154 research outputs found

    Acoustic Scene Clustering Using Joint Optimization of Deep Embedding Learning and Clustering Iteration

    Full text link
    Recent efforts have been made on acoustic scene classification in the audio signal processing community. In contrast, few studies have been conducted on acoustic scene clustering, which is a newly emerging problem. Acoustic scene clustering aims at merging the audio recordings of the same class of acoustic scene into a single cluster without using prior information and training classifiers. In this study, we propose a method for acoustic scene clustering that jointly optimizes the procedures of feature learning and clustering iteration. In the proposed method, the learned feature is a deep embedding that is extracted from a deep convolutional neural network (CNN), while the clustering algorithm is the agglomerative hierarchical clustering (AHC). We formulate a unified loss function for integrating and optimizing these two procedures. Various features and methods are compared. The experimental results demonstrate that the proposed method outperforms other unsupervised methods in terms of the normalized mutual information and the clustering accuracy. In addition, the deep embedding outperforms many state-of-the-art features.Comment: 9 pages, 6 figures, 11 tables. Accepted for publication in IEEE TM

    Domestic Activity Clustering from Audio via Depthwise Separable Convolutional Autoencoder Network

    Get PDF
    Automatic estimation of domestic activities from audio can be used to solve many problems, such as reducing the labor cost for nursing the elderly people. This study focuses on solving the problem of domestic activity clustering from audio. The target of domestic activity clustering is to cluster audio clips which belong to the same category of domestic activity into one cluster in an unsupervised way. In this paper, we propose a method of domestic activity clustering using a depthwise separable convolutional autoencoder network. In the proposed method, initial embeddings are learned by the depthwise separable convolutional autoencoder, and a clustering-oriented loss is designed to jointly optimize embedding refinement and cluster assignment. Different methods are evaluated on a public dataset (a derivative of the SINS dataset) used in the challenge on Detection and Classification of Acoustic Scenes and Events (DCASE) in 2018. Our method obtains the normalized mutual information (NMI) score of 54.46%, and the clustering accuracy (CA) score of 63.64%, and outperforms state-of-the-art methods in terms of NMI and CA. In addition, both computational complexity and memory requirement of our method is lower than that of previous deep-model-based methods. Codes: https://github.com/vinceasvp/domestic-activity-clustering-from-audioComment: 6 pages, 5 figures, 4 tables. Accepted by IEEE MMSP 202

    Partially supervised learning of models for visual scene and object recognition

    Get PDF
    When creating a visual recognition system for a novel task, one of the main burdens is the collection and annotation of data. Often several thousand samples need to be manually reviewed and labeled so that the recognition system achieves the desired accuracy. The goal of this thesis is to provide methods that lower the annotation effort for visual scene and object recognition. These methods are applicable to traditional pattern recognition approaches as well as methods from the field of deep learning. The contributions are three-fold and range from feature augmentation, over semi-supervised learning for natural scene classification to zero-shot object recognition. The contribution in the field of feature augmentation deals with handcrafted feature representations. A novel method for incorporating additional information at feature level has been introduced. This information is subsequently integrated in a Bag-of-Features representation. The additional information can, for example, be of spatial or temporal nature, encoding a local feature's position within a sample in its feature descriptor. The information is quantized and appended to the feature vector and thus also integrated in the unsupervised learning step of the Bag-of-Features representation. As a result more specific codebook entries are computed for different regions within the samples. The results in the field of image classification for natural scenes and objects as well as the field of acoustic event detection, show that the proposed approach allows for learning compact feature representations without reducing the accuracy of the subsequent classification. In the field of semi-supervised learning, a novel approach for learning annotations in large image collections of natural scene images has been proposed. The approach is based on the active learning principle and incorporates multiple views on the data. The views, i.e. different feature representations, are clustered independently of each other. A human in the loop is asked to label each data cluster. The clusters are then iteratively refined based on cluster evaluation measures and additional labels are assigned to the dataset. Ultimately, a voting over all views creates a partially labeled sample set that is used for training a classifier. The results on natural scene images show that a powerful visual classifier can be learned with minimal annotation effort. The approach has been evaluated for traditional handcrafted features as well as features derived from a convolutional neural network. For the semi-supervised learning it is desirable to have compact feature representation. For traditional features, the ones obtained by the proposed feature augmentation approach are a good example of such a representation. Especially the application in the field of deep learning, which usually requires large amounts of labeled samples for training or even adapting a deep neural network, the semi-supervised learning is beneficial. For the zero-shot object prediction, a method that combines visual and semantic information about natural scenes is proposed. A convolutional neural network is trained in order to distinguish different scene categories. Furthermore, the relations between scene categories and visual object classes are learned based on their semantic relation in large text corpora. The probability for a given image to show a certain scene is derived from the network and combined with the semantic relations based on a statistical approach. This allows for predicting the presence of certain object classes in an image without having any visual training sample from any of the object classes. The results on a challenging dataset depicting various objects in natural scene images, show that especially in cluttered scenes the semantic relations can be a powerful information cue. Furthermore, when post-processing the results of a visual object predictor, the detection accuracy can be improved at the minimal cost of providing additional scene labels. When combining these contributions, it is shown that a scene classifier can be trained with minimal human effort and its predictions can still be leveraged for object prediction. Thus, information about natural scene images and the object classes within these images can be gained without having the burden to manually label tremendous amounts of images beforehand

    Change detection in combination with spatial models and its effectiveness on underwater scenarios

    Get PDF
    This thesis proposes a novel change detection approach for underwater scenarios and combines it with different especially developed spatial models, this allows accurate and spatially coherent detection of any moving objects with a static camera in arbitrary environments. To deal with the special problems of underwater imaging pre-segmentations based on the optical flow and other special adaptions were added to the change detection algorithm so that it can better handle typical underwater scenarios like a scene crowded by a whole fish swarm

    High-quality face capture, animation and editing from monocular video

    Get PDF
    Digitization of virtual faces in movies requires complex capture setups and extensive manual work to produce superb animations and video-realistic editing. This thesis pushes the boundaries of the digitization pipeline by proposing automatic algorithms for high-quality 3D face capture and animation, as well as photo-realistic face editing. These algorithms reconstruct and modify faces in 2D videos recorded in uncontrolled scenarios and illumination. In particular, advances in three main areas offer solutions for the lack of depth and overall uncertainty in video recordings. First, contributions in capture include model-based reconstruction of detailed, dynamic 3D geometry that exploits optical and shading cues, multilayer parametric reconstruction of accurate 3D models in unconstrained setups based on inverse rendering, and regression-based 3D lip shape enhancement from high-quality data. Second, advances in animation are video-based face reenactment based on robust appearance metrics and temporal clustering, performance-driven retargeting of detailed facial models in sync with audio, and the automatic creation of personalized controllable 3D rigs. Finally, advances in plausible photo-realistic editing are dense face albedo capture and mouth interior synthesis using image warping and 3D teeth proxies. High-quality results attained on challenging application scenarios confirm the contributions and show great potential for the automatic creation of photo-realistic 3D faces.Die Digitalisierung von Gesichtern zum Einsatz in der Filmindustrie erfordert komplizierte Aufnahmevorrichtungen und die manuelle Nachbearbeitung von Rekonstruktionen, um perfekte Animationen und realistische Videobearbeitung zu erzielen. Diese Dissertation erweitert vorhandene Digitalisierungsverfahren durch die Erforschung von automatischen Verfahren zur qualitativ hochwertigen 3D Rekonstruktion, Animation und Modifikation von Gesichtern. Diese Algorithmen erlauben es, Gesichter in 2D Videos, die unter allgemeinen Bedingungen und unbekannten Beleuchtungsverhältnissen aufgenommen wurden, zu rekonstruieren und zu modifizieren. Vor allem Fortschritte in den folgenden drei Hauptbereichen tragen zur Kompensation von fehlender Tiefeninformation und der allgemeinen Mehrdeutigkeit von 2D Videoaufnahmen bei. Erstens, Beiträge zur modellbasierten Rekonstruktion von detaillierter und dynamischer 3D Geometrie durch optische Merkmale und die Shading-Eigenschaften des Gesichts, mehrschichtige parametrische Rekonstruktion von exakten 3D Modellen mittels inversen Renderings in allgemeinen Szenen und regressionsbasierter 3D Lippenformverfeinerung mittels qualitativ hochwertigen Daten. Zweitens, Fortschritte im Bereich der Computeranimation durch videobasierte Gesichtsausdrucksübertragung und temporaler Clusterbildung, Übertragung von detaillierten Gesichtsmodellen, deren Mundbewegung mit Ton synchronisiert ist, und die automatische Erstellung von personalisierten "3D Face Rigs". Schließlich werden Fortschritte im Bereich der realistischen Videobearbeitung vorgestellt, welche auf der dichten Rekonstruktion von Hautreflektionseigenschaften und der Mundinnenraumsynthese mittels bildbasierten und geometriebasierten Verfahren aufbauen. Qualitativ hochwertige Ergebnisse in anspruchsvollen Anwendungen untermauern die Wichtigkeit der geleisteten Beiträgen und zeigen das große Potential der automatischen Erstellung von realistischen digitalen 3D Gesichtern auf

    Efficient and intuitive teaching of redundant robots in task and configuration space

    Get PDF
    Emmerich C. Efficient and intuitive teaching of redundant robots in task and configuration space. Bielefeld: Universität Bielefeld; 2016.A major goal of current robotics research is to enable robots to become co-workers that learn from and collaborate with humans efficiently. This is of particular interest for small and medium-sized enterprises where small batch sizes and frequent changes in production needs demand a high flexibility in the manufacturing processes. A commonly adopted approach to accomplish this goal is the utilization of recently developed lightweight, compliant and kinematically redundant robot platforms in combination with state-of-the-art human-robot interfaces. However, the increased complexity of these robots is not well reflected in most interfaces as the work at hand points out. Plain kinesthetic teaching, a typical attempt to enable lay users programming a robot by physically guiding it through a motion demonstration, not only imposes high cognitive load on the tutor, particularly in the presence of strong environmental constraints. It also neglects the possible reuse of (task-independent) constraints on the redundancy resolution as these have to be demonstrated repeatedly or are modeled explicitly reducing the efficiency of these methods when targeted at non-expert users. In contrast, this thesis promotes a different view investigating human-robot interaction schemes not only from the learner’s but also from the tutor’s perspective. A two-staged interaction structure is proposed that enables lay users to transfer their implicit knowledge about task and environmental constraints incrementally and independently of each other to the robot, and to reuse this knowledge by means of assisted programming controllers. In addition, a path planning approach is derived by properly exploiting the knowledge transfer enabling autonomous navigation in a possibly confined workspace without any cameras or other external sensors. All derived concept are implemented and evaluated thoroughly on a system prototype utilizing the 7-DoF KUKA Lightweight Robot IV. Results of a large user study conducted in the context of this thesis attest the staged interaction to reduce the complexity of teaching redundant robots and show that teaching redundancy resolutions is feasible also for non-expert users. Utilizing properly tailored machine learning algorithms the proposed approach is completely data-driven. Hence, despite a required forward kinematic mapping of the manipulator the entire approach is model-free allowing to implement the derived concepts on a variety of currently available robot platforms

    Multimedia Retrieval

    Get PDF

    Generalized and efficient outlier detection for spatial, temporal, and high-dimensional data mining

    Get PDF
    Knowledge Discovery in Databases (KDD) ist der Prozess, nicht-triviale Muster aus großen Datenbanken zu extrahieren, mit dem Ziel, dass diese bisher unbekannt, potentiell nützlich, statistisch fundiert und verständlich sind. Der Prozess umfasst mehrere Schritte wie die Selektion, Vorverarbeitung, Evaluierung und den Analyseschritt, der als Data-Mining bekannt ist. Eine der zentralen Aufgabenstellungen im Data-Mining ist die Ausreißererkennung, das Identifizieren von Beobachtungen, die ungewöhnlich sind und mit der Mehrzahl der Daten inkonsistent erscheinen. Solche seltene Beobachtungen können verschiedene Ursachen haben: Messfehler, ungewöhnlich starke (aber dennoch genuine) Abweichungen, beschädigte oder auch manipulierte Daten. In den letzten Jahren wurden zahlreiche Verfahren zur Erkennung von Ausreißern vorgeschlagen, die sich oft nur geringfügig zu unterscheiden scheinen, aber in den Publikationen experimental als ``klar besser'' dargestellt sind. Ein Schwerpunkt dieser Arbeit ist es, die unterschiedlichen Verfahren zusammenzuführen und in einem gemeinsamen Formalismus zu modularisieren. Damit wird einerseits die Analyse der Unterschiede vereinfacht, andererseits aber die Flexibilität der Verfahren erhöht, indem man Module hinzufügen oder ersetzen und damit die Methode an geänderte Anforderungen und Datentypen anpassen kann. Um die Vorteile der modularisierten Struktur zu zeigen, werden (i) zahlreiche bestehende Algorithmen in dem Schema formalisiert, (ii) neue Module hinzugefügt, um die Robustheit, Effizienz, statistische Aussagekraft und Nutzbarkeit der Bewertungsfunktionen zu verbessern, mit denen die existierenden Methoden kombiniert werden können, (iii) Module modifiziert, um bestehende und neue Algorithmen auf andere, oft komplexere, Datentypen anzuwenden wie geographisch annotierte Daten, Zeitreihen und hochdimensionale Räume, (iv) mehrere Methoden in ein Verfahren kombiniert, um bessere Ergebnisse zu erzielen, (v) die Skalierbarkeit auf große Datenmengen durch approximative oder exakte Indizierung verbessert. Ausgangspunkt der Arbeit ist der Algorithmus Local Outlier Factor (LOF). Er wird zunächst mit kleinen Erweiterungen modifiziert, um die Robustheit und die Nutzbarkeit der Bewertung zu verbessern. Diese Methoden werden anschließend in einem gemeinsamen Rahmen zur Erkennung lokaler Ausreißer formalisiert, um die entsprechenden Vorteile auch in anderen Algorithmen nutzen zu können. Durch Abstraktion von einem einzelnen Vektorraum zu allgemeinen Datentypen können auch räumliche und zeitliche Beziehungen analysiert werden. Die Verwendung von Unterraum- und Korrelations-basierten Nachbarschaften ermöglicht dann, einen neue Arten von Ausreißern in beliebig orientierten Projektionen zu erkennen. Verbesserungen bei den Bewertungsfunktionen erlauben es, die Bewertung mit der statistischen Intuition einer Wahrscheinlichkeit zu interpretieren und nicht nur eine Ausreißer-Rangfolge zu erstellen wie zuvor. Verbesserte Modelle generieren auch Erklärungen, warum ein Objekt als Ausreißer bewertet wurde. Anschließend werden für verschiedene Module Verbesserungen eingeführt, die unter anderem ermöglichen, die Algorithmen auf wesentlich größere Datensätze anzuwenden -- in annähernd linearer statt in quadratischer Zeit --, indem man approximative Nachbarschaften bei geringem Verlust an Präzision und Effektivität erlaubt. Des weiteren wird gezeigt, wie mehrere solcher Algorithmen mit unterschiedlichen Intuitionen gleichzeitig benutzt und die Ergebnisse in einer Methode kombiniert werden können, die dadurch unterschiedliche Arten von Ausreißern erkennen kann. Schließlich werden für reale Datensätze neue Ausreißeralgorithmen konstruiert, die auf das spezifische Problem angepasst sind. Diese neuen Methoden erlauben es, so aufschlussreiche Ergebnisse zu erhalten, die mit den bestehenden Methoden nicht erreicht werden konnten. Da sie aus den Bausteinen der modularen Struktur entwickelt wurden, ist ein direkter Bezug zu den früheren Ansätzen gegeben. Durch Verwendung der Indexstrukturen können die Algorithmen selbst auf großen Datensätzen effizient ausgeführt werden.Knowledge Discovery in Databases (KDD) is the process of extracting non-trivial patterns in large data bases, with the focus of extracting novel, potentially useful, statistically valid and understandable patterns. The process involves multiple phases including selection, preprocessing, evaluation and the analysis step which is known as Data Mining. One of the key techniques of Data Mining is outlier detection, that is the identification of observations that are unusual and seemingly inconsistent with the majority of the data set. Such rare observations can have various reasons: they can be measurement errors, unusually extreme (but valid) measurements, data corruption or even manipulated data. Over the previous years, various outlier detection algorithms have been proposed that often appear to be only slightly different than previous but ``clearly outperform'' the others in the experiments. A key focus of this thesis is to unify and modularize the various approaches into a common formalism to make the analysis of the actual differences easier, but at the same time increase the flexibility of the approaches by allowing the addition and replacement of modules to adapt the methods to different requirements and data types. To show the benefits of the modularized structure, (i) several existing algorithms are formalized within the new framework (ii) new modules are added that improve the robustness, efficiency, statistical validity and score usability and that can be combined with existing methods (iii) modules are modified to allow existing and new algorithms to run on other, often more complex data types including spatial, temporal and high-dimensional data spaces (iv) the combination of multiple algorithm instances into an ensemble method is discussed (v) the scalability to large data sets is improved using approximate as well as exact indexing. The starting point is the Local Outlier Factor (LOF) algorithm, which is extended with slight modifications to increase robustness and the usability of the produced scores. In order to get the same benefits for other methods, these methods are abstracted to a general framework for local outlier detection. By abstracting from a single vector space, other data types that involve spatial and temporal relationships can be analyzed. The use of subspace and correlation neighborhoods allows the algorithms to detect new kinds of outliers in arbitrarily oriented subspaces. Improvements in the score normalization bring back a statistic intuition of probabilities to the outlier scores that previously were only useful for ranking objects, while improved models also offer explanations of why an object was considered to be an outlier. Subsequently, for different modules found in the framework improved modules are presented that for example allow to run the same algorithms on significantly larger data sets -- in approximately linear complexity instead of quadratic complexity -- by accepting approximated neighborhoods at little loss in precision and effectiveness. Additionally, multiple algorithms with different intuitions can be run at the same time, and the results combined into an ensemble method that is able to detect outliers of different types. Finally, new outlier detection methods are constructed; customized for the specific problems of these real data sets. The new methods allow to obtain insightful results that could not be obtained with the existing methods. Since being constructed from the same building blocks, there however exists a strong and explicit connection to the previous approaches, and by using the indexing strategies introduced earlier, the algorithms can be executed efficiently even on large data sets

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more
    corecore