
Program Termination and Worst Time Complexity with

Multi-Dimensional Affine Ranking Functions

Christophe Alias, Alain Darte, Paul Feautrier, Laure Gonnord, Clément

Quinson

To cite this version:

Christophe Alias, Alain Darte, Paul Feautrier, Laure Gonnord, Clément Quinson. Program
Termination and Worst Time Complexity with Multi-Dimensional Affine Ranking Functions.
[Research Report] 2009, pp.31. <inria-00434037>

HAL Id: inria-00434037

https://hal.inria.fr/inria-00434037

Submitted on 20 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00434037

appor t

de r ech er ch e

IS
S

N
0
2
4
9
-6

3
9
9

IS
R

N
IN

R
IA

/R
R

--
7
0
3
7
--

F
R

+
E

N
G

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Program Termination and Worst Time Complexity

with Multi-Dimensional Affine Ranking Functions

Christophe Alias — Alain Darte — Paul Feautrier — Laure Gonnord — Clément Quinson

N° 7037

Novembre 2009

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Program Termination and Worst Time Complexity

with Multi-Dimensional Affine Ranking Functions

Christophe Alias∗, Alain Darte †, Paul Feautrier ‡, Laure Gonnord §,
Clément Quinson ¶

Thème : Architecture et compilation
Équipe-Projet Compsys

Rapport de recherche n° 7037 — Novembre 2009 — 31 pages

Abstract: A standard method for proving the termination of a flowchart program is
to exhibit a ranking function, i.e., a function from the program states to a well-founded
set, which strictly decreases at each program step. Our main contribution is to give an
efficient algorithm for the automatic generation of multi-dimensional affine nonnega-
tive ranking functions, a restricted class of ranking functions that can be handled with
linear programming techniques. Our algorithm is based on the combination of the gen-
eration of invariants (a technique from abstract interpretation) and on an adaptation of
multi-dimensional affine scheduling (a technique from automatic parallelization). We
also prove the completeness of our technique with respect to its input and the class of
rankings we consider. Finally, as a byproduct, by computing the cardinal of the range
of the ranking function, we obtain an upper bound for the computational complexity of
the source program, which does not depend on restrictions on the shape of loops or on
program structure. This estimate is a polynomial, which means that we can handle pro-
grams with more than linear complexity. The method is tested on a large collection of
test cases from the literature. We also point out future improvements to handler larger
programs.

Key-words: static analysis, termination proof, multidimensional affine ranking func-
tions, worst-case time complexity estimation

∗ INRIA Researcher
† CNRS Researcher
‡ Professor at ENS Lyon
§ Research Assistant at Lille University
¶ PhD student at LIP, ENS Lyon

Terminaison de programmes et complexité au pire

avec des fonctions de terminaison multidimensionnelles

Résumé : Une manière standard de prouver la terminaison d’un programme est d’ex-
hiber une fonction de terminaison, c’est-à-dire une fonction qui associe à chacun des
états du programme un élément d’un ensemble bien fondé, et qui décroît strictement
à chaque étape du programme. La contribution de ce rapport est un algorithme per-
formant pour générer automatiquement des fonctions de terminaison affines multidi-
mensionnelles, une classe restreinte de fonctions qui peuvent être traitées à l’aide de
la programmation linéaire. Notre algorithme est basé sur une combinaison de tech-
niques : la génération d’invariants par interprétation abstraite et (une adaptation de
la technique de) l’ordonnancement multidimensionnel affine. Nous prouvons la com-
plétude de notre technique vis à vis de ses entrées et de la classe des fonctions de
terminaison que nous considérons. Finalement, en calculant le cardinal de la plage de
valeurs prises par la fonction de terminaison, nous obtenons, indépendamment de la
structure du programme ou du type de boucles, une borne supérieure sur la complexité
du programme source. Cette estimation est un polynôme, ce qui signifie que nous pou-
vons traiter des programmes de complexité sur-linéaire. Cette méthode est appliquée à
de nombreux exemples de la littérature. Nous donnons enfin quelques pistes pour des
améliorations futures, notamment afin de traiter des programmes de plus grande taille.

Mots-clés : analyse statique, preuve de terminaison, génération de fonctions de ter-
minaison multidimensionnelles affines, estimation de la complexité au pire

Multidimensional Affine Ranking Functions 3

1 Introduction and motivation

The problem of proving program correctness has been with us since the early days of
Computer Science. In a seminal paper [22], R. W. Floyd proposed what has become one
of the standard approaches: affix assertions to each program point and prove that they
are consequences of the assertions of its predecessors in the program control graph.
The assertions at the entry point of the program are its preconditions, the assertions at
loop entry points are invariants, while the assertions at its exit point must entail correct-
ness, according to some set of requirements. Constructing the required set of assertions
is a tedious and error-prone task. In the case of a loop-free program, it is possible to
mechanically build all the assertions, either going forward from the preconditions, or
backward from the requirements. However, there exist while loop programs whose in-
variants are recursively enumerable but not recursive [4]. Since the formalisms we dare
use for describing sets in compilers – finite and co-finite sets, regular and context-free
languages, polyhedra, Presburger arithmetics – all deals with recursive sets, this means
that in some cases, the invariants must be approximated, mostly using techniques from
abstract interpretation [15].

At the same time, it was soon realized that this method proves only partial cor-
rectness, i.e., that the program gives the correct result if and when it terminates. To
prove termination, one needs a variant or ranking function (a W-function in Floyd’s
terminology), i.e., a function from the states of the program to some well-founded set,
which strictly decreases at each program step. Here again, it would be nice to have
an algorithm for building ranking functions, but this is not possible in all cases since
it would give a solution to the undecidable halting problem. However, this does not
preclude the existence of partial solutions, which, e.g., handle only programs (or ap-
proximated models) of a restricted shape, or look for rankings in a restricted class of
functions. Our main goal is to provide such an algorithm, which applies to arbitrary
programs but considers only the set of multi-dimensional nonnegative affine functions
under lexicographic ordering, as defined formally in Section 2.

The construction of a ranking function can sometimes be linked to the evaluation of
the worst case execution time (WCET) of the source program. Obviously, if a program
does not terminate, its WCET is infinite. If the program terminates and a ranking func-
tion exists, then, under some hypotheses, it can give some information on the WCET.
For example, if the ranking function has co-domain N (one-dimensional function), its
value at program start is an upper bound on the number of steps before termination
since it decreases at least by one at each program step. (The situation is more compli-
cated in the case of multi-dimensional ranking functions, i.e., if the co-domain is Nd.)
In other words, if accurate, the ranking function can give the order of magnitude of the
WCET, or time complexity [25] of the program but not its exact value. This estimate is
static and “high-level” in the sense that it just counts the program steps. Estimating the
WCET is much more difficult [41].

The rest of the paper is organized as follows. We first describe integer interpreted

automata, a standard model for abstracting the control part of arbitrary non-recursive
programs. We then define ranking functions and prove a few general results. Sec-
tion 3 is the main part of the paper; we present a new method for constructing multi-
dimensional affine ranking functions and to infer the computational complexity of the
source program. We prove the relative completeness of the method, which means that
if there exists a ranking function for the set of invariants we have found, then our algo-
rithm finds one. In Section 4, we report on our implementation through a large set of

RR n° 7037

4 Alias & Darte & Feautrier & Gonnord & Quinson

benchmarks from the literature. We next describe other approaches to the termination
problem and conclude, pointing to some unsolved problems and outlining future work.

2 Definitions and elementary properties

2.1 Notations

Hereafter, matrices are written with capital letters (as A) and column vectors with a
top arrow (as ~x). The components of a vector ~x of dimension d are denoted by ~x[i],
0 ≤ i < d. Thus, the i-th component of ~x is ~x[i − 1]. Sets are represented with
calligraphic letters such asW, K , etc.

2.2 Integer interpreted automata

In the tradition of most previous work on program termination and static program anal-
ysis, we do not start from the program itself but from an abstraction: the associated
integer interpreted automaton. This is similar to the flowcharts which were used a
long time ago to express programs (see, e.g., Manna’s book [33]) until the advent of
structured programming. However, when one looks at real-life programs, many devia-
tions from the strict structured model can occur, including premature loop termination,
exceptions, and even the occasional goto. Starting from a flowchart allows us to not
depend of the details of the syntax and semantics of the source language, which can be
dealt with by an appropriate preprocessor.

A program is represented by a general relational (integer) interpreted automaton

(K , n, kinit,T) defined by:
• a finite set K of control points;
• n integer variables represented by a vector ~x of size n;
• an initial control point kinit ∈ K ;
• a finite set T of 4-tuples (k, g, a, k′), called transitions, where k ∈ K (resp. k′ ∈

K) is the source (resp. target) control point, g : Zn 7→ B = {true, f alse} is a
guard (function from variable valuations to Booleans), and a : Zn 7→ P(Zn) is an
action that assigns to each variable valuation ~x a subset a(~x) of Zn.

Semantics The set of states is K × Zn. A trace from (k0, ~x0) to (k, ~x) is a sequence
(k0, ~x0), (k1, ~x1), . . . , (kp, ~xp) such that kp = k, ~xp = ~x and for each i, 0 ≤ i < p, there
exists in T a transition (ki, gi, ai, ki+1) such that gi(~xi) = true and ~xi+1 ∈ ai(~xi). Given an
initial valuation ~v, a state (k, ~x) is reachable from ~v iff (if and only if) there exists a trace
from (kinit,~v) to (k, ~x). A state (k, ~x) is reachable if there exists ~v ∈ Zn such that (k, ~x)
is reachable from ~v. The set of reachable states is denoted by R. Note that there can be
two forms of non-determinism in the “execution” of an interpreted automaton. First,
if a(~x) is not a singleton, a transition can lead to several distinct variable valuations
(a(~x) = Z is a way to assign to ~x a random value). Second, if there exist (k, ~x) ∈ R and
two transitions (k, g1, a1, k1) and (k, g2, a2, k2) such that g1(~x) and g2(~x) are both true,
then two different states after (k, ~x) are possible.

In this paper, we consider affine interpreted automata, a subclass of integer inter-
preted automata with affine guarded transitions. In this case, the guard is a conjunction
of affine tests and the set of pairs (~x, ~x ′) where ~x ′ ∈ a(~x) is described by a polyhedron.

Definition 1 (General affine guarded transition) A transition t = (k, g, a, k′) is an

affine guarded transition when:

INRIA

Multidimensional Affine Ranking Functions 5

init

loop

da := 2r; db := 2r

da > r ∧ da < dbda > r

db := db
da := da − 1

db := da
da := db − 1

t1

t2 t3

Figure 1: Affine interpreted automaton

• g(~x) is true iff G~x + ~g ≥ ~0 (component-wise) where ~g is an integer vector and G

an integer matrix with n columns and as many rows as the size of ~g;

• ~x ′ ∈ a(~x) iff A~x + A′~x ′ + ~a ≥ ~0 (component-wise) where ~a is an integer vector

and A and A′ are integer matrices with n columns and as many rows as the size

of ~a. We write a = (A, A′, ~a).

The algorithms and theory we develop in the next sections can handle general affine
interpreted automata. However, in terms of implementation, the tool we rely on for the
computation of invariants (see Section 3.1) is, so far, limited to the case where actions
define functions but with unspecified components: in other words, for each ~x, a(~x) is
a singleton {~x ′} where each component of ~x ′ is either expressed as an affine function
of the components of ~x, or unspecified (i.e., it can take any value in Z), which we
denote by the symbol “?”. This will be sufficient to handle general (extended) affine
relations, as we will see in Section 3.1. In this case, we identify a(~x) with the element
~x ′ ∈ (Z ∪ {?})n it contains, and we say that a(~x) is an affine function of ~x.

An example of such an automaton is given in Figure 1. The control points are

labelled for convenience, and transitions are represented with arrows indexed by
g

a
(g

is omitted when g = true).

Example 1 The C code below is an abstraction of a real C code computing the great-
est common divisor (gcd) of two polynomials.

// expr is an expression, A is an array,

// r is a constant positive integer parameter.

da = 2r; db = 2r;a

while (da >= r) {

cond = (da >= db || A[expr] == 0);

if (!cond) {

tmp = db; db = da; da = tmp - 1;

}

else da = da - 1;

}

This simplified code is itself abstracted by the automaton of Figure 1, where init is the
initial control point and loop corresponds to the while loop. The fact that the condition
A[expr]==0 cannot be statically evaluated introduces some non-determinism in the
automaton. To enter the then part of the test, the condition da < db must be true
(transition t3) while the else part can always be traversed (transition t2) as long as
the termination test of the while loop is false (additional condition da >= r for both
transitions). �

RR n° 7037

6 Alias & Darte & Feautrier & Gonnord & Quinson

Definition 2 (Bounded non-determinism) An affine interpreted automaton has bounded

non-determinism if there exists B ∈ N, such that, for each state (k, ~x), the number of

states (k′, ~x ′) that can be obtained after one transition from state (k, ~x) is at most B.

Invariants The guard g in a transition t = (k, g, a, k′) gives a necessary condition on
variables ~x to traverse the transition t and to apply its corresponding action a. To get
the exact valuations ~x of variables for which the action a can be performed, one needs
to take into account the initial valuations and the successive conditions that led to the
control point k. We denote by Rk the set of possible valuations ~x of variables when the
control is in k:

Rk = {~x ∈ Z
n | (k, ~x) ∈ R}.

Then, there exists a trace containing the transition (k, g, a, k′) iff ~x ∈ Rk and g(~x) is true.
Note that Rk does not depend on any initial valuation. More precisely, it is the union,
for all initial valuations ~v, of the set of vectors ~x such that (k, ~x) is reachable from ~v.

In practice, it is difficult to determine the set Rk exactly but it is possible to give
over-approximations, thanks to the notion of invariants. An invariant on a control point
k is a formula φk that is true for all reachable states (k, ~x):

~x ∈ Rk ⇒ φk(~x) is true.

An invariant is affine if it is the conjunction of a finite number of affine conditions on
program variables. The set Rk is then over-approximated by the integer points within
a polyhedron Pk. Some analyzes exist that can compute such a polyhedral approxima-
tion. We briefly present in Section 3.1 the technique and software tool we use in our
implementation for deriving such affine invariants.

Example 1 (Cont’d) For the automaton of Figure 1, the vector ~x is equal to (r, da, db).
The most precise affine invariants are:
• for the control point init : N∗ × Z2.
• for loop : {(r, da, db) | 0 ≤ r − 1 ≤ da ≤ 2r, r ≤ db ≤ 2r}. �

2.3 Termination and ranking functions

Invariants can only prove partial correctness of a program. The standard technique for
proving termination is to consider ranking functions and well-founded sets, as we now
recall.

A well-founded set W is a set with a (total or partial) order � (we write a ≺ b

if a � b and a , b) such that there is no infinite descending chain, i.e., an infinite
sequence (xi)i∈N such that xi ∈ W and xi+1 ≺ xi for all i ∈ N.

Definition 3 (Ranking function) A ranking function is a function ρ : K × Zn → W,

from the automaton states to a well-founded set (W,�), whose values decrease at each

transition t = (k, g, a, k′):

~x ∈ Rk ∧ g(~x) = true ∧ ~x ′ ∈ a(~x)⇒ ρ(k′, ~x ′) ≺ ρ(k, ~x) (1)

Definition 4 (1D and kD ranking function) A ranking function ρ is one dimensional

if its co-domain is (N ≤). It is multi-dimensional of dimension k (or k-dimensional) if

its co-domain is (Nk ≤lex), where ≤lex is the standard lexicographic order on integer

vectors.

INRIA

Multidimensional Affine Ranking Functions 7

Obviously, the existence of a ranking function implies program termination for any
valuation ~v at the initial control point kinit. The next lemma shows that this existence is
also a necessary condition.

Lemma 1 An integer interpreted automaton terminates for any initial valuation if and

only if it has a ranking function. Furthermore, if it terminates and has bounded non-

determinism, there is a one-dimensional ranking function, i.e., with co-domain (N,≤).

Proof If an integer interpreted automaton has a ranking function ρ with co-domain
(W,�), but does not terminate for some initial valuation ~v, then there is an infinite
trace (kn, ~xn)n∈N from (kinit,~v). As ρ is a ranking function, the sequence ρ(kn, ~xn) is an
infinite descending chain in the well-founded set (W,�), impossible.

Conversely, if an integer interpreted automaton terminates for any initial valuation,
consider the setW = K × Zn of all its states and define the relation ≺ as follows: if
(k, ~x) ∈ R and (k, g, a, k′) is a transition such that g(~x) is true, then define (k′, ~x ′) ≺ (k, ~x)
for all ~x ′ ∈ a(~x). Then, extend the relation ≺ to its transitive closure ≺+. Note that
(k1, ~x) ≺+ (k2, ~y) iff there is a trace from (k1, ~x) to (k2, ~y) (this is true because the guards
depend only on the current state and not on the traces that lead to it). Finally, consider
the relation �+ defined by x �+ y iff x ≺+ y or x = y. There is no infinite trace starting
from a reachable state (k, ~x), thus in particular no circuit, hence �+ is a partial order and
it has no infinite descending chain. The identity function on (W,�+) is thus a ranking
function.

Finally, suppose that the interpreted automaton terminates and has bounded non-
determinism (see Definition 2). Then, there is a one-dimensional ranking function, i.e.,
from K × Zn into (N,≤). Indeed, consider a reachable state (k, ~x). The previously-
defined relation ≺, when restricting to states reachable from (k, ~x), i.e., those smaller
than (k, ~x) for ≺+, corresponds to a DAG rooted at (k, ~x). This DAG has no infinite path
since the automaton terminates. Furthermore, if its paths were of unbounded length,
the DAG would be of infinite size, and, by König’s lemma, this would contradict the
bounded determinism hypothesis. Hence, we may define ρ(k, ~x) as the maximum length
of a path starting from state (k, ~x). By construction, ρ is a one-dimensional ranking
function. �

Remark 1 We point out that there is a strong similarity between Lemma 1 and the
existence of a free schedule for a computable system of uniform recurrence equations
(SURE) defined by Karp, Miller, and Winograd [28, 19]. For a SURE, a computation
(k, ~x), defined for ~x ∈ Dk, depends on a bounded number of other computations (ki, ~xi),
1 ≤ i < pk, where ~xi = ~x − ~di and ~di is an integer vector. If ~xi < Di, (ki, ~xi) is available
as an input, otherwise it has to be computed first. If this “unrolling” of computations
terminates, (k, ~x) can be computed. A schedule σ assigns a “date” (a nonnegative inte-
ger) to each (k, ~x) such that σ(k, ~x) ≥ σ(ki, ~xi) + 1 if (k, ~x) depends on (ki, ~xi). The free

schedule is the fastest one if each computation is assumed to take one unit of time. In a
SURE and even in a SARE (system of affine recurrence equations for which ~xi = ai(~x)
where ai is an affine function), each state (k, ~x) depends on a bounded number of other
states (ki, a(~x)), 1 ≤ i < pk. Therefore, as in Lemma 1, the free schedule exists for
a computable SURE or SARE. In other words, SUREs and SAREs are modeled by a
structure similar to an affine interpreted automaton. The main difference is in the inter-
pretation, in terms of computations. In systems of recurrence equations, computations
actually take place in the opposite order of transition traversals. Furthermore, all traces
from a given state are followed. In an interpreted automaton, only some transitions

RR n° 7037

8 Alias & Darte & Feautrier & Gonnord & Quinson

from a given state are performed (“non-determinism”), depending on the guards, and
for each transition, only one ~x ′ ∈ a(~x) is considered. But, in terms of properties and
algorithms to build them, free schedule and ranking function are very similar.

Remark 2 The (countable) well-founded setW can be embedded in a countable or-
dinal (following set theory terminology). Each ordinal corresponds to a total order that
can be fairly complicated to express or compute in practice. In general, algorithms for
termination (or similarly for scheduling SUREs) look for special setsW and ranking
functions of a certain class. For example, in [29], Lee studies ranking functions for a
particular approximation of recursive programs, those with the so-called SCT property
(size-change termination). According to this study, for SCT programs, it is sufficient to
consider “minimums and maximums over lexicographic tuples”, i.e., simple functions
into the ordinal ωd

= (Nd,�d), where �d stands for the lexicographic order for vectors
of size d.

Affine ranking functions In this paper, in the context of affine interpreted automata,
we restrict ourselves to functions ρ(k, ~x), affine for the second parameter (i.e., when k

is fixed), and with co-domain (Nd,�d). Characterizing the smallest class of ranking
functions (as well as “smallest” ordinal) needed for affine interpreted automata is, to
our knowledge, an open problem. However, our algorithm is complete in the sense
that it always finds an affine ranking if one exists. Furthermore, the dimension d is
determined by the algorithm, and not a priori, and it is the smallest possible.

Note that Floyd [33] uses a condition weaker than Condition (1): letH be a subset
of K such that any cycle of the automaton contains at least one control point in H .
Then to prove termination, it is enough to exhibit a function into a well-founded set,
which decreases on all paths from one point inH to another. That a ranking satisfying
Condition (1) can also serve in this context is obvious. Furthermore, since both tech-
niques are equivalent to termination, the existence of a function ρ decreasing on paths
implies the existence of a ranking function ρ′, as defined in Section 2.3, i.e., decreasing
on transitions. However, both techniques differ when restricting to particular well-
founded sets or class of functions. The next lemma gives a more precise view of the
difference between these two proof mechanisms for the simplest case of an interpreted
automaton where all actions a(~x) define affine functions.

Given the set H , for each transition t = (k, g, a, k′), we define Rt,H as follows:
~x ∈ Rt,H iff ~x ∈ Rk and there is a trace, starting with the transition t, from (k, ~x) to (h, ~y)
for some h ∈ H . To prove termination, it is sufficient to check that a ranking function
decreases for transition t only for ~x ∈ Rt,H because if ~x < Rt,H , any trace starting from
(k, ~x) through the transition t visits a finite number of control points (otherwise it would
go through a cycle of the automaton, thus through some h ∈ H).

Lemma 2 Consider an integer interpreted automaton such that all actions a(~x) define

a function. Suppose there is an affine function ρ into (Nd,�d), decreasing on all paths

between two control points in H . Then, there is a piecewise affine function ρ′ into

(Nd+1,�d+1), decreasing on all transitions t for all states (k, ~x) such that ~x ∈ Rt,H .

Proof Since each cycle of the automaton contains a point inH , removing all outgoing
edges for vertices inH leads to a DAG G. Given k ∈ K, let h(k) be the height of k, i.e.,
the length of the longest path, in G, starting from k (if k has no successor, h(k) = 0).
The function ρ is defined only for elements in H . The ranking ρ′ that we build has an

INRIA

Multidimensional Affine Ranking Functions 9

extra dimension. For k ∈ H and ~x ∈ Rk, we set ρ′(k, ~x) =

(

ρ(k, ~x)
0

)

. We extend ρ′

for all k ∈ K \ H , by induction on increasing values of h(k). To make the notations
simpler, we denote by ρ(k, ~x) the first d dimensions of ρ′(k, ~x), even for k < H .

Assume ρ′ is defined for all k′ such that h(k′) < n. Consider k such that h(k) = n

and ~x ∈ Rk. Let ti = (k, gi, ai, ki), i ∈ [1..p], be the transitions such that ~x ∈ Rti,H . (If
there is no such transition for ~x, there is nothing to do.) We let:

ρ′(k, ~x) =

(

max�d
{ ρ(ki, ai(~x)) | i ∈ [1..p] }

n + 1

)

.

Thanks to this inductive construction, ρ′ is decreasing for each transition t = (k, g, a, k′),
k < H , and ~x ∈ Rt,H . It remains to consider all transitions t = (k, g, a, k′) such that
k ∈ H. Let ~x ∈ Rt,H . By definition of Rt,H and construction of ρ′, there is h ∈ H

such that ρ(k′, a(~x)) = ρ(h, A(~x)) where A is the composition of all actions a along the
path to h. The property of ρ on paths implies ρ(k′, a(~x)) = ρ(h, A(~x)) ≺d ρ(k, ~x), thus
ρ′(k′, a(~x)) ≺d+1 ρ

′(k, ~x) as desired. With this construction, if ρ is affine, then ρ′ is
piecewise affine due to the use of the maximum function for defining ρ′. �

The previous lemma shows that there is an interaction between the class of func-
tions we consider and the way we prove termination, either with a (global) ranking
function, decreasing for each transition, or with a function decreasing on paths, as
Floyd proposes. Also, constraining the ranking function to decrease even for ~x < Rt,H

is an over-approximation. We will come back to this later.

3 Generating affine ranking functions for affine inter-

preted automata

3.1 Generating invariants

In this paper, we chose to generate invariants through the use of linear relation anal-
ysis [27]. We first recall the main characteristics of this method. We first make a
restriction on the form of the actions we consider: we restrict to what we call extended

affine functions.

Definition 5 (Extended affine function) An extended affine function a : Zn → (Z ∪
{?})n assigns to the vector ~x an extended unique vector ~x ′ where for all i, 0 ≤ i < n,

~x ′[i] ∈ Z ∪ {?}. The i-th component of ~x ′ is defined either as an affine function of the

components of ~x or is non deterministic (i.e., it can take any value in Z).

As in Definition 1, the guards g of transitions are polyhedral guards of form G~x+g ≥ ~0
and actions are extended affine functions. These transitions are called extended guarded

affine transitions.

Collecting semantics: As Rk is the set of possible variable valuations when the con-
trol is in k, we get, for each k ∈ K :

Rk ≡ if k = kinit then Zn else
⋃

(k′,g,a,k)∈T

a(Rk′ ∩ g)

where Rk′ ∩ g stands for {~x ∈ Rk′ | g(~x) = true} and a(Rk′ ∩ g) stands for {a(~x) | ~x ∈
Rk′ ∧ g(~x) = true}. The initial invariant can be refined if some information is provided
at program start as for Example 1 for the condition r ≥ 1.

RR n° 7037

10 Alias & Darte & Feautrier & Gonnord & Quinson

Iterative computations The linear relation analysis consists in attaching to each con-
trol point k a polyhedron Pk, which is an over-approximation of Rk (thus, ~x ∈ Pk is an
invariant), as follows:

Pk ≡ if k = kinit then ⊤ else
⊔

(k′,g,a,k)∈T

a(Pk′ ⊓ g)

where:
• ⊤ denotes the polyhedron representing Rn,
• ⊔ and ⊓ denote respectively the convex union (convex hull) and the intersection

of polyhedra,
• a(Pk) = {a(~x) | ~x ∈ Pk} is computed by first applying the affine part of a to Pk,

and then eliminating the “undefined variables” (whose value is specified by the
symbol ?).

Efficient polyhedral libraries exist for computing these operations, such as Polylib 1,
PPL 2, and the polyhedra part of APRON 3. We are then left with a system of fixpoint
equations (with m = #K):

∀k ∈ K , Pk = Fk(P1, . . . , Pk, . . . , Pm)

whose least solution exists (by Tarski’s theorem) and can be computed by iteration from
Pk = ⊥ = ∅, ∀k. Of course, this computation will raise the problem of convergence.
This problem is solved thanks to the widening operator ∇. The general definition of a
widening operator [14] ensures the convergence of the sequence

∀k ∈ K , Pk = F∇k (P1, . . . , Pk, . . . , Pm)

The functions F∇
k

are defined with a subset K∇ ⊆ K of “cutting nodes” such that each
loop in the program contains at least one control point in K∇ (this is similar to the set
H used in the previous section for Floyd’s termination proof method). Then

F∇k =

Pk∇Fk(P1, . . . , Pk, . . . , Pm) if k ∈ K∇

Fk(P1, . . . , Pk, . . . , Pm) otherwise

Finally, the limit, obtained after a finite number of steps, is an over-approximation of
the least solution of the initial system.

In linear relation analysis, the set of widening nodes K∇ is usually defined as the
set of entry nodes of the strongly connected components of the graph. We also use the
standard widening on polyhedra, as defined in [15] and [27], which roughly consists in
keeping for P1∇P2 only the constraints of P1 also satisfied by P2.

Aspic tool To compute invariants, we chose to use the tool A 4, which provides an
implementation of abstract acceleration [23]. Compared to the standard widening ap-
proach, this method computes the exact reachability set for “accelerable” loops, which
locally avoids the use of widening and globally increase precision. A takes as input
an affine counter automaton and generates an affine invariant for each control point.

1http://icps.u-strasbg.fr/polylib/
2http://www.cs.unipr.it/ppl/
3http://apron.cri.ensmp.fr/library/
4http://laure.gonnord.org/pro/aspic/aspic.html

INRIA

http://icps.u-strasbg.fr/polylib/
http://www.cs.unipr.it/ppl/
http://apron.cri.ensmp.fr/library/
http://laure.gonnord.org/pro/aspic/aspic.html

Multidimensional Affine Ranking Functions 11

Example 1 (Cont’d) With the initial condition r ≥ 1 and loop exit to end with guard
r > da, A produces the following invariants:
• Pinit = {1 ≤ r};
• Ploop = {da ≤ 2r, db ≤ 2r, 1 ≤ r, r ≤ db, r − 1 ≤ da};
• Pend = {da < r, db ≤ 2r, 1 ≤ r, r ≤ db, r − 1 ≤ da}. �

We extended A with a -ranking option, which initializes each variable to an
unknown value at the initial control point. The discovered invariants are then parame-
terized by these initial values.

General affine relations The use of A does not restrict the fragment of programs
we are able to deal with since we can encode a general affine transition (see Defini-
tion 1) into a combination of two extended affine transitions (see Definition 5).

Lemma 3 A general affine transition (as defined in Definition 1) can be encoded by

the sequence of two extended affine transitions.

Proof Let t = (k, g, a, k′) be a general affine transition. Let ~z be a vector of n fresh
variables, and knew a new control point. Then, the transition t is equivalent to the
combination of t1 and t2, where:

• t1 = (k, g, a1, knew) with a1(~z) = (?)n

• t2 = (knew, g2, a2, k
′) where g2(~x,~z) is true iff~z ∈ a(~x) (affine guard) and a2(~x) = ~z

(projection).

In other words, an affine relation that does not define a function is encoded in the guard
of a transition. �

Let us illustrate this construction. The following transition:

k k′
3 6 2x′ + 7x 6 19

2y 6 42

is equivalent to the following couple of transitions:

k knew k′
z :=? x′ := z

2y 6 42 3 6 2z + 7x 6 19

3.2 Computing affine ranking functions

This section presents an algorithm to construct multi-dimensional affine ranking func-
tions, i.e., ranking functions ρ : K × Z → Nd, affine for the second parameter. The
integer d is the dimension of the ranking. For the sake of clarity, we first explain in
Section 3.2.1 the particular case d = 1, i.e., how to get a one-dimensional affine ranking
function. The method is then generalized in Section 3.2.2 to compute an affine ranking
function of dimension d > 1.

Note: as we use linear programming (but not integer linear programming), we may
end up with functions with rational components. Then, we can always multiply such
a function by a suitable integer to get a ranking function with integer values. Thus, in
the rest of the paper, we will not insist on this subtlety any longer.

RR n° 7037

12 Alias & Darte & Feautrier & Gonnord & Quinson

3.2.1 One-dimensional affine ranking functions

As explained in Section 3.1, in practice, the exact sets Rk are not necessarily available.
They are over-approximated by invariants Pk, with Rk ⊆ Pk, which are, in our case,
described by polyhedra. The conditions that a ranking function must satisfy are then
related to these invariants and not to the exact sets of reachable states.

A one-dimensional ranking function ρ has co-domain N, i.e., it assigns a nonnega-
tive integer to each relevant state:

~x ∈ Pk ⇒ ρ(k, ~x) ≥ 0 (2)

Consider Inequality (1), which specifies that the ranking decreases on transitions. Let
Qt be the polyhedron described by the constraints of a transition t = (k, g, a, k′), i.e.,
~x ∈ Pk, g(~x) is true, and ~x ′ ∈ a(~x). For an affine interpreted automaton, Qt is directly
built from matrices A, A′, and G, and vectors ~a and ~g (see Definition 1 in Section 2.2).
Inequality (1) becomes:

~y = (~x, ~x ′) ∈ Qt ⇒ ρ(k, ~x) − ρ(k′, ~x ′) ≥ 1 (3)

More general cases can be handled the same way if the set of pairs (~x, ~x ′) is over-
approximated by a polyhedron. Now, it remains to translate Inequalities (2) and (3) into
a linear system and to get a ranking function by means of a linear solver. Classically,
we use the affine form of Farkas lemma [37] to linearize the constraints:

Lemma 4 (Farkas lemma, affine form) An affine form φ : Rn → R with φ(~x) = ~c.~x +
c0 is nonnegative everywhere in a non-empty polyhedron {~x | A~x + ~a ≥ ~0} iff:

∃~λ ∈ (R+)n, λ0 ∈ R
+ such that φ(~x) ≡ ~λ.(A~x + ~a) + λ0

The notation ≡ is a formal equality, which means that ~x can be eliminated and coeffi-

cients identified. In other words:

∃~λ ∈ (R+)n, λ0 ∈ R
+ such that ~c = ~λ.A and c0 = ~λ.~a + λ0

For all ~x, φ(~x) is thus expressed as the dot product of ~x and a nonnegative combination
of the normals of the facets of P, plus a nonnegative constant. We can now apply
the affine form of Farkas lemma to Inequalities (2) and (3). Write Pk~x + ~pk ≥ ~0 the
constraints that define Pk. For Inequality (2), we get:

∃~λk ∈ (R+)n, λ0
k ∈ R

+ such that ρ(k, ~x) ≡ ~λk.(Pk~x + ~pk) + λ0
k (4)

Similarly, let us write Qt = {~y = (~x, ~x ′) | Qt~y + ~qt ≥ ~0}. We call ∆t(ρ, ~x, ~x ′) = ρ(k, ~x) −
ρ(k′, ~x ′) the delay of transition t. Inequality (3) states that ∆t(ρ, ~x, ~x ′) ≥ 1, which
means:

∃~µt ∈ (R+)n, µ0
t ∈ R

+ s.t. ∆t(ρ, ~x, ~x
′) − 1 ≡ ~µt.(Qt~y + ~qt) + µ

0
t (5)

A substitution of (4) in (5) and an identification on each dimension of ~y leads to a linear
system St with nonnegative unknowns ~λk, λ0

k
(from ρ(k, ~x)), ~λk′ , λ0

k′
(from ρ(k′, ~x ′)),

~µt, and µ0
t . Finally, concatenating all St for all transitions t ∈ T gives a linear system

S, with nonnegative unknowns (~λk, λ
0
k
)k∈K and (~µt, µ

0
t)t∈T , that characterizes all one-

dimensional affine ranking functions for the automaton.

INRIA

Multidimensional Affine Ranking Functions 13

Example 1 (Cont’d) As explained before, A provides the following invariants
(the initial values are denoted by r0, da0, db0):
• Pinit = {1 ≤ r0 = r, db = db0, da = da0}

• Ploop = {da ≤ 2r, db ≤ 2r, r ≤ db, r − 1 ≤ da, 1 ≤ r = r0}

• Pend = {da < r, db ≤ 2r, r ≤ db, r − 1 ≤ da, 1 ≤ r = r0}

For readability in the following systems, for i ≥ 1 and k ∈ K , we write λi
k

instead

of ~λk[i − 1], same for ~µ. Also ~x stands for the vector (da, da0, db, db0, r, r0). The
subsystem (4) is obtained by applying Farkas lemma to Pinit, Ploop, and Pend (here,
with no simplification):

(4i) ρ(init, ~x) = λ0
init
+λ1

init
(r−1)+λ2

init
(r0−1)+λ3

init
(r0− r)+λ4

init
(r− r0)+λ5

init
(db0−

db) + λ6
init

(db − db0) + λ7
init

(da0 − da) + λ8
init

(da − da0) with λi
init
≥ 0 for all

i ∈ [0..8];
(4ii) ρ(loop, ~x) = λ0

loop
+λ1

loop
(2r− da)+λ2

loop
(2r− db)+λ3

loop
(r− 1)+λ4

loop
(db− r)+

λ5
loop

(da − r − 1) + λ6
loop

(r0 − r) + λ7
loop

(r − r0) with λi
loop
≥ 0 for all i ∈ [0..7];

(4iii) and a similar formula for the control point end.
To get the subsystem (5), we first compute Qt (here in logical form):
• Qt1 = ~x ∈ Pinit ∧ da′ = 2r ∧ db′ = 2r ∧ r′ = r;
• Qt2 = ~x ∈ Ploop ∧ r ≤ da ∧ da′ = da − 1 ∧ db′ = db ∧ r′ = r;
• Qt2 = ~x ∈ Ploop ∧ r ≤ da < db ∧ da′ = db − 1 ∧ db′ = da ∧ r′ = r.

And, finally, we obtain:
(5i) ρ(init, ~x) − ρ(loop, ~x ′) − 1 = µ0

t1
+ µ1

t1
(r0 − 1) + µ2

t1
(r − r0) + µ3

t1
(r0 − r) + . . . +

µ7
t1

(da′ − 2r) + µ8
t1

(2r − da′) + µ9
t1

(db′ − 2r) + µ10
t1

(2r − db′) + . . . with µi
t1
≥ 0 for

all i;
(5ii) and similar expressions for transitions t2 and t3.

In (5i), we replace the expressions involving ρ by the values obtained in (4i) and
(4ii). We do the same in the other expressions coming from (5). We obtain a conjunc-
tion of conditions involving the different ~λk and ~µk. The solver finally produces:
• ρ(init, ~x) = 2r0 + 3;
• ρ(loop, ~x) = 2 + da + db − 2r;
• ρ(end, ~x) = 0.

which means that the loop terminates in at most 2r0 +3 steps (including at most 2r0 +1
iterations of the while loop). The quantity i = 2 + da + db − 2r, which is automatically
extracted, can be viewed as a kind of counter for the while loop. �

Solving the systemS gives a termination test that will work providing the invariants
are accurate enough. Note however that, since ρ is, so far, affine and one-dimensional,
there is no hope, with this method, to be able to determine the termination of an au-
tomaton whose worst time complexity (WTC), i.e., maximal trace length, is more than
linear in the input variables. The extension in the next section can determine the termi-
nation of some programs with a non-linear (but still polynomial) time complexity.

3.2.2 Multi-dimensional affine ranking functions

Using multi-dimensional affine ranking functions, i.e., affine ranking functions with co-
domain (Nd,�d) for some integer d, extends the set of programs whose termination can
be determined. Indeed, some terminating programs with polynomial time complexity
(of degree ≤ d) can now be handled, while no one-dimensional affine ranking func-
tion exists for them. Furthermore, when it exists, a polynomial WTC can be derived
from the ranking, with a simpler method than by manipulating directly polynomials of
degree d.

RR n° 7037

14 Alias & Darte & Feautrier & Gonnord & Quinson

For a d-dimensional ranking function ρ, the decreasing constraint expressed by
Inequality (1) becomes:

(~x, ~x ′) ∈ Qt ⇒ ∆t(ρ, ~x, ~x
′) ≻d

~0 (6)

which means that ∆t(ρ, ~x, ~x ′) , ~0 and its first nonzero component is positive. Un-
like for a one-dimensional ranking function where we look for a function ρ such that
ρ(k, ~x) − ρ(k′, ~x ′) ≥ 1, here we consider each dimension σ = ρ[i] of ρ with the relaxed
constraint:

(~x, ~x ′) ∈ Qt ⇒ σ(k, ~x) − σ(k′, ~x ′) ≥ εt (7)

with 0 ≤ εt ≤ 1. As we did in Section 3.2.1, we obtain a linear systemSt(~λk, λ
0
k
, ~λk′ , λ

0
k′
, ~µt, µ

0
t , εt)

for each transition, this time with the additional unknown εt. Then, considering all tran-
sitions, we get a global system S. For a solution σ of S, we say that a transition t is
satisfied if εt = 1, otherwise, it is respected.

To build a multi-dimensional ranking ρ, we use a greedy algorithm, similar to the
scheduling algorithm of [20], that builds the different dimensions of ρ, one after the
other, from dimension 0 to dimension d − 1, respecting unsatisfied transitions until all
are satisfied for some dimension. Furthermore, for each dimension, we try to satisfy
as many transitions as possible by maximizing the number of εt equal to 1. This boils
down to solving the following optimization:

m = max

∑

t∈T

εt |
∧

t=(k,g,a,k′)∈T

St(~λk, λ
0
k ,
~λk′ , λ

0
k′ , ~µt, µ

0
t , εt)

(8)

It is easy to see that any solution leading to some εt > 0 can be multiplied by a suitable
positive constant to a solution with εt = 1. Thus, for any optimal solution of (8), a
transition t satisfies either εt = 0 or εt = 1. Similarly, one can build an integer optimal
solution from any rational optimal solution.

The variables (~λk)k∈K define an affine function that we use as the first dimension of
ρ. By construction, ρ[0] satisfies (3) for every transition t such that εt = 1. Other tran-
sitions are simply respected (εt = 0). We process them in the subsequent dimensions.
For that, we build a new system S, obtained by concatenating the different St, but only
for the transitions t with εt = 0, and we iterate the process. This way, we define ρ[1],
ρ[2], and so on. When none of the remaining transitions can be satisfied, i.e., when
the maximum m is 0, the algorithm stops and no multi-dimensional ranking function is
found. Otherwise, as the number of transitions is finite, all of them are eventually satis-
fied, after a finite number of steps, by some dimension of ρ. In this case, the algorithm
outputs, for each k ∈ K , an affine function ρ(k, .) : Zn → Ndk , where dk is the number of
successive systems, involving the control point k, that were solved. We can complete
each ρ(k, .) with arbitrary additional dimensions so that they all have co-domain Nd,
with d = maxk dk. This defines an affine ranking function ρ of dimension d.

Example 2 Consider the automaton of Figure 2 with the context N ≥ 0 in control
point k0. Aspic finds the following invariants:
• Pk0 = {0 ≤ N = N0, j = j0, i = i0};
• Pk1 = {0 ≤ N = N0, 0 ≤ i ≤ N};
• Pk2 = {0 ≤ N = N0, 1 ≤ i ≤ N, 0 ≤ j ≤ N}.

Solving the system while maximizing εt1 + εt2 + εt3 + εt4 leads to εt1 = εt2 = εt4 = 1 and
εt3 = 0. The corresponding function (first dimension of the ranking) is ρ(k0, ~x)[0] =

INRIA

Multidimensional Affine Ranking Functions 15

k0

k1

i := N

k2 j > 0

j := N

j = 0

t1
t2

i > 0

t4

t3

j −−

i −−

Figure 2: Automaton with a multi-dimensional ranking

2N + 1, ρ(k1, ~x)[0] = 2i, ρ(k2, ~x)[0] = 2i − 1. We keep the transition t3 for the next
dimension, and we get εt3 = 1 with ρ(k2, ~x)[1] = j. The complete ranking function
is thus ρ(k0, ~x) = 2N + 1, ρ(k1, ~x) = 2i, ρ(k2, ~x) = (2i − 1, j). Note that, for k0 and
k1, the ranking is only one-dimensional. It can be extended arbitrarily, for example as
ρ(k0, ~x) = (2N+1, 0) and ρ(k1, ~x) = (2i, 0), if a globally 2D ranking function is desired.
�

3.3 Completeness

Since non-terminating programs exist, there is no hope of proving that a ranking func-
tion always exists. Moreover, there are terminating affine interpreted automata with no
multi-dimensional affine ranking. Thus, all we can prove is that, if a multi-dimensional
affine ranking exists, our algorithm finds one. This section gives such a completeness
result. Also, as the sets Rk are over-approximated by invariants Pk, completeness has
to be understood with respect to these invariants. We first need a few definitions and
lemmas.

We say that a lexicographically positive vector ~x is of level i if its i-th component
is its first nonzero component: ~x[j − 1] = 0 if j < i and ~x[i − 1] > 0. Without loss of
generality, we assume that all d-dimensional ranking functions we consider are such
that d equals ℓ, the maximal level of all ∆t(ρ, ~x, ~x ′). Indeed, all dimensions ρ[i] for
i ≥ ℓ are useless to decrease on transitions. We can also define the sum of two multi-
dimensional ranking functions of dimensions d1 and d2, even if d1 , d2, as stated by
the next lemma.

Lemma 5 Let ρ1 and ρ2 be two multi-dimensional ranking functions of dimensions d1

and d2. One can define a ranking ρ of dimension d ≤ min (d1, d2) such that ρ[i] =
ρ1[i] + ρ2[i], for all i < d.

Proof Assume, without loss of generality, d1 ≤ d2. We can first extend ρ1 by d2 − d1

null dimensions and compute ρ1 + ρ2. Since delays are linear in the ranking functions
and since the sum of two lexicopositive vectors is lexicopositive, ρ1 + ρ2 is a ranking
function. Note that if ~u1 and ~u2 are both lexicopositive with levels l1 and l2, then the
level of ~u1 + ~u2 is min(l1, l2). Thus, the maximal level d of all ∆t(ρ, ~x, ~x ′) is at most
min(d1, d2). It follows that all dimensions of ρ1 + ρ2 beyond d ≤ d1 are useless and can
be removed. �

A consequence of Lemma 5 related to our greedy algorithm is that, if a transition
t1 (resp. t2) is satisfied by the first dimension of a ranking ρ1 (resp. ρ2), then the first
dimension of ρ1+ρ2 satisfies both transitions. Thus, there is no trade-off to make when
deciding which transitions to satisfy at the dimension being considered.

RR n° 7037

16 Alias & Darte & Feautrier & Gonnord & Quinson

Lemma 6 If ρ is a d-dimensional ranking function and T a lower triangular d × d

matrix, with positive diagonal, then Tρ, defined by (Tρ)(~x) = T (ρ(~x)), is a ranking

function.

Proof We have ∆t(Tρ, ~x, ~x ′) = T∆t(ρ, ~x, ~x ′). Let ℓ be the level of ∆t(ρ, ~x, ~x ′). For
i < ℓ − 1, ∆t(Tρ, ~x, ~x ′)[i] = ∆t(ρ, ~x, ~x ′)[i] = 0. For i = ℓ − 1, ∆t(Tρ, ~x, ~x ′)[i] =
Ti,i × ∆t(ρ, ~x, ~x ′)[i] > 0. Thus ∆t(Tρ, ~x, ~x ′) is lexicographically positive and its level
is ℓ. The remaining components are irrelevant. �

Lemma 6 will be used to show that if a transition is only partially satisfied (i.e.,
εt = 0 but there are some ~x and ~x ′ such that ∆t(ρ[0], ~x, ~x ′) ≥ 1), then we can still keep
considering these satisfied pairs (~x, ~x ′) for further dimensions. This will not prevent
the algorithm to find an affine ranking if one exists.

We now need a technical lemma, which generalizes the affine form of Farkas lemma
to lexicographic order. Under its hypotheses, Lemma 7 states that we can always re-
place an affine function of dimension d by a linear combination of its dimensions (thus
a function of dimension 1) and get the same “satisfied” vectors.

Lemma 7 Let P = {~x | A~x + ~a ≥ ~0} be a polyhedron and δ a d-dimensional affine

function such that, ∀~x ∈ P, δ(~x) �d
~0 and not all δ(~x), ~x ∈ P, have level < d. Then,

there is ~α such that, ∀~x ∈ P, ~α.δ(~x) ≥ 0 and ~α.δ(~x) , 0 if δ(~x) , ~0. More precisely,

there is a matrixΛwhose rows are lexicographically nonnegative and such that any ~α is

suitable, provided that ~α[d − 1] > 0, Λ~α ≥ ~0 and (Λ~α)[i] = 0 only if the corresponding

row of Λ is ~0.

Proof Let Pi be the set of ~x ∈ P such that δ(~x) has level > i. By definition, P0 = P and
Pi+1 = Pi ∩ {~x | δ[i](~x) = 0}. Since not all δ(~x) have level < d, Pi , ∅ for all i < d.

For all ~x ∈ P0, δ[0](~x) ≥ 0. Since P0 , ∅, by Farkas lemma, δ[0](~x) ≡ ~λ0.(A~x +
~a) + r0 with ~λ0 ≥ ~0 and r0 ≥ 0. If d > 1, δ[0](~x0) = 0 thus r0 = 0. Furthermore, if
~x ∈ P0, δ[0](~x) = 0 iff (A~x + ~a)[i] = 0 for each i such that ~λ0[i] > 0:

P1 = {~x | A~x + ~a ≥ ~0; (A~x + ~a)[i] = 0 if ~λ0[i] > 0}

where some inequalities that define P0 are now equalities. The same study can now
be done for P1 if d > 2. The only difference is that, because of the equalities (called
saturated inequalities), Farkas lemma leads to δ[1](~x) ≡ ~λ1.(A~x + ~a) with ~λ1[i] ≥ 0
if ~λ0[i] = 0 (standard inequality), otherwise ~λ1[i] can be of any sign if ~λ0[0] > 0
(saturated inequality). Then, for ~x ∈ P1, δ[1](~x) = 0 iff (A~x + ~a)[i] = 0 for each i such
that ~λ0[i] = 0 and ~λ1[i] > 0. Finally, by induction, we get the following properties, for
all 0 < j < d:

• P j = P j−1 ∩ {~x | (A~x + ~a)[i] = 0 if ~λ j−1[i] > 0}, i.e., P j = P ∩ {~x | (A~x + ~a)[i] =
0 if ∃k<j s. t. ~λk[i] > 0};

• δ[j](~x) ≡ ~λ j.(A~x + ~a) + r j;

• r j = 0 if j < d − 1, rd−1 ≥ 0;

• ~λ j[i] ≥ 0 if ~λk[i] = 0 for all k < j.

The last property can be interpreted as follows. If Λ is the matrix whose columns are
the vectors ~λ, then each row of Λ is lexicographically nonnegative. Thus, there exists
~α such that Λ~α ≥ 0 (component-wise) and (Λ~α)[i] = 0 only if the corresponding row

INRIA

Multidimensional Affine Ranking Functions 17

of Λ is equal to ~0. For that, we just need to define the components of ~α successively,
from the last one to the first one. Indeed, a row i of Λ of level j + 1, thus with Λi, j > 0
and Λi,k = 0 for k < j, corresponds to a constraint

∑

k≤ jΛi,k~α[k] > 0, i.e., it gives a
lower bound on ~α[j], once all ~α[k], for k > j, have been fixed:

~α[j] > −

∑

k> j
~λk[i]~α[k]

~λ j[i]

We can also choose ~α such that ~α[d − 1] > 0.
Now, for such ~α, ~α.δ(~x) = (Λ~α).(A~x + ~a) + ~α[d − 1]rd−1, thus ~α.δ(~x) ≥ 0 for all

~x ∈ P. It remains to show that ~α.δ(~x) , 0 if δ(~x) , ~0. Let ℓ be the level of δ(~x). If
ℓ < d, ~x ∈ Pℓ−1 and ~x < Pℓ. Thus δ[ℓ − 1](~x) > 0 and there is i such that ~λℓ−1[i] > 0
and (A~x + ~a)[i] > 0. Thus, Λi,ℓ−1 > 0, then ~α[i] > 0, and finally ~α.δ(~x) > 0. If ℓ = d,
the situation is the same except that it is possible that ~λℓ−1.(A~x + ~a) = 0. But, in this
case, we must have rd−1 > 0 and again ~α.δ(~x) > 0. �

Note that our algorithm, described in Section 3.2.2, looks for a function that al-
ways fully satisfies at least one transition, otherwise it stops. Lemma 8 shows that this
strategy is not a restriction, at least for the first dimension.

Lemma 8 If an affine interpreted automaton has an affine ranking function ρ, then

there is an affine ranking function ρ′, of same dimension, whose first dimension fully

satisfies at least one transition, i.e., ∃ t ∈ T such that ∀(~x, ~x ′) ∈ Qt, ∆(ρ′[0], ~x, ~x ′) ≥ 1.

Proof The trick is to use Lemma 7 to replace the first dimension of ρ by a linear
combination of the first ℓmin dimensions that, all together, satisfy all constraints of at
least one transition. ℓmin is defined as follows. For each transition t, each ∆t(ρ, ~x, ~x ′)
is a lexicographically positive vector. Let ℓt be the maximal level of all ∆t(ρ, ~x, ~x ′) for
(~x, ~x ′) ∈ Qt. Then ℓmin is the minimum of all ℓt.

For each transition t = (k, g, a, k′), let δt be the affine function of dimension ℓmin

defined, for all ~y = (~x, ~x ′), by the first ℓmin components of ρ(k, ~x)−ρ(k′, ~x ′): δt satisfies
the hypotheses of Lemma 7 for Qt. Let Λ be the matrix formed by all rows of the
matricesΛt associated to the different δt. Its rows are all lexicographically nonnegative,
thus again, we can select ~α such that, for all t ∈ T and for all ~y ∈ Qt, ~α.δt(~y) ≥ 0 and
~α.δt(~y) , 0 if δt(~y) , ~0.

We now come back to ρ. We extend ~α, with 0s, to get a vector with same di-
mension as ρ. Then ~α.ρ is a linear combination of the first ℓmin dimensions of ρ. By
construction, if t ∈ T and (~x, ~x ′) ∈ Qt, ∆(~α.ρ, ~x, ~x ′) ≥ 0 and ∆(~α.ρ, ~x, ~x ′) > 0 if the
level of ∆(ρ, ~x, ~x ′) is ≤ d. Thus, replacing ρ[0] by ~α.ρ defines a ranking ρ′ whose first
dimension fully satisfied all transitions t such that ℓt = ℓmin.

Note: so far, we did not enforce (~α.ρ)(k, ~x) ≥ 0 for all ~x ∈ Pk. We can handle this
additional constraint thanks to Lemma 7 again. We can also simply impose directly
~α ≥ ~0 (component-wise). �

We can now use all lemmas to prove the algorithm completeness.

Theorem 1 If an affine interpreted automaton, with associated invariants, has an

affine ranking function, then the algorithm of Section 3.2.2 finds one and its dimen-

sion is minimal.

Proof Consider an affine ranking function ρ of dimension d. According to Lemma 8,
there is an affine ranking function ρ′ of dimension d that fully satisfies at least one
transition. Thus, the algorithm of Section 3.2.2 succeeds to generate a one-dimensional

RR n° 7037

18 Alias & Darte & Feautrier & Gonnord & Quinson

function σ, which maximizes the number of fully satisfied transitions. In particular, σ
fully satisfies all transitions fully satisfied by ρ′, otherwise, as showed for Lemma 5,
the function ρ′[0] + σ fully satisfies more transitions than σ, a contradiction. Thus, if
we replace ρ′[0] by σ, we get a new ranking ρ′′ of dimension d.

Now, there is a subtlety. For computing the next dimension of the ranking function
with the algorithm of Section 3.2.2, we could consider only the pairs (~x, ~x ′) ∈ Qt such
that ∆t(σ[0], ~x, ~x ′) = 0. Nevertheless, to make the algorithm simpler, we keep the
whole Qt as soon as the transition t is not fully satisfied. We need to show that this
strategy does not weaken the algorithm. We use again Lemma 7, considering this time
only the transitions t not fully satisfied by ρ′′[0] = σ. Again, for these transitions,
the hypotheses of Lemma 7 are fulfilled if we consider the two first dimensions of
∆t(ρ′′, ~x, ~x ′). As we did for Lemma 8, there is a (one-dimensional) linear combination
δ of ρ′′[0] and ρ′′[1] such that ∆(δ, ~x, ~x ′) ≥ 0 and ∆(δ, ~x, ~x ′) > 0 if ∆(ρ′′, ~x, ~x ′) has
level ≤ 2. Finally, if we replace the second dimension of ρ′′ by δ, Lemma 6 shows that
we get a new ranking function ρ′′′ of dimension d. Furthermore, by construction of
δ, the last d − 1 dimensions of ρ′′′ satisfy all transitions not fully satisfied by its first
dimension, i.e., by σ, the first dimension generated by the algorithm of Section 3.2.2.

We can now iterate the process similarly until all transitions are satisfied, which
shows that the algorithm of Section 3.2.2 generates a ranking of dimension at most d.
This is true for any d, dimension of an affine ranking function, thus the ranking function
generated by the algorithm of Section 3.2.2 has minimal dimension. �

To summarize the proof, we start from an affine ranking of dimension d. We show
that there is an affine ranking of dimension d that fully satisfies at least one transi-
tion. This proves that our algorithm does not stop and generates a one-dimensional
function σ. Then, we show that there is an affine function of dimension d whose first
dimension is σ. Finally, we show that there is an affine function of dimension d, whose
first dimension is σ, and such that the d − 1 last dimensions satisfy all transitions not
fully satisfied by σ. Iterating the process, this shows our algorithm terminates and
generates an affine ranking of dimension ≤ d, for any possible dimension d.

Remark 3 The proof of Theorem 1 is similar to the proof given in [40] of the op-
timality of the multi-dimensional scheduling algorithm of Feautrier [20]. The main
difference is that we handle the general case of transitions where a(~x) is a set not just a
singleton, i.e., we do not assume that the actions are functions. Also, as far as we could
check, the initialization of the induction in Theorem 1, i.e., the fact that the algorithm
fully satisfies at least one transition if a multi-dimensional affine function exists, seems
to be missing in [40]. In our proof, this property is given by Lemma 8.

3.4 Scalability

The size of the system (8) is roughly proportional to the number of transitions in the
automaton. This may be too much for the underlying linear solver. However, the sit-
uation can be improved along the lines of [21]. Notice first that each transition has
its own set of Farkas multipliers, the ~µt of (5). These multipliers can be eliminated
one transition at a time, thus leaving only the ~λk as unknowns. Furthermore, the un-
knowns in the constraint system for a transition pertain only to the source and sink of
the transition. Hence, the grand constraint system (8) is a block representation of the
connexion graph of the automaton: each system (5) generates a block of rows in which
only the columns corresponding to the unknowns for the source and sink of transition t

INRIA

Multidimensional Affine Ranking Functions 19

are nonzero. These unknowns can be successively eliminated using various heuristics
(e.g., eliminate first the unknowns for a state of minimum degree), leaving only a sys-
tem of constraints on the εt, which is then solved for the maximum σ. The different ~λ
are then recovered by a process of back substitution, and there is no need to compute
the ~µt.

In these algorithms, elimination (or projection) turned out to be best achieved by
a combination of Gaussian elimination, controlled Fourier-Motzkin elimination, and
Chernikova algorithm.

3.5 Worst-case time complexity

As shown in the survey by Wilhelm et al. [41], the computation of a worst-case execu-
tion time (WCET) is a highly complex affair, as it has to take into account the program,
its data, and the processor on which it is run. Handling all these complexities is beyond
the scope of our paper. Our aim is to evaluate an abstract WCET, as would be observed
on a processor with a perfectly additive timing model, executing one automaton transi-
tion in unit time. We call this quantity the worst time complexity of the program (WTC).
Such an estimate can be useful, for example as a template with unknown coefficients,
to be fitted to actual measurements by a process of regression. It is also standard in
high-level synthesis to need an upper-bound on the number of loop iterations (loops
as well as loops), to enable scheduling optimization at higher level. We thus de-
fine the WTC as an upper bound on the number of transitions executed, given an initial
value of the counter variables.

With this definition, one could over-approximate WTC by the total number of
reachable states, i.e., WTC ≤

∑

k #Rk or even more conservative WTC ≤
∑

k #Pk as
Rk is itself over-approximated by Pk. In addition to the fact that this is a very rough
over-approximation, this technique can even lead to an infinite WTC, even for a termi-
nating automaton, if some Pk is unbounded. Rather, we use the ranking function itself
to select the useful bounded constraints. Indeed, consider a trace (k0, ~x0), (k1, ~x1), . . . ,
(kp, ~xp) in the execution of the automaton. Since by definition of a ranking function,
ρ(ki+1, ~xi+1) ≺ ρ(ki, ~xi), and since ≺ is a strict order, it follows by transitivity that all
ρ(ki, ~xi) are distinct inW. Hence, the length of the trace is bounded by the cardinal of
the co-domain of ρ:

WTC ≤ #
⋃

k

ρ(k,Pk) ≤
∑

k

#ρ(k,Pk) (9)

The first inequality is more accurate but harder to compute as it involves a union of
sets. Counting integer points means considering Z-polyhedra, i.e., intersections of an
integer lattice (e.g., Zn) and a polyhedron (e.g., Pk). As ~x 7→ ρ(k, ~x) is affine, the
number of integer points in ρ(k,Pk) can be over-approximated as the cardinal of some
Z-polyhedron (e.g., using Smith form) or computed exactly as the number of points in
the image of a Z-polyhedron by an affine function. Such problems have been deeply
studied in the context of high performance computing, using various techniques related
to Ehrhart polynomials [10, 11, 38, 39]. To deal with unions, it is also possible to
use tools that generate loops from polyhedra, such as Cloog 5, which implements a
modified version of [36]. Then, counting points directly in loops is also an option as
done in [31].

5http://www.cloog.org

RR n° 7037

http://www.cloog.org

20 Alias & Darte & Feautrier & Gonnord & Quinson

We point out that, in the present version, the WTC is computed according to the
rightmost expression in (9). Implementing a more precise version, with unions, is left
for future work.

Example 2 (Cont’d) In this very simple, fully-deterministic, example, the two in-
equalities of (9) lead to the same upper bound WTC ≤ 1 + (N0 + 1) + N0(N0 + 1) =
1 + (N0 + 1)2. �

4 Experimental results

We have built a tool suite that converts a C program into an integer interpreted automa-
ton, constructs its invariants, tests its termination and, if successful, computes an upper
bound for its WTC.

Implementation The first tool, c2fsm is just an exercise in parsing and control graph
construction. The main difficulties come from the complexity of C syntax and seman-
tics, and mainly from the convention that an assignment can occur at any depth in an
expression. Our guidelines have been to consider only assignments to integer variables,
and to give a variable the bottom value unless it is assigned an affine form in other inte-
ger variables. The fact that C has no Booleans is both a simplification and a hindrance,
as it forbids the use of some of the techniques that were developed for synchronous
languages compilation [5]. The result of this analysis is presented as a system of states
and transitions in the input format of A which is responsible for the computation of
invariants. The reader is referred to [23] or [17] for a full description of A.

The ranking algorithm and the worst time complexity are implemented in a tool
called R. The minor premise of Farkas lemma (the fact that the polyhedron is
non-empty) and the system 8 are solved with the PIP tool (Parametric Integer Pro-
gramming), now wrapped in the Piplib library 6. The Ehrhart polynomials part of the
Polylib library is then used for computing time complexities.

Preliminary results This tool chain has been tested on a large set of benchmarks
from the literature. Most of the examples were collected in [9] from many other papers
dealing with termination analysis. They can be found at the following web address:

http://www.dcs.qmul.ac.uk/~aziem/esop/.

Furthermore, the source code for all the examples (including ours) are given in the
appendix, following the order of the results. The results are summarized in Table 1.
The test cases we developed for checking our algorithm are marked by ♣. first two
columns give information about the test cases. The third column gives statistics about
the (generated) interpreted automaton, in the following way: number of relevant vari-
ables, number of control points, number of transitions. The fourth column gives either
the dimension of the ranking function if the algorithm succeeds, or DK (“don’t know”)
if it fails to prove termination. The timing measurements (last column) have been done
on a 2 GHz Pentium with 1 GByte of memory running Debian 2.6. These measures
include the invariants computation time from the A file, the computation of the
ranking function, and the evaluation of the WTC.

6piplib.org

INRIA

http://www.dcs.qmul.ac.uk/~aziem/esop/
piplib.org

Multidimensional Affine Ranking Functions 21

Name Ref Variables Control points Transitions dim ρ Time (s)
easy1 [9] 3 4 5 1 0.05
easy2 [9] 3 3 3 1 0.05
ackermann [3] 2 7 7 1 0.07
terminate [12] 3 1 1 1 0.05
gcd [6] 2 5 1 1 0.07
rsd ♣ 3 3 4 1 0.06
nd-loop ♣ 2 5 5 1 0.05
wcet2 ♣ 2 3 5 1 0.11
relation1 ♣ 2 4 4 1 0.06
ndecr ♣ 2 4 4 1 0.05
cousot11 [16] 3 4 5 1 0.07
cousot16 [16] 2 3 4 1 0.05
random2d [9] 5 10 21 1 2.70
random1d [9] 3 4 6 2 0.08
wise ♣ 2 6 10 2 0.20
wcet0 ♣ 3 6 8 2 0.05
wcet1 ♣ 3 6 8 2 0.20
decr ♣ 2 4 5 2 0.06
exmini ♣ 4 3 6 2 0.08
aaron2 [9] 3 6 10 2 0.13
while2 1 3 3 4 2 0.06
cousot9 [16] 3 4 5 2 0.08
perfect [8] 4 7 10 2 0.23
loops [34] 3 4 5 2 0.07
insertsort ♣ 3 6 7 2 0.07
bubblesort [9] 4 10 17 3 0.38
ax ♣ 4 3 6 3 0.07
nestedLoop [26] 6 12 17 3 18
determinant [8] 4 6 7 4 0.15
maccarthy91 [13] 4 6 7 DK 0.15

Table 1: Experimental results

RR n° 7037

22 Alias & Darte & Feautrier & Gonnord & Quinson

Comments In most cases, we were able to prove termination, even for nondetermin-
istic examples like random2d in Table 1. Nested loops are correctly handled, and
we find multi-dimensional rankings for them. The case of recursion is often han-
dled by making assumptions about (the values of) the variables after a recursive call
(for instance we assume that the result of ackermann is always positive). We were
also able to prove the termination of some sortings algorithms like bubblesort and
insertsort. The ranking we discover for bubblesort may seem of the wrong di-
mension, but the additional dimensions have constant values and the order of magni-
tude of the WTC is still O(size2) as expected. For the nestedLoop example, which
has a very complicated iteration domain, most of the time (16s) is spent in computing
the WTC.

However, we are for the moment unable to prove the termination of mergesort due
to scalability reasons. Note also that we did not try yet to eliminate redundant variables
or constraints in the different algorithms. We therefore manipulate polyhedra of higher
dimensions than needed. In addition, since the termination of concurrent programs
sometimes depends on a fairness hypothesis, we were unable to solve some of the
examples of [34]. We found the precision of our algorithm to be strongly dependent
on the quality of the invariants, and also the quality of the affine approximation of
some (non affine) affectations in the C programs. Moreover, in many cases we had to
add some preconditions on the values of initial variables. It seems that most of these
preconditions were not mentioned in the literature. However, some of them can be
precomputed with a forward-backward analysis, like in [16].

5 Related work

Using ranking functions to prove correctness was first proposed in [22]. Early ap-
proaches were semi-automatic: one had to guess ranking functions, and then prove
their correctness using some form of Hoare logic. Attempts to automate this process
followed [12, 13, 7]. It was then realized that one-dimensional rankings were not pow-
erful enough, and propositions to build multi-dimensional [6] or polynomial rankings
[16] followed. We believe that our method (which was suggested by our previous work
on scheduling [20]), is a satisfactory solution to this problem.

However, the applicability of our method to large programs is still to be ascertained.
In [32], Manna suggested to select a subset of the states of the automaton (cutpoints)
in such a way that each cycle in the graph crosses at least one cut point. Termination
follows if one can find a ranking function, defined only on the cut points, and which
decreases on each path from a cut point to another cut point. It is easy to extend such
a function to all states (see Lemma 2) but the resulting global ranking will use the
max operator, and may therefore be just piecewise affine rather than affine. It is clear
that this method is a way of reducing the program automaton by removing states and
merging transition by relation composition. This can be done before the computation of
invariants, or after application of Farkas lemma, as suggested in Section 3.4. Assessing
the relative merits of these two approaches is left for future work.

A large body of research followed the introduction of the size change termination
(SCT) principle in [30]. The difference in the two approaches are mainly in semantics:
the automaton represents a call graph instead of a control graph, and the variables may
be summary information about data structures, like the length of a list or the size of a
tree. More importantly, the relations between input and output variables of a transition
are restricted to one of the two forms x′ < y and x′ ≤ y. An attempt to lift this

INRIA

Multidimensional Affine Ranking Functions 23

restriction can be found in [1]. In [2], it is shown that termination of an SCT system
can be proved using an exponential number of very simple local ranking functions,
or with a global ranking function involving an exponential number of subterms. This
is in contrast to a very simple consequence of Theorem 1, that the dimension of our
ranking function is no larger than the number of transitions (and even no larger than the
number of variables with some stronger hypotheses [19]). The explanation is probably
that the two sets of programs for which our algorithm succeeds and for which the SCT
formalism succeeds are almost disjoint.

Another trend of research has been started in [35] and pursued in [9]. Here, one
uses several (local) ranking relations, all of them well founded, the intuition being that
each relation proves termination of a part of the program. A consistency condition
is necessary: the transitive closure of the transition relation of the program must be
included in the union of all local ranking relations. The problem is how to find the
local rankings, and how to prove the consistency condition. It may be that we can help
at least for the first problem: apply our algorithm to cleverly chosen subsets of the
automaton states, as for example strongly connected components or loops.

6 Conclusion

6.1 Contributions

The main contribution of this paper is the design of an algorithm for the construction of
multi-dimensional ranking functions, which, in contrast to to the combinatorial algo-
rithm of [6], is greedy but nevertheless complete (with respect to the invariants found
and the class of ranking functions considered) and optimal in the dimension of the
ranking function. The algorithm makes no assumption whatever on the shape of the
source program, and can handle, with proper preprocessing (i.e., after the program is
approximated to fit into the affine interpreted automaton model), multiple loops of arbi-
trary nesting patterns, premature termination and goto’s, nondeterministic choices and
values, exceptions, and Boolean guards of arbitrary structure. Note also that, in case of
failure, our algorithm can also exhibit an execution trace which may not terminate, but
all the details are not worked up yet.

The computation of the worst time complexity (WTC) is delegated to a very com-
prehensive stand-alone algorithm. This means that no arbitrary restrictions about the
shape of loops and tests are necessary. We can directly rely on existing methods and
tools for counting integer points within Z-polyhedra and images of Z-polyhedra by
affine functions. More generally, our work establishes a strong link with computation
models, theoretical results, and tools, developed by the automatic parallelization and
high-performance computing community, and which seem to be not so used (or partly
re-discovered) in the context of program termination. We believe that this connection
can lead to further fruitful developments to face other problems faced by both commu-
nities.

6.2 Future work

There is nevertheless room for many improvements. The preprocessor we use for con-
verting a program into an interpreted automaton is somewhat brute force: any construct
that is not affine in integer variables is replaced by the bottom value, which is absorbing
(⊥ ⊕ x = ⊥ for most operators), and which prints as true in a guard and as a ques-

RR n° 7037

24 Alias & Darte & Feautrier & Gonnord & Quinson

tion mark in an action. This can be improved by noticing that some operations, like
modulo and integer division, can be linearized by the introduction of fresh variables, or
that a bottom value may be constrained: for instance, a square is always non-negative.
Also, variables with a finite domain, like Booleans and enums, can be used to refine
the states. This may cost a large increase in the size of the automaton but has the direct
benefit of extending the class of ranking functions considered, as these do not need to
be affine anymore for such “unrolled” variables. Making sure that domains of integer
variables are “fat” (to use the terminology of [18]) increases the chance that an affine
ranking exists and improves the quality of the WTC produced.

There is always room for improving an invariant constructor like A. One may
for instance improve the acceleration algorithms and loops treatment, or use additional
abstract interpretation frameworks, like the congruences and lattices of [24]. Also, to
prove program termination, it may be interesting to try to combine the construction
of the invariants and of the ranking functions to increase the accuracy of the method,
thanks to a better control on how widening is performed when computing invariants.

Last but not least, the power of the ranking algorithm can be increased in many
ways. For instance, experiments have shown that imposing that ranking functions are
nonnegative everywhere (see Inequality 2) is too strong a constraint in many cases. It is
enough to impose it at a set of cut points. If the automaton graph becomes acyclic when
these cut points are removed, then termination is still guaranteed, notwithstanding the
relaxed nonnegativity constraint.

Research on the SCT paradigm has shown that ranking functions of a more complex
shape, like piecewise affine functions, are necessary in some cases. In our framework,
this means splitting the invariant of some state(s) by an affine constraint. How to choose
the states to split and the splitting predicate is left for future research.

There remains the question of interprocedural termination. If there is no recursive
call, one may resort to inlining, but this will raise again the question of scalability. One
may want to combine the SCT approach with the present one: if there is no infinite path
in the call graph, and no infinite path in each function control graph, then termination
is guaranteed. However, in many cases, the caller and the callee may interact in com-
plex ways, especially in the presence of side effects, and this will greatly complicate a
termination test.

A point we have not investigated is the termination of distributed programs. Our
algorithm fails when termination depends on a fairness hypothesis.

References

[1] Hugh Anderson and Siau-Cheng Khoo. Affine-based size-change termination.
In Atsushi Ohori, editor, 1st Asian Symposium on Programming Languages and

Systems (APLAS’03), volume 2895 of Lecture Notes in Computer Science, pages
122–140, Beijing, 2003. Springer Verlag.

[2] Amir M. Ben-Amram. A complexity tradeoff in ranking-function termination
proofs. Acta Informatica, 46(1):57–72, 2009.

[3] Amir M. Ben-Amram and Chin Soon Lee. Program termination analysis in
polynomial time. ACM Transactions on Programming Languages and Systems

(TOPLAS), 29(1):5, 2007.

INRIA

Multidimensional Affine Ranking Functions 25

[4] Andreas Blass and Yuri Gurevich. Inadequacy of computable loop invariants.
ACM Transactions on Computational Logic (TOCL), 2(1):1–11, 2001.

[5] A. Bouajjani, J.-C. Fernandez, N. Halbwachs, P. Raymond, and C. Ratel. Minimal
state graph generation. Science of Computer Programming, 18:247–269, 1992.

[6] Aaron A. Bradley, Zohar Manna, and Henny B. Sipma. The polyranking princi-
ple. In 32nd International Colloquium on Automata, Languages and Program-

ming (ICALP), volume 3580 of Lecture Notes in Computer Science, pages 1349–
1361. Springer Verlag, July 2005.

[7] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Linear ranking with reach-
ability. In Kousha Etessami and Sriram K. Rajamani, editors, 17th International

Conference on Computer Aided Verification (CAV), volume 3576 of Lecture Notes

in Computer Science, pages 491–504. Springer Verlag, July 2005.

[8] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Termination analysis
of integer linear loops. In 16th International Conference on Concurrency Theory

(CONCUR), volume 3653 of Lecture Notes in Computer Science, pages 488–502.
Springer Verlag, August 2005.

[9] Aziem Chawdhary, Byron Cook, Sumit Gulwani, Mooly Sagiv, and Hongseok
Yang. Ranking abstractions. In 17th European Symposium on Programming

(ESOP’08), volume 4960 of Lecture Notes in Computer Science, pages 81–92,
Budapest, April 2008. Springer Verlag.

[10] Philippe Clauss. Counting solutions to linear and nonlinear constraints through
Ehrhart polynomials: Applications to analyze and transform scientific programs.
In International Conference on Supercomputing (ICS’96), pages 278–285. ACM,
1996.

[11] Philippe Clauss. Handling memory cache policy with integer points counting. In
Parallel Processing, 3rd International Euro-Par Conference, volume 1300 of Lec-

ture Notes in Computer Science, pages 285–293, Passau, August 1997. Springer
Verlag.

[12] Michael Colón and Henny Sipma. Synthesis of linear ranking functions. In 7th

International Conference on Tools and Algorithms for the Construction and Anal-

ysis of Systems (TACAS’01), volume 2031 of Lecture Notes in Computer Science,
pages 67–81. Springer Verlag, 2001.

[13] Michael A. Colón and Henny B. Sipma. Practical methods for proving program
termination. In 14th International Conference on Computer Aided Verification

(CAV), volume 2404 of Lecture Notes in Computer Science, pages 442–454.
Springer Verlag, January 2002.

[14] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In 4th

ACM Symposium on Principles of Programming Languages (POPL’77), pages
238–252, Los Angeles, January 1977.

[15] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In 5th ACM Symposium on Principles of Programming

Languages (POPL’78), pages 84–96, Tucson, January 1978.

RR n° 7037

26 Alias & Darte & Feautrier & Gonnord & Quinson

[16] Patrick Cousot. Proving program invariance and termination by parametric ab-
straction, Lagrangian relaxation, and semidefinite programming. In 6th Interna-

tional Conference on Verification, Model Checking and Abstract Interpretation

(VMCAI’05), volume 3385 of Lecture Notes in Computer Science, pages 1–24,
Paris, January 2005. Springer Verlag.

[17] Laure Danthony-Gonnord. Accélération abstraite pour l’amélioration de la pré-

cision en Analyse des Relations Linéaires. PhD thesis, Université Joseph Fourier,
Grenoble, October 2007.

[18] Alain Darte, Leonid Khachiyan, and Yves Robert. Linear scheduling is nearly
optimal. Parallel Processing Letters, 1(2):73–81, 1991.

[19] Alain Darte, Yves Robert, and Frédéric Vivien. Scheduling and Automatic Paral-

lelization. Birkhauser, 2000. ISBN 0-8176-4149-1.

[20] Paul Feautrier. Some efficient solutions to the affine scheduling problem, part
II, multi-dimensional time. International Journal of Parallel Programming,
21(6):389–420, December 1992.

[21] Paul Feautrier. Scalable and structured scheduling. International Journal of Par-

allel Programming, 34(5):459–487, May 2006.

[22] Robert W. Floyd. Assigning meaning to programs. In J. T. Schwartz, editor,
Symposium on Applied Mathematics, volume 19, pages 19–32. A.M.S., 1967.

[23] L. Gonnord and N. Halbwachs. Combining widening and acceleration in linear
relation analysis. In 13th International Static Analysis Symposium (SAS’06), vol-
ume 4134 of Lecture Notes in Computer Science, pages 144–160, Seoul, August
2006. Springer Verlag.

[24] Philippe Granger. Static analysis of linear congruence equalities among variables
of a program. In International Joint Conference on Theory and Practice of Soft-

ware Development (TAPSOFT’91), volume 493 of Lecture Notes in Computer

Science, pages 169–192, Brighton, 1991. Springer Verlag.

[25] Sumit Gulvani, Krishna K. Mehra, and Trishul Chilimbi. SPEED: Precise and
efficient static estimation of program computational complexity. In 36th ACM

Symposium on Principles of Programming Languages (POPL’09), pages 127–
139, Savannah, January 2009.

[26] Sumit Gulwani, Sagar Jain, and Eric Koskinen. Control-flow refinement and
progress invariants for bound analysis. In ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI’09), pages 375–385,
Dublin, 2009. ACM.

[27] N. Halbwachs. Détermination automatique de relations linéaires vérifiées par les
variables d’un programme. PhD thesis, Université de Grenoble, March 1979.

[28] R. M. Karp, R. E. Miller, and S. Winograd. The organization of computations for
uniform recurrence equations. Journal of the ACM, 14(3):563–590, July 1967.

[29] C. S. Lee. Ranking functions for size-change termination. ACM Transactions on

Programming Languages and Systems (TOPLAS), 31(3):1–42, 2009.

INRIA

Multidimensional Affine Ranking Functions 27

[30] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change prin-
ciple for program termination. ACM SIGPLAN Notices, 36(3):81–92, 2001.

[31] P. Lokuciejewski, D. Cordes, H. Falk, and P. Marwedel. A fast and precise
static loop analysis based on abstract interpretation, program slicing, and poly-
tope models. In International Symposium on Code Generation and Optimization

(CGO’09), pages 136–146, Seattle, March 2009. IEEE Computer Society Press.

[32] Zohar Manna. Termination of programs represented as interpreted graphs. In
Spring Joint Computer Conference (AFIPS’70), pages 83–89. ACM, May 1970.

[33] Zohar Manna. Mathematical Theory of Computing. MacGraw-Hill, 1974.

[34] Andreas Podelski and Andrey Rybalchenko. A complete method for the synthesis
of linear ranking functions. In Bernhard Steffen and Giorgio Levi, editors, Verifi-

cation, Model Checking, and Abstract Interpretation (VMCAI’03), volume 2937
of Lecture Notes in Computer Science, pages 239–251. Springer Verlag, 2004.

[35] Andreas Podelski and Andrey Rybalchenko. Transition invariants. In Harald
Ganzinger, editor, IEEE Symposium on Logic in Computer Science (LICS’04),
pages 32–41. IEEE Computer Society, July 2004.

[36] Fabien Quilleré, Sanjay V. Rajopadhye, and Doran Wilde. Generation of efficient
nested loops from polyhedra. International Journal of Parallel Programming,
28(5):469–498, 2000.

[37] A. Schrijver. Theory of linear and integer programming. Wiley, NewYork, 1986.

[38] Sven Verdoolaege, Kristof Beyls, Maurice Bruynooghe, and Francky Catthoor.
Experiences with enumeration of integer projections of parametric polytopes. In
14th International Conference on Compiler Construction (CC’05), volume 3443
of Lecture Notes in Computer Science, pages 91–105, Edinburgh, 2005. Springer
Verlag.

[39] Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and Maurice
Bruynooghe. Counting integer points in parametric polytopes using Barvinok’s
rational functions. Algorithmica, 48(1):37–66, 2007.

[40] Frédéric Vivien. On the optimality of Feautrier’s scheduling algorithm. Con-

currency and Computation: Practice and Experience, 15(11-12):1047–1068,
September 2003. Euro-Par’02 special issue.

[41] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-
mann, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per
Stenström. The determination of worst-case execution times—overview of the
methods and survey of tools. ACM Transactions on Embedded Computing Sys-

tems (TECS), 7(3):1–53, 2008.

RR n° 7037

28 Alias & Darte & Feautrier & Gonnord & Quinson

A Source code of kernels

This section provides the source code of the kernels used for the experimental results.
We also recall the execution times given in table 1. The timings were obtained on a
2GHz Pentium with 1GByte of memory running on a Debian 2.6.

easy1 (0.05s)
int x,y,z;

x = 0;

y = 100;

while (x < 40)

{

if (z==0)

x = x + 1;

else

x = x + 2;

}

easy2 (0.05s)
int x,y,z;

x = 12;

y = 0;

while (z > 0)

{

x = x + 1;

y = y - 1;

z = z - 1;

}

ackermann (0.07s)
//Automaton entered by hand

//Assuming m>=0 && n>=0

A:

if (m<=0) //A(0,n) = n+1

return;

if (n<=0) { //A(m,0) = A(m-1,1)

m = m - 1; n = 1; goto A;

}

//A(m,n) = A(m-1,A(m,n-1))

m = m - 1;

n = random(); //n = A(m,n-1);

goto A;

terminate (0.05s)
int i, j, k, ell;

while (i <= 100 && j <= k)

{

ell = i;

i = j;

j = ell + 1;

k--;

}

gcd (0.07s)
int x,y;

if(x<=0 || y<=0) return;

while (x != y)

{

if (x<y) y = y - x;

else x = x - y;

}

rsd (0.06s)
int r,da,db,temp;

if (r>=0){

da = 2*r;

db = 2*r;

while (da >= r) {

if (brandom()){

da --;

}

else{

temp = da;

da = db - 1;

db = temp;

}

}

}

nd-loop (0.05s)
int x,y;

x=0;

do {

y=x;

x=random();

if ((x-y>2) || (x-y<1))

break;

}

while (x<10);

wcet2 (0.11s)
int i,j;

while (i<5) {

j = 0;

while (i>2 && j<=9) j++;

i++;

}

relation1 (0.06s)
int x,y;

do {

y=x;

x=random();

if ((x-y>2) || (x-y<1)) break;

}

while (x<10);

ndecr (0.05s)
int i,n;

i = n-1;

while (i>1)

{

i--;

}

cousot11 (0.07s)
int x,y,i;

while (x<y)

{

if (i >= 0)

x = x + i + 1;

else

y = y + i;

}

cousot16 (0.05s)
int i,j;

i = 2;

j = 0;

while (random())

{

if(j >= 0 && i >= 2*j+2)

if (brandom()) i = i + 4;

else {

i = i + 2;

j = j + 1;

}

}

INRIA

Multidimensional Affine Ranking Functions 29

random2d (2.70s)
int x,y,i,r,N;

x = 0;

y = 0;

i = 0;

while (i<N) {

i=i+1;

r=random();

if (r>=0 && r<=3) {

if (r==0) x=x+1;

else if (r==1) x=x-1;

else if (r==2) y=y+1;

else if (r==3) y=y-1;

}

}

random1d (0.08s)
int a,x,max;

if (max > 0) {

a = 0;

x = 1;

while (x<=max) {

if (brandom())

a = a + 1;

else

a = a - 1;

x = x + 1;

}

}

wise (0.20s)
int x, y;

if (x<0 || y<0) return;

while (x-y>2 || y-x>2)

{

if (x < y)

++x;

else

++y;

}

wcet0 (0.05s)
int i,j,n;

j = 0;

i = n;

if (n>=1)

{

do {

if (brandom()) {

j++;

if (j>=n) j = 0;

}

else {

j--;

if (j<=-n) j = 0;

}

i--;

}

while (i>0);

}

wcet1 (0.20s)
int i,j,n;

j = 0;

i = n;

if (n>=1)

{

do {

if (brandom()){

j++;

if (j>=n) j = 0;

}

else {

j--;

if (j<=0) j = 0;

}

i--;

}

while (i>0);

}

decr (0.06s)
int i,n;

if (n>=1)

{

i = n-1;

while (i>=0)

{

if (i==0 && random())

break;

i--;

}

}

exmini (0.08s)
int i,j,k,tmp;

while (i<=100 && j<=k){

tmp = i;

i = j;

j = tmp + 1;

k = k - 1;

}

aaron2 (0.13s)
int tx, x, y;

if (tx >= 0) {

while (x >= y) {

if (tx < 0) return 0;

if (brandom())

x = x - 1 - tx;

else

y = y + 1 + tx;

}

}

while2 (0.06s)
int i,j,N;

i = N;

if (i > 0) {

j = N;

while (j > 0) j--;

}

cousot9 (0.08s)
int i,j,N;

i = N;

while (i>0) {

if (j>0) j--;

else

{

j = N;

i--;

}

}

perfect (0.23s)
int y1, y2, y3;

if (x <= 1) return 0;

y1 = x;

y2 = x;

y3 = x;

for(y1=x-1; y1>0; y1=y1-1)

{

while (y2 >= y1)

y2 = y2 - y1;

if (y2 == 0)

y3 = y3 - y1;

y2 = x;

}

//return (y3 == 0);

loops (0.07s)
int n; /* n > 0 */

int x, y;

x = n;

if (x >= 0)

{

while (x >= 0){

y = 1;

if (y < x)

while (y < x)

y = 2*y;

x = x - 1;

}

}

RR n° 7037

30 Alias & Darte & Feautrier & Gonnord & Quinson

insertsort (0.07s)
int a[];

int len;

int i, j, value;

for (i=1; i<len; i++)

{

value = a[i];

for (j=i-1;

j>=0 && a[j]>value;

j--)

{

a[j + 1] = a[j];

}

a[j+1] = value;

}

bubblesort (0.38s)
int size,error,b,j,t;

error=0;

b=size;

if (size>0) {

while (b>=1) {

if (size<=0) return 0;

j=1;

t=0;

while (j<=b-1) {

if (j<1||j>size)

return;

if (j+1<1||j+1>size)

return ;

if (brandom())

t = j;

j = j + 1;

}

if (t<1 || t>=b)

return;

b=t;

}

}

ax (0.07s)
int i,j,n;

if (n>=1)

{

i = 0;

do {

j = 0;

while (j<n-1) j++;

i++;

}

while (j>=n-1 && i<n-1);

}

nestedLoop (18s)
int i, j, k;

if (0<=n && 0<=m && 0<=N)

{

i = 0;

while (i<n){

j = 0;

while (j<m){

j += 1;

k = i;

while (k<N)

k += 1;

i = k;

}

++i;

}

}

determinant (0.15s)
//Automaton entered by hand

//from [33], p. 199

int i,j,k,n,y,z;

int X[10][10];

y = random();

//y = X[1][1];

k = 1;

B1:

if(k == n)

{

z = y;

return;

}

else

{

i = k+1;

B2:

if(i == n+1)

{

k = k + 1;

y = random();

//y = y*X[k][k];

goto B1;

}

else

{

j = n;

while(j != k)

{

//X[i][j] = X[i][j] -

// X[k][j]*X[i][k]/X[k][k];

j = j - 1;

}

i = i + 1;

goto B2;

}

}

maccarthy91 (DK,0.15s)
int y1,y2,z;

y1 = x;

y2 = 1;

if (y1>100) z = y1 - 10;

else

{

while (y1 <= 100)

{

y1 = y1 + 11;

y2 = y2 + 1;

}

while (y2 > 1)

{

y1 = y1 - 10;

y2 = y2 - 1;

if (y1 > 100 && y2 == 1)

z = y1 - 10;

else

{

if (y1 > 100)

{

y1 = y1 - 10;

y2 = y2 - 1;

}

y1 = y1 + 11;

y2 = y2 + 1;

}

}

}

INRIA

Multidimensional Affine Ranking Functions 31

Contents

1 Introduction and motivation 3

2 Definitions and elementary properties 4

2.1 Notations . 4
2.2 Integer interpreted automata . 4
2.3 Termination and ranking functions 6

3 Generating affine ranking functions for affine interpreted automata 9

3.1 Generating invariants . 9
3.2 Computing affine ranking functions 11

3.2.1 One-dimensional affine ranking functions 12
3.2.2 Multi-dimensional affine ranking functions 13

3.3 Completeness . 15
3.4 Scalability . 18
3.5 Worst-case time complexity . 19

4 Experimental results 20

5 Related work 22

6 Conclusion 23

6.1 Contributions . 23
6.2 Future work . 23

A Source code of kernels 28

RR n° 7037

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction and motivation
	Definitions and elementary properties
	Notations
	Integer interpreted automata
	Termination and ranking functions

	Generating affine ranking functions for affine interpreted automata
	Generating invariants
	Computing affine ranking functions
	One-dimensional affine ranking functions
	Multi-dimensional affine ranking functions

	Completeness
	Scalability
	Worst-case time complexity

	Experimental results
	Related work
	Conclusion
	Contributions
	Future work

	Source code of kernels

