the fixpoint computation, the abstract interpreter composes the identity relation {did} with

the result of the fixpoint computation:

comp†({did}, {Tx, Ty}) = { ‘x=x′0 ∧ ‘y=y′0 ∧Tx[x′0/‘x], ‘x=x′0 ∧ ‘y=y′0 ∧Ty[y′0/‘y] }

= {Tx, Ty}.

Finally, we apply filter†¬(x> 0∧ y > 0) to the set above, which gives a set with four constraints:

{ Tx ∧x≤ 0, Tx ∧ y≤ 0, Ty ∧x≤ 0, Ty ∧ y≤ 0 }.

Since the result is not >, the abstract interpreter concludes that the given program c terminates.

In the example above, the fixpoint computation converges after two iterations. In the first iter-

ation, which computes A1, it finds ranking functions, and in the next iteration, it confirms that

the ranking functions are preserved by the loop. In fact, we can prove that the fixpoint compu-

tation of the abstract interpreter always follows the same pattern, and finishes in two iterations.

Suppose that RANKFINDER is well-behaved, such that

1. RFS always computes an optimal ranking function, in the sense that

(RFS(ϕ) = {TE} ∧ γr(ϕ) ⊆ γr(TE+b)) =⇒ b ≥ 0,

2. RFS depends only on the (relational) meaning of its argument.
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Lemma 4.9. For all commands C, normalized expressions E and boolean expressions B, if

there is a constraint ϕ ∈ ([[C]]] ◦ filterB)(TE) such that RFS(ϕ) = {TF } and γr(ϕ) 6= ∅, then

F is of the form E − b for some nonnegative b.

Proof. Before starting the proof, we note two facts. First, for all ϕ ∈ ([[C]]] ◦filterB)(TE), there

exists ϕ0 such that

γr(ϕ) = γr(TE); γr(ϕ0)

where the semicolon means the composition of relations. One can prove this fact by the in-

duction on the structure of C. Next, comp does not lose any information compared to relation

composition (Lemma 4.8). Thus, for all ϕ0, ϕ1,

γr(ϕ0); γr(ϕ1) = γr(comp(ϕ0, ϕ1)).

Suppose that a constraint ϕ in ([[C]]] ◦ filterB)(TE) satisfies

RFS(ϕ) = {TF } and γr(ϕ) 6= ∅.

Then, by the two facts mentioned above, there exists ϕ0 such that

γr(ϕ) = γr(TE); γr(ϕ0) = γr(comp(TE , ϕ0)).

This implies that RFS(comp(TE , ϕ0)) = {TF }, because RFS only depends on the relational

meaning of its argument and RFS(ϕ) = {TF }. From the soundness of RFS and what we have

just shown so far, it follows that

(γr(TE); γr(ϕ0)) ⊆ γr(TF ) and (γr(TE); γr(ϕ0)) 6= ∅.

Using these two and RFS(comp(TE , ϕ0)) = {TF }, we will derive the conclusion of this lemma.

Since γr(TE); γr(ϕ0) is not empty and it is a subset of γr(TF ), there are states s, s′, s′′ such that

s[γr(TE)]s′, s′[γr(ϕ0)]s′′ and s[γr(TF )]s′′.
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Let n and m be, respectively, the value of E at s′ and that of F at s′′. Note that by the definition

of TE , if a state s1 satisfies E ≥ max(n+dec, 0), we have that

s1[γr(TE); γr(ϕ0)]s′′.

Also, notice that by the definition of TF , if s1[γr(TF )]s′′, state s1 should satisfyF ≥ max(m+dec, 0).

Therefore, the condition (γr(TE); γr(ϕ0)) ⊆ γr(TF ) implies that

E ≥ max(n+dec, 0) =⇒ F ≥ max(m+dec, 0).

holds in first-order logic. By Farkas’s lemma [53] (which is defined the appendices A.1), this

means that there exist a, b such that

a ≥ 0 ∧ F = a× E − b.

Number a is not 0, because a = 0 implies that F has to be a constant, which cannot be true since

F is a ranking function. Furthermore, E and F both are normalized, so their first variables have

1 or −1 as their coefficients. Therefore, a has to be 1. It remains to show that b is nonnegative.

For this, we will show that

γr(comp(TE , ϕ0)) ⊆ γr(TF+b).

This, together with the optimality of RFS, gives the required b ≥ 0.

By the definition of T , we have that

γr(comp(TE , ϕ0)) = (γr(TE); γr(ϕ0)) ⊆ γr(‘E ≥ 0) = γr(‘F+b ≥ 0).

Since γr(TE); γr(ϕ0) ⊆ γr(TF ), we have that

γr(comp(TE , ϕ0)) = (γr(TE); γr(ϕ0)) ⊆ γr(‘F−dec ≥ F )

= γr(‘F+b−dec ≥ F+b).

Combining these two subset relationships gives γr(comp(TE , ϕ0)) ⊆ γr(TF+b), as desired. �
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Theorem 4.10 (Fast Convergence). Suppose that the theorem prover ` is complete. Then, for

all commands C, the fixpoint iteration of

G = λA. (RFS† ◦ [[C]]] ◦ filter†B)({did} tA)

terminates at most in two steps. Specifically, G2({}) is >, or the result of fixG is {} or G({}).

Proof. Suppose that G2({}) is not >. This implies that both G({}) and G2({}) are finite sets

of TE’s for normalized expressions E, because G(= RFS† ◦ [[C]]] ◦ filter†B) preserves >. If

G({}) is empty, {} is the fixpoint of G, thus becoming the result of fixG, as claimed in the

theorem. To prove the other nonempty case, suppose that G({}) is a nonempty finite collection

A = {TE1 , . . . , TEn}. We need to show that for each TF in G(A), there exists TEi ∈ A such

that TF ` TEi , which is equivalent to γr(TF ) ⊆ γr(TEi) due to the completeness assumption

about the prover. Pick TF inG(A). SinceG(= RFS†◦[[C]]]◦filter†B) preserves the join operator,

there exists TEi in A such that TF ∈ G({TEi}). This means that RFS(ϕ) = {TF } for some

constraint ϕ in ([[C]]]◦filterB)(TEi). Note that since RFS filters out all the provably inconsistent

constraints and the prover is assumed complete, γr(ϕ) is not empty. Thus, by Lemma 4.9, there

is a nonnegative b such that F = E − b. This gives the required γr(TF ) ⊆ γr(TE). �

Note that the theorem suggests that we could have used a different fix operator that does not call

the prover at all and just returns G2({}). We do not take this alternative in the chapter, since it is

too specific for the RFS operator in this section; if RFS also keeps track of equality information,

this two-step convergence result no longer holds.

4.4.1 Refinement with Simple Equalities

The linear rank abstraction cannot prove the termination of the program in Section 4.1. When

the linear rank abstraction is run for the program, it finds the ranking functions x and y for the

true and false branches of the program, but loses the information that the else branch does not

change the value of x, which is crucial for the termination proof. As a result, the linear rank

abstraction returns >, and reports, incorrectly, the possibility of non-termination.

One way to solve this problem and improve the precision of the linear rank abstraction is to use

a more precise RFS operator that additionally keeps simple forms of equalities. Concretely, this

refinement keeps all the definitions of the linear rank abstraction, except that it replaces the rank
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synthesizer RFS of the linear rank abstraction by RFS′ below:

RFS′(ϕ)
def
= if (RFS(ϕ)=>) then > else

{
TE ∧ (∧(ϕ` ‘x=x)‘x=x) | TE ∈ RFS(ϕ)

}
.

When this refined abstract interpreter is given the program in Section 4.1, it follows the informal

description in that section and proves the termination of the program.

4.5 Experimental Evaluation

As in the previous chapter, we have implemented the abstract interpreter and compared it to

other termination analysers. In particular we repeated the experiments from the previous chapter,

comparing the new tool LINEARRANKTERM with analysers from the previous chapter as well

as TERMINATOR and POLYRANK.

LR) LINEARRANKTERM is the new variance analysis that implements the linear rank abstrac-

tion with simple equalities in Section 4.4. This tool is implemented using CIL [45] al-

lowing the analysis of programs written in C. However, no notion of shape is used in

these implementations, restricting the input to only arithmetic programs. The tool uses

RANKFINDER [48] as its linear rank synthesis engine and uses the Simplify prover [31]

to filter out inconsistent states and check the implication between abstract states.

O) OCTATERM is the variance analysis [7] induced by the octagon analysis OCTANAL [44].

P) POLYTERM is the variance analysis [7] similarly induced from the polyhedra analysis POLY

based on the New Polka Polyhedra library [39].

T) TERMINATOR [20].

These tools, except for TERMINATOR, were all run on a 2GHz AMD64 processor using Linux

2.6.16. TERMINATOR was executed on a 3GHz Pentium 4 using Windows XP SP2. Using

different machines is unfortunate but somewhat unavoidable due to constraints on software li-

brary dependencies, etc. Note, however, that TERMINATOR running on the faster machine was

still slower overall, so the qualitative results are meaningful. In any case, the running times are

somewhat incomparable since on failed proofs TERMINATOR produces a counterexample path,

but LINEARRANKTERM, OCTATERM and POLYTERM give a suspect pair of states

Figures 4.6 and 4.7 contain the results from the experiments performed with these analyses.

For example, Figure 4.6(a) shows the outcome of the provers on example programs included in

the OCTANAL distribution. Example 3 is an abstracted version of heapsort, and Example 4 of

bubblesort.
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1 2 3 4 5 6
LR 0.01 X 0.01 X 0.08 X 0.09 X 0.02 X 0.06 X
O 0.11 X 0.08 X 6.03 X 1.02 X 0.16 X 0.76 X
P 1.40 X 1.30 X 10.90 X 2.12 X 1.80 X 1.89 X
T 6.31 X 4.93 X T/O - T/O - 33.24 X 3.98 X

(a) Results from experiments with termination tools on arithmetic examples from
the Octagon Library distribution.

1 2 3 4 5 6
LR 0.23 X 0.20 � 0.00 � 0.04 X 0.00 X 0.03 X
O 1.42 X 1.67 � 0.47 � 0.18 X 0.06 X 0.53 X
P 4.66 X 6.35 � 1.48 � 1.10 X 1.30 X 1.60 X
T 10.22 X 31.51 � 20.65 � 4.05 X 12.63 X 67.11 X

7 8 9 10
LR 0.07 X 0.03 X 0.01 � 0.03 X
O 0.50 X 0.32 X 0.14 � 0.17 X
P 2.65 X 1.89 X 2.42 � 1.27 X
T 298.45 X 444.78 X T/O - 55.28 X

(b) Results from experiments with termination tools on small arithmetic examples
taken from Windows device drivers. Note that the examples are small as they
must currently be hand-translated for the three tools.

LR is used to represent LINEARRANKTERM, O is used to represent OCTATERM, an Octagon-
based variance analysis. P is POLYTERM, a Polyhedra-based variance analysis. The T repre-
sents TERMINATOR [20]. Times are measured in seconds. The timeout threshold was set to 500s.
X=“a proof was found”. †=“false counterexample returned”. T/O = “timeout”. �=“termination
bug found”. Note that pointers and aliasing from the device driver examples were removed by a
careful hand translation when passed to the tools O, P and LR. Note that a time of 0.00 means
that the analysis was too fast to be measured by the timing utilities used.

FIGURE 4.6: Experiments with 4 Termination Provers/Analyses (1/2)

Figure 4.6(b) contains the results of experiments on fragments of Windows device drivers. These

examples are small because we currently must hand-translate them before applying all of the

tools but TERMINATOR. LINEARRANKTERM is fastest on these examples. , but we had to

insert some simple invariants by hand in order to prove termination for a few of the drivers. This

is again a limitation of our implementation, but further work could solve this issue by involving

a safety analyzer during the analysis. Figure 4.7(c) contains the results from experiments with

the 4 tools on examples from the POLYRANK distribution.5 The examples can be characterized

as small but famously difficult (e.g. McCarthy’s 91 function). Note that LINEARRANKTERM

performs poorly on these examples because of the limitations of RANKFINDER. Many of these

examples involve phase changes or tricky arithmetic in the algorithm.
5 Note also that there is no benchmark number 5 in the original distribution. We have used the same numbering

scheme as in the distribution so as to avoid confusion.
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1 2 3 4 6 7
LR 0.19 X 0.02 X 0.01 † 0.02 † 0.02 † 0.01 †
O 0.30 † 0.05 † 0.11 † 0.50 † 0.10 † 0.17 †
P 1.42 X 0.82 X 1.06 † 2.29 † 2.61 † 1.28 †
T 435.23 X 61.15 X T/O - T/O - 75.33 X T/O -

8 9 10 11 12
LR 0.04 † 0.01 † 0.03 † 0.02 † 0.01 †
O 0.16 † 0.12 † 0.35 † 0.86 † 0.12 †
P 0.24 † 1.36 X 1.69 † 1.56 † 1.05 †
T T/O - T/O - T/O - T/O - 10.31 †

(c) Results from experiments with termination tools on arithmetic examples from
the POLYRANK distribution.

FIGURE 4.7: Experiments with 4 Termination Provers/Analyses (2/2)

01 while (x>0 && y >0) {
02 x = x - y;
03 y = y*y;
04 }

FIGURE 4.8: A Program using Polynomial Expressions

From these experiments we can see that LINEARRANKTERM is fast and precise in comparison

to previous approaches. The reason for the speed is that we have a fast convergence theorem

4.9 which states that the analysis terminates in two iterations at most. The prototype we have

developed indicates that a termination analyzer using abstractions based on ranking functions

shows a lot of promise.

4.6 Limitations

There are a number of limitations with the approach presented in this chapter.

Firstly the implementation we have produced can only find linear ranking functions, thus it

is limited to programs using linear expressions only. We cannot analyse programs which use

polynomial expressions such as the one in Fig.4.8. We can see that value of x is constantly de-

creasing, eventually breaking the condition in the loops guard, but using the RANKFINDER, we

cannot find a linear ranking function to prove that this is the case. This limitation is due to rank

function synthesis: there is no complete technique for finding polynomial ranking functions.
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01 while (x>0 and z<0) {
02 x = x + y;
03 y = y + z;
04 }

FIGURE 4.9: A Program exhibiting Phase-Change

Another limitation is that we cannot handle programs which exhibit ’phase-changes’: for some

iterations the measure which would imply termination goes up before coming down and termi-

nating the program. An example of such a program is: In this program the value of y may be

positive initially, and so the value of x will go up, until the value of y becomes negative and x

starts to decrease until it breaks out of the loop. The technique we have in this chapter cannot

infer such phase changes and so cannot prove termination of this example.

Another limitation is that in order to find the right ranking functions we need to find some

invariants for the program. In the examples we have tried, taking invariants from the Octagon

domain helped in some cases. This is a known limitation for proving liveness properties: often

we need to know some extra safety information in order to find proof of a liveness property.

Finally, one major limitation is that the soundness technique in this chapter can only handle

programs with tail recursion/iteration. For more general recursive constructs we need to use an

alternative approach as shown later in this thesis.

4.7 Conclusion

In this chapter we have defined an abstract interpreter targeted to proving program termination

properties. The abstract interpreter is constructed from ranking functions that overapproximate

the program being analysed. The prototype tool we have produced shows that the technique is

fast and precise.

However, the analysers developed in this chapter have can only analyse programs with iteration.

This limitation is due to the fact that we have greatest fixpoints in the concrete semantics and

least fixpoints in the abstract interpreter. In this chapter we showed that the two are linked when

we have iteration, but the same result does not hold for recursion. I n the next chapter we will

address this issue using metric spaces.



Chapter 5

Metric Semantics and Termination

Analysis

In the previous chapter we defined a generic abstract interpreter to prove termination properties

for a programming language with iteration. In this chapter we will consider a language with

recursion over the unit type, and develop a termination analysis for the language. We will

focus on building a theoretical framework that answers when an abstract interpreter is sound

for proving liveness properties such as termination. The soundness for safety properties is well

understood using the standard framework for abstract interpretation. Our aim is to provide a

similar understanding for liveness properties.

The framework in this chapter will use the theory of metric spaces1 to define a concrete seman-

tics of programs, and connect this semantics with the usual order-theoretic semantics of abstract

interpretation. As noted in the previous chapter, in order to prove the soundness of a termination

analysis in the standard theory of abstract interpretation, we need to use greatest fixpoints in

the concrete trace semantics, and relate it to pre-fixpoints computed by the termination analysis.

Relating these two kinds of fixpoints is non-trivial. In the previous chapter, we were able to

do so, because the programming language included only iterations whose infinite behaviour can

be captured by the repetition of least fixpoints. Had the language included non-tail recursive

control flow, the soundness proof would not have been sound.

In this chapter, we will instead use a different type of concrete semantics based on metric spaces,

where recursions are interpreted using Banach’s unique fixpoint theorem. We will show a re-

lationship between unique fixpoints in the metric semantics and pre-fixpoints computed by ab-

stract interpreters. Based on this relationship, we will provide a set of conditions for deciding

when an abstract interpreter is sound for liveness/termination properties. Our conditions are
1For a brief overview of metric spaces, see Appendix A.
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E ::= x | r | E + E | r × E
B ::= E = E | E 6= E | E ≤ E | E < E | B ∧B | B ∨B | ¬B
a ::= x := E | x := ∗
C ::= a | C;C | C []C | ifBC C | f() | fix f. C

FIGURE 5.1: Programming Language with General Recursions

presented in a general framework, so that they can be re-used when analysis designers develop

new techniques for proving liveness properties of programs.

This chapter starts by defining a programming language with recursion over the unit type. Then,

it moves on to our framework for defining sound abstract interpreters for liveness properties.

The framework consists of a concrete semantics and an abstract semantics2, and it specifies the

conditions needed by both semantics. Finally, we will present an instance of the framework, and

prove that the instance satisfies the conditions from the framework.3

5.1 Programming Language

Let PNames be the set of procedures names, ranged over by f, g, h, and let AtomicComm be the

set of atomic commands, such as the assignment x := E, ranged over by symbol a. We consider

an imperative language with parameter-less procedures, whose grammar is given in Figure 5.1.

In the figure, r denotes a constant rational number.

The language is an imperative language with rational variables and parameterless recursive pro-

cedures, which are not necessarily tail recursive. Most of the commands are standard. The only

unusual case is the definition of recursive procedure fix f. C. This command defines a recursive

procedure f whose body is C, and then it immediately calls the defined procedure. Note that the

programming language here is a superset of the language in the previous chapter, because while

loops can be encoded using recursions.

We will write Γ ` C for a finite subset Γ of PNames, where Γ includes all the free function

names in C. This notation makes it explicit which functions can be called inside a command.
2 We do not consider an intermediate semantics that is used to factor the soundness argument in Chapter 4.
3The abstract interpreter induced by this instance is not implemented yet. This is left as future work.
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5.2 Framework

The central idea of this chapter is the use of metric-space semantics as a concrete semantics of

programs and to relate it with the abstract semantics used for an abstract interpreter for termi-

nation properties. The metric-space semantics models infinite computations of a program accu-

rately: the meaning of a non-terminating program includes infinite traces, whereas the meaning

of a terminating program contains only finite traces. Thus, the semantics can serve as a reference

point for proving the soundness of an abstract interpreter for liveness properties. More impor-

tantly, the metric space alleviates the difficulty of the main challenge in proving the soundness

of a termination analysis, which is to relate the semantics of recursions in the concrete semantics

with that in an abstract interpreter. This is because the metric-space semantics uses the unique

fixpoints of contractive functions and under reasonable conditions (which will be identified by

our framework and justified by our instance), the unique fixpoints can be overapproximated by

pre-fixpoints computed by abstract interpreters.

The background materials on metric spaces can be found in Appendix A.

5.2.1 Concrete Semantics

Our framework consists of two parts: a concrete metric-space semantics and an abstract order-

theoretic semantics. In this section we will define the concrete semantics.

Let ω be the set of positive integers. To define the concrete semantics we require the following:

• A pre-ordered complete metric space (D, d,v,>) with a top element >. We require that

for all Cauchy sequences {xn}n∈ω in D and all elements x ∈ D, if x∞ is the limit of

{xn} then

(∀n ∈ ω. xn v x) =⇒ (x∞ v x). (5.1)

Elements ofD can be understood as semantic counterparts of syntactic commandsC. Our

concrete semantics will interpret C as an element in D.

• A monotone non-expansive join operator t:

t : D ×D → D.

This operator is used to model a non-deterministic choice in our programming language.

• Monotone non-expansive functions seq and ifB for all boolean conditions B:

seq : D ×D → D, ifB : D ×D → D.
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They decide the meanings of sequencing and if-then-else commands in our language.

• A family of functions procrunf indexed by PNames (f ∈ PNames) for modelling the

execution of procedures:

procrunf : D → D.

We require that procrunf (−) be a monotone 1
2 -contractive function for all f ∈ PNames.

This function models the computation steps performed immediately before and after run-

ning the body of the procedure f .

• An interpretation of atomic commands, which is a family of sets ,transa indexed by a ∈
AtomicComm, in D:

transa : D.

Here AtomicComm is {x := E, x := ∗ | x is a variable and E is an expression}.

• A subset LIVPROPERTY of D that is downward closed with respect to v:

x v y ∧ y ∈ LIVPROPERTY =⇒ x ∈ LIVPROPERTY.

Intuitively, this subset consists of elements inD (which are semantic counterparts of com-

mands) satisfying a desired liveness property, such as termination.

The requirement (5.1) on v and Cauchy sequences ensures a close relationship between the

metric structure and the pre-order structure of D, which is formalized in the lemma below.

Lemma 5.1. For all 1
2 -contractive monotone functions F : D → D, if x is a pre-fixpoint of F

(i.e., F (x) v x), we have that

ufixF v x.

where ufixF of F is the unique fixpoint of F .

Proof. Let x be a pre-fixpoint of F . By the Banach fixpoint theorem, we know that the unique

fixpoint ufixF of F exists and is also the limit of the following Cauchy sequence:

x, F (x), F 2(x), F 3(x), . . .

Since x is a pre-fixpoint of F (i.e., F (x) v x) and F is monotone, we also know that

x w F (x) w F 2(x) w F 3(x) w F 4(x) . . .
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[[Γ ` C]] : [[Γ]]→ D

[[Γ ` a]]η = transa

[[Γ ` C1;C2]]η = seq([[Γ ` C1]]η, [[Γ ` C2]]η)

[[Γ ` C1[]C2]]η = [[Γ ` C1]]η t [[Γ ` C2]]η

[[Γ ` ifBC1C2]]η = ifB([[Γ ` C1]]η, [[Γ ` C2]]η)

[[Γ ` f()]]η = η(f)

[[Γ ` fix f.C]]η = ufix
(
λk. procrunf ([[Γ, f ` C]]η[f 7→ k])

)
.

FIGURE 5.2: Concrete Semantics defined by the Framework

That is, Fn(x) v x for all n. Thus, the limit ufixF of {Fn(x)}n∈ω also satisfies

ufix F v x

by the requirement (5.1) of our framework. We have just proved the lemma. �

The conditions above give rise to a metric-space semantics of programs. Let [[Γ]] be the domain

for procedure environments (i.e., Πf∈ΓD), pre-ordered pointwise and given the product metric.

The semantics interprets Γ ` C as a non-expansive map from [[Γ]] to D, and it appears in

Figure 5.2.

We will now prove that the semantics is well-defined:

Lemma 5.2. The semantics is well-defined.

Proof. We need to prove that for all commands Γ ` C, [[Γ ` C]] is a well-defined non-expansive

function from [[Γ]] to D. We do this using induction on the structure of C. The cases of func-

tion call and atomic command follow from the fact that both projection functions and constant

functions are well-defined and non-expansive. The induction goes through for the cases of the

sequential composition, the non-deterministic choice and the if statement, because of the induc-

tion hypothesis and the non-expansiveness requirements on seq, t and ifB.

The remaining case is the recursion: Γ ` fix f.C. Pick environments η, η′ and let F,G be

functions defined by

F (k) = procrunf ([[Γ, f ` C]]η[f 7→ k]), G(k) = procrunf ([[Γ, f ` C]]η′[f 7→ k]).

Firstly, we prove the well-definedness. For this, it is sufficient to prove that F is 1
2 -contractive,

so that we can apply the Banach fixpoint theorem, which implies that the unique fixpoint of F
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exists. We can use this unique fixpoint to interpret recursion. To prove the contractiveness of F ,

consider k, k′. By induction hypothesis, [[Γ, f ` C]] is a well-defined non-expansive map. Thus:

d(k, k′) ≥ d
(
[[Γ, f ` C]]η[f 7→ k], [[Γ, f ` C]]η[f 7→ k′]

)
. (5.2)

In our framework we have required that procrunf (−) be 1
2 -contractive. Hence:

d([[Γ, f ` C]]η[f 7→ k], [[Γ, f ` C]]η[f 7→ k′])

≥ 1
2 × d(procrunf ([[Γ, f ` C]]η[f 7→ k]), procrunf ([[Γ, f ` C]]η[f 7→ k′]))

≥ 1
2 × d(F (k), F (k′)).

(5.3)

Putting the conclusions of (5.2) and (5.3), we get that d(k, k′) ≥ (1
2 × d(F (k), F (k′))), the

1
2 -contractiveness of F .

Secondly, we prove that [[Γ ` fix f.C]] defines a non-expansive function. Since η, η′ are chosen

arbitrarily, it is sufficient to show that

d(η, η′) ≥ d(ufix F, ufix G).

Pick k fromD. By the Banach fixpoint theorem, both {Fn(k)}n∈ω and {Gn(k)}n∈ω are Cauchy

sequences with limits ufix F and ufix G, respectively.

We claim that the n-th elements of these two sequences are close to each other:

∀n ∈ ω. d(Fn(k), Gn(k)) ≤ d(η, η′). (5.4)

This claim can be proved by induction on n. When n = 0, the LHS of the inequality is zero,

so the claim holds. Suppose that n > 0 and also that the claim holds for all m < n. By the

induction hypothesis,

d(Fn−1(k), Gn−1(k)) ≤ d(η, η′).

Then,

d
(
η[f 7→ Fn−1(k)], η′[f 7→ Gn−1(k)]

)
≤ d(η, η′).

Now, the non-expansiveness of [[Γ, f ` C]] and procrunf implies that

d
(
F (Fn−1(k)), G(Gn−1(k))

)
≤ d

(
η[f 7→ Fn−1(k)], η′[f 7→ Gn−1(k)]

)
.
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Combining the two inequalities above gives the claim (5.4) for n.

Using (5.4), we can complete the proof of non-expansiveness. Pick ε > 0. Then, there exists N

such that for all n > N ,

d(ufix F, Fn(k)) ≤ ε/2 and d(Gn(k), ufix G) ≤ ε/2.

By the triangular inequality, we have that

d(ufix F, ufix G) ≤ d(ufix F, Fn(k)) + d(Fn(k), Gn(k)) + d(Gn(k), ufix G)

≤ ε/2 + d(η, η′) + ε/2

= d(η, η′) + ε.

Thus, d(ufix F, ufix G) ≤ d(η, η′) + ε. Since this holds for all ε > 0, we have the required

d(ufix F, ufix G) ≤ d(η, η′).

�

Lemma 5.3. For all commands Γ ` C, their meanings [[Γ ` C]] are monotone functions.

Proof. The proof is by induction on the structure of C. The monotonicity is immediate in the

cases of function calls and atomic commands. For the cases of the sequential composition, the

non-deterministic choice and the if statement, it follows from the induction hypothesis and the

monotonicity of seq, t and ifB. Now, it remains to show the monotonicity for the recursion case:

Γ ` fix f.C

Consider η, η′ such that η v η′. Let F,G be functions on D given by

F (k) = procrunf ([[Γ, f ` C]]η[f 7→ k]), G(k) = procrunf ([[Γ, f ` C]]η′[f 7→ k]).

Define x and y to be the unique fixpoints of F and G respectively. By the induction hypothesis

and the monotonicity of procrunf , we have that

k v k′ =⇒ η[f 7→ k] v η′[f 7→ k′] =⇒ F (k) v G(k′). (5.5)
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We need to prove that x v y. By the Banach fixpoint theorem, x is the limit of the below Cauchy

sequence:

y, F (y), F 2(y), F 3(y), . . . .

By the requirement (5.1) of our framework, it suffices to show that

F k(y) v y.

We do this by induction on k. When k = 0, F k(y) = y so the inequality above holds. Suppose

that k > 0. By the induction hypothesis on k, we have that F k−1(y) v y. Thus, by (5.5), this

implies the required inequality:

F k(y) = F (F k−1(y)) v G(y) = y

where the last equality uses the fact that y is the fixpoint of G. �

5.2.2 Abstract Semantics

The second part of our framework is the abstract semantics. For a function f : Xn → X and a

subsetX0 ofX , we say that f can be restricted toX0 if for all ~x ∈ Xn
0 , we have that f(~x) ∈ X0.

Our framework requires the following data for the abstract semantics:

• A set (A,⊥,>) with two distinguished different elements ⊥ and >.

• SubsetAt ofA such that> ∈ At but⊥ 6∈ At. We writeAp forA−At, and call elements

in At total.

• An algorithm checktot that answers the membership toAt soundly but not necessarily in a

complete way. That is, checktot(A) = true means that A ∈ At, but checktot(A) 6= true

does not mean that A 6∈ At.

• Concretization function γ : At → D, such that γ(>) = >. Note that the domain At of γ

does not include ⊥ and any abstract elements in Ap.

• Functions seq], t] and if]B for all boolean conditions B:

seq] : A×A → A, t] : A×A → A, if]B : A×A → A.

They give the abstract meanings of the sequential composition, the non-deterministic

choice and the conditional statement in our language. We require that these functions
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satisfy two conditions. Firstly, they can be restricted to At. Secondly, the functions over-

approximate their concrete counterparts:

∀A0, A1 ∈ At. seq(γ(A0), γ(A1)) v γ(seq](A0, A1))

and γ(A0) t γ(A1) v γ(A0 t] A1)

and ifB(γ(A0), γ(A1)) v γ(if]B(A0, A1)).

Note that this soundness condition considers only total elements.

• Function procrun] indexed by PNames, for modelling the execution of procedures:

procrun]

f : A → A.

For all f ∈ PNames, we require that procrun]

f can be restricted to At, and that it overap-

proximate procrunf :

∀f ∈ PNames. ∀A ∈ At. procrunf (γ(A)) v γ(procrun]

f(A)).

• Interpretation of atomic commands, trans]a in At,

trans]a : At.

The interpretation is required to overapproximate trans:

transa v γ(trans]a).

• Binary operator O : A×A → A, usually called widening. This operator needs to satisfy

three conditions. Firstly, it can be restricted to a map from At. Secondly, it overapproxi-

mates an upper bound of its arguments:

∀A1, A2 ∈ At. γ(A1) v γ(A1OA2) and γ(A2) v γ(A1OA2).

Finally, it turns any sequences in A into one with a stable element. That is, for all

{An}n∈ω in A, the below widened sequence

A′1 = A1, A′n+1 = AnOAn+1

contains an index m with A′m = A′m+1.
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[[Γ ` C]]] : [[Γ]]] → A

[[Γ ` f()]]]η] = η](f)

[[Γ ` a]]]η] = trans]a

[[Γ ` C1;C2]]]η] = seq]([[Γ ` C1]]]η], [[Γ ` C2]]]η])

[[Γ ` C1 []C2]]]η] = [[Γ ` C1]]]η] t] [[Γ ` C2]]]η]

[[Γ ` ifBC1C2]]]η] = if]B([[Γ ` C2]]]η], [[Γ ` C2]]]η])

[[Γ ` fix f.C]]]η] = dwidenfix F e
(where F (A) = procrun]

f([[Γ, f ` C]]]η][f 7→ A])

FIGURE 5.3: Abstract Semantics defined by the Framework

• A predicate SATISFYLIV] on At such that

∀A ∈ At. SATISFYLIV](A) = true =⇒ γ(A) ∈ LIVPROPERTY.

Intuitively, SATISFYLIV] identifies abstract elements denoting commands with a desired

liveness property.

The data above are enough to give an abstract semantics of programs, but to do so, we need

to define two operators using the data. The first operator is the ceiling d−e, which replaces

non-total elements in Ap by >:

dAe =

{
A if checktot(A) = true

> otherwise.

The second is the widened fixpoint operator widenfix. For every function F : A → A, the

operator constructs the sequence

A1 = ⊥, An+1 = AnOF (An)

and returns the first wm with Am = Am+1. The condition on O ensures that such Am exists.

Let [[Γ]]] be the abstract domain for procedure environments (i.e., [[Γ]]] = Πf∈ΓA). The abstract

semantics interprets programs Γ ` C as (not necessarily monotone nor continuous) functions

from [[Γ]]] to A. The defining clauses in the semantics are given in Figure 5.3.

One important property of the abstract semantics is that the meaning function maps environ-

ments with total components to total elements in A.

Lemma 5.4. For all Γ ` C and η] ∈ [[Γ]]],

(∀f ∈ Γ. η](f) ∈ At) =⇒ [[Γ ` C]]]η] ∈ At.
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Proof. We prove the lemma by induction on the structure of C. Suppose we have a procedure

environment η] that map procedure names to elements in At. We will consider each case of C

separately and prove that [[Γ ` C]]]η] ∈ At.

• Case C ≡ f(). By assumption, η](f) ∈ At. Thus, [[C]]]η] ∈ At.

• Case C ≡ a. Our framework requires that trans]a be in At. The lemma follows from this

requirement.

• Case C ≡ C1;C2. By the induction hypothesis, both [[C1]]]η] and [[C2]]]η] is in At. Fur-

thermore, our framework requires that seq] map pairs of total elements to total elements.

Hence,

[[C]]]η] = seq]([[C1]]]η], [[C2]]]η]) ∈ At.

• Cases C ≡ C1[]C2 and C ≡ if B C1 C2. These cases are similar to the previous one.

The desired conclusion follows from the induction hypothesis and the requirements on t]

and if]B with respect to total elements.

• Case C ≡ fix f.C1. In this case, [[C]]]η] is always total, even when some component of

η] is not total. This is because of the d−e operator in the semantics of [[fix f.C1]]], whose

range contains only total elements.

�

Now we state the soundness of the abstract semantics:

∀η] ∈ [[Γ]]]. (∀f ∈ Γ. η](f) ∈ At) =⇒ [[Γ ` C]]γ(η]) v γ([[Γ ` C]]]η]). (5.6)

In γ(η]), we use the componentwise extension of γ to procedure environments. Note that al-

though γ is not defined on non-total elements, the soundness claim above is well-formed, be-

cause Lemma 5.4 ensures that [[Γ ` C]]]η] is total. We prove the soundness in the next theorem:

Theorem 5.5. The abstract semantics is sound. That is, (5.6) holds for all commands Γ ` C.

Proof. Our proof is by induction on the structure of C.

• Case C ≡ f(). [[f()]]γ(η]) = γ(η])(f) = γ(η](f)) = γ([[f()]]]η]).
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• CaseC ≡ a. This case follows from the requirement of our framework that trans]a should

overapproximate transa.

• Case C ≡ C1;C2. This case follows from three ingredients – the induction hypothesis,

the monotonicity of seq and the requirement that seq] should overapproximate seq. The

below derivation shows how these ingredients give the desired conclusion.

[[C1;C2]]γ(η]) = seq([[C1]]γ(η]), [[C2]]γ(η]))

v seq(γ([[C1]]]η]), γ([[C2]]]η])) (by ind. hypo and mono. of seq)

v γ(seq]([[C1]]]η], [[C2]]]η])) (since seq] overapproximates seq)

= γ([[C1;C2]]]η]).

• Cases C ≡ C1[]C2 and C ≡ ifBC1C2. These cases are very similar to the above. It

follows from the induction hypothesis, the monotonicity of t and ifB, and the overapprox-

imation properties of t] and if]B, as shown below.

[[C1 []C2]]γ(η]) = [[C1]]γ(η]) t [[C2]]γ(η])

v γ([[C1]]]η]) t γ([[C2]]]η]) (by ind. hypo and mono. of t)

v γ([[C1]]]η] t] [[C2]]]η]) (since t] overapproximates t)

= γ([[C1 []C2]]]η]).

[[if B C1 C2]]γ(η]) = ifB([[C1]]γ(η]), [[C2]]γ(η]))

v ifB(γ([[C1]]]η]), γ([[C2]]]η])) (by ind. hypo and mono. of ifB)

v γ(if]B([[C1]]]η], [[C2]]]η])) (since if]B overapproximates ifB)

= γ([[if B C1 C2]]]η]).

• Case C ≡ fix f.C1. Let

F (x) = procrunf ([[Γ, f ` C1]]γ(η])[f 7→ x]),

G(A) = procrun]

f([[Γ, f ` C1]]]η][f 7→ A]).

We need to prove that

(ufix F ) v γ(dwidenfix Ge). (5.7)

If checktot(widenfix G) 6= true, then γ(dwidenfix Ge) = γ(>) = >. Thus, (5.7) holds.

Suppose that checktot(widenfix G) = true, which implies that widenfix G ∈ At. In this
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case, it is sufficient to prove that γ(widenfix G) is a pre-fixpoint of F . Because then, the

inequality (5.7) follows from Lemma 5.1. By the definition of widenfix,

(widenfix G) = (widenfix G)OG(widenfix G).

Because of the condition on O, this implies that

γ(G(widenfix G)) v γ(widenfix G).

The LHS of this inequality is greater than or equal to F (γ(widenfix G)) as shown below:

γ(G(widenfix G)) = γ
(
procrun]

f [[Γ, f ` C1]]]η][f 7→ (widenfix G)]
))

w procrunf
(
γ
(
[[Γ, f ` C1]]]η][f 7→ (widenfix G)]

))
w procrunf

(
[[Γ, f ` C1]]γ(η])[f 7→ γ(widenfix G)]

)
= F (γ(widenfix G)).

The first inequality holds because procrun] overapproximates procrun. The second in-

equality follows from the induction hypothesis and the monotonicity of procrunf . This

shows F (γ(widenfix G)) v γ(widenfix G), as desired.

�

5.2.3 Generic Analysis

Let η]
∗ be the unique element in the abstract semantics of the empty environment type Γ = ∅.

Our generic analysis takes a command C with no free procedures, and computes the function:

LIVANALYSIS(C) = SATISFYLIV]([[C]]]η]
∗).

The result is a boolean value, indicating whether C satisfies a liveness property specified by

LIVPROPERTY.

Theorem 5.6. Let η∗ be the unique element in the concrete semantics of the empty environment

Γ = ∅. Then, for all commands C with no free procedures, we have that

LIVANALYSIS(C) = true =⇒ [[C]]η∗ ∈ LIVPROPERTY.
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Proof. Consider a command C that do not contain free procedure names. Suppose that

LIVANALYSIS(C) = true.

Then, by Theorem 5.5,

[[C]]η∗ = [[C]]γ(η]
∗) v γ([[C]]]η]

∗). (5.8)

In the first equality, we use the fact that γ(η]
∗) = η∗. Furthermore, since SATISFYLIV] is a sound

checker for the membership of LIVPROPERTY and LIVANALYSIS(C) = true, we also have that

γ([[C]]]η]
∗) ∈ LIVPROPERTY. (5.9)

From (5.8), (5.9) and the downward closure of LIVPROPERTY, it follows that [[C]]η∗ is in

LIVPROPERTY, as desired. �

5.2.4 Discussion on using a Metric Space in the Framework

Using a metric space in our framework entails that a user of the framework needs to discharge

new proof obligations when defining a concrete semantics. The user has to prove that the se-

mantic domain D for the meaning of commands in the concrete semantics is a complete metric

space, in addition to having a standard order structure. Also, the user should show that all the

semantic operators are non-expansive operators.

These new proof obligations often make it impossible to re-use a existing concrete semantics.

For instance, the trace semantics in the previous chapter uses the powerset of traces as a semantic

universe for commands, but this powerset cannot be used in our framework, because it does not

form a complete metric space, when it is given a natural notion of distance measure. In order to

use the framework in this chapter, one has to modify the powerset of traces, such that it has a

good metric-theoretic structure, as will be done in the next section of the chapter.

The need for changing an existing concrete semantics also has a direct implication on the design

of an abstract semantics. For instance, if we consider only certain “good subsets” of traces in

the (concrete) semantic domain but we want to re-use ideas from existing abstract domains,

we usually end up with an abstract domain with ill-behaving elements, in the sense that the

concretizations of those elements are not “good subsets” of traces. To address the presence of

these ill-behaving elements, our framework classifies elements in the abstract domain A to total

elements inAt and non-total ones inAp. Then, it allows the concretization γ to ignore non-total

ones in Ap, by asking γ to be a function from At, not A.
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5.3 Instance of the Framework

5.3.1 Concrete Semantics

In this section, we give an instance of concrete semantics of our framework, where commands

are interpreted as trace sets satisfying certain healthiness conditions. We will first introduce the

notion of tagged states, define well-formed traces as certain sequences of tagged states, and de-

scribe a metric on those traces. As we wish to interpret commands as sets of well-formed traces,

we will then lift this metric to sets of traces. Interestingly, this lifted metric do not necessar-

ily satisfy the required axioms for being a metric space, if we consider trace sets without any

conditions. Hence, we will restrict our attention to those trace sets satisfying two conditions—

closedness and fullness, both of which will be explained later in the section. Finally, we provide

the meaning of semantic operators required by our framework, such as seq and ifB.

5.3.1.1 Tagged States, and Well-formed Pre-traces and Traces

Let Vars be a finite set of program variables and Rationals the set of rationals, which will be

stored in those variables. States are mappings from program variables to rational numbers and

tagged states are pairs of states and tags:

Tags = {none} ∪ (PNames× {call , ret}),

States = Vars→ Rationals,

tagStates = States× Tags.

The tag of a tagged state indicates whether the state is the initial or the final state of a procedure

call, or just a normal one not related to a call. The (f, call) and (f, ret) tags mean that the state

is, respectively, the initial and the final state of the call f(), and the none tag indicates that the

state is a normal state, i.e., it is neither the initial nor the final state of a procedure call. We use

symbol σ (with subscripts or superscripts) to denote elements in tagStates, and use s to denote

elements in States.

In this chapter, we will often omit the adjective “tagged” in “tagged state” and say simply

“states”. If we intend to talk about elements in States, we will always use the phrase “untagged

states”.

A well-formed pre-trace τ is defined to be a nonempty finite or infinite sequence of tagged states,

such that τ starts with a none-tagged state and if it is finite, it ends with a none-tagged state.
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We write preTraces for the set of all well-formed pre-traces, i.e.,

nStates = States× {none},

preTraces = nStates(tagStates∗)nStates ∪ nStates(tagStates∞).

For τ ∈ preTraces and n ∈ ω ∪ {∞},4 the projection τ [n] is the n-prefix of τ ; in case that

|τ | < n, τ [n] = τ . Note that τ [n] does not necessarily belong to preTraces, but this will

not cause problems for our results. Using this projection, we define the distance function on

well-formed pre-traces as follows:

dB(τ, τ ′) = 2−max{n | τ [n]=τ ′[n]}

where we regard 2−∞ = 0. Note that this is the same as the Baire metric defined in A.7.

A well-formed trace τ is a well-formed pre-trace that satisfies two additional conditions. To

define these conditions, we consider the sets W,O of sequences of tagged states that are the

least fixpoints of the below equations:

W = nStates∗ ∪ WW ∪
(⋃

f∈PNames,s,s1∈States{(s, (f, call))}W {(s1, (f, ret))}
)
,

O = W ∪ OO ∪
(⋃

f∈PNames,s∈States{(s, (f, call))}O
)
.

Intuitively,W describes sequences where every procedure call has a matching return and calls

and returns satisfy the well-bracketedness condition. The other set O defines a bigger set; in

each trace in O, some procedure calls might not have matching returns, but calls and returns

should satisfy the well-bracketedness condition.

Definition 5.7 (Well-formed Trace). A well-formed pre-trace τ is a well-formed trace if and

only if τ is finite and belongs to W , or τ is infinite and all of its finite prefixes are in O. We

write Traces for the set of well-formed traces.

Note that in our definition of well-formed traces we require that they be well-formed pre-traces,

in addition to being a member ofW or O. Hence, when a well-formed trace is finite, it should

start and end with none-tagged states (which is a condition for being a well-formed pre-trace).

This property of well-formed traces will enable us to avoid any housekeeping with tags in our

semantics, especially when we define the meaning of the sequencing operator.

In the rest of this chapter, we will omit “well-formed” in “well-formed pre-traces” and “well-

formed traces”, and simply call them “pre-traces” and “traces”. Our use of the word “traces” in

this chapter should not be confused with the notion of traces from the previous chapter, where
4In this thesis, ω means the set of positive integers.
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traces meant nonempty sequences of untagged states. In this chapter, traces will always mean

well-formed traces of tagged states.

We will now show that the sets preTraces and Traces are well-defined metric spaces.

Lemma 5.8. (preTraces, dB) is a metric space.

Proof. The symmetry of dB is immediate from the definition. Also,

dB(τ, τ ′) = 0 ⇐⇒ (max{n | τ [n] = τ ′[n]}) =∞ ⇐⇒ τ = τ ′.

Thus, to show that dB is a metric on preTraces, it remains to prove the triangular inequality.

Consider τ, τ ′, τ ′′ in preTraces. We will prove a stronger-than-required property that

dB(τ, τ ′) ≤ max
(
d(τ, τ ′′), dB(τ ′′, τ ′)

)
.

Equivalently,

max{n | τ [n] = τ ′[n]} ≥ min
(
max{n | τ [n] = τ ′′[n]}, max{n | τ ′′[n] = τ ′[n]}

)
.

Let m be the minimum on the RHS of the above inequality. Then, τ [m] = τ ′′[m] and τ ′′[m] =

τ ′[m]. Thus, τ [m] = τ ′[m]. This means that the LHS of the above inequality should be greater

than or equal to m. �

Corollary 5.9. (Traces, dB) is a metric space.

Proof. The corollary holds, because Traces is a subset of preTraces and it inherits the metric

from preTraces. �

Next, we will prove that metric spaces (preTraces, dB) and (Traces, dB) are complete. As

a preparation for this proof, we notice that our definition of the distance dB allows simpler

characterization of Cauchy sequence. Recall that ω is the set of positive integers.

Lemma 5.10. A sequence {τi}i∈ω in preTraces is Cauchy if and only if

∀m ∈ ω. ∃n ∈ ω. ∀n′ ≥ n. τn′ [m] = τn[m].
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Proof. Let R+ be positive real numbers. Recall that by the definition of Cauchy sequence a

sequence {τi}i∈ω in preTraces is Cauchy if and only if

∀ε ∈ R+. ∃n ∈ ω. ∀n′ ≥ n. d(τn′ , τn) ≤ ε. (5.10)

Restricting ε in (5.10) to those of the form 2−m for some m ∈ ω preserves the meaning. Thus,

(5.10) is equivalent to

∀m ∈ ω. ∃n ∈ ω. ∀n′ ≥ n. dB(τn′ , τn) ≤ 2−m. (5.11)

But by the definition of the distance d, we have that

dB(τn′ , τn) ≤ 2−m ⇐⇒ max({m′ | τn′ [m′] = τn[m′]}) ≥ m

⇐⇒ τn′ [m] = τn[m].

Thus, (5.11) is equivalent to

∀m ∈ ω. ∃n ∈ ω. ∀n′ ≥ n. τn′ [m] = τn[m].

This gives the claimed equivalence in this lemma. �

Lemma 5.11. (preTraces, dB) is complete.

Proof. Consider a Cauchy sequence {τn}n∈ω. By the definition of Cauchy sequence, we have

that

∀m ∈ ω. ∃nm ∈ ω. ∀n ≥ nm. τnm [m] = τn[m]. (5.12)

For each m, define

m∗ = max({nm′ | m′ ≤ m} ∪ {m})

where nm′ is the index in (5.12). Using this notation, we define a sequence τ∞ as follows:

proj(τ∞,m) =

 proj(τm∗ ,m) if proj(τm∗ ,m) is defined

undefined otherwise

where proj(τ∞,m) means the m-th element of τ∞. Note that since every τn has length at least

1 and it starts with a state in nStates, proj(τ∞, 1) is defined and it is a state in nStates. To show
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that τ∞ is the limit, it is sufficient to prove that

∀m ∈ ω. ∃nm ∈ ω. ∀n ≥ nm. τn[m] = τ∞[m]. (5.13)

Before proving this, we note that it implies that τ∞ is a pre-trace, i.e., τ∞ ∈ preTraces. If τ∞

is infinite, τ∞ belongs to nStates(tagStates∞) ⊆ preTraces, because τ∞ starts with a state in

nStates. If τ∞ is finite, (5.13) implies that τ∞ = τn for some n ∈ ω, so τ∞ ∈ preTraces.

Now, let’s go back to our task of proving (5.13). Pick m. We claim that m∗ is the witness nm of

the existential quantification in (5.13). To prove our claim, consider n ≥ m∗. We need to show

that

∀k ∈ ω. 1 ≤ k ≤ m =⇒ proj(τn, k) = proj(τ∞, k) (5.14)

where the equality should be interpreted as both undefined or both defined and equal. (In the rest

of the proof, we use the same interpretation of equality.) By the definition of m∗, if 1 ≤ k ≤ m,

then k∗ ≤ m∗, so k∗ ≤ n. This implies that

proj(τk∗ , k) = proj(τn, k).

But by definition, proj(τ∞, k) = proj(τk∗ , k). From this, the desired (5.14) follows. �

Lemma 5.12. (Traces, dB) is complete.

Proof. Consider a Cauchy sequence {τn}n∈ω in Traces. Let τ∞ be the limit of this sequence in

preTraces, which exists because of Lemma 5.11. It remains to prove that τ∞ belongs to Traces.

By the definition of metric d and Lemma 5.10, we have that

∀m ∈ ω. ∃nm ∈ ω. ∀n ≥ nm. τ∞[m] = τn[m]. (5.15)

Thus, if τ∞ is finite, it has to be the same as some τn. So, it has to be in Traces, as desired.

Otherwise, τ∞ is infinite. In this case, (5.15) implies that all prefixes of τ∞ are also prefixes of

some traces. But, prefixes of traces always belong to O, by the definition of traces. Thus, all

prefixes of τ∞ are in O. This implies that τ∞ is a trace. �

We finish this section with a remark on unusual features of the metric space (Traces, dB). Firstly,

Traces does not include the empty sequence. Technically, this is because the empty sequence

makes it difficult to define a non-expansive sequencing operator. Secondly, all traces start with
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none-tagged states in nStates. This captures that we use states with call or return tags only

in the intermediate steps of computation, in order to mark call and return points of procedure

invocation. Finally, calls and returns in traces are well-bracketed, so we can talk about a pair of

matching call and return in a single trace. Furthermore, all calls in a finite trace have matching

returns in the trace. Our abstract semantics later will exploit these properties of traces to improve

the precision.

5.3.1.2 Full Closed Sets of Well-formed Traces

The concrete semantics in this chapter will use a restricted powerset of traces, whose elements

satisfy two conditions, called closedness and fullness. In this section, we will explain this re-

stricted powerset.

Before moving onto the explanation, we discuss the motivation behind the restriction. Recall that

in the previous chapter, we used the entire powerset of nonempty finite or infinite sequences of

none-tagged states to interpret commands in the concrete semantics. Unfortunately, we cannot

use the entire powerset of traces in this chapter, because the semantics here uses the metric-space

structure but the powerset of such traces do not form a complete metric space, when a standard

lifting of dA in (Traces, d) is used as a distance for trace sets.5 Technically, it is to get a good

mathematical structure, namely a complete metric space, that we consider only restricted sets of

traces.

A subset T0 ⊆ Traces of traces is closed if for all Cauchy sequences of traces in T0, their limits

belong to T0 as well. A trace set T0 ⊆ Traces is full if for every none-tagged state σ ∈ nStates,

there is a trace τ ∈ T0 starting with σ. Note that since nStates is not empty, a full trace set T0 is

also nonempty.

The semantic domain D for interpreting commands in our concrete semantics is the set of full

closed sets of traces.

D = Pfcl (Traces)

This domain has the lifted Baire Metric A.13:

d+
B(T, T ′) =

{
0 if T = T ′

2−max{n |T [n]=T ′[n]} otherwise

where T [n] is the result of taking the prefix of every trace in T (i.e., T = {τ [n] | τ ∈ T}).
The closedness ensures that the d just defined satisfies the axioms for being a metric. Also, the

5Concretely, the axiom
d+B(T0, T1) = 0 ⇐⇒ T0 = T1

breaks for some trace sets T0 and T1 and the lifted metric d.
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condition about being full allows us to meet the contractiveness requirement for procrun in our

framework, as will be shown later.

Our domain D is ordered by the subset relation ⊆. It has the top element with respect to this ⊆
order, which is the set Traces of all traces. It also has the join operator given by the set union.

We will now prove that

(D, d+
B,⊆,Traces) and ∪

are instantiations of the first and second components of our framework. We first define a slightly

simpler characterization of Cauchy sequences in (D, d), which we will use in the proofs of our

results.

Lemma 5.13. A sequence {Tn}n∈ω in D is Cauchy if and only if

∀m ∈ ω. ∃n ∈ ω. ∀n′ ≥ n. Tn′ [m] = Tn[m].

Proof. The proof is almost identical to that of Lemma 5.10, except that we replace τn, τn′ and

their m prefix projections by Tn, Tn′ and the m prefix projections of Tn and Tn′ . �

Next, we prove that (D, d+
B) is a complete metric space. In order to make the thesis self-

contained, we will reply only on elementary definitions of metric spaces in the proof. However,

we point out that the proof can be simplified, if one uses existing nontrivial results on metric

spaces (in particular Hahn’s theorem A.12 in Appendix A).

Lemma 5.14. (D, d+
B) is a metric space.

Proof. The symmetry of d+
B is immediate from the definition. Next, we show that

d+
B(T, T ′) = 0 ⇐⇒ T = T ′.

By the definition of d+
B , d+

B(T, T ) = 0 for all T ∈ D. The right-to-left direction of the equiva-

lence follows from this. For the other direction, suppose that d+
B(T, T ′) = 0. Pick τ ∈ T . Then,

for all n ∈ ω,

τ [n] ∈ T [n] = T ′[n].

This implies that

∀n ∈ ω. ∃τ ′n ∈ T ′. (τ ′n)[n] = τ [n].
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Thus, {τ ′n}n∈ω is a Cauchy sequence with τ as its limit. Since T ′ is closed and the sequence

{τ ′n}n∈ω is in T ′, the limit τ should be in T ′ as well. We have just shown that T ⊆ T ′. The

other inclusion can be proved similarly.

Finally, we prove that d satisfies the triangular inequality. In fact, we prove a stronger property

that for all T, T ′, T ′′ ∈ D,

d+
B(T, T ′) ≤ max(d+

B(T, T ′′), d+
B(T ′′, T ′)),

which is equivalent to

max{n | T [n] =T ′[n]} ≥ min
(
max{n | T [n] =T ′′[n]}, max{n | T ′′[n] =T ′[n]}

)
.

Let m be the value of the RHS of the above inequality. Then, T [m] = T ′′[m] and T ′′[m] =

T ′[m]. Thus, T [m] = T ′[m]. This means that the LHS of the above inequality should be at least

m. �

Lemma 5.15. For all Cauchy sequences {Tn}n∈ω in D and indices m, k ∈ ω, if

∀k′ ≥ k. Tk[m] = Tk′ [m],

then for all τ ∈ Tk, there exists a Cauchy sequence {τi}i∈ω in Traces such that

1. τ [m] = τi[m] for all i ∈ ω, and

2. the sequence is taken from an infinite subsequence of {Tn}n∈ω, i.e.,

∃{ki}i∈ω. (∀i ∈ ω. τi ∈ Tki) ∧ (∀i, j ∈ ω. i < j =⇒ ki < kj).

Proof. Let {Tn}n∈ω and m, k be the ones satisfying the conditions of the lemma. Pick τ from

Tk. Using these data, we will construct two desired sequences—the Cauchy sequence {τi}i∈ω

and the sequence {ki}i∈ω of indices. Note that since {Tn}n∈ω is Cauchy,

∀o ∈ ω. ∃no ∈ ω. ∀n ≥ no. Tno [o] = Tn[o].

Using no’s, we define the desired sequence of indices by

k1 = nm and ki+1 = max(n(m+i), ki + 1 ).
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Note that this sequence is strictly increasing. It remains to construct the other sequence {τi}i∈ω

of traces. We do this inductively. By the assumption on Tk and the choice of nm, we must have

that

Tk[m] = Tmax(k,nm)[m] = T(nm)[m] = T(k1)[m].

Hence,

τ [m] = τ ′[m] for some τ ′ ∈ T(k1).

We define the first element of the sequence by

τ1 = τ ′.

For the rest, we assume that τi is chosen from T(ki), and we inductively pick trace τi+1 from

T(ki+1) as follows. Since ki+1 > ki ≥ n(m+i−1), we have that

T(ki+1)[m+ i− 1] = Tn(m+i−1)
[m+ i− 1] = T(ki)[m+ i− 1].

Furthermore, τi is in T(ki). Thus, there must exist τ ′′ ∈ T(ki+1) such that

τi[m+ i− 1] = τ ′′[m+ i− 1].

We define τi+1 to be this τ ′′.

By construction, it is immediate that {τi}i∈ω is from the infinite subsequence {T(ki)}i∈ω of

{Tn}n∈ω. Furthermore, {τi}i∈ω is Cauchy, because

∀n ∈ ω. ∀i ≥ n. τi[m+ i− 1] = τi+1[m+ i− 1],

and so,

∀n ∈ ω. ∀i ≥ n. τn[n] = τi[n].

(Remember here that m ∈ ω and so m ≥ 1.) Finally, by construction, τ1[m] = τi[m] for all

i ∈ ω. But τ1[m] = τ ′[m] = τ [m]. Thus, τi[m] = τ [m] for all i ∈ ω, as desired. �

Proposition 5.16. (D, d+
B) is complete.
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Proof. Consider a Cauchy sequence {Tn}n∈ω in D. Define T∞ as follows:

T∞ = { lim
i→∞

τi | {τi}i∈ω is Cauchy ∧

∃{ki}i∈ω. (∀i ∈ ω. τi ∈Tki) ∧ (∀i, j ∈ω. i< j =⇒ ki<kj) }.

Firstly, we show that T∞ is closed. Consider a Cauchy sequence {αn}n∈ω in T∞. Let α∞ be

the limit of this sequence. To prove the closedness, we need to show that α∞ belongs to T∞.

Equivalently, we need to find a Cauchy sequence {τi}i∈ω such that

1. the limit of the sequence is α∞, and

2. the sequence is taken from an infinite subsequence of {Tn}n∈ω, i.e., it satisfies that

∃{ki ∈ ω}i∈ω. (∀i ∈ ω. τi ∈Tki) ∧ (∀i, j ∈ω. i< j =⇒ ki<kj).

Since {αn}n∈ω converges to α∞, we have that

∀m ∈ ω. ∃nm ∈ ω. ∀n′ ≥ nm. αn′ [m] = α∞[m].

For each m ∈ ω, we let

m∗ = max({nm′ | m′ ≤ m} ∪ {m}).

The maximum is used to ensure that −∗ is monotone with respect to ≤. Since αn is in T∞, the

definition of T∞ implies the existence of a Cauchy sequence {τni }i∈ω such that the limit of the

sequence is αn and the sequence satisfies that

∃{kni ∈ ω}i∈ω. (∀i∈ω. τni ∈T(kni )) ∧ (∀i, j ∈ω. i< j =⇒ kni <k
n
j ).

Thus,

∀n ∈ ω. ∀m ∈ ω. ∃in,m ∈ ω. ∀i′ ≥ in,m. τni′ [m] = αn[m].

For each m ∈ ω, define

m† = im∗,m

Also, construct an increasing sequence {ji}i∈ω of natural numbers by

j1 = 1† and ji+1 = min{ j′ | k(i+1)∗

(j′) > k
(i∗)
(ji)

∧ j′ ≥ (i+ 1)† }.
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Using these −∗ and {ji}i∈ω, we construct the required {τi}i∈ω as follows:

τi = τ
(i∗)
(ji)

Then, for all m ∈ ω and all i ≥ m,

τi[i] = τ
(i∗)
(ji)

[i] = α(i∗)[i] = α∞[i].

The first equality is just the unrolling of the definition of τi. The second equality holds, because

ji ≥ i† and so τ (i∗)
(ji)

[i] = α(i∗)[i]. The third equality follows from the definition of i∗. We have

just shown that τi[i] = α∞[i], and since i ≥ m, this implies

τi[m] = α∞[m].

Thus, {τi}i∈ω is a Cauchy sequence that converges to α∞. Furthermore, this sequence is taken

from an infinite subsequence of {Tn}n∈ω. Concretely, the indices of this infinite subsequence

are

k
(i∗)
(ji)

for all i ∈ ω.

By the choice of ji, the index sequence is strictly increasing: if i < l, then k(i∗)
(ji)

< k
(l∗)
(jl)

.

Secondly, we prove that T∞ is full. Note that this implies that T∞ ∈ D. Choose a none-tagged

state σ ∈ nStates. It is sufficient to construct a Cauchy sequence {τi}i∈ω such that

1. for all i ∈ ω, τi[1] is the singleton trace σ, and

2. there exists {ki}i∈ω satisfying that

∀i, j ∈ ω. τi ∈ T(ki) ∧ (i < j =⇒ ki < kj).

We will construct the desired sequence {τi}i∈ω using Lemma 5.15. Note that since {Tn}n∈ω is

Cauchy,

∃n1 ∈ ω. ∀n ≥ n1. Tn[1] = T(n1)[1].

Since all Tn’s are full, there must be a trace τ in T(n1) whose starting state is σ. Now, Lemma 5.15

implies the existence of a Cauchy sequence {τi}i∈ω such that

1. τi[1] = τ [1] for all i ∈ ω, and
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2. there exists {ki}i∈ω satisfying

∀i, j ∈ ω. τi ∈ T(ki) ∧ (i < j =⇒ ki < kj).

But, τi[1] = τ [1] means that τi[1] is the singleton trace σ. Thus, {τi}i∈ω is the sequence that we

are looking for.

Finally, we prove that T is the limit of {Tn}n∈ω. Pick m ∈ ω. We need to find nm ∈ ω such

that

∀n ≥ nm. Tn[m] = T∞[m].

Since {Tn}n∈ω is Cauchy, there exists k ≥ 1 such that

∀n ≥ k. Tn[m] = Tk[m].

We claim that k is the desired nm. Let n be an index such that n ≥ k. To show the inclusion

Tn[m] ⊇ T∞[m],

pick τ from T∞[m]. This means that τ = τ ′[m] for some τ ′ ∈ T∞. Then, by the definition

of T∞, there must be a Cauchy sequence {τi}i∈ω, that is taken from an infinite subsequence

{T(ki)}i∈ω, and that converges to τ ′. Thus,

∃j ∈ ω. τj ∈ T(kj) ∧ τj [m] = τ ′[m] ∧ (kj ≥ n).

Since Tn[m] = Tk[m] = T(kj)[m], there exists τ ′′ ∈ Tn such that

τ ′′[m] = τj [m] = τ ′[m] = τ.

Thus, τ ∈ Tn[m]. It remains to show the other inclusion

Tn[m] ⊆ T∞[m].

Pick τ from Tn[m]. This means that τ = τ ′[m] for some τ ′ ∈ Tn. By Lemma 5.15, there exists

a Cauchy sequence {τi}i∈ω such that

1. τi[m] = τ ′[m] for all i ∈ ω, and
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2. the sequence is taken from an infinite subsequence of {Tn}n∈ω.

By definition, the limit τ∞ of {τi}i∈ω should belong to T∞. Furthermore, since the first m-

prefixes of τi’s equal τ ′[m], we should also have that τ∞[m] = τ ′[m]. Since τ ′[m] = τ , it

follows that τ ∈ T∞[m], as desired. � Reference

page not

just equa-

tion number

Lemma 5.17. The condition (5.1) of our framework on the distance and the pre-order holds for

(D, d+
B,⊆,Traces).

Proof. Let T ∈ D and consider a Cauchy sequence {Tn}n∈ω in D such that Tn ⊆ T for all n.

Also, let T∞ be the limit of this sequence. We need to prove that T∞ ⊆ T . Pick τ from T∞.

Since T∞ is the limit of {Tn}n∈ω, we have that

∀m ∈ ω. ∃n ∈ ω. Tn[m] = T∞[m].

Hence, for all m ∈ ω, there exist nm and τ(nm) ∈ T(nm) such that

τ(nm)[m] = τ [m].

Because T(nm) is a subset of T , τ(nm) belongs to T as well. Furthermore, {τ(ni)}i∈ω is a Cauchy

sequence converging to τ . This is because for all m ∈ ω and k ≥ m, τ(nk)[k] = τ [k], so

τ(nk)[m] = τ [m].

Now, the closedness of T implies that the limit τ of the Cauchy sequence {τ(ni)}i∈ω in T should

belong to T as well. Since τ is chosen arbitrarily, this membership of τ to T means that T∞ ⊆ T ,

as desired. �

Lemma 5.18. The set union is the join operator (i.e., the least upper bound) of (D,⊆,Traces).

Proof. We first prove that ∪ is a well-defined operator on D. Pick T1, T2 ∈ D. Then, both T1

and T2 are full. This implies that their union T1 ∪ T2 is full as well. To show the closedness,

consider a Cauchy sequence {τn}n∈ω in T1∪T2. Then, there is an infinite subsequence {τkn}n∈ω

of {τn}n∈ω such that either all of τ ′kns belong to T1, or they all belong to T2. This implies that

the limit τ∞ of the original sequence {τn}n∈ω should be in T1 or T2. That is, the limit is in

T1 ∪ T2. We have just shown that T1 ∪ T2 is in D.
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Next, we show that ∪ is the join. This follows easily from the fact that the order on D is given

by the subset relation. �

5.3.1.3 Sequencing Operator

We define the sequencing operator seq : D ×D → D by

seq(T, T ′) = { τστ ′ | (τσ ∈ T ∩ tagStates+) ∧ (στ ′ ∈ T ′) } ∪ (T ∩ tagStates∞).

The operator takes two arguments T and T ′ in D, and returns a set consisting of two kinds of

traces: traces that have finite prefixes in the first argument T and suffices in the second T ′, and

infinite traces from the first T only.

Lemma 5.19. seq(T, T ′) consists of traces.

Proof. Pick τ from seq(T, T ′). It is immediate from the definition of seq that τ is a pre-trace.

We will show that τ satisfies the additional condition for traces as well. If τ belongs to T ∩

tagStates∞, it should be in T as well. This implies that τ is a trace. Suppose that τ 6∈ (T ∩

tagStates∞). Then, there exist τ0, σ0, τ1 such that

(τ0σ0 ∈ (T ∩ tagStates+)) ∧ (σ0τ1 ∈ T ′) ∧ τ = τ0σ0τ1.

Since σ0τ1 is a pre-trace, σ0 should be tagged with none . Furthermore, since τ0σ0 is a finite

trace, it has to be in W . We now do the case analysis depending on whether σ0τ1 is finite. If

σ0τ1 is finite, σ0τ1 has to be in W . Hence, τ = τ0σ0τ1 is a finite sequence belonging to W .

From this, it follows that τ is a trace. If σ0τ1 is infinite, all prefixes of σ0τ1 belong to O. Thus,

all prefixes of τ = τ0σ0τ1 also belong to O. This implies that τ is a trace. �

Lemma 5.20. For all T, T ′ ∈ D, seq(T, T ′) is in D, i.e., it is closed and full.

Proof. Let T, T ′ be trace sets in D. Firstly, we prove that seq(T, T ′) is full. Pick a none-tagged

state σ ∈ nStates. Since T is full, there is a trace τ in T that starts with σ. If τ is infinite, it

also belongs to seq(T, T ′), so we have just found a trace in seq(T, T ′) starting with σ. If τ is

finite, it must be of the form τ0σ0 for some none-tagged state σ0 ∈ nStates. This is because τ

is a finite pre-trace, so it should start and end with none-tagged states. But, T ′ is full. Hence,
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σ0τ
′ ∈ T ′ for some sequence τ ′ of tagged states. Now, the definition of seq(T, T ′) implies that

τ0σ0τ
′ ∈ seq(T, T ′).

Since τ0σ0τ
′ starts with σ, it is the trace that we are looking for.

Secondly, we show that seq(T, T ′) is closed. Consider a Cauchy sequence {τn}n∈ω in seq(T, T ′).

Let τ∞ be the limit of this sequence. We need to show that τ∞ ∈ seq(T, T ′). There are two

cases to consider.

The first case is that there is an infinite subsequence {τ(ni)}i∈ω of {τn}n∈ω such that

∀i ∈ ω. τ(ni) ∈ (T ∩ tagStates∞).

Since the original sequence {τn}n∈ω is Cauchy, the subsequence {τ(ni)}i∈ω is Cauchy as well.

Furthermore, the two sequences have the same limit τ∞. This limit has to be an infinite sequence,

because every member of {τ(ni)}i∈ω is infinite. It also belongs to T , since T is closed. Hence,

τ∞ ∈ (T ∩ tagStates∞) ⊆ seq(T, T ′).

The second case is that all elements of {τn}n∈ω except finitely many are from

{ τστ ′ | (τσ ∈ T ∩ tagStates+) ∧ (στ ′ ∈ T ′) }.

This means that there is some n0 ∈ ω such that

∀n ≥ n0. ∃τ0
n, σn, τ

1
n. (τn = τ0

nσnτ
1
n) ∧ (τ0

nσn ∈ T ∩ tagStates+) ∧ (σnτ
1
n ∈ T ′).

We sub-divide this case based on whether there is some u ∈ ω with

∀n ≥ n0. |τ0
nσn| ≤ u. (5.16)

Suppose that there exists such an upper bound u. Since {τn}n∈ω is Cauchy, this implies that

there is some n1 ≥ n0 such that

∀n ≥ n1. (τ0
nσn = τ0

n1
σn1).
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In this sub-case, {σnτ1
n}n≥n1 is also Cauchy, its limit τ ′∞ starts with σn, and it satisfies the

below relationship with the limit τ∞ of {τn}n∈ω:

τ0
n1
τ ′∞ = τ∞.

Note that the sequence {σnτ1
n}n≥n1 is in T ′, which is a closed set. Thus, τ ′∞ is in T ′. Because

τ ′∞ starts with σn1 and τn1σn1 is in T , we have that

τ∞ = τn1τ
′
∞ ∈ seq(T, T ′).

The other sub-case is that there does not exist u satisfying (5.16). In this sub-case, {τ0
nσn}n≥n0

becomes a Cauchy sequence in T with τ∞ as its limit. Since T is closed, τ∞ is in T . Also,

|τ0
nσn| goes to the infinity as n increases, so τ∞ belongs to T ∩ tagStates∞. Hence, τ∞ is in

seq(T, T ′), as desired. �

Lemma 5.21. The function seq is non-expansive.

Proof. By the definition of the distance d+
B onD, proving the non-expansive of seq is equivalent

to showing that for all T0, T
′
0, T1, T

′
1 in D and all m ∈ ω,

(T0[m] = T1[m] ∧ T ′0[m] = T ′1[m]) =⇒ (seq(T0, T
′
0)[m] = seq(T1, T

′
1)[m]).

Let T0, T
′
0, T1, T

′
1,m be the data in the above equivalent statement, and assume the condition of

the implication. We need to show that seq(T0, T
′
0)[m] = seq(T1, T

′
1)[m]. We will prove that

seq(T0, T
′
0)[m] ⊆ seq(T1, T

′
1)[m]. The other subset inclusion can be proved similarly. Pick

τ ∈ seq(T0, T
′
0)[m]. This means that

∃τ ′ ∈ seq(T0, T
′
0). τ ′[m] = τ.

Since τ ′ ∈ seq(T0, T
′
0), we have

(τ ′ ∈ T0 ∩ tagStates∞) ∨ (∃τ0, σ, τ
′
0. τ

′ = τ0στ
′
0 ∧ τ0σ ∈ T0 ∧ στ ′0 ∈ T ′0). (5.17)

Suppose that the first disjunct holds. Since T0[m] = T1[m], there is τ ′′ ∈ T1 such that

|τ ′′| ≥ m ∧ τ ′′[m] = τ ′[m] = τ.
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If τ ′′ is infinite, it is also in seq(T1, T
′
1). So, τ = τ ′′[m] ∈ seq(T1, T

′
1)[m] as desired. Consider

the other case that τ ′′ is finite. In this case, we note two facts. Firstly, since τ ′′ is a trace, it should

end with a none-tagged state, say, σ ∈ nStates. Secondly, since T1 is full, there is στ ′′′ ∈ T ′1
for some sequence τ ′′′ of tagged states. Hence, τ ′′τ ′′′ is in seq(T1, T

′
1). But |τ ′′| ≥ m, which

means that

(τ ′′τ ′′′)[m] = τ ′′[m] = τ.

So, τ is in seq(T1, T
′
1).

Now, suppose that the second disjunct of (5.17) holds. Let τ0, σ, τ
′
0 be the witnesses of the

existential quantification in (5.17). Since m ≥ 1, T0[m] = T1[m] and T ′0[m] = T ′1[m],

∃τ1, τ
′
1. τ1 ∈ T1 ∧ (στ ′1) ∈ T ′1 ∧ (τ0σ)[m] = τ1[m] ∧ (στ ′0)[m] = (στ ′1)[m].

Let m0 be |τ0σ|. If m0 ≥ m, we can ignore τ ′1, and complete the proof similarly as in the

previous case, just doing the case-analysis on whether τ1 is infinite or not. Suppose that m0 <

m. In this case,

τ1 = τ0σ ∧ τ ′0[m−m0] = τ ′1[m−m0].

Thus,

τ = τ ′[m] = (τ0σ)(τ ′0[m−m0]) = (τ1)(τ ′1[m−m0]) = (τ1τ
′
1)[m].

Since τ1τ
′
1 ∈ seq(T, T ′), this means that τ ∈ seq(T, T ′)[m]. �

Lemma 5.22. For all T ∈ D, if all traces in T have length at least 2 (i.e., ∀τ ∈ T. |τ | ≥ 2), the

specialization seq(T,−) by T is 1/2-contractive on D, i.e.,

∀T1, T2 ∈ D. d(seq(T, T1), seq(T, T2)) ≤ (1/2× d(T1, T2)).

Proof. Let T be a trace set satisfying the condition in the lemma. Pick T1, T2 from D. We need

to prove that:

d+
B(seq(T, T1), seq(T, T2)) ≤ (

1

2
× d+

B(T1, T2)). (5.18)

Let A and B be trace sets defined by

A = { τστ ′ | (τσ ∈ T ∩ tagStates+) ∧ (στ ′ ∈ T1) },

B = {τστ ′ | (τσ ∈ T ∩ tagStates+) ∧ (στ ′ ∈ T2) }.
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Then, by the definition of seq,

seq(T, T1) = A ∪ (T ∩ tagStates∞) and seq(T, T2) = B ∪ (T ∩ tagStates∞).

Thus, to prove (5.18), it is sufficient to show that for all m ∈ ω,

T1[m] =T2[m] =⇒
(
(A∪(T∩tagStates∞))[m+1] = (B∪(T∩tagStates∞))[m+1]

)
. (5.19)

Suppose that T1[m] = T2[m]. We will show that A[m+ 1] = B[m+ 1]. From this, the equality

in the conclusion of the implication (5.19) follows, because the “−[m+ 1]” operator distributes

over ∪.

Here we will show only one inclusion A[m+ 1] ⊆ B[m+ 1]; the other inclusion can be shown

similarly. Suppose that we have a trace τ ∈ A[m + 1]. This means that there is a trace τ ′ ∈ A

such that

τ = (τ ′[m+ 1]).

By the definition of A,

∃τ0, σ0, τ1. (τ ′ = τ0σ0τ1) ∧ (τ0σ0 ∈ T ∩ tagStates+) ∧ (σ0τ1 ∈ T1). (5.20)

Since T1[m] = T2[m] by assumption (and m ≥ 1), we also have that

∃τ2. (σ0τ2 ∈ T2) ∧ (σ0τ2[m] = σ0τ1[m]). (5.21)

Note that τ0σ0τ2 ∈ B by the definition of B, (5.20) and (5.21). Since τ = (τ ′[m + 1]) and

τ ′ = τ0σ0τ1, we can show the desired τ ∈ B[m+ 1], if we prove that

(τ0σ0τ1)[m+ 1] = (τ0σ0τ2)[m+ 1]. (5.22)

Now, recall that T contains traces of length at least 2, so |τ0σ0| ≥ 2. This means that the

second conjunct of (5.21) implies (5.22). �

Lemma 5.23. The operator seq is ⊆-monotone

Proof. In the definition of seq(T, T ′), the argument trace sets T and T ′ appear only in positive
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positions, i.e., they do not occur under the left of implication or under negation. The monotonic-

ity follows from this. �

5.3.1.4 Conditional Statement

For each boolean condition B, we define the semantic conditional statement ifB in a standard

way:

ifB(T0, T1) = {στ | (στ ∈ T0 ∧ [[B]](first(σ)) = true)

∨ (στ ∈ T1 ∧ [[B]](first(σ)) = false)}

Here we assume the semantics [[B]] of boolean expressions B given by maps from untagged

states (i.e., those in Vars→ Rationals) to {true, false}. Note that since ifB(T0, T1) is a subset of

T0 ∪ T1, it contains traces only.

Lemma 5.24. For all T0, T1 ∈ D, the trace set ifB(T0, T1) is in D, i.e., it is closed and full.

Proof. Let T = ifB(T0, T1). We consider the closedness property of T first. Consider a Cauchy

sequence {τi}i∈ω in T . By the definition of Cauchy sequence, there exists an index n in ω such

that

∀i ≥ n. τi[1] = τn[1].

Let σ be τn[1]. If [[B]](first(σ)) = true, all the elements of {τi}i∈ω except the first n− 1 belong

to T0 and have the same σ as their starting state. This implies that the limit τ∞ of the sequence

belongs to T0 and it has σ as its starting state. But [[B]](first(σ)) = true by assumption. Thus,

τ∞ is also in T . The other case that [[B]](first(σ)) = false is similar.

Next, we prove that T is full. Pick a none-tagged state σ ∈ nStates. We consider the case that

[[B]](first(σ)) = false only, because the other case [[B]](first(σ)) = true can be proved similarly.

Since T1 is full, there is a trace of the form στ ∈ T1. Since [[B]](first(σ)) = false, the trace στ

is also included in T . We have just found a trace in T that starts with σ. �

Lemma 5.25. The function ifB is non-expansive.

Proof. By the definition of distance d+
B on D, proving the non-expansiveness is equivalent to

showing that for all (T0, T1) and (T ′0, T
′
1) in D ×D and all m ∈ ω,

(T0[m] = T ′0[m] ∧ T1[m] = T ′1[m]) =⇒ (ifB(T0, T1)[m] = ifB(T ′0, T
′
1)[m]).
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Pick στ from ifB(T0, T1)[m]. Since m ≥ 1, this means that there exists στ ′ in ifB(T0, T1) such

that

στ = (στ ′)[m].

If [[B]](first(σ)) = true, the trace στ ′ is from T0. Since T0[m] = T ′0[m] (and m ≥ 1), there is

στ ′′ ∈ T ′0 such that

(στ ′′)[m] = (στ ′)[m] = στ.

Furthermore, since [[B]](first(σ)) = true, this trace στ ′′ should be in ifB(T ′0, T
′
1) as well. Putting

all these together, we can conclude that

στ = (στ ′′)[m] ∈ ifB(T ′0.T
′
1).

The case that [[B]](first(σ)) = false can be proved similarly. Hence,

ifB(T0, T1)[m] ⊆ ifB(T ′0, T
′
1)[m]

Using a similar argument, we can prove the other inclusion. �

Lemma 5.26. The operator ifB is monotone with respect to the subset order ⊆.

Proof. In the definition of ifB(T0, T1), the argument trace sets T0 and T1 are used only positively.

From this, the monotonicity of the lemma follows. �

5.3.1.5 Function procrun for Procedure Invocations

For a none-tagged state σ and a procedure name f ∈ PNames, let σ(f,call) and σ(f,ret) be, re-

spectively, (first(σ), (f, call)) and (first(σ), (f, ret)). That is, this superscript notation replaces

the tag of none-tagged states by the one for procedure call or return. Using this tag replacement,

we define the procrun function for procedure f :

procrunf (T ) = { σσ(f,call)σ(f,ret)σ | σ ∈ T }

∪ { σσ(f,call)τσ
(f,ret)
1 σ1 | στσ1 ∈ (T ∩ tagStates+) }

∪ { σσ(f,call)τ | στ ∈ (T ∩ tagStates∞) }.

Lemma 5.27. procrunf (T ) consists of traces only.
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Proof. Note that the definition of procrunf (T ) is given by the union of three sets. The first two

sets there consist of finite pre-traces, because all traces in T start and end with none-tagged

states and so, σ, σ1 in the description of the first two sets have none as their tags. Furthermore,

they are subsets ofW , because all finite traces in T belong toW . Hence, the sets contain traces

only. For the third set in the definition of procrunf (T ), we note that all pre-traces there are

infinite, because again traces in T start with none-tagged states and so σ in the definition of the

third set should be tagged with none . Furthermore, all prefixes of infinite traces in T belong to

O, so that all prefixes of traces in the third set should be in O as well. From these observation,

it follows that procrunf (T ) consists of traces. �

Lemma 5.28. For all procedures f ∈ PNames and T ∈ D, procrunf (T ) belongs to D. That

is, it contains traces only, and it is full and closed. Furthermore, for all f ∈ PNames, function

procrunf (−) is 1/2-contractive and monotone.

Proof. Pick f ∈ PNames and T ∈ D. Firstly, we prove that procrunf (T ) is full and closed. Let

prologf = { σσ(f,call)σ | σ ∈ nStates },

epilogf = { σσ(f,ret)σ | σ ∈ nStates }.

Note that these sets consist of pre-traces, not traces. But,

procrunf (T ) = seq(seq(prologf , T ), epilogf )

when we use the definition of seq for sets of pre-traces as well. Furthermore, the proof of

Lemma 5.20 does not rely on the fact that its arguments contain traces only, so it also works

when we change the lemma such that the arguments of seq are full closed sets of pre-traces.

Hence, to show that procrunf (T ) is full and closed, it is sufficient to prove that prologf and

epilogf are full and closed. Note that all sequences in prologf or epilogf have length 3. So,

every Cauchy sequence in the sets converges to the n-th element in the sequence for some

n ∈ ω, which means that prologf and epilogf are closed. The remaining condition that prologf

and epilogf are full is an immediate consequence of their definitions.

Secondly, we prove that procrunf (−) is 1
2 -contractive and monotone. Recall that procrunf (T )

is seq(seq(prologf , T ), epilogf ) for all T . We again rely on the observation that the proofs of

Lemmas 5.21 and 5.22 can be generalized to full closed sets of pre-traces. Both proofs are inde-

pendent of the fact that the arguments of seq consist of traces. They work equally well, when we
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change the lemmas such that seq takes full closed sets of pre-traces as its parameters. Hence,

the generalization of Lemma 5.21 and 5.22 implies the 1/2-contractiveness of procrunf (−),

because every pre-trace in prologf has length greater than 2. The remaining monotonicity con-

dition is immediate from the definition of procrunf (−). �

5.3.1.6 Interpretation of Atomic Commands

In this concrete semantics, we interpret atomic commands as follows:

trans(x := E) = { σσ′ | σ, σ′ ∈ nStates ∧ first(σ′) = first(σ)[x 7→ [[E]]first(σ)] }

trans(x := ∗) = { σσ′ | σ, σ′ ∈ nStates ∧ first(σ′) = first(σ)[x 7→ r] ∧ r ∈ Rationals }

In the interpretation, we assume the standard semantics [[E]] for expressions E, given by a map

from untagged states to rational numbers.

Lemma 5.29. Both trans(x := E) and trans(x := ∗) are in D.

Proof. From the definitions of trans, it is immediate that trans(x := E) and trans(x := ∗)

consist of traces and that they are full. For the closedness, we note that trans(x := E) and

trans(x := ∗) contain traces of size 2. Thus, every Cauchy sequence {τn}n∈ω in those sets

should contain some τi that is the limit of the sequence. From this property of Cauchy sequence,

the closedness follows. �

5.3.1.7 Liveness Property

We say that a trace τ includes an infinite subsequence of open calls if there exists {τnσn}n∈ω
such that

1. τ = τ1σ1τ2σ2τ3σ3 . . . τnσn . . .,

2. for all i ∈ ω, there exists some f ∈ PNames such that second(σi) = (f, call), and

3. for all i ∈ ω, the corresponding return for σi does not appear in τ after σi, i.e., the return

does not occur in the sequence τi+1σi+1τi+2σi+2 . . ..
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E ::= r | x | ‘x | x′ | E + E | r × E
P ::= E = E | E 6= E | E < E | E > E | E ≤ E | E ≥ E
ϕ ::= P | true | ϕ ∧ ϕ | false | ϕ ∨ ϕ | ∃x′. ϕ

FIGURE 5.4: Syntax for Linear Constraints. r represents rational numbers

We specify a desired liveness property of (semantic) commands, using the following subset

LIVPROPERTY of D:6

T ∈ LIVPROPERTY ⇐⇒

For all τ ∈ T , the trace τ does not include an infinite subsequence of open calls.

5.3.2 Abstract Semantics with Linear Ranking Functions

In this section, we will define an instance abstract semantics of our framework. The instance

is based on linear ranking functions, and it gives an abstract interpreter for proving program

termination.

Recall that linear ranking functions are also used in the abstract interpreters in Chapter 4. How-

ever, there will be noticeable differences between the abstract semantics in this section and the

abstract interpreters in Chapter 4, because the former has to deal with new requirements coming

from the metric space structure of the concrete semantics. For instance, when the abstract do-

mains in Chapter 4 are adjusted to the setting of this chapter, elements in the adjusted domains

mean (i.e., concretize into) non-closed sets of traces, unless they are >. This means that the

abstract interpreters from those domains and the framework of this chapter cannot prove ter-

mination of any programs. In order to prove the termination of a program, an abstract domain

should find non-> pre-fixpoints of recursive procedures in the programs.

The abstract semantics in this section is built using the syntax defined in Figure 5.4 where ϕ

expresses linear constraints. Note that the linear constraints can use three kinds of variables:

normal program variables x; pre-primed ones ‘x for denoting the value of x before running a

program; primed ones x′ that can be existentially quantified. We assume that the set Vars of

normal variables and the set ‘Vars of pre-primed variables are finite and that there is an one-to-

one correspondence between Vars and ‘Vars, which maps x to ‘x.

Let LinForm be the set of formulas ϕ that do not contain primed variables. Each ϕ ∈ LinForm

defines a relation from untagged states with pre-primed variables (i.e., ‘Vars → Rationals) to
6In general, the property is different from the usual termination requirement that all traces in T should be finite.

Some T ∈ LIVPROPERTY could contain an infinite trace, as long as the trace does not have an infinite subsequence
of open calls. However, if we restrict our attention to T = [[C]]η of some command C with no free procedure names,
the membership T ∈ LIVPROPERTY does imply that T consists of finite traces only. This is because every infinite
trace in such T ’s includes an infinite subsequence of open calls.
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untagged states with normal variables (i.e., ‘Vars → Rationals). This means that the semantics

of a formula ϕ in LinForm is given by the satisfaction relation

(‘s, s) |= ϕ,

where ‘s is an element in ‘Vars → Rationals. The satisfaction relation |= is standard, so we

omit it in this section. For ϕ,ψ ∈ LinForm, we write ϕ |= ψ to express that for all (‘s, s), if

(‘s, s) |= ϕ, then (‘s, s) |= ψ.

Define TLinForm to be a subset of LinForm consisting of total formulas:

TLinForm =

{ ϕ ∈ LinForm | ∀‘s ∈ (‘Vars→ Rationals). ∃s ∈ (Vars→ Rationals). (‘s, s) |= ϕ }.

We assume a sound but possibly-incomplete theorem prover that can answer the queries of the

following types:

ϕ ` ψ, ϕ ` false, ` ∀ ‘X. ∃X.ϕ.

where ‘X andX are the sets of free pre-primed variables and normal variables in ϕ, respectively.

Note that by asking the query of the last type, we can use a prover to check, soundly, whether a

formula ϕ belongs to TLinForm.

By using what we have defined or assumed so far, we define the abstract domainA and its subset

At of total abstract elements as follows:

A = LinForm× LinForm× LinForm,

At = TLinForm× LinForm× LinForm

The element (false, false, false) in A serves the role of ⊥, and (true, true, true) the role of >.

The algorithm for soundly checking the totality of abstract elements is defined using the assumed

prover as follows:

checktot(ϕ1, ϕ2, ϕ3) =

 true if ` ∀ ‘X.∃X.ϕ1

unknown otherwise

where ‘X and X are the sets of free pre-primed and normal variables in ϕ1.

The meaning of each total abstract element is given by the concretization map γ. To describe

γ, we need to introduce some notations and terminologies. For a tagged state σ, let ‘σ be the

one obtained from σ by renaming normal variables by corresponding pre-primed ones. For each

trace τ , define first(τ) and last(τ) to be the first and the last states of a trace τ ; if τ is infinite,

last(τ) is not defined. Write σ ∈ τ to mean that σ is a tagged state appearing in τ , and iscall(σ)
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to mean that the tag for σ is a procedure call:

iscall(σ) ⇐⇒ ∃f ∈ PNames. (second(σ) = (f, call)).

Finally, for all tagged states σ1, σ2 in a trace τ , we say that σ1 is an open call with respect to σ2 in

τ , denoted open(σ1, σ2, τ), if both σ1 and σ2 are tagged with procedure calls, σ1 appears strictly

before σ2 in τ but the corresponding return for σ1 does not appear before σ2. The concretization

function is defined as follows:

γ(ϕ1, ϕ2, ϕ3) =

{ τ ∈Traces | (τ ∈ tagStates+ =⇒ (‘first(first(τ)), first(last(τ))) |= ϕ1) ∧

(∀σ ∈ τ. iscall(σ) =⇒ (‘first(first(τ)), first(σ)) |= ϕ2) ∧

∀σ1, σ2. open(σ1, σ2, τ) =⇒ (‘first(σ1), first(σ2)) |= ϕ3 }.

Lemma 5.30. For every (ϕ1, ϕ2, ϕ3) ∈ A, we have that

(ϕ1, ϕ2, ϕ3) ∈ At =⇒ γ(ϕ1, ϕ2, ϕ3) ∈ D.

Proof. Consider (ϕ1, ϕ2, ϕ3) in At. Let T be γ(ϕ1, ϕ2, ϕ3). Firstly, we prove that T is full.

Since (ϕ1, ϕ2, ϕ3) ∈ At, its first component ϕ1 should be total:

∀‘s ∈ (‘Vars→ Rationals). ∃s ∈ (Vars→ Rationals). (‘s, s) |= ϕ1.

This implies that for every none-tagged state σ0, there exists a none-tagged state σ1 such that

(‘first(σ0), first(σ1)) |= ϕ1.

Furthermore, when σ0σ1 is viewed as a trace, it does not contain any procedure calls, so it

satisfies the requirements imposed by ϕ2 and ϕ3. Hence, σ0σ1 is in T . Note that σ0 is chosen

arbitrarily. Hence, we have just shown that T is full.

Next, we show that T is closed. Let {τn}n∈ω be a Cauchy sequence in T , and let τ∞ be the limit

of the sequence. We will prove that τ∞ is in T . If τ∞ is finite, it has to be the same as some

τn in the sequence. Thus, τ∞ is in T . Suppose that τ∞ is infinite. We have to prove that τ∞

satisfies the two requirements imposed by ϕ2 and ϕ3. To discharge the requirement from ϕ2,

pick σ ∈ τ∞ such that the tag of σ is a procedure call. Let m be the position of σ in the trace

τ∞. Then, since τ∞ is the limit of {τn}n∈ω, there exists τn such that τn[m] = τ∞[m]. But, τn
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is in T , and so,

(‘first(first(τn)), first(σ)) |= ϕ2.

The LHS of |= is the same as (‘first(first(τ∞)), first(σ)). Hence, the requirement from ϕ2 holds

for τ∞. Now, it remains to prove that τ∞ satisfies the requirement from ϕ3. Pick σ1, σ2 such

that open(σ1, σ2, τ∞). Let m be the position of σ2 in the trace τ∞. Again, we use the fact that

τ∞ is the limit of {τn}n∈ω, so there exists τn such that τn[m] = τ∞[m], which implies that

open(σ1, σ2, τn). Thus,

(‘first(σ1), first(σ2)) |= ϕ3.

This completes the proof that τ∞ satisfies the condition for ϕ3. �

Having defined the abstract domain we now turn our attention to the abstract operators of our

language, and prove that they meet the requirements of our framework.

5.3.2.1 Abstract Sequencing Operator

To define an abstract sequencing operator, we need to define the relational composition of for-

mulas ϕ,ψ ∈ LinForm:

ϕ;ψ = ∃Y ′.(ϕ[Y ′/X] ∧ ψ[Y ′/‘X]),

where X and ‘X respectively contain normal variables in ϕ and pre-primed variables in ψ, Y ′

is the set of fresh primed variables, and the cardinalities of these three sets are the same so

that the substitution in ϕ;ψ is well-defined. For instance, (‘x ≥ x); (‘x + 1 = y) becomes

∃x′. (‘x ≥ x′)∧ (x′+1 = y), which means the relational composition of two relations (‘x ≥ x)

and (‘x+ 1 = y).

We define the abstract sequencing as follows:

seq]
(
(ϕ1, ϕ2, ϕ3), (ψ1, ψ2, ψ3)

)
=
(
ϕ1;ψ1, ϕ2 ∨ (ϕ1;ψ2), ϕ3 ∨ ψ3

)
.

The following two lemmas show that seq] satisfies the conditions from our framework.

Lemma 5.31. If both (ϕ1, ϕ2, ϕ3) and (ψ1, ψ2, ψ3) are in At, their sequential composition

seq]
(
(ϕ1, ϕ2, ϕ3), (ψ1, ψ2, ψ3)

)
is in At as well.

Proof. Suppose that (ϕ1, ϕ2, ϕ3) and (ψ1, ψ2, ψ3) are in At. This means that both ϕ1 and ψ1

belong to TLinForm. Then, ϕ1;ψ1 is also in TLinForm, because the −;− operator for formulas
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means the composition of state relations and the composition of two total relations is total.

Hence,

seq]
(
(ϕ1, ϕ2, ϕ3), (ψ1, ψ2, ψ3)

)
=
(
ϕ1;ψ1, ϕ2 ∨ (ϕ1;ψ2), ϕ3 ∨ ψ3

)
belongs to At as well. �

Lemma 5.32. For all (ϕ1, ϕ2, ϕ3) and (ψ1, ψ2, ψ3) in At, we have that

seq
(
γ(ϕ1, ϕ2, ϕ3), γ(ψ1, ψ2, ψ3)

)
⊆ γ

(
seq]

(
(ϕ1, ϕ2, ϕ3), (ψ1, ψ2, ψ3)

) )
.

Proof. Let T0 = γ(ϕ1, ϕ2, ϕ3) and T1 = γ(ψ1, ψ2, ψ3). Pick a trace τ from seq(T0, T1). By

the definition of seq],

seq]
(
(ϕ1, ϕ2, ϕ3), (ψ1, ψ2, ψ3)

)
=
(
ϕ1;ψ1, ϕ2 ∨ (ϕ1;ψ2), ϕ3 ∨ ψ3

)
.

Hence, it suffices to prove that τ satisfies the three requirements in the definition of γ, which are

determined by (ϕ1;ψ1), ϕ2 ∨ (ϕ1;ψ2), and (ϕ3 ∨ψ3). To do this, we do the case analysis on τ .

1. The first case is that τ = τ0στ1 for some finite trace τ0σ in T0 and a trace στ1 in T1. Let’s

start with the first requirement given by ϕ1;ψ1:

τ ∈ tagStates+ =⇒ (‘first(first(τ)), first(last(τ))) |= (ϕ1;ψ1), (5.23)

Note that when τ is infinite, the requirement holds vacuously. Suppose that τ is finite. In

this case, the suffix στ1 is finite as well. Since τ0σ ∈ T0, στ1 ∈ T1 and both traces are

finite, these two traces satisfy the below condition imposed by ϕ1 and ψ1 in the definition

of γ:

(‘first(first(τ0σ)), first(σ)) |= ϕ1 ∧ (‘first(σ), first(last(στ1))) |= ψ1.

This implies that

(‘first(first(τ0σ)), first(last(στ1))) |= (ϕ1;ψ1), (5.24)

because the −;− operator for formulas models relational composition correctly. But

first(τ0σ) = first(τ) and last(τ) = last(στ1). Thus, (5.23) follows from (5.24).
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Next, we prove the second requirement given by ϕ2 ∨ (ϕ1;ψ2):

∀σ0 ∈ τ. iscall(σ0) =⇒ (‘first(first(τ)), first(σ0)) |= (ϕ2 ∨ (ϕ1;ψ2)). (5.25)

Note that σ0 appears in the prefix τ0σ or in the suffix στ1. If the former holds,

(‘first(first(τ)), first(σ0)) = (‘first(first(τ0σ)), first(σ0)) |= ϕ2.

Hence, (5.25) holds. Now, suppose that σ0 appears in the suffix στ1. Since στ1 satisfies

the second requirement on ψ2,

(‘first(first(στ1)), first(σ0)) |= ϕ2. (5.26)

Furthermore, since τ0σ satisfies the requirement from ϕ1,

(‘first(first(τ0σ)), first(last(τ0σ))) |= ϕ1. (5.27)

The desired (5.25) follows from (5.26) and (5.27), because the sequential composition

ϕ1;ψ2 precisely means the relational composition.

Finally, we show the third requirement ϕ3∨ψ3. Pick σ1 and σ2 such that open(σ1, σ2, τ).

We should show that

(‘first(σ1), first(σ2)) |= (ϕ3 ∨ ψ3). (5.28)

Note that τ = τ0στ1 for τ0σ in T0 and στ1 in T1. Furthermore, since τ0σ is finite, if a

state in τ0σ is tagged with a procedure call, the corresponding return should appear in τ0σ

as well, because this is one of the conditions in the definition of the concrete semantic

domain D. Hence, either the states σ1 and σ2 tagged with procedure calls appear in τ0σ,

or they both appear in στ1. In the first case,

(‘first(σ1), first(σ2)) |= ϕ3, (5.29)

because τ0σ satisfies the requirement regarding two call states. Similarly, in the second

case, we have that

(‘first(σ1), first(σ2)) |= ψ3. (5.30)

The desired (5.28) follows from (5.29) and (5.30).
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2. The second case is that τ is an infinite trace from T0. In this case, the first requirement

given by (ϕ1;ψ1) holds vacuously. The other two requirements also hold for a simple

reason. Since the trace τ is in T0, it satisfies the second and third requirements regarding

ϕ2 and ϕ3. But, we have that

ϕ2 |= ϕ2 ∨ (ϕ1;ψ2)

and

ϕ3 |= ϕ3 ∨ ψ3.

The second and third requirements are monotone with respect to formulas. Thus, τ also

satisfies the two requirements given by weaker formulas ϕ2 ∨ (ϕ1;ψ2) and ϕ3 ∨ ψ3.

�

5.3.2.2 Abstract Join

We define the abstract join operator t] as follows:

(ϕ1, ϕ2, ϕ3) t] (ψ1, ψ2, ψ3) = (ϕ1 ∨ ψ1, ϕ2 ∨ ψ2, ϕ3 ∨ ψ3).

Lemma 5.33. If both (ϕ1, ϕ2, ϕ3) and (ψ1, ψ2, ψ3) are in At, their join

(ϕ1, ϕ2, ϕ3) t] (ψ1, ψ2, ψ3)

is also in At.

Proof. Suppose that both (ϕ1, ϕ2, ϕ3) and (ψ1, ψ2, ψ3) are in At. This means that ϕ1, ψ1 ∈

TLinForm. To prove this lemma, it suffices to show that ϕ1 ∨ ψ1 ∈ TLinForm. But,

ϕ1 |= ϕ1 ∨ ψ1.

Thus, from the totality of ϕ1 (i.e., ϕ1 ∈ TLinForm), it follows that ϕ1 ∨ ψ1 is total as well. �

Lemma 5.34. For all (ϕ1, ϕ2, ϕ3) and (ψ1, ψ2, ψ3) in At, we have that

γ(ϕ1, ϕ2, ϕ3) ∪ γ(ψ1, ψ2, ψ3) ⊆ γ
(

(ϕ1, ϕ2, ϕ3) t] (ψ1, ψ2, ψ3)
)
.
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Proof. We will show that γ(ϕ1, ϕ2, ϕ3) is a subset of the RHS of the claimed inclusion in the

lemma. The other case can be proved similarly. Pick a trace τ from γ(ϕ1, ϕ2, ϕ3). Then, for all

i ∈ {1, 2, 3}, We have that

ϕi |= ϕi ∨ ψi.

But, γ is monotone with respect to the implication order between formulas. Thus, from our

assumption that τ ∈ γ(ϕ1, ϕ2, ϕ3), the desired conclusion

τ ∈ γ((ϕ1, ϕ2, ϕ3) t] (ψ1, ψ2, ψ3))

follows. �

5.3.2.3 Abstract Conditional Statement

The abstract conditional operator is defined by

if]B((ϕ1, ϕ2, ϕ3), (ψ1, ψ2, ψ3)) =

let B1 = preprime(B) and B2 = preprime(neg(B))

in
(

(B1 ∧ ϕ1) ∨ (B2 ∧ ψ1), (B1 ∧ ϕ2) ∨ (B2 ∧ ψ2), ϕ3 ∨ ψ3

)
.

Here preprime(B) renames all the variables with the corresponding pre-primed variables, and

neg(B) is the negation of B where ¬ is removed by being pushed all the way down to atomic

predicates.

Lemma 5.35. If both (ϕ1, ϕ2, ϕ3) and (ψ1, ψ2, ψ3) are in At, the conditional statement

if]B
(
(ϕ1, ϕ2, ϕ3), (ψ1, ψ2, ψ3)

)
is in At as well.

Proof. Suppose that both (ϕ1, ϕ2, ϕ3) and (ψ1, ψ2, ψ3) are in At. This means that ϕ1, ψ1 ∈

TLinForm. To prove this lemma, it suffices to show that

(B1 ∧ ϕ1) ∨ (B2 ∧ ψ1) ∈ LinForm, (5.31)

where B1 and B2 are defined as in the lemma. Note that B2 is equivalent to ¬B1. Thus, for

all ‘s in ‘Vars → Rationals, ‘s satisfies B1 or B2. In the first case, the totality of ϕ1 (i.e.,
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ϕ1 ∈ TLinForm) implies that

∃s ∈ (Vars→ Rationals). (‘s, s) |= (B1 ∧ ϕ1) ∨ (B2 ∧ ψ1).

In the second case, the same conclusion follows from the totality of ψ1. Since ‘s is chosen

arbitrarily, we have just shown the required (5.31). �

Lemma 5.36. For all (ϕ1, ϕ2, ϕ3) and (ψ1, ψ2, ψ3) in At, we have that

ifB

(
γ(ϕ1, ϕ2, ϕ3), γ(ψ1, ψ2, ψ3)

)
⊆ γ

(
if]B
(

(ϕ1, ϕ2, ϕ3), (ψ1, ψ2, ψ3)
) )
.

Proof. Pick (ϕ1, ϕ2, ϕ3) and (ψ1, ψ2, ψ3) from At. Let

A = (ϕ1, ϕ2, ϕ3), A′ = (ψ1, ψ2, ψ3), B1 = preprime(B), B2 = preprime(neg(B)).

We will show that every τ ∈ ifB(γ(A), γ(A′)) belongs to γ(if]B(A,A′)). Choose an arbitrary τ

from ifB(γ(A), γ(A′)), and let σ be first(τ). Then, [[B]](first(σ)) = true, or [[B]](first(σ)) =

false. In the proof, we will consider the former case only, since the latter can be proved similarly.

Suppose that [[B]](first(σ)) = true. Then, for all s ∈ (Vars→ Rationals),

(‘first(σ), s) |= B1. (5.32)

Furthermore, by the definition of ifB and the assumption that [[B]](first(σ)) = true, the trace τ

should be in γ(A), which means that

(τ ∈ tagStates+ =⇒ (‘first(first(τ)), first(last(τ))) |= ϕ1) and

(∀σ ∈ τ. iscall(σ) =⇒ (‘first(first(τ)), first(σ)) |= ϕ2) and

(∀σ1, σ2. open(σ1, σ2, τ) =⇒ (‘first(σ1), first(σ2)) |= ϕ3).

(5.33)

From (5.32) and (5.33), the below property follows:

(τ ∈ tagStates+ =⇒ (‘first(first(τ)), first(last(τ))) |= (B1 ∧ ϕ1) ∨ (B2 ∧ ψ1)) and

(∀σ ∈ τ. iscall(σ) =⇒ (‘first(first(τ)), first(σ)) |= (B1 ∧ ϕ2) ∨ (B2 ∧ ψ2)) and

(∀σ1, σ2. open(σ1, σ2, τ) =⇒ (‘first(σ1), first(σ2)) |= ϕ3 ∨ ψ3).

Thus, τ is in γ(if]B(A,A′)), as desired. �
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5.3.2.4 Function procrun] for Abstract Procedure Invocations

For a subset X ⊆ Vars, let eqX be the equality on the variables in X and the corresponding

pre-primed ones:

eqX =
∧
x∈X

(‘x = x).

We define an abstract wrapper function for procedures as follows:

procrun]

f( ϕ1, ϕ2, ϕ3 ) = ( ϕ1, eqVars ∨ ϕ2, ϕ2 ∨ ϕ3 ).

Lemma 5.37. If (ϕ1, ϕ2, ϕ3) is in At, so is procrun]

f(ϕ1, ϕ2, ϕ3).

Proof. Suppose that (ϕ1, ϕ2, ϕ3) is in At. This means that ϕ1 is total, i.e., it belongs to

TLinForm. Since the first component of procrun]

f(ϕ1, ϕ2, ϕ3) is again ϕ1, the totality of ϕ1

implies that procrun]

f(ϕ1, ϕ2, ϕ3) is in At, as desired. �

Lemma 5.38. For all f ∈ PNames and all (ϕ1, ϕ2, ϕ3) in At, we have that

procrunf
(
γ(ϕ1, ϕ2, ϕ3)

)
⊆ γ

(
procrun]

f(ϕ1, ϕ2, ϕ3)
)
.

Proof. Pick (ϕ1, ϕ2, ϕ3) ∈ At. Consider a trace τ in procrunf (γ(ϕ1, ϕ2, ϕ3)). We need to

prove that

τ ∈ γ
(

procrun]

f(ϕ1, ϕ2, ϕ3)
)

= γ(ϕ1, eqVars ∨ ϕ2, ϕ2 ∨ ϕ3).

Recall that procrunf is defined to be the disjunction of three cases. In all three cases, there is

some trace τ1 ∈ γ(ϕ1, ϕ2, ϕ3) such that

1. first(τ1) = first(τ), and

2. if τ is finite, so is τ1 and last(τ) = last(τ1).

Furthermore, τ1 satisfies the first requirement in the definition of γ(ϕ1, ϕ2, ϕ3), which is given

by ϕ1. Hence, τ also satisfies the first requirement of γ(procrun]

f(ϕ1, ϕ2, ϕ3)), which is again

given by ϕ1.

In the rest of the proof, we prove the remaining two requirements for γ(procrun]

f(ϕ1, ϕ2, ϕ3)).

Let T = γ(ϕ1, ϕ2, ϕ3). Our proof will treat the three cases in the definition of procrunf sepa-

rately.
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1. The first case is that τ = σσ(f,call)σ(f,ret)σ for some σ ∈ T . In this case, the second

requirement in the definition of γ is:

(‘first(σ), first(σ(f,call))) |= eqVars ∨ ϕ2,

which holds because of eqVars on the RHS. For the third requirement, we note that there

are no σ1 and σ2 in τ satisfying open(σ1, σ2, τ). Hence, the requirement holds vacuously.

2. The second case is that τ = σσ(f,call)τ2σ
(f,ret)
2 σ2 for some στ2σ2 ∈ (T ∩ tagStates+).

To prove the second requirement, consider σ3 ∈ τ such that iscall(σ3). If σ3 is the second

element in τ , it is σ(f,call), so

(‘first(σ), first(σ3)) |= eqVars. (5.34)

Otherwise, σ3 ∈ στ2σ2. Since στ2σ2 is in T = γ(ϕ1, ϕ2, ϕ3), it satisfies the requirement

given by ϕ2. This implies that

(‘first(σ), first(σ3)) |= ϕ2. (5.35)

The satisfaction relationships (5.34) and (5.35) imply the desired property:

(‘first(σ), first(σ3)) |= eqVars ∨ ϕ2.

For the third requirement, pick σ3, σ4 such that open(σ3, σ4, τ). If σ3 is not the second

element of τ , we have that

open(σ3, σ4, στ2σ2).

Thus, (‘first(σ3), first(σ4)) |= ϕ3, and the desired third requirement follows from this.

Otherwise, i.e., σ3 is the second element of τ , it is σ(f,call). Thus, first(σ3) = first(σ).

Since σ4 is a call and it appears in στ2σ2 ∈ T , it has to satisfy

(‘first(σ), first(σ4)) |= ϕ2.

Now this satisfaction relationship and first(σ3) = first(σ) imply that the desired third

requirement holds.

3. The last case is that τ ∈ σσ(f,call)τ2 for στ2 ∈ (T ∩ tagStates∞). The proof of this case
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is almost identical to the one for the second. Simply replacing στ2σ2 there by στ2 gives

the proof of this third case.

�

5.3.2.5 Interpretation of Atomic Commands

The abstract semantics of atomic commands x := E and x := ∗ is given as follows:

trans](x := E) = (eqVars−{x} ∧ (E[‘Y/Y ] = x), false, false),

trans](x := ∗) = (eqVars−{x}, false, false),

where Y is the set of all free variables in E. The first components of trans](x := E) and

trans](x := ∗) express the relational meaning of both atomic commands, and the second and

third components of them are false, because the atomic commands x := E and x := ∗ do not

involve procedure calls.

Lemma 5.39. Both trans](x := E) and trans](x := ∗) are in At. Furthermore, they satisfy the

following soundness requirements:

trans(x := E) ⊆ γ(trans](x := E)), trans(x:=∗) ⊆ γ(trans](x:=∗)).

Proof. The first claim of the lemma about the membership to At holds, because formulas

eqVars−{x} and eqVars−{x} ∧ (x = E[‘Y/Y ]) are in TLinForm. Next, we show that

trans(x := E) ⊆ γ(trans](x := E)).

The other inclusion can be proved similarly. Pick τ from trans(x := E). By the definition of

trans(x := E), the trace τ should be of the form σ1σ2 such that

1. σ1 and σ2 are none-tagged states and

2. first(σ2) = first(σ1)[x 7→ [[E]]first(σ1)].

This characterization of τ implies that τ does not include any function calls, and also that τ ’s

starting and ending states σ1 and σ2 satisfy

(‘first(σ1), first(σ2)) |= eqVars−{x} ∧ (x = E[‘Y/Y ]).
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From these, it follows that τ is in γ(trans](x := E)), as desired. �

5.3.2.6 Widening Operator

Before describing our widening operator, we note one simple fact on the requirement of our

framework on that operator. The fact is described by the lemma below:

Lemma 5.40. A binary operator O : A × A → A is a widening operator, if it turns every

sequence in A into one with a stable element and it satisfies the condition below:

(
(ϕ1, ϕ2, ϕ3)O(ψ1, ψ2, ψ3) = (δ1, δ2, δ3)

)
=⇒ ∀i ∈ {1, 2, 3}.

(
ϕi ∨ ψi |= δi

)
.

Proof. We need to prove two properties of O. Firstly, it can be restricted to a map fromAt×At

to At. Secondly, it computes an upper bound of its arguments:

∀A,A′ ∈ At. γ(A) ⊆ γ(AOA′) and γ(A′) ⊆ γ(AOA′).

Pick A = (ϕ1, ϕ2, ϕ3) and A′ = (ψ1, ψ2, ψ3) from At. Let (δ1, δ2, δ3) be AOA′. Since A,A′

are in At, their first components ϕ1 and ψ1 define total relations (i.e., ϕ1, ψ1 ∈ TLinForm).

Note that δ1 is weaker than ϕ1 and ψ1 by assumption. Hence, δ1 also defines a total relation, so

(δ1, δ2, δ3) is in At, as desired by the first property. Now, we move on to the second property.

For this, we show that γ(A) ⊆ γ(AOA′), since the other inclusion can be proved similarly. Pick

a trace τ from γ(A). By the definition of γ, we have that

(τ ∈ tagStates+ =⇒ (‘first(first(τ)), first(last(τ))) |= ϕ1) and

(∀σ ∈ τ. iscall(σ) =⇒ (‘first(first(τ)), first(σ)) |= ϕ2) and

(∀σ1, σ2. open(σ1, σ2, τ) =⇒ (‘first(σ1), first(σ2)) |= ϕ3).

By assumption, ϕi |= ψi for all i ∈ {1, 2, 3}. Thus, the three conjuncts above imply

(τ ∈ tagStates+ =⇒ (‘first(first(τ)), first(last(τ))) |= δ1) and

(∀σ ∈ τ. iscall(σ) =⇒ (‘first(first(τ)), first(σ)) |= δ2) and

(∀σ1, σ2. open(σ1, σ2, τ) =⇒ (‘first(σ1), first(σ2)) |= δ3).

That is, τ belongs to γ(AOA′), as desired. �
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Our widening operator is parameterized by three elements. The first is a positive integer k, and

it bounds the number of outermost disjuncts in formulas δi appearing in the results of widening.

We will write Ok to make this parameterization explicit. The second is a function lower that

overapproximates a formula ϕ in LinForm by the conjunction of lower bounds on some pre-

primed variables (i.e., the conjunction of constraints of the form r ≤ ‘x for some pre-primed

variable ‘x and rational number r):

lower(ϕ) = (r1 ≤ ‘x1 ∧ r2 ≤ ‘x2 ∧ . . . rn ≤ ‘xn)

such that ϕ |= lower(ϕ). The third is the dual of the second function. It is a function upper that

overapproximates a formula ϕ in LinForm by the conjunction of constraints of the form ‘x ≤ r.

The widening operator uses three subroutines. The first is toDNF. It transforms a formula

ϕ ∈ LinForm to a disjunctive normal form where all existential quantifications are placed right

before each conjunct. For instance,

toDNF
(
∃x′. 10 < x′ ∧ (x′ < x ∨ x < 2)

)
=

(∃x′. 10 < x′ ∧ x′ < x) ∨ (∃x′. 10 < x′ ∧ x < 2).

The second is the function boundk for bounding the number of outermost disjuncts to k:

boundk : LinForm→ LinForm

boundk(ϕ) =

{
ϕ if there are at most k outermost disjuncts in ϕ

true otherwise.

The third function is the ranking function synthesis engine RFS from Section 4.4. We remind

the reader of two properties of RFS:

1. RFS takes a disjunction-free formula ϕ ∈ LinForm and returns the singleton set of a

disjunction-free formula ψ ∈ LinForm, or the empty set, or >.

2. If RFS(ϕ) = {ψ}, the formula ψ in the set is a ranking relation and it overapproximates

the input formula ϕ.
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Using these three parameters and three subroutines, we define the widening operator:

(ϕ1, ϕ2, ϕ3) Ok (ψ1, ψ2, ψ3) =

let (
∨
j∈Ji κ

i
j) = toDNF(ψi) (where κij is disjunction-free)

χij =
∧
{‘x = x | x ∈ Vars and κij ` ‘x = x}

ξij = if
(

RFS(κij) = {ζij} for some ζij
)

then
(
ζij ∧ lower(κij) ∧ upper(κij) ∧ χij

)
else

(
lower(κij) ∧ upper(κij) ∧ χij

)
δi = boundk(ϕi ∨

∨
j∈Ji{ξ

i
j | κij 6` ϕi})

in (δ1, δ2, δ3).

Lemma 5.41. The operator Ok : A×A → A is a widening operator.

Proof. All the subroutines and parameters used in the definition of Ok overapproximate their

input formulas. From this and the definition of Ok above, it follows that

(
(ϕ1, ϕ2, ϕ3) Ok (ψ1, ψ2, ψ3) = (δ1, δ2, δ3)

)
=⇒ ∀i ∈ {1, 2, 3}.

(
ϕi ∨ ψi |= δi

)
.

Thus, by Lemma 5.40, to prove this lemma, we just need to show that Ok turns every sequence

into one with a stable element. Note that the formula δi in the result of the widening is in the

range of boundk, so it cannot have more than k outermost disjuncts. Furthermore, δi in the result

of the widening is true, or it has one more disjunct than ϕi, or it is the same as ϕi. These imply

that for every sequence {An = (δn1 , δ
n
2 , δ

n
3 )}n∈ω in A, if we construct the widened sequence

{A′n = ((δ′)n1 , (δ
′)n2 , (δ

′)n3 )}n∈ω by

A′1 = A1 and A′n+1 = A′nOkAn+1,

then for all i ∈ {1, 2, 3}, every disjunct in (δ′)ni is included in (δ′)n+1
i , unless (δ′)n+1

i is true.

Thus, the sequence {(δ′)ni }n∈ω goes over the bound k and remains true forever, or it hits a limit

element before reaching the bound k. This implies that {A′n}n∈ω has a stable point. �
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5.3.2.7 Abstract Liveness Predicate

Our abstract semantics uses the following predicate SATISFYLIV] on At in order to check

whether an analysis result implies the desired liveness property:

SATISFYLIV](ϕ1, ϕ2, ϕ3) = let (
∨
i∈I δi) = toDNF(ϕ3)

in
(
if (RFS(δi) 6= > for all i ∈ I) then true else false

)
.

The predicate SATISFYLIV] first transforms ϕ3 to a disjunctive normal form. Then, it checks

whether each disjunct δi is well-founded using the function RFS from Section 4.4. Hence, if the

predicate returns true, it means that ϕ3 is disjunctively well-founded.

Lemma 5.42. For allA ∈ At, if SATISFYLIV](A) = true, we have that γ(A) ∈ LIVPROPERTY.

Proof. Consider A ∈ At such that SATISFYLIV](A) = true. Pick a trace τ ∈ γ(A). For the

sake of contradiction, suppose that τ includes an infinite subsequence of open calls. That is,

there exists {τiσi}i∈ω such that

(τ = τ1σ1τ2σ2 . . .) ∧ (∀i, j ∈ ω. i < j =⇒ open(σi, σj , τ)).

By the definition of γ, we should have that

∀i ∈ ω. (‘first(σi), first(σj)) |= ϕ3.

Furthermore, the formula ϕ3 is disjunctively well-founded, since SATISFYLIV](A) = true.

Hence, the result of Podelski and Rybalchenko (Lemma 4.5) implies that the sequence σ1σ2 . . .

is finite. But, this is impossible, since σ1σ2 . . . is an infinite sequence. We have just derived the

desired contradiction. �

5.3.2.8 An Example

We illustrate our abstract interpreter with the command below:

C ≡ fix f.
(
if

(
x ≤ 0

) (
x:=x

) (
x:=x−1; f(); x:=x+1

) )
Note that this command is not tail recursive, but it always terminates.
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To simplify presentation, we will assume that x is the only program variable. We also assume

that lower returns lower bounds of the form ‘x ≥ 0 only. Similarly, we assume that upper

computes upper bounds of the form ‘x ≤ 0 only.

Our abstract interpreter calculates the abstract semantics of C by an iterative fixpoint compu-

tation. The first iteration of this computation works as follows. It picks the environment η0

defined by:

A0 = (false, false, false), η0 = [f 7→ A0].

Then, the abstract interpreter analyzes the true and false branches of the conditional statement

in f :
[[x:=x]]]η0 = (‘x=x, false, false),

[[x:=x−1; f();x:=x+1]]]η0 = (false, false, false).

Finally, it computes the abstract meaning of the body of f :

A1 = A0 O
(
procrun]

f([[if (x ≤ 0) (x:=x) (x:=x−1; f();x:=x+1)]]]η0)
)

= (false, false, false) O procrun]

f(‘x ≤ 0 ∧ ‘x=x, false, false)

= (false, false, false) O (‘x ≤ 0 ∧ ‘x=x, ‘x=x, false)

= (‘x ≤ 0 ∧ ‘x=x, ‘x=x, false).

The second fixpoint iteration proceeds similarly. It picks the environment η1:

η1 = [f 7→ A1].

Then, it computes the abstract semantics of the true and false branches:

[[x:=x]]]η1 = (‘x=x, false, false),

[[x:=x−1; f();x:=x+1]]]η1 =
(

(∃a′b′. ‘x−1=a′ ∧ a′ ≤ 0 ∧ a′=b′ ∧ b′+1=x),

(∃a′. ‘x−1=a′ ∧ a′=x),

false
)
.
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Finally, the abstract interpreter combines the above two abstract values, and finishes the second

iteration:

A2 = A1 O procrun]

f([[if (x ≤ 0) (x:=x) (x:=x−1; f();x:=x+1)]]]η1)

= A1 O
(

(‘x ≤ 0 ∧ ‘x=x) ∨ (‘x > 0 ∧ ∃a′b′. ‘x−1=a′ ∧ a′ ≤ 0 ∧ a′=b′ ∧ b′+1=x),

(‘x=x) ∨ (‘x > 0 ∧ ∃a′. ‘x−1=a′ ∧ a′=x),

(‘x > 0 ∧ ∃a′. ‘x−1=a′ ∧ a′=x)
)

=
(

(‘x ≤ 0 ∧ ‘x=x) ∨ (‘x ≥ 0 ∧ ‘x=x),

(‘x=x) ∨ (‘x ≥ 0 ∧ ‘x−1 ≥ x),

(‘x ≥ 0 ∧ ‘x−1 ≥ x)
)
.

The computed A2 is the fixpoint, and becomes the result of analyzing the command C.

After the fixpoint computation, the abstract interpreter checks whether SATISFYLIV] holds for

A2. In this case, we have that SATISFYLIV](A2) = true, because the third component of A2

is a well-founded relation. Hence, by Lemma 5.42, the concrete meaning of C belongs to

LIVPROPERTY, i.e., [[C]] does not contain an infinite subsequence of open calls. In still other

words, C terminates.

5.4 Conclusion

In this chapter, we have presented a framework for designing a sound abstract interpreter for

liveness properties. The key feature of the framework is the use of metric space in the con-

crete semantics of programs. By using the metric-space semantics, our framework allows us to

overcome the main challenge in showing the soundness of an abstract interpreter for liveness,

namely to relate the meaning of recursion in the concrete semantics with that in the abstract

semantics, even when procedures in a program are recursive over the unit type.

In this chapter, we also described an instance of the framework, where the abstract semantics

uses ranking functions and the result of Podelski and Rybalchenko, as in the previous chapter.

However, the abstract semantics in this chapter went beyond abstract interpreters in the previous

one, in that it can prove the termination of programs with recursion over the unit type.



Chapter 6

Conclusion and Related Work

6.1 Synopsis

In this thesis we have defined a number of abstract interpreters to prove program termination.

All of these have made use of the Podelski-Rybalchenko result, which provides a proof rule to

prove the well-foundedness of a relation which is suited to automatic program verification.

In Chapter 2 we gave a brief outline of a algorithm to convert abstract interpreters for safety

properties into a termination analyser. The approach was very promising but had its limitations.

The algorithm reused operators from the safety abstract domain. These operators were not

designed with proving termination, a liveness property. As a result the termination analysers

produced were fast but limited in comparison to existing approaches.

To address this issue, in Chapter 4 we turned our attention to designing an abstract domain

specifically for termination. We presented a framework for defining such abstract domains,

and presented an instance of this framework based on linear ranking functions. The abstract

domain only keeps information relevant to termination by using a rank function synthesis engine.

In essence the abstract domain is built using ranking functions. Since termination is a path

sensitive property, the abstract domain defined is disjunctive. The instance was implemented

and matched the termination provers we produced in the first chapter and was more precise.

But one shortcoming of this approach is that it can only analyse programs with iteration. This

problem was due to the fact the soundness proof had to relate greatest fixpoints in the concrete

semantics with least-fixed points in the abstract semantics. This limitation was a symptom of

the proof technique relating the fixpoints.

To get a cleaner soundness result we turned our attention to metric spaces in Chapter 5. The

theory of metric spaces has a well-known theorem: Banach’s Fixpoint Theorem which states that

117
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a contractive function on a complete metric space has a unique fixpoint. We built a framework

around this result which allowed us to relate unique fixpoints in the concrete semantics with

the pre-fixpoints in the abstract semantics. However the use of metric spaces means that we

have to take care to ensure that we are working in a complete metric space allowing us to use

Banach’s Fixpoint Theorem. Like Chapter 4 the concrete semantics was based on sets of traces,

but since the powerset of traces is not a complete metric space we had to have certain restrictions

to ensure our concrete semantics was a complete metric space. This in turn affected the design

of the abstract semantics: we had to ensure that the concretization of abstract elements produced

non-empty closed sets of traces. The framework built in Chapter 5 defines a general framework

for designing abstract interpreters for liveness properties. We showed one instance, again based

on linear ranking relations. However we have not implemented this instance and this is left as

future work.

6.2 Related Work

In this thesis we have focused on proving termination for imperative programs. There has been

much work on proving termination in the functional [41], logic [17, 30, 46] and term rewriting

[18, 32] community.

The first work to utilise the Podelski-Rybalchenko result was TERMINATOR [19, 20]. TER-

MINATOR uses abstraction refinement in order to construct a finite collection of well-founded

relations. TERMINATOR transforms the program being analysed to add an error location which

corresponds to a case in which the program does not terminate. Now the search for a termination

argument has been reduced to a reachability question: can this error location be reached from

some initial state? TERMINATOR makes use of SLAM[5, 6] in order to find some path from

the initial state to the error location. If such a path exists and is not spurious, TERMINATOR

checks to see if this path is well-founded using a rank function synthesis engine to construct

well-founded relations and then tries to prove that these relations overapproximate the relational

meaning of the program, i.e., checking the subset inclusion holds in the Podelski-Rybalchenko

result. This subset inclusion check is the main bottleneck in TERMINATOR. By directly de-

signing abstract domains for termination we are avoiding the need to check the subset inclusion

since we know the analysis overapproximates the program’s concrete semantics.

The abstract domain in Chapter 4 is related to the abstraction used in size-change termination

[41]. In both approaches program fragments are abstracted in terms of measures decreased or

preserved by the fragments. The major difference is that our domain contains only abstract

elements relevant for termination (unless the elements are > in the case we can’t prove termina-

tion), whilst size-change termination analyses can have an (non->) abstract element that denotes

a diverging program. As a result, size-change termination analyses have to check whether the
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concretization of an abstracted program terminates, whereas our analysis can skip this rather

expensive check.

Bradley et al.[10, 12] define a method to perform rank function synthesis over polynomials.

They use a technique based on finite difference equations over transition systems to produce a

termination argument. The result is complementary to the work in this thesis: we could use this

in place of RANKFINDER in the analysis presented in this thesis.

In [3, 58] CEGAR for safety properties is combined with ranking abstractions for liveness prop-

erties. Ranking functions are represented as progress monitors, which are syntactically added

to a program. They make use of the CEGAR loop to construct a set of ranking functions which

overapproximate the program. However the ranking function synthesis heuristics used in their

paper is not for linear expressions. In comparison our use of abstract domains built with ranking

functions is much more efficient than the SCAR approach used in this work.

The use of metric spaces in programming language semantics has been extensively studied [13,

29, 57]. The book [29] defines metric space semantics for a number of languages. We have

used many of the results from [29] in defining the concrete instance in Chapter 5, but have had

to make additions to the semantics in order to produce a useful analyser, such as distinguishing

normal and function call/return states.

The relationship between metric spaces and domain theory has also been studied extensively [2].

Previous work is orthogonal to the work we have done in this thesis. We have shown conditions

for when an order-theoretic semantics overapproximates a metric space semantics. In [2] the

authors show how a metric semantics can be derived from a partial order semantics.

In [21] the authors define a method for proving the termination of recursive procedures. The

technique works by transforming the program to remove the recursive calls. These are replaced

by a non-deterministic choice between entering a procedure body (in the case that the procedure

does not terminate) or the application of a summary of the procedure (in the case that the pro-

cedure does terminate). The work we have done in Chapter 5 could be seen as a step towards a

semantic understanding of the technique in [21]. The exact relationship between the two is left

as future work.

The work by Podelski et al. [51] defines a framework and a proof system for showing liveness

properties for while programs with recursion. The work could be used as a basis for abstract

interpreters for liveness properties. The exact relationship between this work and ours is left as

future work.

Cousot [24] defines an abstract interpretation framework for overapproximating both least and

greatest fixpoints. Using a given abstract domain they lift this to another abstract domain, whose



Conclusion 120

least fixpoint contains the least and greatest fixpoints of functions in the original domain. Es-

sentially the authors are using both induction and co-induction to produce an abstract domain

which accounts for both finite and infinite behaviours.

Recently there has been progress in automatically proving a complexity bound on programs

[34, 35]. Here the authors define a program analysis to find bounds on the number of iterations

a loop can take. To calculate the bound, the authors augment the program with counters and

attempt to extract symbolic bounds using numerical abstract domains. A bound implies program

termination, so they are in fact going further than termination analysis. However in order to get

useful results the bound analysis very often requires an initial safety analysis which computes

global invariants which are then used in the computation of the bounds.

6.3 Conclusions

In this thesis we have defined novel techniques for automatically proving program termination.

We have defined two frameworks for designing abstract interpreters to prove program termina-

tion. By designing abstract domains specifically for termination we have addressed problems

with previous approaches based on abstraction refinement and lifting safety analysers to termi-

nation analysers. We believe that future progress in practical termination analyses will employ

specially designed abstract domains for termination (and liveness), as advanced in this thesis.

The ideas in this thesis could be used with other techniques, particularly counter example guided

abstraction refinement.



Appendix A

Basic Notions of Metric Spaces

The material below is standard and taken from [29, 57].

Definition A.1 (Metric Space). A metric space consists of a pair (X, dX) such that

1. X is a non-empty set, and

2. dX is a function of type X × X → [0,∞], called metric, and it satisfies the following

three conditions:

• ∀x, y ∈ X. dX(x, y) = 0 ⇐⇒ x = y.

• ∀x, y ∈ X. dX(x, y) = dX(y, x).

• ∀x, y, z ∈ X. dX(x, z) ≤ dX(x, y) + dX(y, z).

Definition A.2 (Convergence). For a metric space (X, dX):

1. A sequence (xn)n in X is convergent if and only if

∀ε > 0. ∃N ∈ N. ∀n ≥ N. dX(xn, x) ≤ ε

for some x ∈ X .

2. A sequence (xn)n in X is Cauchy if

∀ε > 0. ∃N ∈ N. ∀m,n ≥ N. dX(xm, xn) ≤ ε.

Proposition A.3. Every convergent sequence is Cauchy.

121



Appendix Basic Notions of Metric Spaces 122

Definition A.4 (Completeness). A metric space is complete if and only if every Cauchy se-

quence in the metric space is convergent.

Definition A.5 (Non-expansiveness and α-Contractiveness). Let X and Y be metric spaces.

Let f : X → Y be a function.

1. The function f is continuous if and only if for every (xn)n converging to x we have the

sequence (f(xn))n converges to f(x).

2. Let α ≥ 0. The function f is α-Lipschitz if and only if for all x1, x2 ∈ X ,

dY (f(x1), f(x2)) ≤ α× dX(x1, x2).

3. A function is non-expansive if and only if it is 1-Lipschitz.

4. A function is α-contractive if and only if it is α-Lipschitz and 0 ≤ α < 1.

Theorem A.6 (Banach’s Fixed Point Theorem). Let X be a metric space and let f : X → X

be a α-contractive function for some 0 ≤ α < 1.

1. If f(x) = x and f(y) = y, then x = y

2. Suppose that X is complete. If {xn}n∈ω is a sequence defined by xn+1 = f(xn), the

sequence is Cauchy and its limit x is the fixpoint of f , that is, f(x) = x.

We denote the unique fixpoint of f by ufix(f).

In this thesis, we work with traces and sets of traces. Thus, we need suitable metrics for them.

Suppose we have a set A. Let A∗,∞ be the set of all nonempty finite or infinite sequences

constructed from A.

Definition A.7 (Baire Metric). The Baire-metric dB : A∗,∞ ×A∗,∞ → [0,∞] is given by:

dB(v, w) =

 0 if v = w

2−max{k | v[k]=w[k]} if v 6= w

Here the notation x[n] means the n-th prefix of trace x. A useful lemma linking the Baire metric

and properties of traces is next.

Lemma A.8. dB(x, y) ≤ 2−n ⇐⇒ x[n] = y[n].
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Metric on Subsets of a Metric Space

We will now recall how to lift a metric from a set to its powerset. The Hausdorff metric is the

standard way to do such lifting.

Definition A.9 (Hausdorff Metric). Let (M,d) be a metric space. The Hausdorff metric is

defined by:

dP(M)(X,Y ) =

inf{α > 0 | (∀x ∈ X. ∃y ∈ Y. d(x, y) < α) ∧ (∀y ∈ Y. ∃x ∈ X. d(x, y) < α)}.

Definition A.10 (Closed Sets). Let (M,d) be a metric space. A subset X of M is closed if and

only if each convergent sequence (xn)n with xn ∈ X,n = 0, 1, ... has its limit x in X.

Theorem A.11. If (M,d) is a metric space, (Pcl (M), DH) is a metric space, where Pcl (M) is

the collection of all closed subsets of M .

The theorem below establishes that the closed powerdomain operator preserves completeness.

Theorem A.12 (Hahn). Let (M,d) be a complete metric space. Then (Pcl (M), dH) is a com-

plete metric space.

The definition below is more useful and relevant for our needs than the definition of dH above.

Definition A.13 (Lifted Baire Metric). Consider the metric space (A∗,∞, dB) with nonempty

finite or infinite traces. Let X,Y ⊆ A∗,∞. The lifted Baire metric d+
B is defined as follows:

d+
B(X,Y ) =

 0 if X = Y

2−max{k | X[k]=Y [k]} otherwise

where X[n] denotes { τ [n] | τ ∈ X }.

The following lemma proves that the above definition corresponds with the general definition:

Lemma A.14. For each X ,Y ∈ Pcl (A∗,∞), we have that dH(X,Y ) = d+
B(X,Y ).

A.1 Farkas Lemma

In this section we will mention Farkas Lemma [53], which is used later in this thesis. Farkas

Lemma gives a sound and complete method for reasoning about systems of linear inequalities.
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We use it in this thesis in order to find linear ranking functions. Note that Farkas Lemma is

usually presented over real numbers. However the proof is equally valid over the rationals:

Farkas Lemma does not depend on any properties which hold for the reals but not for rational

numbers [28, 55].

Theorem A.15 (Farkas Lemma). Consider the following system of linear inequalities over real

variables V = {x1, ..., xm}

S :


A1,1x1 + . . . + A1,mxm + A1,m+1 ≥ 0

...
...

...

An,1x1 + . . . + An,mxm + An,m+1 ≥ 0


If S is satisfiable, it entails a linear inequality c1x1 + ...+ cmxm + cm+1 ≥ 0 iff there exist real

numbers λ1, ..., λn ≥ 0 such that:

c1 = Σn
i=1λi.Ai,1 ... cm = Σn

i=1λi.Ai,m cm+1 ≥ Σn
i=1λi.Ai,m+1

Furthermore, S is unsatisfiable iff S entails −1 ≥ 0.

A.2 Equations to Support Adequacy of Metric Semantics

In this section we will show some example programs which give evidence that loop unrolling is

sound.

Example A.1. Let T = [[Γ ` fix f.x := 1; f()]]η

[[Γ ` fix f.x := 1; f()]]η = ufixλk.procrunf ([[x := 1; f()]]η[f 7→ k]

= ufixλk.procrunF (seq([[x := 1]]η[f 7→ k], [[f()]]η[f 7→ k]))

= ufixλk.procrun(seq([[x := 1]]η[f 7→ k], k))

Since T is a fixpoint = procrunf (seq([[x := 1]]η[f 7→ k], T )

By definition of T = procrunf (seq([[x := 1]]η, [[fixf.x := 1; f()]]η))

By definition of ; = procrunf ([[x := 1; fixf.x := 1; f()]]η)

= procrunf ((x := 1; f())[fixf.x := 1; f()/f ])

where C[fix f.C/f ] denotes the substition of fix f.C for f in C.
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Example A.3.

[[fix f.x := 1]]η = ufixλ k.(procrunf ([[x := e]]η[f 7→ k]))

By definition of assign = (procrunf ({ss′ | s′ = s[x 7→ [[e]]]}))

= procrunf ([[x := e[(fix f.x := 1)/f ]]]η
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