412 research outputs found

    Performance of Hybrid Direct-Sequence Time-Hopping Ultrawide Bandwidth Systems over Nakagami-m Fading Channels

    No full text
    This paper investigates and compares the performance of various ultrawide bandwidth (UWB) systems when communicating over Nakagami-m fading channels. Specifically, the direct-sequence (DS), time-hopping (TH) and hybrid direct-sequence time-hopping (DS-TH) UWB systems are considered. The performance of these UWB systems is studied associated with employing the conventional single-user correlation detector or minimum mean-square error (MMSE) multiuser detector. Our simulation results show that the hybrid DS-TH UWB system may outperform a corresponding pure TH-UWB or pure DS-UWB system in terms of the achievable error performance. Given the total spreading gain of the hybrid DS-TH UWB system, there is an optimal setting of the TH spreading factor and DS spreading factor, which results in the best error performance

    Locating the information: applications, technologies and future aspects

    Get PDF
    In today’s world, the demand for information is growing rapidly with respect to the human curiosity to explore the inside and the outside of our planet. In a simple analogy, the human body has thousands of sensors called receptor neurons to obtain information such as temperature or pressure from the environment. Similarly, recent developments in electronics and wireless communications lead engineers to the design of small-sized, low-power, low-cost sensor nodes which have the ability to communicate with each other over short distances and collect the information that is gathered

    Ultra-wide bandwidth backscatter modulation: processing schemes and performance

    Get PDF
    Future advanced radio-frequency identification (RFID) systems are expected to provide both identification and high-definition localization of objects with improved reliability and security while maintaining low power consumption and cost. Ultrawide bandwidth (UWB) technology is a promising solution for next generation RFID systems to overcome most of the limitations of current narrow bandwidth RFID technology, such as reduced area coverage, insufficient ranging resolution for accurate localization, sensitivity to interference, and scarce multiple access capability. In this article, the UWB technology is applied to passive RFID relying on backscatter modulation. A signaling structure with clutter and interference suppression capability is proposed and analyzed. The potential performance is investigated in terms of range/data rate trade-off, clutter suppression, and multiple access capability using experimental data obtained in both the controlled and realistic environments

    A Quantitative Assessment of the Compatibility of Ultra Wideband with Broadband Wireless Access and Radar Services

    Get PDF
    In July 2008, following a request made by the Radio Spectrum Policy Unit in DG INFSO (Unit B4), a pilot phase of twelve months was agreed with Member States representatives in the Radio Spectrum Committee. During this time the Institute for the Protection and Security of the Citizen of the EC Joint Research Centre (IPSC-JRC) has been mandated to provide testing facilities to support the development of Community spectrum legal measures under the Radio Spectrum Decision (676/2002/EC). In the frame of this pilot phase, IPSC-JRC has successfully completed the implementation and extensive testing of both a state-of-the-art laboratory test-bed and a simulation tool, which have been specifically designed for two different coexistence studies. Firstly, the coexistence between broadband wireless access (BWA) and ultra wideband (UWB) services in the 3.5 GHz frequency band; and secondly, the coexistence between radiolocation (i.e. radar) and UWB services in the 3.1-3.4 GHz frequency band. The selection of these two coexistence scenarios is not casual and has been made based on the fact that they have been considered highly relevant in the CEPT-ECC studies on UWB mandated by the European Commission.JRC.G.6-Security technology assessmen

    Fundamental Limits of Wideband Localization - Part II: Cooperative Networks

    Get PDF
    The availability of positional information is of great importance in many commercial, governmental, and military applications. Localization is commonly accomplished through the use of radio communication between mobile devices (agents) and fixed infrastructure (anchors). However, precise determination of agent positions is a challenging task, especially in harsh environments due to radio blockage or limited anchor deployment. In these situations, cooperation among agents can significantly improve localization accuracy and reduce localization outage probabilities. A general framework of analyzing the fundamental limits of wideband localization has been developed in Part I of the paper. Here, we build on this framework and establish the fundamental limits of wideband cooperative location-aware networks. Our analysis is based on the waveforms received at the nodes, in conjunction with Fisher information inequality. We provide a geometrical interpretation of equivalent Fisher information for cooperative networks. This approach allows us to succinctly derive fundamental performance limits and their scaling behaviors, and to treat anchors and agents in a unified way from the perspective of localization accuracy. Our results yield important insights into how and when cooperation is beneficial.Comment: To appear in IEEE Transactions on Information Theor

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Joint Estimation of the Time Delay and the Clock Drift and Offset Using UWB signals

    Full text link
    We consider two transceivers, the first with perfect clock and the second with imperfect clock. We investigate the joint estimation of the delay between the transceivers and the offset and the drift of the imperfect clock. We propose a protocol for the synchronization of the clocks. We derive some empirical estimators for the delay, the offset and the drift, and compute the Cramer-Rao lower bounds and the joint maximum likelihood estimator of the delay and the drift. We study the impact of the protocol parameters and the time-of-arrival estimation variance on the achieved performances. We validate some theoretical results by simulation.Comment: Accepted and published in the IEEE ICC 2014 conferenc

    A Comparison of Parametric and Sample-Based Message Representation in Cooperative Localization

    Get PDF
    Location awareness is a key enabling feature and fundamental challenge in present and future wireless networks. Most existing localization methods rely on existing infrastructure and thus lack the flexibility and robustness necessary for large ad hoc networks. In this paper, we build upon SPAWN (sum-product algorithm over a wireless network), which determines node locations through iterative message passing, but does so at a high computational cost. We compare different message representations for SPAWN in terms of performance and complexity and investigate several types of cooperation based on censoring. Our results, based on experimental data with ultra-wideband (UWB) nodes, indicate that parametric message representation combined with simple censoring can give excellent performance at relatively low complexity
    • …
    corecore