
Universitat Politècnica de Catalunya
BarcelonaTech
Departament de Ciències de la Computació
PhD. in Computing

Automatic Program Analysis
using Max-SMT

Daniel Larraz Hurtado

PhD. Thesis

A dissertation submitted to obtain the qualification of Doctor in
Computer Science from the Universitat Politècnica de Catalunya

Advisor:

Dr. Albert Rubio Gimeno

Barcelona, June 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tesis Doctorals en Xarxa

https://core.ac.uk/display/33349301?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This thesis addresses the development of techniques to build fully-automatic

tools for analyzing sequential programs written in imperative languages like

C or C++. In order to do the reasoning about programs, the approach taken

in this thesis follows the constraint-based method used in program analysis.

The idea of the constraint-based method is to consider a template for can-

didate invariant properties, e.g., linear conjunctions of inequalities. These

templates involve both program variables as well as parameters whose values

are initially unknown and have to be determined so as to ensure invariance.

To this end, the conditions on inductive invariants are expressed by means

of constraints (hence the name of the approach) on the unknowns. Any

solution to these constraints then yields an invariant. In particular, if linear

inequalities are taken as target invariants, conditions can be transformed

into arithmetic constraints over the unknowns by means of Farkas’ Lemma.

In the general case, a Satisfiability Modulo Theories (SMT) problem over

non-linear arithmetic is obtained, for which effective SMT solvers exist.

One of the novelties of this thesis is the presentation of an optimization

version of the SMT problems generated by the constraint-based method in

such a way that, even when they turn out to be unsatisfiable, some useful

information can be obtained for refining the program analysis. In particular,

we show in this work how our approach can be exploited for proving termi-

nation of (sequential) programs, disproving termination of non-deterministic

programs, and do compositional safety verification. Besides, an extension

of the constraint-based method to generate universally quantified array in-

variants is also presented.

Since the development of practical methods is a priority in this thesis,

III

all the techniques have been implemented and tested with examples coming

from academic and industrial environments.

The main contributions of this thesis are summarized as follows:

• A new constraint-based method for the generation of universally quan-

tified invariants of array programs. We also provide extensions of the

approach for sorted arrays.

• A novel Max-SMT-based technique for proving termination. Thanks

to expressing the generation of a ranking function as a Max-SMT

optimization problem where constraints are assigned different weights,

quasi-ranking functions –functions that almost satisfy all conditions for

ensuring well-foundedness– are produced in a lack of ranking functions.

Moreover, Max-SMT makes it easy to combine the process of building

the termination argument with the usually necessary task of generating

supporting invariants.

• A Max-SMT constraint-based approach for proving that programs do

not terminate. The key notion of the approach is that of a quasi-

invariant, which is a property such that if it holds at a location dur-

ing execution once, then it continues to hold at that location from

then onwards. Our technique considers for analysis strongly connected

subgraphs of a program’s control flow graph and thus produces more

generic witnesses of non-termination than existing methods. Further-

more, it can handle programs with unbounded non-determinism.

• An automated compositional program verification technique for safety

properties based on quasi-invariants. For a given program part (e.g.,

a single loop) and a postcondition, we show how to, using a Max-

SMT solver, an inductive invariant together with a precondition can

be synthesized so that the precondition ensures the validity of the

invariant and that the invariant implies the postcondition. From this,

we build a bottom-up program verification framework that propagates

preconditions of small program parts as postconditions for preceding

program parts. The method recovers from failures to prove validity of

a precondition, using the obtained intermediate results to restrict the

search space for further proof attempts.

IV

Acknowledgements

I want to express here my gratitude to all those people that have made

this thesis possible. First and foremost, I would like to thank my advisor

Albert Rubio for his encouragement, patience, and guidance throughout

these years. Besides, I am also indebted to Enric Rodŕıguez and Albert

Oliveras for sharing with me their knowledge and inspired thoughts during

all this time.

In addition to my closest collaborators, I want to extend my gratitude to

Marc Brockschmidt and Kaustubh Nimkar for contributing their time and

ideas to our respective joint works.

My grateful thanks to Cristina Borralleras and José Miguel Rivero for

joining us in developing the VeryMax tool.

I would also like to thank the Jutge.org team for providing us with bench-

marks, Byron Cook for his helpful comments, and for giving us access to T2

and their benchmarks, and all the anonymous reviewers for their valuable

comments and suggestions.

Finally, I wish to thank my parents, Asun and Pedro, and my partner,

Natalia, for their support and encouragement throughout these years.

This research has been supported by Spanish MINECO under the FPI

grant BES-2011-044621 (project code TIN2010-21062-C02-01).

V

VI

Contents

Abstract III

Acknowledgements V

1 Introduction 1

1.1 Thesis Outline . 3

2 Preliminaries 7
2.1 SAT and SMT solving . 7

2.1.1 Propositional satisfiability 8

2.1.2 Satisfiability Modulo Theories 9
2.1.3 Barcelogic SMT/Max-SMT solver 11

2.2 Modelling programs . 11

2.2.1 Transition Systems . 12
2.2.2 States and Executions 13

2.2.3 Locations and Cutsets 13

2.3 SMT and program analysis 14

3 Invariant Inference 17
3.1 Background: approaches . 18

3.1.1 Abstract Interpretation 18

3.1.2 Predicate Abstraction 19
3.1.3 Computational algebra 20

3.1.4 First-order theorem proving 20

3.1.5 Constraint solving . 21
3.2 Scalar invariant generation 21

3.2.1 Problem definition . 21

3.2.2 SMT encoding of the problem 22
3.3 Array invariant generation . 25

3.3.1 Modelling programs with arrays 25

3.3.2 Illustration of the method 26

VII

3.3.3 Formal description of the method 29
3.3.4 Extensions . 35
3.3.5 Experimental evaluation 41
3.3.6 Related work comparison 46

4 Termination Proving 49
4.1 Termination and non-termination 49
4.2 Termination arguments . 50
4.3 Proving termination using Max-SMT 52

4.3.1 Basis of the termination argument 52
4.3.2 Supporting invariants 53
4.3.3 Illustration of the Max-SMT method 53
4.3.4 Formal description of the Max-SMT method 55
4.3.5 Related work . 61
4.3.6 Implementation . 61
4.3.7 Experimental evaluation 65

4.4 Proving non-termination using Max-SMT 69
4.4.1 Modeling of non-determinism 69
4.4.2 Overview of the Max-SMT approach 70
4.4.3 Quasi-invariants and non-termination 74
4.4.4 Computing proofs of non-termination 76
4.4.5 Related work . 82
4.4.6 Experimental evaluation 83

5 Compositional Program Analysis 87
5.1 Illustration of the method . 89

5.1.1 Quasi-invariants . 89
5.1.2 Combining quasi-invariants 89
5.1.3 Recovering from failures 90

5.2 Proving safety . 91
5.2.1 Synthesizing local conditions 92
5.2.2 Propagating local conditions 96
5.2.3 Improving performance 99

5.3 Related work . 102
5.4 Implementation and evaluation 104

6 Conclusions 107

Bibliography 111

VIII

Chapter 1
Introduction

At the same time that the complexity of computer systems is growing

rapidly, today’s information society is becoming increasingly dependent on

such systems. Consequently, exploring techniques to produce reliable soft-

ware is an issue of increasing importance.

Although software engineering methodologies try to overcome human

limitation for managing complexity, software development is still currently

a time-consuming, costly, and error-prone activity. Because of this, the

construction of computer-aided tools that assist in the design and the im-

plementation of computer systems is an important challenge.

Formal specification provides a means of describing informal software

requirements in a rigorous and high-level way reducing the ambiguity of

the problem domain. They can be used not only to aid the design and the

implementation of computer systems, but also to verify their correctness.

In particular, the formal verification of a program consists in proving that

its semantics, what the program executions actually do, satisfies its spec-

ification, what the program executions are intended to do. In spite of its

usefulness, formal methods are not widely used to verify programs in the

industrial software environment, and its application is usually restricted to

safety-critical software. One of the reasons for its uncommon use is that,

even in the cases where automatic proof checkers are available, programmers

are often required to annote the source code with auxiliary information like

loop invariants and ranking functions, which are necessary to prove the pro-

gram correctness.

With the aim of reversing this situation, this thesis addresses the de-

1

2 CHAPTER 1. INTRODUCTION

velopment of techniques to build fully-automatic tools that are capable of:

modeling program semantics from source code, discovering key properties

of interest, and using them to verify specifications and prove termination of

programs.

In order to do the reasoning about programs, the approach taken in

this thesis follows the constraint-based method [Colón et al., 2003; Bradley

et al., 2005] used in program analysis. The idea is to consider templates for

candidate invariant properties, such as (conjunctions of) linear inequalities.

These templates contain both the program variables V as well as template

variables X , whose values have to be determined to ensure the required

properties. To this end, the conditions on inductive invariants are expressed

by means of constraints of the form ∃X .∀V.F(X ,V). Any solution to these

constraints then yields an invariant. In the case of linear arithmetic, Farkas’

Lemma [Schrijver, 1998] is often used to handle the quantifier alternation in

the generated constraints. Intuitively, it allows one to transform ∃∀ prob-

lems encountered in invariant synthesis into ∃ problems1. In the general

case, a Satisfiability Modulo Theories (SMT) problem [Biere et al., 2009]

over non-linear arithmetic is obtained, for which effective SMT solvers ex-

ist [Borralleras et al., 2012; Jovanović and De Moura, 2012; Larraz et al.,

2014b].

One of the novelties and main contributions of this thesis is the presen-

tation of an optimization version of the SMT problems generated by the

constraint-based method in such a way that, even when they turn out to

be unsatisfiable, some useful information can be obtained for refining the

program analysis. In particular, we show in this work how our approach can

be exploited for proving termination of (sequential) programs [Larraz et al.,

2013a], disproving termination of non-deterministic programs [Larraz et al.,

2014a], and do compositional safety verification [Brockschmidt et al., 2015].

Besides, an extension of the constraint-based method to generate universally

quantified array invariants [Larraz et al., 2013b] is also presented.

As the development of practical methods is a priority in this thesis, all the

techniques have been implemented and tested with examples coming from

academic and industrial environments2. The author of this thesis was the

developer of a first prototype called CppInv, which applies the techniques

1The reader is referred to Section 3.2.2 for further information.
2See Sections 3.3.5, 4.3.6, 4.4.6, and 5.4 for more details.

1.1. THESIS OUTLINE 3

described in Chapters 3 and 4 to programs written in a subset of C++.

A new tool called VeryMax, that implements the compositional analysis

framework explained in Chapter 5, is currently developed by a group of

researchers (including the author of the thesis) as the continuation of the

line of work started with CppInv.

1.1 Thesis Outline

The thesis document is organized as follows: Chapter 2 describes the the-

oretical frameworks used in this thesis to model programs, and to solve all

program analysis problems. Firstly, the chapter introduces the Satisfiability

Modulo Theories (SMT) problem, and its optimization version, the Max-

SMT problem, which compose the bases of the solving technology employed

in this work. They are based on the known propositional satisfiability (SAT)

problem, which consists in determining whether a propositional formula is

satisfiable, i.e., if it has a model : an assignment of Boolean values to vari-

ables that satisfies the formula.

On the other hand, the Satisfiability Modulo Theories (SMT) problem,

one of the extensions of SAT, consists in deciding the satisfiability of a given

quantifier-free first-order formula with respect to a background theory. In

this setting, a model is an assignment of values from the theory to variables

that satisfies the formula. In this thesis, we will use the theories of quantifier-

free linear arithmetic, where literals are linear inequalities, and the more

general theory of quantifier-free non-linear arithmetic, where literals are

polynomial inequalities.

Another extension of SAT is Max-SAT [Biere et al., 2009], which gener-

alizes SAT to finding an assignment such that the number of satisfied clauses

in a given formula F is maximized. This problem in turn can be generalized

to the weighted partial Max-SAT problem, where some clauses in F are soft

clauses with an assigned weight, and the others are hard clauses. Here, we

look for a model of the hard clauses that minimizes the sum of the weights

of the satisfied soft clauses.

The last extension presented is Max-SMT [Nieuwenhuis and Oliveras,

2006; Larraz et al., 2014b], which combines Max-SAT and SMT, and is

derived from SMT analogously to how Max-SAT is derived from SAT. So in

a (weighted partial) Max-SMT problem a formula is of the form H1 ∧ . . . ∧

4 CHAPTER 1. INTRODUCTION

Hn∧ [S1, ω1]∧ . . .∧ [Sm, ωm], where the hard clauses Hi and the soft clauses

Sj (with weight ωj) are disjunctions of literals over a background theory,

and the aim is to find a model of the hard clauses that minimizes the sum

of the weights of the satisfied soft clauses.

Finally, in Chapter 2 transition systems are introduced as the program-

ming model used through this thesis to represent programs, and two simple

applications of the use of SMT solvers in program analysis are described.

Chapter 3 starts presenting the invariant inference problem, and re-

viewing the main approaches to the problem. Discovering invariants, as-

sertions over the program variables that remain true whenever the location

is reached, is crucial for program verification. However, it is a tedious and,

sometimes, difficult task for the programmer. For this reason, the design

of techniques to discover automatically invariants attracted researchers at-

tention from the beginning of the field. Despite this, it has not been until

recently, with the lastest technological advances in constraint solving and

theorem proving, that practical methods have been applied to programs of

interest.

Chapter 3 continues describing the constraint-based method [Colón et al.,

2003] to generate invariants over scalar program variables in detail. Then,

our extension of the method for generating universally quantified array in-

variants is presented. Unlike other techniques, our technique does not re-

quire extra predicates nor assertions. It does not need the user to provide a

template either, but it can take advantage of hints by partially instantiating

the global template considered here. This work corresponds to the following

paper [Larraz et al., 2013b].

In Chapter 4 we show how Max-SMT can be used in constraint-based

program termination proving originated in [Bradley et al., 2005]. Thanks

to expressing the generation of a ranking function as a Max-SMT optimiza-

tion problem where constraints are assigned different weights, quasi-ranking

functions –functions that almost satisfy all conditions for ensuring well-

foundedness– are produced in a lack of ranking functions. By means of trace

partitioning, this allows our method to progress in the termination analy-

sis where other approaches would get stuck. Moreover, Max-SMT makes it

easy to combine the process of building the termination argument with the

usually necessary task of generating supporting invariants. The technique

was presented in [Larraz et al., 2013a].

1.1. THESIS OUTLINE 5

We then show how Max-SMT-based invariant generation can also be ex-

ploited for proving non-termination of programs. The construction of the

proof of non-termination is guided by the generation of quasi-invariants

– properties such that if they hold at a location during execution once,

then they will continue to hold at that location from then onwards. The

check that quasi-invariants can indeed be reached is then performed sepa-

rately. Our technique considers for analysis strongly connected subgraphs

of a program’s control flow graph and thus produces more generic witnesses

of non-termination than existing methods. Furthermore, it can handle pro-

grams with unbounded non-determinism and is more likely to converge than

previous approaches. This method can be found in [Larraz et al., 2014a].

In Chapter 5 we present an automated compositional program verifica-

tion technique for safety properties based on quasi-invariants. For a given

program part (e.g., a single loop) and a postcondition ϕ, we show how to

synthesize an inductive invariant together with a precondition such that the

precondition ensures validity of the invariant and the invariant implies ϕ.

From this, we build a bottom-up program verification framework that prop-

agates preconditions of small program parts as postconditions for preceding

program parts. The method recovers from failures to prove the validity of a

precondition, using the obtained intermediate results to restrict the search

space for further proof attempts.

As only small program parts need to be handled at a time, our method is

scalable and distributable. The derived conditions can be viewed as implicit

contracts between different parts of the program, and thus enable an in-

cremental program analysis. The techniques presented in this chapter have

been included in [Brockschmidt et al., 2015].

6 CHAPTER 1. INTRODUCTION

Chapter 2
Preliminaries

This chapter is devoted to the theoretical frameworks used in this thesis to

model programs, and to solve all program analysis problems. In Section 2.1

we present the Satisfiability Modulo Theories (SMT) problem, and its op-

timization version, the Max-SMT problem, which compose the bases of the

solving technology employed in this work. Later, in Section 2.2 we intro-

duce transition systems, the programming model used through this thesis

to represent programs. Finally, in order to illustrate the use of the concepts

introduced in the chapter, in Section 2.3 we present two simple applications

of the use of SMT solvers in program analysis.

2.1 SAT and SMT solving

Many of the problems arising in applications of automatic reasoning can

be formulated as the problem of checking the satisfiability of a formula in

a certain logic. For many logics of interest, this problem is undecidable.

For satisfiability of first-order formulas, for example, several efficient semi-

decision procedures exist, which can prove the unsatisfiability of a formula in

finite time, but may run forever when their input formula is satisfiable. For

other cases (e.g., certain logics with built-in integers) not even semi-decision

procedures can exist.

7

8 CHAPTER 2. PRELIMINARIES

2.1.1 Propositional satisfiability

Probably the easiest satisfiability problem one can think of is that of propo-

sitional satisfiability (SAT). In this case, the atomic formulas are nothing

but syntactic symbols, which are combined by means of boolean connectives

to construct the formula. A boolean formula is in Conjunctive Normal Form

(CNF) if it is a conjunction of clauses, each clause being a disjunction of

literals, and each literal being a propositional variable or its negation. Since

any formula can be converted into CNF format in a satisfiability preserving

polynomial-time process [Tseitin, 1983; Plaisted and Greenbaum, 1986], it

is usually assumed that all formulas are in CNF format.

Example 2.1. Consider the following boolean formula (¬x1 ∨¬x2∨¬x3)∧

x1∧(x2∨¬x3) in CNF format. It is satisfiable: the assignment {x1, x2,¬x3}

(i.e., setting x1 and x2 to true, and x3 to false) is a model of it. If the clause

¬x1 ∨ x3 is added, the conjunction becomes unsatisfiable. A complete SAT

solver is a tool that, given a set of clauses, either finds a model for it or

reports unsatisfiability.

Most state-of-the-art SAT solvers [Moskewicz et al., 2001; Goldberg

and Novikov, 2002; Eén and Sörensson, 2004; Ryan, 2004; Biere, 2008] use

Conflict-driven Clause Learning, and are originally based on the Davis-

Putnam-Logemann-Loveland (DPLL) procedure [Davis and Putnam, 1960;

Davis et al., 1962] (see, e.g., [Nieuwenhuis et al., 2006] for details and more

references).

Despite the NP-completeness of the problem, a lot of work has been

done in developing algorithms that can handle larger and larger practical

problems. The past few years have seen enormous progress in the devel-

opment of SAT solvers (see www.satlive.org) and there is no doubt that

they have now grown out of academic curiosity to become a viable indus-

trial strength reasoning and deduction engine for production tools. More

and more problems are efficiently encoded into propositional logic, which

increases the interest in developing such efficient SAT solvers.

There exist several optimization versions of the SAT problem. In Max-

SAT, the aim is to find a model that maximizes the number of satisfied

clauses. In Partial Max-SAT the input consists of two sets of clauses, the

hard ones and soft ones, and the problem is to find a model for the hard

clauses that maximizes the number of satisfied soft clauses. In Weighted

www.satlive.org

2.1. SAT AND SMT SOLVING 9

(Partial) Max-SAT each soft clause has a weight and the aim is to minimize

the sum of the weights of the falsified soft clauses.

A very naive approach to (unweighted) Max-SAT solving consists, first

of all, in extending each original clause Ci to obtain clause Ci ∨ bi, where

bi is a fresh variable. Then, any model of the formula Fk, consisting of

all the extended clauses plus a CNF encoding of the cardinality constraint∑
bi ≤ k, is an assignment that falsifies at most k original clauses. Hence,

the goal is to find k such that Fk is satisfiable but Fk−1 is not. Such a k

can be found with different methods: using binary search, or starting with

k = 0 and increasing it while Fk is unsatisfiable, or starting with k equal to

the number of clauses and decreasing it until Fk is unsatisfiable.

Another less naive way to tackle Max-SAT is via branch-and-bound tech-

niques. Roughly speaking, once an assignment falsifying k clauses has been

found, these techniques look for an assignment falsifying less than k clauses.

As soon as one can infer that the current partial assignment cannot be

extended to one with the aforementioned property, it is discarded and an-

other assignment is tried. The key point is to develop powerful but efficient

pruning techniques that allow one to discard partial assignments as soon

as possible; some examples are [Alsinet et al., 2008; Heras et al., 2008; Lin

et al., 2008; Pipatsrisawat et al., 2008].

Example 2.2. Consider the following set of clauses {x1 ∨ b1, ¬x1 ∨ x3 ∨

b2, x2 ∨ ¬x3 ∨ b3, ¬x1 ∨ ¬x2 ∨ ¬x3} where a clause without a bi variable is

considered hard, otherwise soft. The assignment {x1,¬x2, x3,¬b1,¬b2, b3} is

an optimal solution. Now suppose clauses are weighted: [b1, 1], [b2, 2], and

[b3, 3]. In that case the previous assignment is no more an optimal solution,

the only one is the assignment {¬x1, x2, x3, b1,¬b2,¬b3} with weight 1.

2.1.2 Satisfiability Modulo Theories

The SAT problem can be considered an instance of a more general prob-

lem, namely, the Satisfiability Modulo Theories (SMT) problem [Biere et al.,

2009], which consists in deciding the satifisfiability of arbitrary boolean for-

mulas whose atoms belong to a certain theory.

The richer the theory is, the easier it is to express the desired proper-

ties. For example, when reasoning about software, it helps to work with

logics including standard data types, such as arrays, lists, bit-vectors or

10 CHAPTER 2. PRELIMINARIES

trees. Arithmetic operators are also really helpful, and hence the possibility

of using Presburger arithmetic, linear and non-linear arithmetic, or other

fragments is highly desirable.

Example 2.3. Consider the following SMT formula over linear arithmetic

(y = x + 1 ∧ y ≤ z ∧ z < x). Clearly, the formula is unsatisfiable, that is,

there is no real numbers x, y and z that satisfy the formula.

During the last years many successively more sophisticated techniques for

deciding satisfiability modulo theories have been developed, most of which

can be classified as being eager or lazy.

In the eager approaches the input formula is translated, in a single

satisfiability-preserving step, into a propositional formula, which is checked

by a SAT solver for satisfiability. The lazy approaches [Armando et al., 2000;

De Moura et al., 2002; Audemard et al., 2002; Barrett et al., 2002; Flanagan

et al., 2003] instead abstract each atom of the input formula by a distinct

propositional variable, use a SAT solver to find a propositional model of

the formula, and then check that model against the theory. Models that

are incompatible with the theory are discarded from later consideration by

adding a proper lemma to the original formula. This process is repeated un-

til a model compatible with the theory is found or all possible propositional

models have been explored.

The eager approach allows one to use existing SAT solvers as-is and

leverage their performance and capacity improvements over time. On the

other hand, the loss of the high-level semantics of the underlying theories

means that the SAT solver has to work a lot harder than necessary to dis-

cover obvious facts like, for instance, the commutative property of reals.

There also exist optimization versions of the SMT problem. The problem

of Max-SMT merges Max-SAT and SMT, and is defined from SMT analo-

gously to how Max-SAT is derived from SAT. E.g., the Weighted Max-SMT

problem consists in, given a weighted formula, to find an assignment that

minimizes the sum of the weights of the falsified clauses in the background

theory. Henceforth, we will refer to the Weighted Max-SMT problem plainly

as the Max-SMT problem.

2.2. MODELLING PROGRAMS 11

2.1.3 Barcelogic SMT/Max-SMT solver

All the methods developed for this thesis have been implemented, some of

them in a tool called CppInv (Chapters 3 and 4), and other ones in a tool

called VeryMax (Chapter 5). These tools parse programs written in a sub-

set of C++, abstract their program semantics and discover linear program

properties that holds at some program locations. In order to infer such prop-

erties, the inference problem is encoded into an SMT/Max-SMT problem

over non-linear arithmetic, and then sent to the Barcelogic solver [Bofill

et al., 2008].

Solving non-linear arithmetic constraint over the integers is undecidable.

The situation is not much better when considering the reals since, although

the problem is decidable as it was shown in [Tarski, 1953], using the related

algorithms in practice is unfeasible due to their complexity.

Therefore, all methods used in practice for both integer or real solu-

tion domains are incomplete and are focused on either proving satisfia-

bility or proving unsatisfiability. In this thesis we are particularly inter-

ested on the former because each found solution represents a new dis-

covered property. That is the reason we choose the Barcelogic solver.

Barcelogic has proved to be very effective in finding solutions [Borralleras

et al., 2012]; e.g., it won the division of quantifier-free non-linear integer

arithmetic (QF NIA) in the 2009 edition of the SMT-COMP competition

(www.smtcomp.org/2009), and since then (as of 2013) no other competing

solver in this division had solved as many problems.

The Max-SMT(NA) solver for mixed non-linear arithmetic in Barcel-

ogic [Larraz et al., 2014b] improves and extends the techniques presented

in [Borralleras et al., 2012] for solving SMT(NIA) problems. This is achieved

by allowing integer and real variables in the underlying linear arithmetic

solver, and wrapping this solver with a branch-and-bound scheme for opti-

mization [Nieuwenhuis and Oliveras, 2006].

2.2 Modelling programs

SAT/SMT solvers are useful tools for program analysis. But, in order to

reason about programs, it is necessary to model program semantics using

an abstraction based on some logic. Transitions systems are a convenient

framework to describe imperative programs.

www.smtcomp.org/2009

12 CHAPTER 2. PRELIMINARIES

int main() {
int x, y, z;

ℓ1: while (x+ 1 = y && y ≤ z) {
ℓ2: if (z < x) x++;

else z--;

}
ℓ3:

}

ρτ1 : x+ 1 = y, y ≤ z, x′ = x, y′ = y, z′ = z

ρτ2 : z < x, x′ = x+ 1, y′ = y, z′ = z

ρτ3 : z ≥ x, x′ = x, y′ = y, z′ = z − 1

ρτ4 : x+ 1 < y, x′ = x, y′ = y, z′ = z

ρτ5 : x+ 1 > y, x′ = x, y′ = y, z′ = z

ρτ6 : y > z, x′ = x, y′ = y, z′ = z

ℓ1

ℓ2 ℓ3

τ1

τ2 τ3
τ4

τ5 τ6

Θ(ℓ1) ≡ true

Figure 2.4. Program and its transition system.

2.2.1 Transition Systems

A transition system S = (V,L,Θ,T) consists of a tuple of variables V, a set

of locations L, a map Θ from locations to formulas characterizing the initial

values of the variables, and a set of transitions T . Each transition τ ∈ T is

a triple (ℓ, ℓ′, ρ), where ℓ, ℓ′ ∈ L are the pre and post locations respectively,

and ρ is the transition relation: a formula over the program variables V and

their primed versions V ′, which represent the values of the variables after

the transition. In general, to every formula ϕ over the program variables V

we associate a formula ϕ′ which is the result of replacing every variable xi

in ϕ by its corresponding primed version x′i.

The logic chosen to model the transition relations depends on the kind

of properties one wants to analyze. From now on, we assume that variables

take integer values and programs are linear, i.e., the initial conditions Θ and

transition relations ρ are described as conjunctions of linear inequalities.

See Fig. 2.4 for an example of a program together with a corresponding

representation as a transition system.

2.2. MODELLING PROGRAMS 13

2.2.2 States and Executions

A state is a pair (ℓ, σ) consisting of a location ℓ ∈ L and an assignment σ of

a value to each of the variables in V. To ease the reading, we will sometimes

refer to (ℓ, σ) as the state σ at location ℓ, and we may omit the location if it

is clear from the context. A state (ℓ, σ) is initial if σ |= Θ(ℓ). We denote an

evaluation step with transition τ = (ℓ, ℓ′, ρ) by (ℓ, σ) →τ (ℓ′, σ′), where the

assignments σ, σ′ satisfy the transition relation ρ. We use →S if we do not

care about the executed transition, and→∗
S to denote the transitive-reflexive

closure of →S . A computation is a sequence of states (ℓ0, σ0), (ℓ1, σ1), ...

such that σ0 |= Θ(ℓ0), and for each pair of consecutive states there exists

τi ∈ T satisfying (ℓi, σi)→τi (ℓi+1, σi+1). A state (ℓ, σ) is reachable if there

exists a computation ending at (ℓ, σ). A transition system is terminating if

all its computations are finite, and non-terminating otherwise.

A transition τ = (ℓ, ℓ′, ρ) is disabled if it can never be executed, i.e., if for

all reachable state (ℓ, σ), there does not exist any σ′ such that (σ, σ′) |= ρ.

A transition τ is called finitely executable if in any computation, τ is only

executed a finite number of times (in particular, if τ is disabled). Otherwise,

i.e., if there exists a computation where τ is executed infinitely, we say that

τ is infinitely executable.

2.2.3 Locations and Cutsets

When modeling a program as a transition system, it is necessary to select

a set of locations that are associated to points in the original program. For

instance, in the example of Fig. 2.4, location ℓ1 maps to the beginning of the

while loop, location ℓ2 is associated with the beginning of the if statement

and location ℓ3 maps to the end of the main program. But that is not the

only way to build the set of locations. In many cases, intermediate locations

like ℓ2 can be ignored merging the incoming transitions with the transitions

that exit the location (see Fig. 2.6). That can be the case, for instance, if

one is only interested in properties that hold at the beginning of the loop.

In particular, in many applications it is important to construct a cutset, a

set of locations (called cutpoints) such that every cyclic path of the program

contains a location within the set.

The number of cutpoints has a strong influence on the complexity of the

program analyses. As will be seen in later chapters, the size of the generated

14 CHAPTER 2. PRELIMINARIES

ρτ2.1 : x+ 1 = y, y ≤ z, z < x, x′ = x+ 1, y′ = y, z′ = z

ρτ3.1 : x+ 1 = y, y ≤ z, z ≥ x, x′ = x, y′ = y, z′ = z − 1

ρτ4 : x+ 1 < y, x′ = x, y′ = y, z′ = z

ρτ5 : x+ 1 > y, x′ = x, y′ = y, z′ = z

ρτ6 : y > z, x′ = x, y′ = y, z′ = z

ℓ1 ℓ3

τ2.1

τ3.1

τ4

τ5

τ6

Θ(ℓ1) ≡ true

Figure 2.6. Simplified transition system for program of Fig. 2.4.

SMT problems depends on the number of template properties associated to

each cutpoint. Therefore, it seems desirable to look for cutsets of small

cardinality. Although the problem of finding a minimum cutset for an arbi-

trary directed graph is NP-complete [Karp, 1972], a linear time algorithm

is known [Shamir, 1979] for practical flowcharts of programs. Nevertheless,

one also have to take into account that reducing the number of locations can

entail, in general, an increment of the number of transitions. Therefore, in

practice, the choice of a set of locations depends on selecting the appropriate

threshold for the resulting number of locations and transitions.

2.3 SMT and program analysis

In order to illustrate the use of the concepts introduced in this chapter, and

the close relationship between them, in what follows we present two simple

applications of the use of SMT solvers in program analysis.

The first example of application is the detection of an unfeasible transi-

tion, which allows one to simplify a transition system for subsequent analy-

ses, and detect simple cases of unreachable locations.

Example 2.5. Consider the transition system of Fig. 2.6 which models

program of Fig. 2.4 using only ℓ1 and ℓ3 as locations.

Note that there are two transitions (τ2.1 and τ3.1) that cycle back to the

entry of the while loop (location ℓ1), but only the one that passes through

2.3. SMT AND PROGRAM ANALYSIS 15

the else branch of the conditional statement (τ3.1) is executable. That

happens because the conditions of the while and the if statements are

incompatible. In order to detect it we can send two queries to the solver

about the satisfiability of the SMT formulas that models the transitions

(its corresponding transition relations ρ2.1 and ρ3.1). Since the transition

relation for the if branch (τ2.1) is unsatisfiable (see example 2.3), we can

conclude that the transition will never be executed and, therefore, the x

increment is unreachable.

Another application is to check whether an assertion at some location

of the program holds whenever the control flow reaches the location. Let

ρτ1(V,V ′), . . . , ρτm(V,V ′) be the transition relations associated with each of

the transitions τ1, . . . , τm that reaches a location where an assertion ϕ(V)

is claimed to be hold. Then, it must be fulfilled that for all values of the

program variables V and V ′, the formula ρτ1(V,V ′)∨. . .∨ρτm(V,V ′)→ ϕ(V ′)

is satisfied. Since an SMT solver only can check if there are some values

that satisfy a formula, it is necessary to transform the original problem into

an equivalent one that can be solved by the SMT tool. Checking that a

formula is satisfied for all values of the variables is equivalent to check that

there is no values that satisfies the negation of the formula, i.e. (ρτ1(V,V ′)∨

. . . ∨ ρτm(V,V ′)) ∧ ¬ϕ(V ′) is unsatisfiable.

Example 2.7. Consider again the program of Fig. 2.4. The assertion x ≤ z

holds at the end of the loop for all values of x and z that satisfy the loop

condition independently the transition taken to return (τ2.1 or τ3.1). As

there is only one feasible transition that cycle back (see example 2.5), we

can check the assertion always holds asking the solver if the SMT formula

(x + 1 = y ∧ y ≤ z ∧ z ≥ x ∧ x′ = x ∧ y′ = y ∧ z′ = z − 1) ∧ (x′ > z′) is

unsatisfiable.

The applications described previously have one common feature, they

consist in checking some known property reducing the problem to SMT

queries. In the literature, this kind of use of SAT/SMT solvers can be found

in the derivation of counterexamples, from the models found by the solver,

that explain faults [Prasad et al., 2005; Cadar et al., 2008; McMillan, 2003b;

Xie and Aiken, 2005; Beyer et al., 2004; Majumdar and Xu, 2007; Godefroid

et al., 2008; Jackson and Vaziri, 2000]. In contrast, the inference of unknown

properties that fulfill some conditions has no straightforward encoding.

16 CHAPTER 2. PRELIMINARIES

Chapter 3
Invariant Inference

In the late 60s, Hoare [Hoare, 1969] proposed an axiomatization based on

mathematical basis of all the constructs of a simple imperative programming

language as a mean to prove partial correctness of programs, where termi-

nation needs to be proved separately. Similar ideas for flowcharts, instead

of text programs, have been published previously by Floyd [Floyd, 1967].

In Hoare logic, every piece of code is described using a precondition and

a postcondition, which are assertions about the values of program variables

before and after its execution. In this context, the intended function of

a program is not specified by making assertions that ascribe to particular

values of each variable, but asserting general properties of the values and the

relationships holding between them. The kind of properties and assertions

which are looked for are called invariants, from which loop invariants are a

special and fundamental class of them. Specifically, an invariant at some

program location is an assertion over the program variables that remains

true whenever the location is reached.

Discovering invariants is crucial for program verification, but also a te-

dious and, sometimes, difficult task for the programmer. For this reason,

heuristic methods for mechanically deriving invariants attracted researchers

attention soon [German and Wegbreit, 1975; Wegbreit, 1974; Katz and

Manna, 1973; Hegbreitt, 1973; Elspas et al., 1972]. Most of these meth-

ods are associated to the verification process and, therefore, are dependent

of the output specification of the program. They try to find an inductive

invariant, an assertion that holds the first time the location is reached and

is preserved under every cycle back to the location, strengthening the post-

17

18 CHAPTER 3. INVARIANT INFERENCE

condition until the assertion fulfills the inductive conditions. In [Katz and

Manna, 1976], invariants that are only dependent of the program code are

generated using ad-hoc recursive equations.

All these works were focused on assertions about numerical relation-

ships over program variables. That is because of their role in some many

algorithms and its importance as fundamental types within programming

languages. Likewise, this thesis is also centered on numerical invariants. In

particular, it tackles the generation of universally quantified loop invariants

over array and scalar variables. But before presenting our inference tech-

nique, the most important approaches for automatic invariant generation

are reviewed.

3.1 Background: approaches

3.1.1 Abstract Interpretation

Abstract interpretation is a foundational framework for specifying program

property inference as iterative approximations over a suitable domain (a lat-

tice of facts in which the invariants are expected to lie) [Cousot and Cousot,

1977b]. The main idea behind this approach is to perform an approximate

symbolic execution of the program until an assertion that remains unchanged

is reached. However, in order to guarantee termination, the method intro-

duces imprecision by use of a domain-specific extrapolation operator called

widening. A complementary narrowing [Cousot and Cousot, 1992] opera-

tor is then used to improve the precision of the solution. Several widening

heuristics [Wang et al., 2007; Gulavani et al., 2008; Gopan and Reps, 2007,

2006] have been developed to tailor specific classes of programs.

The set of numerical abstract domains studied includes the interval do-

main [Cousot and Cousot, 1977a] (that discovers variable bounds
∧

i xi ∈

[ai, bi]), the linear equalities domain [Karr, 1976] (
∧

j

∑
i αijxi = βj), the

octagon domain [Miné, 2006] (
∧

j ±x ± y ≤ βj), its generalization to more

than two variables the octahedra domain [Clarisó and Cortadella, 2004], the

polyhedron domain [Cousot and Halbwachs, 1978] (
∧

j

∑
i αijxi ≤ βj), and

the congruence domain [Granger, 1991] (
∧

i xi ∈ aiZ + bi), where ai, bi, αij

and βj are integers.

Although some of them are clearly more expressive than the others, e.g.,

the polyhedron domain compared with the octagon domain, in practice the

3.1. BACKGROUND: APPROACHES 19

preference between them also depends on its space and temporal computa-

tional requirements. For instance, the octagon domain is usually preferred

to the polyhedron domain because the former has a memory and worst-case

time cost polynomical, whereas the latter has a memory and time cost that

is unbounded in theory and exponential in practice [Miné, 2006].

Besides conjunctions of numerical domains, there exist disjunctive com-

pletions of domains [Cousot and Cousot, 1979] including powerset extensions

over linear inequalities [Giacobazzi and Ranzato, 1998; Gulavani and Raja-

mani, 2006].

Regarding the synthesis of quantified invariants for programs with ar-

rays, in [Gopan et al., 2005] the index domain of arrays is partitioned

into several symbolic intervals I, and then each subarray A[I] is associ-

ated to a summary auxiliary variable AI . Although assignments to indi-

vidual array elements can thus be handled precisely, in order to discover

relations among the contents at different indices, hints must be manu-

ally provided. This shortcoming is overcome in [Halbwachs and Péron,

2008], where additionally relational abstract properties of summary vari-

ables and shift variables are introduced to discover invariants of the form

∀α : α ∈ I : ψ(A1[α + k1], ..., Am[α + km], x), where k1, . . . , km ∈ Z, Ai are

array variables, and x are scalar variables.

3.1.2 Predicate Abstraction

Predicate abstraction [Graf and Säıdi, 1997] can be seen as an instance

of abstract interpretation. It differs from standard abstract interpretation

because the abstraction is parametrized by, and specific to a program. The

process consists in selecting a set of predefined predicates, typically provided

manually by the user or computed heuristically from the program code and

the assertions to be proved, and then generate an invariant built only over

those predicates.

For programming language researchers, predicate abstraction was popu-

larized by the model checking community, and in particular the SLAM [Ball

and Rajamani, 2002, 2000] and BLAST [Beyer et al., 2007a; Henzinger et al.,

2002, 2004] model checkers.

Although predicate abstraction was initially used to compute quantifier-

free invariants, strategies to discover universally quantified invariants [Flana-

gan and Qadeer, 2002; Lahiri and Bryant, 2007; Jhala and McMillan, 2007]

20 CHAPTER 3. INVARIANT INFERENCE

and disjunctions of universally quantified invariants in the context of shape

analysis [Podelski and Wies, 2005] have been proposed.

3.1.3 Computational algebra

The computational algebra approach leverages recurrence solving and alge-

braic techniques to discover invariant properties. In [Kovács, 2008], con-

struction of invariant equalities over numeric scalar is presented. Later, this

method is generalized to the construction of invariant inequalities using a

combination of quantifier elimination techniques together with a program

instrumentation using an auxiliary loop counter variable [Henzinger et al.,

2008]. For a restricted class of loops that do not contain any branching

statements and under non-deterministic treatment of the loop condition, re-

currence solving over the loop body is used in [Henzinger et al., 2010b] to

compute universally quantified array invariants. Some of the previous limi-

tations are eliminated in a subsequent work [Henzinger et al., 2010a] where

loops with restricted branching control-flow are supported.

3.1.4 First-order theorem proving

First-order theorem solvers are general tools to perform deductive reasoning

provided that one is able two express the axiomatization of the theories

of interest. In particular, two kind of theorem provers have been used for

invariant inference.

On the one hand, interpolating provers have been used to generate induc-

tive invariants for proving properties of sequential circuits [McMillan, 2003b]

and sequential programs [McMillan, 2006], as well as abstraction refine-

ment [Henzinger et al., 2004] and universally quantified invariants [McMil-

lan, 2008]. The method consists in over-approximating image computation

based on interpolation.

On the other hand, saturation theorem provers have been used to gen-

erate invariants with alternations of quantifiers for loop programs without

nesting [Kovács and Voronkov, 2009; Hoder et al., 2011]. In this approach,

one describes first the loop dynamics by means of first-order formulas, pos-

sibly using additional symbols denoting array updates or loop counters, and

then a saturation theorem prover eliminates auxiliary symbols and reports

the consequences without these symbols, which are the invariants.

3.2. SCALAR INVARIANT GENERATION 21

3.1.5 Constraint solving

A constraint-based method for generating linear invariants was presented

in [Colón et al., 2003]. The method reduces the problem of linear invariant

generation to a non-linear constraint solving problem. In [Beyer et al.,

2007b], a constraint-based algorithm for the synthesis of invariants expressed

in the combined theory of linear integer arithmetic (LIA) and uninterpreted

function symbols (EUF) is presented. By means of the reduction of the array

property fragment to EUF+LIA, it is claimed that the techniques can be

extended for the generation of universally quantified invariants for arrays.

However, the technique has some limitations, namely, only properties where

indices occurs in array accesses of the program can be generated.

The first of the goals of this thesis is to extend the language of array

invariants that can be discovered using the constraint-based approach and

achieve it without requiring extra predicates or assertions, only extracting

properties from the semantics of the source code.

3.2 Scalar invariant generation

This section review in detail the constraint-based method for the generation

of linear invariants over scalar program variables, which establishes the basis

of the work done about generation of universally quantified array invariants.

3.2.1 Problem definition

We assume that every program is modeled with a transition system with

transition relations over integer linear arithmetic (see Section 2.2) and we

want to find an invariant map µ that assigns an invariant µ(ℓ) to each of

the locations ℓ. The main idea behind the technique explained in [Colón

et al., 2003] is to represent a linear invariant c1x1 + · · ·+ cnxn + d ≤ 0 over

the program variables xi in terms of unknown coefficients c1, . . . , cn, d and

generate constraints on the coefficients such that any solution corresponds

to an inductive invariant.

Theorem 3.1. Let µ be a map from locations to properties such that:

• For every location ℓ ∈ L: Θ(ℓ) |= µ(ℓ)

• For every transition τ = (ℓ, ℓ′, ρ) ∈ T : µ(ℓ) ∧ ρ |= µ(ℓ′)′.

22 CHAPTER 3. INVARIANT INFERENCE

int isqrt(int N) {
int a = 0, s = 1, t = 1;

ℓ1: while (s ≤ N) {
a = a+ 1;

s = s+ t+ 2;
t = t+ 2;

}
return a;

}

ℓ1

τ1

s ≤ N

a′ = a+ 1
s′ = s+ t+ 2
t′ = t+ 2

Θ(ℓ1) ≡ a = 0, s = 1, t = 1

Figure 3.3. Program computing the integer square root of a natural number, and
its transition system.

Then µ is an invariant map, and we say µ and its associated properties are

inductive. We refer to the first condition of the Theorem as the initiation

condition and to the second one as the consecution condition.

Example 3.2. Consider the program of Fig. 3.3 for computing the floor of

the square root of a natural number N . An inductive invariant for location

ℓ1 is −2a+ t− 1 ≤ 0 since:

• (a = 0 ∧ s = 1 ∧ t = 1) |= −2a+ t− 1 ≤ 0

• (−2a+ t− 1 ≤ 0)∧ (s ≤ N ∧ a′ = a+ 1∧ s′ = s+ t+ 2∧ t′ = t+ 2) |=

−2a′ + t′ − 1 ≤ 0

3.2.2 SMT encoding of the problem

Note that, given two formulas F and G with free variables x, saying that

F(x) |= G(x) holds is the same that saying ∀x(F(x) → G(x)) holds. As it

showed in Section 2.3, using SMT solvers to check if an known inequality

holds whenever a location is reached is straightforward. However, in order

to discover some coefficients such that an inequality is inductive invariant,

it is necessary to transform an ∃∀ problem into an ∃ problem which can be

handled directly by an SMT solver.

It is a well-known fact that given a conjunction of equalities and inequal-

ities over a set of real variables1, we can construct a logical consequence

adding a multiple of one or more inequalities. The formalization of this

1Recall that an equality A = B is equivalent to the conjunction of two inequalities
A ≤ B and B ≤ A.

3.2. SCALAR INVARIANT GENERATION 23

elementary mathematical concept is the following result from polyhedral

geometry:

Theorem 3.4 (Farkas’ Lemma). [Schrijver, 1998] Consider the following

system of linear inequalities over real-valued variables x1, . . . , xn:

S :

a11x1 + · · ·+ a1nxn + b1 ≤ 0

...
...

... ≤ 0

am1x1 + · · ·+ amnxn + bm ≤ 0

When S is satisfiable, it entails a given linear inequality

ψ : c1x1 + · · ·+ cnxn + d ≤ 0

if and only if there exist non-negative real numbers λ0, λ1, . . . , λm, such that

c1 =

m∑

i=1

λiai1, . . . , cn =

m∑

i=1

λiain, d = (

m∑

i=1

λibi)− λ0

Furthermore, S is unsatisfiable if and only if the inequality 1 ≤ 0 can be

derived as shown above.

Although Farkas’ lemma is applied to a conjunction of inequalities, an

equality can be represented using two inequalities whose coefficients are

the same with the sign changed. Therefore, regarding lambda values, an

equality can be treated like an inequality where the lambda multiplier has

no restriction, i.e. it can be positive, negative or zero.

Example 3.5. Consider the program of Fig. 3.3. Suppose we want to find

an inductive invariant µ(ℓ1) : c1a+ c2s+ c3t+ d ≤ 0 at ℓ1 where c1, c2, c3, d

are unknown coefficients. Thus, our problem is to find coefficients such that

Θ(ℓ1) |= µ(ℓ1) and µ(ℓ1) ∧ ρτ1 |= µ(ℓ1)′. As it was shown in Example 3.2,

for c1 = −2, c2 = 0, c3 = 1, and d = −1, µ(ℓ1) is an inductive invariant.

Therefore, according to Farkas’ Lemma, there should exist λ0, . . . , λ3 and

λ′0, . . . , λ
′
5 such that:

• λ0, λ
′
0, λ

′
1, λ

′
2 ≥ 0

• λ1(a = 0) +λ2(s−1 = 0) +λ3(t−1 = 0) ≡ c1a+ c2s+ c3t+d+λ0 ≤ 0

• λ′1(c1a + c2s + c3t + d ≤ 0) + λ′2(s − N ≤ 0) + λ′3(a′ − a − 1 = 0) +

λ′4(s
′−s− t−2 = 0)+λ′5(t

′− t−2 = 0) ≡ c1a
′ +c2s

′ +c3t
′ +d+λ′0 ≤ 0

24 CHAPTER 3. INVARIANT INFERENCE

that rewritten as equations like in Farkas’ lemma are the following:

• λ0, λ
′
0, λ

′
1, λ

′
2 ≥ 0

• c1 = λ1 = λ′3, c2 = λ2 = λ′4, c3 = λ3 = λ′5

• d = −λ0 + λ2 − λ3 = λ′1d− λ
′
3 − 2λ′4 − 2λ′5

• λ′1c1 − λ
′
3 = 0, λ′1c2 + λ2 − λ4 = 0

• λ′1c3 − λ
′
4 − λ

′
5 = 0, −λ′2 = 0

In fact, λ0 = 0, λ1 = −2, λ2 = 0, λ3 = 1, λ′0 = 0, λ′1 = 1, λ′2 = 0, λ′3 =

−2, λ′4 = 0, λ′5 = 1 is a solution for the inductive invariant −2a+t−1 ≤ 0. In

general, for every c1, . . . , c3, d such that there also exist multipliers λ0, . . . , λ3

and λ′0, . . . , λ
′
5 which satisfy the encoding of the inductive conditions using

Farkas’ lemma, then µ(ℓ1) is an inductive invariant.

As it can be observed in Example 3.5, the problem that we obtain after

encoding the inductive conditions is a satisfiability problem in propositional

logic over non-linear arithmetic (note that λ′1 multiply the unknown coef-

ficients c1, . . . , c3, d). The nonlinearity does not come from Farkas’ lemma

per se, but from the existence of an inequality in the system S which have

unknown coefficients aji and bj. Moreover, if one is interested in linear

invariants with integer coefficients, as some unknowns are integer (the in-

variant coefficients) and some are real (the multipliers λ0, λ1, . . . , λm), an

SMT problem in mixed arithmetic is obtained.

Since Farkas’ Lemma applies to reals, one may lose some inductive invari-

ants, namely those that only hold using the fact that the program variables

are integers. In order to perform (partial) integer reasoning, the following

variation of Farkas’ Lemma, based on the Gomory-Chvátal cutting plane

rule [Robinson and Voronkov, 2001], is employed in practice:

Lemma 3.6. Let Ax + b ≤ 0 (A ∈ R
m×n, b ∈ R

m) be a system of linear

inequalities over integer variables xT = (x1, . . . , xn), and cTx + d ≤ 0 (c ∈

Z
n, d ∈ Z) be a linear inequality. If there is λ ∈ R

m, such that λ ≥ 0,

cT = λTA, λT b > d− 1, then Ax+ b ≤ 0 entails cTx+ d ≤ 0.

Proof. If Ax+ b ≤ 0 is unsatisfiable, then the result follows trivially. So let

us consider x ∈ Z
n such that Ax+b ≤ 0. As λ ≥ 0, we have λTAx+λT b ≤ 0.

Since cT = λTA, and λT b > d − 1, we have cTx = λTAx ≤ −λT b < 1 − d.

But x ∈ Z
n and c ∈ Z

n. Hence, cTx+ 1 ≤ 1− d, i.e., cTx+ d ≤ 0.

3.3. ARRAY INVARIANT GENERATION 25

3.3 Array invariant generation

Arrays are among the oldest and most important data structures, and are

used by almost every program. In order to verify the correctness of programs

manipulating arrays, usually one has to take into account invariant relation-

ships among values stored in arrays and scalar variables. However, due to

the unbounded nature of arrays, invariant generation for these programs is

a challenging problem.

This section presents a novel method for generating universally quan-

tified loop invariants over array and scalar variables, and it is one of the

first contributions of this thesis. The method builds upon the so-called

constraint-based approach and is able to generate automatically a quite gen-

eral family of properties that allows handling a wide variety of programs.

Namely, let v = (v1, . . . , vn) and a = (A1, . . . , Am) be, respectively, the

scalar and the array variables of a program. Given an integer k > 0, the

method generates invariants of the form:

∀α : 0 ≤ α ≤ C(v)− 1 : Σm
i=1Σk

j=1aijAi[dijα+ Eij(v)] + B(v) + bαα ≤ 0 ,

where C, Eij ,B are linear polynomials with integer coefficients over the scalar

variables v and aij , dij , bα ∈ Z for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , k}.

Example 3.7. Consider the program showed on the left side of Fig. 3.8. An

array A is filled with zeros from the middle outwards, moving alternatively

to the left and to the right. An inductive loop invariant for this program is

P ≡ ∀α : 0 ≤ α < r − l − 1 : A[α+ l + 1] = 0.

3.3.1 Modelling programs with arrays

Henceforth, we will consider programs that consist of unnested loops and

linear assignments, conditions and array accesses. We will model programs

by means of transition systems (cf. Section 2.2), where the tuple of variables

V contains the scalar variables v, and the array variables a. The size of an

array A ∈ a is denoted by |A| and the domain of its indices is {0 . . . |A| − 1}

(i.e., indices start at 0, as in C-like languages). We assume that arrays

can only be indexed by expressions built over scalar variables. Hence, by

means of the read/write semantics of arrays, we can describe transition

relations as array equalities (possibly guarded by conjunctions of equalities

26 CHAPTER 3. INVARIANT INFERENCE

int main() {

int l=4, r=5, A[8];

while (l>=0 and r<8)

if (???)

A[r++]=0;

else

A[l--]=0;

}

l1

∀α : 0 ≤ α < 8 ∧ α 6= l : A′[α] = A[α]

τ4 : l
′ = l − 1 ∧ r′ = r ∧ A′[l] = 0 ∧

∀α : 0 ≤ α < 8 ∧ α 6= r : A′[α] = A[α]

τ3 : r
′ = r + 1 ∧ l′ = l ∧ A′[r] = 0 ∧

l2

l3

L = {l1, l2, l3}

v = (l, r), a = (A) T = {τ1, τ2, τ3, τ4}

τ2 : l ≥ 0 ∧ r < 8 ∧ Id(l, r, A)

τ1 : (l < 0 ∨ r ≥ 8) ∧ Id(l, r, A)

Θ(l1) : l = 4 ∧ r = 5

Figure 3.8. Program and its transition system. Predicate Id(u1, . . . , uk) is short for
u1 = u′1 ∧ · · · ∧ uk = u′k, i.e., indicates those variables that remain identical after a
transition.

and disequalities between scalar expressions) and quantified information of

the form ∀α : 0 ≤ α ≤ |A| − 1 ∧ P (α) : A′[α] = A[α], where P does

not depend on array variables. Selected a location ℓ for which an array

invariant is searched, we will discard every intermediate location ℓ′ placed

in the middle of a return path from ℓ to itself, merging the corresponding

transitions as it was explained in Section 2.2.3.

Example 3.9. On the right side of Fig. 3.8 is showed the transition system

associated with the program considered in Example 3.7. Since we want

to find an array invariant at location ℓ1, we ignore location ℓ3 merging

transitions τ2 and τ3 into a new transition τ3.1 and transitions τ2 and τ4 into

a new transition τ4.1, both of them connecting now location ℓ1 with itself.

The resulting transition relations are:

ρτ3.1 : l ≥ 0 ∧ r < 8 ∧ r′ = r + 1 ∧ l′ = l ∧ A′[r] = 0 ∧

∀α : 0 ≤ α < 8 ∧ α 6= r : A′[α] = A[α]

ρτ4.1 : l ≥ 0 ∧ r < 8 ∧ l′ = l − 1 ∧ r′ = r ∧ A′[l] = 0 ∧

∀α : 0 ≤ α < 8 ∧ α 6= l : A′[α] = A[α] .

Note the use of quantified information to describe which array elements

remain with the same value in contrast to which ones have changed.

3.3.2 Illustration of the method

Similarly as it was explained in Section 3.2 for invariants over scalar vari-

ables, we tackle the generation of array invariants of the form described, by

3.3. ARRAY INVARIANT GENERATION 27

finding expressions C, Eij ,B and coefficients aij, dij , bα such that the induc-

tive conditions (recall Theorem 3.1) are satisfied. For do that, we encode

the conditions into SMT problems using Farkas’ lemma and leverage the

solver to find solutions for the unknowns.

Example 3.10. Suppose we want to find an array invariant µ(ℓ1) of the

form ∀α : 0 ≤ α < C(v) : aA[dα+ E(v)] + B(v) + bαα ≤ 0 for the program

of Example 3.9, like the invariant P of Example 3.7. In that case, we should

find C, E ,B, a, d, bα such that Θ(ℓ1) |= µ(ℓ1), µ(ℓ1) ∧ ρτ3.1 |= µ(ℓ1)′ and

µ(ℓ1) ∧ ρτ4.1 |= µ(ℓ1)′.

A way to ensure that a universally quantified array invariant satisfy the

initiation condition is to force that the domain of the universally quantified

variable is empty, what it could be achieved imposing constraints over C(v).

Although at first this restriction could seem a limitation, in fact, it is very

common that the starting point of the index variables that manipulate arrays

fulfils this condition. That is also true even when the array invariant already

holds for some initial range.

Example 3.11. Following Example 3.10, note that the solution C(v) =

r − l − 1 fulfills that the initial conditions Θ(ℓ1) entail the property P ≡

∀α : 0 ≤ α < r − l − 1 : A[α + l + 1] = 0. In particular, we need to see

that l = 4 ∧ r = 5 |= P . This is trivial, since l = 4 and r = 5 imply that

r − l − 1 is 0, i.e., the domain of the universally quantified variable α in P

is empty.

The next step is to ensure that the consecution condition holds, i.e., the

property is preserved after any transition that cycles back. If the domain

of the universally quantified variable have changed after the transition, it

is necessary to check that every array element currently indexed fulfills the

property. Here we can find two cases, namely, the array element have been

considered in previous iterations, or it is the first time that occurs. In the

former case, a sufficient condition to prove that the property is preserved is

to ensure that the array element have not been modified. In the later case,

it is necessary to ensure the property holds for the new array element.

Example 3.12. Consider transition τ3.1 of the transition system of Exam-

ple 3.9. We have to check that:

28 CHAPTER 3. INVARIANT INFERENCE

P ∧ l ≥ 0 ∧ r < 8 ∧ r′ = r + 1 ∧ l′ = l ∧ A′[r] = 0

∧ ∀α : 0 ≤ α < 8 ∧ α 6= r : A′[α] = A[α] |= P ′ .

Now notice that the expression r′ − l′ − 1, which determines the domain

of α in P ′, also has the property that r′ − l′ − 1 = (r + 1) − l − 1 =

(r − l − 1) + 1. This means that, after τ3.1, the domain of α has exactly

one new element, α = r − l − 1. First, let us see that, after the transition,

property A′[α+ l′+1] = A′[α+ l+1] = 0 holds for the other values of α, i.e.,

α ∈ {0, . . . , r − l − 2}. Indeed this is the case: since ∀α : 0 ≤ α < 8 ∧ α 6=

r : A′[α] = A[α], all positions of A′ except for the r-th remain the same.

But A′[r] = A′[(r − l − 1) + l′ + 1] precisely corresponds to α = r − l − 1.

Hence from P we have that A′[α+ l′ + 1] = 0 for all α ∈ {0, . . . , r − l − 2}.

Now we only need to check A′[α+ l′ + 1] = 0 for α = r− l− 1, which follows

from the premise A′[r] = 0. In conclusion, P ′ holds.

As regards τ4.1 we have to check that:

P ∧ l ≥ 0 ∧ r < 8 ∧ l′ = l − 1 ∧ r′ = r ∧ A′[l] = 0

∧ ∀α : 0 ≤ α < 8 ∧ α 6= l : A′[α] = A[α] |= P ′ .

Again, the expression r′− l′−1 also satisfies that r′− l′−1 = r−(l−1)−1 =

(r − l − 1) + 1. Hence the domain of α has exactly one new element. But

unlike in the previous case, l changes its value. To prove P ′ from P , it

is convenient to rewrite P so that array accesses are expressed in terms of

A[α+ l′ + 1]. By making a shift, P is equivalent to ∀α : 1 ≤ α < r′− l′−1 :

A[α + l′ + 1] = 0. Again, since ∀α : 0 ≤ α < 8 ∧ α 6= l : A′[α] = A[α], all

positions of A′ except for the l-th remain the same. But A′[l] = A′[l′ + 1]

precisely corresponds to α = 0. Therefore A′[α + l′ + 1] = 0 for all α ∈

{1, . . . , r′ − l′ − 2}. Further, as A′[l] = 0, we have that A′[α+ l′ + 1] = 0 for

α = 0. Thus P ′ holds.

Apart from proving that P is invariant, we may also want to check

that the array accesses that occur in it are correct. As regards initiation

transitions, since the domain of α at the beginning is empty, there is nothing

to check. Regarding consecution transitions, for example for τ3.1 we have to

see that

l≥0∧r<8∧r′=r+1∧l′= l→ ∀α : 0≤α<r′−l′−1 : α+l′+1≥0∧α+l′+1<8,

where for the sake of simplicity we have ignored the array variable. Now,

given that array accesses are linear functions in α, it is sufficient to check

3.3. ARRAY INVARIANT GENERATION 29

correctness for α = 0 and α = r′− l′− 2, i.e., that the above premises entail

l′ + 1 ≥ 0 ∧ l′ + 1 < 8 ∧ r′ − 1 ≥ 0 ∧ r′ − 1 < 8. Let us assume that

we have already looked for linear inequality invariants over scalar variables

(e.g., with the technique explained in Section 3.2), and have found that

l ≤ r− 1 is a loop invariant. Adding this invariant to the transition relation

suffices to prove the above implication. A similar argument applies for τ4.1.

In general, our invariant generation method guarantees that the array ac-

cesses occurring in the synthesized invariants are correct. As in the example,

this is achieved by ensuring that the accesses of the extreme values of uni-

versally quantified variables are correct. Since this often requires arithmetic

properties of the scalar variables of the program, in practice it is convenient

that, prior to the application of our array invariant generation techniques, a

linear relationship analysis for the scalar variables has already been carried

out.

3.3.3 Formal description of the method

Let a = (A1, . . . , Am) be the tuple of array variables. Given a positive

integer k > 0, our method generates invariants of the form

∀α : 0 ≤ α ≤ C(v)− 1 : Σm
i=1Σk

j=1aijAi[dijα+ Eij(v)] + B(v) + bαα ≤ 0 ,

where C, Eij and B are linear polynomials with integer coefficients over the

scalar variables v = (v1, . . . , vn) and aij, dij , bα ∈ Z, for all i ∈ {1, . . . ,m}

and j ∈ {1, . . . , k}.

This template covers a quite general family of properties. See Sec-

tion 3.3.5 for a sample of diverse programs for which we can successfully

produce useful invariants and which cannot be handled by already existing

techniques.

The invariant generation process at the cutpoint of the unnested loop

under consideration is split into three steps, in order to make the approach

computationally feasible:

1. Expressions C are generated such that the domain {0 . . . C−1} is empty

after every initiation transition reaching the cutpoint, and C does not

change or is increased by one after every consecution transition. This

guarantees that any property universally quantified with this domain

holds after all initiation transitions and the domain includes at most

30 CHAPTER 3. INVARIANT INFERENCE

one more element after every consecution transition. We avoid the

synthesis of different expressions that under the known information

define the same domain. In the running example, we generate C(l, r) =

r − l − 1.

2. For every expression C obtained in the previous step and for every array

Ai, linear expressions diα + Ei over the scalar variables are generated

such that: (i) Ai[diα+ Ei] is a correct access for all α in {0 . . . C − 1};

(ii) none of the already considered positions in the quantified property

is changed after any execution of the consecution transitions; and (iii),

after every consecution transition, either Ei does not change or its value

is Ei− di. Namely, if C does not change, then E ′i = Ei ensures that the

invariant is preserved. Otherwise, the invariant has to be extended for

a new value of α. If Ei does not change, from the previous condition

for all α ∈ {0, . . . , C − 1} we have A′
i[diα + E ′i] = Ai[diα + Ei]. So we

will try to extend the invariant with α = C. Otherwise, if E ′i = Ei− di,

then for all α ∈ {1, . . . , C} we have A′
i[diα + E ′i] = Ai[di(α − 1) + Ei].

So we will try to extend the invariant with α = 0.

In the running example, we generate d11 = 1 and E11 = l + 1.

3. For the selected C we choose k expressions Eij for every array Ai among

the generated Ei, such that for each consecution transition either all

selected Eij remain the same after the transition, or all have as new

value Eij−dij after the transition. Then, in order to generate invariant

properties we just need to find integer coefficients aij and bα and an

expression B such that, depending on the case, either the property

is fulfilled when α = C at the end of all consecution transitions that

increase C or it is fulfilled when α = 0 at the end of all consecution

transitions that increase C. Further, B and bα have to fulfill that the

quantified property is maintained for α ∈ {0 . . . C − 1}, assuming that

the contents of the already accessed positions are not modified.

For instance, in the running example for k = 1 we generate a11 = 1,

B = bα = 0, corresponding to the invariant ∀α : 0 ≤ α < r − l − 1 :

A[α + l + 1] ≤ 0; and a11 = −1, B = bα = 0, corresponding to the

invariant ∀α : 0 ≤ α < r − l − 1 : −A[α+ l + 1] ≤ 0.

3.3. ARRAY INVARIANT GENERATION 31

Next we formalize all these conditions, which ensure that every solution

to the last phase provides an invariant, and show how to encode them as

SMT problems.

While for scalar linear templates the conditions of Theorem 3.1 can be

directly transformed into constraints over the parameters (recall the tech-

nique described in Section 3.2), this is no longer the case for our template

of array invariants. To this end we particularize Theorem 3.1 in a form

that is suitable for the constraint-based invariant generation method. The

proof of this specialized theorem, given in detail below, mimics the proof of

invariance of the running example given at the beginning of this section.

Let τ I1 . . . τ
I
p be the initiation transitions to our cutpoint and τC1 . . . τCq

the consecution transitions going back to the cutpoint.

Theorem 3.13. Let C, B and Eij be linear polynomials with integer coef-

ficients over the scalar variables, and aij, dij, bα ∈ Z, for i ∈ {1 . . . m} and

j ∈ {1 . . . k}. If

1. Every initiation transition τ Ir with transition relation ρτIr satisfies ρτIr ⇒

C′ = 0.

2. For all consecution transitions τCs with transition relation ρτCs , we have

ρτCs ⇒ (C′ = C ∨ C′ = C + 1).

3. For all consecution transitions τCs , all i ∈ {1 . . . m} and j ∈ {1 . . . k},

we have ρτCs ∧ C
′ > 0⇒ 0 ≤ E ′ij ≤ |Ai|− 1 ∧ 0 ≤ dij(C

′− 1) +E ′ij ≤

|Ai| − 1.

4. For all consecution transitions τCs we have either

(a) ρτCs ∧ C
′ > 0⇒ E ′ij = Eij for all i ∈ {1 . . . m} and j ∈ {1 . . . k},

or

(b) ρτCs ⇒ C
′ = C + 1 ∧ E ′ij = Eij − dij for all i ∈ {1 . . . m} and

j ∈ {1 . . . k}.

5. For all consecution transitions τCs , we have ρτCs ⇒ ∀α : 0 ≤ α ≤ C−1 :

A′
i[dijα+ Eij] = Ai[dijα+ Eij] for all i ∈ {1 . . . m} and j ∈ {1 . . . k}.

6. For all consecution transitions τCs , we have

• ρτCs ∧ C
′ = C + 1 ⇒ Σm

i=1Σ
k
j=1aijA

′
i[dijC + E ′ij] + B′ + bαC ≤ 0,

if case 4a applies.

32 CHAPTER 3. INVARIANT INFERENCE

• ρτCs ⇒ Σm
i=1Σ

k
j=1aijA

′
i[E

′
ij] + B′ ≤ 0, if case 4b applies.

7. For all consecution transitions τCs , we have

• ρτCs ∧ 0 ≤ α ≤ C − 1 ∧ x+B+ bαα ≤ 0⇒ x+B′ + bαα ≤ 0 for

some fresh universally quantified variable x, if case 4a applies.

• ρτCs ∧ 0 ≤ α ≤ C−1 ∧ x+B+ bαα ≤ 0⇒ x+B′ + bα(α+1) ≤ 0

for some fresh universally quantified variable x, if case 4b applies.

Then ∀α : 0 ≤ α ≤ C − 1 : Σm
i=1Σ

k
j=1aijAi[dijα + Eij] + B + bαα ≤ 0 is

invariant.

Proof. Following Theorem 3.1, we show that the property holds after each

initiation transition, and that it is maintained after each consecution tran-

sition.

The first condition easily holds by applying 1, since we have that ρτIr ⇒

C′ = 0 for every initiation transition τ Ir , which implies ∀α : 0 ≤ α ≤ C′ − 1 :

Σm
i=1Σ

k
j=1aijA

′
i[dijα+E ′ij]+B

′ +bαα ≤ 0, since the domain of the quantifier

is empty.

For the consecution conditions we have to show that for all consecution

transitions τCs , we have ρτCs ∧ ∀α : 0 ≤ α ≤ C − 1 : Σm
i=1Σ

k
j=1aijAi[dijα +

Eij] +B+ bαα ≤ 0 implies ∀α : 0 ≤ α ≤ C′− 1 : Σm
i=1Σ

k
j=1aijA

′
i[dijα+E ′ij] +

B′ + bαα ≤ 0.

By condition 2, we have ρτCs ⇒ (C′ = C ∨C′ = C+ 1), and by condition 4

either ρτCs ∧ C
′ > 0 ⇒ E ′ij = Eij for all i ∈ {1 . . . m}, j ∈ {1 . . . k}, or

ρτCs ⇒ C
′ = C + 1 ∧ E ′ij = Eij − dij for all i ∈ {1 . . . m}, j ∈ {1 . . . k}. We

distinguish three cases:

1. C′ = C and all E ′ij = Eij. Then we have to ensure ∀α : 0 ≤ α ≤ C − 1 :

Σm
i=1Σ

k
j=1aijA

′
i[dijα + Eij] + B′ + bαα ≤ 0. By condition 5, we can

replace A′
i by Ai in the given domain, and hence we have to show that

∀α : 0 ≤ α ≤ C − 1 : Σm
i=1Σ

k
j=1aijAi[dijα+ Eij] + B′ + bαα ≤ 0. Then,

since the array part coincides with the one of the assumption, we can

replace it in both places by some fresh variable x. Now it suffices to

show that, assuming x + B + bαα ≤ 0, we have x + B′ + bαα ≤ 0 for

all value of x, which follows from the premises and condition 7.

2. C′ = C+ 1 and all E ′ij = Eij . Then we have to ensure ∀α : 0 ≤ α ≤ C :

Σm
i=1Σ

k
j=1aijA

′
i[dijα+Eij]+B

′+bαα ≤ 0. By conditions 1 and 2 we have

3.3. ARRAY INVARIANT GENERATION 33

0 ≤ C, and hence C = C′−1 belongs to the domain {0 . . . C} and C′ > 0.

Then, by condition 3, we have that 0 ≤ dijC+Eij ≤ |Ai|−1 = |A′
i|−1

for all i and j. Therefore, we can extract the case α = C from the

quantifier obtaining ∀α : 0 ≤ α ≤ C − 1 : Σm
i=1Σ

k
j=1aijA

′
i[dijα+ Eij] +

B′ + bαα ≤ 0 and Σm
i=1Σ

k
j=1aijA

′
i[dijC + Eij] + B′ + bαC ≤ 0. The first

part holds as before by the premises and conditions 5 and 7, and the

second part holds by the premises and condition 6.

3. C′ = C+1 and all E ′ij = Eij−dij . Then we have to ensure ∀α : 0 ≤ α ≤

C : Σm
i=1Σ

k
j=1aijA

′
i[dijα+Eij−dij]+B

′+bαα ≤ 0. Since, by conditions 1

and 2, we have 0 ≤ C, we have that C belongs to the domain {0 . . . C}.

By condition 3, we have 0 ≤ E ′ij = Eij − dij ≤ |A′
i| − 1. Therefore,

we can extract the case α = 0 from the quantifier obtaining ∀α : 1 ≤

α ≤ C : Σm
i=1Σ

k
j=1aijA

′
i[dijα + Eij − dij] + Σn

u=1B
′ + bαα ≤ 0 and

Σm
i=1Σ

k
j=1aijA

′
i[Eij − dij] + B′ ≤ 0. For the first one, replacing α by

α + 1 we have ∀α : 1 ≤ α + 1 ≤ C : Σm
i=1Σ

k
j=1aijA

′
i[dij(α + 1) + Eij −

dij] + Σn
u=1B

′ + bα(α + 1) ≤ 0, or equivalently ∀α : 0 ≤ α ≤ C − 1 :

Σm
i=1Σ

k
j=1aijA

′
i[dijα + Eij] + Σn

u=1B
′ + bα(α + 1) ≤ 0, which holds by

applying conditions 5 and 7 as before. The second part holds again by

the premises and condition 6, using the fact that E ′ij = Eij − dij .

As we have described, our invariant generation method consists of three

phases. The first phase looks for expressions C satisfying conditions 1 and 2.

The second one provides, for every generated C and for every array Ai,

expressions Ei with their corresponding integers di that fulfill conditions 3,

4 and 5. Note that, to satisfy condition 4, we need to record for each

expression and transition whether we have E ′i = Ei or E ′i = Ei − di, so as to

ensure that all expressions Eij have the same behavior. Finally, in the third

phase we have to find coefficients aij and bα and an expression B fulfilling

conditions 6 and 7.

Solutions to all three phases are obtained by encoding the conditions of

Theorem 3.13 into SMT problems in non-linear arithmetic thanks to Farkas’

Lemma. Note that, because of array updates, transition relations may not

be conjunctions of literals (i.e., atomic predicates or negations of atomic

predicates). As in practice the guarded array information is useless until

the last phase, in the first two phases we use the unconditional part of a

34 CHAPTER 3. INVARIANT INFERENCE

transition relation ρ, i.e., the part of ρ that is a conjunction of literals,

denoted by U(ρ).

Encoding Phase 1 Let C be c1v1 + . . . + cnvn + cn+1, where v are the

scalar variables and c are the integer unknowns. Then conditions 1 and 2

can be expressed as:

∃c∀v, v′
p∧

r=1

(U(ρτIr)⇒ C′ = 0) ∧

q∧

s=1

(U(ρτCs)⇒ C′ = C ∨ C′ = C + 1).

We cannot apply Farkas’ Lemma directly due to the disjunction in the

conclusion of the second condition. To solve this, we move one of the two

literals into the premise and negate it. As the literal becomes a disequal-

ity, it can be split into a disjunction of inequalities. Finally, thanks to the

distributive law, Farkas’ Lemma can be applied and an existentially quanti-

fied SMT problem in non-linear arithmetic is obtained. We also encode the

condition that each newly generated C must be different from all previously

generated expressions at the cutpoint, considering all already known scalar

invariants.

Encoding Phase 2 Here, for each C obtained in the previous phase and

for each array Ai, we generate expressions Ei and integers di that satisfy

conditions 3 and 5, and also condition 4 as a single expression and not

combined with the other expressions.

The encoding of condition 3 is direct using Farkas’ Lemma. Now let us

sketch the encoding of condition 4. Let Ei be e1v1 + . . .+envn +en+1, where

e are integer unknowns. Then, as Ei is considered in isolation, we need

∃e, di ∀v, v′
∧q

s=1 ρτCs ⇒ ((C′ = C+ 1 ∧ E ′i = Ei− di) ∨ C
′ ≤ 0 ∨ E ′i = Ei) .

To apply Farkas’ Lemma, we use a similar transformation as for condition 2.

In addition, it is imposed that the newly generated expressions are different

from the previous ones.

Regarding condition 5, the encoding is rather different. In this case, for

every consecution transition τCs , array Ai and expression G ⇒ A′
i[W] = M

in ρτCs , we ensure that

∀α
(
ρτCs ∧ 0 ≤ α ≤ C − 1 ∧ G⇒ (W 6= diα+ Ei ∨ M = Ai[W])

)
.

3.3. ARRAY INVARIANT GENERATION 35

To avoid generating useless expressions, we add in the encoding a condition

stating that if E ′i = Ei then for every consecution transition where C is

incremented, there is at least an access Ai[W] in the transition such that

W = di(C
′−1)+E ′i. Otherwise, i.e., if E ′i = Ei−di, then for every consecution

transition where C is incremented, there is at least an access Ai[W] in the

transition such that W = E ′i .

Encoding Phase 3 Condition 7 is straightforward. Regarding condi-

tion 6, the encoding does not need non-linear arithmetic, but requires to

handle arrays:

∃a, b, bα ∀v, v′, A,A′

∧q
s=1 (ρτCs ⇒ Σm

i=1Σ
k
j=1aijA

′
i[E

′
ij] + B′ ≤ 0) ∧

(ρτCs ∧ C
′ = C + 1 ⇒ Σm

i=1Σ
k
j=1aijA

′
i[C + E ′ij] + B′ + bαC ≤ 0) .

Here, the use of the guarded array information is crucial. However, since we

want to apply Farkas’ Lemma, array accesses have to be replaced by new

universally quantified integer variables. In order to avoid losing too much

information, we add the array read semantics after the replacement; i.e., if

A[i] and A[j] have been respectively replaced by fresh variables zi and zj ,

then i = j ⇒ zi = zj is added.

3.3.4 Extensions

Relaxations on Domains

Let us consider the following program:

int A[2*N], min, max, i;

if (A[0] < A[1]) { min = A[0]; max = A[1]; }

else { min = A[1]; max = A[0]; }

for (i = 2; i < 2*N; i += 2) {

int tmpmin, tmpmax;

if (A[i] < A[i+1]) { tmpmin = A[i]; tmpmax = A[i+1]; }

else { tmpmin = A[i+1]; tmpmax = A[i]; }

if (max < tmpmax) max = tmpmax;

if (min > tmpmin) min = tmpmin; }

It computes the minimum and the maximum of an even-length array si-

multaneously, using a number of comparisons which is 1.5 times its length.

To prove correctness, the invariants ∀α : 0 ≤ α ≤ i − 1 : v[α] ≥ min and

36 CHAPTER 3. INVARIANT INFERENCE

∀α : 0 ≤ α ≤ i − 1 : v[α] ≤ max are required. To discover them, two

extensions of Theorem 3.13 are required:

• The domain of the universally quantified variable α cannot be forced

to be initially empty. In this example, when the loop is entered, both

invariants already hold for α = 0, 1. This can be handled by applying

our invariant generation method as described in Section 3.3.3, and for

each computed invariant trying to extend the property for decreasing

values of α = −1, −2, etc. as much as possible. Finally, a shift of α is

performed so that the domain of α begins at 0 and the invariant can

be presented in the form of Section 3.3.3.

• The domain of the universally quantified variable α cannot be forced

to increase at most by one at each loop iteration. For instance, in this

example at each iteration the invariants hold for two new positions of

the array. Thus, for a fixed parameter ∆, Condition 2 in Theorem 3.13

must be replaced by ρτCs ⇒ (C′ = C ∨ C′ = C+1 ∨ · · · ∨ C′ = C+∆).

In this example, taking ∆ = 2 is required. Further, conditions 4b, 6

and 7 must also be extended accordingly in the natural way.

Sorted Arrays

The program below implements binary search: given a non-decreasingly

sorted array A and a value x, it determines whether there is a position in A

containing x:

assume(N > 0);

int A[N], l = 0, u = N-1;

while (l <= u) {

int m = (l+u)/2;

if (A[m] < x) l = m+1;

else if (A[m] > x) u = m-1;

else break; }

To prove that, on exiting due to l > u, the property ∀α : 0 ≤ α ≤ N − 1 :

A[i] 6= x holds, one can use that ∀α : 0 ≤ α ≤ l − 1 : A[α] < x and

∀α : u + 1 ≤ α ≤ N − 1 : A[α] > x are invariant. To synthesize them, the

fact that A is sorted must be taken into account. The following theorem

results from incorporating the property of sortedness into Theorem 3.13:

3.3. ARRAY INVARIANT GENERATION 37

Theorem 3.14. Let C, B and Eij be linear polynomials with integer coef-

ficients over the scalar variables, and aij, dij, bα ∈ Z, for i ∈ {1 . . . m} and

j ∈ {1 . . . k}. If

1. For all i ∈ {1 . . . m} and j ∈ {1 . . . k} we have bα ≥ 0, and dij > 0 ⇒

aij ≥ 0, and dij < 0⇒ aij ≤ 0.

2. Each initiation transition τ Ir with transition relation ρτIr fulfills ρτIr ⇒

C′ = 0.

3. Each initiation transition τ Ir with transition relation ρτIr fulfills

ρτIr ⇒ ∀β : 0 < β ≤ |A′
i| − 1 : A′

i[β − 1] ≤ A′
i[β] for all i ∈ {1 . . . m}.

4. Each consecution transition τCs with transition relation ρτCs fulfills

ρτCs ⇒ C
′ ≥ C.

5. For all consecution transitions τCs all i ∈ {1 . . . m} and j ∈ {1 . . . k}

we have

ρτCs ∧ C
′ > 0⇒ 0 ≤ E ′ij ≤ |Ai|− 1 ∧ 0 ≤ dij(C

′− 1) +E ′ij ≤ |Ai|− 1.

6. For all consecution transitions τCs we have one of the following:

(a) ρτCs ∧ C
′ > 0 ∧ aij > 0⇒ E ′ij ≤ Eij and

ρτCs ∧ C′ > 0 ∧ aij < 0 ⇒ E ′ij ≥ Eij for all i ∈ {1 . . . m},

j ∈ {1 . . . k};

(b) ρτCs ⇒ C
′ > C and

ρτCs ∧ aij > 0⇒ E ′ij ≤ Eij − (C′ − C)dij and

ρτCs ∧ aij < 0 ⇒ E ′ij ≥ Eij − (C′ − C)dij for all i ∈ {1 . . . m},

j ∈ {1 . . . k}.

7. For all consecution transitions τCs , we have ρτCs ⇒ ∀β : 0 ≤ β ≤

|Ai| − 1 : A′
i[β] = Ai[β] for all i ∈ {1 . . . m}.

8. For all consecution transitions τCs , we have

• ρτCs ∧ C
′ > C ⇒ Σm

i=1Σ
k
j=1aijA

′
i[dij(C

′−1)+E ′ij]+B
′+bα(C′−1) ≤

0, if case 6a applies.

• ρτCs ⇒ Σm
i=1Σ

k
j=1aijA

′
i[dij(C

′−C−1)+E ′ij]+B
′+bα(C′−C−1) ≤ 0,

if case 6b applies.

9. For all consecution transitions τCs , we have

38 CHAPTER 3. INVARIANT INFERENCE

• ρτCs ∧ 0 ≤ α ≤ C − 1 ∧ x+B+ bαα ≤ 0⇒ x+B′ + bαα ≤ 0 for

some fresh universally quantified variable x, if case 6a applies.

• ρτCs ∧ 0 ≤ α ≤ C−1 ∧ x+B+bαα ≤ 0⇒ x+B′+bα(α+C′−C) ≤ 0

for some fresh universally quantified variable x, if case 6b applies.

Then ∀α : 0 ≤ α ≤ C − 1 : Σm
i=1Σ

k
j=1aijAi[dijα + Eij] + B + bαα ≤ 0 is

invariant.

Proof. First of all, let us remark that arrays are always sorted in non-

decreasing order, and that their contents are never changed. This follows

by induction from conditions 3 and 7. Moreover, it can also be seen from

conditions 2 and 4 that C ≥ 0 is an invariant property.

Now, we will show that the property in the statement of the theorem

holds after every initiation transition reaching our cutpoint and that it is

maintained after every consecution transition going back to the cutpoint.

The first condition easily holds applying 2, since we have that ρτIr ⇒

C′ = 0 for every initiation transition τ Ir , which implies ∀α : 0 ≤ α ≤ C′ − 1 :

Σm
i=1Σ

k
j=1aijA

′
i[dijα+E ′ij]+B

′ +bαα ≤ 0, since the domain of the quantifier

is empty.

For the consecution conditions we have to show that for all consecution

transitions τCs , we have ρτCs ∧ ∀α : 0 ≤ α ≤ C − 1 : Σm
i=1Σ

k
j=1aijAi[dijα +

Eij] +B+ bαα ≤ 0 implies ∀α : 0 ≤ α ≤ C′− 1 : Σm
i=1Σ

k
j=1aijA

′
i[dijα+E ′ij] +

B′ + bαα ≤ 0.

By condition 4, we have that ρτCs ⇒ C
′ ≥ C. We distinguish three cases:

1. C′ = C and case 6a holds. If C′ = 0 there is nothing to prove. Oth-

erwise C′ > 0, and by hypothesis we have that ∀α : 0 ≤ α ≤ C − 1 :

Σm
i=1Σ

k
j=1aijAi[dijα + Eij] + B + bαα ≤ 0. Together with ρτCs , this

implies ∀α : 0 ≤ α ≤ C − 1 : Σm
i=1Σ

k
j=1aijAi[dijα+ Eij] + B′ + bαα ≤ 0

by instantiating appropriately x in condition 9.

Now, let us show that for all i ∈ {1 . . . m}, for all j ∈ {1 . . . k} and for

all α ∈ {0 . . . C − 1} we have aijAi[dijα+ E ′ij] ≤ aijAi[dijα+ Eij]. Let

us consider three subcases:

• aij > 0. Then E ′ij ≤ Eij by condition 6. Hence for all α ∈

{0 . . . C−1} we have dijα+E ′ij ≤ dijα+Eij. This implies Ai[dijα+

E ′ij] ≤ Ai[dijα + Eij] as Ai is sorted in non-decreasing order.

Therefore aijAi[dijα+ E ′ij] ≤ aijAi[dijα+ Eij].

3.3. ARRAY INVARIANT GENERATION 39

• aij < 0. Then E ′ij ≥ Eij by condition 6. Hence for all α ∈

{0 . . . C−1} we have dijα+E ′ij ≥ dijα+Eij. This implies Ai[dijα+

E ′ij] ≥ Ai[dijα+Eij] as Ai is sorted in non-decreasing order (note

that, by condition 5, we have that 0 ≤ dijα + E ′ij ≤ |Ai| −

1 = |A′
i| − 1, so array accesses are within bounds). Therefore

aijAi[dijα+ E ′ij] ≤ aijAi[dijα+ Eij].

• aij = 0. Then the inequality trivially holds.

Altogether we have that ∀α : 0 ≤ α ≤ C − 1 : Σm
i=1Σ

k
j=1aijAi[dijα +

E ′ij] + B′ + bαα ≤ 0. Now our goal easily follows, taking into account

that C′ = C and that by condition 7 we can replace Ai by A′
i.

2. C′ > C and case 6a holds. Then C′ > 0, and following the same

argument as in the previous case we get that ∀α : 0 ≤ α ≤ C − 1 :

Σm
i=1Σ

k
j=1aijA

′
i[dijα+E ′ij] +B′ + bαα ≤ 0, where Ai has been replaced

by A′
i by virtue of condition 7.

It only remains to prove that ∀α : C ≤ α ≤ C′−1 : Σm
i=1Σ

k
j=1aijA

′
i[dijα+

E ′ij]+B
′+bαα ≤ 0 (note that, by condition 5, we have that 0 ≤ E ′ij ≤

|A′
i| − 1 and 0 ≤ dij(C

′ − 1) + E ′ij ≤ |A
′
i| − 1, so again array accesses

are within bounds). To this end, let us consider α ∈ {C . . . C′− 1} and

let us show that aijA
′
i[dijα + E ′ij] ≤ aijA

′
i[dij(C

′ − 1) + E ′ij] for all

i ∈ {1 . . . m} and for all j ∈ {1 . . . k}. We distinguish three cases:

• dij > 0. Then α ≤ C′ − 1 implies dijα ≤ dij(C
′ − 1), and hence

dijα+ E ′ij ≤ dij(C
′ − 1) + E ′ij . As A′

i is sorted in non-decreasing

order, we have A′
i[dijα+ E ′ij] ≤ A

′
i[dij(C

′ − 1) + E ′ij]. Finally, by

condition 1 it must be aij ≥ 0, and multiplying at both sides the

last inequality the goal is obtained.

• dij < 0. Then α ≤ C′ − 1 implies dijα ≥ dij(C
′ − 1), and hence

dijα+ E ′ij ≥ dij(C
′ − 1) + E ′ij . As A′

i is sorted in non-decreasing

order, we have A′
i[dijα+ E ′ij] ≥ A

′
i[dij(C

′ − 1) + E ′ij]. Finally, by

condition 1 it must be aij ≤ 0, and multiplying at both sides the

last inequality the goal is obtained.

• dij = 0. The goal trivially holds.

Thus Σm
i=1Σ

k
j=1aijA

′
i[dijα + E ′ij] + B′ ≤ Σm

i=1Σ
k
j=1aijA

′
i[dij(C

′ − 1) +

E ′ij]+B
′. Now, by condition 1 we have bα ≥ 0, hence α ≤ C′−1 implies

40 CHAPTER 3. INVARIANT INFERENCE

bαα ≤ bα(C′ − 1). Therefore Σm
i=1Σ

k
j=1aijA

′
i[dijα + E ′ij] + B′ + bαα ≤

Σm
i=1Σ

k
j=1aijA

′
i[dij(C

′ − 1) + E ′ij] +B′ + bα(C′ − 1) ≤ 0 by condition 8.

3. C′ > C and case 6b holds (notice that C′ = C and case 6b together

are not possible). By hypothesis we have ∀α : 0 ≤ α ≤ C − 1 :

Σm
i=1Σ

k
j=1aijAi[dijα + Eij] + B + bαα ≤ 0. Together with ρτCs , this

implies ∀α : 0 ≤ α ≤ C − 1 : Σm
i=1Σ

k
j=1aijAi[dijα + Eij] + B′ + bαα ≤

0 by instantiating appropriately x in condition 9. By shifting the

universally quantified variable the previous formula can be rewritten

as ∀α : C′ − C ≤ α ≤ C′ − 1 : Σm
i=1Σ

k
j=1aijAi[dij(α− (C′ − C)) + Eij] +

B′ + bα(α− (C′ − C)) ≤ 0.

Now, let us show that for all i ∈ {1 . . . m}, for all j ∈ {1 . . . k} and for

all α ∈ {C′ − C . . . C′ − 1} we have aijAi[dijα + E ′ij] ≤ aijAi[dij(α −

(C′ − C)) + Eij]. Let us consider three subcases:

• aij > 0. Then E ′ij ≤ Eij−(C′−C)dij by condition 6. Hence for all

α ∈ {C′−C . . . C′−1} we have dijα+E ′ij ≤ dij(α− (C′−C))+Eij .

This implies Ai[dijα + E ′ij] ≤ Ai[dij(α − (C′ − C)) + Eij] as Ai

is sorted in non-decreasing order. Therefore aijAi[dijα + E ′ij] ≤

aijAi[dij(α − (C′ − C)) + Eij].

• aij < 0. Then E ′ij ≥ Eij−(C′−C)dij by condition 6. Hence for all

α ∈ {C′−C . . . C′−1} we have dijα+E ′ij ≥ dij(α− (C′−C))+Eij .

This implies Ai[dijα + E ′ij] ≥ Ai[dij(α − (C′ − C)) + Eij] as Ai

is sorted in non-decreasing order. Therefore aijAi[dijα + E ′ij] ≤

aijAi[dij(α − (C′ − C)) + Eij].

• aij = 0. Then the inequality trivially holds.

Altogether we have that ∀α : C′−C ≤ α ≤ C′−1 : Σm
i=1Σ

k
j=1aijA

′
i[dijα+

E ′ij] + B′ + bαα ≤ 0, where Ai has been replaced by A′
i by virtue of

condition 7.

We are left proving that ∀α : 0 ≤ α ≤ C′−C−1 : Σm
i=1Σ

k
j=1aijA

′
i[dijα+

E ′ij]+B
′+bαα ≤ 0 (note that, by condition 5, we have that 0 ≤ E ′ij ≤

|A′
i| − 1 and 0 ≤ dij(C

′ − 1) + E ′ij ≤ |A
′
i| − 1, so again array accesses

are within bounds). To this end, let us consider α ∈ {0 . . . C′ − C − 1}

and let us show that aijA
′
i[dijα+E ′ij] ≤ aijA

′
i[dij(C

′−C−1)+E ′ij] for

all i ∈ {1 . . . m} and for all j ∈ {1 . . . k}. We distinguish three cases:

3.3. ARRAY INVARIANT GENERATION 41

• dij > 0. Then α ≤ C′ − C − 1 implies dijα ≤ dij(C
′ − C − 1), and

hence dijα+ E ′ij ≤ dij(C
′ −C − 1) + E ′ij. As A′

i is sorted in non-

decreasing order, we have A′
i[dijα+E ′ij] ≤ A

′
i[dij(C

′−C−1)+E ′ij].

Finally, by condition 1 it must be aij ≥ 0, and multiplying at both

sides the last inequality the goal is obtained.

• dij < 0. Then α ≤ C′ − C − 1 implies dijα ≥ dij(C
′ − C − 1), and

hence dijα+ E ′ij ≥ dij(C
′ −C − 1) + E ′ij. As A′

i is sorted in non-

decreasing order, we have A′
i[dijα+E ′ij] ≥ A

′
i[dij(C

′−C−1)+E ′ij].

Finally, by condition 1 it must be aij ≤ 0, and multiplying at both

sides the last inequality the goal is obtained.

• dij = 0. The goal trivially holds.

Thus Σm
i=1Σ

k
j=1aijA

′
i[dijα+E ′ij]+B

′ ≤ Σm
i=1Σ

k
j=1aijA

′
i[dij(C

′−C−1)+

E ′ij] + B′. Now, by condition 1 we have bα ≥ 0, hence α ≤ C′ − C − 1

implies bαα ≥ bα(C′ − C − 1). Therefore Σm
i=1Σ

k
j=1aijA

′
i[dijα+ E ′ij] +

B′ + bαα ≤ Σm
i=1Σ

k
j=1aijA

′
i[dij(C

′−C− 1)E ′ij] +B′ + bα(C′−C − 1) ≤ 0

by condition 8.

By means of the previous theorem, (an equivalent version of) the desired

invariants can be discovered. However, to the best of our knowledge, results

on the synthesis of invariants for programs with sorted arrays are not re-

ported in the literature. See Section 3.3.5 for other examples that can be

handled by means of this extension.

3.3.5 Experimental evaluation

The method presented in Section 3.3.2 has been implemented in the tool

CppInv2. The tool is able to generate automatically array invariants for

wide a range of programs. The following table shows some of them, together

with the corresponding loop invariants:

2The tool, together with a sample of example programs it can analyze, can be down-
loaded at www.cs.upc.edu/~albert/cppinv-ArrayInv.tar.gz.

www.cs.upc.edu/~albert/cppinv-ArrayInv.tar.gz

42 CHAPTER 3. INVARIANT INFERENCE

Heap property: Partial initialization:

[Gopan et al., 2005]

const int N;

assume(N >= 0);

int A[2∗N], i;

for (i = 0; 2∗i+2 < 2∗N; ++i)

if (A[i]>A[2∗i+1] or A[i]>A[2∗i+2])

break;

const int N;

assume(N >= 0);

int A[N], B[N], C[N], i, j;

for (i = 0, j = 0; i < N; ++i)

if (A[i] == B[i])

C[j++] = i;

Loop invariants: Loop invariant:

∀α : 0 ≤ α ≤ i− 1 : A[α] ≤ A[2α+ 2] ∀α : 0 ≤ α ≤ j − 1 : C[α] ≤ α+ i− j

∀α : 0 ≤ α ≤ i− 1 : A[α] ≤ A[2α+ 1] ∀α : 0 ≤ α ≤ j − 1 : C[α] ≥ α

Array palindrome: Array initialization:

[Gopan et al., 2005]

const int N;

assume(N >= 0);

int A[N], i;

for (i = 0; i < N/2; ++i)

if (A[i] != A[N-i-1]) break;

const int N;

assume(N >= 0);

int A[N], i;

for (i = 0; i < N; ++i)

A[i] = 2∗i+3;

Loop invariant: Loop invariant:

∀α : 0 ≤ α ≤ i− 1 : A[α] = A[N − α− 1] ∀α : 0 ≤ α ≤ i− 1 : A[α] = 2α+ 3

Array insertion: Sequential initialization:

[Halbwachs and Péron, 2008]

const int N;

int A[N], i, x, j;

assume(0 <= i and i < N);

for (x = A[i], j = i-1;

j >=0 and A[j] > x; --j)

A[j+1] = A[j];

const int N;

assume(N > 0);

int A[N], i;

for (i = 1, A[0] = 7; i < N; ++i)

A[i] = A[i-1] + 1;

Loop invariant: Loop invariant:

∀α : 0 ≤ α ≤ i− j − 2 : A[i− α] ≥ x+ 1 ∀α : 0 ≤ α ≤ i− 2 : A[α+ 1] = A[α] + 1

3.3. ARRAY INVARIANT GENERATION 43

Array copy: First not null:

[Halbwachs and Péron, 2008] [Halbwachs and Péron, 2008]

const int N;

assume(N >= 0);

int A[N], B[N], i;

for (i = 0; i < N; ++i)

A[i] = B[i];

const int N;

assume(N >= 0);

int A[N], s, i;

for (i = 0, s = N; i < N; ++i)

if (s == N and A[i] != 0) {

s=i;

break;

}

Loop invariant: Loop invariant:

∀α : 0 ≤ α ≤ i− 1 : A[α] = B[α] ∀α : 0 ≤ α ≤ i− 1 : A[α] = 0

Array partition: Array maximum:

[Beyer et al., 2007c] [Halbwachs and Péron, 2008]

const int N;

assume(N >= 0);

int A[N], B[N], C[N], a, b, c;

for (a=0, b=0, c=0; a < N; ++a)

if (A[a] >= 0) B[b++]=A[a];

else C[c++]=A[a];

const int N;

assume(N > 0);

int A[N], i, max;

for (i = 1, max = A[0]; i < N; ++i)

if (max < A[i])

max = A[i];

Loop invariants: Loop invariant:

∀α : 0 ≤ α ≤ b− 1 : B[α] ≥ 0 ∀α : 0 ≤ α ≤ i− 1 : A[α] ≤ max

∀α : 0 ≤ α ≤ c− 1 : C[α] < 0

First occurrence: Sum of pairs:

const int N;

assume(N > 0);

int A[N], x = getX(), l, u;

// A is sorted in ascending order

for (l = 0, u = N; l < u;) {

int m = (l+u)/2;

if (A[m] < x) l = m+1;

else u = m; }

const int N;

assume(N > 0);

int A[N], x = getX(), l = 0, u = N-1;

// A is sorted in ascending order

while (l < u)

if (A[l] + A[u] < x) l = l+1;

else if (A[l] + A[u] > x) u = u-1;

else break;

Loop invariants: Loop invariants:

∀α : 0 ≤ α ≤ l − 1 : A[α] < x ∀α : 0 ≤ α ≤ l − 1 : A[α] + A[u] < x

∀α : 0 ≤ α ≤ N − 1− u : A[N − 1− α] ≥ x ∀α : 0 ≤ α ≤ N − u− 2 : A[N − 1− α] +A[l] > x

44 CHAPTER 3. INVARIANT INFERENCE

As a final experiment, we have run CppInv over a collection of programs

written by students. It consists of 38 solutions to the problem of finding the

first occurrence of an element in a sorted array of size N in O(logN) time.

These solutions have been taken from the online learning environment for

computer programming Jutge.org (see www.jutge.org), which is currently

being used in several programming courses in the Universitat Politècnica

de Catalunya. The benchmark suite corresponds to all submitted iterative

programs that have been accepted, i.e., such that for all input tests the

output matches the expected one. These programs can be considered more

realistic code than the examples above (First occurrence program), since

most often they are not the most elegant solution but a working one with

many more conditional statements than necessary. For example, here is an

instance of such a program:

int first_occurrence(int x, int A[N]) {

assume(N > 0);

int e = 0, d = N - 1, m, pos;

bool found = false, exit = false;

while (e <= d and not exit) {

m = (e+d)/2;

if (x > A[m]) {

if (not found) e = m+1;

else exit = true;

}

else if (x < A[m]) {

if (not found) d = m-1;

else exit = true;

}

else {

found = true; pos = m; d = m-1;

}

}

if (found) {

while (x == A[pos-1]) --pos;

return pos;

}

return -1;

}

www.jutge.org

3.3. ARRAY INVARIANT GENERATION 45

This particular example is interesting because, with the aid of our tool, we

realized that it does not work in O(logN) time as required, and is thus a

false positive. Namely, our tool produces the following invariants for the

first loop:

∀α : 0 ≤ α ≤ e− 1 : A[α] < x ,

∀α : d+ 1 ≤ α ≤ N − 1 : A[α] ≥ x .

By manual inspection one can see that found → (A[pos] = x ∧ d = pos −

1) and exit → found are also invariant. Therefore, if on exit of the loop

the property e ≤ d holds, then exit and found are true and, with all this

information, it is unknown whether the contents of the array between e and

pos−1 are equal to x. Since this segment can be arbitrarily long, the second

loop may take O(N) time to find the first occurrence of x. This reasoning

allowed us to cook an input for which indeed the program behaves linearly.

On the other hand, by means of the generated invariants it can be seen that

the problem is that the loop may be exited too early, and that by replacing

in the first loop the body of the first conditional by e = m+1 and the second

one by d = m-1, the program becomes correct and meets the complexity

requirements.

In general, for all programs in the benchmark suite our tool was able to

find automatically both standard invariants. The time consumed was very

different depending mainly on how involved the code was. The number of

looping transitions for these benchmarks ranged from 6 to 36. The main

problem as regards efficiency is that in its current form our prototype ex-

haustively generates first all scalar invariants and then, using all of them,

generates all array invariants.

Execution times can be improved by annotating the code with instances

of templates where the unknown parameters are bounded. In this setting,

runtimes varied from 10 to 108 seconds with an average time of 36.27 sec-

onds. A correlation between the runtime and the number of transitions

could be established for almost all cases. However, since the current proce-

dure exhaustively looks for all the solutions, execution times also depend on

the number of alternative invariants to the standard properties. Anyway,

further work is needed to heuristically guide the search of scalar invariants,

so that only useful information is inferred.

We also applied our tool to some of the submissions rejected by Jutge.org.

In some cases the generated invariants helped us to fix the program. E.g.,

46 CHAPTER 3. INVARIANT INFERENCE

for the following code:

int first_occurrence(int x, int A[N]) {

assume(N > 0);

int i = 0, j = N-1;

while (i <= j) {

if (x == A[i]) return i;

if (x < A[i]) return -1;

int m = (i+j)/2;

if (x < A[m]) j = m-1;

else i = m+1; }

return -1; }

In this case, the generated invariants are:

∀α : 0 ≤ α ≤ i− 1 : A[α] ≤ x ,

∀α : j + 1 ≤ α ≤ N − 1 : A[α] > x .

One may notice that the first invariant should have a strict inequality, and

that this problem may be due to a wrong condition in the last conditional.

Indeed, by replacing the condition x < A[m] by x ≤ A[m], we obtain a set

of invariants that allow proving the correctness of the program.

3.3.6 Related work comparison

Some of the techniques for the synthesis of quantified invariants for pro-

grams with arrays fall into the framework of abstract interpretation, as it

was explained in Section 3.1.1. In comparison with the techniques presented

in this work, the approaches of [Gopan et al., 2005; Halbwachs and Péron,

2008] force all array accesses to be of the form α + k. As a consequence,

programs like Array palindrome or Heap property (see Section 3.3.5) can-

not be handled. Moreover, the universally quantified variable is not allowed

to appear outside array accesses. For this reason, our analysis can be more

precise, e.g., in the Array initialization and the Partial initialization [Gopan

et al., 2005] examples. Another technique based on abstract interpretation

is presented in [Gulwani et al., 2008a]. While their approach can discover

more general properties than the one described in this work, it requires that

the user provides templates to guide the analysis.

Unlike most of the predicate abstraction-based techniques (see Section

3.1.2), our approach does not require programs to be annotated with asser-

tions, thus allowing one to analyze code embedded into large programs, or

3.3. ARRAY INVARIANT GENERATION 47

with predicates, which sometimes require ingenuity from the user. To alle-

viate the need of supplying predicates, in [Cousot, 2004] parametric predi-

cate abstraction was introduced. However, the properties considered there

express relations between all elements of two data collections, while our

approach is able to express pointwise relations.

Another group of techniques is based on first-order theorem proving (see

Section 3.1.4). One of the problems of the methods described in [Kovács

and Voronkov, 2009; Hoder et al., 2011] is the limited capability of arith-

metic reasoning of the theorem prover (as opposed to SMT solvers, where

arithmetic reasoning is hard-wired in the theory solvers). The approach

described in [McMillan, 2008], based on interpolating theorem proving, in

addition to suffering from similar arithmetic reasoning problems as [Kovács

and Voronkov, 2009], also requires program assertions.

Other methods use computational algebra (see Section 3.1.3). One of the

limitations of [Henzinger et al., 2010a] is that array variables are required to

be either write-only or read-only. Hence, unlike our method, programs such

as Sequential initialization [Halbwachs and Péron, 2008] and Array insertion

(see Section 3.3.5) cannot be handled.

Finally, a technique that belongs to the constraint-based methods (see

Section 3.1.5) and covers the array property fragment [Bradley et al., 2006]

is presented in [Beyer et al., 2007b]. The language of the invariants gen-

erated in this thesis is outside the array property fragment, since we can

generate properties where indices do not necessarily occur in array accesses

(e.g., see the Array initialization or the Partial initialization examples in

Section 3.3.5).

48 CHAPTER 3. INVARIANT INFERENCE

Chapter 4
Termination Proving

Termination analysis is critical to the process of ensuring the stability and

usability of software systems. Termination bugs are difficult to trace and are

hardly notified: as they do not arise as system failures but as unresponsive

behavior, when faced to them users tend to restart their devices without

reporting to software developers.

Despite Alan Turing showed that the termination problem is undecid-

able [Turing, 1936], recent research advances make practical termination

proving tools possible [Cook et al., 2011]. Turing’s major result proved that

we cannot build a procedure which determines for all programs whether or

not a given program will always finish running, however, we can construct

one that is able to solve the problem for a large set of programs of interest

answering “unknown” otherwise.

Since techniques to prove termination are incomplete, failure to prove

termination does not immediately indicate the existence of a non-terminating

execution. Therefore, all methods in practice are focused on either proving

termination or non-termination.

4.1 Termination and non-termination

When proving non-termination [Gupta et al., 2008; Velroyen and Rümmer,

2008; Brockschmidt et al., 2012] the goal is to find a counterexample, an

input for which program execution reaches a state that is infinitely visited.

Thus, this approximation is centered on finding bugs. On the other hand,

the aim of proving termination is to find a formal proof that a program

49

50 CHAPTER 4. TERMINATION PROVING

always terminates. This ensures the absence of all termination bugs. A

potential drawback of this approach is that generating a proof is in general

harder than finding a counterexample, although in termination analysis this

is not always the case.

The classical method to prove termination, proposed by Turing [Turing,

1949], is to find a ranking function, a function that maps every program

state to a value in a well-order and decreases for every possible program

transition. Since there are no infinite descending chains with respect to a

well-founded relation, if we find a ranking function, we can conclude that

the program must eventually terminate.

Due to the fact that program state and control flow usually depend on

integer variables, natural numbers are often chosen as the well-order for the

termination argument. In this case, the goal is to find an integer expression

over the program variables that decreases in every iteration and its lower

bounded by zero.

Example 4.1. Consider the transition system of Fig. 2.6. The function

z − y is a ranking function for the loop because its value decreases after

every iteration and it is lower bounded by 0 (recall only transition τ3.1 is

feasible).

4.2 Termination arguments

The problem with Turing’s method is that finding a single ranking function

for each program loop (a strongly connected component) is typically difficult,

even for simple programs. Furthermore, in some cases no function into

natural numbers exists that suffices to prove termination, which forces to

use ranking functions into well-orders that are much more complex than the

natural numbers.

A kind of functions mapped into such well-orders are lexicographic func-

tions, which are obtained as the result of the cartesian product of well-

ordered sets. The fundamental property of lexicographical orders that makes

them so useful is that it preserves well-orders of finite products and, there-

fore, we can construct ranking functions as the composition of individual

ranking functions provided that they form a lexicographical order [Bradley

et al., 2005; Colón and Sipma, 2002; Cook et al., 2013].

4.2. TERMINATION ARGUMENTS 51

The process of proving termination is usually split into two tasks, namely,

searching for a candidate function and then checking whether it is a valid

ranking function. Finding candidates for both single and lexicographic func-

tions is the difficult part of proving termination, whereas checking that a

given candidate is actually a ranking function is the easy one.

This situation was reversed with the emergence of a new kind of ter-

mination arguments, the so-called disjunctive termination arguments [Cook

et al., 2006; Tsitovich et al., 2011]. The idea behind this approach is to build,

in the manner of lexicographic functions, a termination argument from a set

of individual ranking functions. The difference is that, in this case, the

composition is constructed directly by the union of well-founded relations.

Since the union of well-founded relations is not in general a well-founded

relation, it is necessary to impose an additional condition, specifically, that

the disjunctive termination argument must hold not only between the states

before and after any single iteration of each loop, but before and after any

number of iterations of every loop.

The advantage of disjunctive termination arguments is that finding each

component of the termination argument is easier than finding a single candi-

date that covers all transitions or a lexicographic order for every individual

ranking function. However, now checking if the termination argument is

valid requires much effort. In particular, the check is usually codified as a

problem of reachability of some program locations.

Although the trend during the last few years have been to develop tech-

niques based on disjunctive termination arguments [Chawdhary et al., 2008;

Berdine et al., 2007; Cook et al., 2007; Manolios and Vroon, 2006; Berdine

et al., 2006; Cook et al., 2006; Podelski and Rybalchenko, 2005], a recent

paper [Cook et al., 2013] presents evidences that there is still much more

room for improvement in techniques based on lexicographic ranking func-

tions. In particular, the author presents an improved method for searching

lexicographic ranking functions achieving important speedups with respect

to the dominant technique.

For all the previous techniques, the synthesis of termination arguments is

tackled mainly using approaches for invariant inference like constraint solv-

ing and abstract interpretation which were described in Chapter 3. Note the

similarity between the problem of finding an invariant and a ranking func-

tion. For instance, in the latter case we could want to discover a function

52 CHAPTER 4. TERMINATION PROVING

f(x) such that f(x) ≥ 0 and f(x) > f(x′) after an iteration, which could be

seen as the same as finding an loop invariant without assuming its satisfac-

tion at the beginning. Moreover, in order to infer that a function maps into

a well-order, it is usually necessary to discover supporting invariants that

help to prove some of the ranking function conditions.

4.3 Proving termination using Max-SMT

In this section we show how Max-SMT can be exploited when applying

the constraint-based method for proving program termination. We assume

that every program is modeled with a transition system (see Section 2.2),

only scalar variables v are declared in the program, and they are the only

variables of the transition system, i.e., V = v.

4.3.1 Basis of the termination argument

The basic idea of the approach we follow for proving program termination

[Colón and Sipma, 2002] is to argue by contradiction that no transition is

infinitely executable. First of all, no disabled transition can be infinitely

executable trivially. Moreover, one just needs to focus on transitions joining

locations in the same strongly connected component (SCC): if a transition

is executed over and over again, then its pre and post locations must belong

to the same SCC. So let us assume that one has found a ranking function

for such a transition τ , according to:

Definition 4.2. Let τ = (ℓ, ℓ′, ρ) be a transition such that ℓ and ℓ′ belong

to the same SCC, denoted by C. A function R : v → Z is said to be a

ranking function for τ if:

• [Boundedness] ρ |= R ≥ 0

• [Strict Decrease] ρ |= R > R′

• [Non-increase] ∀. τ̂ = (ℓ̂, ℓ̂′, ρ̂) ∈ T such that ℓ̂, ℓ̂′ ∈ C: ρ̂ |= R ≥ R′

Note that boundedness and strict decrease only depend on τ , while non-

increase depends on all transitions in the SCC.

The key result is that if τ = (ℓ, ℓ′, ρ) admits a ranking function R, then

it is finitely executable. Indeed, first notice that if one can execute τ from a

4.3. PROVING TERMINATION USING MAX-SMT 53

state (ℓ, σ) then R(σ) ≥ 0, because of boundedness. Also, the value of R at

the states along any path contained in C cannot increase, thanks to the non-

increase property. Moreover, in any cycle contained in C traversing τ , the

value of R strictly decreases, due to the strict decrease property. Now, let us

assume that there was a computation where τ was executed infinitely. Such

a computation would eventually visit only locations in C. Because of the

previous observations, by evaluating R at the states at which τ is executed

we could construct an infinitely decreasing sequence of non-negative integers,

a contradiction.

Finitely executable transitions can be safely removed from the transition

system as regards termination analysis. This in turn may break the SCC’s

into smaller pieces. If by applying this reasoning recursively one can prove

that all transitions are finitely executable, then the transition system is

terminating.

4.3.2 Supporting invariants

Invariant maps (see Section 3.2) are fundamental when analyzing program

termination. For instance, a transition τ = (ℓ, ℓ′, ρ) is proved to be disabled

if there is an invariant µ(ℓ) at location ℓ such that µ(ℓ) ∧ ρ is unsatisfiable.

In general, if µ is an invariant map, then any transition τ = (ℓ, ℓ′, ρ) can be

safely strengthened by replacing the transition relation ρ by µ(ℓ) ∧ ρ.

In [Colón and Sipma, 2002] linear invariants are exhaustively computed

before termination analysis. In the same paper a heuristic approach is

also presented, which only requires a light-weight invariant generator by

restricting to single-variable ranking functions. Another solution is pro-

posed in [Bradley et al., 2005], where invariant generation is not performed

eagerly but on demand. By formulating both invariant and ranking function

synthesis as constraint problems, both can be solved simultaneously, so that

only the necessary supporting invariants for the targeted ranking functions

–namely, lexicographic linear ranking functions– need to be discovered.

4.3.3 Illustration of the Max-SMT method

Based on [Colón and Sipma, 2002; Bradley et al., 2005], we present a Max-

SMT constraint-based approach for proving termination. The crucial ob-

servation in our method is that, albeit our goal is to show that transitions

54 CHAPTER 4. TERMINATION PROVING

int main() {
int x, y, z;

ℓ1: while (y ≥ 1) {
x--;

ℓ2: while (y < z) {
x++; z--;

}
y = x+ y;

} }

ρτ1 : y ≥ 1, x′ = x− 1, y′ = y, z′ = z

ρτ2 : y < z, x′ = x+ 1, y′ = y, z′ = z − 1
ρτ3 : y ≥ z, x′ = x, y′ = x+ y, z′ = z

ℓ1

ℓ2

τ1

τ2

τ3

Θ(ℓ1) ≡ true

Θ(ℓ2) ≡ false

Figure 4.4. Program and its transition system.

cannot be executed infinitely by finding a ranking function or an invariant

that disables them, if we only discover an invariant, or an invariant and

a quasi-ranking function that almost fulfills all needed properties for well-

foundedness, we have made some progress: either we can remove part of a

transition and/or we have improved our knowledge on the behavior of the

program. A natural way to implement this idea is by considering that some

of the constraints are hard (the ones guaranteeing invariance) and others

are soft (those guaranteeing well-foundedness) in a Max-SMT framework.

Moreover, by giving different weights to the constraints we can set priorities

and favor those invariants and (quasi-) ranking functions that lead to the

furthest progress.

Example 4.3. Let us show the first rounds of the termination analysis of

the program in Fig. 4.4. In the first round, the solver finds the invariant

y ≥ 1 at ℓ2 and the ranking function z for τ2. While y ≥ 1 can be added to τ3

(resulting into a new transition τ ′3), the ranking function allows eliminating

τ2 from the termination transition system (see Fig. 4.6 (b)).

In the second round, the solver cannot find a ranking function. However,

thanks to the Max-SMT formulation, it can produce the quasi-ranking func-

tion x, which is non-increasing and strict decreasing for τ1, but not bounded.

This quasi-ranking function can be used to split transition τ1 into two new

transitions τ1.1 and τ1.2 as follows:

ρτ1.1 : x ≥ 0, y ≥ 1, x′ = x− 1, y′ = y, z′ = z

ρτ1.2 : x < 0, y ≥ 1, x′ = x− 1, y′ = y, z′ = z

4.3. PROVING TERMINATION USING MAX-SMT 55

Then τ1.1 is immediately removed, since x is a ranking function for it. The

current termination transition system is given in Fig. 4.6 (c).

Further refinements are possible. E.g., the termination transition system

can also be used for generating properties that are guaranteed to eventually

hold at a location for some computations. More specifically, we devised

the following light-weight approach for generating what we call termination

implications. The rationale is that, if we find a property Jℓ that is implied by

all transitions going into ℓ and ℓ is finally reached, then Jℓ must hold. Then

this termination implication can be propagated forward to the transitions

going out from ℓ.

Example 4.5. Let us carry on with the termination analysis started in

example 4.3. In the third and final round, the termination implication x < 0

is generated at ℓ2, together with the ranking function y for transition τ ′3.

Note that the termination implication is crucial to prove the strict decrease

of y for τ ′3, and that the previously generated invariant y ≥ 1 at ℓ2 is needed

to ensure boundedness. Now τ ′3 can be removed, which makes the graph

acyclic (see Fig. 4.6 (d)). This concludes the termination proof, which

consist of the composition of three ranking functions, namely, (x, y, z).

4.3.4 Formal description of the Max-SMT method

In this section we first describe a constraint-based method for termination

analysis that uses SMT and identify some of its shortcomings. Then we

show how Max-SMT can be used to overcome these limitations.

An SMT approach to proving termination

Following the approach described in Section 4.3.1 [Colón and Sipma, 2002],

to show that a transition τ is finitely executable and thus discard it, one

needs either a disability argument or a ranking function for it. To this end

we construct a constraint system, i.e. an SMT formula, whose solutions cor-

respond to either an invariant that proves disability, or a ranking function.

Given an SCC, the constraint system, if satisfiable, will allow discarding

(at least, but possibly more than) one of the transitions in the SCC. By

iterating this procedure until no cycles are left we will obtain a termination

argument for the SCC.

56 CHAPTER 4. TERMINATION PROVING

(c)(a) (b) (d)

Θ(ℓ1) ≡ true Θ(ℓ2) ≡ false

ρτ1 : y ≥ 1, x′ = x− 1, y′ = y, z′ = z

ρτ1.2 : x < 0, y ≥ 1, x′ = x− 1, y′ = y, z′ = z

ρτ2 : y < z, x′ = x+ 1, y′ = y, z′ = z − 1
ρτ3 : y ≥ z, x′ = x, y′ = x + y, z′ = z

ρτ ′3 : y ≥ 1, y ≥ z, x′ = x, y′ = x + y, z′ = z

ℓ1ℓ1ℓ1 ℓ1

ℓ2ℓ2ℓ2 ℓ2

τ1τ1 τ1.2τ1.2

τ2

τ3 τ ′3 τ ′3

Figure 4.6. Evolution of the termination transition system: initially (a) and after
the first (b), second (c) and third (d) round.

To construct the constraint system, first of all we consider:

• for each location ℓ, a linear invariant template Iℓ(v) ≡ iℓ,0 +
∑

v∈v iℓ,v ·

v ≤ 0, where iℓ,0, iℓ,v are unknown;

• a linear ranking function template R(v)≡ r0 +
∑

v∈v rv · v, where r0,

rv are unknown.

Recall that ranking functions are associated to transitions, not to loca-

tions. However, instead of introducing a template for each transition, we

just have one single template, which, if the constraint system has a solution,

will be a ranking function for a transition to be determined by the solver.

Similarly to [Bradley et al., 2005], we take the following constraints from

the definitions of inductive invariant and ranking function:

4.3. PROVING TERMINATION USING MAX-SMT 57

Initiation: For ℓ ∈ L: Iℓ
def
= Θ(ℓ) ⊢ Iℓ

Disability: For τ = (ℓ, ℓ′, ρ) ∈ T :Dτ
def
= Iℓ ∧ ρ ⊢ 1 ≤ 0

Consecution: For τ = (ℓ, ℓ′, ρ) ∈ T :Cτ
def
= Iℓ ∧ ρ ⊢ I

′
ℓ′

Boundedness: For τ = (ℓ, ℓ′, ρ) ∈ T :Bτ
def
= Iℓ ∧ ρ ⊢ R ≥ 0

Strict Decrease:For τ = (ℓ, ℓ′, ρ) ∈ T :Sτ
def
= Iℓ ∧ ρ ⊢ R > R′

Non-increase: For τ = (ℓ, ℓ′, ρ) ∈ T :Nτ
def
= Iℓ ∧ ρ ⊢ R ≥ R

′

Let L and T be the sets of locations and transitions in the SCC in hand,

respectively. Let also P be the set of pending transitions, i.e., which have not

been proved to be finitely executable yet. Then we build the next constraint

system:

∧

ℓ∈L

Iℓ ∧
∧

τ∈T

(
Dτ ∨Cτ

)
∧
∨

τ∈P

(
Dτ ∨ (Bτ ∧ Sτ)

)
∧
(
(
∧

τ∈P

Nτ) ∨
∨

τ∈P

Dτ

)
.

The first two conjuncts guarantee that an invariant map is computed; the

other two, that at least one of the pending transitions can be discarded.

Notice that, if there is no disabled transition, we ask that all transitions

in P are non-increasing, but only that at least one transition in P (the

next to be removed) is both bounded and strict decreasing. Note also that

for finding invariants one has to take into account all transitions in the

SCC, even those that have already been proved to be finitely executable:

otherwise some reachable states might not be covered, and the invariant

generation would become unsound. Hence in our termination analysis we

consider two transition systems: the original transition system for invariant

synthesis, whose transitions are T and which remains all the time the same;

and the termination transition system, whose transitions are P , i.e., where

transitions already shown to be finitely executable have been removed. This

duplication is similar to the cooperation graph of [Brockschmidt et al., 2013].

However, this first approach is problematic when a ranking function

needs several invariants. A possible solution is to add more templates iter-

atively, so that for example initially invariants consisting of a single linear

inequality are tried, if unsuccessful then invariants consisting of a conjunc-

tion of two linear inequalities are tried, etc. But when proceeding in this

way, all problems before the right number of invariants is found are unsat-

isfiable. This is wasteful, as no constructive information is retrieved from

unsatisfiable constraint systems.

58 CHAPTER 4. TERMINATION PROVING

Another problem with this method for analyzing termination is that the

kind of termination proofs it yields may be too restricted. More specifically,

when one proves that a transition τ is finitely executable, then a single termi-

nation argument shows there is no computation where τ appears infinitely.

Although this produces compact proofs, on the other hand sometimes there

may not exist such a unique reason for termination, and it becomes neces-

sary a more fine-grained examination. However, the approach as presented

so far does not provide a natural way or guidance for refining the analysis.

A Max-SMT approach to proving termination

The main contribution of our work is to show that the constraint system

can be expressed in such a way that, even when it turns out to be unsat-

isfiable, some information useful for refining the termination analysis can

be obtained. The key observation is that, even though our aim is to prove

transitions to be finitely executable (by finding a ranking function or an

invariant that disables them), if we just find an invariant, or an invariant

and a quasi-ranking function that is close to fulfill all required conditions,

we have progressed in our analysis.

The idea is to consider the constraints guaranteeing invariance as hard,

so that any solution to the constraint system will satisfy them, while the

rest are soft. Let us consider propositional variables pB, pS and pN, which

intuitively represent if the conditions of boundedness, strict decrease and

non-increase in the definition of ranking function are violated respectively,

and corresponding weights ωB, ωS and ωN. We consider now the next con-

straint system (where soft constraints are written [·, ω], and hard ones as

usual):
∧

ℓ∈L

Iℓ ∧
∧

τ∈T

(
Dτ ∨Cτ

)
∧

∨

τ∈P

(
Dτ ∨

(
(Bτ ∨ pB) ∧ (Sτ ∨ pS)

))
∧

((∧

τ∈P

Nτ

)
∨

∨

τ∈P

Dτ ∨ pN
)
∧ [¬pB, ωB] ∧ [¬pS, ωS] ∧ [¬pN, ωN].

Note that ranking functions have cost 0, and (if no transition is disabled)

functions that fail in any of the conditions are penalized with the respective

weight. Thus, the Max-SMT solver looks for the best solution and gets a

ranking function if feasible; otherwise, the weights guide the search to get

invariants and quasi-ranking functions that satisfy as many conditions as

possible.

4.3. PROVING TERMINATION USING MAX-SMT 59

Hence this Max-SMT approach allows recovering information even from

problems that would be unsatisfiable in the initial method. This information

can be exploited to perform dynamic trace partitioning [Mauborgne and

Rival, 2005] as follows. Assume that the optimal solution to the above Max-

SMT formula has been computed, and let us consider a transition τ ∈ P

such that Dτ ∨ ((Bτ ∨pB)∧ (Sτ ∨pS)) evaluates to true in the solution. Then

we distinguish several cases depending on the properties satisfied by τ and

the computed function R:

• If τ is disabled then it can be removed.

• If R is non-increasing and satisfies boundedness and strict decrease for

τ , then τ can be removed too: R is a ranking function for it.

• If R is non-increasing and satisfies boundedness for τ but not strict

decrease, one can split τ in the termination transition system into two

new transitions: one where R > R′ is added to τ , and another one

where R = R′ is enforced. Then the new transition with R > R′ is

automatically eliminated, as R is a ranking function for it. Equiva-

lently, this can be seen as adding R = R′ to τ . Now, if the solver

could not prove R to be a true ranking function for τ because it was

missing an invariant, this transformation will guide the solver to find

that invariant so as to disable the transition with R = R′.

• If R is non-increasing and satisfies strict decrease for τ but not bound-

edness, the same technique from above can be applied: it boils down

to adding R < 0 to τ .

• If R is non-increasing but neither strict decrease nor boundedness are

fulfilled for τ , then τ can be split into two new transitions: one with

R < 0, and another one with R ≥ 0 ∧R = R′.

• If R does not satisfy the non-increase property, then it is rejected;

however, the invariant map from the solution can be used to strengthen

the transition relations for the following iterations of the termination

analysis.

Note this analysis may be worth applying on other transitions τ in the

termination transition system apart from those that make Dτ ∨ ((Bτ ∨ pB)∧

60 CHAPTER 4. TERMINATION PROVING

(Sτ ∨ pS)) true. E.g., if R is a ranking function for a transition τ but fails

to be so for another one τ ′ because strict decrease does not hold, then,

according to the above discussion, τ ′ can be strengthened with R = R′.

On the other hand, working in this iterative way requires imposing ad-

ditional constraints to avoid getting to a standstill. Namely, in the case

where non-increase does not hold and so one would like to exploit the

invariant, it is necessary to impose that the invariant is not redundant.

More in detail, let us consider a fixed location ℓ, and let I
(1)
ℓ , . . . , I

(k)
ℓ be

the previously computed invariants at location ℓ. Then Iℓ, the invariant

to be generated at ℓ, is redundant if it is implied by I
(1)
ℓ , ..., I

(k)
ℓ , i.e., if

Eℓ
def
= ∀v (I

(1)
ℓ (v) ∧ . . . ∧ I

(k)
ℓ (v)→ Iℓ(v)). So we impose pN → ¬

∧
ℓ∈L Eℓ to

ensure that violating non-increase leads to non-redundant invariants. Con-

ditions are added similarly to avoid redundant quasi-ranking functions.

Another advantage of this Max-SMT approach is that by using different

weights we can express priorities over conditions. Since, as explained above,

violating the property of non-increase invalidates the computed function R,

it is convenient to make ωN the largest weight. On the other hand, when

non-increase and boundedness are fulfilled but not strict decrease an equality

is added to the transition, whereas when non-increase and strict decrease

are fulfilled but not boundedness just an inequality is added. As we prefer

the former to the latter, in our implementation (see Section 4.3.7) we set

ωB > ωS.

A further improvement is the generation of termination implications. A

termination implication at a location ℓ is an assertion J(v) such that any

transition in the termination transition system that leads into ℓ implies it,

i.e., it holds that ρ |= J(v′), where ρ is the relation of the transition. Thus, J

will eventually hold when ℓ is reached (although, unlike ordinary invariants,

may not initially be true; see Section 4.3.3). Hence, it can be propagated

forward in the termination transition system to the transitions going out

from ℓ. To produce termination implications, for each location ℓ a new

linear inequality template Jℓ(v) is introduced and the following constraint

is imposed:
∧

τ=(ℓ̂,ℓ,ρ)∈P (Dτ ∨ I
ℓ̂
∧ ρ ⊢ J ′

ℓ) . Additional constraints are

enforced to ensure that new termination implications are not redundant

with the already computed invariants and termination implications.

4.3. PROVING TERMINATION USING MAX-SMT 61

4.3.5 Related work

Our research builds upon [Bradley et al., 2005], where the constraint-based

method (see Section 3.2) was first applied to termination. However, we

extend this work in several aspects. First, in that approach only linear pro-

grams with unnested loops can be handled, while we can deal with arbitrary

control structures. Moreover, in [Bradley et al., 2005] the generation of

their lexicographic ranking functions requires a higher-level loop that, be-

fore sending the constraint problem to the solver, determines the precedence

of the transitions in the lexicographic order. On the other hand, in our ap-

proach this outer loop is not needed. Finally, thanks to assigning weights

to the constraints, unlike [Bradley et al., 2005] we do not need to stipulate

the number of supporting invariants that will be needed a priori, and hence

our constraint problems are simpler. Further, weights allow us to guide the

solving engine in the search of appropriate ranking functions and invariants.

In [Cook et al., 2013], the lexicographic approach of [Bradley et al., 2005]

is extended so as to handle programs with complex control flow. However,

their method still requires to search for the right ordering of the transitions

in order to obtain a successful termination proof. Moreover, in this technique

the procedures for synthesizing ranking functions and auxiliary invariants

do not share enough information, while in this thesis these mechanisms are

tightly coupled. Finally, in [Brockschmidt et al., 2013] a method closely

related to ours is presented. Both approaches, which have been developed

independently, go in the same direction of achieving a better cooperation

between the invariant and the ranking function syntheses. Still, a significant

difference is that we can exploit the quasi-ranking functions produced in the

absence of ranking functions in order to progress in the termination analysis.

4.3.6 Implementation

The method presented in Section 4.3.4 has been implemented in the tool

CppInv1. This section describes this implementation.

CppInv admits code written in C++ as well as in the language of T2

[Cook et al., 2013]. The system analyses programs with integer variables,

linear expressions and function calls. Variables of other data types, such

1CppInv, together with all benchmarks used in the experimental evaluation of Sec-
tion 4.3.7, is available at www.cs.upc.edu/~albert/cppinv-Term.tar.gz.

www.cs.upc.edu/~albert/cppinv-Term.tar.gz

62 CHAPTER 4. TERMINATION PROVING

x < 0

x > 0

y < 0

y > 0

z < 0

z > 0

Figure 4.7. Chain of locations obtained from a sequence of statements assume(x 6=
0); assume(y 6= 0); assume(z 6= 0). Note disequalities are not natively supported,
and so have to be split into disjunctions of inequalities.

as floating-point variables, are treated as unknown values. Function calls

are handled with techniques similar to those in [Cook et al., 2009], although

currently the returned value is ignored. Further, for recursive functions, after

a function call we assign unknowns to all variables that can be modified in

the call (i.e., global variables and variables passed by reference).

In the transformation from the source code to the internal transition

system representation, CppInv attempts to reduce the number of locations

by composing transitions. Still, this preprocessing may result in an expo-

nential growth in the number of transitions. As our technique does not

require minimized transition systems for soundness, the tool stops this loca-

tion minimization if a threshold number of transitions is reached. Moreover,

whenever a chain of locations connected by transitions that do not modify

variables (see Fig. 4.7) is detected, CppInv does not attempt to eliminate

the locations: since no variable is updated, in these transitions any function

satisfies the non-increase condition, while no ranking function is possible.

For this reason, when producing the constraints, these transitions are ig-

nored as far as termination is concerned, and are only considered for the

generation of invariants.

Once the input is represented as a transition system, the actual termi-

nation analysis starts. See procedure ProvedTransSysTerm in Algorithm 4.8.

The SCC’s are computed and topologically sorted, and each SCC is pro-

cessed according to this order. Processing an SCC involves first performing

a copy of the transitions for keeping track of those not proven finitely ex-

ecutable yet. Then the initial conditions are updated with the strongest

postconditions of the incoming transitions from previous SCC’s, where the

strongest postcondition of a transition relation ρ(v, v′) is the assertion

SPost(ρ)(v) ≡ ∃w ρ(w, v). Finally the SCC is analysed for termination. If

it could not be proved terminating, the procedure stops. Otherwise the next

SCC is dealt with.

4.3. PROVING TERMINATION USING MAX-SMT 63

Algorithm 4.8 Proc. ProvedTransSysTerm

Input: Transition System S = (v, L, Θ, T)
Output: true if transition system S can be proved terminating
1: (C,≺)← ComputeSCCsAndTopologicallySort(S) {C is the list of SCC’s

topologically sorted according to ordering ≺}
2: for all (C ∈ C by ≺) do
3: (L, T)← (Locations(C),Transitions(C))
4: P ← Copy(T)
5: for all (ℓ ∈ L : ∃(ℓ̂, ℓ, ρ) ∈ T with ℓ̂ ∈ Ĉ ≺ C) do
6: Θ(ℓ)← Θ(ℓ) ∨ SPost(ρ)
7: end for
8: if not ProvedSCCTerm(L, T, P) then
9: return false

10: end if
11: end for
12: return true

Procedure ProvedSCCTerm in Algorithm 4.9 orchestrates the analysis of

termination of SCC’s. It takes as arguments: a set of locations L and a set

of transitions T , corresponding to an SCC of the transition system; and the

termination transition system: a non-empty set P ⊆ T of transitions that

still have to be proved finitely executable. As explained in Section 4.3.1, one

may assume that the graph induced by P is strongly connected. The func-

tion returns true if all transitions in P can be proved finitely executable.

We found out that, instead of directly solving the full constraint system

introduced in Section 4.3.4, in practice it is preferable to proceed by phases.

Each phase2 (procedures DisTrans, RankFun and TermImpl) attempts to re-

move transitions from P by different means, and returns true if P has

become empty or it is no longer strongly connected. In the former case, we

are done. In the latter, the same procedure is recursively called. If after all

phases P is non-empty, we report failure to prove termination.

In the first phase (procedure DisTrans), CppInv attempts to eliminate

transitions with disability arguments by generating the appropriate invari-

ants (neither ranking functions nor termination implications are considered

at this point). This is achieved by solving the following Max-SMT for-

mula:
∧

ℓ∈L Iℓ ∧
∧

τ∈T (Dτ ∨Cτ)∧ (
∨

τ∈T Dτ ∨ pD)∧ [¬pD, ωD]3, where pD is a

2These phases have a time limit in our implementation although this is not made
explicit in the pseudo-code shown below.

3Constraints that avoid redundancy are not included for simplicity.

64 CHAPTER 4. TERMINATION PROVING

Algorithm 4.9 Proc. ProvedSCCTerm

Input: Set of locations L, set of transitions T , and set of transitions P
Output: true if all transitions in P can be proved finitely executable
1: if DisTrans(L, T, P) or RankFun(L, T, P) or TermImpl(L, T, P) then
2: if P = ∅ then
3: return true
4: end if
5: C ← ComputeSCCs(P)
6: for all (C ′ ∈ C) do
7: T ′ ← Transitions(C ′)
8: if T ′ 6= ∅ and not ProvedSCCTerm(L, T, T ′) then
9: return false

10: end if
11: end for
12: return true
13: else
14: return false
15: end if

propositional variable meaning that no transition can be disabled, and ωD is

the corresponding weight. Transitions that are detected to be disabled (by

means of a call to an SMT solver) are removed both from the original and

the termination transition system. Invariants are used to strengthen the

transition relations as described in Section 4.3.2. The process is repeated

while new transitions can be disabled.

In the second phase (procedure RankFun), the system eliminates tran-

sitions by using ranking functions as arguments (termination implications

are not considered at this point). If the computed function R satisfies the

non-increase property, then each of the transitions τ in the termination tran-

sition system is examined and either removed if R is a ranking function for

τ , or split otherwise, as described in Section 4.3.4.

The third and final phase (procedure TermImpl, not detailed here) is very

similar to the previous one, with the difference that termination implications

are also included.

As regards the constraints, we restrain ourselves to invariants and rank-

ing functions with integer coefficients, since this allows us to exploit efficient

non-linear solving techniques [Borralleras et al., 2012; Larraz et al., 2014b].

Moreover, in order to perform integer reasoning, we use the encoding tech-

nique explained in Section 3.2.2 based on Farkas’ Lemma. Then, CppInv

4.3. PROVING TERMINATION USING MAX-SMT 65

Algorithm 4.10 Proc. DisTrans

Input: Set of locations L, set of transitions T , and set of transitions P
Output: true if P has become empty or it’s no longer strongly connected
1: cont← true
2: while cont do
3: cont← false
4: for all (τ = (ℓ, ℓ′, ρ) ∈ P) do
5: if ρ is UNSAT then {τ is disabled}
6: (T, P)← (T − {τ}, P − {τ})
7: end if
8: end for
9: if P = ∅ then

10: return true
11: end if
12: H ←

∧

ℓ∈L

Iℓ ∧
∧

τ∈T

(Dτ ∨ Cτ) ∧
∨

τ∈T

(Dτ ∨ pD)

13: S ← [¬pD, ωD]
14: (I, c)← Solve(H ∧ S) {I invariant map, c cost of solution}
15: if c =∞ then
16: break {No solution to hard clauses}
17: end if
18: for all (ℓ ∈ L, (ℓ, ℓ′, ρ) ∈ T) do {Strengthen relation with invariant}
19: ρ← ρ ∧ I(ℓ)
20: end for
21: cont← c = 0
22: end while
23: return not IsStronglyConnected(P)

uses Barcelogic for solving the generated constraints (see Section 2.1.3).

4.3.7 Experimental evaluation

The method presented in this section has been implemented in the tool

CppInv4. Here we show experiments that evaluate the performance of

CppInv on a wide set of examples, which have been taken from the on-

line programming learning environment Jutge.org [Petit et al., 2012] (see

www.jutge.org), and from benchmark suites in [Brockschmidt et al., 2013]

and in research.microsoft.com/en-us/projects/t2/. We provide here a com-

parison with the new version of T2, which according to the results given

4CppInv, together with all benchmarks used in the experimental evaluation, is available
at www.cs.upc.edu/~albert/cppinv-Term.tar.gz.

www.jutge.org
http://research.microsoft.com/en-us/projects/t2/
www.cs.upc.edu/~albert/cppinv-Term.tar.gz

66 CHAPTER 4. TERMINATION PROVING

Algorithm 4.11 Proc. RankFun

Input: Set of locations L, set of transitions T , and set of transitions P
Output: true if P has become empty or it’s no longer strongly connected
1: while (true) do

2: H ←
∧

ℓ∈L

Iℓ ∧
∧

τ∈T

Cτ ∧
∨

τ∈P

(
(Bτ ∨ pB) ∧ (Sτ ∨ pS)

)
∧
∧

τ∈P

(Nτ ∨ pN)

3: S ← [¬pB, ωB] ∧ [¬pS, ωS] ∧ [¬pN, ωN]
4: (I,R, c) = Solve(H ∧ S)
5: if c =∞ then
6: return false {No solution to hard clauses}
7: end if
8: for all (ℓ ∈ L, (ℓ, ℓ′, ρ) ∈ T) do {Strengthen relation with invariant}
9: ρ← ρ ∧ I(ℓ)

10: end for
11: for all (τ = (ℓ, ℓ′, ρ) ∈ P) do
12: if ρ is UNSAT then {τ is disabled}
13: (T, P)← (T − {τ}, P − {τ})
14: end if
15: end for
16: if NonIncrease(R) then
17: for all (τ ∈ P) do
18: if Bounded(τ,R) and StrictDecrease(τ,R) then
19: P ← P − {τ}
20: else
21: Split(τ,R, P) {Splits τ}
22: end if
23: end for
24: end if
25: if P = ∅ or not IsStronglyConnected(P) then
26: return true
27: end if
28: end while

4.3. PROVING TERMINATION USING MAX-SMT 67

in [Brockschmidt et al., 2013] is performing much better when proving termi-

nation than most of the existing tools, including Terminator [Cook et al.,

2006], AProVE [Otto et al., 2010] or ARMC [Podelski and Rybalchenko,

2007], among others. We have tried CProver [Tsitovich et al., 2011] and

LoopFrog [Kroening et al., 2009] as well, but the results were not good on

these sets of benchmarks. All experiments were performed on an Intel Core

i7 with 3.40GHz clock speed and 16 GB of RAM.

noMS MS MS+QR MS+QR+TI T2

Set1 210 218 226 236 245

Set2 242 249 259 272 275(+3)

Table 4.12. Results with benchmarks from T2

The first two considered sets of benchmarks are those provided by the

T2 developers. Following the experiments in [Brockschmidt et al., 2013], we

have set a 300 secs. timeout. In order to show the impact of the different

techniques described so far in this chapter, Table 4.12 presents the number

of programs proved terminating while adding the different ingredients:

• (noMS) implements the generation of invariants and ranking func-

tions using a translation to SMT(NA), but without using Max-SMT,

i.e. with all constraints hard. The fact that this plain version can al-

ready prove many instances hints on the goodness of our underlying

algorithm and the impact of using our NA-solver in this application.

• (MS) implements the generation of invariants and ranking functions

using Max-SMT(NA), where the constraints imposed by the ranking

function are added as soft.

• (MS+QR) adds to the previous case the possibility to use quasi-

ranking functions.

• (MS+QR+TI) adds to the previous case the possibility to infer ter-

mination implications.

Note that every added improvement allows us to prove some more in-

stances, while none is lost due to the additional complexity of the constraints

generated.

68 CHAPTER 4. TERMINATION PROVING

Moreover, by looking into the results in more detail, we have observed

that our tool and T2 complement each other to some extent: in Set1 CppInv

can prove 5 instances which cannot be proved by T2, while we cannot prove

14 which can be handled by T2; similarly, in Set2 CppInv can prove 8

programs which cannot be proved by T2, while we cannot prove 11 that can

be handled by T2 (the +3 in Table 4.12 refers to 3 instances which include

constructs not supported by CppInv). The average time in YES answers of

T2 is 2.9 secs and of CppInv is 12.8 secs.

CppInv T2

P11655 324 328

P12603 143 140

P12828 707 710

P16415 81 81

P24674 171 168

P33412 478 371

CppInv T2

P40685 324 329

P45965 780 793

P70756 243 235

P81966 2663 926

P82660 174 177

P84219 325 243

Table 4.13. Results with benchmarks from Jutge.org.

In Table 4.13, we show the comparison of CppInv (with all described

techniques) and T2 on our benchmarks from the programming learning en-

vironment Jutge.org, which is currently being used in several programming

courses in the Universitat Politècnica de Catalunya. The benchmark suite

consists of thousands of solutions written by students to 12 different pro-

gramming problems. These programs can be considered challenging exam-

ples since most often they are not the most elegant solution but one with

many more conditional statements than necessary. In this case, due to the

size of the benchmark suite, for the execution of both tools we have set a

120 secs. timeout. The average time in YES answers of T2 is 1.7 secs. and

of CppInv is 1.6 secs. Note that, in order to run these benchmarks in T2,

we have translated them into T2 format using our intermediate transition

graph. This may be a disadvantage for T2, as it happens in the reverse

way when CppInv is run on T2 benchmark set. In particular, we think

that the bad performance of T2 in the problem sets P33412, P81966 and

P84219 may be related to the way we handle division, which is crucial in

these examples.

4.4. PROVING NON-TERMINATION USING MAX-SMT 69

4.4 Proving non-termination using Max-SMT

In this section we show how Max-SMT-based invariant generation can be

exploited for proving non-termination of programs. We assume that every

program is modeled with a transition system (cf. Section 2.2), and only

scalar variables are declared. We will distinguish between two kind of vari-

ables, namely, the program variables v, and the non-deterministic variables

u. The latter, described in the next section, are introduced to model non-

determinism, and they represent arbitrary values.

4.4.1 Modeling of non-determinism

When proving termination, non-determinism might have the effect of pre-

venting fulfillment of a particular property for all the reachable states. How-

ever, if a termination proof like the described in Subsection 4.3.1 is found,

without a special concern about non-determinism, then we can be sure that

the proof is correct. In contrast, when proving non-termination it is crucial

to reason about non-determinism to ensure correctness of a proof.

For the sake of presentation, we assume that the non-determinism of

programs can come only from non-deterministic assignments of the form

i := nondet(), where i ∈ v is a program variable. Note that, however, this

assumption still allows one to encode other kinds of non-determinism. For

instance, any non-deterministic branching of the form if(∗){} else{} can be

cast into this framework by introducing a new program variable k ∈ v and

rewriting into the form k := nondet(); if(k ≥ 0){} else{}.

The transition relation of a non-deterministic assignment of the form

i := nondet(), where i ∈ v, is represented by the formula i′ = u1, where

u1 ∈ u is a fresh non-deterministic variable. Note that u1 is not a program

variable, i.e., u1 /∈ v, and is added only to model the non-deterministic

assignment. Thus, without loss of generality on the kind of non-deterministic

programs we can model, we will assume that every non-deterministic variable

appears in at most one transition relation. A transition that includes a non-

deterministic variable in its transition relation is called non-deterministic

(abbreviated as nondet).

Given a transition relation ρ = ρ(v, u, v′), we will use ρ(v) to denote the

conditional part of ρ, i.e., the conjunction of linear inequalities in ρ contain-

ing only variables in v. For a transition system modeling real programs, the

70 CHAPTER 4. TERMINATION PROVING

following conditions are true:

For τ = (ℓ, ℓ′, ρ) ∈ T : ∀v, u∃v′. ρ(v)→ ρ(v, u, v′). (4.1)

For ℓ ∈ L :
∨

(ℓ,ℓ′,ρ)

ρ(v) , true. (4.2)

For τ1 = (ℓ, ℓ1, ρ1), τ2 = (ℓ, ℓ2, ρ2) ∈ T , τ1 6= τ2 : ρ1(v) ∧ ρ2(v) , false. (4.3)

Condition (4.1) guarantees that next values for the program variables always

exist if the conditional part of the transition holds. Condition (4.2) expresses

that, for any location, at least one of the outgoing transitions from that

location can always be executed. Finally, condition (4.3) says that any

two different transitions from the same location are mutually exclusive, i.e.,

conditional branching is always deterministic.

Example 4.14. Let us consider the program shown in Fig. 4.15. Note how

the two non-deterministic assignments have been replaced in the CFG by

assignments to fresh non-deterministic variables u1 and u2. Condition (4.2)

is trivially satisfied for ℓ0 and ℓ2, since the conditional part of their outgoing

transition relations is empty. Regarding ℓ1, clearly the formula x ≥ y ∨ x <

y is a tautology. Condition (4.3) is also easy to check: the conditional parts

of ρτ2 , ρτ3 and ρτ4 are pairwise unsatisfiable. Finally, condition (4.1) trivially

holds since the primed parts of the transition relations consist of equalities

whose left-hand side is always a different variable.

ℓ0: int x, y;
ℓ1: while (x ≥ y)

if (x ≥ 0)
x := nondet();
y := y + 1;

else

y := nondet();
ℓ2:

ℓ0 ℓ1 ℓ2
τ1

τ2

τ3

τ4

ρτ1 : x′ =x ∧ y′=y

ρτ2 : x ≥ y ∧ x ≥ 0 ∧
x′ =u1 ∧ y′=y + 1

ρτ3 : x ≥ y ∧ x < 0 ∧
x′ =x ∧ y′ =u2

ρτ4 : x < y ∧ x′ =x ∧
y′=y

Figure 4.15. Program involving non-deterministic assignments, together with its
CFG

4.4.2 Overview of the Max-SMT approach

Our method analyses each Strongly Connected SubGraph (SCSG) of a pro-

gram’s control flow graph and, by means of Max-SMT solving, tries to find

4.4. PROVING NON-TERMINATION USING MAX-SMT 71

a formula at every node of the SCSG that satisfies certain properties. First,

the formula has to be a quasi-invariant, i.e., it must satisfy the consecution

condition of inductive invariants, but not necessarily the initiation condition.

Hence, if it holds at the node during execution once, then it continues to

hold from then onwards. Second, the formula has to be edge-closing, mean-

ing that it forbids taking any of the outgoing edges from that node that exit

the SCSG. Now, once we have computed an edge-closing quasi-invariant for

every node of the SCSG, if a state is reached that satisfies one of them, then

program execution will remain within the SCSG from then onwards. The

existence of such a state is tested with an off-the-shelf reachability checker.

If it succeeds, we have proved non-termination of the original program, and

the edge-closing quasi-invariants of the SCSG and the trace given by the

reachability checker form the witness of non-termination.

Our approach differs from previous methods in two major ways. First,

edge-closing quasi-invariants are more generic properties than the witnesses

for non-termination produced by other provers, and thus are likely to carry

more information and be more useful in bug finding. Second, our non-

termination witnesses include SCSGs, which are larger structures than, e.g.,

lassos. Note that the number of SCSGs present in any CFG is finite, while

the number of lassos is infinite. Because of these differences, our method

is more likely to converge. Moreover, lasso-based methods can only handle

periodic non-termination, while our approach can deal with aperiodic non-

termination too.

Our technique is based on constraint solving for invariant generation (see

Section 3.2) and is goal-directed. Before discussing it formally, we describe

it with a simple example. Consider the program in Fig. 4.16(a). The CFG

for this program is shown in Fig. 4.16(b). The edges of the CFG represent

the transitions between the locations. For every transition τ , we denote the

formula of its transition relation by ρτ (i, j, i′, j′). The unprimed variables

represent the values of the variables before the transition, and the primed

ones represent the values after the transition. By ρτ (i, j) we denote the

conditional part of τ , which only involves the pre-variables. Fig. 4.16(c)

shows all non-trivial (i.e. with at least one edge) SCSGs present in the

CFG. For every SCSG, the dashed edges are those that exit the SCSG and

hence are not part of it. Note that SCSG-1 is a maximal strongly connected

subgraph, and thus is a strongly connected component of the CFG. Notice

72 CHAPTER 4. TERMINATION PROVING

ℓ0: int i, j;
j := -1;

ℓ1: while (i > 0 && j != 0)
i := i + j;
j := j + 2;

ℓ2:

ℓ0

ℓ1 ℓ2

τ1
τ2

τ3

τ5

τ4

ρτ1 : j′ = −1

ρτ2 : i ≥ 1 ∧ j ≤ −1 ∧
i′ = i+ j ∧ j′ = j + 2

ρτ3 : i ≥ 1 ∧ j ≥ 1 ∧
i′ = i+ j ∧ j′ = j + 2

ρτ4 : i ≤ 0 ∧ i′ = i ∧ j′ = j

ρτ5 : i ≥ 1 ∧ j = 0 ∧ i′ = i ∧ j′ = j

(a) (b)

ℓ1τ2

τ3

τ4

τ5 ℓ1τ2

τ4

τ5τ3

SCSG-1 SCSG-2

ℓ1

τ3

τ4

τ5
τ2

SCSG-3

For SCSG-3 :

Iteration 1 :
Solution for Mℓ1 : j ≥ 1
Disabled transitions : τ2, τ5
Quasi-invariant Qℓ1 : j ≥ 1

Iteration 2 :
Solution for Mℓ1 : i ≥ 1
Disabled transitions : τ4
Quasi-invariant Qℓ1 : j ≥ 1 ∧ i ≥ 1

Reachable path : ℓ0 → ℓ1 → ℓ1

(c) (d)

Figure 4.16. Example program (a) together with its corresponding CFG (b), non-
trivial SCSGs (c) and non-termination analysis (d)

also that τ3 is an additional exit edge for SCSG-2, and similarly τ2 is an exit

edge for SCSG-3. The non-termination of this example comes from SCSG-3.

Our approach considers every SCSG of the graph one by one. In every

iteration of our method, we try to find a formula at every node of the SCSG

under consideration. This formula is originally represented as a template

with unknown coefficients. We then form a system of constraints involv-

ing the template coefficients in the Max-SMT framework. In a Max-SMT

problem, some of the constraints are hard, meaning that any solution to

the system of constraints must satisfy them, and others are soft, which may

or may not be satisfied. Soft constraints carry a weight, and the goal of

the Max-SMT solver is to find a solution for the hard constraints such that

4.4. PROVING NON-TERMINATION USING MAX-SMT 73

the sum of the weights for the soft constraints violated by the solution is

minimized. In our method, essentially the hard constraints encode that the

formula should obey the consecution condition, and every soft constraint

encodes that the formula will disable an exit edge. A solution to this sys-

tem of constraints assigns values to template coefficients, thus giving us the

required formula at every node.

Consider the analysis of SCSG-3 (refer to Fig. 4.16(d)). Note that there

is a single node ℓ1 and a single transition τ3 in SCSG-3. We denote by

E = {τ2, τ4, τ5} the set of exit edges for SCSG-3. By Qℓ1(i, j) we denote the

quasi-invariant at node ℓ1. Initially Qℓ1(i, j) , true. In the first iteration,

for node ℓ1 we assign a template Mℓ1(i, j) : a.i+ b.j ≤ c.

We then form the Max-SMT problem consisting of the following system

of hard and soft constraints:

(Consecution) ∀ i, j, i′, j′. Mℓ1(i, j) ∧ Qℓ1(i, j) ∧ ρτ3(i, j, i′, j′)→Mℓ1(i′, j′)

(Edge-Closing) For all τ ∈ E: ∀ i, j. Mℓ1(i, j) ∧ Qℓ1(i, j)→ ¬ρτ (i, j)

The consecution constraint is hard, while the edge-closing constraints

are soft (with weight, say, 1). The edge-closing constraint for τ ∈ E en-

codes that, from any state satisfying Mℓ1(i, j) ∧ Qℓ1(i, j), the transition τ

is disabled and cannot be executed.

In the first iteration, a solution for Mℓ1 gives us the formula j ≥ 1. This

formula satisfies the edge-closing constraints for τ2 and τ5. We conjoin this

formula to Qℓ1 , updating it to Qℓ1(i, j) , j ≥ 1. We also update E = {τ4}

by removing τ2 and τ5, as these edges are now disabled.

In the second iteration, we again consider the same template Mℓ1(i, j)

and try to solve the Max-SMT problem above with updated Qℓ1(i, j) and E.

This time we get a solution that gives us the formula i ≥ 1, which satisfies

the edge-closing constraint for τ4. We again update Qℓ1(i, j) , j ≥ 1 ∧ i ≥ 1

by conjoining the new formula. We update E = ∅ by removing the disabled

edge τ4. Now all exit edges have been disabled, and thus the quasi-invariant

Qℓ1(i, j) is edge-closing.

In the final step of our method, we use a reachability checker to determine

if any state satisfying Qℓ1(i, j) at location ℓ1 is reachable. This test succeeds,

and a path ℓ0 → ℓ1 → ℓ1 is obtained. Notice that the path goes through the

loop once before we reach the required state. At this point, we have proved

non-termination of the original program.

74 CHAPTER 4. TERMINATION PROVING

4.4.3 Quasi-invariants and non-termination

Here we will introduce the core concept of this work, that of a quasi-

invariant : a property such that, if it is satisfied at a location during ex-

ecution once, then it continues to hold at that location from then onwards.

The importance of this notion resides in the fact that it is a key ingredient

in our witnesses of non-termination: if each location of an SCSG can be

mapped to a quasi-invariant that is edge-closing, i.e., that forbids executing

any of the outgoing transitions that leave the SCSG, and the SCSG can

be reached at a state satisfying the corresponding quasi-invariant, then the

program is non-terminating (if nondet transitions are present, additional

properties are required, as will be seen below). A constructive proof of this

claim is given at the end of this section.

First of all, let us define basic notation. For a strongly connected sub-

graph (SCSG) C of a program’s CFG, we denote by LC the set of locations

of C, and by T C the set of edges of C. We define EC
def
= {τ = (ℓ, ℓ′, ρ) | ℓ ∈

LC , τ /∈ T C} to be the set of exit edges of C.

Consider a map Q that assigns a formula Qℓ(v) to each of the locations

ℓ ∈ LC . Consider also a map U that assigns a formula Uτ (v, u) to each tran-

sition τ ∈ T C , which represents the restriction that the non-deterministic

variables must obey.5 The map Q is a quasi-invariant map on C with re-

striction U if:

(Consecution)

For τ = (ℓ, ℓ′, ρ) ∈ T C : ∀v, u, v′. Qℓ(v) ∧ ρ(v, u, v′) ∧ Uτ (v, u)→ Qℓ′(v
′) (4.4)

Condition (4.4) says that, whenever a state at ℓ ∈ LC satisfying Qℓ is

reached and a transition from ℓ to ℓ′ can be executed, then the resulting

state satisfies Qℓ′ . This condition corresponds to the consecution condition

for inductive invariants (see Section 3.2). Since inductive invariants are

additionally required to satisfy initiation conditions, we refer to properties

satisfying condition (4.4) as quasi-invariants, hence the name for Q.

Example 4.17. In order to explain the roles of Q and U , consider the

program in Fig. 4.15. It is easy to see that if x ≥ y were a quasi-invariant at

ℓ1, the program would be non-terminating (provided ℓ1 is reachable with a

state such that x ≥ y). However, due to the non-deterministic assignments,

5For the sake of presentation, we assume that Uτ is defined for all transitions, whether
they are deterministic or not. In the former case, by convention Uτ is true.

4.4. PROVING NON-TERMINATION USING MAX-SMT 75

the property is not a quasi-invariant. On the other hand, if we add the

restrictions Uτ2 := u1 ≥ x + 1 and Uτ3 := u2 ≤ y, which constrain the

non-deterministic choices in the assignments, the quasi-invariant holds and

non-termination is proved.

Additionally, our method also needs that Q and U are reachable and

unblocking :

(Reachability) ∃ ℓ ∈ LC . ∃ σ s.t. (ℓ, σ) is reachable and σ |= Qℓ(v) (4.5)

(Unblocking) For τ = (ℓ, ℓ′, ρ) ∈ T C : ∀v∃u. Qℓ(v) ∧ ρ(v)→ Uτ (v, u) (4.6)

Condition (4.5) says that there exists a computation reaching a state (ℓ, σ)

such that σ satisfies the quasi-invariant at location ℓ.

As for condition (4.6), consider a state σ at some ℓ ∈ LC satisfying Qℓ(v).

This condition says that, for any transition τ = (ℓ, ℓ′, ρ) ∈ T C from ℓ, if σ

satisfies the conditional part ρ(v), then we can always make a choice for the

non-deterministic assignment that obeys the restriction Uτ (v, u).

The last property we require from quasi-invariants is that they are edge-

closing. Formally, the quasi-invariant map Q on C is edge-closing if it satis-

fies all of the following constraints:

(Edge-Closing) For τ = (ℓ, ℓ′, ρ) ∈ EC : ∀v. Qℓ(v)→ ¬ρ(v) (4.7)

Condition (4.7) says that, from any state at ℓ ∈ LC that satisfies Qℓ(v), all

the exit transitions are disabled and cannot be executed.

The following is the main result of this section:

Theorem 4.18. Q, U that satisfy (4.4), (4.5), (4.6) and (4.7) for a certain

SCSG C of a CFG P imply non-termination of P .

In order to prove Theorem 4.18, we need the following lemma:

Lemma 4.19. Let us assume that Q, U satisfy (4.4), (4.6) and (4.7) for a

certain SCSG C. Let (ℓ, σ) be a state such that ℓ ∈ LC and σ |= Qℓ(v). Then

there exists a state (ℓ′, σ′) such that ℓ′ ∈ LC , σ′ |= Qℓ′(v) and (ℓ, σ)
τ
→ (ℓ′, σ′)

for a certain τ ∈ T C .

Proof. By condition (4.2) (which is implicitly assumed to hold), there is a

transition τ of the form (ℓ, ℓ′, ρ) for a certain ℓ′ ∈ L such that σ |= ρ(v). Now,

by virtue of condition (4.7), since σ |= Qℓ(v) we have that τ ∈ T C . Thus,

ℓ′ ∈ LC . Moreover, thanks to condition (4.6) and σ |= Qℓ(v) and σ |= ρ(v),

76 CHAPTER 4. TERMINATION PROVING

we deduce that there exist values ν for the non-deterministic variables u

such that (σ, ν) |= Uτ (v, u). Further, by condition (4.1) (which is again

implicitly assumed), we have that there exists a state σ′ such that (σ, ν, σ′) |=

ρ(v, u, v′). All in all, by condition (4.4) and the fact that σ |= Qℓ(v) and

(σ, ν, σ′) |= ρ(v, u, v′) and (σ, ν) |= Uτ (v, u), we get that σ′ |= Qℓ′(v
′), or

equivalently by renaming variables, σ′ |= Qℓ′(v). So (ℓ′, σ′) satisfies the

required properties.

Now we are ready to prove Theorem 4.18:

Proof of Theorem 4.18. We will construct an infinite computation, which

will serve as a witness of non-termination. Thanks to condition (4.5), we

know that there exist a location ℓ ∈ LC and a state σ such that (ℓ, σ) is

reachable and σ |= Qℓ(v). As (ℓ, σ) is reachable, there is a computation π

whose last state is (ℓ, σ). Now, since Q, U satisfy (4.4), (4.6) and (4.7) for C,

and ℓ ∈ LC and σ |= Qℓ(v), we can apply Lemma 4.19 to inductively extend

π to an infinite computation of P .

4.4.4 Computing proofs of non-termination

In this section we explain how proofs of non-termination are effectively

computed. As outlined in Subsection 4.4.2, first of all we exhaustively enu-

merate the SCSGs of the CFG. For each SCSG C, our non-termination

proving procedure Prove-NT, which will be described below, is called. By

means of Max-SMT solving, this procedure iteratively computes an unblock-

ing quasi-invariant map Q and a restriction map U for C. If the construction

is successful and eventually edge-closedness can be achieved, and moreover

the quasi-invariants of C can be reached, then the synthesized Q, U satisfy

the properties of Theorem 4.18, and therefore the program is guaranteed

not to terminate.

In a nutshell, the enumeration of SCSGs considers a strongly connected

component (SCC) of the CFG at a time, and then generates all the SCSGs

included in that SCC. More precisely, first of all the SCCs are considered

according to a topological ordering in the CFG. Then, once an SCC S is

fixed, the SCSGs included in S are heuristically enumerated starting from S

itself (since taking a strictly smaller subgraph would imply discarding some

transitions a priori arbitrarily), then simple cycles in S (as they are easier

to deal with), and then the rest of SCSGs included in S.

4.4. PROVING NON-TERMINATION USING MAX-SMT 77

Algorithm 4.20 Proc. Prove-NT

Input: SCSG C, CFG P
1: For ℓ ∈ LC , set Qℓ(v)← true
2: For τ ∈ T C , set Uτ (v, u)← true
3: EC ← EC

4: while EC 6= ∅ do
5: At ℓ ∈ LC , assign a template Mℓ(v)
6: At τ ∈ T C , assign a template Nℓ(v, u)
7: Solve Max-SMT problem with hard constraints (4.8), (4.9), (4.10) and

soft constraints (4.11)
8: if no model for hard clauses is found then
9: return Unknown, ⊥

10: end if
11: For ℓ ∈ LC , let M̂ℓ(v) = Solution for Mℓ(v)

12: For τ ∈ T C , let N̂τ (v, u) = Solution for Nτ (v, u)

13: For ℓ ∈ LC , set Qℓ(v)← Qℓ(v) ∧ M̂ℓ(v)

14: For τ ∈ T C , set Uτ (v, u)← Uτ (v, u) ∧ N̂τ (v, u)
15: Remove from EC disabled edges
16: end while
17: for all ℓ ∈ LC do
18: if Reachable (ℓ, σ) in P s.t. σ |= Qℓ(v) then
19: let π = reachable path to (ℓ, σ)
20: return Non-Terminating, (Q, U , π)
21: end if
22: end for
23: return Unknown, ⊥

Then, once the SCSG C is fixed, our non-termination proving procedure

Prove-NT (Algorithm 4.20) is called. The procedure takes as input an

SCSG C of the program’s CFG, and the CFG itself. For every location

ℓ ∈ LC , we initially assign a quasi-invariant Qℓ(v) , true. Similarly, for

every transition τ ∈ T C , we initially assign a restriction Uτ (v, u) , true.

The set EC keeps track of the exit edges of C that have not been discarded

yet, and hence at the beginning we have EC = EC . Then we iterate in a loop

in order to strengthen the quasi-invariants and restrictions till EC = ∅, that

is, all the exit edges of C are disabled.

In every iteration we assign a template Mℓ(v) ≡ mℓ,0 +
∑

v∈vmℓ,v ·v ≤ 0

to each ℓ ∈ LC . We also assign a template Nτ (v, u) ≡ nτ,0 +
∑

v∈v nτ,v · v +∑
u∈u nτ,u · u ≤ 0 to each τ ∈ T C .6 Then we form the Max-SMT problem

6Actually templates Nτ (v, u) are only introduced for nondet transitions. To simplify

78 CHAPTER 4. TERMINATION PROVING

with the following constraints:7

• For τ = (ℓ, ℓ′, ρ) ∈ T C :

∀v, u, v′. Qℓ(v) ∧Mℓ(v) ∧ ρ(v, u, v′) ∧ Uτ (v, u) ∧Nτ (v, u)→Mℓ′(v
′)

(4.8)

• For ℓ ∈ LC : ∃v. Qℓ(v) ∧Mℓ(v) ∧
∨

τ=(ℓ,ℓ′,ρ)∈T C

ρ(v) (4.9)

• For τ = (ℓ, ℓ′, ρ) ∈ T C :

∀v∃u. Qℓ(v) ∧Mℓ(v) ∧ ρ(v)→ Uτ (v, u) ∧Nτ (v, u) (4.10)

• For τ = (ℓ, ℓ′, ρ) ∈ EC : ∀v. Qℓ(v) ∧Mℓ(v)→ ¬ρ(v) (4.11)

The constraints (4.8), (4.9) and (4.10) are hard, while the constraints (4.11)

are soft.

The Max-SMT solver finds a solution M̂ℓ(v) for every Mℓ(v) for ℓ ∈

LC and a solution N̂τ (v, u) for every Nℓ(v, u) for τ ∈ T C . The solution

satisfies the hard constraints and as many soft constraints as possible. In

other words, it is the best solution for hard constraints that disables the

maximum number of transitions. We then update Qℓ(v) for every ℓ ∈ LC

by strengthening it with M̂ℓ(v), and update Uτ (v, u) for every τ ∈ T C by

strengthening it with N̂τ (v, u). We then remove all the disabled transitions

from EC and continue the iterations of the loop with updated Q, U and EC .

Note that, even if none of the exit edges is disabled in an iteration (i.e. no

soft constraint is met), the quasi-invariants found in that iteration may be

helpful for disabling exit edges later.

When all exit transitions are disabled, we exit the loop with the unblock-

ing edge-closing quasi-invariant map Q and the restriction map U .

Finally, we check whether there exists a reachable state (ℓ, σ) such that

ℓ ∈ LC and σ |= Qℓ(v) with an off-the-shelf reachability checker. If this

test succeeds, we report non-termination along with Q,U and the path π

reaching (ℓ, σ) as a witness of non-termination.

The next theorem formally states that Prove-NT proves non-termination:

Theorem 4.21. If procedure Prove-NT terminates on input SCSG C

and CFG P with Non-Terminating, (Q, U , π), then program P is non-

the presentation, we assume that for other transitions, Nτ (v, u) is true.
7For clarity, leftmost existential quantifiers over the unknowns of the templates are

implicit.

4.4. PROVING NON-TERMINATION USING MAX-SMT 79

terminating, and (Q, U , π) allow building an infinite computation of P .

Proof. Let us prove that, if Prove-NT terminates with Non-Terminating,

then the conditions of Theorem 4.18, i.e., conditions (4.4), (4.5), (4.6) and

(4.7) are met.

First of all, let us prove by induction on the number of iterations of the

while loop that conditions (4.4) and (4.6) are satisfied, and also that for

τ = (ℓ, ℓ′, ρ) ∈ EC − EC ,

∀v. Qℓ(v)→ ¬ρ(v).

Before the loop is executed, for all locations ℓ ∈ LC we have that Qℓ(v) ,

true and for all τ ∈ T C we have that Uτ (v, u) , true. Conditions (4.4) and

(4.6) are trivially met. The other remaining condition holds since initially

EC = EC .

Now let us see that each iteration of the loop preserves the three con-

ditions. Regarding (4.4), by induction hypothesis we have that for τ =

(ℓ, ℓ′, ρ) ∈ T C ,

∀v, u, v′. Qℓ(v) ∧ ρ(v, u, v′) ∧ Uτ (v, u)→ Qℓ′(v
′).

Moreover, the solution computed by the Max-SMT solver satisfies constraint

(4.8), i.e., has the property that for τ = (ℓ, ℓ′, ρ) ∈ T C ,

∀v, u, v′. Qℓ(v) ∧ M̂ℓ(v) ∧ ρ(v, u, v′) ∧ Uτ (v, u) ∧ N̂τ (v, u)→ M̂ℓ′(v
′).

Altogether, we have that for τ = (ℓ, ℓ′, ρ) ∈ T C ,

∀v, u, v′.(Qℓ(v)∧M̂ℓ(v))∧ρ(v, u, v′)∧(Uτ (v, u)∧N̂τ (v, u))→ (Qℓ′(v
′)∧M̂ℓ′(v

′)).

Hence condition (4.4) is preserved.

As for condition (4.6), the solution computed by the Max-SMT solver

satisfies constraint (4.10), i.e., has the property that for τ = (ℓ, ℓ′, ρ) ∈ T C ,

∀v∃u. (Qℓ(v) ∧ M̂ℓ(v)) ∧ ρ(v)→ (Uτ (v, u) ∧ N̂τ (v, u)).

Thus, condition (4.6) is preserved.

Regarding the last property, note that the transitions τ = (ℓ, ℓ′, ρ) ∈ EC

80 CHAPTER 4. TERMINATION PROVING

that satisfy the soft constraints (4.11), i.e., such that

∀v. (Qℓ(v) ∧ M̂ℓ(v))→ ¬ρ(v)

are those removed from EC . Therefore, this preserves the property that for

τ = (ℓ, ℓ′, ρ) ∈ EC − EC ,

∀v. Qℓ(v)→ ¬ρ(v).

Now, if the while loop terminates, it must be the case that EC = ∅. Thus,

on exit of the loop, condition (4.7) is fulfilled.

Finally, if Non-Terminating is returned, then there is a location ℓ ∈ LC

and a state satisfying σ |= Qℓ(v) such that state (ℓ, σ) is reachable. That is,

condition (4.5) is satisfied.

Hence, all conditions of Theorem 4.18 are fulfilled. Therefore, P does

not terminate. Moreover, the proof of Theorem 4.18 gives a constructive

way of building an infinite computation by means of Q, U and π.

Note that constraint (4.9):

For ℓ ∈ LC : ∃v. Qℓ(v) ∧Mℓ(v) ∧
∨

τ=(ℓ,ℓ′,ρ)∈T C

ρ(v)

is not actually used in the proof of Theorem 4.21, and thus is not needed for

the correctness of the approach. Its purpose is rather to help Prove-NT to

avoid getting into dead-ends unnecessarily. Namely, without (4.9) it could be

the case that for some location ℓ ∈ LC , we computed a quasi-invariant that

forbids all transitions τ ∈ T C from ℓ. Since Prove-NT only strengthens

quasi-invariants and does not backtrack, if this situation were reached the

procedure would probably not succeed in proving non-termination.

Now let us describe how constraints are effectively solved. First of all,

constraints (4.8), (4.9), and (4.11) are universally quantified over integer

variables. Following the same ideas of constraint-based linear invariant gen-

eration (see Section 3.2), these constraints are soundly transformed into an

existentially quantified formula in NRA by abstracting program and non-

deterministic variables and considering them as reals, and then applying

Farkas’ Lemma. As regards constraint (4.10), the alternation of quantifiers

4.4. PROVING NON-TERMINATION USING MAX-SMT 81

in

∀v∃u. Qℓ(v) ∧Mℓ(v) ∧ ρ(v)→ Uτ (v, u) ∧Nτ (v, u)

is dealt with by introducing a template Pu,τ (v) ≡ pu,τ,0 +
∑

v∈v pu,τ,v · v for

each u ∈ u and skolemizing. This yields8 the formula

∀v. Qℓ(v) ∧Mℓ(v) ∧ ρ(v)→ Uτ (v, Pu,τ (v)) ∧Nτ (v, Pu,τ (v)),

which implies constraint (4.10), and to which the above transformation into

NRA can be applied. Note that, since the Skolem function is not symbolic

but an explicit linear function of the program variables, potentially one

might lose solutions.

Finally, once a weighted formula in NRA containing hard and soft clauses

is obtained, (some of the) existentially quantified variables are forced to take

integer values, and the resulting problem is handled by a Max-SMT(NIA)

solver [Nieuwenhuis and Oliveras, 2006; Larraz et al., 2014b]. In particu-

lar, the unknowns of the templates Pu,τ (v) introduced for skolemizing non-

deterministic variables are imposed to be integers. Since program variables

have integer type, this guarantees that only integer values are assigned in

the non-deterministic assignments of the infinite computation that proves

non-termination.

There are some other issues about our implementation of the procedure

that are worth mentioning. Regarding how the weights of the soft clauses are

determined, we follow a heuristic aimed at discarding “difficult” transitions

in EC as soon as possible. Namely, the edge-closing constraint (4.11) of

transition τ = (ℓ, ℓ′, ρ) ∈ EC is given a weight which is inversely proportional

to the number of literals in ρ(v). Thus, transitions with few literals in their

conditional part are associated with large weights, and therefore the Max-

SMT solver prefers to discard them over others. The rationale is that for

these transitions there may be more states that satisfy the conditional part,

and hence they may be more difficult to rule out. Altogether, it is convenient

to get rid of them before quasi-invariants become too constrained.

Finally, as regards condition (4.3), our implementation can actually han-

dle transition systems for which this condition does not hold. This may be

interesting in situations where, e.g., non-determinism is present in condi-

tional statements, and one does not want to introduce additional variables

8Again, existential quantifiers over template unknowns are implicit.

82 CHAPTER 4. TERMINATION PROVING

and locations as was done in Section 4.4.1 for presentation purposes. The

only implication of overriding condition (4.3) is that, in this case, the prop-

erties that must be discarded in soft clauses of condition (4.11) are not the

transitions leaving the SCSG under consideration, but rather the negation

of the transitions staying within the SCSG.

4.4.5 Related work

Several systems for proving non-termination have recently been developed.

One of these is, e.g., the tool TNT [Gupta et al., 2008], which proceeds in two

phases. The first phase exhaustively generates candidate lassos. The second

one checks each lasso for possible non-termination by seeking a recurrent set

of states, i.e., a set of states that is visited infinitely often along the infinite

path that results from unrolling the lasso. This is carried out by means of

constraint solving, as in our approach. But while there is an infinite number

of lassos in a program, our SCSGs can be finitely enumerated. Further,

we can handle unbounded non-determinism, whereas TNT is limited to

deterministic programs.

Other methods for proving non-termination that use an off-the-shelf

reachability checker like our technique have also been proposed [Gulwani

et al., 2008b; Chen et al., 2014]. In [Gulwani et al., 2008b], the reachability

checker is used on instrumented code for inferring weakest preconditions,

which give the most general characterization of the inputs under which the

original program is non-terminating. While in [Gulwani et al., 2008b] non-

determinism can be dealt with in a very restricted manner, the method in

[Chen et al., 2014] can deal with unbounded non-determinism as we do. In

the case of [Chen et al., 2014], the reachability checker is iteratively called

to eliminate every terminating path through a loop by restricting the state

space, and thus may diverge on many loops. Our method does not suffer

from this kind of drawbacks.

Some other approaches exploit theorem-proving techniques. For exam-

ple, the tool Invel [Velroyen and Rümmer, 2008] analyzes non-termination

of Java programs using a combination of theorem proving and invariant

generation. Invel is only applicable to deterministic programs. Another

tool for proving non-termination of Java programs is AProVE [Giesl et al.,

2006], which uses SMT solving as an underlying reasoning engine. The

main drawback of their method is that it is required that either recurrent

4.4. PROVING NON-TERMINATION USING MAX-SMT 83

sets are singletons (after program slicing) or loop conditions themselves are

invariants. Our technique does not have such restrictions.

Finally, the tool TRex [Harris et al., 2011] integrates existing non-

termination proving approaches within a Terminator-like [Andreas et al.,

2006] iterative procedure. Unlike TRex, which is aimed at sequential code,

Atig et al. [Atig et al., 2012] focus on concurrent programs: they describe

a non-termination proving technique for multi-threaded programs, via a re-

duction to non-termination reasoning for sequential programs. Our work

should complement both of these approaches, since we provide significant

advantages over the underlying non-termination proving tools that were pre-

viously used.

4.4.6 Experimental evaluation

In this section we evaluate the performance of a prototype implementation of

the techniques proposed here in our termination analyzer CppInv, available

at www.cs.upc.edu/~albert/cppinv-Term.tar.gz together with all of the

benchmarks. This tool admits code written in (a subset of) C++ as well as

in the language of T2 [Cook et al., 2013]. The system analyses programs

with integer variables, linear expressions and function calls, as well as array

accesses to some extent. As a reachability checker we use CPA [Beyer and

Keremoglu, 2011].

Altogether, we compare CppInv with the following tools:

• T2 [Cook et al., 2013] version CAV’13 (henceforth, T2-CAV), which

implements an algorithm that tightly integrates invariant generation

and termination analysis [Brockschmidt et al., 2013].

• T2 [Cook et al., 2013] version TACAS’14 (henceforth, T2-TACAS),

which reduces the problem of proving non-termination to the search

of an under-approximation of the program guided by a safety prover

[Chen et al., 2014].

• Julia [Spoto et al., 2010], which implements a technique described by

Payet and Spoto [Payet and Spoto, 2009] that reduces non-termination

to constraint logic programming.

• AProVE [Giesl et al., 2006] with the Java Bytecode front-end, which

uses the SMT-based non-termination analysis in [Brockschmidt et al.,

www.cs.upc.edu/~albert/cppinv-Term.tar.gz

84 CHAPTER 4. TERMINATION PROVING

2012].

• A reimplementation of TNT [Gupta et al., 2008] by the authors of

[Chen et al., 2014] that uses Z3 [de Moura and Bjørner, 2008] as an

SMT back-end.

Unfortunately, because of the unavailability of some of the tools (T2-TACAS,

T2-CAV, TNT) or the fact that they do not admit a common input lan-

guage (Julia, AProVE), it was not possible to run all these systems on

the same benchmarks on the same computer. For this reason, for each of

the tables below we consider a different family of benchmarks taken from

the literature and provide the results of executing our tool (on a 3.40 GHz

Intel Core i7 with 16 GB of RAM) together with the data of competing

systems reported in the respective publications. Note that the results of

third-party systems in those publications may have some inaccuracies, due

to, e.g., the conversion of benchmarks in different formats. However, in

those cases the distances between the tools seem to be significant enough to

draw conclusions on their relative performance.

Table 4.22 shows comparative results on benchmarks taken from [Chen

et al., 2014]. In that paper, the tools T2-TACAS, AProVE, Julia and

TNT are considered. The time limit is set to 60 seconds both in that work as

well as in the executions of CppInv. The benchmarks are classified accord-

ing to three categories: (a) all the examples in the benchmark suite known

to be non-terminating previously to [Chen et al., 2014]; (b) all the exam-

ples in the benchmark suite known to be terminating previously to [Chen

et al., 2014]; and (c) the rest of instances. Rows of the table correspond to

non-termination provers. Columns are associated to each of these three cat-

egories of problems. Each column is split into three subcolumns reporting

the number on “non-terminating” answers, the number of timed outs, and

the number of other answers (which includes “terminating” and “unknown”

answers), respectively. Even with the consideration that experiments were

conducted on different machines, the results in columns (a) and (c) of Table

4.22 show the power of the proposed approach on these examples. As for

column (b), we found out that instance 430.t2 was wrongly classified as

terminating. Our witness of non-termination has been manually verified.

Table 4.23 (a), which follows a similar format to Table 4.22, compares

CppInv, T2-CAV and AProVE on benchmarks from [Brockschmidt et al.,

4.4. PROVING NON-TERMINATION USING MAX-SMT 85

(a) (b) (c)
Nonterm TO Other Nonterm TO Other Nonterm TO Other

CppInv 70 6 5 1 16 237 113 35 9
T2-TACAS 51 0 30 0 45 209 82 3 72
AProVE 0 61 20 0 142 112 0 139 18
Julia 3 8 70 0 40 214 0 91 66
TNT 19 3 59 0 48 206 32 12 113

Table 4.22. Experiments with benchmarks from [Chen et al., 2014]

2013] (all with a time limit of 300 seconds). Note that, in the results reported

in [Brockschmidt et al., 2013], due to a wrong abstraction in the presence

of division, T2 was giving two wrong non-termination answers (namely, for

the instances rlft3.t2 and rlft3.c.i.rlft3.pl.t2.fixed.t2, for which

the termination proofs produced by CppInv[Larraz et al., 2013a] have been

checked by hand). For this reason we have discarded those two programs

from the benchmark suite. In this case, the performance of our tool is slightly

worse than that of T2-CAV. However, it has to be taken into account that

T2-CAV was exploiting the cooperation between the termination and the

non-termination provers, while we still do not apply this kind of optimiza-

tions.

In Table 4.23 (b), CppInv is compared with the results of Julia and

AProVE from [Brockschmidt et al., 2012] on Java programs extracted

from [Velroyen and Rümmer, 2008]. CppInv was run on C++ versions of

these benchmarks, which admitted a direct translation from Java. The time

limit was set to 60 seconds. Columns represent respectively the number of

terminating instances (YES), non-terminating instances (NO), instances for

which the construction of the proof failed before the time limit (MAYBE),

and timeouts (TO). For these instances AProVE gets slightly better results

than CppInv. However, it should be taken into account that four programs

of this set of benchmarks include non-linear expressions, which we cannot

handle. Moreover, when compared on third-party benchmarks (see Tables

4.22 and 4.23 (a)), our results are better.

Finally, Table 4.23 (c) shows the results of running our tool on pro-

grams from the online programming learning environment Jutge.org [Petit

et al., 2012] (see www.jutge.org), which is currently being used in several

programming courses in the Universitat Politècnica de Catalunya. As a

paradigmatic example in which it is easy to write wrong non-terminating

www.jutge.org

86 CHAPTER 4. TERMINATION PROVING

(a)

Nonterm TO Other

CppInv 167 39 243

T2-CAV 172 14 263

AProVE 0 51 398

(b)

YES NO MAYBE TO

CppInv 1 44 9 1

AProVE 1 51 0 3

Julia 1 0 54 0

(c)

YES NO MAYBE TO

Binary search 2745 484 22 391

Table 4.23. Experiments with benchmarks from [Brockschmidt et al., 2013] (a),
from [Velroyen and Rümmer, 2008] (b) and from Jutge.org (c)

code, we have considered the exercise Binary Search. The programs in

this benchmark suite can be considered challenging since, having been writ-

ten by students, their structure is often more complicated than necessary.

In this case the time limit was 60 seconds. As can be seen from the results,

for a ratio of 89% of the cases, CppInv is able to provably determine in less

than one minute if the program is terminating or not.

All in all, the experimental results show that our technique, although

it is general and is not tuned to particular problems, is competitive with

the state of the art and performs reasonably and uniformly well on a wide

variety of benchmarks.

Chapter 5
Compositional Program

Analysis

To have impact on everyday software development, a verification engine

needs to be able to process the millions of lines of code often encountered in

mature software projects. At the same time, the analysis should be repeated

every time developers commit a change, and should report feedback in the

course of minutes, so that fixes can be applied promptly. Consequently, a

central theme in recent research on automated program verification has been

scalability. As a natural solution to this problem, compositional program

analyses [Godefroid et al., 2010; Calcagno et al., 2011; Li et al., 2013] have

been proposed. They analyze program parts (semi-)independently and then

combine the results to obtain a whole-program proof.

For this, a compositional analysis has to predict likely intermediate as-

sertions that allow us to break whole-program reasoning into many instances

of local reasoning. This strategy makes the individual reasoning steps easier,

allows distributing the analysis to a number of compute nodes [Albarghouthi

et al., 2012b] and applies to all kinds of programs. For sequential programs

we can guess and prove intermediate summaries of loops and/or procedures

while simultaneously using the guessed summary during the analysis of the

outer loop and/or procedure. In the analysis of concurrent programs a sim-

ilar strategy can be employed to reason about threads without considering

all possible interleavings with other threads.

The disadvantage of compositional analyses has traditionally been one

87

88 CHAPTER 5. COMPOSITIONAL PROGRAM ANALYSIS

of precision: local analyses must blindly choose the intermediate asser-

tions. While in some domains (e.g. heap) some heuristics have been pro-

posed [Calcagno et al., 2011], effective strategies for guessing and/or refining

useful intermediate assertions or summaries in arithmetic domains remains

an open problem.

In this thesis a new method for predicting and refining intermediate

arithmetic assertions for compositional reasoning about sequential programs

is introduced. A key component in our approach is Max-SMT solving. Re-

call Max-SMT solvers can deal with hard and soft constraints, where hard

constraints are mandatory, and soft constraints are those that we would like

to hold, but are not required to. Here, hard constraints express what is

needed for the soundness of our analysis, while soft ones favor the solutions

that are more useful for our technique.

More precisely, we use Max-SMT to iteratively infer quasi-invariants1,

which prove the validity of a property, given that a precondition holds.

Hence, if the precondition holds, the program is proved safe. Otherwise,

thanks to a novel program transformation technique we call narrowing2,

we exploit the failing quasi-invariants to focus on what is missing in the

safety proof of the program. Then new quasi-invariants are sought, and the

process is repeated until the safety proof is finally completed. Based on

this, we introduce a new bottom-up program analysis procedure that infers

quasi-invariants in a goal-directed manner, starting from a property that we

wish to prove for the program. Our approach makes distributing analysis

tasks as simple as in other bottom-up analyses, but also enjoys the precision

of CEGAR-based provers.

Although in the present work compositional analysis is only applied to

safety proving, we are confident about extending the method to also prove

termination (so that supporting invariants do not need to follow from the

direct context, as described in Section 4.3.2), and then to existential prop-

erties such as reachability and non-termination (thus avoiding calls to an

external reachability checker as explained in Section 4.4.2).

1This concept was previously introduced in Section 4.4 to prove program non-
termination.

2This narrowing is inspired by the narrowing in term rewrite systems, and is unrelated
to the notion with the same name used in abstract interpretation.

5.1. ILLUSTRATION OF THE METHOD 89

5.1 Illustration of the method

In this section, we illustrate the core concepts of our approach by using some

small examples. We will give the formal definition of the used methods in

Section 5.2.

5.1.1 Quasi-invariants

We handle programs by considering one strongly connected component (SCC)

C of the control-flow graph at a time, together with the sequential parts of

the program leading to C, either from initial states or other SCCs. Instead

of program invariants, for each SCC we synthesize quasi-invariants. These

are inductive properties that we choose such that they may not always hold

whenever the SCC is reached, but once they hold, then they are always

satisfied.

while i > 0 do

x := x+ 5;

i := i− 1;

done

assert(x ≥ 0);

Figure 5.1

As an example, consider the program snippet

in Figure 5.1, where we do not assume any knowl-

edge about the rest of the program. To prove

the assertion, we need an inductive property Q

for the loop preceding it, such that Q together

with the negation of the loop condition i > 0 im-

plies the assertion. Using our constraint-solving

based method CondSafe (cf. Section 5.2.1), we find

Q1 = x + 5 · i ≥ 0. The property Q1 can be seen now as a precondition at

the loop entry for the validity of the assertion.

5.1.2 Combining quasi-invariants

Once we have found a quasi-invariant for an SCC, we use the generated

preconditions as postconditions for its preceding SCCs in the program.

while j > 0 do

j := j − 1;

i := i+ 1;

done

Figure 5.2

As an example, assume that the loop from Fig-

ure 5.1 is directly preceded by the loop in Fig-

ure 5.2. We now use the precondition Q1 we ob-

tained earlier as input to our quasi-invariant syn-

thesis method, similarly to the assertion in Fig-

ure 5.1. Thus, we now look for an inductive prop-

erty Q2 that, together with ¬(j > 0), implies

Q1. In this case we obtain the quasi-invariant

90 CHAPTER 5. COMPOSITIONAL PROGRAM ANALYSIS

Q2 = j ≥ 0 ∧ x + 5 · (i + j) ≥ 0 for the loop. As with Q1, now we can

see Q2 as a precondition at the loop entry, and propagate Q2 up to the

preceding SCCs in the program.

5.1.3 Recovering from failures

When we cannot prove that a found precondition always holds, we try to

recover and find an alternative precondition. In this process, we make use of

the results obtained so far, and narrow the program using our intermediate

results. As an example, consider the loop in Figure 5.3.

while unknown() do

assert(x 6= y);

x := x+ 1;

y := y + 1;

done

Figure 5.3

We again apply our method CondSafe to find

a quasi-invariant for this loop which, together with

the loop condition, implies the assertion in the loop

body. As it can only synthesize conjunctions of

linear inequalities, it produces the quasi-invariant

Q3 = x > y for the loop. However, assume that the

precondition Q3 could not be proven to always hold

in the context of our example. In that case, we use

the obtained information to narrow the program

and look for another precondition.

if ¬(x>y) then

while ¬(x>y)do

assert(x 6= y);

x := x+ 1;

y := y + 1;

done

fi

Figure 5.4

Intuitively, our program narrowing reflects that

states represented by the quasi-invariant found ear-

lier are already proven to be safe. Hence, we only

need to consider states for which the negation of the

quasi-invariant holds, i.e., we can add its negation

as an assumption to the program. In our exam-

ple, this yields the modified version of Figure 5.3

displayed in Figure 5.4. Another call to CondSafe

then yields the quasi-invariant Q′
3 = x < y for the

loop. This means that we can ensure the validity

of the assertion if before the conditional statement

we satisfy that ¬(x > y) → x < y, or equivalently, x 6= y. In general, this

narrowing allows us to find (some) disjunctive invariants.

5.2. PROVING SAFETY 91

5.2 Proving safety

Most automated techniques for proving program safety iteratively construct

inductive program invariants as over-approximations of the reachable state

space. Starting from the known set of initial states, a process to discover

more reachable states and refine the approximation is iterated, until it finally

reaches a fixed point (i.e., the invariant is inductive) and is strong enough

to imply program safety. However, this requires taking the whole program

into account, which is sometimes infeasible or undesirable in practice.

In contrast to this, our method starts with the known unsafe states, and

iteratively constructs an under-approximation of the set of safe states, with

the goal of showing that all initial states are contained in that set. For this,

we introduce the notion of conditional safety.

As in previous chapters, we model programs by means of transition sys-

tems (see Section 2.2). In what follows, we will use programs and transition

systems as interchangeable terms. We assume only scalar variables v are

declared in programs, i.e., V = v. Additionally, we denote in this chapter

an assertion by (τ, ϕ), a pair of a transition τ and a formula ϕ, meaning

that the formula ϕ must hold after transition τ . The reader is also referred

to definitions about States and Executions from Section 2.2.2 to follow the

rest of the chapter.

Intuitively, when proving that a program is (τ̃ , ϕ̃)-conditionally safe for

the assertion (τ, ϕ) we consider evaluations starting after a →τ̃ (ℓ̃, σ̃) step,

where σ̃ satisfies ϕ̃, instead of evaluations starting at an initial state. In

particular, a program that is (τ0, true)-conditionally safe for (τ, ϕ) for all

initial transitions τ0 is (unconditionally) safe for (τ, ϕ).

Definition 5.5 (Conditional safety). Let P be a program, τ, τ̃ transitions

and ϕ, ϕ̃ conjunctions of linear inequalities over v. The program P is (τ̃ , ϕ̃)-

conditionally safe for the assertion (τ, ϕ) if for any evaluation that contains

→τ̃ (ℓ̃, σ̃) →∗
P (ℓ̄, σ̄) →t (ℓ, σ), we have σ̃ |= ϕ̃ implies that σ |= ϕ. In that

case we say that the assertion (τ̃ , ϕ̃) is a precondition for the postcondition

(τ, ϕ).

Conditional safety is “transitive” in the sense that if a set of transitions

E = {τ̃1, . . . , τ̃m} dominates τ ,3 and for all i = 1, . . . ,m we have P is (τ̃i, ϕ̃i)-

3We say a set of transitions E dominates transition τ if every path in the CFG from
an initial location that contains τ must also contain some τ̃ ∈ E .

92 CHAPTER 5. COMPOSITIONAL PROGRAM ANALYSIS

conditionally safe for (τ, ϕ) and P is safe for (τ̃i, ϕ̃i), then P is also safe for

(τ, ϕ). In what follows we exploit this observation to prove program safety

by means of conditional safety.

A program component C of a program P is an SCC of the control-flow

graph, and its entry transitions (or entries) are those transitions τ = (ℓ, ℓ′, ρ)

such that τ 6∈ C but ℓ′ appears in C. We denote the set of entry transitions

of C with EC .

By considering each SCC as a single node, we can obtain from P a DAG

of SCCs. In this way we can partition P into a set of components, corre-

sponding to the SCCs, and the respective sets of entry transitions, which

correspond to the edges in the DAG that interconnect these components.

Our technique analyzes components independently, and communicates the

results of these analyses to the analysis of other components along entry

transitions.

Given a component C and an assertion (τ, ϕ) such that τ 6∈ C but the

source node of τ appears in C, we call τ an exit transition of C. For such exit

transitions, we compute a sufficient condition ψτ̃ for each entry transition

τ̃ ∈ EC such that C ∪ {τ} is (τ̃ , ψτ̃)-conditionally safe for (τ, ϕ). Then we

continue reasoning backwards following the DAG and try to prove that P

is safe for each (τ̃ , ψτ̃). If we succeed, following the argument above we will

have proved P safe for (τ, ϕ).

In the following, we first discuss how to prove conditional safety of sin-

gle program components in Section 5.2.1, and then present the algorithm

that combines these local analyses to construct a global safety proof in Sec-

tion 5.2.2.

5.2.1 Synthesizing local conditions

Here we restrict ourselves to a program component C and its entry tran-

sitions EC , and assume we are given an assertion (τexit, ϕ), where τexit =

(ℓ̃exit, ℓexit, ρexit) is an exit transition of C (i.e., τexit 6∈ C and ℓ̃exit appears in

C). We show next how a precondition (τ, ψ) for (τexit, ϕ) can be obtained

for each τ ∈ EC . Here we only consider the case of ϕ being a single clause

(i.e., a disjunction of literals); if ϕ is in CNF, each conjunct is handled sep-

arately. Now, the preconditions on the entry transitions will be determined

by a quasi-invariant, which like a standard invariant is inductive, but not

necessarily initiated in all program runs. Indeed, this initiation condition is

5.2. PROVING SAFETY 93

what we will extract as precondition and propagate backwards to preceding

program components in the DAG.

Definition 5.6 (Quasi-Invariant). We say a map Q, from locations L to

conjunctions of linear inequalities over v, is a quasi-invariant for a program

(component) P if for all (ℓ, σ)→P (ℓ′, σ′), σ |= Q(ℓ) implies σ′ |= Q(ℓ′).

Quasi-invariants are convenient tools to express conditions for safety

proving, allowing reasoning in the style of “if the condition for Q holds,

then the assertion (τ, ϕ) holds”.

. . .
while i > 0 do
x := x+ 5;
i := i− 1;

done
assert(x ≥ 50)

ℓ1

ℓ2

i ≤ 0
∧x′ = x
∧ i′ = i

i > 0
∧x′ = x+ 5
∧ i′ = i− 1

Figure 5.7. Source code of program snippet and its CFG.

Example 5.8. Consider the program snippet in Figure 5.7. A quasi-

invariant supporting safety of this program part is Q5(ℓ1) ≡ x + 5 · i ≥ 50,

Q5(ℓ2) ≡ x ≥ 50. In fact, any quasi-invariant Qm(ℓ1) ≡ x+m · i ≥ 50 with

0 ≤ m ≤ 5 would be a quasi-invariant that, together with the negation of

the loop condition i ≤ 0, implies x ≥ 50.

We use a Max-SMT-based constraint-solving approach to generate quasi-

invariants. Unlike in Section 4.4, to use information about the initialization

of variables before a program component, we take into account the entry

transitions EC . The precondition for each entry transition is then the quasi-

invariant that has been synthesized at its target location.

To find quasi-invariants, we construct a constraint system. For each

location ℓ in C we create a template Iℓ,k(v) ≡ ∧1≤j≤k Iℓ,j,k(v) which is a

conjunction of k linear inequations4 of the form Iℓ,j,k(v) ≡ iℓ,j +
∑

v∈v iℓ,j,v ·

v ≤ 0, where the iℓ,j , iℓ,j,v are fresh variables. We then transform the

conditions for a quasi-invariant proving safety for the assertion (τexit, ϕ) to

the constraints in Figure 5.9.

4In our overall algorithm, k is initially 1 and increased in case of failures.

94 CHAPTER 5. COMPOSITIONAL PROGRAM ANALYSIS

Initiation: For τ = (ℓ, ℓ′, ρ) ∈ EC, 1 ≤ j ≤ k: Iτ,j,k
def
= ρ → I ′

ℓ′,j,k

Consecution: For t = (ℓ, ℓ′, ρ) ∈ C: Cτ,k
def
= Iℓ,k ∧ ρ → I ′

ℓ′,k

Safety: For τexit = (ℓ̃exit, ℓexit, ρexit): Sk
def
= I

ℓ̃exit,k
∧ ρexit → ϕ′

Figure 5.9. Constraints used in CondSafe(C, EC, (τexit, ϕ))

In the overall constraint system, we mark the Consecution and Safety

constraints as hard requirements. Thus, any solution to these constraints is a

quasi-invariant implying our assertion. However, as we mark the Initiation

constraints as soft, the found quasi-invariants may depend on preconditions

not implied by the direct context of the considered component. On the other

hand, the Max-SMT solver prefers solutions that require fewer preconditions.

Overall, we create the following Max-SMT formula

Fk
def
=

∧

τ∈C

Cτ,k∧
∧

τ∈EC ,1≤j≤k

(
Iτ,j,k ∨ ¬pIτ,j,k

)
∧ Sk ∧

∧

τ∈EC ,1≤j≤k

[pIτ,j,k , ωI] ,

where the pIτ,j,k are propositional variables which are true if the Initiation

condition Iτ,j,k is satisfied, and ωI is the corresponding weight. We use Fk

in our procedure CondSafe in Algorithm 5.10.

Algorithm 5.10 Proc. CondSafe for computing a quasi-invariant

Input: program component C, entry transitions EC , assertion (τexit, ϕ) s.t.
τexit is an exit transition of C and ϕ is a clause

Output: None | Q, where Q maps locations in C to conj. of inequations
1: k ← 1
2: repeat
3: construct formula Fk from C, EC and (τexit, ϕ)
4: σ ← Max-SMT-solver(Fk)
5: if δ is a model then
6: Q ← {ℓ 7→ δ(Iℓ,k) | ℓ in C}
7: return Q {(conditionally) safe, return solution}
8: end if
9: k ← k + 1

10: until k > MAX CONJUNCTS
11: return None

In CondSafe, we iteratively try “larger” templates of more conjuncts of

linear inequations (in our implementation, MAX CONJUNCTS is 3) until

we either give up or finally find a quasi-invariant. Note, however, that

5.2. PROVING SAFETY 95

here we are only trying to prove safety for one clause at a time, which

reduces the number of required conjuncts as compared to dealing with a

whole CNF in a single step. If the Max-SMT solver is able to find a model

for Fk, then we instantiate our invariant templates Iℓ,k with the values found

for the template variables in the model δ, obtaining a quasi-invariant Q.

When we obtain a result, for every entry transition τ = (ℓ, ℓ′, ρ) ∈ EC the

quasi-invariant Q(ℓ′) is a precondition that implies safety for the assertion

(τexit, ϕ). The following theorem states the correctness of this procedure.

Theorem 5.11. Let C be a component, EC its entry transitions, and (τexit, ϕ)

an assertion with τexit an exit transition of C and ϕ a clause. If the pro-

cedure call CondSafe(C, EC , (τexit, ϕ)) returns Q 6= None, then Q is a quasi-

invariant for C and P is (τ,Q(ℓ′))-conditionally safe for (τexit, ϕ) for all

ρ = (ℓ, ℓ′, ρ) ∈ EC .

Proof. That Q is a quasi-invariant follows directly from the structure of the

generated constraints.

We prove the claim about conditional safety by contradiction via induc-

tion over the length of evaluations. Assume that there is an unsafe execution

(ℓ1, σ1)→τ1 (ℓ2, σ2)→τ2 . . .→τn (ℓn, σn)

of length n ∈ N>1 such that t1 ∈ EC ∪ C (i.e., ℓ2 is always a location in C),

τn = τexit, σ2 |= Q(ℓ2) and σn 6|= ϕ. We will show that no such evaluation

can exist, implying our proposition as the special case τ1 ∈ EC .

As the component graph is a DAG, τ1 ∈ EC ∪ C and τexit is an exit

transition of C, we have τi ∈ C for all 1 < i < n.

We first consider the case n = 2 (n = 1 would be the case where τ1 is

both an entry and exit transition, and thus infeasible). Let τ2 = (ℓ1, ℓ2, ρ2).

Then, σ2 |= Q(ℓ2) ≡ δ(Iℓ2,k) by choice and definition, and δ(Iℓ2,k)∧ ρ2 → ϕ′

by constraint Sk. Thus, no unsafe evaluation of length 2 is possible.

We now assume n > 2 and that the proposition has been proven for

evaluations of length n− 1. Let τ2 = (ℓ2, ℓ3, ρ2). For length n, we have that

the valuations σ2, σ3 satisfy ρ2, and σ2 |= Q(ℓ2) ≡ δ(Iℓ2,k). These are the

premises of our consecution constraint Cτ2,k ≡ Iℓ2,k ∧ ρ2 → Iℓ3,k, and thus

σ3 |= δ(Iℓ3,k) ≡ Q(ℓ3). Hence, we instead have to consider the evaluation of

length n− 1 starting in (ℓ2, σ2), which by our hypothesis is infeasible.

96 CHAPTER 5. COMPOSITIONAL PROGRAM ANALYSIS

5.2.2 Propagating local conditions

In this section, we explain how to use the local procedure CondSafe to prove

safety of a full program. To this end we now consider the full DAG of pro-

gram components. As outlined above, the idea is to start from the assertion

provided by the user, call the procedure CondSafe to obtain preconditions

for the entry transitions of the corresponding component, and then use these

preconditions as assertions for preceding components, continuing recursively.

If eventually for each initial transition the transition relation implies the cor-

responding preconditions, then safety has been proven. If we fail to prove

safety for certain assertions, we backtrack, trying further possible precondi-

tions and quasi-invariants.

The key to the precision of our approach is our treatment of failed proof

attempts. When the procedure CondSafe finds a quasi-invariant Q for C,

but proving (τ,Q(ℓ′)) as a postcondition of the preceding component fails

for some τ = (ℓ, ℓ′, ρ) ∈ EC , we can still use the Q to narrow our program

representation and filter out evaluations that are already known to be safe.

As outlined above, in our proof process we treat each clause of the con-

junction Q(ℓ′) separately, and pass each one as its own assertion to preceding

program components, allowing for a fine-grained program-narrowing tech-

nique. By construction of Q, evaluations that satisfy all literals of Q(ℓ′) after

executing τ = (ℓ, ℓ′, ρ) ∈ EC are safe. Thus, among the evaluations that use

τ , we only need to consider those where at least one literal in Q(ℓ′) does not

hold. Hence, we narrow each entry transition by conjoining it with the nega-

tion of the conjunction of all literals for which we could not prove safety (see

line 19 in Algorithm 5.12). Note that if there is more than one literal in this

conjunction, then the negation is a disjunction, which in our programming

model implies splitting transitions. So, in order to avoid a combinatorial

explosion, when narrowing a transition ρ with ¬(L1 ∧ · · · ∧ Ln), our imple-

mentation is adding n transitions ρ∧¬L1, ρ∧L1∧¬L2, . . . , ρ∧L1∧. . .∧¬Ln.

We can narrow program components similarly. For a transition τ =

(ℓ, ℓ′, ρ) ∈ C, we know that if either Q(ℓ) or Q(ℓ′)′ holds in an evaluation

passing through t, the program is safe. Thus, we narrow the program by

replacing ρ by ρ ∧ ¬Q(ℓ) ∧ ¬Q(ℓ′)′ (see line 20 in Algorithm 5.12).

This narrowing allows us to generate disjunctive quasi-invariants, where

each result of CondSafe is one disjunct. Note that not all disjunctive in-

variants can be discovered like this, as each intermediate result needs to

5.2. PROVING SAFETY 97

Algorithm 5.12 Proc. CheckSafe for proving a program safe for an asser-
tion
Input: Program P, a (possibly narrowed) component C, (possibly nar-

rowed) entries EC , assertion (τexit, ϕ) s.t. τexit is an exit transition of
C and ϕ is a clause

Output: Safe | Maybe
1: let (ℓexit, τexit, ℓ

′
exit) = τexit

2: if (ρexit → ϕ′) then
3: return Safe
4: else if ℓexit = ℓ0 then {Base case}
5: return Maybe
6: end if
7: Q ← CondSafe(C, EC , (τexit, ϕ)) {Find quasi-invariant}
8: if Q = None then
9: return Maybe

10: end if
11: for all τ = (ℓ, ℓ′, ρ) ∈ EC , L ∈ Q(ℓ′) do {Propagate backwards}
12: C̃ ← component(ℓ,P)
13: E

C̃
← entries(C̃,P)

14: res[τ, L]← CheckSafe(P, C̃, E
C̃
, (τ, L))

15: end for
16: if ∀τ = (ℓ, ℓ′, ρ) ∈ EC , L ∈ Q(ℓ′) . res[τ, L] = Safe then
17: return Safe {Precondition holds in all preceding SCCs}
18: else
19: ÊC ← {(ℓ, ρ ∧ ¬(

∧

L∈Q(ℓ′)
res[τ,L]=Maybe

L′), ℓ′) | τ = (ℓ, ℓ′, ρ) ∈ EC}

20: Ĉ ← {(ℓ, ρ∧¬Q(ℓ′)′ ∧¬Q(ℓ), ℓ′) | (ℓ, ℓ′, ρ) ∈ C} {Narrow component}
21: return CheckSafe(P, Ĉ, ÊC , (τexit, ϕ))
22: end if

be inductive using the disjuncts found so far. However, it works well for

so-called phase-change algorithms [Sharma et al., 2011], where execution of

a loop goes through different phases.

Based on this, we can now formulate our overall safety proving procedure

CheckSafe in Algorithm 5.12. The procedure expects a program, a compo-

nent, its entry transitions and an assertion (τexit, ϕ) as input. The helper

procedures component and entries are used to find the program component

for a given location and the entry transitions for a component. The result of

CheckSafe is either Maybe when the proof failed, or Safe if it succeeded. In

the latter case, we have managed to create a chain of quasi-invariants that

98 CHAPTER 5. COMPOSITIONAL PROGRAM ANALYSIS

imply that (τexit, ϕ) always holds.

Finally, the next theorem claims that CheckSafe is sound.

Theorem 5.13. Let P be a program, C a component and EC its entries.

Given an assertion (τexit, ϕ) such that τexit is an exit transition of C and ϕ is

a clause, if CheckSafe(P, C, EC , (τexit, ϕ)) = Safe, then P is safe for (τexit, ϕ).

Proof. We prove the proposition by induction over the number u of recursive

calls of CheckSafe.

In the base case u = 0, we have that τexit → ϕ′, i.e., the condition to

prove is always a consequence of using the transition τexit, and the claim

trivially holds.

Let now u > 0, and we assume that the proposition has been shown for

all calls of CheckSafe that return Safe and need at most u− 1 recursive calls

of CheckSafe.

We now consider a program evaluation

(ℓ0, σ0)→τ0 . . .→τm−1 (ℓm, σm)→τm . . .→τn (ℓn, σn)

with τm−1 ∈ EC and τn = τexit.

First, we consider the case that CheckSafe returns Safe in line 17, where

all preconditions are satisfied for all entry transitions. By the condition ∀L ∈

Q(ℓm). res[τm−1, L] = Safe and our induction hypothesis, we know that the

program is safe for (τm−1,Q(ℓm)). By construction of Q and Theorem 5.11,

this then implies that the program is safe for (τexit, ϕ).

The second case is returning the result of CheckSafe on the narrowed

program in lines 19 and 20. For this, we need to prove that our program

narrowing is indeed correct. Assume now that the considered evaluation is

unsafe, i.e., that σn 6|= ϕ. We will show that our narrowing preserves unsafe

evaluations. Then, as the recursive call of CheckSafe (with recursion depth

u − 1) is correct by our induction hypothesis, we can conclude that Safe is

only returned if there are no unsafe evaluations.

We first consider the narrowing ÊC . By our induction hypothesis, we

know that σm |= (
∧

L∈Q(ℓm),res[τm−1,L]=Safe L
′) holds. Now assume that the

narrowed version of τm−1 is not enabled anymore because of the added

condition. Then σm 6|= ¬(
∧

L∈Q(ℓm),res[σm−1,L]=MaybeL
′) holds, and thus

σm |=
∧

L∈Q(ℓm) L
′. But then, our evaluation is safe (by the same argu-

ment as in the proof of Theorem 5.11), contradicting our assumption that

5.2. PROVING SAFETY 99

the considered evaluation is unsafe. Thus, unsafe evaluations are not broken

by our narrowing of entry transitions.

Similarly, we now consider the narrowing Ĉ. We consider an evaluation

step (ℓw, σw)→τw (ℓw+1, σw+1) with τw ∈ Ĉ. If the narrowed version τ̂w ∈ Ĉ

of τw cannot be used, then either σw |= Q(ℓw) or σw+1 |= Q(ℓw+1) holds, and

again, by an argument similar to the proof of Theorem 5.11, this contradicts

the assumption that our evaluation is unsafe. Thus, unsafe evaluations are

preserved by narrowing of the program component.

Example 5.14. We demonstrate CheckSafe on the program displayed on

Figure 5.15, called P in the following, which is an extended version of the

example from Figure 5.3.

We want to prove the assertion (τ5, x 6= y). Hence we make a first call

CheckSafe(P, {τ4}, {τ3}, (τ5, x 6= y)): the non-trivial SCC containing ℓ2 is

{t4} and its entry transitions are {t3}. Hence, we call CondSafe({τ4}, {τ3},

(τ5, x 6= y)) and the resulting quasi-invariant for ℓ2 is either x < y or y < x.

Let us assume it is y < x. In the next step, we propagate this to the

predecessor SCC {τ2}, and call CheckSafe(P, {τ2}, {τ1}, (τ3, y < x)).

In turn, this leads to calling CondSafe({τ2}, {τ1}, (τ3, y < x)) to our

synthesis subprocedure. No quasi-invariant supporting this assertion can be

found, and hence None is returned by CondSafe, and consequently Maybe is

returned by CheckSafe. Hence, we return to the original SCC {τ4} and its

entry {τ3}, and then by narrowing we obtain two new transitions:

τ ′4 = (ℓ2, ℓ2, x
′ = x+ 1 ∧ y′ = y + 1 ∧ ¬(y < x)),

τ ′3 = (ℓ1, ℓ2, x < 0 ∧ x′ = x ∧ y′ = y ∧ ¬(y < x)).

Using these, we call CheckSafe(P, {τ ′4}, {τ
′
3}, (τ5, x 6= y)). The next call to

CondSafe then yields the quasi-invariant x < y at ℓ2, which is in turn prop-

agated backwards with the call CheckSafe(P, {τ2}, {τ1}, (τ
′
3, x < y)). This

then yields a quasi-invariant x < y at ℓ1, which is finally propagated back

in the call CheckSafe(P, {}, {}, (τ1 , x < y)), which directly returns Safe.

5.2.3 Improving performance

The basic method CheckSafe can be extended in several ways to improve

performance. In the following, we present a number of techniques that are

100 CHAPTER 5. COMPOSITIONAL PROGRAM ANALYSIS

useful to reduce the runtime of the algorithm and distribute the required

work. It is important to note that none of these techniques influences the

precision of the overall framework.

ℓ0

ℓ1

ℓ2

ℓ3

τ1 : x < y

∧x′ = x

∧ y′ = y

τ2 :x ≥ 0

∧x′ = x− 1

∧ y′ = y

τ3 : x < 0

∧x′ = x

∧ y′ = y

τ4 :x′ = x+ 1

∧ y′ = y + 1

τ5 : true

Figure 5.15

Using quasi-invariants to disable transitions

When proving an assertion, it is often necessary

to find invariants that show the unfeasibility of

some transition, which allows disabling it. In our

framework, the required invariants can be condi-

tional as well. Therefore, CheckSafe must be called

recursively to prove that the quasi-invariant is in-

deed invariant. In our implementation, we gener-

ate constraints such that every solution provides

quasi-invariants either implying the postcondition

or disabling some transition. By imposing differ-

ent weights, we make the Max-SMT solver prefer

solutions that imply the postcondition.

Handling unsuccessful proof attempts One important aspect is that

the presented algorithm does not learn facts about the reachable state space,

and so duplicates work when assertions appear several times. To allevi-

ate this for unsuccessful recursive invocations of CheckSafe, we introduce

a simple memoization technique to avoid repeating such calls. So when

CheckSafe(P, C, EC , (τ, ϕ)) = Maybe, we store this result, and use it for all

later calls of CheckSafe(P, C, EC , (τ, ϕ)). This strategy is valid as the return

value Maybe indicates that our method cannot prove the assertion (τ, ϕ) at

all, meaning that later proof attempts will fail as well. In our implementa-

tion, this memoization of unsuccessful attempts is local to the initial call to

CheckSafe. The rationale is that, when proving unrelated properties, it is

likely that few calls are shared and that the book-keeping does not pay off.

Handling successful proof attempts When a recursive call yields a

successful result, we can strengthen the program with the proven invariant.

Remember that CheckSafe(P, C, EC , (τ, ϕ)) = Safe means that whenever the

transition τ is used in any evaluation, ϕ holds in the succeeding state. Thus,

we can make this knowledge explicit in the program and change the transi-

5.2. PROVING SAFETY 101

tion in the original program. In our implementation, this strengthening is

applied only if the first call to CheckSafe was successful, i.e, no narrowing

was applied. The reason is that, if the transition relation τ was obtained

through repeated narrowing, in general one needs to split transitions, and

it is not correct to just add ϕ′ to τ .

Namely, assume that τo = (ℓ, ℓ′, ρo) is the original (unnarrowed) version

of a transition τ = (ℓ, ℓ′, ρ) ∈ EC . As τ is an entry transition of C, we have

ρ = ρo∧¬ψ′
1∧. . .∧¬ψ

′
m by construction, where ψi is the additional constraint

we added in the i-th narrowing of component entries. Thus what we proved

is that ψ′
1∨. . .∨ψ

′
m∨ϕ

′ always holds after using τo. Hence, we should replace

τo in the program with a transition labeled with ρo ∧ (ψ′
1 ∨ . . . ∨ ψ

′
m ∨ ϕ

′).

Since we cannot handle disjunctions natively, this implies replacing τo by

m+ 1 new transitions.

Note that, unlike memoization, this program modification makes the

gained information available to the Max-SMT solver when searching for a

quasi-invariant. A similar strategy can be used to strengthen the transitions

in the considered component C.

Parallelizing & distributing the analysis Our analysis can easily be

parallelized. We have implemented this at two stages. First, at the level of

the procedure CondSafe, we try at the same time different numbers of tem-

plate conjuncts (lines 3-7 in Algorithm 5.10), which requires calling several

instances of the solver simultaneously. Secondly, at a higher level, the recur-

sive calls of CheckSafe (line 14 in Algorithm 5.12) are distributed onto sev-

eral processes. Note that, since narrowing and the “learning” optimizations

described above are considered only locally, they can be handled as asyn-

chronous updates to the program kept in each worker, and do not require

synchronization operations. Hence, distributing the analysis onto several

worker processes, in the style of Bolt [Albarghouthi et al., 2012b], would be

possible as well.

Other directions for parallelization, which have not been implemented

yet, are to return different quasi-invariants in parallel when the Max-SMT

problem in procedure CondSafe has several solutions. Moreover, based on

experimental observations that successful safety proofs have a short success-

ful path in the tree of proof attempts, we are also interested in exploring

a look-ahead strategy: after calling CondSafe in CheckSafe, we could make

102 CHAPTER 5. COMPOSITIONAL PROGRAM ANALYSIS

recursive calls of CheckSafe on some processes while others are already ap-

plying narrowing.

Iterative proving Finally, one could store the quasi-invariants generated

during a successful proof, which are hence invariants, so that they can be re-

used in later runs. E.g., if a single component is modified, one can reprocess

it and compute a new precondition that ensures its postcondition. If this

precondition is implied by the previously computed invariant, the program

is safe and nothing else needs to be done. Otherwise, one can proceed

with the preceding components, and produce respective new preconditions

in a recursive way. Only when proving safety with the previously computed

invariants in this way fails, the whole program needs to be reprocessed again.

This technique has not been implemented yet, as our prototype is still in a

preliminary state.

5.3 Related work

Safety proving is an active area of research. In the recent past, tech-

niques based on variations of counterexample guided abstraction refinement

have dominated [Ball and Rajamani, 2001; Henzinger et al., 2003; Clarke

et al., 2005; McMillan, 2006; Podelski and Rybalchenko, 2007; Bradley, 2011;

Grebenshchikov et al., 2012; Albarghouthi et al., 2012a; Cimatti and Griggio,

2012]. These methods prove safety by repeatedly unfolding the program rela-

tion using a symbolic representation of program states, starting in the initial

states. This process generates an over-approximation of the set of reachable

states, where the coarseness of the approximation is a consequence of the

used symbolic representation. Whenever a state in the over-approximation

violates the safety condition, either a true counterexample was found and is

reported, or the approximation is refined (using techniques such as predicate

abstraction [Flanagan and Qadeer, 2002] or Craig interpolation [McMillan,

2003a]). When further unwinding does not change the symbolic represen-

tation, all reachable states have been found and the procedure terminates.

This can be understood as a “top-down” approach (starting from the initial

states), whereas our method is “bottom-up” (starting from assertions).

Techniques based on Abstract Interpretation [Cousot and Cousot, 1977b]

have had substantial success in the industrial setting. There, an abstract

5.3. RELATED WORK 103

interpreter is instantiated by an abstract domain whose elements are used

to over-approximate sets of program states. The interpreter then evaluates

the program on the chosen abstract domain, discovering reachable states.

A widening operator, combining two given over-approximations to a more

general one representing both, is employed to guarantee termination of the

analysis when handling loops.

Recently, the use of abduction (i.e., inference of preconditions for certain

facts) in safety proving has been investigated [Dillig et al., 2013]. This work

is closest to ours in its overall approach, but uses fundamentally different

techniques to find preconditions. It also searches for inductive invariants

using a backwards-reasoning technique, constructing verification conditions

similar to our constraint systems. However, instead of applying Max-SMT,

the approach uses an abduction engine based on maximal universal subsets

and quantifier elimination in Presburger arithmetic. Moreover, it does not

have an equivalent to our narrowing to exploit failed proof attempts, though

a syntactic version of it [Sharma et al., 2011] could be combined with the

method. In a similar vein, [Păsăreanu and Visser, 2004] uses straight-line

weakest precondition computation and backwards-reasoning to infer loop

invariants supporting validity of an assertion. To enforce a generalization

towards inductive invariants, a heuristic syntax-based method is used.

Automatically constructing program proofs from independently obtained

subproofs has been an active area of research in the recent past. Splitting

proofs along syntactic boundaries (e.g., handling procedures separately) has

been explored in [Godefroid, 2007; Yorsh et al., 2008; Godefroid et al., 2010;

Calcagno et al., 2011; Albarghouthi et al., 2012b]. For each such unit, a sum-

mary of its behavior is computed, i.e., an expression that connects certain

(classes of) inputs to outputs. Depending on the employed analyzers, these

summaries encode inputs that lead to errors [Godefroid, 2007], under- and

over-approximations of reachable states [Godefroid et al., 2010], or changes

to the heap using separation logic’s frame rule [Calcagno et al., 2011]. Fi-

nally, [Albarghouthi et al., 2012b] discusses how such compositional analyses

can leverage cloud computing environments to parallelize and scale up pro-

gram proofs.

104 CHAPTER 5. COMPOSITIONAL PROGRAM ANALYSIS

5.4 Implementation and evaluation

We have implemented the algorithms from Section 5.2.1 and Section 5.2.2

in our early prototype VeryMax, using the Max-SMT solver for non-linear

arithmetic in the Barcelogic system (see Section 2.1.3).

The first set (which we will call HOLA-BENCHS) are the 46 programs

from the evaluation of safety provers in Dillig et al. [2013] (which were col-

lected from a variety of sources, among others, [Gupta and Rybalchenko,

2009; Gulwani et al., 2008b; Beyer et al., 2007c; Gulavani et al., 2008;

Bradley and Manna, 2008; Miné, 2006; Jhala and McMillan, 2006; Sharma

et al., 2011, 2012; Gulavani et al., 2006; Gulavani and Rajamani, 2006; Dillig

et al., 2012], the NECLA Static Analysis Benchmarks, etc.). The programs

are relatively small (they have between 17 and 71 lines of code, and be-

tween 1 and 4 nested or consecutive loops), but expose a number of “hard”

problems for analyzers. All of them are safe.

On this first benchmark set we compare with three systems. The first

two were leading tools in the Software Verification Competition 2015 [Beyer,

2015]: CPAchecker5 [Beyer and Keremoglu, 2011], which was the over-

all winner and in particular won the gold medal in the “Control Flow and

Integer Variables” category, and SeaHorn [Kahsai et al., 205], which got

the silver medal, and also won the “Simple” category. We also compare

with HOLA [Dillig et al., 2013], an abduction-based backwards reasoning

tool. Unfortunately, we were not able to obtain an executable for HOLA.

For this reason we have taken the experimental data for this tool directly

from [Dillig et al., 2013], where it is reported that the experiments were

performed on an Intel i5 2.6 GHz CPU with 8 Gb of memory. For the

sake of a fair comparison, we have run the other tools on a 4-core machine

with the same specification, using the same timeout of 200 seconds. Ta-

ble 5.16 summarizes the results, reporting the number of successful proofs,

failed proofs, and timeouts (TO), together with the respective total run-

times. Overall, we can see that both versions of VeryMax are competitive,

and that our parallel version was two times faster than our sequential one

on four cores. As a reference, on these examples VeryMax-Seq needed 2.8

overall calls (recursive or after narrowings) on average, with a maximum of

5We ran CPAchecker with two different configurations, predicateAnalysis (PA) and
sv-comp15 (SV).

5.4. IMPLEMENTATION AND EVALUATION 105

16. The number of narrowings was approximately 1, with a maximum of

13. Our memoization technique making use of already failed proof attempts

was employed in about one third of the cases.

Tool Safe Σ s Fail Σ s TO Total s

CPAchecker-SV 33 2424.41 3 61.28 10 4489.73

CPAchecker-PA 25 503.05 11 19.72 10 2271.12

SeaHorn 32 7.95 13 3.477 1 211.56

HOLA 43 23.53 0 0 3 623.53

VeryMax-Seq 43 330.25 2 42.00 1 572.27

VeryMax-Par 44 180.28 2 74.69 0 254.97

Table 5.16. Experimental results on HOLA-BENCHS benchmark set.

In our second benchmark set (which we will refer to as NR-BENCHS)

we have used integer abstractions of 217 numerical algorithms from [Press

et al., 2002]. For each procedure and for each array access in it, we have

created two safety problems with one assertion each, expressing that the

index is within bounds. In some few cases the soundness of array accesses in

the original program depends on properties of floating-point variables, which

are abstracted away. So in the corresponding abstraction some assertions

may not hold. Altogether, the resulting benchmark suite consists of 6452

problems, of up to 284 lines of C code. Due to the size of this set, and to

give more room to exploit parallelism (both tools with which we compare on

these benchmarks, CPAchecker and SeaHorn, make use of several cores),

we performed the experiments with a more powerful machine, namely, an

8-core Intel i7 3.4 GHz CPU with 16 GB of memory. The time limit is 300

seconds.

Tool Safe Σ s Unsafe Σ s Fail Σ s TO Total s
CPAchecker-SV 5978 534621.26 282 9218.96 61 10797.01 131 591886.32
CPAchecker-PA 5854 21230.37 221 758.48 159 774.68 218 79624.17
SeaHorn 6081 4315.31 235 149.71 72 18.07 64 24287.32
VeryMax-Seq 6098 5953.48 0 0 299 20661.59 55 43116.71
VeryMax-Par 6098 4335.10 0 0 354 21034.34 0 25369.44

Table 5.17. Experimental results on NR-BENCHS benchmark set.

The results can be seen in Table 5.17. On these instances, VeryMax

is able to prove more assertions than any of the other tools, while being

about as fast as SeaHorn, and significantly faster than CPAchecker.

Note that VeryMax is at an early stage of development, and is not yet

106 CHAPTER 5. COMPOSITIONAL PROGRAM ANALYSIS

fully tuned. For example, a number of program slicing techniques have

not been implemented yet, which would be very useful for handling larger

programs. Thus, we expect that further development will improve the tool

performance significantly. The benchmarks and our tool can be found at

www.cs.upc.edu/~albert/VeryMax.html.

www.cs.upc.edu/~albert/VeryMax.html

Chapter 6
Conclusions

In this thesis we have obtained results in program analysis using as starting

point the constraint-based method [Colón et al., 2003] and its application to

termination analysis [Bradley et al., 2005]. In contrast to the original pre-

sentation of this method, in our approach we replace the use of constraint

solving techniques by the use of optimization-based techniques, being Max-

SMT our key tool for handling constraints. Thanks to this, we have ob-

tained a new method for proving automatically termination [Larraz et al.,

2013a] and non-termination [Larraz et al., 2014a] of sequential programs,

and developed a new framework for compositional analysis [Brockschmidt

et al., 2015] of program properties. Additionally, we have provided a ver-

sion of the constraint-based method that applies to generate invariants for

programs with arrays [Larraz et al., 2013b].

In Chapter 3 we present our new constraint-based method for the gen-

eration of universally quantified invariants of array programs. Unlike other

techniques, it does not require extra predicates nor assertions. It does not

need the user to provide a template either, but it can take advantage of

hints by partially instantiating the global template considered here. We

also provide extensions of the approach for sorted arrays. To our knowl-

edge, results on the synthesis of invariants for programs with sorted arrays

are not reported in the literature.

For future work, we plan to extend our approach to a broader class of

programs. As a first step we plan to relax Theorem 3.13, so that, e.g., over-

writing on positions in which the invariant already holds is allowed. We

would also like to handle nested loops, so that for instance sorting algo-

107

108 CHAPTER 6. CONCLUSIONS

rithms can be analyzed. Another line of work is the extension of the family

of properties that our approach can discover as invariants. E.g., a possibility

could be considering disjunctive properties, or allowing quantifier alterna-

tion. The former allows analyzing algorithms such as sentinel search, while

the latter is necessary to express that the output of a sorting algorithm is a

permutation of the input.

Moreover, the invariants that our method generates depend on the coef-

ficients and expressions obtained in each of its three phases, which in turn

depend on the previous linear relationship analysis of scalar variables. We

leave for future research to study how to make the approach resilient to

changes in the outcome of the different phases, paying special attention to

the use of Max-SMT techniques.

In Chapter 4 we describe new methods for proving and disproving ter-

mination. In Section 4.3 we present our novel Max-SMT constraint-based

approach to proving termination. Thanks to expressing the synthesis of a

ranking function and a supporting invariant as a Max-SMT problem, we

achieve a better guided and more fine-grained termination analysis than

SMT-based methods. Max-SMT reveals to be a convenient framework for

constraint-based termination analysis. In addition to our method, other

techniques such as unaffecting score maximization [Cook et al., 2013] can

be naturally modeled in Max-SMT. However, one of the shortcomings of

our approach as it was presented, is that invariant synthesis is restricted to

a single strongly connected component (SCC). If invariants from previous

SCC’s have not been generated but are later required, our technique can-

not prove termination. But this can be fixed integrating our termination

proving technique into our compositional analysis framework, described in

Chapter 5, as it is explained later on.

For future work, an interesting line of research would be to adjust and

incorporate to our approach already known techniques from static analysis

of programs and automated termination proving. E.g., fixpoint computation

à la abstract interpretation [Cousot and Cousot, 1977b] would complement

the constraint-based approach in the generation of invariants.

Other techniques from abstract interpretation, such as view abstractions

[Elder et al., 2010], could also be useful so as to extend the class of ranking

functions that we can discover.

Another possible hybridization could be the combination with transition

109

invariant-based techniques. The point is that even when we do not succeed

in proving termination, at least we prove that some part of the transitive

closure of the transition relation is disjunctively well-founded, and moreover

we are left with a transition system that characterizes the part of the tran-

sitive closure that may still contain an infinite execution. Thus, termination

counter-examples can still be found by analyzing this residual transition

system. On the other hand, if this part of the transition relation is proved

disjunctively well-founded too, we can conclude that the program is termi-

nating.

In Section 4.4 we introduce a novel Max-SMT-based technique for prov-

ing that programs do not terminate. The key notion of the approach is

that of a quasi-invariant, which is a property such that if it holds at a

location during execution once, then it continues to hold at that location

from then onwards. The method considers an Strongly Connected SubGraph

(SCSG) of the control flow graph at a time, and thanks to Max-SMT solv-

ing generates a quasi-invariant for each location. Weights of soft constraints

guide the solver towards quasi-invariants that are also edge-closing, i.e., that

forbid any transition exiting the SCSG. If an SCSG with edge-closing quasi-

invariants is reachable, then the program is non-terminating. This last check

is performed with an off-the-shelf reachability checker. We have reported

experiments with encouraging results that show that a prototypical imple-

mentation of the proposed approach has comparable and often better results

than state-of-the-art non-termination provers.

As regards future research, a pending improvement is to couple the reach-

ability checker with the quasi-invariant generator, so that the invariants

synthesized by the former in unsuccessful attempts are reused by the latter

when producing quasi-invariants. Another line for future work is to com-

bine our termination and non-termination techniques. Following a similar

approach to [Brockschmidt et al., 2013], if the termination analyzer fails,

it can communicate to the non-termination tool the transitions that were

proved not to belong to any infinite computation. Conversely, when a failed

non-termination analysis ends with an unsuccessful reachability check, one

can pass the computed invariants to the termination system, as done in

[Harris et al., 2011]. We also plan to extend our programming model to

handle more general programs (procedure calls, non-linearities, etc.).

Finally, in Chapter 5 we present a novel approach to compositional safety

110 CHAPTER 6. CONCLUSIONS

verification. Our main contribution is a proof framework that refines inter-

mediate results produced by a Max-SMT-based precondition synthesis pro-

cedure. In contrast to most earlier work, we proceed bottom-up to compute

summaries of code that are guaranteed to be relevant for the proof.

We plan to further extend VeryMax to cover more program features and

include standard optimizations (e.g., slicing and constraint propagation with

simple abstract domains). It currently handles procedure calls by inlining,

and does not support recursive functions yet. We plan to deal with such cases

similarly to loops, by introducing templates for function pre/postconditions.

In the future, we are interested in experimenting with alternative precon-

dition synthesis methods (e.g., abduction-based ones). We also want to com-

bine our method with a Max-SMT-based termination proving method, and

extend it to existential properties such as reachability and non-termination.

We expect to combine all of these techniques in an alternating procedure like

the one explained in [Godefroid et al., 2010] that tries to prove properties

at the same time as their duals, and which uses partial proofs to narrow the

state space that remains to be considered. Eventually, these methods could

be combined to verify arbitrary temporal properties. In another direction,

we want to consider more expressive theories to model program features

such as arrays or the heap.

Bibliography

Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. Whale: An interpolation-
based algorithm for inter-procedural verification. In Verification, Model Check-
ing, and Abstract Interpretation, pages 39–55. Springer, 2012a.

Aws Albarghouthi, Rahul Kumar, Aditya V. Nori, and Sriram K. Rajamani. Par-
allelizing top-down interprocedural analyses. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’12, Beijing, China
- June 11 - 16, 2012, pages 217–228, 2012b. doi: 10.1145/2254064.2254091.

Teresa Alsinet, Felip Manyà, and Jordi Planes. An efficient solver for weighted
max-sat. Journal of Global Optimization, 41(1):61–73, 2008.

RC Andreas, B Cook, A Podelski, and A Rybalchenko. Terminator: Beyond safety.
In CAV06, LNCS, 4144:415–418, 2006.

Alessandro Armando, Claudio Castellini, and Enrico Giunchiglia. Sat-based proce-
dures for temporal reasoning. In Recent Advances in AI Planning, pages 97–108.
Springer, 2000.

Mohamed Faouzi Atig, Ahmed Bouajjani, Michael Emmi, and Akash Lal. Detecting
fair non-termination in multithreaded programs. In Computer Aided Verification,
pages 210–226. Springer, 2012.

Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Korni lowicz, and
Roberto Sebastiani. A sat based approach for solving formulas over boolean
and linear mathematical propositions. In Automated DeductionCADE-18, pages
195–210. Springer, 2002.

Thomas Ball and Sriram K Rajamani. Bebop: A symbolic model checker for
boolean programs. In SPIN Model Checking and Software Verification, pages
113–130. Springer, 2000.

Thomas Ball and Sriram K Rajamani. The slam toolkit. In Computer Aided
Verification, pages 260–264. Springer, 2001.

Thomas Ball and Sriram K Rajamani. The SLAM project: debugging system
software via static analysis. In ACM SIGPLAN Notices, volume 37, pages 1–3.
ACM, 2002.

111

112 BIBLIOGRAPHY

Clark W Barrett, David L Dill, and Aaron Stump. Checking satisfiability of first-
order formulas by incremental translation to sat. In Computer Aided Verification,
pages 236–249. Springer, 2002.

Josh Berdine, Byron Cook, Dino Distefano, and Peter W Ohearn. Automatic
termination proofs for programs with shape-shifting heaps. In Computer Aided
Verification, pages 386–400. Springer, 2006.

Josh Berdine, Aziem Chawdhary, Byron Cook, Dino Distefano, and Peter O’Hearn.
Variance analyses from invariance analyses. In ACM SIGPLAN Notices, vol-
ume 42, pages 211–224. ACM, 2007.

Dirk Beyer. Software verification and verifiable witnesses. In Tools and Algorithms
for the Construction and Analysis of Systems, pages 401–416. Springer, 2015.

Dirk Beyer and M Erkan Keremoglu. Cpachecker: A tool for configurable software
verification. In Computer Aided Verification, pages 184–190. Springer, 2011.

Dirk Beyer, Adam J Chlipala, and Rupak Majumdar. Generating tests from coun-
terexamples. In Proceedings of the 26th International Conference on Software
Engineering, pages 326–335. IEEE Computer Society, 2004.

Dirk Beyer, Thomas A Henzinger, Ranjit Jhala, and Rupak Majumdar. The soft-
ware model checker blast. International Journal on Software Tools for Technology
Transfer, 9(5-6):505–525, 2007a.

Dirk Beyer, Thomas A Henzinger, Rupak Majumdar, and Andrey Rybalchenko.
Invariant synthesis for combined theories. In Verification, Model Checking, and
Abstract Interpretation, pages 378–394. Springer, 2007b.

Dirk Beyer, Thomas A. Henzinger, Rupak Majumdar, and Andrey Rybalchenko.
Path invariants. In PLDI, pages 300–309, 2007c.

Armin Biere. Picosat essentials. Journal on Satisfiability, Boolean Modeling and
Computation, 4(75-97):45, 2008.

Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and
Applications. IOS Press, February 2009. ISBN 978-1-58603-929-5.

Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodŕıguez-Carbonell,
and Albert Rubio. The barcelogic smt solver. In Computer Aided Verification,
pages 294–298. Springer, 2008.

Cristina Borralleras, Salvador Lucas, Albert Oliveras, Enric Rodŕıguez-Carbonell,
and Albert Rubio. Sat modulo linear arithmetic for solving polynomial con-
straints. Journal of Automated Reasoning, 48(1):107–131, 2012.

Aaron R Bradley. Sat-based model checking without unrolling. In Verification,
Model Checking, and Abstract Interpretation, pages 70–87. Springer, 2011.

Aaron R Bradley and Zohar Manna. Property-directed incremental invariant gen-
eration. Formal Aspects of Computing, 20(4-5):379–405, 2008.

BIBLIOGRAPHY 113

Aaron R Bradley, Zohar Manna, and Henny B Sipma. Linear ranking with reach-
ability. In Computer Aided Verification, pages 491–504. Springer, 2005.

Aaron R Bradley, Zohar Manna, and Henny B Sipma. Whats decidable about
arrays? In Verification, Model Checking, and Abstract Interpretation, pages
427–442. Springer, 2006.

Marc Brockschmidt, Thomas Ströder, Carsten Otto, and Jürgen Giesl. Automated
detection of non-termination and nullpointerexceptions for java bytecode. In
Formal Verification of Object-Oriented Software, pages 123–141. Springer, 2012.

Marc Brockschmidt, Byron Cook, and Carsten Fuhs. Better termination proving
through cooperation. In Computer Aided Verification, pages 413–429. Springer,
2013.

Marc Brockschmidt, Daniel Larraz, Albert Oliveras, Enric Rodŕıguez-Carbonell,
and Albert Rubio. Compositional safety verification with Max-SMT. 2015. Sub-
mitted, 2015.

Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and Dawson R
Engler. Exe: automatically generating inputs of death. ACM Transactions on
Information and System Security (TISSEC), 12(2):10, 2008.

Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. Compo-
sitional shape analysis by means of bi-abduction. Journal of the ACM, 58(6),
2011.

Aziem Chawdhary, Byron Cook, Sumit Gulwani, Mooly Sagiv, and Hongseok Yang.
Ranking abstractions. In Programming Languages and Systems, pages 148–162.
Springer, 2008.

Hong-Yi Chen, Byron Cook, Carsten Fuhs, Kaustubh Nimkar, and Peter OHearn.
Proving nontermination via safety. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 156–171. Springer, 2014.

Alessandro Cimatti and Alberto Griggio. Software model checking via ic3. In
Computer Aided Verification, pages 277–293. Springer, 2012.

Robert Clarisó and Jordi Cortadella. The octahedron abstract domain. In Static
Analysis, pages 312–327. Springer, 2004.

Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. SATABS:
SAT-based predicate abstraction for ANSI-C. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 570–574. Springer, 2005.

Michael A Colón and Henny B Sipma. Practical methods for proving program
termination. In Computer Aided Verification, pages 442–454. Springer, 2002.

Michael A Colón, Sriram Sankaranarayanan, and Henny B Sipma. Linear invariant
generation using non-linear constraint solving. In Computer Aided Verification,
pages 420–432. Springer, 2003.

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs for
systems code. In PLDI, pages 415–426, 2006.

114 BIBLIOGRAPHY

Byron Cook, Alexey Gotsman, Andreas Podelski, Andrey Rybalchenko, and
Moshe Y Vardi. Proving that programs eventually do something good. In ACM
SIGPLAN Notices, volume 42, pages 265–276. ACM, 2007.

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Summarization for ter-
mination: no return! Formal Methods in System Design, 35(3):369–387, 2009.

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Proving program termi-
nation. Communications of the ACM, 54(5):88–98, 2011.

Byron Cook, Abigail See, and Florian Zuleger. Ramsey vs. lexicographic termi-
nation proving. In Tools and Algorithms for the Construction and Analysis of
Systems, pages 47–61. Springer, 2013.

Patrick Cousot. Verification by abstract interpretation. In Verification: Theory
and Practice, pages 243–268. Springer, 2004.

Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of
generalized type unions. ACM SIGOPS Operating Systems Review, 11(2):77–94,
1977a.

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 238–252. ACM, 1977b.

Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Prin-
ciples of programming languages, pages 269–282. ACM, 1979.

Patrick Cousot and Radhia Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In Programming Language
Implementation and Logic Programming, pages 269–295. Springer, 1992.

Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Proceedings of the 5th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pages 84–96.
ACM, 1978.

Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the ACM (JACM), 7(3):201–215, 1960.

Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In C. R. Ra-
makrishnan and Jakob Rehof, editors, Proc. TACAS ’08, volume 4963 of LNCS,
pages 337–340. Springer, 2008.

Leonardo De Moura, Harald Rueß, and Maria Sorea. Lemmas on demand for
satisfiability solvers. In Proceedings of the Fifth International Symposium on the
Theory and Applications of Satisfiability Testing. Citeseer, 2002.

BIBLIOGRAPHY 115

Isil Dillig, Thomas Dillig, and Alex Aiken. Automated error diagnosis using ab-
ductive inference. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012,
pages 181–192, 2012. doi: 10.1145/2254064.2254087.

Isil Dillig, Thomas Dillig, Boyang Li, and Ken McMillan. Inductive invariant gen-
eration via abductive inference. In ACM SIGPLAN Notices, volume 48, pages
443–456. ACM, 2013.

Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Theory and applica-
tions of satisfiability testing, pages 502–518. Springer, 2004.

Matt Elder, Denis Gopan, and Thomas W. Reps. View-augmented abstractions.
Electr. Notes Theor. Comput. Sci., 267(1):43–57, 2010.

Bernard Elspas, Karl N Levitt, Richard J Waldinger, and Abraham Waksman.
An assessment of techniques for proving program correctness. ACM Computing
Surveys (CSUR), 4(2):97–147, 1972.

Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software verification.
In ACM SIGPLAN Notices, volume 37, pages 191–202. ACM, 2002.

Cormac Flanagan, Rajeev Joshi, Xinming Ou, and James B Saxe. Theorem proving
using lazy proof explication. In Computer Aided Verification, pages 355–367.
Springer, 2003.

Robert W Floyd. Assigning meanings to programs. Mathematical aspects of com-
puter science, 19:19–32, 1967.

Steven M German and Ben Wegbreit. A synthesizer of inductive assertions. Software
Engineering, IEEE Transactions on, 1:68–75, 1975.

Roberto Giacobazzi and Francesco Ranzato. Optimal domains for disjunctive ab-
stract interpretation. Science of Computer Programming, 32(1):177–210, 1998.

Jurgen Giesl, Peter Schneider-Kamp, and Rene Thiemann. Aprove 1.2: Automatic
termination proofs in the dependency pair framework. In Automated Reasoning:
Third International Joint Conference, IJCAR 2006, Seattle, WA, USA, August
17-20, 2006, Proceedings, volume 4130, page 281. Springer, 2006.

Patrice Godefroid. Compositional dynamic test generation. In Proceedings of the
34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2007, Nice, France, January 17-19, 2007, pages 47–54, 2007. doi:
10.1145/1190216.1190226.

Patrice Godefroid, Michael Y Levin, David A Molnar, et al. Automated whitebox
fuzz testing. In NDSS, volume 8, pages 151–166, 2008.

Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and SaiDeep Tetali. Com-
positional may-must program analysis: unleashing the power of alternation. In
Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010,
pages 43–56, 2010. doi: 10.1145/1706299.1706307.

116 BIBLIOGRAPHY

Evgueni Goldberg and Yakov Novikov. Berkmin: A fast and robust sat-solver.
In Design, Automation and Test in Europe Conference and Exhibition, 2002.
Proceedings, pages 142–149. IEEE, 2002.

Denis Gopan and Thomas Reps. Lookahead widening. In Computer Aided Verifi-
cation, pages 452–466. Springer, 2006.

Denis Gopan and Thomas Reps. Guided static analysis. In Static Analysis, pages
349–365. Springer, 2007.

Denis Gopan, Thomas W. Reps, and Shmuel Sagiv. A framework for numeric
analysis of array operations. In POPL, pages 338–350, 2005.

Susanne Graf and Hassen Säıdi. Construction of abstract state graphs with pvs. In
Computer Aided Verification, pages 72–83. Springer, 1997.

Philippe Granger. Static analysis of linear congruence equalities among variables
of a program. In TAPSOFT’91, pages 169–192. Springer, 1991.

Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Rybalchenko.
Synthesizing software verifiers from proof rules. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI ’12, Beijing,
China - June 11 - 16, 2012, pages 405–416, 2012. doi: 10.1145/2254064.2254112.

Bhargav S Gulavani and Sriram K Rajamani. Counterexample driven refinement
for abstract interpretation. In Tools and Algorithms for the Construction and
Analysis of Systems, pages 474–488. Springer, 2006.

Bhargav S Gulavani, Thomas A Henzinger, Yamini Kannan, Aditya V Nori, and
Sriram K Rajamani. Synergy: a new algorithm for property checking. In Pro-
ceedings of the 14th ACM SIGSOFT international symposium on Foundations of
software engineering, pages 117–127. ACM, 2006.

Bhargav S Gulavani, Supratik Chakraborty, Aditya V Nori, and Sriram K Raja-
mani. Automatically refining abstract interpretations. In Tools and Algorithms
for the Construction and Analysis of Systems, pages 443–458. Springer, 2008.

Sumit Gulwani, Bill McCloskey, and Ashish Tiwari. Lifting abstract interpreters
to quantified logical domains. In POPL, pages 235–246, 2008a.

Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. Program anal-
ysis as constraint solving. In Proceedings of the ACM SIGPLAN 2008 Conference
on Programming Language Design and Implementation, Tucson, AZ, USA, June
7-13, 2008, pages 281–292, 2008b. doi: 10.1145/1375581.1375616.

Ashutosh Gupta and Andrey Rybalchenko. Invgen: An efficient invariant genera-
tor. In Computer Aided Verification, pages 634–640. Springer, 2009.

Ashutosh Gupta, Thomas A Henzinger, Rupak Majumdar, Andrey Rybalchenko,
and Ru-Gang Xu. Proving non-termination. In ACM SIGPLAN Notices, vol-
ume 43, pages 147–158. ACM, 2008.

Nicolas Halbwachs and Mathias Péron. Discovering properties about arrays in
simple programs. In PLDI, pages 339–348, 2008.

BIBLIOGRAPHY 117

William R Harris, Akash Lal, Aditya V Nori, and Sriram K Rajamani. Alternation
for termination. In Static Analysis, pages 304–319. Springer, 2011.

Ben Hegbreitt. Heuristic methods for mechanically deriving inductive assertions.
In Proceedings of the 3rd international joint conference on Artificial Intelligence,
pages 524–536. Morgan Kaufmann Publishers Inc., 1973.

Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Lazy
abstraction. In ACM SIGPLAN Notices, volume 37, pages 58–70. ACM, 2002.

Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Soft-
ware verification with BLAST. In Model Checking Software, pages 235–239.
Springer, 2003.

Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L McMillan.
Abstractions from proofs. ACM SIGPLAN Notices, 39(1):232–244, 2004.

Thomas A Henzinger, Thibaud Hottelier, and Laura Kovács. Valigator: A veri-
fication tool with bound and invariant generation. In Logic for Programming,
Artificial Intelligence, and Reasoning, pages 333–342. Springer, 2008.

Thomas A Henzinger, Thibaud Hottelier, Laura Kovács, and Andrey Rybalchenko.
Aligators for arrays (tool paper). In Logic for Programming, Artificial Intelli-
gence, and Reasoning, pages 348–356. Springer, 2010a.

Thomas A Henzinger, Thibaud Hottelier, Laura Kovács, and Andrei Voronkov.
Invariant and type inference for matrices. In Verification, Model Checking, and
Abstract Interpretation, pages 163–179. Springer, 2010b.

Federico Heras, Javier Larrosa, and Albert Oliveras. Minimaxsat: An efficient
weighted max-sat solver. Journal of Artificial Intelligence Research, 31(1):1–32,
2008.

C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580, 1969.

Kryštof Hoder, Laura Kovács, and Andrei Voronkov. Case studies on invariant gen-
eration using a saturation theorem prover. In Advances in Artificial Intelligence,
pages 1–15. Springer, 2011.

Daniel Jackson and Mandana Vaziri. Finding bugs with a constraint solver. In ACM
SIGSOFT Software Engineering Notes, volume 25, pages 14–25. ACM, 2000.

Ranjit Jhala and Kenneth L McMillan. A practical and complete approach to
predicate refinement. In Tools and Algorithms for the Construction and Analysis
of Systems, pages 459–473. Springer, 2006.

Ranjit Jhala and Kenneth L McMillan. Array abstractions from proofs. In Com-
puter Aided Verification, pages 193–206. Springer, 2007.

Dejan Jovanović and Leonardo De Moura. Solving non-linear arithmetic. In Auto-
mated Reasoning, pages 339–354. Springer, 2012.

118 BIBLIOGRAPHY

Temesghen Kahsai, Jorge A Navas, Arie Gurfinkel, and Anvesh Komuravelli. The
SeaHorn verification framework. In Computer Aided Verification, 205.

Richard M Karp. Reducibility among combinatorial problems. Springer, 1972.

Michael Karr. Affine relationships among variables of a program. Acta Informatica,
6(2):133–151, 1976.

Shmuel Katz and Zohar Manna. A heuristic approach to program verification.
Stanford University, 1973.

Shmuel Katz and Zohar Manna. Logical analysis of programs. Communications of
the ACM, 19(4):188–206, 1976.

Laura Kovács. Reasoning algebraically about p-solvable loops. In Tools and Algo-
rithms for the Construction and Analysis of Systems, pages 249–264. Springer,
2008.

Laura Kovács and Andrei Voronkov. Finding loop invariants for programs over
arrays using a theorem prover. In Fundamental Approaches to Software Engi-
neering, pages 470–485. Springer, 2009.

Daniel Kroening, Natasha Sharygina, Stefano Tonetta, Aliaksei Tsitovich, and
Christoph M Wintersteiger. Loopfrog: A static analyzer for ansi-c programs.
In Automated Software Engineering, 2009. ASE’09. 24th IEEE/ACM Interna-
tional Conference on, pages 668–670. IEEE, 2009.

Shuvendu K Lahiri and Randal E Bryant. Predicate abstraction with indexed
predicates. ACM Transactions on Computational Logic (TOCL), 9(1):4, 2007.

Daniel Larraz, Albert Oliveras, Enric Rodŕıguez-Carbonell, and Albert Rubio.
Proving termination of imperative programs using Max-SMT. In Formal Methods
in Computer-Aided Design (FMCAD), 2013, pages 218–225. IEEE, 2013a.

Daniel Larraz, Enric Rodŕıguez-Carbonell, and Albert Rubio. SMT-based array in-
variant generation. In Verification, Model Checking, and Abstract Interpretation,
pages 169–188. Springer, 2013b.

Daniel Larraz, Kaustubh Nimkar, Albert Oliveras, Enric Rodŕıguez-Carbonell, and
Albert Rubio. Proving non-termination using Max-SMT. In Computer Aided
Verification, pages 779–796. Springer, 2014a.

Daniel Larraz, Albert Oliveras, Enric Rodŕıguez-Carbonell, and Albert Rubio.
Minimal-model-guided approaches to solving polynomial constraints and exten-
sions. In Theory and Applications of Satisfiability Testing - SAT 2014 - 17th
International Conference, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 14-17, 2014. Proceedings, pages 333–350, 2014b.

Boyang Li, Isil Dillig, Thomas Dillig, Ken McMillan, and Mooly Sagiv. Synthesis
of circular compositional program proofs via abduction. In Tools and Algorithms
for the Construction and Analysis of Systems, pages 370–384. Springer, 2013.

BIBLIOGRAPHY 119

Han Lin, Kaile Su, and Chu-Min Li. Within-problem learning for efficient lower
bound computation in max-sat solving. In Proceedings of the 23rd national con-
ference on Artificial intelligence, pages 351–356, 2008.

Rupak Majumdar and Ru-Gang Xu. Directed test generation using symbolic gram-
mars. In Proceedings of the twenty-second IEEE/ACM international conference
on Automated software engineering, pages 134–143. ACM, 2007.

Panagiotis Manolios and Daron Vroon. Termination analysis with calling context
graphs. In Computer Aided Verification, pages 401–414. Springer, 2006.

Laurent Mauborgne and Xavier Rival. Trace partitioning in abstract interpretation
based static analyzers. In M. Sagiv, editor, European Symposium on Program-
ming (ESOP’05), volume 3444 of Lecture Notes in Computer Science, pages 5–20.
Springer-Verlag, 2005.

Ken L McMillan. Craig interpolation and reachability analysis. In Static Analysis,
pages 336–336. Springer, 2003a.

Kenneth L McMillan. Interpolation and SAT-based model checking. In Computer
Aided Verification, pages 1–13. Springer, 2003b.

Kenneth L McMillan. Lazy abstraction with interpolants. In Computer Aided
Verification, pages 123–136. Springer, 2006.

Kenneth L McMillan. Quantified invariant generation using an interpolating sat-
uration prover. In Tools and Algorithms for the Construction and Analysis of
Systems, pages 413–427. Springer, 2008.

Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic Compu-
tation, 19(1):31–100, 2006.

Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient sat solver. In Proceedings of the 38th
annual Design Automation Conference, pages 530–535. ACM, 2001.

Robert Nieuwenhuis and Albert Oliveras. On sat modulo theories and optimization
problems. In Theory and Applications of Satisfiability Testing-SAT 2006, pages
156–169. Springer, 2006.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving sat and sat mod-
ulo theories: From an abstract davis–putnam–logemann–loveland procedure to
dpll (t). Journal of the ACM (JACM), 53(6):937–977, 2006.

Carsten Otto, Marc Brockschmidt, Christian von Essen, and Jürgen Giesl. Auto-
mated termination analysis of java bytecode by term rewriting. In RTA, pages
259–276, 2010.

Corina S Păsăreanu and Willem Visser. Verification of Java programs using sym-
bolic execution and invariant generation. In Model Checking Software, pages
164–181. Springer, 2004.

Étienne Payet and Fausto Spoto. Experiments with Non-Termination Analysis for
Java Bytecode. Electr. Notes Theor. Comput. Sci., 253(5):83–96, 2009.

120 BIBLIOGRAPHY

Jordi Petit, Omer Giménez, and Salvador Roura. Jutge.org: an educational pro-
gramming judge. In SIGCSE, pages 445–450, 2012.

Knot Pipatsrisawat, Akop Palyan, Mark Chavira, Arthur Choi, and Adnan Dar-
wiche. Solving weighted max-sat problems in a reduced search space: A perfor-
mance analysis. Journal on Satisfiability Boolean Modeling and Computation, 4:
191–217, 2008.

David A Plaisted and Steven Greenbaum. A structure-preserving clause form trans-
lation. Journal of Symbolic Computation, 2(3):293–304, 1986.

Andreas Podelski and Andrey Rybalchenko. Transition predicate abstraction and
fair termination. In ACM SIGPLAN Notices, volume 40, pages 132–144. ACM,
2005.

Andreas Podelski and Andrey Rybalchenko. Armc: the logical choice for software
model checking with abstraction refinement. In Practical Aspects of Declarative
Languages, pages 245–259. Springer, 2007.

Andreas Podelski and Thomas Wies. Boolean heaps. In Static Analysis, pages
268–283. Springer, 2005.

Mukul R Prasad, Armin Biere, and Aarti Gupta. A survey of recent advances
in sat-based formal verification. International Journal on Software Tools for
Technology Transfer, 7(2):156–173, 2005.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C (2Nd Ed.): The Art of Scientific Computing. Cambridge
University Press, New York, NY, USA, 2002.

John Alan Robinson and Andrei Voronkov, editors. Handbook of Automated Rea-
soning (in 2 volumes). Elsevier and MIT Press, 2001. ISBN 0-444-50813-9,
0-262-18223-8.

Lawrence Ryan. Efficient algorithms for clause-learning SAT solvers. PhD thesis,
Theses (School of Computing Science)/Simon Fraser University, 2004.

Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley &
Sons, June 1998. ISBN 9780471982326.

Adi Shamir. A linear time algorithm for finding minimum cutsets in reducible
graphs. SIAM Journal on Computing, 8(4):645–655, 1979.

Rahul Sharma, Isil Dillig, Thomas Dillig, and Alex Aiken. Simplifying loop invariant
generation using splitter predicates. In Computer Aided Verification, pages 703–
719. Springer, 2011.

Rahul Sharma, Aditya V Nori, and Alex Aiken. Interpolants as classifiers. In
Computer Aided Verification, pages 71–87. Springer, 2012.

Fausto Spoto, Fred Mesnard, and Étienne Payet. A termination analyzer for Java
bytecode based on path-length. ACM TOPLAS, 32(3), 2010.

BIBLIOGRAPHY 121

Alfred Tarski. A decision method for elementary algebra and geometry. Collected
Works of A. Tarski, 1953.

Grigori S Tseitin. On the complexity of derivation in propositional calculus. In
Automation of reasoning, pages 466–483. Springer, 1983.

Aliaksei Tsitovich, Natasha Sharygina, Christoph M Wintersteiger, and Daniel
Kroening. Loop summarization and termination analysis. In Tools and Algo-
rithms for the Construction and Analysis of Systems, pages 81–95. Springer,
2011.

Alan M Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London mathematical society, 42(2):230–265,
1936.

Alan M Turing. Checking a large routine. Report of a Conference on High Speed
Automatic Calculating Machines, 1949.

Helga Velroyen and Philipp Rümmer. Non-termination checking for imperative
programs. In Tests and Proofs, pages 154–170. Springer, 2008.

Chao Wang, Zijiang Yang, Aarti Gupta, and Franjo Ivančić. Using counterexam-
ples for improving the precision of reachability computation with polyhedra. In
Computer Aided Verification, pages 352–365. Springer, 2007.

Ben Wegbreit. The synthesis of loop predicates. Communications of the ACM, 17
(2):102–113, 1974.

Yichen Xie and Alex Aiken. Saturn: A sat-based tool for bug detection. In Com-
puter Aided Verification, pages 139–143. Springer, 2005.

Greta Yorsh, Eran Yahav, and Satish Chandra. Generating precise and concise
procedure summaries. In Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Fran-
cisco, California, USA, January 7-12, 2008, pages 221–234, 2008. doi: 10.1145/
1328438.1328467.

