92 research outputs found

    Joint received signal strength, angle-of-arrival, and time-of-flight positioning

    Get PDF
    This paper presents a software positioning framework that is able to jointly use measured values of three parameters: the received signal strength, the angle-of-arrival, and the time-of-flight of the wireless signals. Based on experimentally determined measurement accuracies of these three parameters, results of a realistic simulation scenario are presented. It is shown that for the given configuration, angle-of-arrival and received signal strength measurements benefit from a hybrid system that combines both. Thanks to their higher accuracy, time-of-flight systems perform significantly better, and obtain less added value from a combination with the other two parameters

    Joint Estimation of the Time Delay and the Clock Drift and Offset Using UWB signals

    Full text link
    We consider two transceivers, the first with perfect clock and the second with imperfect clock. We investigate the joint estimation of the delay between the transceivers and the offset and the drift of the imperfect clock. We propose a protocol for the synchronization of the clocks. We derive some empirical estimators for the delay, the offset and the drift, and compute the Cramer-Rao lower bounds and the joint maximum likelihood estimator of the delay and the drift. We study the impact of the protocol parameters and the time-of-arrival estimation variance on the achieved performances. We validate some theoretical results by simulation.Comment: Accepted and published in the IEEE ICC 2014 conferenc

    Exact analysis of weighted centroid localization

    Get PDF
    Source localization of primary users (PUs) is a geolocation spectrum awareness feature that can be very useful in enhancing the functionality of cognitive radios (CRs). When the cooperating CRs have limited information about the PU, weighted centroid localization (WCL) based on received signal strength (RSS) measurements represents an attractive low-complexity solution. In this paper, we propose a new analytical framework to calculate the exact performance of WCL in the presence of shadowing, based on results of the ratio of two quadratic forms in normal variables. In particular, we derive an exact expression for the root mean square error (RMSE) of the two-dimensional location estimate. Numerical results confirm that the derived framework is able to predict the performance of WCL capturing all the essential aspects of propagation as well as CR network spatial topology

    Reducing communication overhead for cooperative localization using nonparametric belief propagation

    Get PDF
    A number of methods for cooperative localization has been proposed, but most of them provide only location estimate, without associated uncertainty. On the other hand, nonparametric belief propagation (NBP), which provides approximated posterior distributions of the location estimates, is expensive mostly because of the transmission of the particles. In this paper, we propose a novel approach to reduce communication overhead for cooperative positioning using NBP. It is based on: i) communication of the beliefs (instead of the messages), ii) approximation of the belief with Gaussian mixture of very few components, and iii) censoring. According to our simulations results, these modifications reduce significantly communication overhead while providing the estimates almost as accurate as the transmission of the particles

    Micropower Design of an Energy Autonomous RF Tag for UWB Localization Applications

    Get PDF
    This paper describes the architecture and the micropower design criteria of a battery-less, energy autonomous, individually addressable RF tag for UWB localization applications, with a focus on baseband circuitry. The tag includes a UHF rectifier, power conversion and management circuits, an addressable wake-up radio module, a microcontroller-based control unit, and circuits for UWB localization. The proposed circuit is suitable for UWB localization either by using passive backscattering of received UWB pulses, or by using active UWB pulses generators. Power for operation is scavenged from a modulated UHF carrier also used for addressing purposes. The circuit is implemented on discrete components in a 3.12 cm2 PCB area. The circuit can wake-up from fully discharged states and operates at distances as high as 10.8 m from a 2W-ERP source in the UHF 865–868 MHz RFID band with a +1.8 dBi receiving antenna. The quiescent power consumption of the tag is 3.88 μW, and the average power consumption at an addressing and activation rate of one time per second is 4.7 μW. The effectiveness of UWB localization was tested in a localization system based on time-difference-of-arrival (TDOA) estimations, consisting of multiple UWB readers and UHF transmitters

    An assessment of different optimization strategies for location tracking with an Android application on a smartphone

    Get PDF
    This paper presents a study of the efficacy of different optimization strategies for location tracking on an Android App that is run on a smartphone. The basic algorithm determines the most probable path of the user within a WiFi network by comparing raw RSSI measurements at each location with values in a fingerprint database. The investigated optimization strategies include: accounting for previous locations, increasing the number of WiFi scans per location, applying an advanced averaging technique, exploiting accelerometer data, shifting the frequency band from 2.4 to 5 GHz, and changing the position of the smartphone with respect to the body. It is shown that especially the accelerometer data allow enhancing the location estimation significantly. By combining different techniques, an average accuracy better than 2 m can be achieved

    Monte-Carlo simulation of the impact of LED power uncertainty on visible light positioning accuracy

    Get PDF
    This paper presents a simulation study of the impact of Light Emitting Diode (LED) output power uncertainty on the accuracy of Received Signal Strength (RSS)-based Visible Light Positioning (VLP). The actual emitted power of a LED is never exactly equal to the value that is tabulated in the datasheet, with possible variations (or tolerances) up to 20%. Since RSS-based VLP builds on converting estimated channel attenuations to distances and locations, this uncertainty will impact VLP accuracy in real-life setups. A typical configuration with four LEDs is assumed here, and a Monte-Carlo simulation is executed to investigate the distribution of the resulting positioning errors for four tolerance values at seven locations. It is shown that median errors are the highest just below the LEDs. When tolerance values on the LED power increase from 5% to 20%, median errors vary from at most 2 cm to at most 10 cm. Maximal errors can be as high as 17 cm just below the LED, already for tolerance values of only 5%, and increase up to 40 cm for tolerance values of 20%

    Location-Aware Formation Control in Swarm Navigation

    Get PDF
    Goal-seeking and information-seeking are canonical problems in mobile agent swarms. We study the problem of collaborative goal-approaching under uncertain agent position information. We propose a framework that establishes location-aware formations, resulting in a controller that accounts for agent position uncertainty with a realistic ranging model. Simulation results confirm that, as the outcome of the controller, the swarm moves towards its goal, while emerging formations conducive to high-quality localization

    Double sliding window variance detection-based time-of-arrival estimation in ultra-wideband ranging systems

    Get PDF
    Ultra-wideband (UWB) ranging via time-of-arrival (TOA) estimation method has gained a lot of research interests because it can take full advantage of UWB capabilities. Energy detection (ED) based TOA estimation technique is widely used in the area due to its low cost, low complexity and ease of implementation. However, many factors affect the ranging performance of the ED-based methods, especially, non-line-of-sight (NLOS) condition and the integration interval. In this context, a new TOA estimation method is developed in this paper. Firstly, the received signal is denoised using a five-level wavelet decomposition, next, a double sliding window algorithm is applied to detect the change in the variance information of the received signal, the first path (FP) TOA is then calculated according to the first variance sharp increase. The simulation results using the CM1 and CM2 IEEE 802.15.4a channel models, prove that our proposed approach works effectively compared with the conventional ED-based methods
    • …
    corecore