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Abstract

Digitization of virtual faces in movies requires complex capture setups and extensive manual work
to produce superb animations and video-realistic editing. This thesis pushes the boundaries of the
digitization pipeline by proposing automatic algorithms for high-quality 3D face capture and ani-
mation, as well as photo-realistic face editing. These algorithms reconstruct and modify faces in
2D videos recorded in uncontrolled scenarios and illumination. In particular, advances in three
main areas offer solutions for the lack of depth and overall uncertainty in video recordings. First,
contributions in capture include model-based reconstruction of detailed, dynamic 3D geometry that
exploits optical and shading cues, multilayer parametric reconstruction of accurate 3D models in
unconstrained setups based on inverse rendering, and regression-based 3D lip shape enhancement
from high-quality data. Second, advances in animation are video-based face reenactment based
on robust appearance metrics and temporal clustering, performance-driven retargeting of detailed
facial models in sync with audio, and the automatic creation of personalized controllable 3D rigs. Fi-
nally, advances in plausible photo-realistic editing are dense face albedo capture and mouth interior
synthesis using image warping and 3D teeth proxies. High-quality results attained on challenging
application scenarios confirm the contributions and show great potential for the automatic creation
of photo-realistic 3D faces.
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Kurzzusammenfassung

Die Digitalisierung von Gesichtern zum Einsatz in der Filmindustrie erfordert komplizierte Aufnah-
mevorrichtungen und die manuelle Nachbearbeitung von Rekonstruktionen, um perfekte Animatio-
nen und realistische Videobearbeitung zu erzielen. Diese Dissertation erweitert vorhandene Digita-
lisierungsverfahren durch die Erforschung von automatischen Verfahren zur qualitativ hochwerti-
gen 3D Rekonstruktion, Animation und Modifikation von Gesichtern. Diese Algorithmen erlauben
es, Gesichter in 2D Videos, die unter allgemeinen Bedingungen und unbekannten Beleuchtungs-
verhältnissen aufgenommen wurden, zu rekonstruieren und zu modifizieren. Vorallem Fortschritte
in den folgenden drei Hauptbereichen tragen zur Kompensation von fehlender Tiefeninformation
und der allgemeinen Mehrdeutigkeit von 2D Videoaufnahmen bei. Erstens, Beiträge zur modellba-
sierten Rekonstruktion von detaillierter und dynamischer 3D Geometrie durch optische Merkmale
und die Shading-Eigenschaften des Gesichts, mehrschichtige parametrische Rekonstruktion von ex-
akten 3D Modellen mittels inversen Renderings in allgemeinen Szenen und regressionsbasierter
3D Lippenformverfeinerung mittels qualitativ hochwertigen Daten. Zweitens, Fortschritte im Be-
reich der Computeranimation durch videobasierte Gesichtsausdrucksübertragung und temporaler
Clusterbildung, Übertragung von detaillierten Gesichtsmodellen, deren Mundbewegung mit Ton
synchronisiert ist, und die automatische Erstellung von personalisierten “3D Face Rigs”. Schließ-
lich werden Fortschritte im Bereich der realistischen Videobearbeitung vorgestellt, welche auf der
dichten Rekonstruktion von Hautreflektionseigenschaften und der Mundinnenraumsynthese mittels
bildbasierten und geometriebasierten Verfahren aufbauen. Qualitativ hochwertige Ergebnisse in an-
spruchsvollen Anwendungen untermauern die Wichtigkeit der geleisteten Beiträgen und zeigen das
große Potential der automatischen Erstellung von realistischen digitalen 3D Gesichtern auf.
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Summary

Thanks to cutting-edge advances in technology in the fields of Computer Graphics and Vision in the
last two decades, the entertainment industry is now capable of bringing digital models of our favorite
actors to life in a very realistic way. The movie industry employs such technology for a range of
purposes, from the complexity of live action shots to the need for photo-realistic virtual characters
that resemble an actor’s appearance, e. g., a younger or older digital double. Digitizing photo-
realistic humans, especially faces, is a highly complex process. It is difficult because the human eye
is accustomed to identifying faces in our daily lives, and thus, our expert eye can easily spot even the
smallest inaccuracies in digital models. To achieve the desired level of photorealism, the digitization
pipeline in post-production performs several standardized technical steps. First, it creates a high-
quality fully-controllable 3D model in shape and appearance of the actor’s face – often referred
to as a “face rig” in the literature – to be animated by skilled digital artists. Then, the model is
rendered under desired lighting conditions. Finally, it is inserted back into the scene in an editing
step to create the final composite. We know that these steps to reconstruct detailed personalized 3D
face models and accurate facial motion require sophisticated capture setups and studio controlled
illumination to achieve the animation of photo-realistic digital faces; thus, it remains a challenge
to successfully utilize the digitization pipeline. Moreover, this pipeline relies primarily on the
expertise of an artist. He must manually improve both the face models and the facial animations to
make them look realistic when rendered back into the video – an effortful, lengthy and tedious task.

This thesis is motivated by the limitations in the capture process and the great deal of manual work
in the digitization pipeline. We develop robust and fully automatic algorithms that push the bound-
aries of digitization further and that aim to capture highly-detailed animated 3D face models and
photo-realistically modify faces with these models in unconstrained 2D footage recorded under un-
controlled lighting. Note that the algorithms’ tasks are ambitious due to the lack of 3D information
and overall uncertainty in a scene, e. g., (self) occlusions, sudden and expressive facial motion, light-
ing changes, and out-of-plane head rotation. What this thesis does is present automatic and accurate
model-based methods for capturing highly-detailed facial performances, animating controllable 3D
facial models at high fidelity, and editing photo-realistic faces with plausible mouth interior. These
methods all unify in a framework that improves on the underlying representation of the face to han-
dle more challenging video input and perform more advanced editing tasks. As a proof of concept,
we test our proposed methods on different real-life application scenarios, including face reenact-
ment, dubbing, face modification, and video rewriting.

The technical contributions of this thesis can be divided into three main areas: capture, animation,
and editing.

Capture The main improvements over state-of-the-art approaches can be summarized as fol-
lows: Chapter 4 presents an accurate approach that refines 2D facial landmark locations using
optical flow between automatically selected keyframes. Such 2D landmarks are used later to
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assist the tracking of 3D face models. Then, Chapter 5 introduces a drift-free model-based
tracking approach based on accurate 2D landmarks as well as dense optical and shading cues
in the temporal domain to obtain detailed, dynamic 3D geometry and estimate the incident
lighting in semi-constrained video sequences. To improve tracking further, Chapter 7 pro-
poses a robust fully-parametric face capture method that inverts the image formation model
to reconstruct multiple layers of personalization and details from unconstrained 2D footage,
e.g., a YouTube video. Finally, Chapter 9 demonstrates an effective data-driven lip regression
approach that leverages a new database of high-quality multiview reconstructions to enable
high-quality 3D lip shape reconstruction even from monocular video input.

Animation The main contributions in this area are mainly concerned with novel retargeting
and modeling techniques relevant to facial animation. Chapter 4 presents a simple, yet effec-
tive, video-based approach that transfers temporally-coherent facial expressions between two
arbitrary performances by leveraging robust appearance and motion descriptors, as well as
hierarchical clustering, to preserve temporal consistency. Chapter 6 introduces a system for
performance-driven model-based retargeting and resynthesis of detailed facial models that
can also align the optical channel with an audio signal for visual dubbing. Finally, Chapter 8
demonstrates that personalized high-quality 3D face rigs, which generate new person-specific
expressions and details by simply modifying intuitive motion controllers, can be created from
unconstrained monocular performances.

Editing The main contributions in this area are summarized as follows: Chapter 4 presents
a method for synthesizing a plausible mouth interior using simple image warping techniques.
Chapter 6 improves upon this simple approach by adding a 3D teeth proxy. It also shows
a method for capturing realistic dense face albedo that, when combined with the estimated
scene lighting (Chapter 5), can render photo-realistic 3D face models back into the original
video, as demonstrated in Chapters 6 and 8.

To summarize, this thesis presents several robust and automatic algorithms that aim at capturing,
animating, and editing photo-realistic synthetic face models at high fidelity from arbitrary 2D video
and that are affordable for anyone. The proposed scientific contributions greatly advance the state
of the art in monocular facial performance capture and face capture-based video editing, thus enor-
mously improving the toolbox available for creating photo-realistic human face avatars from 2D
video footage. Results attained on different application scenarios show great potential to automa-
tize the digitization of photo-realistic virtual characters in movies and games, and possibly virtual
communication, in the near future.
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Chapter 1
Introduction

1.1 Topic and Motivation

Advances in technology in the digitization pipeline now allow the entertainment industry to create
and animate digital 3D faces of actors in a very realistic way. The movie industry employs such
technology for a range of purposes, from the complexity of live action shots to the need for photo-
realistic virtual characters that resemble the appearance of an actor. Some examples that illustrate
the use of digital human faces in movies are shown in Figure 1.1.

To achieve the desired level of photorealism in digital scenes, it is mandatory to create custom,
photo-realistic face models with personalized expressions and idiosyncrasies that look indistinguish-
able from the real actor when played on the screen. To this end, post-production has engineered
a pipeline that usually comprises four standardized stages: Face rig creation, animation, render-
ing, and compositing. In the first step, a high-quality, actor-specific 3D face model is captured
in professional indoor setups [Klehm et al. 2015]. This personalized model usually contains hun-
dreds of detailed facial expressions performed by the actor, which are then manually improved by
digital artists. Then, the artists create deformation mechanisms and interactive high-level motion
controllers that activate different facial expressions. This process is called rigging and is done by
artists through motion rigs or blendshapes [Komorowski et al. 2010]. In the second step, the face
rig is animated either by manually moving the motion controllers or through motion capture data
[Beeler et al. 2011; Bickel et al. 2007; Bhat et al. 2013; Bradley et al. 2010; Weise et al. 2009]. In
the third step, the 3D facial animations are rendered under desired lighting conditions. Finally, the
renderings are blended in with the background scene to create the final composite.

The key to attaining high-quality results in this pipeline is the capture step that requires sophisticated
scanning systems [Huang et al. 2004; Weise et al. 2009; Wang et al. 2004] or multiview camera se-
tups [Beeler et al. 2011; Beeler and Bradley 2014] with studio controlled indoor illumination, e. g.,
light stages [Alexander et al. 2010; Alexander et al. 2013]. Such setups allow for capturing high-
quality face albedo and detailed 3D face geometry, including wrinkles and skin pores. However,
they are expensive and very hard to build and utilize by non-professional users. Furthermore, each
step in the pipeline relies on the expertise of digital artists. They must manually improve the face
models and the facial animations, as well as verify the quality of the renderings and the compositing
to ensure error-free video animations that do not fall into the uncanny valley – an effortful, lengthy
and tedious task.

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Examples showing the use of photo-realistic virtual human faces in feature films. (a)

Complex action live shots, such as running up walls of a building and flying. Top: The Flash,

http://www.cwtv.com/shows/the-flash. Bottom: The Matrix Reloaded, http://www.warnerbros.com/matrix;

(b) Younger and older digital doubles. Top: Terminator Genisys, http://www.terminatormovie.com/.

Bottom: The Curious Case Of Benjamin Button, http://www.benjaminbutton.com/; (c) Changes in fa-

cial shape, such as making the actor skinnier. Top, bottom: Captain America: The First Avenger,

http://marvel.com/captainamerica.

Recently, state-of-the-art lightweight approaches have tried to simplify the capture step by employ-
ing commodity sensors, e. g., RGB-D cameras [Bouaziz et al. 2013; Li et al. 2013b; Thies et al. 2015]
or webcams [Cao et al. 2014a; Thies et al. 2016]. However, the reconstructed 3D models lack either
fine-scale details, photo-realistic albedo, or both, which are essential elements to produce com-
pelling facial animations. As a result, based on these methods one cannot perform complex video
editing tasks, such as photo-realistic face appearance and expression modification, facial reenact-
ment, among others. Automatic digitization of photo-realistic virtual faces from standard 2D video
footage then remains as an open scientific challenge to the research community.

In this thesis, we address limitations concerning the capture of faces and the manually demanding
work needed in the digitization pipeline by developing novel automatic techniques that advance
the state of the art in photo-realistic face capture, animation, and editing from standard monocular
video recordings. More precisely, we propose robust and fully automatic methods that aim to 1)
reconstruct highly-detailed fully-controllable 3D face models from monocular 2D videos and 2)
photo-realistically modify faces with these models in 2D videos recorded under uncontrolled scene
and illumination conditions. As a proof of concept, we test our methods on different real-life
application scenarios, including face reenactment, visual dubbing, face modification, and video
rewriting.

http://www.cwtv.com/shows/the-flash
http://www.warnerbros.com/matrix
http://www.terminatormovie.com/
http://www.benjaminbutton.com/
http://marvel.com/captainamerica
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Figure 1.2: Challenges in monocular face capture and video-based editing. (a) Extreme out-of-plane head

rotations. (b) Lighting changes (top) and shadows (bottom) over the face. (c) Occlusions of external objects,

e. g., scalp hair and glasses (top) and non-skin features, e. g., facial hair (bottom). (d) Disocclusions in the

lip region. The outer and especially the inner boundary of the lips recurrently appears (top) and disappears

(bottom) during speech and as a result of complex motions.

1.2 Scope and Overview

Given an unscripted monocular 2D video of an actor recorded under unknown scene lighting, the
goal of this thesis is to develop robust, accurate, and fully-automatic model-based methods for
capturing high-quality facial performances, animating controllable 3D facial models at high fidelity,
and editing photo-realistic faces with a plausible mouth interior.

The goal stated above is ambitious since the input video data lack 3D information and present
several challenges, e. g., out-of-plane head rotations, varying illumination, (self) occlusions, and
sudden and expressive facial motion, as illustrated in Figure 1.2. To simplify the problem at hand,
this thesis assumes that no strong (cast) shadows and occlusions cover the face surface that we wish
to reconstruct, animate, and edit. To cope with the other inherent challenges in the capture and
editing of faces, we propose novel algorithms that all unify in a common framework and gradually
improve on the underlying representation of the face to handle more complex video input. We start
with a simple non-parametric 2D shape representation based on accurate 2D landmarks, which is
then extended to a fully-controllable parametric 3D face model with multiple levels of details. This
3D model not only allows us to capture photo-realistic appearance and detailed 3D geometry in
challenging unconstrained videos, but also to perform advanced photo-realistic video editing tasks
with minimal user-interaction, e. g., by just modifying high-level controllers with which digital
artists are familiar.

The specific technical contributions of this thesis differ in what part of the face digitization pipeline
they improve. In particular, we contribute to face capture, facial animation, and face editing. First,
contributions in face capture include accurate tracking of 2D facial landmarks, model-based recon-
struction of detailed dynamic 3D geometry, multilayer-based reconstruction of accurate parametric
3D models, and regression-based 3D lip shape enhancement from high-quality data. Second, ad-
vances in facial animation are video-based face reenactment based on robust motion and appearance
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metrics as well as temporal clustering, performance-driven retargeting of detailed facial models in
sync with audio, and the automatic creation of personalized controllable 3D rigs. Finally, advances
in plausible photo-realistic editing include dense face albedo capture and mouth interior synthesis
using 2D image warping and 3D teeth proxies.

The contributions described in this thesis are structured according to the improvements on the face
representation used internally by our methods rather than categorized by the advances in individual
application areas. This organization emphasizes better the contributions for two main reasons. On
the one hand, it illustrates the capabilities of the novel algorithms and models proposed in our
framework for different application scenarios. On the other hand, it shows the improvements that
are necessary to enable unconstrained capture as well as more sophisticated animation and editing
tasks.

1.3 Structure

This thesis is divided into nine chapters from which Chapters 4–9 cover the main technical contri-
butions in the areas of face tracking, facial animation, and face editing:

• Chapter 1 introduces the topic of this thesis, states the goals, outlines the structure of exposi-
tion, summarizes the technical chapters, and stresses the main technical contributions.

• Chapter 2 describes both the fundamental concepts and the mathematical notation that is
used throughout this thesis. These are mainly concerned with face modeling, as well as the
representation and synthesis of the face in the image.

• Chapter 3 provides a comprehensive overview of the related work in the following areas:
Facial performance capture, lip tracking, face rig and detail generation, speech- and video-
driven facial animation, and face replacement and modification in monocular videos.

• Chapters 4–9 present the main technical contributions. As mentioned before, these chapters
are structured to emphasize improvements on the underlying representation of the face: From
a simple non-parametric 2D shape model to a detailed and fully parametrized 3D model that
allows for more robust face reconstruction in uncontrolled 2D video footage, and for realistic
facial animation and video editing. Improvements on the face representation are discussed
at the end of each chapter and linked to subsequent chapters in this thesis. Furthermore,
each chapter shows challenging application scenarios that demonstrate the contributions in
the three areas mentioned above.

• Chapter 10 summarizes the core contributions and results achieved thus far, and it briefly
discusses already existing extensions as well as future challenges not explored in this thesis.
Furthermore, it gives an outlook towards the full digitization of human head avatars.

The following section gives a more detailed overview of the technical chapters of this thesis.
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1.3.1 Summary of Technical Chapters

Chapter 4 introduces an automatic image-based, facial reen-
actment method that tracks and replaces the face of an ac-
tor in a target video with that of a user from a source video,
while preserving the original target performance (published as
[Garrido et al. 2014]; partially as [Garrido et al. 2013]). This
method combines new image retrieval and image-based fa-
cial transfer techniques, the latter relying on accurate 2D
face tracking. Compared to related approaches, the proposed
method is fully automatic and robust under moderate head
motion. Moreover, it does not require a tailored database of
source expressions, but only short source videos with arbitrary

facial motion. A user study and quantitative validations show that the proposed method generates
plausible reenactments, both for self-recorded videos and for low-quality internet footage.

Motivated by the inability of the previous image-based ap-
proach to track and transfer challenging facial motion, Chap-
ter 5 presents the first model-based approach for captur-
ing detailed, dynamic, and spatio-temporally coherent 3D
face geometry from markerless 2D videos (published as
[Garrido et al. 2013]). This method relies on several algorith-
mic contributions that are non-trivially joined with state-of-
the-art 2D and 3D vision and graphics techniques adapted to
monocular video. Even though the proposed method requires
the camera’s intrinsics and a manually initialized coarse 3D
model of an actor, the capturing process is fully automatic,

works under fully uncontrolled lighting, and successfully reconstructs transient fine-scale skin de-
tails, e. g., wrinkles. High-quality performance capture results are demonstrated on long and ex-
pressive sequences recorded indoors and outdoors, and the relevance of the proposed approach is
illustrated as an enabling technology for model-based editing of facial textures in video.

Next, Chapter 6 shows the potential of the previous model-
based approach for retargeting tasks in real-life applications,
namely dubbing in movies (published as [Garrido et al. 2015]).
More specifically, it presents the first approach that alters the
mouth motion of a target actor in a video, so that it matches a
new audio track spoken in a different language by a dubbing

actor. This approach builds upon monocular performance capture and scene lighting estimation (see
Chapter 5). It also exploits audio analysis in combination with space-time frame retrieval to render
new photo-realistic 3D shape models of the mouth region to replace the original target performance.
A user study and qualitative validations show that the proposed approach produces plausible results
on par with footage that has been professionally dubbed in the traditional way.
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Chapter 7 introduces a novel multilayer model-based approach
for capturing arbitrary 3D face performances from 2D videos
with unknown camera, scene and lighting setups (published
as [Garrido et al. 2016a]). The heart of this approach is a new
multilayer parametric face model that jointly encodes plausi-
ble facial appearance and 3D geometry variation that is repre-
sented at multiple layers of detail. The appearance is modeled
by the incident lighting and an estimate of the face albedo,
while the shape is encoded by a subspace of facial shape iden-
tity, facial expressions, person-specific medium-scale correc-

tive shapes, and fine-scale skin details. These layers are optimized automatically in a new inverse
rendering framework that exploits color cues and accurate 2D landmark trajectories. The proposed
method is tested on challenging unconstrained sequences, e. g., YouTube videos. Qualitative and
quantitative experiments confirm that this novel multilayer approach produces results of higher qual-
ity than the approach from Chapter 5 and competes with or even outperforms other state-of-the-art
approaches.

Next, Chapter 8 presents an automatic approach to the cre-
ation of high-quality, personalized 3D face rigs that can be in-
tuitively controlled by high-level expression controllers (also
published as [Garrido et al. 2016a]). These face rigs are based
on three distinct layers (coarse, medium and fine) and learned
using a novel sparse regression approach. The proposed regres-
sion approach couples the coarse layer represented as generic
expressions (i. e., blendshapes) to the medium and fine-scale
layers, each containing different levels of personalized shape
details. Such a coupling assures local semantic control of
personalized deformations in ways consistent with expression
changes. Different application scenarios demonstrate that the
reconstructed face rigs when combined with the estimated
scene lighting and personalized skin albedo open up a world

of possibilities in realistic facial animation and for more complex video editing tasks.

Finally, Chapter 9 addresses the problem of accurate capture
of 3D lip shapes. It presents a fully automatic data-driven ap-
proach to reconstruct detailed and expressive lip shapes, along
with the dense geometry of the face, from a monocular video
(published as [Garrido et al. 2016b]). At its core is a new
gradient-domain lip correction network that leverages 2D lip
contours and coarse 3D lip geometry to learn the difference
between inaccurate and ground-truth 3D shapes of lips, where
ground truth lip shapes are obtained from a new database of

high-quality multiview reconstructions. Quantitative and qualitative results demonstrate that the
proposed method improves the reconstruction of complex lip motions when compared to state-of-
the-art monocular tracking, and it also generalizes well to general scenes and unseen individuals.
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1.4 Technical Contributions

In the following, we provide a more detailed list of technical contributions that enable the methods
described above.

The main contributions of Chapter 4 are:

• Accurate localization of a sparse set of 2D landmarks based on optical flow correction be-
tween automatically selected keyframes.

• A novel distance metric, which combines both appearance and motion information, to retrieve
similar facial expressions between videos, while preserving temporal continuity.

• A new temporal clustering that groups similar target expressions into consecutive clusters to
stabilize matching and assure accurate image selection.

• A simple, yet robust, image-based warping strategy that preserves the actor’s face shape (i. e.,
identity), while providing sufficiently precise head motion.

The main contributions of Chapter 5 are summarized as follows:

• Automatic, drift-free model-based tracking, which succeeds on long sequences with expres-
sive faces and fast motion, based on a sparse set of accurate 2D landmark trajectories.

• Temporally-coherent dense 3D geometry correction through a novel multi-frame variational
optical flow approach.

The main contributions of Chapter 6 are:

• A performance capture-based system for video-realistic retargeting and resynthesis of de-
tailed performances that align the visual channel with a dubbed audio signal.

• A spatio-temporal rearrangement strategy that uses the input facial performances and the
dubbed audio channel to synthesize new highly-detailed and synchronized 3D target perfor-
mances.

• Reconstruction of realistic target face albedo and synthesis of a plausible mouth interior based
on a geometric teeth proxy and 2D image warping.

The main contributions of Chapter 7 are outlined as follows:

• A new parametric facial shape representation to reconstruct and represent the 3D facial sur-
face at different levels of detail.

• A unified novel fitting approach that leverages both color cues and a sparse set of accurate
2D landmarks to reconstruct coarse- and medium-scale facial shape.

The main contributions of Chapter 8 are:

• Automatic extraction of parametrized rigs that model the correlation between blendshape
weights and person-specific idiosyncrasies at a medium- and a fine-scale detail layer.
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• A novel sparse regression approach that exploits the local support of blendshapes to produce
more accurate, detailed and realistic face rig animations.

The main contributions of Chapter 9 are summarized as follows:

• A novel, high-quality 3D lip shape database containing challenging motions, such as rolling
and extreme lip deformations, and general speech animations.

• A new data-driven strategy that learns accurate 3D lip deformations from high-quality multi-
view reconstructions enhanced with lip marker data.

• A robust gradient domain regression algorithm trained to infer accurate lip shapes from sub-
optimal monocular reconstructions and automatically detected 2D lip contours.

1.5 List of Publications

The work presented in this thesis mainly encompasses five peer-reviewed scientific publications,
published at top-tier conferences and journals in the field of computer graphics and vision. These
papers address challenging problems in facial performance capture and face capture-based anima-
tion and editing from monocular video. In addition, this thesis briefly discusses in Chapter 10 a
co-authored paper that goes beyond face digitization and reconstructs detailed, personalized 3D
teeth models in non-invasive capture setups.

The five papers in the area of face capture, animation and editing are:

• P. Garrido, L. Valgaerts, C. Wu and C. Theobalt. “Reconstructing detailed dynamic face
geometry from monocular video”. ACM Trans. Graph. (Proc. SIGGRAPH Asia), 32(6),
158:1-158:10, 2013.

• P. Garrido, L. Valgaerts, O. Rehmsen, T. Thormaehlen, P. Pérez and C. Theobalt. “Automatic
face reenactment”. In CVPR, 4217-4224, IEEE, 2014.

• P. Garrido, L. Valgaerts, H. Sarmadi, I. Steiner, K. Varanasi, P. Pérez and C. Theobalt. “Dub:
Modifying face video of actors for plausible visual alignment to a dubbed audio track”. Com-

put. Graph. Forum (Proc. Eurographics), 34(2), 193-204, 2015.

• P. Garrido, M. Zollhöfer, D. Casas, L. Valgaerts, K. Varanasi, P. Pérez, and C. Theobalt.
“Reconstruction of personalized 3D face rigs from monocular video”. ACM Trans. Graph.,
35(3), 28:1–28:15, 2016a.

• P. Garrido, M. Zollhöfer, C. Wu, D. Bradley, P. Pérez, T. Beeler and C. Theobalt. “Corrective
3D reconstruction of lips from monocular video”. ACM Trans. Graph. (Proc. SIGGRAPH

Asia), 35(2), 219:1–219:11, 2016b.

The co-authored paper that addresses the problem of teeth and gum reconstruction from images and
video is:

• C. Wu, D. Bradley, P. Garrido, M. Zollhöfer, C. Theobalt, M. Gross and T. Beeler. “Model-
based teeth reconstruction”. ACM Trans. Graph. (Proc. SIGGRAPH Asia), 35(6), 220:1–
220:13, 2016.



Chapter 2
Basics

2.1 Facial Animation and Modeling

2.1.1 Blendshapes

Blendshapes are extensively used by animation artists in 3D modeling and animation due to their
underlying semantic meaning. They can be thought of as additive facial expressions built on top
of a neutral face (see Figure 2.1). Mathematically, they form an additive model of potentially non-
orthogonal linear deformations and, in principle, any new facial expression can be approximated by
a weighted (or convex) combination of blendshapes [Lewis et al. 2014]. Let B = {b1,b2, . . . ,bn} be
the set of n blendshapes and b0 be the neutral face, where bi ∈ R

3k,∀i are represented as column
vectors, and k denotes the total number of vertices depicting the 3D face shape. A new facial
expression e can then be obtained as a linear combination of blendshapes1 , yielding the so-called
blendshape model:

e = Ba =
n

∑
i=0

αibi , (2.1)

where 0 ≤ αi ≤ 1, ∀i = 0 : n denote the linear weights (oftentimes controlled by sliders), a =
[α0, . . . ,αn]

⊤ ∈Rn+1 and B= [b0 | b1 | b2 | · · · |bn]∈R
3k×(n+1) is the basis of variation in expression,

represented as a stack of blendshapes (including the neutral face).

The formulation in Equation 2.1 imposes an undesired global scaling factor when combining dif-
ferent blendshapes. This is normally counteracted by imposing hard constraints on the sum of
weights, i. e., ∑i αi = 1. A more convenient and popular representation used by many modeling
packages (e. g., Maya) and different approaches in the literature [Bouaziz et al. 2013; Li et al. 2010;
Li et al. 2013b; Thies et al. 2015; Weise et al. 2011] is to model the blendshapes as delta variations
that linearly add up on top of the neutral face:

e = b0 +Ba = b0 +
n

∑
i=1

αi(bi−b0) = b0 +
n

∑
i=1

αidi , (2.2)

1Note that a solution is feasible if and only if the new facial expression can be obtained by interpolation, i. e., if the
model can explain such an expression by a linear combination.

9
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Figure 2.1: Example of a blendshape model. (a) Neutral face. (b) Semantic shapes. From left to right :

Disgust, mouth to the right, smile, and funneler (i. e., “O”-like mouth shape).

Figure 2.2: Artifacts produced by the linear dependency between the blendshapes. (a) Neutral face. (b)

Shape artifacts. Left: Shape inconsistency due to activation of left and right mouth motion. Right: Unrealistic

mouth shape due to activation of similar shapes (wide open smile + mouth open).

where 0≤αi ≤ 1, ∀i= 1 : n, a = [α1, . . . ,αn]
⊤ ∈Rn and B = [d1 | d2 | · · · | dn] ∈R

3k×n is the basis of
variation in expression, represented as per-vertex 3D displacements. In this thesis, we will employ
this delta formulation unless stated otherwise.

Although the box constraints imposed on the linear weights αi,∀i control the influence of blend-
shapes in the model (α = 0 deactivated blendshape; α = 1 fully-activated blendshape), some blend-
shapes simply cannot be combined together due to shape inconsistencies caused by the linear de-
pendency of the vectors. For instance, due to anatomical face symmetry constraints, moving the
mouth to the left and to the right at the same time is not allowed and leads to distortions (see Fig-
ure 2.2). Analogously, the combination of semantically similar expressions, e. g., a wide open smile
combined with a mouth open, adds a double effect and may normally result in unrealistic deforma-
tions (see Figure 2.2). This problem can be alleviated by utilizing pairwise activation constraints of
the form αiα j = 0, ∀i 6= j [Lewis et al. 2014], or by employing a strong prior that enforces sparsity
[Bouaziz et al. 2013] or restricts the activation of linear weights [Li et al. 2013b; Thies et al. 2015];
however, this does not completely prevent inconsistent blendshape combinations. Despite these
limitations, blendshape models are normally preferred over principal component analysis (PCA)
models as they provide a more intuitive control of facial expressions with meaningful parameter
dimensions. As such, blendshapes are widely utilized by animation artists to perform different
retargeting or animation-related tasks.
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Figure 2.3: Photo-realistic, personalized 3D face rig that has been created manually by an artist,

https://vimeo.com/soukizero. The 3D rig is driven by custom-made blendshape controllers (shown next

to the rig).

2.1.2 Facial Rig

In animation, the term rig normally refers to a bone structure attached to the muscles and skin of
a digital character. Such a structure allows digital artists to have full control over the character’s
coarse motion and dynamics, while still reproducing realistic surface deformations – a crucial task
in animation. In facial animation, however, rigs are normally not conceived as rigid structures, but
more general deformable surfaces that control not only rigid deformation of the jaw or eyes, but
also expressions, skin stretching, muscle bulging, and lip motion, among others. As such, face
rigs represent the face dynamics and character-specific idiosyncrasies (e. g., personalized smiles
and frown lines) that are necessary to create believable facial animations of an actor. Face rigs can
be created using either detailed tailor-made blendshapes, physically-based geometric deformations
driven by simulated muscle activations, or a combination of both [Komorowski et al. 2010]. These
rigs are then dynamically controlled or animated by artists using high-level controllers that steer
person-specific facial deformations.

Photo-realistic face rigs, which are of major interest for this thesis, often require hundreds of custom
controllers or handlers to model actor-specific facial expressions, face appearance, and soft tissue de-
formation, such as wrinkles and folds (see Figure 2.3). To create convincing photo-realistic rigs that
do not fall in the uncanny valley, digital artists normally require high-quality 3D scans of an actor
(neutral face plus some standard key expressions) captured in complex multiview camera systems
[Klehm et al. 2015]. Yet, the sculpting of complex facial details and face dynamics as well as the
rigging process is an artistic manual work that may take several weeks (if not months) before com-
pletion. In Chapter 8, we propose the first approach that automatically generates a highly-detailed
facial rig from unconstrained monocular video data. The reconstructed rig can be controlled with
intuitive blendshape sliders and can be used as high-quality prototypes to sketch facial animations
without going through the entire conventional digitization pipeline in post-production, thus saving
time and manual effort.

2.2 Camera and Image Formation Model

2.2.1 Camera Model

To represent a 3D object in the scene and its corresponding 2D projection onto the image plane, we
assume a simple camera model, where a 2D image point p is formed by projecting a 3D world point

https://vimeo.com/soukizero


CHAPTER 2. BASICS 12

Figure 2.4: Weak perspective camera model. Objects undergo a two-step projection. First, the object’s

geometry is flattened in depth using an orthographic projection (optical rays are parallel). Second, the

flattened geometry is globally rescaled based on its distance to the camera. Here, the image coordinate

system is spanned by the vectors x and y, and the camera’s intrinsics are given by the principal point

c = [cx,cy]
⊤.

v using a perspective transformation [Forsyth and Ponce 2012], as follows:

p(K,R, t) = KΠ(Rv+ t) = KΠ(v̂) , (2.3)

where [R|t] ∈ R
3×4 refers to the camera’s rigid transformation (also called camera extrinsics) that

transforms the 3D point v into a point v̂, represented in camera coordinates. Here, Π(·) denotes
a (non-)linear operator that projects the aligned 3D point v̂ onto the 2D image plane, and K is the
geometric property of the camera, also known as camera intrinsics. Note that p = [px,py,1]⊤ is
the projection of v onto the image plane in homogeneous coordinates. In non-homogeneous screen
space, this point is represented as p̂ = [p̂x, p̂y]

⊤.

Weak Perspective Camera Model

The weak perspective model is a simplified, yet reasonable, model commonly used in computer
vision, since it represents the projection of an object onto the image plane as a simple linear operator.
In this model, optical rays are assumed to be orthogonal to the camera plane up to a scaling factor
(see Figure 2.4), yielding the following projection operator in homogeneous coordinates:

Π(·) = ρ





1 0 0
0 1 0
0 0 0



 , (2.4)

where ρ = 1/d is the scaling factor that accounts for global changes in depth d (i. e., proximity of
objects to the camera plane). Thus, an object is considered as a plane that virtually appears bigger
or smaller in the projection depending on its distance to the camera.

To represent a pixel p in homogeneous image coordinates, the matrix of intrinsics parameters K is
defined as follows:

K =





1 0 cx

0 1 cy

0 0 1



 , (2.5)
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Figure 2.5: Full perspective camera model. A 3D point v̂ is projected onto the image plane at position p̂

using non-linear perspective projection. Here, the image coordinate system is spanned by the vectors x and

y, and the intrinsic properties are given by the focal length f and the principal point c = [cx,cy]
⊤.

where c = [cx,cy]
⊤ is called the principal point and represents the intersection between the optical

axis and the image plane of the camera. In this thesis, c lies at the image origin unless stated
otherwise. It is important to remark that the weak perspective camera model will be partly employed
in Chapters 5–6.

Full Perspective Camera Model

Here, the projection of an object onto the image plane is represented by a full perspective camera
model (often referred to as a pinhole camera model) where optical rays converge at the image center.
The projective geometry in the camera sensor is mainly determined by the focal length f and the
principal point c = [cx,cy]

⊤ (see Figure 2.5). For the sake of simplicity, let us first assume that the
principal point lies at c = [0,0]⊤. By using similarity of triangles, we can associate a 3D point v̂

with a pixel p̂ in the sensor optics as follows:

p̂x

v̂x

=
p̂y

v̂y

=
f

v̂z

. (2.6)

In the sensor optics, v̂ undergoes a non-linear perspective projection up to a factor given by the
focal length f :

p̂x = f
v̂x

v̂z

, p̂y = f
v̂y

v̂z

. (2.7)

If we represent this transformation in homogeneous coordinates, the point v̂ is first projected using
the non-linear operator Π(v̂) = [v̂x/v̂z, v̂y/v̂z,1]⊤. Then, to properly represent a 2D point p in the
camera plane under an arbitrary optical center, the matrix of intrinsics parameters K is defined as
follows:

K =





f 0 cx

0 f cy

0 0 1



 , (2.8)

As stated above, c lies at the image center unless stated otherwise. The focal length f can be
calibrated beforehand [Bradski and Kaehler 2013; Zhang 2000] or estimated while tracking the face
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(see Chapter 7). Note that the full perspective camera model will be partly used in Chapters 5–6,
but then fully adopted in the latest chapters (see Chapters 7–9).

2.2.2 Image Formation Model

Even though complex light transport mechanisms such as subsurface scattering exist, we assume
a pure Lambertian reflection model to represent the incident lighting on the face surface, i. e.,
an isotropic diffuse BRDF that reflects radiance equally into all directions. This assumption has
been commonly used in the literature [Wu et al. 2011b; Valgaerts et al. 2012b; Garrido et al. 2013;
Thies et al. 2015; Garrido et al. 2016a]. Note that we reckon the face in the scene as a non-emitter.

Let us now define L(v̂,ω) ∈ R
3 as the incident lighting at a mesh vertex v̂ from an incoming

light direction ω ∈ R
3. Note that L(v̂,ω) is represented as RGB illumination, i. e., non-white

illumination. The rendering equation can be then defined as follows:

B(v̂,ω) = c(v̂)◦

∫

Ω
L(v̂,ω)V (v̂)max(〈ω , n̂(v̂)〉,0)dω , (2.9)

where B(v̂,ω) is the irradiance at vertex v̂ from direction ω sampled on the hemisphere Ω, c(v̂)
∈ R

3 denotes the skin albedo at vertex v̂, n̂ ∈ R
3 represents the normal at vertex v̂, and V ∈ {0,1}

is a binary function that measures the visibility of point v̂ w. r. t. the camera view point, which is
assumed to be known. Here, 〈·〉 represents the inner product and ◦ denotes a point-wise multiplica-
tion.

Let us redefine w. l. o. g. L(ω) as the incident lighting at vertex v̂. In this thesis, we approximate the
lighting L(ω) using spherical harmonics (SH) functions as in [Wu et al. 2011b; Valgaerts et al. 2012b],
yielding the following formula:

L(ω ,Γ) =
j−1

∑
l=0

l

∑
m=−l

γm
l Y m

l (ω) , (2.10)

where Y m
l ∈ R, ∀l,m denote the SH functions, Γ = [γ0

0,γ
−1
1 ,γ0

1,γ
1
1, . . . ] are the coefficients of the

SH basis, j is the number of bands, and l is the index of the band. Here, γ = [γr,γg,γb]⊤ is a three
valued-vector that increases or decreases the effect of the lighting at each channel. We remark that
in this work we use j = 4 bands unless stated otherwise. For the sake of simplicity, we can re-write
Equation 2.10 in a more compact form, as follows:

L(ω ,Γ) =
j2

∑
l=1

γ lYl(ω) . (2.11)

By inserting Equation 2.11 into Equation 2.9, we obtain:

B(v̂,ω ,Γ) = c(v̂)◦

∫

Ω

j2

∑
l=1

γ lYl(ω)V (v̂)max(〈ω , n̂(v̂)〉,0)dω . (2.12)

Instead of sampling all over the hemisphere Ω every time the face surface changes, we can sample
D incoming directions ω around a unit sphere (for instance, using Hammersley sampling) and
keep them fixed, yielding a coarse and discrete representation of the incident lighting that can be
precomputed in advance. As a result, we obtain a discrete approximation of the rendering equation
that is no longer parametrized in terms of ω :

B(v̂,Γ) = c(v̂)◦
4π

D

D

∑
d=1

j2

∑
l=1

γ lYl(ωd)V (v̂)max(〈ωd, n̂(v̂)〉,0) . (2.13)
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However, this approximation heavily depends on the quality of the sampling strategy and the num-
ber of sample locations, making it both inefficient and inaccurate. To overcome this limitation,
recent methods consider the outgoing lighting reflected by the surface, which can be approximated
by the surface normals [Wu et al. 2013; Thies et al. 2015]. This leads to the following formula:

B(v̂,Γ) = c(v̂)◦4π
j2

∑
l=1

γ lYl(n̂(v̂))V (v̂)

= c(v̂)◦4πL̂(v̂,Γ) . (2.14)

This approximation allows for a faster and more robust estimation of the illumination that does not
depend on the quality of the sampling. In this thesis, we employ this approximation to model the
reflectance of the face surface, unless explicitly stated otherwise.

Let us now assume that the irradiance of the object is known (i. e., the coefficients of the SH func-
tions have been already estimated) and define B(v̂) as the color assigned to the corresponding vertex
v̂. To render the object in the image, each vertex v̂ is projected onto the image plane at position p̂

using the camera model described in Section 2.2.1. Finally, the color of pixel p̂ is assigned to B(v̂)
via direct lookup.





Chapter 3
Related Work

This chapter provides a survey of the three most important topics covered in this thesis, namely face
capture and tracking, facial animation, and editing of faces in 2D video sequences. More precisely,
it reviews the related work on facial performance capture (Section 3.1), lip tracking (Section 3.2),
face rig and detail generation (Section 3.3), speech- and video-driven facial animation (Section 3.4),
as well as face replacement and modification in monocular videos (Section 3.5).

3.1 Facial Performance Capture

Facial performance capture techniques commonly aim to reconstruct robust and accurate facial mo-
tion/expressions, highly-detailed dynamic facial models (either 2D or 3D models), and possibly the
appearance of the face from optical-based sensor measurements of an actor’s performance. Such re-
constructions can potentially enable us to animate realistic avatars that accurately mimic the actor’s
expressions or generate photo-realistic digital characters for movies, provided that the mannerisms,
as well as the facial details and texture of the actor’s face, are accurately acquired. Thus, facial
performance capture is a crucial step for believable facial animation.

Researchers in the area have tried to achieve this goal using sophisticated indoor capture systems
that are expensive to build, but recently there has been an interest to push the frontier even fur-
ther by capturing performances from low-cost devices, such as RGB-D sensors or even ubiquitous
monocular cameras, as in this thesis work.

This section gives a survey of different methods that attempt to solve this challenging problem.

3.1.1 Dense Facial Performance Capture

Most algorithms for dense (and often very detailed) 3D facial performance capture resort to motion
capture data, structured light systems, or complex and dense camera arrays that may even rely on so-
phisticated lighting patterns to track 3D surface geometry [Pighin and Lewis 2006; Klehm et al. 2015].
Note that this section gives only a brief review of the main methods, since capturing 3D facial mod-
els from a single camera is the primary focus of this thesis.

17
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Marker-based Motion Capture

In this category, we find methods that typically use dense camera sets and markers (or also invisible
makeup) to track and deform an existing 3D template of the actor’s face.

The basic idea dates back to Williams et al. [1990] where a 3D surface geometry of an actor’s face
with neutral expression and fixed texture is deformed using sparse 2D motion capture (mocap) data
from video. New smooth expressions are generated by employing interpolation kernels distributed
over the markers in the 3D geometry. Guenter et al. [1998] used a more sophisticated system that
renders expressive 3D faces by leveraging denser 3D mocap data (around 200 dots) and dynamic
texture maps. Dense 3D markers are retrieved by tracking painted dots on the actor’s face from
several cameras, which in turn are utilized to deform the 3D facial geometry by linear blending.
Dynamic texture data can be obtained at each frame due to a consistent parametrization of the
tracked face geometry.

Nowadays, Vicon greatly dominates the commercial market for cutting-edge 3D maker-based fa-
cial capture [VICON]; however, due to the low spatial resolution (about 100-200 markers), they
cannot capture wrinkle patterns over the face. In [Furukawa and Ponce 2009; Bickel et al. 2007],
wrinkles and folds are additionally captured by leveraging visual cues (using either visible or invis-
ible makeup) from multiple videos. Bickel et al. [2007] proposed a multi-scale capture approach
that additionally estimates medium-scale folds by inverse rendering. Folds are tracked using two
synchronized cameras based on user-defined painted regions, and their shape is parametrized by
2D B-splines. The final 3D shape is synthesized by minimizing a non-linear shell energy that
preserves surface area and curvature, yielding the desired bulges around regions with wrinkles. Fu-
rukawa et al. [2009] introduced an alternative approach that uses dense makeup as optical cues to
accurately estimate shape deformations. To capture complex skin stretch and shear, the system ex-
plicitly models and adaptively estimates tangential non-rigid deformation, which is assumed to be
piece-wise smooth over local structures. This estimate is in turn used to define a tangential rigidity
term that regularizes the deformation of the 3D shape, i. e., stretching of edges, in an adaptive man-
ner. Mova Contour facial performance capture technology [MOVA] is another commercial system
that similarly resorts to dense fluorescent makeup to accurately track face geometry and reconstruct
fine-scale skin details, such as folds and wrinkles.

An orthogonal approach proposed in [Huang et al. 2011] leverages highly-detailed, registered 3D
facial scans to generate a minimal blendshape basis, thus reducing the capture problem to estimat-
ing the optimal blendshape combination that matches the sparse 3D mocap data. The optimal set
of registered scans (i. e., blendshapes) is selected using a greedy strategy based on reconstruction
errors. Here, sparse 3D correspondences between the mocap data and the set of scans are found by
a rigid and non-rigid registration method based on iterative closest points (ICP). Dense 3D corre-
spondences across facial scans are obtained by deforming a template scan to each in the set using
Laplacian regularization [Sorkine et al. 2004] and optical flow constraints [Papenberg et al. 2006].

Structured Light Systems

Structured light techniques commonly track shape templates from dynamic 3D scanner data in
realtime by combining monocular or stereo video and active illumination.

In [Zhang et al. 2004], a spacetime stereo approach was proposed to capture detailed geometry,
texture, and motion. Here, globally consistent dynamic depth maps are obtained by generalizing
the stereo matching problem to spatio-temporal oriented windows, optimized to small blocks of
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data for scalability. Textured facial models that preserve correspondences are then built by fitting a
template mesh to the depth maps while enforcing optical flow constraints. They showed that new
consistent animations could be created interactively by simply blending nearby meshes, using either
user-defined control points or motion graphs.

Huang et al. [2004] used a monocular sinusoidal phase shift acquisition method that fits a multi-
resolution face mesh to depth maps. Global coarse deformations are obtained by ICP-based rigid
alignment to the depth maps, followed by region-based deformations using a physics-based synthe-
sis framework. Local deformations are modeled using free-form deformations in a Euclidean dis-
tance transform space based on cubic B-splines, and they are obtained by minimizing the difference
to the scanner data in a least squares sense. Wang et al. [2004] employed this acquisition framework
to learn a generative model that decomposes person-specific facial expressions into generic content
and style. To do so, the facial expressions are projected into a non-linear manifold using local linear
embedding and then normalized to establish correspondences, thereby creating a unified embedding.
Generalized radial basis functions with linear weights (i. e., linear maps) are utilized to model the
manifold. Finally, a generative model is learned using a bilinear model that separates linear weights
(style) from non-linear functions (content). Such a model could be used for dynamic morphing and
expression transfer, both very relevant tasks in facial animation.

Inspired by the acquisition setup proposed in [Huang et al. 2004], Weise et al. [2007] presented a
robust stereo phase-shift method that can reconstruct depth maps of complex deformable objects
in realtime by harnessing data parallelization on the GPU. Discontinuities and motion artifacts that
may appear during the phase unwrapping of the projector data are explicitly handled by exploit-
ing stereo data and deriving an analytical expression for the motion error incurred by the captured
system. In [Weise et al. 2009], the same system is utilized for live facial puppetry. To approach
this problem, they used as a prior a generic template mesh to reconstruct the actor’s face and ob-
tained consistent correspondences across his/her performed expressions using dense optical flow
constraints. A person-specific parametric statistical model from these dynamic facial expressions is
then created, thus simplifying the puppeteering problem to transferring source expression weights
to a target face model in a linear subspace that spans the source expressions in the target space (i. e.,
deformation transfer space [Sumner and Popović 2004]).

Dense image-based methods

Dense image-based approaches help overcome the limitations of purely geometric and scanner-
based methods, especially regarding the tracking accuracy and the quality of the surface detail.
To produce high-quality facial performances, these methods typically combine mesh tracking with
passive multiview stereo reconstruction obtained from complex and expensive HD camera setups.

The first passive method that requires no template mesh was proposed in [Bradley et al. 2010]. Per-
frame facial geometry and texture are captured from multiview stereo data using a constrained binoc-
ular reconstruction that iteratively removes outliers. The initial reconstruction is propagated through
time using optical flow constraints and then deformed with the already reconstructed meshes. Tem-
poral drift due to extreme motions is partially corrected by analyzing flow displacements in the
reference texture map, and stable mouth tracking is explicitly enforced using sparse edge-based
constraints whose correspondences remain fixed in the mesh. Spatial and temporal noise is con-
trolled with smoothing at the expense of less detailed meshes. Borshukov et al. [2003] recreated
actors for The Matrix Reloaded using the Universal Capture system that requires laser-scanned
models. As in [Bradley et al. 2010], optical flow and camera triangulation constraints allow for an
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accurate tracking of the model over time, and time-varying texture maps are computed from multi-
ple cameras. However, drift and tracking errors are corrected manually. Realistic skin scattering is
simulated by capturing subtle illumination changes in a 2D lightmap and blurring it accordingly.

Beeler et al. [2011] introduced an anchor-based face tracking approach that addresses temporal drift.
It is based on a high-quality single-shot reconstruction technique proposed by [Beeler et al. 2010]
that captures per-frame facial scans with different topologies using a multiview binocular stereo
method similar to [Bradley et al. 2010]. However, it can retrieve details at the pore level by employ-
ing a mesoscopic augmentation heuristic that uses high-pass filtered image cues, akin to shape-from-
shading based refinement [Wu et al. 2011a; Valgaerts et al. 2012b]. In [Beeler et al. 2011], anchor
frames are selected by analyzing cross-correlation errors between a reference image and uniformly
sampled candidates. Dense correspondences to the reference image are then computed by block-
based normalized cross-correlation, and correspondences to unanchored frames are propagated be-
tween anchored frames in a forward and backward direction to prevent drift. The reference mesh is
then deformed using the tracked motion fields as in [Bradley et al. 2010]. Finally, the motion and
shape of the deformed meshes are refined separately to assure per-frame spatial fidelity while being
temporally consistent with the reference frame. A commercial system, called Dimension Imaging
[DI4D] also falls into this category. As in [Beeler et al. 2011; Bradley et al. 2010], this system uti-
lizes dense passive stereo photogrammetry and employs optical flow constraints to track a mesh
with fixed topology at high fidelity.

Beeler et al. [2014] extended the system in [Beeler et al. 2011] and introduced an anatomically-
inspired rigid stabilization approach to align tracked meshes. The stabilization is decomposed into
two steps: Skull fitting and mesh stabilization. A generic skull is first rigidly aligned to manually
annotated landmarks on the actor’s neutral shape and then non-rigidly fitted using a linear shell
energy that minimizes bending and stretching. Finally, new expressions are stabilized such that
two main anatomical constraints are preserved: Volumetric skin constraints, and nose stretching
and compression constraints. In practice, this is achieved by minimizing an energy that penalizes
deviations from the predicted tissue thickness and the length of the nose on the mesh surface.

Alternatively, pore-level skin detail at millimeter precision can also be reconstructed by additionally
resorting to sophisticated light stages under fully controlled illumination, and by employing custom
photometric cues based on spherical-gradient illumination. In [Ma et al. 2007], static texture and
detailed 3D geometry are captured using the so-called Light Stage 5, which consists of 15 binocular
stereo arrays and about 150 LED lights. Here, diffuse reflectance and geometry are captured from
cross polarized cameras under different spherical gradient illumination, whereas specularities are
obtained similarly by subtracting parallel-polarized images from the diffuse ones. A high-resolution
normal map is derived from specular images illuminated under different structured light patterns.
The normal map is then embossed onto the diffuse geometry to get skin detail. Based on this ap-
proach, a photo-realistic digital character was created [Alexander et al. 2010]. Here, actor-specific
blendshapes are obtained by warping a master mesh into expressive scans such that 3D geometry,
surface normals and manually labeled sparse points agree. Manually sculpted geometry for the
teeth and the eyes are manually added to the blendshapes for completeness. The textured model is
tracked between manually-selected key poses in a multiview video setup with known lighting by
applying model-based optical flow constraints. Also based on [Ma et al. 2007], Wilson et al. [2010]
track dynamic high-resolution scans by combining stereo reconstruction and photometric normals.
Temporally-coherent normal maps are obtained by aligning gradient illuminated images to full-on
lit tracking frames both in forward and backward direction, where correspondences are computed
using a novel optical flow algorithm that considers complementary gradient illumination constraints.
Temporally-coherent stereo geometry of tracking frames is computed from stereo pairs using both
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albedo and aligned photometric normals. Finally, the dense correspondences are used to warp and
blend the texture, geometry and normals of in-between non-tracking frames.

Gosh et al. [2011] improved the method proposed in [Ma et al. 2007] and developed a low-cost fast
capture system, called Light Stage X, which consists of 5 cameras. This system employs a new pair
of latitude-longitude static polarizers symmetrically distributed on the sphere. This supports camera
placement anywhere near the equator while providing high-quality specular and diffuse maps for
computing accurate normals. High-resolution scans are reconstructed from these data by a novel
adaptive domain message passing algorithm that allows for coarse-to-fine continuous optimization.
Based on this work, Alexander et al. [2013] created a realtime photo-realistic digital character. Here,
a detailed blendshape rig is derived from several scans and fitted to multiview video data using a
novel scene flow graph. As in [Alexander et al. 2010], the eyes and the teeth are mostly sculpted
manually, and the complete model is rendered in realtime with tailored BRDF models to simulate
realistic skin and eye appearance.

3.1.2 Lightweight Facial Performance Capture

Lightweight acquisition methods commonly track a template or a blendshape model from either
binocular stereo data or RGB-D videos containing color and depth information. Due to the low-
quality and noisy input, RGB-D approaches mainly focus on the animation of believable virtual
avatars using performances robustly tracked at realtime, whereas binocular approaches aim to re-
trieve detailed, photo-realistic meshes at high fidelity from HD stereo images.

Beeler et al. [2010] showed that their dense image-based approach (see Section 3.1.1) can also
reconstruct detailed meshes at the pore level from a consumer binocular stereo camera in indoor
scenarios; however, the reconstructions are limited to the visible region of the face due to the lack
of priors or temporal information. In [Valgaerts et al. 2012b], the first binocular approach that tracks
detailed meshes in general uncontrolled lighting setups was proposed. Similar to previous methods,
a coarse template mesh reconstructed from the same stereo data is tracked using a highly-accurate
image-based scene flow technique that incorporates structure-aware regularization to preserve facial
features. Temporally-smoothed, yet accurate, deformations are enforced by Laplacian deformation
in the temporal domain, while being consistent with the stereo images. The geometry is then refined
by inverse rendering with a novel shape-from-shading framework that uses spatially-coherent local
albedo information to estimate the lighting and employs temporal changes in shading cues to recover
fine-scale skin details.

One of the first steps towards performance-based character animation from cheap RGB-D sen-
sors that finds a trade-off between tracking accuracy and realtime performance is presented in
[Weise et al. 2011]. Here, a novel blendshape-based tracking algorithm that combines raw depth
scans and 2D texture registration with dynamic priors is used to infer motion parameters to animate
avatars. To do so, two steps are performed: Model/prior acquisition and tracking. In the acquisition
step, a personalized model is built by aligning a statistical shape model [Blanz and Vetter 1999]
to multiple aggregated neutral scans. Then, the neutral shape is non-rigidly fitted to a set of pre-
recorded user-specific scans. A personalized, dynamic blendshape model based on generic facial
action units is derived from these data [Li et al. 2010], and a probabilistic animation prior modeled
in the principal component analysis (PCA) space is learned. In the tracking step, the global motion
of the blendshape model is estimated by ICP in a temporal window. The blendshape weights are es-
timated in a probabilistic framework that maximizes the alignment confidence to depth data and op-
tical flow constraints while enforcing face dynamics consistent with the prior. Bouaziz et al. [2013]
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extended this approach and proposed a dynamic expression model (DEM) that is refined in real-
time. This model consists of generic blendshapes, an identity PCA model, and additional corrective
deformation fields represented as the spectral basis of the graph Laplacian; the latter account for
person-specific face shape and dynamics not explained by the generic model. To personalize the
model, a linear expression transfer operator similar to [Sumner and Popović 2004] is used to up-
date the blendshapes whenever the user’s identity and the deformation fields change. The model’s
parameters are optimized in a two-step process using Gauss-Seidel: A fitting step that solves for
the rigid pose and blendshape weights, and a refinement step that solves for the identity and defor-
mation coefficients. Unlike [Weise et al. 2011], smoothed deformations are explicitly regularized
by applying L1 and L2 norms on the coefficients. To ensure temporal consistency, the optimization
is performed over the history using an aggregation scheme based on exponential decay with fixed
memory overhead.

An alternative adaptive PCA model approach based on correctives is presented in [Li et al. 2013b].
Their tracking is also performed in two steps: Offline and online. In the offline step, a neutral ex-
pression of the actor is obtained by fitting a statistical model to facial scans, as in [Weise et al. 2011].
Then, generic blendshapes are transferred to the neutral shape, thereby creating the actor’s blend-
shape model. In the online step, the blendshape model is fitted to 3D scans and detected landmarks
by a flip-flop ICP-based optimization strategy that first finds correspondences and then solves for
rigid pose and blendshape weights. The fitting is improved by Laplacian deformation and the
meshes are further projected into the adaptive PCA model to obtain the final in-space deforma-
tion parameters. This incremental model consists of orthogonalized generic blendshapes and suf-
ficiently far out-of-space examples, which are orthogonalized using an Expectation-Maximization
(EM) based algorithm. Note that the final animation parameters are obtained by fitting the generic
blendshape model to out-of-space examples.

Thies et al. [2015] presented an analysis-by-synthesis approach that reconstructs photo-realistic per-
formances and allows for facial reenactment in realtime. This method relies on a highly-parametric
face prior that models rigid pose, facial identity, and expression. It also parametrizes skin albedo
and lighting to track the face in the RGB-D video streams. Contrary to state-of-the-art methods, the
model’s parameters are jointly estimated via inverse rendering by minimizing an energy function
that considers geometric consistency to depth maps, color consistency to the face observed in the
video, and shape similarity to detected 2D facial landmarks. Realtime performance is achieved by
exploiting data parallel optimization on the GPU. New realistic target performances can be created
by mapping expression parameters from a source performance and then re-rendering the target per-
formance with the estimated lighting. However, their method cannot generate fine-scale skin detail
(see Chapter 6 and Chapter 8). A believable mouth interior is modeled with a generic 3D teeth
proxy and a 2D warping of the oral cavity.

Recently, Hsieh et al. [2015] demonstrated uninterrupted face capture in unconstrained setups show-
ing occlusions and mild lighting changes. Their method integrates face tracking, segmentation and
personalization in a unified framework. Rigid and non-rigid tracking are based on [Li et al. 2013b].
The tracked model is textured with non-occluded regions by temporal aggregation and is used
as a prior to segment the face in the video. Segmentation is achieved in two steps. First, the
background is discarded via distance thresholding and depth penetration tests. Second, the seg-
mentation is refined through color-based thresholding, using superpixels for robustness. As in
[Li et al. 2013b], 3D face shape is represented by an identity PCA model and generic blendshapes,
but further personalized using local corrective shapes. The personalized model is gradually fitted to
2D landmarks and filtered depth data by employing a temporal aggregation strategy, as proposed in
[Bouaziz et al. 2013].
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3.1.3 Monocular Facial Performance Capture

Monocular capture approaches have been extensively studied in the last two decades. Here, we can
mainly find methods that track sparse 2D landmarks and coarse 2D/3D parametric models. Only
recently, approaches that rely on highly-parametric face priors and fully exploit dense color and
shading cues have been able to acquire detailed models of a quality that competes with multiview
techniques. In the following, past and present advances in the area are discussed.

Sparse Motion Capture

Methods in this category mainly detect sparse 2D fiducial points or facial landmarks that describe
very discriminating facial features, or fit a coarse deformable (and textured) 2D model to images
such that relevant facial features match. Most of these approaches mainly focus on sparse facial
feature detection and not dense face tracking. In the following, an overview of the most rele-
vant methods is provided. A complete survey of past and present approaches can be found in
[Fasel and Luettin 2003; Zafeiriou et al. 2015].

One of the first popular approaches for sparse 2D motion tracking were the active shape mod-
els (ASMs) proposed by Cootes et al. [1995]. ASMs simultaneously generate non-rigid shape,
scale and pose parameters by iteratively fitting a point distribution model (PDM) to edges of an
object in the image in ways consistent with the training data. This approach requires a good
initialization to converge. In [Cootes et al. 2001], a generalization of the ASM, called active ap-
pearance model (AAM), was proposed. This method fits a coarse triangulated 2D PDM using
all the color information contained in the face image. The appearance and the shape (i. e., rigid
pose and non-rigid deformation) of the face are modeled as separate 2D statistical PCA models
from labeled and aligned training data, but they are unified into a single morphable model, as in
[Blanz and Vetter 1999]. The model’s parameters are obtained using an analysis-by-synthesis ap-
proach integrated into a non-linear optimization framework. Though AAMs are more accurate than
ASMs, a sufficiently good initialization is needed to assure convergence. Xiao et al. [2004] showed
that AAMs can indeed model 3D phenomena, albeit using larger parametrization. In this work, they
recover a coarse 3D PDM from tracked 2D sequences by performing non-rigid structure from mo-
tion [Bregler et al. 2000] under a weak perspective camera model. Once the 3D PDM is estimated,
3D pose and 3D shape parameters (and their corresponding 2D AAM parameters) are jointly es-
timated during tracking using a fast inverse compositional approach based on a Gauss-Newton
algorithm that pre-computes the Hessian matrix.

The robust tracking algorithm proposed in [Saragih et al. 2011a] improves upon ASMs and AAMs
in landmark accuracy based on a 3D constrained local model (CLM) that is optimized using a
regularized mean shift algorithm. This method optimizes pose and shape parameters by first esti-
mating a response map for each facial landmark that is outputted by local SVM feature detectors,
and then combining the local detectors in an optimization step that enforces a global prior over
their joint motion. Asthana et al. [2013] followed a slightly different direction and proposed a
discriminative boosting regression framework that learns robust low-parametric functions from lo-
cal response maps to estimate the most probable shape parameter updates to fit the CLM to images.
Both performance and robustness are significantly boosted by training local experts with histograms
of gradients (HoG) descriptors.

Recently, Dantone et al. [2012] trained a conditional regression forest to detect a very sparse set
of 2D fiducial points (i. e., mouth, eye and nose corners). This forest consists of multiple random
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regression forests that learn the correlation between facial image patches and fiducial points on a
subset of the data which is conditional to a particular global head pose. During testing, a set of
pre-trained conditional regression trees based on the estimated probability of the global properties
is selected to predict the final location of the points. Due to the reduced amount of detected points,
this method cannot be used for tracking a deformable 3D model.

Xiong et al. [2013] presented an efficient non-parametric supervised descent method for sparse 2D
landmark tracking in the wild. Their method learns a series of parameter updates, in the form of
generic descent directions, that incrementally minimize the mean of non-linear squares functions.
These functions constitute the actual fitting term, which is used to match suboptimal detected points
to local SIFT detectors. Unlike AAMs and CLM based methods, their approach optimizes landmark
locations directly, thus generalizing better to asymmetric gestures. Due to the uncertainty of the face
contour, only features in the inner face region are robustly detected.

Contrary to previous methods that rely on an initial detection of the face [Viola and Jones 2004],
Zhu et al. [2012] introduced a unified model for face localization, pose estimation, and landmark
detection in the wild. The method is based on mixtures of linearly-parametrized, tree-structured part
models, where each mixture accounts for pose changes. The optimal configuration (i. e., pose and
non-rigid shape) is obtained by maximizing a score function that measures appearance similarity
to observed features (unary potentials), spatial agreement between parts (pairwise potentials), and
viewpoint consistency to a prior. The appearance evidence is obtained from local SVM detectors
trained on HoG descriptors, and the non-rigid shape is represented as multiple mixture models
and efficiently estimated with dynamic programming. Note that the detected facial features may
represent unrealistic deformations due to the non-anatomical structure of the model.

The sparse tracking algorithms presented above normally provide facial features for model-based
approaches to fit a template. Despite their robustness, they may suffer from temporal jitter and
normally fall short in accuracy for high-quality face capture. As shown in Chapter 4, we build
upon the state-of-the-art method proposed in [Saragih et al. 2011a] to achieve the desired level of
accuracy and stability.

Also less related but very relevant are non-rigid structure from motion (NRSfM) approaches. They
estimate 3D pose and non-rigid shape (often represented as a shape basis and deformation parame-
ters) directly from 2D features tracked in an unstructured video by exploiting temporal deformation
and head motion, either on the entire sequence [Bregler et al. 2000; Paladini et al. 2009] or incre-
mentally over a sliding window [Paladini et al. 2010; Agudo et al. 2014]. In these methods, pose
and shape are commonly recovered by low-rank matrix decomposition using singular value decom-
position (SVD) or PCA, as formulated in [Bregler et al. 2000]. Besides, a simple orthographic cam-
era projection is typically assumed. In [Paladini et al. 2009], a general framework for deformable
and articulated objects containing missing data is presented. Pose and shape are solved reliably
by an alternating least-squares factorization approach that optimally projects the solution onto the
motion manifold. Paladini et al. [2010] proposed the first sequential NRSfM approach that incre-
mentally adds new modes to the reconstructed shape basis based on the reprojection error of the
learned model, where each mode is estimated by low-rank factorization. Given the current shape
basis, the pose and deformation parameters at a given frame are efficiently estimated by bundle
adjustment over a temporal window. In [Agudo et al. 2014], non-rigid deformations of a template
mesh are linearly modeled with bending and stretching modes using modal analysis from contin-
uum mechanics. Thus, the problem boils down to estimating the optimal pose and deformation
parameters over time, as in [Paladini et al. 2010].
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Model-based Motion Capture

Methods that fall in this category heavily rely on 2D or 3D coarse face models to robustly track
both rigid head pose and non-rigid motion (e. g., expressions) from a 2D video. Hence, they neither
replicate all the actor-specific characteristics nor reconstruct fine-scale skin details that are visible
in the video sequence. These methods normally resort to image cues (e. g., optical flow constraints,
a sparse set of image patches or dense color information) to track the model in the image sequence.

One of the first attempts to recover 3D (non-) rigid motion from a monocular video dates back to
Li et al. [1993]. Here, an affine non-rigid motion model that encodes facial action units (AU), rigid
pose and color is proposed. The model is gradually tracked to an image sequence by performing an
analysis-by-synthesis feedback loop that consists of four steps: Motion prediction, model synthesis,
delta motion estimation and motion correction. Having an initial estimate of the motion parame-
ters, the first two steps deform and synthesize the parametric model based on temporal smoothness
assumptions. Then, the model’s parameters are corrected by computing the delta motion field (for-
mulated as a differential approach) between the synthetic model and the observed image. Despite its
robustness, the method requires accurate manual initialization to get a good estimate of the texture
and shape. Similarly, Pighin et al. [1999] proposed an automatic analysis-by-synthesis approach to
track face pose and expressions. This method, however, assumes an existing person-specific tex-
tured blendshape model that is fitted to images of the same actor under similar lighting conditions.
Besides, their model spans a wider range of expressions by splitting the blendshapes into three sub-
regions (eyes, forehead and lower part of the face), each independently parametrized and linearly
combined by 3D morphing during synthesis. The authors showed that the estimated parameters can
be directly used for generating new realistic facial animations of the actor.

In [Black and Yacoob 1995], local parametric 2D flow models for face tracking and facial recog-
nition were explored. Assuming correctly detected eyes, mouth and brows in the first image, the
method tracks these facial features using optical flow. Note that flow fields for the different facial
regions are parametrized with ad-hoc models to represent global perspective motion, relative trans-
lational motion (e. g., eyelids movement w. r. t. the face) and relative curvature deformation (e. g.,
mouth and brows bending w. r. t. the face). These parametric models showed themselves to be use-
ful for extracting spatial mid-level cues, which in turn allow the creation of high-level rules in the
temporal domain to recognize expressions in a video.

Essa et al. [1996] described the first set of animation tools for fully automatic physically-based
3D facial modeling and tracking as well as real-time interactive animation. To accurately model
realistic non-rigid facial deformations, the authors introduced a parametric physically-based model
with muscle coarticulations attached to it. By fitting the models to images via automatic land-
mark detection and coupling them to optical flow measurements, accurate animation parameters
can be obtained. They demonstrated that these parameters can be correlated to image cues from
a training set to infer expressive animations from video sequences in realtime. Furthermore, they
also showed that model-based flow tracking helps regularize noise and occlusions in head pose
estimation. In the same line of research, DeCarlo et al. [1996] proposed an elegant model-based
flow tracking method that replaces the velocities of the optical flow constraints by projected defor-
mations of a 3D morphable model, which are parametrized by rotation, translation and non-rigid
deformation parameters. The latter represent facial shape and expressions that are derived from
anthropometry measurements. To determine the model’s parameters, optical flow constraints are
transformed into constraint forces based on Lagrangian dynamics and combined with edge-based
forces (i. e., occlusion and facial feature boundary constraints) to prevent some drift propagation.
Despite its efficiency, the method is limited to constant illumination and mild facial motion. Brand
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et al. [2001] introduced an improved model-based flow approach based on Bayesian inference that
operates directly on image gradients (not flow computations) and makes full use of image uncer-
tainty to compute mean posterior estimates. Such improvements provide not only an accurate esti-
mate of rigid and non-rigid model parameters but also their confidence measurements. To minimize
the information loss due to inverse modeling (i. e., parameter estimation from image data), efficient
reversible linear operations through chains of matrix operations are proposed. The authors showed
that tracking residuals can be employed to bootstrap the shape and motion estimation to achieve
subpixel-accurate tracking.

Blanz et al. [1999] created the first database of textured 3D face scans from 200 subjects and derived
a PCA morphable model that represents linear variations in global face shape (i. e., identity) and
albedo. They showed that a photo-realistic 3D neutral face of a person can be reconstructed by
fitting the morphable model to an image in an analysis-by-synthesis flip-flop loop that iteratively
compares the observed image with the rendered model. Blanz et al. [2003] extended this approach
by adding a new linear basis that models simple variations in mouth deformation. Unlike Blanz
et al. [1999], their method estimates illumination, focal length, head pose and model parameters
in video sequences by inverse rendering using a similar flip-flop optimization loop that enforces
temporal smoothness. To ensure convergence, the method requires manually labeled features and
a good estimate of the head pose in the first frame. The authors showed that new animations can
be created in the original video by modifying the motion curves of the model and re-rendering it
under the estimated lighting. Vlasic et al. [2005] went even further and introduced the so-called
multilinear face models that learn, via tensor decomposition, a set of separate, mutually-orthogonal
dimensions (e. g., facial expressions, identity, and visual units of speech) from large databases of
face scans. These learned models are then used to track coarse-to-medium scale, dynamic face
geometry in videos exhibiting negligible head motion. The model’s parameters (rigid pose and
non-rigid deformation) are initialized and coupled to optical flow measurements [Essa et al. 1996;
DeCarlo and Metaxas 1996] using only a subset of vertices for efficiency.

Recently, data-driven approaches for face tracking have also been explored. Cao et al. [2013] pre-
sented a novel regression-based tracking approach that learns an accurate, user-specific 3D face
alignment model directly from training images. In the training step, a personalized blendshape
model as well as aligned ground truth 3D shapes are constructed from user-labeled images showing
a variety of poses and expressions. From these images and shapes, training samples that account for
possible tracking failures are generated, and a regression function for incremental 3D facial feature
alignment based on two-level boosting is learned. The regression algorithm first creates a set of
appearance-based features at randomly sampled 3D points. Then, it generates and combines weak
regressors, called ferns, that learn shape updates from image features and inaccurate 3D shape such
that misalignment errors are minimized. At runtime, 3D shapes are inferred from images and pre-
vious shape estimates, which in turn are used to track the pose and expressions of the personalized
blendshape model. The method proposed in [Cao et al. 2014a] improves upon this idea and learns,
from a large publicity available dataset, a generic regressor that infers both 2D facial landmarks and
3D facial shape. At the heart of this method is a dynamic displaced expression (DDE) model that
jointly encodes rigid pose, focal length, expressions, face shape (i. e., identity), and 2D landmark
displacements. Similar to [Cao et al. 2013], the regressor learns parameter updates to incremen-
tally fit the pose, expression and 2D displacements to new images in a sequence. In an adaptation
step, identity and focal length are jointly optimized over incrementally selected frames whose esti-
mated shapes increase the variance of the adaptive set, as proposed in [Li et al. 2013b]. Based on
this method, Saito et al. [2016] recently presented a realtime, unconstrained face tracking system
that explicitly segments facial regions using deep learning and processes masked RGB data for 3D
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shape regression. Their segmentation approach uses a two-stream deconvolution network with bi-
linear interpolation and mirror convolution characteristics whose output are first concatenated and
then merged into a single probability map using a final convolution layer. A final segmentation
mask is obtained from the map using graph cut. The segmentation strategy is also used to gener-
ate segmented face images to train the DDE regression approach. One of the main drawbacks is
the lack of temporal segmentation, resulting in high-frequency jitter during the tracking, especially
when occlusions (dis)appear.

Despite the robustness and accuracy achieved by the methods presented above, the reconstructions
are restricted to the parametric model, and some may suffer from drift due to fast head motion and
expressive facial deformations. Besides, all of them lack fine-scale skin details, which are crucial
for photo-realistic animation and editing. We address these issues in Chapter 5 and Chapter 7.

High-quality Performance Capture

The seminal work described in [Garrido et al. 2013] (see Chapter 5) presents a model-based capture
approach that automatically reconstructs, in a robust coarse-to-fine fashion, highly-detailed and
dynamic 3D face geometry from monocular video by leveraging detected 2D landmarks as well
as flow and shading constraints. Researchers have deemed the capture of detailed 3D faces from
a monocular video a very challenging and relevant problem in the digitization of human avatars,
inspiring follow-up research in the field. In the following, some very recent advances are described.

Similar in spirit to [Garrido et al. 2013], Shi et al. [2014] presented a coarse-to-fine model-based
approach for unconstrained capture that performs three main steps: 2D feature tracking, model fit-
ting, and shape refinement. In the first step, candidate noise-prone 2D facial features are estimated
using random forests. These features are then employed as additional fitting constraints in an adap-
tive AAM framework that incrementally updates the shape basis to improve landmark localization
[Bouaziz et al. 2013; Li et al. 2013b]. In the second step, 3D feature positions are computed by
NRSfM. A multilinear model in identity and large-scale expression variation is then fitted to the
3D positions while enforcing temporally-consistent poses and expressions between automatically
selected keyframes. These keyframes exhibit the highest variation in deformation of the 3D points
over the entire sequence. Finally, the face shape is refined in a shape-from-shading framework
that assumes constant albedo and lighting, as described in Section 5.6. However, the albedo map
is estimated at the vertex level. The refinement of the surface is performed iteratively to improve
mid-scale deformations, but the improvement is minor and does not correct tangential errors.

In [Suwajanakorn et al. 2014], a simpler, yet effective, approach is proposed for total moving face
reconstruction under uncontrolled imaging conditions. Their method requires neither blendshapes
nor a pre-calibration step, but it assumes a person-specific average shape and an illumination-
dependent appearance model reconstructed from a large photo collection available on the Internet,
as described in [Kemelmacher Shlizerman and Seitz 2011]. The key component is an analysis-by-
synthesis framework that combines model-based flow deformation [DeCarlo and Metaxas 1996]
and shape-from-shading based refinement (Section 5.6) to align and warp the model such that it
matches the observed image. To ensure accurate pose-invariant and drift-free model deformations
over time, both the lighting and the pose are estimated iteratively before non-rigid registration us-
ing a RANSAC-based framework that discards occluded vertices. Temporal coherence is further
enforced by considering visible correspondences of nearby frames. Fyffe et al. [2014] presented an
alternative drift-free, region-based flow method that drives a template mesh in a video stream based
on static textured scans. The core component is a generalized sparse performance flow graph that
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connects consecutive dynamic frames in the sequence, as well as static textured scans to dynamic
frames, using dense confidence constraints over different face regions. Here, sparsity is enforced
by removing low-confidence static-to-dynamic flow connections. Based on this graph, the template
mesh is accurately tracked between keyframes by minimizing a multi-objective cost function. This
function measures the difference between projected 3D mesh deformations and optical flow vec-
tors while restricting deformations to a spatially varying convex combination of static poses and
neighboring dynamic poses in the graph; the latter are weighted by the associated flow confidences.
The main drawback of this method is that it requires a static light environment map of the scene to
relight the facial scans in ways consistent with the recorded video.

Cao et al. [2015] enhanced the realtime tracking algorithm presented in [Cao et al. 2014a] with local
boosted wrinkle regressors that add fine-scale skin details. Local regressors are trained offline on
high-quality multiview data and learn the correlation between local texture patches over the face
and their corresponding wrinkle displacement maps, both parametrized in a common UV space.
Patches are automatically extracted by analyzing the response probability in a precomputed wrinkle
likelihood map, and they are centered and oriented along wrinkles to extract meaningful features. To
enable realtime performance, local displacements in a patch are parametrized in a low-dimensional
PCA space. At runtime, the mesh is accurately aligned to images via optical flow to ensure accurate
and temporally-stable input features for the prediction of details. As the method relies on texture
features, lighting changes, blur and occlusion deteriorate the results.

In [Wu et al. 2016], a novel anatomically-constrained local deformation model for accurate face
capture is introduced. The local model is derived from personalized blendshapes and represented
as a set of linear non-rigid deformation subspaces that are uniformly distributed over the face and
bounded by anatomical constraints. Such constraints are given by a skull and jaw bone structure
[Beeler and Bradley 2014] that limit the skin thickness w. r. t. the bones based on ground truth obser-
vations. To track the local model, the authors combine spatio-temporal and anatomical constraints
to ensure globally consistent patches over time. In addition, they seamlessly blend the patches using
distance-based Gaussian kernels. Even though their local approach is robust and accurate, it needs
an actor-specific anatomical model to start the tracking, which is impractical for legacy videos.

A little less related is the dense NRSfM approach introduced by Garg et al. [2013a] that recon-
structs dense 3D face geometry from unconstrained videos and that does not need a shape model.
Here, NRSfM is formulated as a global variational energy minimization problem to estimate dense
low-rank smooth 3D shapes and camera rigid motion for every frame, assuming that dense tempo-
ral 2D correspondences are given, e. g., from a flow graph [Fyffe et al. 2014] or multi-frame flow
fields [Garg et al. 2013b]. Smooth, yet accurate, reconstructions are obtained by combining edge-
preserving spatial regularization with a soft low-rank shape prior that ensures a compact, non-fixed
shape subspace. Although their approach does not refine surface geometry, it could easily integrate
shape-from-shading based refinement as a post-processing step to recover fine-scale skin details.

Despite the high-level of detail and tracking accuracy achieved by these approaches, most of them
neither estimate nor parametrize personalized mid-scale deformations, such as person-specific smiles
and nose shapes. Capturing such deformations not only contribute to a better tracking but also help
decouple fine-scale transient details from true motion and residual misalignment, as proposed in
Chapter 7. Such a separation is of particular importance when learning face rigs from tracked
meshes, since artists can easily separate and control different effects in a more flexible and intuitive
way, thus facilitating facial animation and video editing tasks (see Chapter 8).
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3.2 Lip Tracking and Reconstruction

Accurate tracking of lips in video is deemed a problem of paramount relevance in the scientific
community since accurate lip motion not only helps improve speech recognition and comprehen-
sion of the auditory channel [Kaucic and Blake 1998; LeGoff et al. 1994; Summerfield 1992] but
also increases the realism of facial animations (see Chapter 9). Detecting lips in monocular videos,
however, is a task hard to achieve due to the lack of depth data, disocclusions in the mouth region
as well as recurrent changes in shape, color and specular reflections of the lips. Hence, lips are
normally tracked in 2D using contour-based approaches that heavily rely on shape and color pri-
ors. Just recently, novel methods can reconstruct 3D lip shapes by assuming controlled multiview
capture setups or large databases. An overview of these two types of approaches is provided as
follows.

3.2.1 Image-based 2D Contour Tracking

Methods falling in this category mainly focus on recovering 2D contour lines for the lip bound-
aries (mostly outer boundaries) using either supervised learning methods or optimization-based
approaches that rely on shape and/or color priors.

One of the most popular approaches for contour detection are the so-called snakes or active contour
models [Kass et al. 1988]. A snake is a generic energy-minimizing spline guided by user-defined
(external) constraint forces and influenced by image forces (usually image gradients) that pull the
curve toward edge or line features. It is also controlled by internal forces (e. g., stretching and
curvature) that resist deformation. Based on this, Bregler et al. [1994] developed an audio-visual
speech recognition system that combines both acoustic cues and lip motion (captured by snakes)
to improve robustness in the detection. In this framework, snakes are customized for outer lip
contour detection by constraining successive deformations to lie on a manifold of plausible lip
shape configurations learned from prior examples. Despite the improvement in performance, they
found that image forces based on gray-scale image gradients are inadequate to detect accurate lip
boundaries. Bearing this in mind, Barnard et al. [2002] adapted the standard energy function of the
snake by replacing the gradient-based image forces with 2D color pattern matching templates. Here,
reference templates are extracted from a neutral face at sampled points on the outer lip contour
and then matched against candidates in a new frame along scan lines by using normalized cross
correlation. The snake is finally pulled toward areas with correlation scores above a given threshold.
In this approach, the inner lip boundary is naïvely anchored to the outer contour assuming constant
lip thickness.

The methods described above only work for frontal poses and require a good initial guess to ensure
convergence. To overcome these problems, Tian et al. [2000] introduced a model-based approach
that fits a coarse multi-state mouth shape prior to outer lip contours by exploiting shape, color, and
motion. The prior is modeled as splines and consists of three states: Open, closed and tightly closed
mouth. The most probable state is inferred from the height of the lips and the color distribution
inside the mouth, where the height is obtained from contour points tracked via optical flow. At
a given frame, the tracked points are used to detect the mouth from which color and shape are
extracted. The most probable prior is then selected and fitted to the tracked points to extract coarse
lip contours. Due to the simplistic mouth model, asymmetric and expressive lip shapes are not
captured. Alternatively, Eveno et al. [2004] proposed a robust and accurate lip segmentation method
based on jumping snakes to avoid local minima. Assuming a rough initialization, a snake is fitted
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to the upper lip contour by a succession of jumps and growing phases. The former guides the snake
towards hue and luminance edge gradients, whereas the latter extends the end points. This gives
keypoints for the upper lips, which are in turn used to detect the lip corners and lower lip keypoints.
Then, a cubic spline is fitted to the keypoints such that it agrees with the edge gradients, thereby
segmenting the lip boundaries. For each new frame, the keypoints are tracked using optical flow,
and the cubic spline is updated. To prevent drift, the keypoints are refined, again with snakes guided
by edge gradients, before segmentation.

Nguyen et al. [2009] tackled changes in appearance and illumination that the outer lip contour
usually undergoes. They introduced a semi-adaptive active appearance model (SAAM) that incre-
mentally adds new tracked candidates to an AAM model using a SVM detector trained to recognize
aligned shapes. The incremental model consists of a fixed pre-learned PCA subspace and the new
set of aligned examples, which are orthogonalized and projected to the new incremental subspace
[Li et al. 2013b]. As the method discards misaligned shapes to prevent drift, it fails to detect ex-
treme shapes.

Since the inner contour of the lips slides over and is prone to disocclusions, the methods described
above mainly focus on tracking outer contours. Kaucic et al. [1998] proposed one of the first meth-
ods that tracks unadorned inner and outer contours in realtime by leveraging shape and motion
priors as well as illumination-tolerant feature detectors – all learned from examples. Here, a sparse
PDM model represented via B-splines serves as shape prior, whereas motion dynamics are learned
from speech sequences using a maximum likelihood estimation algorithm. Contour detection is
formulated as a classification problem on hue images, where a Fisher discriminant and a color mix-
ture model identify lip-skin and inner lip contour boundaries, respectively. Based on their response
maps, the inner and outer contours are deformed along the 2D curve normals in ways consistent
with the priors. In this method, accuracy is sacrificed to achieve realtime performance. Similarly,
Wang et al. [2004] fit an PDM model parametrized by quadratic curves to a color probability map by
employing a region-based cost function that maximizes the joint probability of the partition between
lip and non-lip areas. Unlike Kaucic et al. [1998], the probability map is generated from color and
spatial distributions using a simple unsupervised clustering method that requires neither a feature
prior nor training. As a counterpart, this simple segmentation forbids tracking of the inner contour.
In both cases, the authors showed that tracked lips can improve speech recognition accuracy.

Recently, general-purpose learning-based approaches have emerged as an alternative to detecting
edges and contours in images and that do not suffer from limitations of methods based on low-
level features. In [Dollár et al. 2006] edge and object boundaries are identified by a supervised
boosted learning algorithm, called Boosted Edge Learning (BEL), that learns to classify image
pixels as (non-) boundaries from labeled examples by leveraging a large set of generic fast features
over a small image patch. These features include gradients, histograms of filter responses, and
Haar wavelets at different scales. As classification is performed per pixel, just a few example
images provide enough data for training, but detections may be very noisy. Dollar et al. [2015]
improved upon this method and proposed a generalized fast structured learning approach based on
regression forests that exploits the inherent structure of edges in local patches. Here, the detection
of edges is formulated as predicting local segmentation masks in input image patches. The key to
efficiency is the projection of input features to randomly sampled dimensions, followed by PCA-
based dimensionality reduction. The method still requires a large set of training images, which may
not be available.
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3.2.2 Dense 3D Lip Reconstruction

In contrast to 2D tracking approaches, recent multiview reconstruction methods attempt to extract
and model the dense 3D shape of the lips in controlled studio conditions.

Bradley et al. [2010] employed a dense multiview passive performance capture system with con-
trolled lighting that explicitly enforces accurate lip registration based on simple 2D edge detection
and silhouette alignment constraints for both the inner and outer lip contours. However, the method
assumes that correspondences in the inner contour region remain fixed on the mesh, thus limiting
tracking accuracy. In [Bhat et al. 2013], a two-step performance capture approach is presented. This
method first tracks a blendshape model using 3D mocap data and 2D contour features and then per-
forms out-of-model refinement for improved eyelid and lip shapes by matching the contour features
to dynamically selected occluding contours in the mesh. The refinement step is in turn performed in
two iterative stages: First, the isoline on the mesh that has the maximum number of silhouette edges
is selected as occluding contour. Then, the projected occluding contour is warped via Laplacian de-
formation to match feature curves on the 2D contours. Though effective, the method requires a
manual selection of 2D curves in the image.

Considering previous limitations, Anderson et al. [2013a] proposed a method that uses accurately
tracked 2D lip contours as additional constraints in a multi-camera photometric stereo system to
improve the 3D registration of the lips. Here, a discrete snake is fitted to BEL probability maps in
the image and then projected onto a reconstructed depth map to get 3D contours. Points lying on the
outer contour are associated with fixed vertices in the mesh, whereas the inner contour is reckoned
as an occluding boundary that is dynamically connected to predefined isolines in the mesh based
on the geodesic distance to the outer contour in the depth map. In this approach, the actor needs to
face the camera, and a manual initialization of the snake is required.

Another attempt to capture mouth deformations even in the presence of occlusions, fast motion,
and extreme poses was presented in [Liu et al. 2015]. Here, their method efficiently fuses RGB-D
video and audio data for robust, realtime face tracking. The key component is a data-driven user-
independent approach based on nearest neighbor search that learns to correlate acoustic features and
inaccurate lip deformations (in a parametric space) to refined mouth shapes from a large database.
At runtime, refined mouth shapes are retrieved from the database based on an adaptive cost function
that considers confidence and velocity changes of acoustic and user-independent lip features over a
temporal window. Even though the method is robust and applicable to any subject, style and user
idiosyncrasies are ignored, thus drastically limiting tracking accuracy.

Also related is the method of Kawai et al. [2015] for photo-realistic 3D inner mouth restoration
of a speech animation. The method combines quasi-3D reconstruction and simulation of a generic
tongue and personalized teeth with 2D appearance restoration of lip and cavity boundaries. The
latter is based on a so-called Multiview Detai-lization algorithm that leverages a large dataset of
mouth motions connected to speech to photo-realistically correct the appearance of the inner mouth
(including the lips) of an animated model at a fine-grained level.

All the methods described above require multi-camera input and/or controlled recording conditions,
yet many of them still struggle with strongly occluded and very expressive mouth shapes. As
demonstrated in Chapter 9, we propose the first approach to capturing highly expressive lip shapes
from monocular videos in general surroundings, e. g., outdoor footage or internet videos.
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3.3 Face Rig and Detail Generation

Building a fully-controllable and detailed parametric facial model (i. e., face rig) is an essential
element for the digitization of realistic virtual characters in feature films and computer games.
Nowadays, animation artists are used to manually creating face rigs of actors with custom-designed
control parameters. Facial expression control is normally achieved by using a set of blendshapes
that span intuitive atomic face expressions and that are linearly combined to obtain a new pose
[Lewis et al. 2014]. Alternatively, physics-based muscle models can be used for animation control
[Sifakis et al. 2006], either separately or in conjunction with a blendshape model (see Section 2.1.2
for more details). The automatic creation of fully-controllable parametric models that capture the
mannerisms, expressions and details of the human face has been a major concern in the face capture
and facial animation community in an attempt to try to streamline the effortful manual process done
by artists.

One of the first endeavors to model the global facial anthropometry across people from a database
of 200 laser scans was proposed in [Blanz and Vetter 1999; Blanz et al. 2003]. The authors modeled
the global variation in shape and appearance across the samples using PCA. Such an identity PCA
model constitutes one of the base coarse components in the multilayer face model presented in
Chapter 7, as well as in the automatic face rig generation introduced in Chapter 8. Multilinear
models presented in [Cao et al. 2014b; Vlasic et al. 2005] go one step further and try to capture the
facial anthropometry on different levels of variation (e. g., expression, identity, and mouth shape) by
learning via tensor decomposition a set of mutually orthogonal dimensions from a large database
of expressive facial scans of different individuals. Fitting a personalized parametric expression
and identity model to the face of an actor with the representations mentioned above, however, is a
challenging problem and also counter-intuitive, since they have control dimensions that are often
of global support and lack semantic interpretation. Therefore, such models cannot be readily used
by artists for rigging. To overcome these problems, Tena et al. [2011] presented a linear piecewise
modeling method that learns a collection of PCA local models from facial scans. These local models
are independently trained on different facial regions but share common boundaries to enforce global
consistency. They showed that the region-based formulation not only generalizes better than the
holistic PCA counterpart when fitted to unseen data but also gives the user a localized manipulation
control via click-and-drag interaction to create new animations. However, such localized models
provide a segmentation into fixed parts that may lack semantic control, as opposed to the flexible
localized control built into blendshape models designed by artists.

Generic blendshape models personalized to the actor’s face have been extensively used by dif-
ferent facial performance capture methods, both in monocular camera settings [Cao et al. 2013;
Cao et al. 2014a; Saito et al. 2016; Thies et al. 2016] and RGB-D sensor setups [Weise et al. 2011;
Thies et al. 2015]. Face personalization is achieved by deforming the model into a set of facial
scans or by directly fitting it to RGB(-D) video, either during tracking or in a pre-processing step.
Nevertheless, such generic blendshape adaptation fails to capture person-specific expression details
performed by the user. As such, some recent approaches estimate not only identity and blendshape
parameters from the captured facial performances but also person-specific correctives on top of the
coarse model to give a better personalization [Bouaziz et al. 2013; Li et al. 2013b; Hsieh et al. 2015].
The main drawback of these approaches is the need for both depth and optical input data. Latest ad-
vances in monocular facial performance capture now allow for capturing detailed, dynamic 3D face
geometry (see Section 3.1.3), but they are unable to intuitively parametrize person-specific idiosyn-
crasies in expression, and to learn a model for wrinkle generation that nicely correlates to blend-
shapes or coarse expressions. Detailed blendshapes can be alternatively captured from complex 3D



33 3.3. FACE RIG AND DETAIL GENERATION

facial scanning systems and used later to approximate details for newly synthesized expressions
[Alexander et al. 2013; Fyffe et al. 2014]. However, such a strategy may fail to reproduce all the
nuances and face dynamics of an actor, requiring more exemplars or extensive manual interaction.

One of the first attempts to learn models for wrinkle synthesis goes back to Bickel et al. [2008].
Here, coarse-scale facial performances captured from mocap systems are augmented in realtime
with a fine-scale detail layer, which is learned by correlating sparse measurements of coarse-scale
skin strain with a fine-scale detail layer (skin bulges and wrinkles) from a small set of example
poses. In this approach, details are parametrized as local displacements, whereas skin strain is
computed as the relative stretch of edges in a sparse feature graph, where its nodes correspond to
point locations in the coarse mesh. Thus, the learning problem is formulated as a scattered data
interpolation in pose space for which radial basis functions with biharmonic kernels are employed
as interpolators. The authors showed that new realistic animations can be interactively created using
mocap data or sparse handlers on the mesh. Similarly, Ma et al. [2008] proposed an approach that
learns the correlation between coarse-scale skin strain from mocap data and high-resolution detail
layers captured from a 3D scanning system. However, details are represented as two independent
layers: Medium-scale face dynamics and fine-scale deformations at the pore level. The former is
represented as a 3D displacement map, while the latter is encoded as a height map that embeds
displacements along the normal direction. Consequently, coarse-scale skin strain is projected into
the UV-space and parametrized by biquadratic polynomial displacement maps. Two linear maps
are then learned from the data, which are then used to synthesize medium- and fine-scale details on
coarse meshes tracked by mocap data. In [Bermano et al. 2014], low-resolution art-directed facial
performances are also enhanced by generating actor-specific expressiveness and details learned
from a large corpus of high-resolution example meshes that are captured in a multiview camera
system. These examples represent short, yet expressive, subsequences. At the heart of the approach
is a convenient shape space representation that parametrizes coarse-scale deformation and detailed
expressiveness of samples in the database via deformation gradients. During synthesis, new coarse
meshes are simply projected into the shape space to find the optimal linear combination of examples
that match the new expression. Once found, the inferred weights are then used to generate a detailed
expressive layer for the coarse mesh.

The main drawback of the wrinkle generation methods mentioned above is that the fine-scale detail
layer is mainly driven by coarse 3D geometric deformations that are not always intuitive to control
and animate. Besides, such approaches can mainly be applied to performance capture data obtained
from controlled and complex camera systems.

Recently, some approaches can synthesize details on arbitrary facial performances captured from
commodity sensors, e. g., Kinect or webcams. Li et al. [2015b] proposed a lightweight wrinkle syn-
thesis method for enhancing coarse facial models captured from an RGB-D camera. The method
is divided into two stages: Wrinkle extraction and generation. In the first step, local wrinkle exem-
plars in the form of gradient images and height maps are extracted from pre-computed high-quality
textured meshes. In the second step, given a gradient map computed from an input face image, the
optimal synthetic height map is obtained in an EM framework. First, it estimates synthetic gradient
and height maps given fixed exemplars. Then, it finds the optimal exemplars from the database
using the input gradient values and the estimated height map. The resulting height map is then used
to compute a wrinkle layer for the coarse 3D face model reconstructed from the RGB-D sensor. As
a by-product, they showed that a detailed blendshape model can be created from static expressions
performed by the actors. Similarly, Cao et al. [2015] enhanced monocular reconstructions with
local boosted regressors that add fine-scale skin details by leveraging a database of high-quality
multiview data. Contrary to Li et al. [2015b], the local regressors learn in an offline step the actual
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correlation between local texture patches over the face and their corresponding wrinkle displace-
ment maps. This way, wrinkles can be quickly regressed at runtime from the learned model. As
both methods rely on photometric cues, lighting changes, blur and occlusions deteriorate the quality
of the results. Besides, they cannot directly generate wrinkles from blendshape weights, which is a
de facto standard in facial animation.

So far, the automatic creation of fully personalized and detailed face rigs remains unsolved. Li
et al. [2010] introduced an automatic method for generating actor-specific blendshape rigs from
example expressions. These rigs preserve the semantics of a prior model, yet they capture the man-
nerisms of the target actor. The optimal set of target blendshapes is formulated as an optimization
problem in the gradient domain [Sumner and Popović 2004] by interleaving between two steps. The
first step solves for target blendshapes whose linear combination optimally match the target exam-
ples in a least squares sense while preserving the semantics of the prior. The second step keeps the
target blendshapes fixed and optimize for the linear blendshape weights. The main drawback is that
detailed example poses must exist beforehand and correspond to valid blendshape combinations of
the prior; otherwise, person-specific characteristics are not transferred.

Ichim et al. [2015] proposed an approach that reconstructs a person-specific face rig with personal-
ized albedo map and dynamic wrinkles directly from hand-held monocular cameras in controlled
setups. Both a static and dynamic modeling step is performed to capture the rig. In the first step,
a generic blendshape model is fitted to a structure-from-motion-based reconstruction of the head
at rest, and an albedo map is obtained from multiple views via intrinsic decomposition and Pois-
son integration. In the second step, the generic blendshape model is tracked over a sequence of
actor-specific expressions, which exercise the different dimensions of the blendshape model. Then,
the model is refined by allowing out-of-space deformations in expression and depth, using both
flow and shading constraints. Transient fine-scale details are additionally recovered by applying
shading-based refinement and stored as normal and occlusion maps. Finally, a generative bump
map is learned, which correlates strain of facial features in the model with displacement maps. The
result is a detailed face rig that can be animated with blendshape parameters. Note that several steps
require manual intervention and the approach is unsuitable for legacy video.

Chapter 8 presents the first automatic approach that creates a fully-personalized parametric face
rig, which is composed of a generic identity and blendshape model at the coarse level, a corrective
personalized layer at the medium level, and a fine-scale generative detail layer. Unlike previous
methods, our approach reconstructs detailed face rigs from uncontrolled monocular setups, i. e., it
requires no initial 3D scan nor a set of prescribed facial expressions. Moreover, the reconstructed
face rigs can be intuitively controlled by an artist by simply manipulating blendshape controllers,
which trigger all levels of details automatically.

3.4 Speech-driven and Video-driven Facial Animation

Facial animation has been studied for decades in the graphics community and aims to animate
2D/3D computer generated models of characters with plausible mouth coarticulations and facial
motion. The characters can have human-like shape or be a fantasy creature. Such characters can be
used as avatars in video games and movies (see Section 3.1), or even in VR scenarios and telecon-
ferencing. The literature is quite extensive, and in this section, we only focus on methods that drive
facial models through speech or video to produce plausible visual animations of a random virtual
character, i. e., not a detailed replica of the user that accurately mimic his/her facial expressions and
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mannerisms, as described in Section 3.1.

3.4.1 Speech-driven Animation

Methods in this category typically associate units of sound (phonemes) to their visual counterpart
(referred to as visemes) to drive a parametric animatable model, where visemes are usually repre-
sented as motion curves of fixed or variable length in the parameter space. The mapping between
audio and visual cues can be learned from a corpus of mocap data connected to speech or by corre-
lating existing model parameters with speech.

Brand et al. [1999] proposed one of the first methods for voice puppetry that steers the whole range
of face dynamics of an avatar directly from speech by learning a mapping from phonemes and
prosodic features to facial motion trajectories performed by multiple subjects. To do so, the audio
and mocap data from a video are first modeled as a probabilistic state machine based on a hidden
Markov model (HMM) that maximizes information gain. With the entropic estimation, a dynamic
facial model is learned from the mocap data, which in turn is used to estimate the probability of
audio features to each facial state, thus resulting in a vocal HMM that contains face dynamics.
During speech synthesis, the most likely facial states are predicted and then mapped to motion
curves to drive the avatar.

In [Sifakis et al. 2006], a physically-based approach is proposed, which simulates 3D speech ani-
mation of a person-specific facial muscle model using learned audio-controlled activation curves.
During training, phonemes are directly associated to muscle activation curves (physemes) inferred
from mocap data. Given a new speech signal (or a sequence of phonemes), the optimal sequence
of physemes is found by solving a global optimization problem that maximizes phoneme match
while accounting for discrepancies between selected physemes in overlapping regions. The authors
showed that facial expressions and external forces can be easily integrated into the physics-based
model to increase realism.

Blanz et al. [2003] proposed a very simple approach that directly maps detected phonemes from
text or speech onto static visemes in a database assuming 1-1 correspondences between audio and
visual units. Natural in-between viseme deformations are then enforced in a post-processing step by
applying keyframe interpolation with cosined-shape-acceleration functions, followed by temporal
blur. Kshirsagar et al. [2003] synthesize natural animations with coarticulation effects by matching
phoneme streams to visyllables (visual counterpart of syllables), represented as visemes of fixed
length. In the training step, syllables are automatically extracted from phoneme streams (syllab-
ification) and transformed into clusters according to individual articulation rules for consonants.
Visyllables are finally associated to clusters and encoded as fixed-length motion curves. To ensure
continuity between visyllables in the database, the motion curves are manually altered to agree at
the boundaries, either by skewing or smoothing operations. As a result, new animations can be cre-
ated from speech by direct visyllable lookup in the database. Ma et al. [2006] improved upon the
previous matching and synthesis strategy by searching and concatenating optimal variable-length
utterances in a large corpus of mocap data. In the search step, utterances are selected from a large
motion graph based on the following criteria: They agree at boundaries, are as long as possible
and match the input speech. To ensure natural and smooth concatenations, a trajectory-smoothing
algorithm is further applied. In [Taylor et al. 2012], an alternative approach is presented, which
learns dynamic, concatenative visemes to render coarticulated speech animation. Contrary to pre-
vious methods, the speech corpus is segmented and clustered into consecutive visemes of varying
length using only visual gestures, represented in this case as mouth motion parameters of an AAM.
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Similar to Ma et al. [2006], dynamic visemes in a motion graph are optimally concatenated by
minimizing discontinuity and phoneme mismatch constraints. Timing is also considered to enforce
synchronized lip motion.

Cao et al. [2004] addressed performance issues of data-driven methods that are based on large graph
motions with exponential complexity (see above). To do so, they proposed an efficient data structure,
called Anime Graph, that keeps track of the recording order of clustered visemes with a directed
graph and that further associates phoneme labels to nodes in the graph via indexing. To efficiently
search nodes in the graph, the input phoneme stream is split into temporal chunks and greedily
matched against viseme subsequences using only two criteria: Phoneme matching and number of
jumps in the graph. Linear blending and smoothing are further applied to produce jitter-free speech
animations. Berger et al. [2011] further contributed with a generic modular framework, called
Carnival, that combines text- and speech-based processing tools with realtime speech animation.
This framework, for instance, allows users to define tailor-made animation controllers to drive an
avatar from a speech signal, and to customize signal processing tools to extract more sophisticated
acoustic parameters or speech categories.

The main problem of the methods described above is that they try to predict the entire range of facial
motion solely from a speech signal, which is not always possible [Yehia et al. 1998]. Bearing this in
mind, in [Deng and Neumann 2006] a novel data-driven animation system for expressive animation
synthesis and intuitive editing was proposed. At the heart of the method is an audio-visual mocap
database recorded in four different emotions and represented as a multidimensional motion graph.
Given a new phoneme-aligned speech, a constrained dynamic programming algorithm creates new
smooth speech sequences by minimizing a cost function that jointly considers dissimilarity to input
phoneme streams, velocity change of selected phonemes at boundaries, and user-defined constraints,
such as emotion specifiers and motion-node constraints. Note that user constraints are specified
via an intuitive and flexible phoneme-isomap interface that can add and delete nodes in the graph.
Similarly, Anderson et al. [2013b] proposed a visual text-to-speech system that also allows the
inclusion of emotion content to generate expressive animations. However, their approach leverages
a larger audio-visual corpus containing six different emotions, where visemes and emotions are
parametrized by an extended AAM that can separate rigid pose from localized facial deformations.
Here, a cluster adaptive training (CAT) based on an HMM is employed to correlate fixed-length
phonemes to visemes, while allowing the user to modulate emotion via expression weights. The key
component of CAT is the use of an ensemble of decisions trees, each capturing speaker-dependent
information at a different emotion level. Hence, expression weights and speech can be combined at
runtime to drive an expressive model with coarticulated speech.

In Chapter 6, we also show that a strong coupling of high-quality performance capture data and
speech analysis also leads to plausible expressive animations with coarticulation effects.

3.4.2 Video-driven Facial Animation

Here, we can find methods that, given a video of a user (source), extract animation parameters or
transfer tracked facial motion from the source performance to animate a 2D/3D avatar (target). In
the literature, the animation of avatars is usually referred to as facial puppetry or cloning.
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Parameter-based Transfer

In this category, we find methods that directly transfer parameters between a source and a target
model with semantically similar expression bases, and approaches that learn in a training step a lin-
ear mapping between the source and the target parameters to enable expression transfer at runtime.

Chuang et al. [2002] proposed an offline 3D facial animation approach that combines automati-
cally detected 2D mocap data and blendshape interpolation. This method is described by two main
steps: Decomposition and retargeting. In the first step, the 2D mocap data is decomposed into a
weighted combination of keyshapes, which are automatically selected by analyzing the maximum
spread (variance) of 2D shapes in the PCA space. After keyshape selection and weight extraction,
3D blendshapes of an avatar that resemble the keyshapes are manually created. In the retarget-
ing step, the weight curves are simply transferred to create an interpolated facial animation for
the avatar. Similarly, recent performance capture approaches track blendshape models of a user
from monocular footage [Blanz et al. 2003; Cao et al. 2013; Cao et al. 2014a] or RGB-D sensors
[Bouaziz et al. 2013; Li et al. 2013b; Weise et al. 2011] and then transfer the estimated blendshape
coefficients directly to artistically-created non-human models that hopefully share the same seman-
tic expressions of the user’s model. Hence, the quality of the facial animation greatly depends on
the modeling skills of the artist.

One of the problems of the methods described above is that the cloned expression appears as the
user’s expressions imposed onto the avatar [Theobald et al. 2009]. Even worse, due to possible
semantic discrepancies between the identity of the user and the avatar, the user’s expression may
lie in a different place in the avatar’s space (even when the expressions share the same semantic
meaning about the mean). While this works for cartoon-like avatars, it may produce non-realistic
expressions or artifacts on human characters. In Chapter 6, we demonstrate this is the case and show
a simple, yet effective, approach that aligns the origin of the source and target parameter space to
transfer plausible facial deformations.

Multilinear models presented in [Cao et al. 2014b; Vlasic et al. 2005] also help overcome this prob-
lem by learning from a large database of faces a set of mutually orthogonal dimensions (e. g.,
identity and expression variation) via tensor decomposition. This way, expressions can be com-
pletely decoupled from identity. As a result, tracked expressions coefficients (obtained by aligning
the multilinear model to optical flow constraints, landmarks, or any other visual cue in a video)
can be directly transferred across reconstructed models of individuals without bias. Alternatively,
[Weise et al. 2009] introduced a live facial puppetry approach that learns from a set of source and
target training shapes a linear subspace that optimally spans the source expressions in the target
space. Having this linear map, new source expression weights (estimated by fitting the source
model to facial scans [Weise et al. 2007]) can be directly used to generate target expressions in real-
time. Theobald et al. [2009] proposed a simpler approach for mapping expression parameters across
reconstructed AAM models without the need for a sophisticated capture or a large database. They
consider expression cloning as a geometric problem. Assuming that expressions are parametrized
by a linear shape basis, they precompute the inner product between a basis vector in the source
model and the corresponding basis vector in the target model and use it to weigh the expression
parameters transferred from the source to the target model.

Saragih et al. [2011b] presented a realtime facial puppetry system that requires only a single neutral
image of a user and an avatar. The system consists of two phases: Offline and online. In the offline
phase, a model for the user and the avatar are created by first fitting a parametric 3D shape model
to 2D landmarks detected on the input images and then by transferring a discrete set of average
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expressions from a generic basis of shape and texture variation. With the generated expressions
and the shape basis as regularization, an optimal mapping between the user and the avatar model
is learned. Texture variation is also learned from the generic basis and correlated to expression
changes. At runtime, the user’s face is tracked, and the estimated parameters are transferred to the
avatar using the learned mapping.

The main drawback of learning based methods is that they need a large set of source and target train-
ing examples with similar expressions to infer a meaningful mapping function. However, such data
may not be readily available. In Chapter 8, we deal with this problem by learning from high-quality
monocular reconstructions a personalized face rig that correlates standard blendshape parameters
to person-specific expressions and face detail. This way, target face rigs can be animated with
parameters estimated on a source performance, while preserving the idiosyncrasies of the target
character.

Motion-based Transfer

Approaches that fall in this category map either source 2D/3D facial motions captured from video
or vertex deformations of a tracked source model onto a target model, provided that dense corre-
spondences of some sort are available.

Eisert et al. [1998] proposed one of the first approaches for visual puppetry in teleconferencing
scenarios. In a preprocessing step, a coarse parametric textured model of a user (represented via
splines) is derived from 3D scans. At runtime, the textured model is tracked in a monocular video
using model-based optical flow constraints, as in [DeCarlo and Metaxas 1996]; however, dense cor-
respondences are computed between the tracked textured model and the current image in a hierar-
chical loop framework to boost performance. The digital model of the user can be then rendered in
arbitrary virtual scenes under user-defined camera positions.

Noh et al. [2001] introduced a flexible expression cloning approach that can reuse dense 3D motion
vectors of a source model (acquired from mocap data or a video) to create similar animations on
a target model. To establish dense correspondences between the models, their method requires a
few sparse correspondences and performs volume morphing with radial basis functions, followed
by a cylindrical projection for a full surface match. To account for geometric differences in the
transfer, per-vertex deformations are parametrized in the local coordinate system of each vertex, and
their magnitude is locally adjusted relative to the bounding box size of neighboring vertices. Here,
heuristic rules are applied to select sparse constraints and deal with correspondences in the lip area.
Also quite related is the popular general-purpose deformation transfer approach for triangle meshes
introduced in [Sumner and Popović 2004]. This method parametrizes local triangle deformations of
a source and a target mesh as affine transformations and maps deformations induced by the source
mesh onto the target reference mesh by solving a global optimization problem that assembles locally
disconnected vertices in the deformation gradient domain, akin to Laplacian-based surface editing
[Sorkine et al. 2004]. Unlike Noh et al. [2001], dense correspondence computation is integrated
into the deformation framework and performed via an iterative ICP-based registration algorithm,
which is guided by a set of predefined sparse correspondences.

Based on [Noh and Neumann 2001; Sumner and Popović 2004], Song et al. [2007] proposed an ex-
pression transfer framework for meshes and images; in the latter case, it can transfer facial detail
(e. g., folds), even in the presence of lighting differences. The key component is a vertex-tent co-
ordinate (VTC) representation that encodes deformations of a vertex relative to its one-ring neigh-
borhood as well as the surface normal. As in [Sumner and Popović 2004], expressions are then
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transferred via integration in the gradient domain. In the case of images, shape transfer is carried
out via image warping using detected landmarks. To account for high-frequency texture changes,
the images are aligned and represented as 3D image grids, where the z coordinate represents the
pixel luminance. VTC-based expression mapping is then performed to compute the pixels’ lumi-
nance values, which in turn correspond to changes in shading. Due to the simple image registration
approach, temporal flicker is expected in video-based transfer setups.

Chai et al. [2003] showed that rich 3D facial animations can also be created live from 2D facial
features and a database of 3D mocap data. Their method is divided into two steps. In an offline
step, the user’s mocap data is parametrized in a low-dimensional space by separating pose from
non-rigid shape deformation (shape basis + weights) via NRSfM. Here, a 1-1 mapping between
shape weights and coarse motion control parameters from tracked 2D facial features is also estab-
lished. These motion controllers represent robust translation invariant features, e. g., relative mouth
deformation and eyelids movement. In an online step, shape weights are estimated from motion
control parameters by nearest neighbor search over a sliding window for robustness. Finally, the
user’s shape is computed via weight interpolation in the gradient domain and mapped onto the
avatar using precomputed dense correspondences, as described in [Noh and Neumann 2001].

Recently, photo-realistic 3D avatars that retain the face shape and details of a target actor have
also been animated from source videos [Suwajanakorn et al. 2015]. The key element is a large
photo collection of a source and a target actor from which textured models are derived. Dense
correspondences between the target and the source textured models are established via optical flow
in a normalized appearance and illumination space, and source coarse expressions are transferred to
the target model using a magnitude-adjusted motion field. To reproduce appearance consistent with
a new source expression in a video, their method computes a weighted average of images in the
target photo collection, where the weights represent the color similarity as well as the confidence
of high-frequency details at different image resolution levels. Inconsistent illumination in the target
photo collection is handled by preferring uniform color distributions in the lower resolution levels.

Even though some methods described above can transfer detailed motion fields to a target model in a
flexible way, they do not provide an intuitive parametrization to control the avatar’s facial motions,
e. g., through blendshape controllers. As such, these methods are often not used by animation
artists for interactive editing tasks. In Chapter 8, we contribute such an approach that can animate
detailed personalized avatars with intuitive generic controllers that steer facial expressions, while
still reproducing person-specific idiosyncrasies.

3.5 Face Replacement and Rewriting in Video

Editing faces in images, and particularly in videos, may be reckoned as one of the most important
steps in the digitization pipeline since the final composite must simply look realistic to get the
viewer’s acceptance. As such, this task is carried out by trained artists and requires lots of effort
and time. In the literature, several methods have been developed to try to automatize this laborious
process without sacrificing too much visual quality. Here, we can recognize two main categories
for face editing: Replacement and rewriting. Replacing faces can be useful for online identity
protection and has been applied in movies for actor replacement (this also includes the same actor
with substantially different facial features, e. g., a younger or older self). Rewriting the face content
is interesting for dubbing, retargeting and video montage scenarios.
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3.5.1 Face Replacement

Most of the methods in this category try to exchange faces (possibly with different illumination) in
images or videos, such that the synthesized result looks sufficiently realistic. Note that the target
face may (or may not) show the same expressions as the source.

One of the first attempts to replace faces in images with different lighting and head pose dates back
to Blanz et al. [2004], where a statistical 3D face prior [Blanz and Vetter 1999] is fitted to a source
and target face to extract the head pose, face shape, skin color and illumination parameters. With the
extracted information, face replacement is then achieved by rendering the reconstructed 3D source
model in the target image under the 3D pose, color gain, contrast, and illumination estimated on
the target face. To generate the final composite, seams across the face boundaries are removed by
alpha blending, and scalp hair is manually segmented and synthesized on top of the rendered face.
The main drawback is that the method requires manual initialization to ensure a good estimation of
fitting parameters, and thus a realistic composite.

Bitouk et al. [2008] proposed a fully-automatic image-based system for replacing an input face
image with potential candidates in a large photo collection downloaded from the Internet. To effi-
ciently select candidates, the database is clustered into bins of similar pose in a preprocessing step.
At runtime, candidates that match the input pose are chosen based on the similarity in blur properties
as well as albedo and lighting. The latter are obtained via intrinsic image decomposition assuming
a Lambertian model. Color differences in the replacement boundary are considered as an additional
selection criterion to avoid seams in the final composite. Finally, the candidates are warped into the
input image using detected landmarks, and lighting differences are adjusted using the ratio image
formulation proposed in [Liu et al. 2001]. Although the method achieves high-quality results, it is
limited to the accuracy of the landmark detection and pose variability in the database.

The methods described above can produce very realistic synthetic faces in single images. Their
application in videos, however, is not clear and may require additional temporal constraints to
regularize undesired pose and expression variation and enforce synthetic faces with similar identity
over time.

The traditional way to replace faces in movies is to first acquire a dense, high-quality 3D textured
model of an actor in complex and expensive professional setups (see Section 3.1.1). The 3D model
is then reanimated by artists or through performance capture data and rendered back into a target
video under target scene lighting. Finally, the rendered geometry is blended in with the actor’s face
in the target video. Borshukov et al. [2003] employed the Universal Capture system to acquire a
3D model of an actor. The model is manually animated and tracked in the scene. Here, realistic
subsurface scattering effects are simulated via blurred 2D lightmaps to render a photo-realistic skin
texture. In [Alexander et al. 2010], a 3D model of an actor is obtained using the Light Stage 5
capture system, which reconstructs highly-detailed diffuse, specular and normal maps for photo-
realistic rendering [Ma et al. 2007]. The model is then tracked semi-automatically in a video and
rendered under known lighting conditions. In both approaches, the digital model depicts the same
actor and is relit with the incident illumination captured from a light probe. Jones et al. [2008]
proposed a method that is capable of replacing two different faces in a video. To do so, both
the source and target face models are acquired with the system proposed in [Ma et al. 2007] and
tracked in a marker-based capture setup with uniform lighting. To allow high-quality relighting of
the source model, specular and diffuse albedo components are estimated using a dichromatic color
model-based separation technique in the SUV color space. Finally, the tracked source model is
rendered into the target video with the estimated target pose. Note that the target face must stay at
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a neutral pose during the whole performance.

Model-based approaches for high-fidelity video replacement are hard to deploy and typically require
significant manual intervention. In view of these problems, Dale et al. [2011] presented an approach
that works on monocular video, requires minimal user interaction, and accounts for differences
in shape and expression between a source and target face. Here, both performances are tracked
with a multilinear model as in [Vlasic et al. 2005], and the corresponding geometry is employed to
align the source with the target performance, both in the spatial and temporal domain. Temporal
alignment is performed via dynamic warping based on the mouth motion, while spatial alignment
is done by rendering the source model in the target pose space. Temporal consistency of face
boundaries in the final composite is maintained by computing the optimal seam in a graph cut
framework, such that pixel differences between the source and target faces are globally minimized
while enforcing consistent pixels between consecutive frames. Although the results are impressive,
user interaction is still needed, and performances must share similar illumination, timing, and pose.

In Chapter 4, we propose a fully automatic image-based approach for video face replacement that
excels in simplicity, is robust to changes in head pose, and produces convincing results in arbitrary
videos. Unlike the methods described above, our approach does not need complex 3D models, or a
large database of faces, or source and target videos with similar scene content.

3.5.2 Face Rewriting

Methods in this category alter the original facial content (expressions and mouth motion) performed
by a target actor in a video, using either speech or facial motion transferred from a source actor.
Unlike face replacement methods, the target actor preserves his/her identity.

Speech-based Rewriting

Similar to speech-driven animation techniques, these methods associate phonemes to visemes to
generate new video animations; however, visemes are explicitly represented as short video segments
or images. The audio-visual map is learned from an actor-specific corpus and applied to the same
actor, thus preserving his/her facial dynamics and mannerisms. The main challenge is to produce
new believable videos with correct motion, dynamics, and coarticulation effects.

One of the first fully-automatic video rewriting approaches can be found in [Bregler et al. 1997].
Here, a video corpus is reordered and aligned to match an input speech track while being consistent
to the original performance in regions outside the mouth. In a preprocessing step, the video corpus
is tracked and broken down into triphones to capture coarticulation effects. Visemes are directly
associated to triphones and encoded as robust features that describe the lip shape. In the synthesis
step, the optimal rearranged triphone videos are found by minimizing a cost function that penal-
izes dissimilarity of phoneme context and mismatch between selected lip shapes in overlapping
segments. The triphone videos are then shifted and skewed to ensure shape continuity and proper
timing. To generate the final composite, the upper face in the triphone videos is globally aligned to
the original sequence via 2D affine warping, and the boundaries of the inserted mouth images are
cross-faded with the original mouth shape. Note that the method only works for the same actor and
language. Besides, it only succeeds for simple head poses.

Ezzat et al. [2002] formulated video-realistic speech animation as a learning problem. Based on a
set of prototypes selected from a large corpus, their method learns a multidimensional morphable
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model (MMM) that parametrizes the space of all possible texture and motion flow configurations
w. r. t. a neutral face to synthesize unseen mouth motions. New configurations are created by in-
terpolating motion flow prototypes in a sparse flow graph and warping prototype images with the
interpolated flows. After parametrizing the corpus in the MMM space, the linear correlation be-
tween phonemes and parameter trajectories as well as the level of smoothness between phonemes
is estimated using gradient descent learning. Then, this map is used to predict trajectories from
new phonemes. The final composite is created as in [Bregler et al. 1997], but face alignment is per-
formed via optical flow. Chang et al. [2005] extended the previous approach to create new speech
animations when only a small corpus is available. To this end, an MMM previously constructed
from a large corpus is transferred to the limited corpus, and their associated MMM phoneme mod-
els are adapted to preserve the speaking style of a new person. The transfer step is achieved by
simply finding, in a least squares sense, new optimal prototypes in the small corpus whose flow
field and texture match those of the pre-learned MMM. In the phoneme adaptation step, new repre-
sentative images in the smaller corpus are selected to learn an optimal intermediate linear map that
projects the already learned distribution of trajectories in the new MMM space.

Liu et al. [2011] proposed a system that can synthesize new expressive mouth animations in an
existing background sequence. To this end, a video corpus with neutral and smiling mouth expres-
sions is recorded and aligned. This corpus is then associated with phoneme and expression tags,
appearance parameters of an image in the PCA space, and robust geometric parameters (mouth
width and height). The optimal concatenation of mouth images is found by minimizing a weighted
cost function that measures the distance to a given input phoneme context, the difference between
selected mouth images, and the dissimilarity to an input expression tag. The selected mouth images
are finally aligned and synthesized on top of a background sequence whose face is in a neutral pose.

Although the methods described above can generate mouth animations with good motion dynamics
and proper coarticulation effects, they produce dull and inexpressive animations, cannot handle fast
or complicated head motion, and are restricted to the language spoken in the corpus. Chapter 6
addresses all these issues.

Motion-based Rewriting

Most motion-based rewriting methods transfer facial motion from a source to a target face by utiliz-
ing either normalized motion fields or motion parameters, or even by simulating motion via image-
based interpolation of candidate frames that are selected manually or based on their similarity to
source faces.

One of the first methods for transferring expressive facial motion from a source to a target face
image was presented in [Liu et al. 2001]. This method enhances traditional motion-based geometric
warping by additionally capturing and transferring changes in shading that arise from subtle skin
deformations. Assuming Lambertian reflectance and aligned faces, shading effects that appear in a
source expression are mapped onto a neutral target face using the so-called expression ratio image
(ERI), represented as the quotient of an expressive and neutral face. As the quality of the results
highly depends on the alignment strategy, temporal stability is not guaranteed and local illumination
changes on the face, which is common in a video, may violate the quotient formulation.

In [Kemelmacher-Shlizerman et al. 2010], the facial motion of a source video character is indirectly
transferred to a different character in a target video by rearranging and roughly aligning target
frames, such that the selected faces match the expression of those in the source video, akin to the
face replacement method of Dale et al. [2011]. However, in this case, face pose in both sequences
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may differ, and so may the lighting and expressions. To handle this, the authors proposed a simple
greedy approach that selects frames by measuring the dissimilarity in appearance and pose over a
small temporal window, where the face appearance is represented as local binary patterns (LBP)
descriptors computed on the mouth and eyes region. The rearranged sequences still suffer from
temporal jitter, which can partially be controlled using long target videos with diverse expressions.

Also related is the approach proposed by Kemelmacher et al. [2011] that automatically creates a
smooth transition of aligned photographs between a source and target input face. The main compo-
nent is a large photo collection of a person with varying expressions at different points in time. Here,
the photo collection is represented as a face graph of aligned images, where edges in it describe the
similarity in appearance and pose between frames as well as temporal proximity between images
(in case timestamps are available). Unlike the previous method, the appearance is parametrized as
HoG descriptors. A smooth transition of images can be then found by traveling the shortest path
from the source to the target face and then cross-dissolving between selected images. However, this
causes noticeable ghosting artifacts in facial regions.

Inspired by the limitations of previous approaches, Li et al. [2012] proposed an image-based sys-
tem that generates realistic facial animations for a target actor by optimally retrieving candidate
faces from a target database with similar expressions to those in a source sequence. Unlike previ-
ous retrieval approaches, both expression similarity and its velocity change are used as criteria to
choose target candidate frames. Here, expressions and velocities are represented as normalized flow
fields that measure the optical distance to the neutral frame or between consecutive frames, respec-
tively. A directed face graph with candidate frames is then constructed, and the optimal retrieved
sequence is found by traversing it, while enforcing selections with minimal frame jumps. As the
database may potentially lack expressions, retrieved images are blended in with ERI reconstructions
[Liu et al. 2001] to add missing motions and shading details. Despite the high-quality animations,
the method only handles frontal poses and slow motions.

One of the main limitations of the methods described above is that they require large databases or
long sequences to produce believable facial animations. Furthermore, source and target poses must
usually be very similar to ensure artifact-free facial transfer. Still, jitter or ghosting artifacts cannot
entirely be prevented. In Chapter 4, we introduce a robust image-based face transfer approach that
requires no dedicated database, but just a short sequence with arbitrary expressions and moderate
head motion.

Capturing and transferring detailed facial dynamics as well as rendering photo-realistic synthetic
sequences may still be difficult for image-based methods, especially in the presence of challenging
head poses and facial deformations. In Chapter 6, we extend the image-based approach presented
in Chapter 4 and leverage high-quality model-based face tracking and scene lighting estimation to
transfer plausible facial dynamics and render new photo-realistic synthetic sequences, both crucial
for dubbing scenarios in movies. Inspired by this work, robust model-based techniques for real-
time photo-realistic facial transfer have been proposed [Thies et al. 2015; Thies et al. 2016]. At the
heart of these methods is a highly-parametrized face prior that models rigid pose, facial identity
and expression, skin albedo, and lighting. This model is used to track and parametrize the source
and target facial motion in RGB(-D) video streams. Face transfer is then performed by mapping
the tracked source motion parameters onto the target model and re-rendering it with the estimated
target illumination. In [Thies et al. 2015], source motion parameters are first normalized by aligning
the parameter space to the estimated neutral expression prior transfer. A believable mouth interior
is modeled with a generic 3D teeth proxy and 2D warping of the oral cavity. Thies et al. [2016]
proposed a more sophisticated facial motion mapping function that directly operates in the param-
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eter space spanned by the expression basis. A realistic mouth interior is synthesized by retrieving
a mouth image from the target sequence, such that the pose, shape, appearance and motion of the
mouth agree with that observed in the source sequence. Temporal coherence is enforced by also con-
sidering similarity to the last retrieved mouth image, and by blending between the last two retrieved
mouth images.

The main disadvantage of the two previous model-based approaches is that they neither capture nor
generate person-specific expressions and fine-scale details, which is mandatory in complex video
editing tasks. These issues are tackled in Chapters 7–8.



Chapter 4
Image-based Face Capture and

Reenactment

Figure 4.1: Reenactment result on a high-quality video (17 s of target footage, 15 s of source footage). Top:

Example frames from the target sequence. Middle: Corresponding selected source frames. Bottom: Final

composites.

This chapter presents a fully-automatic, image-based facial reenactment method that tracks and
replaces the face of an actor in an existing target video with that of a user from a source video,
while preserving the original target performance (see Figure 4.1). The method and results presented
in this chapter are based on [Garrido et al. 2014] and partially on [Garrido et al. 2013].

45
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4.1 Introduction

Face replacement for images and video has been studied extensively (Section 3.5). These techniques
substitute a face (or a facial performance) in an existing target image (sequence) with a different
face (or performance) from a source image (sequence), and compose a new result that looks realistic.
As a particularly challenging case, video face reenactment replaces a face in an image sequence,
while preserving the gestures and facial expressions of the target actor as much as possible. Since
this process requires careful frame-by-frame analysis of the facial performance and the generation
of smooth transitions between composites, most existing techniques demand substantial manual
interaction.

This chapter presents an entirely image-based method for video face reenactment that is fully auto-
matic and achieves realistic results, even for low-quality video input, such as footage recorded with
a webcam. Given an existing target sequence of an actor and a self-recorded source sequence of a

user performing arbitrary face motion, our approach produces a new reenacted sequence showing
the facial performance of the target actor, but with the face of the user inserted in it. We adhere
to the definition of face replacement given by Dale et al. [2011] and only replace the actor’s inner
face region, while keeping the hair, face outline, and skin color, as well as the background and illu-
mination of the target video. We solve this problem in three steps: First, we track the user and the
actor in the source and target sequence using a 2D deformable shape model whose facial features
are accurately tracked throughout the sequence. Then, we go over the target sequence and look in
the source sequence for frames that are both similar in facial expression and coherent over time.
Finally, we adapt the head pose and face shape of the selected source frames to match those of the
target, and blend the results in a compositing phase.

Our reenactment solution has several important advantages: 1) Our 2D tracking step is robust under
moderate head pose changes and allows a freedom in camera view point. As opposed to existing
methods, our system does not require that the user and the target actor share the same pose or
face the camera frontally. 2) Our matching step is formulated as an image retrieval task, and, as
a result, source and target performances do not have to be similar or of comparable timing. The
source sequence is not an exhaustive video database, but a single recording that the user makes of
himself going through a short series of non-predetermined facial expressions. Even in the absence
of an exact match, our system synthesizes plausible results. 3) Our face transfer step is simple, yet
effective, and does not require a 3D face model to map source pose and texture to the target. This
saves us the laborious task of generating and tracking a personalized face model, something that is
difficult to achieve for existing, pre-recorded footage. 4) None of the above steps needs any manual
interaction: Given a source and target video, the reenactment is created automatically.

We further make the following contributions: 1) We present a new optical flow-based correction
scheme that uses keyframes to accurately improve the landmark trajectories of a 2D face tracker.
2) We introduce a novel distance metric for matching faces between videos, which combines both
appearance and motion information. This allows us to retrieve similar facial expressions, while
taking into account temporal continuity. 3) We propose an approach for segmenting the target
video into temporal clusters of similar expression, which are compared against the source sequence.
This stabilizes matching and assures a more accurate image selection. 4) A final contribution is
an image-based warping strategy that preserves facial identity as much as possible. Based on the
estimated shape, appearance is transferred by inverse texture warping and image blending.
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Face Tracking

Face Matching

Face Transfer

Input Videos

Reenactment

Composite Warping Best Match

SourceTarget

Target

Target

Figure 4.2: Overview of the proposed approach. The system is composed of three main steps: Face

tracking (Section 4.3), face matching (Section 4.4), and face transfer (Section 4.5).

4.2 Overview

Our approach takes as input two videos showing facial performances of two different persons: a
source sequence S of the user, and a target sequence T of an actor. The goal is to replace the actor’s
inner face region with that of the user, while preserving the target performance, scene appearance
and lighting as faithfully as possible. The result is the reenactment sequence R . The source and
target video are not assumed to depict the same performance: Reenactments can be produced for
different target videos from only a single source video, which is assumed to show the user going
through a short series of random facial expressions while facing the camera. The target sequence
can be general footage depicting a variety of expressions and head poses.

Our approach consists of three subsequent steps, as illustrated in Figure 4.2:

S1 Face Tracking (Section 4.3): A non-rigid face tracking algorithm tracks the user and the ac-
tor throughout the videos and provides 2D facial feature points. The landmark trajectories are
greatly improved and stabilized using optical flow between automatically selected keyframes.

S2 Face Matching (Section 4.4): The appearance of the main facial regions is encoded as a
histogram of local binary patterns, and target and source frames are matched by a nearest
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neighbor search. This is rendered more stable by dividing the target sequence into temporal
chunks of similar appearance and taking into account the motion of the facial landmarks.

S3 Face Transfer (Section 4.5): The target head pose is transferred to the selected source frames
by warping the accurately tracked facial landmarks. A smooth transition is then created by
synthesizing in-between frames and blending the source face into the target sequence using
seamless cloning.

4.3 Non-rigid Face Tracking

To track the user and actor in the source and target sequence, respectively, our system utilizes a
non-rigid face tracking algorithm proposed by Saragih et al. [2011a], which tracks a sparse set
of m= 66 consistent landmark locations on the human face, such as the eyes, nose, mouth, and
face contour, as shown in Figure 4.3. The approach is an instance of the constrained local model
(CLM) [Cristinacce and Cootes 2006] that employs the subspace constrained mean-shift algorithm
as an optimization strategy. Specifically, it is based on a 3D point distribution model (PDM), which
linearly models non-rigid shape variations around a set of reference landmark locations X̄i ∈ R

3,
∀i= 1 : m, and composes them with a global rigid transformation assuming a weak perspective
camera model, as follows:

x̃i = sPR
(
X̄i +Φiq

)
+ t with P =

[
1 0 0
0 1 0

]
. (4.1)

Here, x̃i ∈ R
2, 1 ≤ i ≤ m, denotes the estimated 2D location of the i-th facial feature point in

the image and P the orthogonal projection matrix. The PDM parameters are the scaling factor s,
the 3D rotation matrix R, the 2D translation vector t, and the non-rigid deformation parameters
q ∈ R

z, where z= 24 is the dimension of the PDM model. Furthermore, Φi ∈ R
3×z denotes a

previously learned submatrix of the basis of variation pertaining to the i-th feature. To find the
most likely feature locations, the algorithm first detects the bounding box surrounding the face
[Viola and Jones 2004] and calculates a response map for each landmark in the face region by local
SVM detectors trained to recognize aligned from misaligned locations. Then, it combines the local
detectors in an optimization step that enforces a global prior over the joint motion of the landmarks.
Note that the face tracking algorithm utilizes the previously estimated PDM parameters to initialize
the optimization in the next frame. Both the trained PDM model and the local feature detectors were
provided to us by the authors. It is important to remark that we only use the 2D landmark output
(x̃1, ..., x̃m) of the tracker and not the underlying 3D PDM, since the 2D landmark trajectories will
in the end be corrected and stabilized in the video, as described below.

4.3.1 Automatic Key Frame Selection

The facial landmarks are prone to noise and inaccuracies, and therefore there may be localization
errors in the detected facial landmarks, especially for expressions on which the tracker was not
trained. Table 4.1 quantifies this effect by listing the mean distance of the detected landmarks from
their manually annotated ground truth locations for a selection of expressions performed by different
subjects. This can render the face matching (see Section 4.4) and face transfer (see Section 4.5) less
stable. To account for such errors and increase the tracking accuracy, we correct the landmark
locations using accurate optical flow between automatically selected keyframes, i. e., frames for
which the localization of the facial landmarks detected by the face tracker is considered reliable.
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Figure 4.3: Face regions used for generating the LBP descriptors. Left: Detected landmarks. Middle:

Detected mouth and eyes regions, each split into 3× 5 and 3× 2 tiles, respectively. Right: Detected small

regions at the m=66 landmark locations.

Appearance Descriptor

Keyframes are selected by comparing the facial appearance of each frame f t at the timestep t with
the appearance of a reference frame f r that has well localized facial features, for instance, a frame
of a neutral pose. Empirically, we learned that the non-rigid face tracking algorithm works fairly
well for non-expressive, symmetric facial expressions (i. e., near to neutral expressions). In this
thesis, we assume that the first frame in the sequence fulfills these requirements and we choose it as
the reference frame.

All frames in the sequence are initially aligned to the first frame using a 2D affine transformation
that maps at best the set of detected features onto the reference shape without distorting the face
appearance in the image. To extract meaningful facial features in the aligned frames, we consider
three rectangular regions of fixed size around the mouth and the eyes, each computed as the bound-
ing box of their corresponding landmark locations in the reference frame f r. After padding these
regions by 25% their size, we split them into several tiles, as shown in Figure 4.3.

As feature descriptor for a region of interest, we choose histograms of local binary patterns (LBPs)
[Ahonen et al. 2006; Ojala et al. 2002], which have been found very effective for expression match-
ing and identification tasks [Kemelmacher Shlizerman et al. 2011; Tan and Triggs 2010]. LBPs en-
code the relative brightness around a pixel by assigning a binary value to each neighboring pixel,
depending on whether its intensity is brighter or darker. The result is an integer value between 0 and
2l for each center pixel, where l is the number of pixels in a circular neighborhood. It is important
to remark that the LBP histograms are not quantized, i. e., each representative value of the LBP
code is assigned to a single bin in the histogram.

Following [Kemelmacher-Shlizerman et al. 2010], we use a uniform LBP code to achieve simple
rotation invariance. This is a particularly important feature as the global alignment described above
normally sacrifices registration accuracy to avoid distorting the appearance of the face, especially
for out-of-plane head rotations. Uniform LBP codes assign an own label to every binary combina-
tion for which the number of bitwise transitions between 0 and 1 (or vice versa) is at most two when
the bit pattern is traversed circularly, and a single label for all other combinations. For a neighbor-
hood size of l = 8, this results in an LBP histogram h of 59 bins [Ojala et al. 2002] for each tile.
Empirically, we found that uniform codes lack in discerning power to recognize expressions from a
wider set other than the distinctive neutral, sadness, happiness and anger expressions. Even though
this is not crucial when selecting keyframes, uniform codes are insufficient for accurately matching
expressions across individuals (see Section 4.4). Hence, to increase the discriminating power of ap-
pearance matching at a finer scale of detail, we additionally compute a standard LBP histogram for
a neighborhood size of l=4, thereby extending h to 59+24=75 bins for each tile. This gives a good
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Figure 4.4: Position of facial landmarks before correction (left) and after correction (right). Note that the

correction clearly improves the tracking of certain features, such as the mouth region and the eyes.

trade-off between complexity and matching accuracy. Finally, by concatenating the histograms for
all J tiles that make up a region of interest, an LBP feature descriptor H=(h1, . . . ,hJ) for the whole
region is created.

Appearance Matching

In a first pass, an initial set of keyframes is selected as those frames in the sequence that are closest
to the reference expression according to the following distance metric:

dapp( f r, f t) =
3

∑
j=1

dχ2

(
H j( f r),H j( f t)

)
, (4.2)

where dχ2 is the normalized chi-squared distance between two histograms and H j the appearance
descriptor for the eyes and mouth regions. The amount of initial keyframes is chosen as x% of
the sequence length, which can be thought of as a probability estimate of finding the reference
expression in the video and at the same time corresponds to an average inter-key-frame distance.

In a second pass, we select clips between consecutive keyframes with a length of more than y frames
and divide these by adding more keyframes. These in-between keyframes are selected in the same
way using the distance metric Equation 4.2, but this time we use a sparse appearance descriptor H

for a small squared region around each of the m=66 detected facial landmarks (see Figure 4.3). The
size of each region was set to 10% the size of bounding box representing the inner part of the face
(eyebrows and face contour). Unlike the initial keyframes, in-between keyframes may not have the
same expression as the reference, since we only seek similar texture patterns around facial feature
points and not within whole facial regions. The division threshold of y frames is chosen in such a
way it limits the inherent drift by optic flow (see Section 4.3.2) over longer clips.

For the results presented in this chapter as well as in Chapter 5, x=2.5% and y=40. These values
were found empirically. In some experiments conducted on the sequences presented in Chapter 5,
the resulting average distance between keyframes was 22, with an average maximum of almost 90.
Note that such sequences exhibit fast and expressive facial motions, and the first frame is assumed
to be at rest pose. We also remark that videos containing substantially different characteristics may
require further adjustment of the empirical values reported above.

4.3.2 Optical Flow-based Feature Correction

If we assume that we have a keyframe at time t =T , we compute the landmark locations at times
t > T , as follows:

xt
i = λi x̃t

i +(1−λi)xt
o,i for 1≤ i≤ m , (4.3)
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Table 4.1: Keyframe-based landmark correction: Mean distance (in pixels) of the 66 tracked landmarks to

their manually annotated ground truth location for a selection of expressions from the sequences shown in

the experiments of Section 4.6.1 and Section 5.7.1.

Sequence Feature Tracking Key Frame Correction
11 expressions of seq. 1 (Figure 4.14) 5.38 ± 1.47 3.83 ± 1.05
11 expressions of seq. 2 (Figure 5.8) 6.72 ± 1.44 4.60 ± 0.70
10 expressions of seq. 3 (Figure 5.9) 6.36 ± 1.65 4.13 ± 0.88

Overall 6.15 ± 1.52 4.19 ± 0.88
Overall, only mouth and eyes 7.24 ± 2.22 4.35 ± 1.46

where 0 ≤ λi ≤ 1 is a weighting factor. In this expression, x̃t ∈ R
2×m are the facial landmark

positions (see Equation 4.1) obtained by the facial feature tracker at time t, while xt
o ∈ R

2×m are
the locations estimated by optical flow:

xt
o = xT + ∑

T≤q<t

wq . (4.4)

Here, xT denotes the landmark positions in the keyframe f T and wt is the forward optical flow vector
field from t to t + 1 in xt

o. Optical flow is estimated in a variational framework by minimizing an
energy consisting of a data term with brightness and gradient constancy assumption, and a structure-
aware smoothness term, as proposed in [Valgaerts et al. 2012b]. To further stabilize the tracking of
xt

o between keyframes, we also compute the backward optical flow from t + 1 to t and use it to
back-trace the landmark position from the next keyframe. To be more precise, the optical flow-
based correction strategy is performed in both directions, where the influence of the forward and
backward optical flows is varied smoothly over time, with the forward (backward) flow having more
weight near the previous (next) keyframe, respectively. This avoids an accumulation of drift errors
and also ensures smooth landmark trajectories at keyframes. A related keyframe approach for dense
tracking was adopted by Beeler et al. [2011].

Improvements in feature point location after optical flow-based correction are clearly noticeable for
very expressive regions, such as the mouth and the eyes in Figure 4.4. Table 4.1 further shows that
overall the localization of facial feature points improves after our correction step.

To improve the smoothness of the landmark trajectories even further, we do not use the estimated
optical flow value at the exact landmark location xi, but assign a weighted average of the flow in
a circular neighborhood around xi. This neighborhood of size r·p is built by distributing p points
evenly on circles with radial distances of 1,2, . . . ,r from xi. In our experiments we choose r=2 and
p=8, and weigh the flow values by a normalized Gaussian centered at xi.

4.4 Face Matching

A central part of our reenactment system is matching the source and target faces under differences
in head pose. Here, we find a trade-off between exact expression matching, and temporal stability
and coherence. The tracking step of the previous section provides us with accurate facial landmarks
that coarsely represent the face shape. Instead of comparing shapes directly, we match faces based
on appearance and landmark motion, depicting the facial expression and its rate of change, respec-
tively. Another contribution of the matching step is a temporal clustering approach that renders the
matching process more stable.
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(a) (b)

Figure 4.5: Image alignment and feature extraction. (a) Reference frame used for alignment (with its

respective estimated landmarks). (b) Expressive face aligned to the reference. Left to right: Estimated

landmarks, triangulation and detected regions of interest. The mouth, eyes and nose regions are split into

3× 5, 3× 2 and 4× 2 tiles, respectively.

4.4.1 Image Alignment and Feature Extraction

Before extracting meaningful facial features, the source and target frames are first aligned to a
common reference frame, as shown in Figure 4.5 (a). For this purpose, we choose the first frame
in the source sequence, which is assumed to depict the user at rest pose. Unlike methods that align
source and target using a morphable 3D model [Kemelmacher-Shlizerman et al. 2010], we compute
a 2D affine transformation for each frame that optimally maps the set of detected landmarks onto
the reference shape, as described in Section 4.3.1. Since this transformation is global, it does not
change the expression in the aligned frames. This alignment is only necessary for the temporal
clustering and frame selection of Section 4.4.2, but is not applied for the subsequent steps of the
system.

To be able to recognize similar expressions between individuals at a finer level, we consider in this
case four regions of interest of fixed size: The eyes (left and right, separately), the mouth, and the
nose, as shown in Figure 4.5 (b). Since source and target frames are aligned, these regions are
computed only once in the reference source frame. Note that the nose region partially contains
nasolabial features as well as the area in which frown lines form, which together are important to
distinguish, for instance, a smile from anger. The LBP descriptors are computed in the same way
as described in Section 4.3.1.

4.4.2 Temporal Clustering and Frame Selection

Matching source and target frames directly may lead to abrupt frame-to-frame expression changes in
the reenactment. The reasons for this are: 1) We experienced a sensitivity of LBP feature descriptors
w. r. t. the detected regions of interest, which can result in slightly different selection of source
frames for similar target expressions (comparable effects were reported by Li et al. [2012]). 2)
The source sequence is sparse and may not contain an exact match for each target expression. 3)
There is no temporal consistency in the image selection. To overcome these shortcomings, we
stabilize the matching process by a temporal clustering approach, which finds the source frame that
is most similar to a small section of target frames. Additionally, we enforce temporal continuity by
extending the appearance metric with a motion similarity term, which takes into account the change
in expression.
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Temporal Clustering

To stabilize the selection of source frames, we divide the target sequence into consecutive sections
of variable length based on expression and appearance similarity, and then look for the source frame
that best matches a whole target section. To measure the similarity between two consecutive target
frames f t

T
, f t+1

T
∈ T , we compute the appearance distance

dapp( f t
T
, f t+1

T
) =

4

∑
j=1

w j dχ2

(
H j( f t

T
),H j( f t+1

T
)
)

, (4.5)

where H j( f ) is the LBP feature descriptor for the j-th of the four regions of interest in f , w j an
accompanying weight, and dχ2 the chi-squared distance. The weights for mouth, eyes and nose
regions were experimentally set to 0.6, 0.15 and 0.1, respectively.

The proposed clustering approach is related to hierarchical agglomerative clustering methods, but
it is explicitly designed to preserve temporal continuity, i. e., it only merges clusters that are con-
secutive in time, thereby preserving the order of the target frames. Similar to agglomerative-based
approaches, our algorithm proceeds hierarchically, as follows: Assuming that each frame is initially
a separate cluster, each subsequent iteration joins the two consecutive clusters that are closest ac-
cording to the metric in Equation 4.5. As a linkage criterion, the appearance distance between two
consecutive clusters C1 and C2 is defined as the average of the pairwise distances dapp between all
frames in C1 and all frames in C2. The two closest consecutive clusters are finally merged if 1) they
only contain a single frame or 2) the variance of dapp within the merged cluster is smaller than the
maximum of the variances within the separate clusters. The last criterion keeps the frames within a
cluster as similar as possible, and once it is not met, the algorithm terminates. An advantage of our
clustering approach is that it is parameter-free, thus no tuning is required. The result is a sequence
of target sections C k, with k an index running in temporal direction over the number of clusters.

We observed that the length of a cluster C varies inversely proportionally to the change in expres-
sion and the timing of speech within C . An analysis of the number of detected clusters and their
lengths can be seen in Figure 4.6. This figure shows a plot of the distance metric dapp between
two consecutive frames for 32 frames of the target sequence depicted in Figure 4.15. The target
clusters that are computed by our temporal clustering approach are drawn as red lines below the
graph, while isolated frames and boundary frames are indicated by green squares. The values of the
distance metric dapp are drawn as red circles enclosed by the frames between which it measures the
similarity.

As one would expect, consecutive frames are merged into a cluster if the value of dapp is low. If
dapp remains low for an extended number of consecutive frames, a large cluster is formed, such as
the one spanning frames 48 to 52. Peaks in the graph indicate dissimilar frames and these typically
form cluster boundaries or isolated frames. Note that the graph is dynamic and changes as the
algorithm proceeds since the value of dapp between consecutive clusters changes as more clusters
are formed (difficult to visualize).

To illustrate the similarity in appearance of frames within the same cluster, we display the boundary
frames of the cluster spanning frames 38 to 41 at the bottom left, the cluster spanning frames 48 to
52 in the top middle, and the cluster spanning frames 53 to 55 at the bottom right of the figure. The
two examples of isolated frames shown at the top left and right side lie outside of a cluster and differ
in appearance from those within the neighboring clusters. It can be concluded that the length of a
cluster roughly varies inversely proportionally to the change in expression and the timing of speech
within the cluster. The maximum and average cluster length as well as the total number of clusters
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Figure 4.6: Plot of the distance metric dapp and the resulting clusters obtained in the target sequence by

the proposed temporal clustering approach.

Table 4.2: The mean (mean size) and maximum (max. size) cluster size, and the total number of clusters

(num. clusters) computed for the sequences shown in Section 4.6.

num. num. mean max.
Sequence

frames clusters size size
Figure 4.12 231 86 2.7 5
Figure 4.13 524 196 2.7 6
Figure 4.15 200 59 3.5 15
Figure 4.9 446 155 2.9 8
Figure 4.10 566 215 2.6 6
Figure 4.11 352 136 2.6 4
Figure 4.16 319 128 2.5 5
Figure 4.1 533 191 2.8 9

computed for the target sequences of the figures shown in Section 4.6.1 are given in Table 4.2. For
the results presented here, we enforced the minimum cluster size to be 2, which generally leads
to smoother animations for sequences with many isolated frames. Enforcing this is easily done by
adding isolated frames to the left or right cluster, depending on which one is closest in dapp.



55 4.5. FACE TRANSFER

Frame Selection

To select a source frame f k
S
∈ S that matches a target section C k, we compute an aggregated similar-

ity metric over all target frames in a cluster:

d(C , fS) = ∑
fT ∈C

dapp( fT , fS)+ τ dmot(vC ,vS) . (4.6)

Here, dapp( f1, f2) is the appearance distance defined in Equation 4.5 and dmot(v1,v2) a motion

distance that measures the similarity between two vector fields v1,v2 ∈ R
2×m. The vector field vC

describes the motion of the m facial landmarks between two consecutive clusters. The motion of
the i-th landmark vC ,i is computed as the difference of its average positions in the current cluster C k

and the previous cluster C k−1. The vector field vS describes the motion of the m facial landmarks
between two consecutively selected source frames, i. e., for the i-th landmark, vS,i is the difference
of its position in f k

S
and f k−1

S
. Note that vC and vS are computed for normalized landmark locations

in the aligned source and target frames. The motion distance dmot is defined as

dmot(vC ,vS) = 1−
1
3

3

∑
j=1

exp
(
−d j(vC ,vS)

)
, (4.7)

d1=
1
m

∑
i

‖vC ,i−vS,i‖2 , (4.8)

d2=
1
m

∑
i

(

1−
vC ,i ·vS,i

‖vC ,i‖2‖vS ,i‖2

)

, (4.9)

d3=
1
m

∑
i

|‖vC ,i‖2−‖vS,i‖2| , (4.10)

where d1 measures the Euclidean distance, d2 the angular distance, and d3 the difference in magni-
tude between the motion fields vC and vS . The motion distance dmot therefore measures how similar
the change in expression in the selected source frames is compared to the change in expression
between target clusters. It is important to understand that consecutively selected frames f k−1

S
and

f k
S

do not have to be consecutive in the original source sequence S . The matching metric in Equa-
tion 4.6 is thus suitable for source and target sequences that have an entirely different timing and
speed. We remark that both the aggregated appearance distance and motion distance are normalized
to [0,1] and the weighting factor τ was set to 0.8 for all experiments.

Given f k−1
S

, the source frame with the minimal total distance d(C k, fS) over all fS ∈ S , is chosen as
the best match f k

S
and assigned to the central timestamp of C k. If C k consists of a single frame, f k

S

is assigned to this timestamp.

4.5 Face Transfer

After selecting the best representative source frames, we transfer the face of the user to the corre-
sponding target frames and create the final composite. First, we employ a 2D warping approach
that combines global and local transformations to produce a natural shape deformation of the user’s
face that matches the actor in the target sequence. The estimated shape is then utilized to transfer
the user’s appearance and synthesize a compelling transition.
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4.5.1 Shape and Appearance Transfer

While only methods relying on complex 3D face models can handle large differences in head pose
between source and target [Dale et al. 2011], we present a simple, yet effective, image-based strat-
egy that succeeds in such cases. Inspired by work on non-rigid template fitting [Blanz et al. 2004;
Weise et al. 2009], we formulate face transfer as a deformable 2D shape registration that finds a user
shape and pose that best correspond to the shape and pose of the actor, while preserving the user’s
identity as much as possible.

Shape Transfer

For each target frame f t
T
∈T , we want to estimate the m 2D landmark locations

(

xt
R ,1, ...,x

t
R ,m

)

of the

user’s face in the reenactment sequence R . To achieve this, we propose a warping energy composed
of two terms: a non-rigid term and an affine term. The non-rigid term penalizes deviations from the
target shape:

Enr=
m

∑
i=1

∥
∥
∥xt

R ,i−
(

α1 xt−1
T ,i +α2 xt

T ,i+α3 xt+1
T ,i

)∥
∥
∥

2
, (4.11)

where xt
T ,i denotes the i-th landmark in the target frame at time t and α j, ∑ j α j =1, are normalized

weights (0.1, 0.8 and 0.1 in our experiments). The affine term penalizes deviations from the selected
source shape:

Er=
m

∑
i=1

∥
∥
∥xt

R ,i−
(

β1 Mk−1xk−1
S ,i +β2 Mkxk

S,i

)∥
∥
∥

2
, (4.12)

where xk−1
S,i (resp. xk

S,i) is the i-th landmark in the selected source frame immediately preceding

(resp. following) the current timestamp t, and Mk a global affine transformation matrix that opti-
mally aligns xk

S
and xc

T
, with c the central timestamp in the k-th cluster. As the selected source

frames are only assigned to the central timestamp of a temporal cluster, no selected source shape
may correspond to the current target frame f t

T
, so this term effectively interpolates between the

closest selected source shapes, thereby preserving the user’s identity. The weights β j, ∑ j β j = 1,
depend linearly on the relative distance from t to the central timestamps of C k−1 and C k, being 0
or 1 if t coincides with one of the cluster centers. Combining the two terms together with their
corresponding weights wnr and wr, yields the total energy

Etot(x
t
R ,i) = wnr Enr +wr Er , (4.13)

where wnr + wr = 1. A closed-form solution to Equation 4.13 for the optimal landmark loca-

tions
(

xt
R ,1, ...,x

t
R ,m

)

exists. Note that the values of the trade-off weights wnr∈{0.55,0.65}, wr∈

{0.45,0.35} were found empirically and mainly selected based on the amount of out-of-plane head
rotation that exists in the target sequence (larger out-of-plane head rotation angles imply higher face
deformation, and therefore higher influence of the non-rigid term). Please refer to Section 4.6 to
see the values assigned to each sequence.

Appearance Transfer

Once we have the optimal shape of the face in the reenactment sequence, we transfer the appearance
of the selected source frames by inverse-warping the corresponding source texture using a triangu-
lation of the landmark points (see Figure 4.5 (b)), as proposed in [Saragih et al. 2011a]. For the
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Figure 4.7: Comparison of warping approaches. Left: Selected user frame. Right: Target pose. Middle

left to right: Non-rigid warping (Equation 4.11), affine warping (Equation 4.12), and our approach (Equa-

tion 4.13). Note that non-rigid warping distorts eyes and mouth, while affine warping fails to find a correct

view deformation.

Figure 4.8: Seam generation. Top: User at rest pose, source mask with landmarks closest to the boundary

in red, and eroded mask. Bottom left: Target frame and mask. Bottom right: Transferred source frame and

mask. Bottom middle: Final blending seam obtained by intersecting source and target mask.

in-between frames, we create a smooth transition in appearance by interpolating the texture from
the closest selected source frames using the same triangulation of the landmarks.

Note that a shape and appearance transfer as described here are generally not possible with conven-
tional warping approaches, such as global non-rigid warping and global affine warping, as shown
in Figure 4.7. The former creates unrealistic distortions in texture since it fits the source shape
exactly to the target shape, while the latter may fail under strong perspective views and create odd
deformations whenever the source and target shape do not agree.

Compositing

Having transferred the source face to the target sequence, we produce a convincing composite,
where the main facial source features, represented by the eyes, nose, mouth, and chin are seamlessly
implanted onto the target actor. The lighting of the target sequence, and the skin appearance and
hair of the target actor, should be preserved. For this purpose, we use Poisson seamless cloning
[Pérez et al. 2003]. We create a tight binary mask for the source sequence containing the main
facial features of the user at rest, such as eyes, mouth, nose and eyebrows. We then perform an
erosion with a Gaussian structuring element that is constrained by the landmark locations in the
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Figure 4.9: Existing high-quality video (17 s of target footage, 10 s of source footage). Top: Example frames

from the target sequence. Middle: Corresponding selected source frames. Bottom: Final composites.

Chosen weights in Equation 4.13: wnr = 0.65, wr = 0.35.

facial features. Thresholding this mask gives us a seam for blending (see Figure 4.8, top).

To obtain a seam for each frame in the reenactment, the precomputed source mask is transferred
by inverse-warping (see Section 4.5.1). We prevent the seam from running outside the target face
by intersecting it with a mask containing the main facial features of the target actor (see Figure 4.8,
bottom). For increased insensitivity to the source illumination, we transform the source and tar-
get frames into the perception-based color space of [Chong et al. 2008] before performing Poisson
blending [Pérez et al. 2003]. The blended image is converted back to RGB space, resulting in the
final composite (see Figure 4.2). To avoid artifacts across the seam, we blend the boundary pixels
using a Gaussian with a standard deviation of 9 pixels.

4.6 Experiments

We evaluate our method on two types of data: We use videos that were pre-recorded in a studio with
an SLR camera at 25 fps to demonstrate the reenactment quality on existing high-quality footage.
We also reenact faces in videos taken from the Internet using a random performance of a user
captured with a webcam. This demonstrates our system’s ease of use and its applicability to online
content. Our system was implemented in C++ and tested on a 3.4 GHz Intel R©CoreTM i5 processor
with 16GB RAM. As the results shown below are viewed best as video, we encourage the reader to
watch the supplemental video at the project website1.

1http://gvv.mpi-inf.mpg.de/projects/FaceReenactment/

http://gvv.mpi-inf.mpg.de/projects/FaceReenactment/
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Figure 4.10: Existing high-quality video (22 s of target footage, 10 s of source footage). Top: Example

frames from the target sequence. Middle: Corresponding selected source frames. Bottom: Final compos-

ites. Chosen weights in Equation 4.13: wnr = 0.65, wr = 0.35.

Figure 4.11: Existing high-quality video (14 s of target footage, 10 s of source footage). Top: Example

frames from the target sequence. Middle: Corresponding selected source frames. Bottom: Final compos-

ites. Chosen weights in Equation 4.13: wnr = 0.55, wr = 0.45.



CHAPTER 4. IMAGE-BASED FACE CAPTURE AND REENACTMENT 60

Figure 4.12: Low-quality video from the Internet (8 s of target footage, 10 s of source footage). Excerpt

from “A Few Good Men” (http://youtu.be/5j2F4VcBmeo). Top: Frames from the target sequence. Middle:

Corresponding selected source frames. Bottom: Final composites. Chosen weights in Equation 4.13:

wnr = 0.55, wr = 0.45.

4.6.1 Results

Existing Video We recorded three male and two female users performing random facial gestures
and speech under similar ambient lighting to simulate existing high-quality HD footage. As source
sequences, we selected from the recordings a snippet of about 10 s showing one of the males and one
of the females, and utilized the recordings of the other subjects as target. Figure 4.9, Figure 4.10,
Figure 4.11 show three reenactment results of 17, 22 and 14 s. Note that our system is able to
reproduce the target performance in a convincing way, even when head motion, expression, timing,
and speech of user and actor differ substantially. Computation time for the face tracking step was
about 4 s per frame, while the combined face matching and face transfer took around 4∼ 6 min for
processing the whole sequence. Please refer to the supplementary video at the project website to
appreciate the temporal quality of these and other additional results.

Low-Quality Internet Video Figure 4.12 and Figure 4.13 show results for two target videos down-
loaded from the Internet. The user recorded himself with a standard webcam (20 fps, 640× 480)
for 10 s, and the reenactments were produced for subsequences of 8 s and 18 s. Both target videos
exhibit speech, head pose, lighting and resolution that differ from the recorded source sequence.
Our system nevertheless produces plausible animations, even in the presence of quite some head
motion, such as in the Obama sequence (see Figure 4.13). Here, face matching and face transfer
took between 4 and 7 min for processing the whole sequence.
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Figure 4.13: Low-quality video from the Internet (18 s of target footage, 10 s of source footage). President

Obama’s speech (http://youtu.be/qxtydXN3f1U). Top: Frames from the target sequence. Middle: Corre-

sponding selected source frames. Bottom: Final composites. Chosen weights in Equation 4.13: wnr = 0.65,

wr = 0.35.

4.6.2 Validations

User Study We evaluated the different contributions of our approach by comparing our full reen-
actment system with (1) a simplified system that does not include the temporal clustering approach
proposed in Section 4.4.2 (i. e., a straightforward frame-by-frame matching) and (2) a basic sys-
tem that does not include temporal clustering, nor does it consider the motion distance defined in
Equation 4.7 (i. e., a pure frame-by-frame matching that does not enforce temporally-coherent mo-
tion of landmarks). To this end, we performed a user study with 32 participants. The participants
were asked to rate reenactment results for two low-quality (LQ) web videos and four existing high-
quality (HQ) videos with respect to the original target performance in terms of mimicking fidelity,
temporal consistency and visual artifacts on a scale from 1 (not good) to 5 (good). The study was
conducted as a web page survey and sent around to a general audience of non-experts that were
not aware of the techniques employed to generate the reenactments. Table 4.3 shows the average
rating for the six reenactment results. From these results, we conclude that our full system (3.25 av-
erage over all sequences) outperforms systems without temporal clustering (2.92), and additionally
without combined appearance and motion distance (1.48). These results are statistically significant
as the ANOVA p-value for each sequence was on average below 10−5. Overall, the scores for the
HQ sequences were higher than for the LQ web videos. These scores should not be directly com-
pared to those reported by Li et al. [2012], since we evaluated different methods and asked different
questions.

Self-reenactment Figure 4.14 illustrates a particular example of a self-reenactment, i. e., a reen-
actment result obtained by taking the same video sequence, both as source and target. Ideally, such
a result should be identical to the input videos, and it can be used to test the performance of a
reenactment system, for instance, by examining visual artifacts that are introduced in the original
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Table 4.3: Results of a user study with 32 participants and six of our reenactment results. The scores

listed below denote the average of a rating between 1 (not good) and 5 (good) w. r. t. the original target

performance in terms of mimicking fidelity, temporal consistency, and visual artifacts. The results used in

the study are the ones referred to by the figure number. Note that (1) means the full system without temporal

clustering, and (2) the full system without temporal clustering and motion distance.

LQ video HQ video
Sequence

Figure 4.12 Figure 4.13 Figure 4.9 Figure 4.10 Figure 4.11 Figure 4.16
Full system 2.5 3.56 3.19 3.00 3.38 3.81

(1) 2.09 2.84 3.16 2.72 3.06 3.47
(2) 1.34 1.34 1.41 1.16 1.50 2.16

Figure 4.14: Self-reenactment result computed on existing high-quality video (22 s of target and source

footage). Top: Example frames from the target sequence. Middle: Corresponding selected source frames.

Bottom: Final composites. Chosen weights in Equation 4.13: wnr = 0.55, wr = 0.45.

sequence.

The self-reenactment shown in Figure 4.14 is almost indistinguishable in appearance and expres-
sion from the source and target video. If we define a mismatch as a source frame that is assigned to
a target cluster in which it is not contained (source and target are the same video), our system pro-
duced 36 mismatches on a total of 214 clusters (22 s of video). The first two columns in Figure 4.14
show two of such mismatches, where a cluster that appears earlier in the sequence was matched to a
later frame. However, as it can be observed, these mismatches are very similar in appearance to the
frames in the target clusters and the final reenactment is visually close to a perfect frame-by-frame
synthesis of the true target sequence. This similarity is confirmed by an average PSNR of 41 dB
over 566 frames, with a minimum of 33 dB. Figure 4.15 shows a self-reenactment of a low-quality
10 s webcam sequence. We obtained 1 mismatch on 59 computed clusters.
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Figure 4.15: Self-reenactment result computed on low-quality video (10 s of target and source footage).

Top: Frames from the target sequence. Middle: Corresponding selected source frames. Bottom: Final

composites. Chosen weights in Equation 4.13: wnr = 0.55, wr = 0.45.

Also for the case where source and target depict the same person under similar conditions, the
reenactment resembles the target sequence closely. An example is shown in Figure 4.16, where
the source and target sequence are different excerpts taken from a 100 s recording of the same
person. Both excerpts were selected arbitrarily without considering possible similarities in the
actor’s performance. The figure and the supplementary video at the project website show that the
final reenactment is very convincing and realistic, a result that was also highly appreciated in the
user study, see Table 4.3 (last column).

Length of the Source Video and Reenactment Quality To demonstrate the influence of the
source data size on the reenactment quality, we repeated our experiments for successively shorter
source sequences, i. e., by taking the first 50%, 25%, and 12.5% of the source material. The supple-
mentary video at the project website shows such a test for the self-reenactment of Figure 4.14. We
conclude that a small amount of source frames may lead to unnatural results, with static expressions
that appear to be stuck on a moving face (due to certain frames being selected repeatedly and warped
to less likely locations in the target face). Longer source sequences clearly result in more realisti-
cally reenacted expressions and fewer abrupt transitions, since the newly included source frames
cover more of the expressions in the target sequence. However, for many of our examples, the dete-
rioration in reenactment quality with increasingly shorter source sequences was not as pronounced.
This shows that we can even produce plausible results for a small set of source frames.

A near-perfect reenactment could be achieved for any target sequence by using a huge amount of
meticulously preselected source frames that span a large dictionary of possible expressions. How-
ever, such results would strongly depend on the choice of database, while the aim in this chapter is
to demonstrate that our method works for videos containing arbitrary facial expressions.
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Figure 4.16: Reenactment of the same person under similar conditions in existing high-quality video (12
s of target footage, 14 s of source footage). Top: Example frames from the target sequence. Middle:

Corresponding selected source frames. Bottom: Final composites. Chosen weights in Equation 4.13:

wnr = 0.55, wr = 0.45.

Comparison with Dale et al. We also compared our fully automatic reenactment system with the
semi-automatic face replacement system of Dale et al. [2011] on data provided by the authors. The
source and target sequences depict two different subjects reciting the same poem. Our reenactment
result is shown in Figure 4.1 and in a side-by-side comparison with the result of Dale et al. in the
supplementary video at the project website, demonstrating that they are very close in visual quality.
For this result, we selected the following weights in Equation 4.13: wnr = 0.65, wr = 0.35.

Note that a direct frame-by-frame comparison of both results is not meaningful since the method of
Dale et al. transfers the source face, including the complete source performance, while our method
only transfers the source face, but preserves the target performance. Because source and target
performance for this example are slightly different (due to the poem being recited by two different
actors), both results differ visually as well. Strictly speaking, the result of Dale et al. is not a
“reenactment”: Their method warps the target timeline to match that of the source performance and
transfers the source face, including its complete performance, which may be considered an easier
task since it inherently ensures temporal continuity in the final composite.

4.7 Discussion and Limitations

Despite differences in speech, timing and lighting, the proposed approach creates credible anima-
tions, provided that the lighting remains constant or changes globally. Local lighting variations can
lead to wrong color propagation across the seam, and can produce flicker and less realistic reen-
actments. Ghosting artifacts may also appear in the mouth region, stemming from blending and
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temporal inconsistencies. In Chapter 6, we tackle most of these problems by making the composit-
ing step more robust to lighting changes, and by replacing the proposed image-based approach with
a model-based approach (see Chapter 5) that allows us to drive the mouth separately.

Although our aim is to closely reproduce the facial expressions in the target sequence, the ob-
tained reenactment results can differ from the original performance due to the lack of matching
expressions in the source sequence, or the limited precision of the matching metric proposed in
Section 4.4.2. Even for source and target performances under perfect matching conditions, the pro-
posed image-based method will still preserve person-specific nuances and subtle specialties of the
source expressions, which not only differ in detail from the target expressions, but also between
individual users of the system.

All the results shown in this chapter, as well as in subsequent chapters, rely on accurate tracking of
2D facial landmarks to detect the face and relevant facial features. In Section 4.3.1, we have shown
an efficient keyframe-based method that improves the landmark trajectories of an off-the-shelf face
tracking algorithm [Saragih et al. 2011a]. The landmark correction strategy, however, assumes that
the reference frame exists (or is similar to some frames) in the video. This assumption may fail if
the tracked sequences contain expressive faces that greatly differ from the reference.

Unlike previous image-based approaches or model-assisted image-based methods for face replace-
ment/reenactment (see Section 3.5), the proposed method succeeds in transferring face motion and
appearance for target sequences exhibiting quite some head motion, including moderate out-of-
plane head rotations. It is even robust if source and target head poses mildly differ. However,
the method presented in this chapter cannot handle more challenging head rotations (for instance,
pitch/yaw angles above 30 degrees) and can also fail if both the source and target actor move the
head in completely different directions. Robust and accurate face tracking is addressed next in
Chapter 5 and the advantages over purely image-based motion transfer are further illustrated in
Chapter 6.

4.8 Summary

In this chapter, we have introduced an image-based reenactment system that replaces the inner face
of an actor in a video, while preserving the original facial performance. The proposed method
requires neither user interaction, nor a complex 3D face model. It is based on expression matching
and uses temporal clustering for matching stability and a combined appearance and motion metric
for matching coherence. A simple, yet effective, image-warping technique that allows us to deal
with moderate head motion has also been presented. At the core of this method is an accurate
localization of a sparse set of 2D facial landmarks based on optical flow between automatically
selected keyframes. This enables us not only to compute representative appearance descriptors,
but also to accurately detect and replace 2D faces in a video. Experiments show that convincing
reenactment results for existing footage can be obtained by using only a short input video of a user
making arbitrary facial expressions.

The results presented in this chapter have shown the first step towards face digitization in uncon-
strained videos, but they still lack the amount of detail and quality needed to create photo-realistic
full 3D avatars. Improvements in the capture of digital models are presented next in Chapter 5.





Chapter 5
Model-based Face Capture in

Semi-Constrained Setups

Figure 5.1: Two results obtained with the proposed method. Left: Input video. Middle: Tracked 3D mesh,

overlaid over the input video. Right: By applying texture to the mesh and re-rendering it with the estimated

scene lighting, a virtual face make-up effect can be produced.

Chapter 4 presented a robust image-based system for digital face reenactment in monocular videos.
Compared to complex multiview-based systems (see Section 3.1.1), our reenactment method excels
in simplicity of use, but it is still challenged by strong facial motion and head rotations, and also did
not capture a full 3D model. This chapter pushes the boundaries of face digitization, especially cap-
ture, and presents a model-based approach for reconstructing detailed, spatio-temporally coherent
3D face geometry (see Figure 5.1) as well as scene lighting from 2D video footage. The proposed
approach assumes that the camera’s intrinsics are known and that a 3D reconstruction of the actor’s
face is available to create a personalized model. This renders high-quality monocular face capture
more tractable. The method and results presented in this chapter are based on [Garrido et al. 2013].

67
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5.1 Introduction

Optical performance capture methods can reconstruct faces of virtual actors in videos to deliver
detailed dynamic face geometry. However, existing approaches are expensive and cumbersome as
they may require dense multiview camera systems, controlled light setups, active markers in the
scene, and recording in a controlled studio (Section 3.1.1). At the other end of the spectrum are
computer vision methods that capture face models from monocular video (Section 3.1.3). These
captured models are extremely coarse, and usually only contain sparse collections of 2D or 3D
facial landmarks rather than a detailed 3D shape. Recently, Valgaerts et al. [2012b] presented an
approach for detailed performance capture from binocular stereo. However, 3D face models of a
quality level needed for movies and games cannot yet be captured from monocular video.

In an attempt to push the boundary and application range further, in this chapter we propose a new
method to automatically capture detailed dynamic face geometry from monocular video filmed
under general lighting. It fills an important algorithmic gap in the spectrum of performance capture
techniques between expensive controlled setups and low-quality monocular approaches, and opens
up new possibilities for professional movie and game productions by enabling performance capture
on set, directly from the primary camera. Finally, it is a step towards democratizing face capture
technology for everyday users with a single inexpensive video camera. Such is the relevance of
high-quality face capture from monocular video that our method has inspired follow-up work in
this direction (see Section 3.1.3).

A 3D face model for a monocular video is also a precondition for many relevant video editing
tasks. Examples include face transfer [Vlasic et al. 2005], face replacement [Alexander et al. 2010],
facial animation retiming [Dale et al. 2011] or puppeteering [Kemelmacher-Shlizerman et al. 2010;
Li et al. 2012]. For the results obtained with these methods, a tracked geometry model of moderate
shape detail was sufficient, but even then, substantial manual work is unavoidable to obtain a 3D
face model that overlays sufficiently with the video footage. To achieve a higher quality of edits on
more general scenes, and to show advanced edits such as relighting or virtual make-up, we require
much higher detailed reconstructions from a single video.

Our approach relies on several algorithmic contributions that are joined with state-of-the-art 2D/3D
vision and graphics techniques adapted to monocular video. In a preparatory step, we create a
personalized blendshape model for the captured actor by transferring generic blendshapes to a static
3D face scan of the subject. This task is the only step requiring manual interaction. In the first
step, we accurately track a sparse set of 2D facial features throughout the video using a state-
of-the-art non-rigid feature tracking algorithm [Saragih et al. 2011a], but enhanced with a novel
correction method presented in Section 4.3. After 2D landmark tracking, we obtain the model
parameters (expression and pose) by solving a constrained quadratic programming problem. To
further refine the alignment of the face model, a non-rigid, temporally-coherent geometry correction
is performed using a novel multi-frame variational optical flow approach. Finally, a shape-from-
shading refinement approach adapted to monocular video reconstructs fine-scale geometric detail
after estimating the scene lighting and face albedo.

We emphasize the simplicity and robustness of the proposed lightweight and versatile performance
capture method. Even though multiview methods achieve higher reconstruction quality, the pro-
posed approach is one of the first of its kind to capture long sequences of expressive face motion for
scenarios where none of these other methods are applicable. As an additional benefit, our tracker
estimates blendshape parameters that can be used by animators (important feature also advocated in
previous work [Weise et al. 2011]). We show qualitative and quantitative results on several expres-
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(a) (b) (c) (d) (e)

Figure 5.2: Algorithm overview: Left to right: (a) Input video frame, (b) 2D feature tracking (Section 5.4.1),

(c) expression and pose estimation using a blendshape model (Section 5.4.2), (d) dense expression and

pose correction (Section 5.5), (e) shape refinement (Section 5.6).

sive face sequences captured under uncontrolled lighting, both indoors and outdoors. Our approach
compares favorably to the recent state-of-the-art binocular method of Valgaerts et al. [2012b], and
even performs better for certain aspects. As a proof-of-concept example of advanced video editing,
we show the application of virtual face texture to video (see Figure 5.1).

5.2 Overview

Our method uses as input a single video of a face, captured under unknown lighting with a camera
that has precomputed intrinsics. It is composed of four main computational steps:

S0 Personalized blendshape model creation (Section 5.3): We construct a customized para-
metric 3D blendshape model for every actor, which is used to reconstruct all sequences star-
ring that actor.

S1 Blendshape tracking (Section 5.4): We accurately track a sparse set of temporally stable
2D facial features throughout the monocular video using the method described in Section 4.3,
see Figure 5.2 (b). From the established sparse feature set, we estimate a global 3D trans-
formation (head pose) and a set of model parameters (facial expression) for the blendshape
model, see Figure 5.2 (c).

S2 Dense tracking correction (Section 5.5): Next, we improve the facial expression and head
pose obtained from the sparse blendshape tracking step by computing a temporally coherent
and dense motion field in video. This motion field is then employed to correct the facial
geometry to obtain a more accurate model-to-video alignment, see Figure 5.2 (d).

S3 Dynamic shape refinement (Section 5.6): In a final step, we reconstruct fine-scale, time-
varying facial detail, such as wrinkles and folds. We do this by estimating the unknown
lighting and exploiting shading cues for shape refinement, see Figure 5.2 (e).

Notation A frame in the monocular video corresponding to timestamp t will be denoted by f t ,
with f t0 being the starting frame. We reconstruct a spatio-temporally coherent sequence of triangu-
lar face meshes Mt , consisting of a fixed set of n vertices with Euclidean coordinates Xt and their
connecting edges. The outcome of the subsequent computational steps in our algorithm are the
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tracked mesh Mt
b (S1), the corrected mesh Mt

c (S2) and the final refined mesh Mt
r (S3), all sharing

the same topology (i. e., vertex set and connectivity).

5.3 Personalized Blendshape Model Creation

We use a delta blendshape model as a parametric morphable 3D representation of the face (see Sec-
tion 2.1.1 for further details). For the sake of simplicity, we will refer to this model as blendshape

model. Let b0 ∈R
3n be the neutral shape containing the coordinates of the n vertices of a face mesh

at rest pose. A new facial expression e can be obtained by the linear combination:

e(β1, . . . ,βk) = b0 +
k

∑
j=1

β j d j , (5.1)

where d j ∈ R
3n, with 1 ≤ j ≤ k, are the blendshape displacements (i. e., delta blendshapes) and

0≤ β j ≤ 1, ∀ j are the k blendshape weights.

We create an actor specific face model by taking a generic, artist-created, professional blendshape
model (k = 78) obtained from Faceware Technologies1 and then performing a non-rigid registration
of the neutral shape to a binocular stereo reconstruction [Valgaerts et al. 2012a] of the actor’s face
at rest pose. Please note that any generic blendshape model preferred by an artist and any laser
scanning or image-based face reconstruction method2 can be used instead. Registration is based on
manually matching 29 3D landmarks on the eyes, nose and mouth, followed by a global correspon-
dence search and Laplacian regularized shape deformation [Sorkine 2005]. Once the neutral shape
is registered, the blendshapes of the generic model are transferred using the same procedure. The
obtained face models have a person specific shape, but the same semantic dimensions are shared
over all actors. Although our straightforward registration approach has proven sufficient for our
application, additional person-specific semantics can be included by using extra scans of different
expressions [Li et al. 2010]. Since all personalized blendshape models are derived from the same
generic model, they share the same number of vertices (200k) and triangulation (henceforth shared
by all meshes shown in this chapter). Figure 5.3 shows a selection of expressions for the generic
Emily model and for the four corresponding personalized models derived from it. These four per-
sonalized models were used to generate the results shown in Figure 5.7, Figure 5.8, Figure 5.9, and
Figure 5.10. Note that the produced blendshape models lack in high frequency shape detail, such
as wrinkles and folds.

5.4 Blendshape Tracking

5.4.1 Accurate 2D Facial Feature Tracking

An essential part in the tracking is the detection of a sparse set of m accurate, temporally stable
2D facial features (i. e., landmarks) that serves as the base of our approach to find an initial coarse
alignment of the personalized 3D blendshape model to an image at frame f t . In our approach, we
accurately track m = 66 landmarks on the actor’s face using the method described in Section 4.3.

1www.facewaretech.com
2www.facegen.com

www.facewaretech.com
www.facegen.com
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Figure 5.4: Coupling the 2D and 3D model. Left: Features estimated by an off-the-shelf feature tracker

(see Section 4.3) for a rendered frontal view of the generic blendshape at rest pose. Middle: The manually

corrected features. Right: The 3D feature vertices on the generic blendshape model.

5.4.2 Coarse Expression and Rigid Pose Estimation

We now align the 3D blendshape model to the sparse set of 2D feature locations found in each frame:
We solve an optimization problem in the blendshape space to find the pose and facial expression
parameters of the 3D face model, such that it optimally reprojects onto the tracked 2D feature
locations. This is performed in three steps, described as follows.

Coupling the 2D and 3D Model

To couple the m 2D feature points that are tracked in the video to their corresponding 3D positions
on the generic blendshape model, we render a frontal snapshot of the neutral pose in OpenGL using
a standard phong reflection model with a single point light source pointing towards the face surface.
Once rendered, we run an off-the-shelf feature tracking algorithm to estimate the position of the
main facial features3 [Saragih et al. 2011a]. The detection works relatively well for a shaded ren-
dering of the model with constant material in front of a black background, but the detected features
still need minor manual correction for better alignment (see Figure 5.4). For the Emily blendshape
model, the eyes are unnaturally large and particularly these detected features need further correc-
tion. As the 2D features are the projections of the corresponding 3D points on the blendshape
model, correspondences can be easily established by back projection on the mesh. From now on,
we will denote these 3D feature points as F .

Since all personalized blendshape models are derived from the same generic Emily model, the
indices of the found set of 3D feature vertices remain the same for all actors. Thus, this step needs
to be completed just once and has to be repeated only if a different generic face model is used.

Expression Estimation

Given a set of 2D facial feature locations xt
i, 1 ≤ i ≤ m estimated in the current frame f t , and a

personalized blendshape model e(β1, . . . ,βk), our task is to estimate the current facial expression in
terms of the blendshape weights β t

j , 1≤ j≤ k. This expression transfer problem can be formulated

3Note that this is the same tracking algorithm mentioned in Section 4.3 for which we improve the landmark trajecto-
ries.
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in a constrained least squares sense, as follows:

min
β t

j

m

∑
i=1

∥
∥
∥

(

stRtP⊤xt
i + tt

)

−XF,i

(
β t

j

)
∥
∥
∥

2

2
with P =

[
1 0 0
0 1 0

]
, (5.2)

s.t.: 0≤ β t
j ≤ 1 for 1≤ j ≤ k , (5.3)

where XF,i ∈ F are the coordinates of the feature vertices of the blendshape model, P is the orthog-
onal weak perspective projection matrix. st , Rt ∈ R

3×3 and tt ∈ R
3 denote the global scaling factor,

the rotation matrix, and the translation vector which align the reprojected feature locations with
the feature vertices of the blendshape model in a weak perspective camera model setting (see Sec-
tion 2.2.1 for further details). Since the alignment transformations are unknown, we solve the above
quadratic programming problem iteratively: First we optimize for {s,R, t}t using a current estimate
for the blendshape weights, after which we solve for β t

j in a second step keeping the transformations
fixed. We terminate when the change in β t

j falls below a threshold.

Solving for the Transformations Finding the least squares solution of {s,R, t}t to Equation 5.2
for a constant set of blendshape weights is equivalent to aligning two 3D point sets, which can be
solved in closed form by singular value decomposition (SVD) [Arun et al. 1987].

Solving for the Blendshape Weights Once the alignment transformations have been computed,
we search for an optimal combination of the linear weights β t

j that minimizes the difference in

shape between the point sets
(
stRtP⊤xt

i + tt
)

and XF,i

(

β t
j

)

, 1≤ i≤m, subject to the box constraints

shown in Equation 5.3. By rewriting the blendshape model (see Equation 5.1) as:

e(β j) =

(

1−
k

∑
j=1

β j

)

b0 +
k

∑
j=1

β j (b0 +d j) , (5.4)

and defining β0 =1−∑k
i= j β j, we obtain an instance of a convex quadratic programming problem

with box constraints and a linear equality constraint. This can be solved efficiently by methods
based on sequential minimal optimization4 [Platt 1998]. Note that the solver we used implicitly
enforces L1 regularization on the estimated weights.

As opposed to the alignment step, we found experimentally that the blendshape weight optimization
is more robust if it is only performed over the X- and Y-coordinates. As such, we discard depth
information in this step.

3D Pose Estimation

To retrieve the head pose under a full perspective projection, we update the positions of the 3D fea-
ture vertices in F using the computed blendshape weights, and feed them together with the tracked
2D facial feature locations to a pose estimation algorithm [David et al. 2004]. This algorithm ap-
proximates the perspective projection by a series of scaled orthographic projections and iteratively
estimates the global pose parameters for the given set of 2D-to-3D correspondences. Note that this
algorithm assumes that the camera’s intrinsics, i. e., focal length f and principal point c are known
beforehand. For each sequence presented in Section 5.7.1, these parameters were estimated in a

4http://cmp.felk.cvut.cz/~xfrancv/libqp/html/

http://cmp.felk.cvut.cz/~xfrancv/libqp/html/
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Figure 5.5: Dense expression and pose correction. Left: Overlay of the tracked blendshape model of

Figure 5.2 (c), textured with the starting frame. Middle: Textured overlay of the tracking-corrected face

mesh of Figure 5.2 (d). This synthetic frame is closer to the target frame in Figure 5.2 (a). Right: Per-vertex

correction represented as a heatmap on the corrected mesh, where red means large correction and green

means small correction.

pre-calibration step using the MATLAB calibration toolbox, which requires the user to rotate and
move a checkerboard pattern in front of the camera for a few seconds.

Expression and pose estimation are iterated until convergence, resulting in a tracked face mesh

Mt
b with associated blendshape weights and pose parameters. However, Mt

b lies within the space
spanned by the blendshape model and lacks high-frequency face detail that appears in the video.
These shortcomings will be tackled next.

5.5 Dense Tracking Correction

After coarse expression and pose estimation, there may remain residual errors in the facial expres-
sion and head pose which can lead to misalignments when overlaying the 3D model with the video,
see Figure 5.5. The first reason for this error is that the used parametric blendshape model has a
limit in expressibility and is not able to exactly reproduce a target expression that is not spanned by
its basis of variation. The second reason is that the optimization of the previous section is performed
over a sparse, fixed set of feature vertices and excludes vertices that lie in other facial regions, such
as the cheeks or the forehead. To obtain an accurately aligned 3D mesh, we correct the initially
estimated expression and pose over all vertices.

5.5.1 Temporally Coherent Corrective Flow

To correct the expression and pose of the face mesh Mt
b, obtained by blendshape tracking, we assign

a fixed color to each vertex using projective texturing and blending from the starting frame f t0 .
Projecting Mt

b back onto the image plane at every time t results in the synthetic image sequence fs,
depicted in Figure 5.6. To ensure optimal texturing for the results presented in Section 5.7.1, we
manually improved the detected feature locations in the starting frame.

The idea behind our correction step is to compute the dense optical flow field that minimizes the
difference between a synthetic frame f t

s and its corresponding true target frame f t , and then use the
flow to deform the mesh. This corrective optical flow is denoted as w1 in Figure 5.6. Computing
such corrective optical flow independently for each time t introduces temporal artifacts in the cor-
rected mesh geometry due to the lack of coherence over time in the optical flow estimation. An
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Figure 5.6: Temporally-coherent corrective flow estimation.

illustration of such temporal artifacts can be seen in the second supplementary video at the project
website5. Let us now assume that Mt

b deforms coherently and smoothly over time, and so does the
synthetic sequence. Consequently, the corrective flow w1 between f t

s and f t has to vary gradually
over time as well, since the true sequence is smooth by construction.

To impose temporal smoothness on w1, we include frames at t+1 and t−1 and introduce a new op-
tical flow method for the six-frame scenario depicted in Figure 5.6. By exploiting the dependencies
between the correspondences, the problem can be parametrized w. r. t. the reference frame f t

s by w1

and four additional flows: w2 and w4 describing the face motion in the synthetic sequence, and w3

and w5 describing the temporal change in the corrective flow w1. Note that w1+w3 and w1+w5

represent the corrective flows in the corresponding image points at t+1 and t−1. Thus, we can
impose temporal coherence through the flow changes w3 and w5.

To estimate all unknown flows simultaneously, we minimize an energy consisting of data, smooth-
ness, and similarity constraints, as follows:

E =

∫

Φ

( 7

∑
i=1

E i
data +

5

∑
i=1

αiE
i
smooth +

2

∑
i=1

γiE
i
sim

)

dx , (5.5)

where Φ ∈ R
2 = {x,y ∈ R|x,y ≥ 0} represents the rectangular image domain, and αi, γi, ∀i are

trade-off factors that control the amount of smoothness and similarity, respectively.

Data Constraints The data terms of the energy shown in Equation 5.5 impose photometric con-
stancy between corresponding points along the seven connections drawn in Figure 5.6. For bright-

5http://gvv.mpi-inf.mpg.de/projects/MonFaceCap/

http://gvv.mpi-inf.mpg.de/projects/MonFaceCap/
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ness constancy, the data terms take the following form:

E1
data=Ψd

(
| f t+1(x+w1+w2+w3)− f t+1

s (x+w2)|
2) , (5.6)

E2
data=Ψd

(
| f t(x+w1)− f t

s(x)|
2) , (5.7)

E3
data=Ψd

(
| f t−1(x+w1+w4+w5)− f t−1

s (x+w4)|
2) , (5.8)

E4
data=Ψd

(
| f t+1

s (x+w2)− f t
s(x)|

2) , (5.9)

E5
data=Ψd

(
| f t−1

s (x+w4)− f t
s(x)|

2) , (5.10)

E6
data=Ψd

(
| f t+1(x+w1+w2+w3)− f t(x+w1)|

2) , (5.11)

E7
data=Ψd

(
| f t−1(x+w1+w4+w5)− f t(x+w1)|

2) , (5.12)

where f (x) = [ f (x)r, f (x)g, f (x)b]⊤ is the pixel color at position x = [x,y]⊤ in the image and
Ψd(s

2)=
√

s2+(0.001)2 is the robust regularized L1 penalizer. To make the flow estimation more
robust to gradual lighting changes in the scene and improve the overall matching accuracy, all con-
straints are extended with a gradient constancy assumption and color information. For instance, the
second data term between f t and f t

s , and fourth data term between f t+1
s and f t

s can be written as
follows:

E2
data=Ψd

(
| f t(x+w1)− f t

s(x)|
2+ζ |▽ f t(x+w1)−▽ f t

s(x)|
2) , (5.13)

E4
data=Ψd

(
| f t+1

s (x+w2)− f t
s(x)|

2+ζ |▽ f t+1
s (x+w2)−▽ f t

s(x)|
2) , (5.14)

where ζ ≥ 0 is a weighting factor and ▽ = [∂x,∂y]
⊤ denotes the spatial gradient operator. We

empirically found that ζ = 0.1 yields a good compromise [Valgaerts et al. 2010].

Smoothness Constraints Similar in spirit to the scene flow scenario presented by Valgaerts
et al. [2012b], we use a structure-aware regularization for the flows w1, w2 and w4 to improve the
optical flow estimation in semantically meaningful regions of the face, namely:

E 1
smooth = Ψs

(

|∇w⊤1 r1|
2
)

+Ψs

(

|∇w⊤1 r2|
2
)

, (5.15)

E 2
smooth = Ψs

(

|∇w⊤2 r1|
2
)

+Ψs

(

|∇w⊤2 r2|
2
)

, (5.16)

E 4
smooth = Ψs

(

|∇w⊤4 r1|
2
)

+Ψs

(

|∇w⊤4 r2|
2
)

, (5.17)

where the vectors r1 and r2 denote orthogonal smoothing directions along and across flow structures,
and Ψs(s

2)=2λ 2
s

√

1+(s/λs)2, λs =0.1 is a discontinuity-preserving function. As opposed to the
corrective and motion flows, we regularize w3 and w5 much stronger using L2 regularization:

E 3
smooth = |∇w3|

2 and E 5
smooth = |∇w5|

2 . (5.18)

This quadratic regularization of the flow changes ensures that the corrective flow w1 varies smoothly
over time.

Similarity Constraints Finally, we enforce the corrective flows w1, w1+w3 and w1+w5 to be
similar to each other, i. e., we strongly penalize the magnitude of the flow changes:

E 1
sim = |w3|

2 and E 2
sim = |w5|

2 . (5.19)
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The terms in Equation 5.19 and Equation 5.18 can be related to first and second order smoothness
constraints along optical flow trajectories, as described in [Volz et al. 2011]. Contrary to their ap-
proach, we exploit the circular dependencies in our specific set-up for the purpose of coherently
correcting one image sequence w. r. t. another.

The total energy shown in Equation 5.5 is minimized over all flows by a coarse-to-fine multiresolu-
tion strategy using a non-linear multigrid method [Papenberg et al. 2006]. Computational time can
be sped up by utilizing the forward and backward optical flows computed in the non-rigid tracking
step (see Section 4.3) as initialization.

5.5.2 Optical Flow-based Mesh Deformation

We correct the geometry of Mt
b by projecting the estimated optical flow w1 back onto the mesh

and retrieving a corrective 3D motion vector for each vertex. Since our monocular setting has an
inherent depth ambiguity, it is impossible to recover the correct motion in the Z-direction (i. e.,
in depth). However, we experienced that correcting each vertex in X- and Y-directions parallel
to the image plane still produces realistic and expressive results. In Chapter 7, we overcome this
limitation by proposing a parametric corrective field based on harmonics functions that parametrize
true 3D displacements. Such dense parametric 3D correction will be then learned as a function of
the blendshape weights to infer person-specific expressions for a detailed, personalized blendshape
rig (see Chapter 8).

Let us denote Wt ∈Rn×3 as the 3D motion field parallel to the image plane. We use Wt to propagate
each vertex to its new position in the corrected face mesh Mt

c. To ensure a smooth deformation, we
minimize the following Laplacian-regularized energy:

E=
∥
∥LX t

c−LX t
b

∥
∥2

+µ2 ∑
i∈Ct

∥
∥Xt

c,i−(X
t
b,i+Wt

i)
∥
∥2

, (5.20)

where L ∈ R
n×n is the Laplacian matrix of Mt

b computed with cotangent weights [Sorkine 2005],
X t

c and X t
b ∈ R

n×3 represent the matrices collecting the positions of all vertices Xt
i in Mt

c and Mt
b,

1 ≤ i ≤ n, and µ is a trade-off weight. The set Ct is a uniformly subsampled selection of visible
vertices at frame f t .

We perform the steps of Section 5.5.1 and Section 5.5.2 once per frame, but they could be applied
iteratively. Note that this correction takes us slightly outside the 3D shape space spanned by the
blendshape model and yield an extremely accurate alignment of the mesh with the video. The
alignment before and after correction is shown in Figure 5.5.

5.6 Dynamic Shape Refinement

In a final step, we capture and add fine-scale surface detail to the tracked mesh, such as emerging
or disappearing wrinkles and folds. Our approach is based on the shape-from-shading framework
under general unknown illumination that was proposed in [Valgaerts et al. 2012b] for the binocular
reconstruction case. At a given frame f t , the method first estimates the unknown incident lighting
based on an estimate of geometry and coarse albedo. The estimated lighting is in turn used to
deform the geometry, such that the rendered shading gradients and the image shading gradients
agree. Essentially, this method inverts the rendering equation to be able to reconstruct the scene,
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which is much easier in a setting with multiple cameras, since the face surface is seen from several
viewpoints, and therefore it constrains the solution space better.

To adjust this approach to the monocular case, we estimate the unknown illumination from a larger
temporal baseline to compensate for the lack of additional cameras. In our setting, we assume that
the illumination conditions do not change over time. However, a ground truth light probe to simulate
the static light environment is not available and must be estimated. To tackle this problem, we first
estimate lighting, albedo and refined surface geometry of the tracked face mesh for the first 10
frames of every video using the exact same approach as [Valgaerts et al. 2012b]. In our monocular
case, since the estimation is much more under-constrained and error-prone, we only use this result
as an initialization. In a second step, we jointly use the initial albedo and fine scale geometry to
estimate a single environment map that globally fits to all timesteps in the small subsequence. We
then use this static light environment and estimate the dynamic geometry detail at each timestep
[Valgaerts et al. 2012b]. The result of dynamic shape refinement is the final refined face mesh Mt

r .

To further remove temporal flicker in the visualization of the results, we update the surface normals
by averaging them over a temporal window of size 5 and adapt the geometry to the updated normals,
as proposed in [Nehab et al. 2005].

It is important to remark that in Chapter 8 fine-scale surface detail will be learned as a function of the
blendshape weights to infer a personalized fine-scale skin detail layer that dynamically correlates
to facial expressions, thus giving an extra layer of personalization to the reconstructed blendshape
rig.

5.7 Experiments

We evaluated the performance of our approach on four video sequences of different actors with
lengths ranging from 565 (22 s) to 1000 frames (40 s). Three videos were recorded indoors with a
Canon EOS 550D camera at 25 fps in HD quality (1920×1088 pixels) and one video was recorded
outdoors with a GoPro camera at 30 fps in HD quality. Our approach was implemented in C++ and
tested on a 3.4 GHz Intel R©CoreTM i5 processor with 16GB RAM. All the results shown below are
viewed best as video. Hence, the reader is strongly encouraged to watch the supplemental videos at
the project website6.

For all results, λi was 0.1 for the mouth features, 0.5 for the eye features, and 0.2 for the remaining
features. For the Canon results, α1=500, α2=α4=600, and α3=α5=300, and for the GoPro result
α2 =α4 =700, and α3 =α5 =400. Furthermore, γ1 = γ2 =50 and µ =0.5. For improved accuracy
around the eye lids, the eyes of the blendshape model were filled before tracking, but not visualized
in the final results. Eye filling is only done once in the generic model and does not change any step
of our method.

5.7.1 Results

Performance Capture The first two results are part of a calibrated binocular stereo sequence
recorded under uncontrolled indoor lighting [Valgaerts et al. 2012b]. We only use one camera out-
put for our method and need one extra frame from the second camera for the blendshape model
creation. Results for the first sequence, featuring very expressive gestures and normal speech, are

6http://gvv.mpi-inf.mpg.de/projects/MonFaceCap/

http://gvv.mpi-inf.mpg.de/projects/MonFaceCap/
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Figure 5.7: Results for expressive facial motions - first sequence, 565 frames (22 s). Left to right: The

input frame, the corresponding blended overlay of the reconstructed mesh, a 3D view of the mesh, and an

example of applying virtual face texture using the estimated geometry and lighting.

Figure 5.8: Results captured indoors - second sequence, 620 frames (25 s). This sequence was recorded

with a Canon EOS 550D camera and exhibits expressive and fast facial gestures.
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Figure 5.9: Results captured indoors - third sequence, 1000 frames (40 s). This sequence was recorded

with a Canon EOS 550D camera and shows expressive faces, fast facial motion, and challenging head

movement.

shown in Figure 5.7. All meshes consist of the same set of vertices and are produced by tracking and
refining the personalized blendshape model of Figure 5.3 (second row) over 565 frames. The green
screen is part of the recording and is not used. The figure shows that we are able to faithfully cap-
ture very challenging facial expressions, even for gestures that are not spanned by the blendshape
model, e. g., the bottom row. The third column illustrates that our method effectively reconstructs
a space-time coherent 3D face geometry with dynamic fine scale detail. Although the actor’s head
hardly moves in depth, our method estimates a small global translation component in the camera
direction, which we discard for the 3D visualization in the figures. Figure 5.8 shows a result for
a second sequence of 620 frames, featuring fast and expressive motion. Our results capture a high
level of shape, motion, and surface detail.

Figure 5.9 shows an additional result for a third sequence, newly recorded under similar conditions
as the first two. The sequence depicts a recitation of a theatrical play and is extremely challenging
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Figure 5.10: Results captured with a hand-held GoPro camera - fourth sequence, 650 frames (22 s).

This sequence was recorded outdoors under unknown lighting and features challenging head motion. The

rightmost column shows a failure case where our method does not estimate the pose and expression

correctly. The supplementary video at the project website shows that our method fully recovers afterwards.

due to its length of 1000 frames, its diversity in facial expressions, and its fast and shaky head
motion. The overlays in the figure show that we are able to estimate the X- and Y-components
of the head pose very accurately and retrieve very subtle facial expressions, demonstrating the
applicability of our method for demanding real world applications. Finally, we also captured an
actor’s facial performance outdoors with a lightweight GoPro camera. Despite the low quality of
the video and the uncontrolled setting, we obtain accurate tracking results and realistic face detail,
see Figure 5.10. This figure also shows a limitation of our approach for extreme out-of-plane head
rotations, e. g., extreme pitch. However, the supplemental video available at the project website
demonstrates how the algorithm fully recovers once the head pose comes back to a less extreme
pose.

Virtual Face Texture As our capturing process introduces very little perceivable drift (see checker-
board texture in the supplemental video at the project website), it is well suited for video augmenta-
tion tasks such as adding virtual textures or tattoos7, as shown in Figure 5.1 and 5.7. To this end, we
render the texture as a diffuse albedo map on the moving face and light it with the estimated incident
illumination. The texture is rendered in a separate channel and overlaid with the input video using
Adobe Premiere. Our detailed reconstruction and lighting of the deformation detail is important to
make the shading of the texture correspond to the shading in the video, giving the impression of
virtual make-up.

Runtimes For the Canon sequences, the blendshape tracking and tracking correction run at a
respective speed of 10 s and 4 min per frame, whereas the shading-based refinement has a run
time of around 5 min per frame. All three steps run fully automatically and can be started in
parallel with a small frame delay. The only tasks that require user intervention are the creation
of the personalized blendshape model (Section 5.3, about 20 min), the one-time 2D-to-3D model
coupling (Section 5.4.2, around 10 min) and the texturing of the blendshape model (Section 5.5.1,

7Design taken from www.deviantart.com/ under a CC license.

www.deviantart.com/
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Figure 5.11: Comparison with the binocular method of Valgaerts et al. [2012b]. From left to right: Binocular

reconstruction for the frame shown in Figure 5.2. Our reconstruction. Color-coded error between both

reconstructions, represented as the per-vertex Euclidean distance (see error scale).

Table 5.1: Quantitative comparison. Average Euclidean distance between the binocular and monocular

reconstructions computed on the first sequence (see Figure 5.7) and the second sequence (see Figure 5.8).

The distance was computed between the nearest vertices of both meshes, but only over visible regions. This

Euclidean distance is visualized in the figures as a heatmap overlay.

Average Average
Sequence distance maximum distance

(mm) (mm)

First sequence (over 565 frames) 1.71 7.45
Second sequence (over 402 frames) 2.91 9.82

around 10 min).

5.7.2 Validation

Comparison with Binocular Reconstruction In Figure 5.11, we quantitatively compare our
results with a binocular facial performance capture method [Valgaerts et al. 2012b]. In the middle
and right panes, we show our reconstructed face mesh for the target frame of Figure 5.2 and its
deviation w. r. t. the corresponding binocular result shown on the left. Note that the color-coded
error plots shown in the figure depict the Euclidean distance between the nearest visible vertices
on the binocular and monocular meshes, and were produced by first aligning the meshes at their
initial frames using rigid ICP and then tracking them throughout the sequence, while discarding
the small translation in the depth direction. As the figure illustrates, errors mainly appear near the
lips, cheeks and forehead, stemming from depth inaccuracies that the dense expression correction
approach presented in Section 5.5 cannot refine.

Table 5.1 reports average errors for two indoor sequences. The geometric error (i. e., per-vertex
Euclidean distance between two meshes) was computed as described above. Note that the deviation
of our monocular result from the binocular results lies in the millimeter range despite the lack of
direct depth information.

Another qualitative comparison between our monocular method and the binocular approach is
shown in Figure 5.12. Here, this particular frame depicts fast rotating head motion. As reported by
Valgaerts et al. [2012b], purely mesh-based binocular methods are sensitive to occlusions and drift
in the presence of strong apparent out-of-plane head rotation, leading to unnatural deformations in
some frames. Our monocular method, on the other hand, robustly tracks a parametric face model
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Figure 5.12: Comparison of our method with the binocular method of Valgaerts et al. [2012b] for the results

computed on the third sequence. Left to right: Target frame showing fast head rotation, result obtained by

the binocular approach, and our result.

and only leaves the blendshape space in the expression correction step by computing a small defor-
mation field. Hence, our model-based method is less susceptible to occlusions and drift, and overall,
it is more robust to extreme head motions.

5.8 Discussion and Limitations

Our face tracking and refinement method is automatic, but creating the personalized blendshape
model and improving the 2D features in the first frame for texturing rely on a small amount of user
interaction. This is because each of these tasks corresponds to a hard computer vision sub-problem.
Currently, our optical flow-based correction only uses textures at neutral pose to avoid including
transient high-frequency details, although a non-rest texture could be used as well (albeit a bit
harder engineering task). Furthermore, we assume that a stereo 3D reconstruction of the actor is
available to create a personalized blendshape model, and take for granted that the camera’s intrinsics
can be calibrated in a pre-processing step. Most of the challenges presented above are approached
in Chapter 7.

The proposed method attains very detailed and expressive results, but it is not completely free of
artifacts. The dynamic texture example shown in the supplementary video at the project website8

illustrates that small tracking inaccuracies can still be observed, e. g., around the teeth and lips.
Small tangential floating of the vertices may also be present, as observed in the virtual texture
overlays and the dynamic texture in the UV domain. For the GoPro result, artifacts around the nose
are visible due to the challenging low-quality input (noise, rolling shutter, and color saturation).
Extremely fast motion can be problematic for feature tracking with optical flow and our method
currently does not handle light changes as it violates the optical flow assumptions. Under strong
side illumination, which causes cast shadows, the shading-based refinement may fail, but for general
unknown lighting (indoor ceiling or bright outdoor diffuse), it is able to produce good results for
scenarios deemed challenging in previous works. Partial occlusions (e. g., hand, glasses, and hair)
are difficult to handle with our dense optical flow optimization.

The inverse problem of estimating depth from a single image is far more challenging than in a
multiview setting, and depending on the camera parameters, even notable depth changes of the
head may lead to hardly perceivable differences in the projected image. Consequently, even though
the tracked 3D geometry aligns well with the 2D video, there may be temporal noise in the estimated

8http://gvv.mpi-inf.mpg.de/projects/MonFaceCap/

http://gvv.mpi-inf.mpg.de/projects/MonFaceCap/


CHAPTER 5. MODEL-BASED FACE CAPTURE IN SEMI-CONSTRAINED SETUPS 84

depth, which we filter out for the 3D visualizations. This limitation may stem from the use of a 2D
PDM model and a 3D blendshape model that have a different dimensionality and expression range.
In Chapter 7, we show an improved method that works towards a better coupling of these models
for 3D pose estimation.

The dense tracking correction method proposed in Section 5.5 estimates a corrective 3D flow field
to accurately track facial expressions, thus giving more personalization in the reconstruction. Due
to the inherent depth ambiguity of our monocular setting, this corrective field is view dependent
and cannot be correlated to the facial expressions performed by an actor to learn a personalized
blendshape rig. In Chapter 7, we overcome this limitation by proposing a parametric corrective field
based on harmonics functions that parametrize true 3D displacements and that can be regularized
to control deformations in depth. Then, in Chapter 8 this parametric 3D correction field is learned
as a function of the blendshape weights to create a rig with personalized expressions.

5.9 Summary

In this chapter, we have introduced a state-of-the-art method for monocular reconstruction of spatio-
temporally coherent 3D facial performances. The proposed approach succeeds for scenes captured
under uncontrolled and unknown lighting, and is able to reconstruct very long sequences, scenes
showing very expressive facial gestures, and scenes exhibiting strong head motion. Compared
to previously proposed model-based monocular approaches, it reconstructs facial meshes of very
high detail and runs fully automatically, aside from a brief manual initialization step. It also fares
very well in comparison to a recent state-of-the-art binocular facial performance capture method
[Valgaerts et al. 2012b]. The proposed approach combines novel 2D/3D tracking and reconstruction
methods, and estimates blendshape parameters that can be directly used by animators. Qualitative
and quantitative results shown on several datasets demonstrate high tracking accuracy and overall
good performance attained by the proposed method. We have also showcased its application to
simple video editing tasks, such as appearance editing with virtual texture.

The results presented in this chapter advance the state of the art in monocular facial performance
capture and show great potential for advanced video editing tasks. Next, in Chapter 6, we exploit the
capabilities of our model-based method for video-realistic face retargeting, namely face expression
adjustment for dubbing in movies.



Chapter 6
Model-based Face Retargeting:

A Visual Dubbing Approach

(a) (b) (c) (d) (e)

Figure 6.1: The proposed visual dubbing approach modifies the lip motion of an actor in a target video (a)

so that it aligns with a new audio track. The capture setup consists of a single video camera that films a

dubber in a recording studio (b + c). The method transfers the dubber’s mouth motion (d) to the actor and

creates a new plausible video of the actor speaking in the dubbed language (e).

In this chapter, we build upon the high-quality model-based face capture approach presented in
Chapter 5 to solve a challenging retargeting task that we refer to as visual dubbing. Traditional
dubbing is a complex process used in the film industry that replaces the original actor’s voice with
that of a dubbing actor in a local language, such that the new audio stream adheres as best as possible
to the actor’s mouth motion in video. However, a result where the new audio and the original video
are fully in sync is nearly impossible due to language differences. Thus, this chapter presents a
visual dubbing approach that alters the mouth motion of a target actor in a video to match the new
dubbed audio track (see Figure 6.1). The method and results presented in this chapter are based on
[Garrido et al. 2015].

85
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6.1 Introduction

Dubbing is the process of replacing the original voice of an actor in a video with a new one recorded
off-camera in a studio. The new voice can reproduce the exact same original dialog, but with im-
proved in-studio quality (this is referred to as post-synchronization, a.k.a “additional dialog record-
ing”). However, in most cases the original actor’s voice is substituted with that of a dubbing actor

(or dubber) speaking in another language. Dubbing of foreign productions into the locally spoken
language is common in countries where subtitling is not widely accepted, e. g., Germany, France
and many Spanish speaking countries.

Dubbing has the advantage over subtitling that it does not draw the attention away from the ac-
tion on screen. On the other hand, it has been shown that viewers are very sensitive to discrep-
ancies between the auditory signal and the visual appearance of the face and lips during speech
[Sumby and Pollack 1954]. In fact, audio-visual mismatches can drastically impair comprehension
of the spoken language; hearing-impaired people in particular exploit this correlation even more
[Owens and Blazek 1986; Summerfield 1992]. It is thus imperative that the dubbed language track
is adjusted well to the visual performance. This requires an expensive and time consuming three-
stage process performed by special production companies:

1. Translation: Certain mouth shapes are manually annotated in the video, such as the lip closure
of the bilabial consonants /m/, /p/ and /b/. Then a transcript, which is semantically close to
the original script and yet produces bilabials at roughly the same time, is made in the new
language. Consequently, the translation may not be literal.

2. Recording: A dubber in a studio reads out the dubbed transcript in pace with the original
performance. Even recording a single sentence may need several trials until alignment with
the video is satisfactory.

3. Editing: The temporal alignment between the dubbed audio track and the mouth motion in
the video is improved by manually time-shifting and skewing the new audio.

Despite the complexity of the pipeline, traditional dubbing is unable to produce dubbed voice tracks
that match the mouth movements in the target video perfectly. The reason is that spoken words dif-
fer between languages, yielding different phoneme sequences and lip motions. Hearing and seeing
different languages proves very distracting for many viewers [Sumby and Pollack 1954] and causes
even stronger distraction for the hearing impaired who rely on lip reading [Owens and Blazek 1986].

This chapter introduces a system that visually alters the lip motion and the facial appearance of
an actor in a video, so that it aligns with a dubbed foreign language voice. With this approach,
we take a step towards reducing the strong visual discomfort caused by the audio-visual mismatch
in traditional dubbing. Our method takes as input the actor’s and the dubber’s video as well as the
dubbed language track, and then it employs state-of-the-art monocular facial performance capture to
reconstruct both performances. This gives us parameters describing the facial performances based
on a coarse blendshape model. Via inverse rendering, we additionally reconstruct the incident scene
lighting in the target video, as well as the high-frequency surface geometry and dense albedo of the
target actor. The captured dynamic 3D geometry of the actor is modified fully automatically by
using a new space-time optimization method that retrieves a sequence of new facial shapes from the
captured performance, such that it matches the blendshape sequence of the dubber, yet is temporally
coherent, also in its fine-scale surface detail. A phonetic analysis of the dubbed audio finds salient
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utterances, such as lip closures which are explicitly enforced in the synthesized performance. The
synthesized face sequence is plausibly rendered and lit, after which the lower half of the face is
seamlessly blended into the target video to yield the final result.

In summary, the main contributions are: 1) A visual dubbing system for video-realistic model-based
resynthesis of detailed facial performances in monocular video that aligns the visual channel with a
dubbed audio signal, 2) a spatio-temporal rearrangement strategy that utilizes the input facial perfor-
mances and the dubbed audio channel to synthesize a new highly detailed 3D target performance,
and 3) the reconstruction of a realistic target face albedo and the synthesis of a plausible mouth
interior based on a geometric teeth proxy and inner mouth image warping.

The proposed method is one of the first to produce detailed, synthetically altered and relit facial
performances of an actor’s face. Our system generates visually plausible results which are compared
against traditionally dubbed, unmodified video, both qualitatively and through a user study. Since
the mouth region is completely synthesized in our approach, a perfect audio-video alignment is no
longer required. Thus, the proposed approach simplifies the dubbing pipeline, since the translation
into the foreign language can now stay closer to the original script.

6.2 Background: Visual Cues in Speech Perception

Visual cues, such as visemes, are essential for speech perception [Summerfield 1992], both for peo-
ple with normal hearing [Owens and Blazek 1986] and in particular for hearing-impaired persons
[Lesner and Kricos 1981]. In fact, under noise, one third of the speech information is conveyed vi-
sually through lip gestures [LeGoff et al. 1994] and a discrepancy between sound and facial motion
clearly disturbs perception [Sumby and Pollack 1954]. The discrepancies between the visual and au-
ditory cues can greatly change the sound perceived by the observer [McGurk and MacDonald 1976]
and this may explain why many people dislike watching dubbed content [Kilborn 1993]. Taylor
et al. [2012] report that a direct mapping from acoustic speech to facial deformation using visemes
is simplistic and realistic synthesis of facial motion needs to model non-linear co-articulation ef-
fects [Slaney and Covell 2000]. The problem is that the statistical relationship between speech
acoustics and facial configurations accounts for approximately 65% of the variance in facial motion
[Yehia et al. 1998], and thus the speech signal alone is not sufficient to synthesize a full range of real-
istic facial expressions. In view of these findings, we build the mapping from the dubber to the actor
primarily using the visual signal obtained through facial performance capture (see Section 6.4). We
thus achieve audio-visual coherence implicitly, which it is reinforced by using the acoustic signal
as a guide to enforce salient mouth motion events, like lip closures (see Section 6.6).

6.3 Overview

The proposed method takes as input two video recordings with sound1. The first recording is the
original movie segment of the actor performing in the original language. We refer to this as the
target sequence IT , as it will be modified later. The second recording is the dubbing sequence ID ,
showing the dubber reading a translation of the original text, which will serve as the source to
synthesize a new target performance.

Our method uses the dubbed language track as the new voice track for the target sequence and

1Note that our approach does not need the actor’s audio.
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Figure 6.2: Method overview. Visual dubbing is performed in 4 main steps: Motion transfer (Section 6.4),

detail synthesis (Section 6.5), speech alignment (Section 6.6), and rendering and compositing (Section 6.7).

modifies the mouth motion of the actor such that it matches the dubbed words. It does this while
preserving the appearance and head pose of the actor, as well as the original background and scene
lighting. We assume that the dubber reads his text roughly in pace with the actor’s performance,
but strict alignment of the dubbed language track with the actor’s lip movements, as in traditional
dubbing, is not necessary because a completely new synthesized performance is generated, which is
in sync by construction. We further assume that the dubber is able to reenact the facial expressions
of the actor well, i. e., the target and dubbing sequences bear a similar emotional content. The
proposed method consists of four major steps, as shown in Figure 6.2:

S1 Motion Transfer (Section 6.4): The facial performances of the actor and the dubber are
captured using a personalized blendshape model. The target lighting is estimated and high-
frequency detail, such as wrinkles and folds, are captured. The blendshape weights pertaining
to the mouth motion of the dubber are transferred to generate a new blendshape sequence for
the actor.

S2 Detail synthesis (Section 6.5): Actor-specific high-frequency face detail is added to the
synthesized blendshape sequence by globally searching for frames with similar detail in the
target sequence. We only transfer detail in the lower face region around the mouth, preserving
the original detail elsewhere.

S3 Speech alignment (Section 6.6): Lip closure is enforced by detecting bilabial consonants in
the dubbed language track.

S4 Rendering and compositing (Section 6.7): By using the estimated target lighting and the
dense skin reflectance of the actor, the synthesized face is rendered into the original video.
The mouth interior is rendered separately and blended in with the target to produce the final
composite.

In the remainder of this chapter It
T

and It
D

will denote the frame at time t in the target and dubbing
sequence, with t running from 1 to the number of frames f . For simplicity, we assume that the
target and dubbing sequence have the same number of frames and are temporally aligned such that
corresponding spoken sentences coincide in time. This can be achieved as a preprocessing step
or by recording the dubber in sync with the actor. The final result is the synthesized sequence IS ,
showing the actor speaking in the dubbed language. More details on the different steps is provided
as follows.
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6.4 Motion Transfer

To capture the facial performances of the actor and the dubber, we employ the model-based facial
performance capture approach presented in Chapter 5 that utilizes an underlying blendshape model
and produces a sequence of space-time coherent face meshes with fine-scale skin detail. The param-
eters of the tracked blendshape model will be used to transfer the mouth motion from the dubber to
the actor.

6.4.1 Monocular Facial Performance Capture

Both the actor’s and the dubber’s performance is captured using the method presented in Chapter 5,
which uses a personalized blendshape model. This model is a prior on the face shape and describes
a basis of variation in facial expressions:

e(β1, . . . ,βk) = b0 +
k

∑
j=1

β j d j , (6.1)

where b0 ∈R
3n is a vector containing the n 3D vertex coordinates of the face at rest, d j ∈R

3n,
1≤ j≤ k, are the blendshape displacements at each vertex, and e∈R3n is the facial expression
obtained by linearly combining the displacements using the blendshape weights 0≤ β j ≤ 1, ∀ j.
We create a personalized blendshape model of the actor and the dubber by registering a generic
blendshape model to a static stereo reconstruction of the face at rest (see Section 5.3 for further
details). Thus, the actor’s blendshape model differs from that of the dubber’s in face shape, but
their k blendshapes correspond to the same canonical expressions and therefore have the same
semantic meaning. For the models described in this section k=78 and in the experiments we chose
n=50000.

As a brief recap, the monocular face capture approach first tracks the personalized blendshape
model (3D rigid pose and blendshape weights) using m = 66 accurate and temporally stable facial
landmarks, then it performs an out-of-space expression correction step using a temporally coherent
dense motion field which better aligns the facial geometry to the face in the video, and finally adds
fine-scale skin detail as a per-vertex surface displacement via shape-from-shading based refinement.
The last step also estimates the scene lighting and a coarse, piece-wise constant approximation of
the face albedo. The final result is a sequence of temporally coherent triangular face meshes M t

T
for

the target sequence and M t
D

for the dubbing sequence, with 1≤ t≤ f .

It is important to remark that the dense expression correction step (see Section 5.5) performs a dense
per-vertex mesh alignment that does not decouple rigid pose from facial motion nor does it provide
an intuitive parametrization that could help perform editing tasks. As such, 3D deformations esti-
mated by this step were not utilized in the motion transfer step nor were they employed to align the
transferred mouth to the upper part of the face (i. e., we only used the rigid pose estimated with the
2D facial landmarks). This limitation is further discussed in Section 6.9.

6.4.2 Blendshape Weight-based Mouth Transfer

The blendshape model encodes most of the speech-related motion, such as the movement of the jaw,
lips and cheeks, whereas the detail layer mainly encodes person-specific skin deformation, such as
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(a) (b)

Figure 6.3: Mouth mask. Left to right: (a) The region of influence of the blendshapes responsible for

the mouth motion, (b) three example blendshapes that activate the mouth, where the color encodes the

magnitude of the displacement w. r. t. the rest pose.

emerging and shifting wrinkles. The blendshape models of the actor and dubber are derived from the
same generic model and thus share the same semantic dimensions, including those related to speech.
We can therefore make the actor utter the same words as the dubber by identifying the blendshape
weights that activate the mouth, and by transferring the temporal curves of the blendshape weights
that activate the mouth region from the dubber to the actor. As explained in Section 6.4.3, these
activation curves will need further actor specific adjustment during transfer.

We manually identified the l =49 blendshapes responsible for the mouth motion as those compo-
nents that displace vertices on the jaw, lip or cheeks. We quantify a region of influence for these
mouth blendshapes by assigning a value between 0 and 1 to each vertex, where 1 means highly
affected by mouth motion and 0 not affected at all. These values are found by accumulating the l

blendshape displacements at each vertex and mapping them to [0,1], where 0 corresponds to zero
displacement and 1 to the median displacement over all vertices. The obtained mask is depicted
in Figure 6.3 and is used for detail synthesis and image blending (see Section 6.5 and Section 6.7).
The mask is extended to include the nose tip, since it is often influenced by the mouth motion in
practice.

The mouth motion of the dubber is transferred to the actor at a time t by combining the actor’s
blendshapes as follows:

et
S

︸︷︷︸

synthesized actor
expression

= b0,T +
l

∑
j=1

β t
D, j dT , j

︸ ︷︷ ︸

captured dubber
expression

+
k

∑
j=l+1

β t
T , j dT , j

︸ ︷︷ ︸

captured actor
expression

. (6.2)

Here, βT , j and βD, j, 1≤ j≤k, are the captured blendshape weights of the actor and the dubber, and
b0,T and dT , j denote the rest pose and the j-th blendshape of the actor. Note that the blendshapes
are ordered such that mouth-related expressions come first in the model. The synthesized target
expression et

S
, ∀t, is identical to the original target expression, except in the mouth region shown

in Figure 6.3 (a), where it is the same as the expression of the dubbing actor. The synthesized
expression et

S
and the captured head pose can be used to build a sequence of synthetic, coarse face

meshes M t
S

for the actor, which exhibits the same mouth motion as the dubber. This is illustrated
in Figure 6.5 for the example of Figure 6.1. Note that M t

S
still lies within the blendshape space

and therefore lacks any fine-scale detail, such as wrinkles and folds. This detail is necessary for a
faithful rendering of the actor and will be added in Section 6.5.
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6.4.3 Mouth Motion Correction

The blendshape weight-based transfer approach described in Equation 6.2 works well if the blend-
shape weight combinations for the actor and dubber have the same meaning. In practice, this is not
guaranteed since both blendshape models are manually constructed from independently selected
scans of a face at rest. As a result, they virtually share the same semantic dimensions, but do not
necessarily agree on the rest pose, i. e., the two models span the same semantic space relative to
the neutral pose but a blendshape, say d j, in the dubber’s space may lie in a different place in the
actor’s space, resulting in a space misalignment as reported in [Theobald et al. 2009].

If there is a small systematic offset in the model origin, we can get an estimate of the true rest
pose by selecting the blendshape weight combination that has the smallest Euclidean norm over
all f captured frames, provided that there is at least one neutral expression in the sequence. This
blendshape weight combination with minimum norm is then taken as the true model origin and is
used to correct the transferred weights. To this end, we replace βD, j in Equation 6.2 by

β ∗
D, j = βD, j − β min

D, j + β min
T , j for 1≤ j≤ l , (6.3)

where

β min
T

= argmin
(β 1

T ,...,β
f

T )

‖ β t
T
‖2,∀t (6.4)

is the blendshape weight combination with the minimum Euclidean norm over all f target frames
and β min

D
has the same meaning for the dubbing sequence. We observed that this correction step

significantly improved the quality of the expression transfer between different individuals. Note
that the corrected weights β ∗

D, j, 1≤ j≤ l may lie outside the blendshape weight range. In practice,
some weights were just slightly off the bounds, and therefore, it did not cause any visible artifact
when transferring the dubber’s mouth motion to the actor. Nonetheless, the corrected weights could
be clamped in the range [0,1] for consistency to allow animation artists to further alter the mouth
motion, if desired.

6.5 Detail Synthesis

We add fine-scale skin detail to the synthesized target meshes M t
S

by assuming that wrinkles and
folds are correlated to the underlying facial expression, which in turn correlate to the blendshape
weights. Detail in the top part of M t

S
is not influenced by the blendshape weight transfer and can thus

be assumed identical to that of the captured mesh M t
T
. Detail in the mouth region, on the other hand,

changes under the effect of the new blendshape weights and must be synthesized appropriately. This
detail has to be actor-specific and will be generated by first searching for similar expressions in the
captured target sequence and then transferring the high-frequency detail layer from the retrieved
target geometries.

6.5.1 Target Frame Retrieval: Energy Formulation

We wish to retrieve a captured target mesh M
i(t)

T with a similar mouth expression and motion as
the current synthesized mesh M t

S
. Here, i(t)∈{1, . . . , f} stands for the retrieved frame index in the
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target sequence that corresponds to the current index t in the synthesized sequence. To this end, we
look for similarities in the blendshape weights that drive the mouth motion of the mesh sequences
M t

T
and M t

S
.

Let β j, 1≤ j≤ l, denote the set of blendshape weights that are responsible for the mouth motion,
as identified in Section 6.4.2. Then we can represent the synthesized mouth expression at a frame

t by the blendshape weight vector Bt
S
=
(

β t
S,1, . . . ,β

t
S,l

)⊤
and the synthesized sequence of mouth

expressions by BS = (B1
S
, . . . ,B f

S ). Our retrieval problem aims at finding an optimal temporally-
coherent rearrangement of target indices (i(1), . . . , i( f )), such that the corresponding sequence of

captured expressions B̂T =(B
i(1)
T , . . . ,B

i( f )
T ) is as close as possible to BS . This optimization problem

can be formulated as:

min
(i(1),...,i( f ))

E
(
B̂T ,BS

)
, (6.5)

where E denotes a multi-objective function that measures the similarity of blendshape weights along
with their change over time, and the adjacency of frames, described as follows.

Blendshape Weight Distance The similarity between a target and a synthesized mouth expres-
sion is computed as the L2 norm of their difference. The index i(t) of the target mesh, that is closest
to the current synthetic mesh at frame t, has to minimize

db(B
i(t)
T ,Bt

S
) =

∥
∥B

i(t)
T −Bt

S

∥
∥

2 . (6.6)

This distance measure is based on the assumption that, for a given person, face meshes with similar
expression, and thus underlying blendshape weights, have similar skin detail.

Motion Distance To regularize the retrieval, we consider the change in expression over time, i. e.,
the difference between consecutive blendshape weights Bt−1 and Bt . Given the expression change
from t−1 to t in the synthesized sequence, we enforce that the currently retrieved blendshape
weights B

i(t)
T must undergo a similar change w. r. t. the previously retrieved weights B

i(t−1)
T . In other

words, i(t) and i(t−1) have to minimize

dm(B
i(t−1)
T ,B

i(t)
T , Bt−1

S
,Bt

S
) =

∥
∥(B

i(t−1)
T −B

i(t)
T )−(Bt−1

S
−Bt

S
)
∥
∥

2 . (6.7)

This measure assumes that similar changes in expression induce similar changes in skin detail. It is
important to remark that the retrieved indices i(t−1) and i(t) do not have to be consecutive in the
original target sequence, since the search is global.

Frame Distance Strong transitions in the retrieved detail are more likely if i(t−1) and i(t) lie far
apart in the original target sequence. To enforce smoothly varying detail, the temporal distance of
the retrieved neighboring indices is penalized as follows:

df(i(t−1), i(t))=1− exp (−|i(t−1)− i(t)|) . (6.8)
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Figure 6.4: Shortest path in a graph of candidate indices.

This measure assumes that the captured facial details of close-by frames are more similar than those
of distant frames.

6.5.2 Target Frame Retrieval: Energy Optimization

The optimal global rearrangement of target indices is then found by minimizing the energy in Equa-
tion 6.5, which is the weighted sum of the three distances over all frames:

E
(
B̂T ,BS

)
= wb

f

∑
t=1

db(B
i(t)
T ,Bt

S
) + wm

f

∑
t=1

dm(B
i(t−1)
T ,B

i(t)
T ,Bt−1

S
,Bt

S
) + wf

f

∑
t=1

df(i(t−1), i(t)) ,

(6.9)

where wb, wm, and wf control the influence of each term.

A greedy approach could find the unknown indices sequentially by progressively retrieving the cur-
rently nearest one. A better solution that solves for the complete sequence (i(1), . . . , i( f )) at once
could be obtained by finding the shortest path in a weighted directed graph where each node repre-
sents a target index and each edge is weighted by the distances described above (see Figure 6.4). A
solution can be found using Dijkstra’s algorithm, but since the starting node is unknown, its com-
plexity is O( f 3) in the number of frames, which prohibits its use for long sequences. Instead, we can
resort to methods based on hyper-heuristics [Burke et al. 2010] to arrive at an approximate solution
that lies provably close to the global optimum. Hyper-heuristics are automated methods for select-
ing or generating local search operators to solve a hard combinatorial problem [Burke et al. 2013].
In our particular implementation, we define three local operators which independently minimize
the three terms in Equation 6.9, as well as a fourth operator that randomly disrupts the local opti-
mum at a random index location. The latter ensures that the algorithm can explore new solutions,
avoiding stagnation in local minima. To guide the search for the optimal solution, we define a
hyper-heuristic approach that adaptively selects these four operators by reinforcement learning, as
originally proposed in [Garrido and Castro 2012].

Blendshape models can be overcomplete and multiple blendshape combinations may produce the
same expression. We observed that different actors can activate distinct blendshapes when uttering
the same words. As a consequence, facial expressions cannot be compared reliably using a distance
between blendshape weights. This problem was overcome by performing Principal Component
Analysis (PCA) on our blendshape model and replacing the blendshape weights in Equation 6.9 by
the set of PCA weights that explains 99% of the mouth motion. Note that PCA does not change
the face model; it only removes redundancy to make the frame retrieval more accurate. In the
motion transfer step in Section 6.4, however, a blendshape representation is still preferred since
the dimensions are spatially localized and easier to interpret [Lewis et al. 2014]. This provides
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(a) (b) (c) (d) (e) (f)

Figure 6.5: Motion transfer and detail synthesis for the example of Figure 6.1. The facial performances

of the actor (a) and the dubber (b) are captured, and the estimated mouth-related blendshape weights are

transferred from the dubber to the actor, in this case making the actor open his mouth (c). Fine-scale facial

detail from the captured mesh in the current frame (d) and detail from the captured mesh in the retrieved

frame (e) are combined to produce a detailed synthetic mesh (f).

an extra level of control to the user who can globally scale the blendshape curves to modify the
expressiveness. An example is illustrated in the supplementary video at the project website2.

6.5.3 Analysis of Energy Terms and Parameter Tuning

To quantify the influence of the energy terms in Equation 6.9, we compared several retrieval results
obtained with different values for the weights wb, wm, and wf. To this end, a control sequence was
also recorded for the experiment of Figure 6.8, in which the target actor is reading an English dub-
bing transcript under target conditions. The target and control sequences thus depict the same actor
reciting the same dialog, both in German and in English. Based on the English audio, we selected
the corresponding words in the dubbing sequence and control sequence which had a comparable
timing, and identified 142 frames in which the visual utterance of the actor was identical to that of
the dubber.

These 142 control frames were compared to the frames that were retrieved by our method from the
German target sequence. If our frame retrieval is successful, the control frame and the retrieved
target frame should depict the same utterance and look very similar. As a similarity measure, we
used the average PSNR over all 142 frames. Small differences in the actor’s pose were accounted
for by warping the faces to a common reference pose. Retrieving the closest frames in time (wb =
wm = 0) was least successful with an average PSNR of 22.0 dB. Retrieval purely based on the
similarity of the PCA weights (wm=wf=0) was more successful (28.0 dB), while adding the motion
distance (28.2 dB) and the frame distance (28.6 dB) increased the similarity further. By using cross
validation over a discrete set of parameters, we attained the best results by using the combination
wb = 1, wm = 10 and wf = 1000, which was utilized in all of our experiments. Note that the control
frames were not directly compared to our final synthesized images, since the rendering and the
compositing can affect the PSNR adversely.

6.5.4 Detail Transfer

Once a sequence of target indices has been retrieved, we transfer the skin detail of the retrieved tar-

get mesh M
i(t)

T to the current synthesized mesh M t
S
. The detail is added as a per-vertex displacement

2http://gvv.mpi-inf.mpg.de/projects/VisualDubbing/

http://gvv.mpi-inf.mpg.de/projects/VisualDubbing/
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Figure 6.6: Speech alignment. Lip closure (right) is enforced to improve audio-visual quality of the trans-

ferred mouth motion (left).

expressed in the local vertex coordinate frame. We only transfer new detail in the influence region
of the mouth, given by the mask of Figure 6.3 (a). Outside this region we preserve the original
detail of the captured mesh M t

T
. At the mask boundary, we ensure a smooth transition between both

detail layers using alpha blending.

Despite temporal regularization, the retrieved indices may still introduce slight jumps in the trans-
ferred detail (only the original ordering of target indices produces smooth detail over time, but does
not resemble the dubbing performance). Thus, we temporally smooth out the transferred detail
layer by filtering the displacements in a sliding Gaussian window of 5 frames. The detail transfer is
illustrated in Figure 6.5.

6.6 Speech Alignment

We improve the synchronization of the lip motion and the dubbed audio by modifying the blend-
shape weights to enforce lip closures where needed. To determine the precise time instances of
visually salient speech gestures, we analyze the audio of the dubbing sequence independently of
the video stream. Since the content of the utterances spoken by the dubber is known, the audio
was segmented into phonetic units using an automatic speech recognizer in forced-alignment mode
[Young et al. 2006]. In the resulting phonetic segmentation, lip closure events are aligned by analyz-
ing all instances of bilabial consonants /p/, /b/, and /m/. In many cases, the automatically determined
segment boundaries are sufficient, but where reverberation or background noise in the recording af-
fects the reliability of the automatic segmentation, the lip closure intervals were manually corrected
using visual and acoustic cues in the phonetic analysis software Praat [Boersma and Weenink 2001].
The output is a sequence of time intervals associated with all speech-related lip closure events in
the video sequences, at a precision far higher than can be achieved when analyzing only the dubber
video footage.

The detected intervals are used to improve the timing of bilabial consonants in the synthesized
video by forcing the blendshape weights responsible for lip closure to zero. To avoid jerky mo-
tion, enforcement is done in a small Gaussian window centered around the detected intervals (see
Figure 6.6).
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6.7 Rendering and Compositing

The synthesized meshes are rendered into the target camera using the estimated scene lighting and
a per-vertex estimate of the skin reflectance. In the last step, the mouth cavity and the teeth are then
rendered and combined to produce the final composite.

6.7.1 Rendering the Synthesized Geometry

Although complex light transport mechanisms (e. g., such as subsurface scattering) influence the
perceived skin color, we assume pure Lambertian skin reflectance, which is sufficient under most
conditions. To this end, we use the following formulation of the rendering equation:

B(v,ω) = c(v)

∫

Ω
L(v,ω)V (v)max(ω ·n(v),0)dω , (6.10)

where B(v,ω) is the irradiance at vertex v ∈R
3 from an incoming light direction ω sampled on the

hemisphere Ω, c ∈ R
3 denotes the skin albedo at vertex v, n ∈ R

3 represents the surface normal at
vertex v, and V ∈ {0,1} is the vertex visibility (please refer to Section 2.2.2 for further details).

As mentioned in Section 6.4.1, the monocular performance capture method presented in Chapter 5
estimates a coarse, piece-wise constant albedo of the actor’s skin albedo, as well as the scene light-
ing L ∈R in the target scene (here represented as white illumination). However, the coarse albedo is
insufficient for a convincing rendering of the actor and we require a per-vertex albedo c(v) instead.
We estimate the dense skin albedo by projecting each vertex v of the captured mesh M t

T
into the

target frame It
T

and assigning the intensity to B(v,ω) in Equation 6.10. Dividing the irradiance by
the integral on the right then gives us an estimate of c(v). We can then render the synthetic mesh by
solving the rendering equation for each vertex of M t

s .

If the dense albedo is estimated for each frame independently, it may suffer from small imprecisions
in the captured face geometry and lead to undesirable intensity changes in the rendered images. To
avoid this, we assume that the albedo is constant over time and estimate a single value in each vertex
via a least squares fit over all captured meshes. To improve spatial sampling, albedo computation
and rendering are performed on upsampled versions of the face meshes (n=200000).

6.7.2 Teeth, Inner Mouth and Final Composite

As illustrated in Figure 6.7 (d) the rendered face lacks teeth and a mouth cavity. For the upper
and lower teeth, we create a 3D teeth proxy consisting of two billboards that are attached to the
blendshape model (see Figure 6.7 (a)) and move in accordance with the face under the control of
the blendshape weights. The billboards are colored with a static texture (see Figure 6.7 (c)) of the
target frame in which the teeth are visible. The inner mouth is created by warping a single image
of the mouth cavity (see Figure 6.7 (b)) using the facial landmarks obtained from the synthesized
facial performance. The brightness of the teeth and inner mouth is uniformly adjusted according to
the degree of mouth opening to create a realistic shading effect.

The warped inner mouth, rendered teeth and synthetic face layers are sequentially rendered and
blended in with the target image by feathering around the boundaries to assure a smooth transition,
as shown in Figure 6.7 (e). We only blend the synthesized face inside the projection of the mask of



97 6.8. EXPERIMENTS

(a) (b) (c) (d) (e)

Figure 6.7: Rendering and compositing. The textured 3D teeth proxy is anchored to the blendshape model

to simulate the opening/closing (a). The inner mouth (b), the upper and lower teeth billboards proxies (c),

and the synthesized face (d) are rendered on top of each other to produce the final composite (e).

Figure 6.3 (a), while preserving the original face elsewhere. The result is the synthesized sequence
It

S
.

6.8 Experiments

We applied our method to three target sequences of German-speaking actors recorded under con-
stant, unknown illumination. A dubbing studio3 translated the original German scripts and recorded
a new English language track for each sequence using a professional dubber. The dubber was filmed
in the studio with the setup of Figure 6.1. The central camera is used for performance capture, while
the two satellite cameras are only used for the 3D reconstruction needed for the blendshape creation.
All videos where shot with an SLR camera at 25 fps in HD quality. The German audio was recorded
with a USB microphone and the English audio with the dubbing studio equipment.

As the dubbing results reported in this section contain audio content, the reader is strongly advised
to watch the supplemental video at the project website4. Besides, relevant comparisons described
in Section 6.8.2 are also better appreciated in video.

6.8.1 Results

Figure 6.8 presents our result attained on the first sequence for a target actor reciting a dialog
of a movie in German. This sequence is 1.5 min long and the actor remained mostly still while
speaking, which illustrates the quality that our method can achieve in ideal conditions. The upper
row in the figure shows example frames from the target sequence, whereas the middle row shows
the corresponding frames from the English dubber sequence. These are assumed to be correctly
aligned in time such that the English and German sentences overlap. As most professional dubbing
studios record single sentences in separate takes, this alignment had to be performed manually (only
at the beginning of the takes). The bottom row of the figure shows the corresponding synthesized
results. The mouth motion, the actor appearance, and the mouth interior are plausibly synthesized.
The supplementary video available at the project website further demonstrates that the synthesized
mouth motion matches the dubbed audio track well.

3SPEEECH Audiolingual Labs, www.speeech.de
4http://gvv.mpi-inf.mpg.de/projects/VisualDubbing/

www.speeech.de
http://gvv.mpi-inf.mpg.de/projects/VisualDubbing/
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Figure 6.8: Dubbing results - first sequence showing an actor reciting a passage of a movie. Top to bottom

row: Target actor, dubber and synthesized result.

Figure 6.9: Dubbing results - second sequence depicting a scene of a passion play. Top to bottom row:

Target actor, dubber and synthesized result.
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Figure 6.10: Dubbing results - third sequence showing an actor being interviewed. Top to bottom row:

Target actor, dubber and synthesized result.

Another result obtained on a second sequence for a different target actor performing a scene of a
passion play can be seen in Figure 6.9. This sequence is challenging due to the fast head motion
and the expressive facial gestures. The figure shows that the new mouth motion and appearance are
plausibly generated and much of the emotional content is preserved, which demonstrates that our
method is capable of dealing with fast and expressive motion. Finally, Figure 6.10 shows a third
sequence where the same actor is answering questions from an interviewer. This video attempts to
simulate a television interview where the spoken lines are spontaneous and not scripted beforehand.
Also for this result, the expressions of the actor, including laughter and pondering gestures, are
preserved well.

6.8.2 Validations

User Study We conducted a web-based user study in which we asked users with an understanding
knowledge of English to compare the results shown in Figures 6.8–6.10 with those obtained using
traditional dubbing. Note that the comparison was done side by side in a random order. The
traditionally dubbed results were provided by the same dubbing studio that recorded the dubbing
actor and dubbed the German language track into English. These videos were generated by taking
the original German target videos, removing the original audio, and adding the dubbed language
track in English. Note that the dubbed language track was further altered (i. e., manually time-
shifted and skewed) by one of the experts in the dubbing studio to improve the overall audio-visual
alignment, thus creating high-quality professional videos (please refer to the second supplementary
video at the project website for these results). The results corresponding to the same sequence were
equally long and their lengths, as well as other features, including the amount of head motion is
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Table 6.1: User study. Length and main features of the sequences used in the survey.

Sequence length (seconds) head motion head orientation
Movie dialog (Figure 6.8) 30 negligible frontal
Passion play (Figure 6.9) 20 strong/fast frontal/non-frontal
Interview (Figure 6.10) 30 mild mostly non-frontal

described in Table 6.1.

To quantify the quality of the dubbing, in the webpage we attached to the results a questionnaire
that evaluated the overall audio-visual experience, including overall viewing discomfort and how
natural the video-audio combination was perceived by the user. To be more precise, we included
a Likert scale that ranged from 0 to 5, where 0 means a really bad overall visual-audio experience,
whereas 5 means a very good experience. To collect some statistics about the user preference, we
also asked the users to give their preference for one of the two approaches. An optional comment
box was also included. The web-based user study was sent to 45 participants from different places
around the world, including countries were dubbing is a common practice (Germany and France)
and also countries were it is not (UK, USA and Chile).

Table 6.2 summarizes the overall scores assigned to each sequence, as well as user preferences. Over
all three sequences, traditional dubbing received an average score of 3.2, while our visual dubbing
system received a score of 2.7. Overall, 35% of the respondents said they felt more comfortable
watching the visually modified video. These scores seem low at first, but actually indicate a big step
ahead in solving this extremely difficult problem. The human eye is tuned to the slightest visual
artifact in a rendered face and it is very hard for an automatic system to produce visually plausible
results that do not fall in the uncanny valley, especially in a side-by-side comparison against real
video. Despite the professional quality, traditional dubbing was not favored by everyone. In fact, the
visually modified result of Figure 6.8 was preferred by 47% of the users and we believe this shows
considerable progress towards a system that can replace facial performances in video. The same
result received an absolute score of 2.7, which is only slightly less than the 2.9 score of traditional
dubbing. Overall, the result shown in Figure 6.10 received the highest score of 3.0.

We additionally performed the ANOVA F-test to find the statistical significance of the scores ob-
tained in the user study. The p-values were ∼ 0.4, 0.001, and 0.006 for the results of Figure 6.8,
Figure 6.9, Figure 6.10, respectively. This means that two out of three experiments were statistically
significant, as their p-value falls below 0.01, i. e., the random sampling error in the user study is less
than 1%. The high p-value of the experiment related to the result of Figure 6.8 can be ascribed to
the high standard deviations and the tied scores compared to the others, meaning that more samples
would be needed to have conclusive statistics. However, we believe that the scores for this sequence
illustrate a trend towards equal appreciation of our results and those of the studio. In general, the
variability of the scores can be explained by two main criteria that the users found very relevant:
lip-sync and expressiveness/realism. Some survey respondents preferred good lip-sync to out-of-
sync expressive faces, but also the other way round. Some of the comments left by the participants
include: “Sometimes exaggerated expression is better”, “I voted for the videos where the sound-
image synchronization was better”, “In my opinion, it is not just about making the mouth move in
line with the audio”, “I feel that the synchronization by itself always looked very good”.
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Table 6.2: User study. Scores given by the survey respondents to the results obtained by traditional dubbing

and our approach, as well as their overall preference.

Traditional dubbing Our approach
Sequence

Score Preference Score Preference
Movie dialog (Figure 6.8) 2.9±1.2 53% 2.7±1.1 47%
Passion play (Figure 6.9) 3.0±1.2 73% 2.3±0.9 27%
Interview (Figure 6.10) 3.6±1.1 70% 3.0±0.9 30%

Overall 3.2±1.2 65% 2.7±1.0 35%

Figure 6.11: Renderings with (left) and without synthesized skin details (right). Without added detail the

face looks over smoothed, and therefore non-realistic.

Rendering Figure 6.11 demonstrates the importance of facial detail synthesis for photo-realistic
rendering by comparing our result with a system that renders the face using a blendshape model
without fine-scale detail. This corresponds to facial replacement/reenactment techniques that use a
coarse 3D parametric model without a detail layer [Dale et al. 2011; Thies et al. 2016]. Compared
to the proposed method, important skin features, such as dimples, are hardly visible without a
geometric detail layer and realistic shading effects on the chin and upper lip are also missing. The
supplementary video at the project website also compares alternative strategies to create the inner
mouth, showing that the proposed compositing based on multiple layers achieves the best results.

Comparison to Image-based Methods To demonstrate that our 3D model-based approach out-
performs 2D image-based approaches, we compare the proposed visual dubbing approach to a
modified version which does not produce the final composites by rendering a synthesized 3D ge-
ometry, but by reordering the frames of the target actor and then applying non-rigid 2D warping, as
presented in Chapter 4. Such a method is then similar to a purely image-based technique, like Video
Rewrite [Bregler et al. 1997], but with better image warping. The method presented in Chapter 4,
however, creates a new synthesized sequence with a facial performance that is close to that of the
dubber, but it warps the actor into the dubbing sequence (instead of the original target sequence)
and mixes the identities of the dubber and the actor, which is not suitable for the dubbing scenario
described in this chapter.

We can design an image-based approach that is suitable for the scenario at hand by retrieving target
frames in the actor sequence that match the dubber’s expressions (see Section 4.4 for further details),
but warping the face region of the retrieved target frames back into the original target sequence. To
assist the warping, we use the synthesized facial landmarks that are provided by the motion transfer
step in Section 6.4. These landmarks correspond to the actor’s face in the target sequence, but move
in accordance to the dubber’s speech. For the shape/texture warping, we can use the same non-rigid
2D mapping described in Section 4.5. The resulting strategy is image-based and ensures that the
mouth motion in the warped frames moves in pace with the dubber’s mouth motion while being
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Figure 6.12: Final composite using the proposed model-based approach (top), final composite obtained by

the image-based approach (middle), and the corresponding frames from the dubbing sequence (bottom).

correctly aligned to the actor’s face in the original target sequence.

Figure 6.12 shows some of the results obtained by our visual dubbing approach and by the image-
based approach on the sequence of Figure 6.9. Note that the image-based approach replaces the
complete inner face, while the proposed method only replaces the lower part of the face. The
image-based results can suffer from ghosting artifacts (third column), may not always be in pace
with the dubber’s performance (second and fifth column), and may even struggle with strong head
motion as a result of unrealistic face warping (third column). These and other issues, such as the
temporal alignment of the mouth region and the temporal resolution, can more clearly be seen in
the supplementary video at the project website. This demonstrates that our model-based approach
produces synthesized sequences of overall higher quality in terms of the spatio-temporal resolution
and can deal well with challenging sequences that exhibit fast and strong head motion, where image-
based approaches normally have trouble.

6.9 Discussion and Limitations

The proposed approach takes a notable step ahead over previous facial expression transfer or fa-
cial video modification approaches. Unlike video rewrite [Bregler et al. 1997] or model-based re-
placement methods that mix identities [Dale et al. 2011], we can synthesize results when target and
dubbing actor are different, which is essential for any practical application. The use of an accurate
parametric face model, along with detailed lighting and albedo information enables photo-realistic
synthesis of face appearance, even on long videos with moderate out-of-plane head motion. As
shown in the experiments, the proposed 3D model-based resynthesis approach bears several ad-
vantages over purely or model-assisted image-based methods (see Chapter 4), which often exhibit
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ghosting artifacts or temporal aliasing, merely show results without compositing, and can only han-
dle marginal out-of-plane head motion, as already discussed in Section 3.5.2.

Our visual dubbing approach also takes a big step towards easing and streamlining the workflow of
traditional dubbing: We no longer require a translation of the original text that (perfectly) matches
the visual utterances in the target video on a viseme level. Since we resynthesize the mouth motion
entirely, the translation can be more free. Furthermore, the proposed method relies on very little
manual preprocessing, most notably the creation of the blendshape model and teeth proxy (see
further discussion below); otherwise, it is fully automatic and can be integrated into an industrial
pipeline.

Since the proposed method is the first step towards solving a challenging goal, it has several limi-
tations. First, a static 3D reconstruction of the actor’s face is required to build a coarse personal-
ized blendshape model, but it may not always be available for every actor, especially from vintage
movies. Automatic reconstruction of blendshape models from video is first addressed in Chap-
ter 7, and further extended in Chapter 8 by learning from the captured data personalized, fully-
controllable face rigs that can synthesize person-specific expressions and fine-scale skin details.

Regarding the mouth motion transfer step, even though the proposed approach corrects the motion
curves transferred to the actor’s model to account for differences in identity (face shape), it still
imposes the dubber’s idiosyncrasies onto the target actor, resulting in synthesized sequences that
reflect the characteristics of the dubber rather than of the original actor. For instance, in the tracked
sequences we measured an asymmetry in the blendshape weights of the dubber as part of his natural
way of speaking and this asymmetry was reproduced in the actor (please refer to the result of
Figure 6.8 in the supplementary video available at the project website). This problem was also
reported in [Theobald et al. 2009]. Even more sophisticated expression cloning methods that rely
on model-specific priors to constraint the range of plausible expressions [Seol et al. 2012] would
still transfer dubber characteristics if no direct control from a user is provided. To deal with this
problem, certain aspects and weights could be manually controlled to achieve the desired amount of
expressiveness, but this may require certain user expertise. Alternatively, differences between the
two actors could be learned in order to achieve a certain style (see Section 3.4.2 for more details);
however, this requires source and target training examples with semantically similar expressions.
In Chapter 8, we tackle this problem by learning a face rig that couples generic blendshapes to
detailed reconstructions to generate person-specific shape details and expressions. This way, new
performances that preserve actor’s characteristics could be synthesized by just transferring standard
blendshapes captured from the dubber’s performance.

As mentioned in Section 6.4.1, the monocular face capture approach presented in Chapter 5 per-
forms an out-of-space blendshape deformation to improve alignment. However, this correction step
simultaneously improves expression, shape and rigid pose (all coupled together); therefore, the cor-
rective deformation field cannot be directly applied for expression transfer nor can it be used for
aligning the synthesized faces. Hence, such alignment step was not employed for transfer, but could
certainly help produce higher fidelity results. In Chapters 7–8, we propose a multilayer parametric
model that can effectively decouple rigid pose from person-specific deformations, and also a face
rig that automatically generates such deformations from blendshape weights, as mentioned above.
We feel confident that such improvements will contribute to attaining better results in this dubbing
scenario.

For the application at hand only the mouth region is replaced and not the full facial expression,
which may not convey all of the visual information in the speech. For plausible results, the dubber
is expected to play the same routine as the actor with similar emotional content, which is mostly
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fulfilled in practice. However, there may be facial regions where a match between the new mouth
motion and the original video is challenged, e. g., the larynx in our results does not move according
to the dubbed audio.

We only detect lip closure and opening events from the audio track. As audio cues provide a
precision far higher than video only, more complex information, such as triphones or alike could be
extracted and used to train for instance a hidden Markov model [Anderson et al. 2013a; Brand 1999].
This may further improve results. Furthermore, we compute an average albedo, which can be
blurred if the correspondences given by the monocular tracker are not accurate over time. The
current lighting model may be challenged in scenes with strong and sudden light changes, and the
current monocular tracking may fail in extreme facial poses, e. g., completely lateral views. In this
chapter, a simple approach that uses a textured teeth proxy is proposed for synthesizing part of
the mouth interior, but the rendered teeth may not always look realistic. Some of the limitations
mentioned above, especially regarding the digitization of the mouth cavity, will be further discussed
in Chapter 10.

6.10 Summary

In this chapter, we have presented one of the first automatic solutions for transferring expressions
between two different real-life actors and rendering photo-realistic, plausible mouth motion in an
existing video that visually correlates to a dubbed audio track in a different language. The approach
is based on highly detailed monocular 3D face reconstruction, as well as lighting and albedo estima-
tion. New 3D mouth performances are synthesized by using a new parameter-based motion transfer
step between dubbing and target actor, and a space-time retrieval method that synthesizes plausi-
ble high-frequency shape detail. The synthesized results, including the interior of the mouth, are
photo-realistically rendered and attention is paid to a proper synchronization of the mouth motion
with salient utterances in the audio track. Resynthesizing facial motion at video quality is extremely
challenging as our perception is attuned to the slightest inaccuracies. Qualitative comparisons and a
user study conducted on several individuals from different countries have shown that the proposed
method can create plausible results and that we have taken an important step towards solving this
challenging problem.

The algorithms proposed thus far have shown promising results in real-life scenarios and advance
the state of the art in monocular face capture and video-based editing in semi-controlled monocu-
lar setups (i. e., monocular cameras with known intrinsics and available 3D reconstruction of the
actor’s face). The reconstructed models still lack an intuitive parametrization of person-specific
expressions and details to allow digital artists to perform advanced animation and editing tasks at
much higher granularity. Digitization of photo-realistic, fully-controllable and highly-personalized
3D face avatars in unconstrained monocular setups at much higher degrees of detail and personal-
ized control is addressed next in Chapter 7 (and also in Chapter 8).



Chapter 7
Multilayer Model-based Face

Capture in Unconstrained
Setups

Figure 7.1: Result obtained by the proposed approach on a video downloaded from YouTube. Top: Input

video (https://youtu.be/d-VaUaTF3_k). Bottom: Reconstructed high-quality, personalized 3D model that

captures: Coarse-scale face geometry and expressions, medium-scale person-specific idiosyncrasies, and

fine-scale skin detail – all directly from monocular video.

Chapters 5–6 presented robust model-based methods for capturing and transferring detailed facial
performances. These methods, however, are unable to track 3D faces in completely unconstrained
2D videos (e. g., vintage footage), and estimate/parametrize person-specific mid-scale deformations.
This chapter presents a fully automatic multilayer model-based approach for capturing arbitrary
performances at multiple levels of details from 2D video with unknown camera and lighting setups
where we do not have access to the actor’s face geometry, e. g., internet videos (see Figure 7.1). The
method and results presented in this chapter are based on [Garrido et al. 2016a].
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7.1 Introduction

Creating photo-realistic face animations of virtual actors in movies and games is a very challenging
task, since human perception is attuned to detecting even small inaccuracies in facial appearance
and expression. Hence, animation artists strive to construct and animate high-quality controllable
3D models (or face rigs), especially when photorealism is the goal. The animation process often re-
quires a 3D face scan of the actor, as well as detailed blendshapes captured in complex setups, which
are normally retouched and then manually combined by artists. To simplify this complex pipeline,
researchers have developed different face capture methods in an attempt to automatize most of
its steps (see details in Section 3.1). Some methods can track detailed blendshape models, while
others can reconstruct detailed dynamic face geometry and appearance from scratch, using either
complex scanning systems or multiview camera setups under controlled illumination (Section 3.1.1).
Recently, performance capture methods have further been extended to work with RGB-D sensors
(Section 3.1.2) or even just RGB video filmed under general conditions (Section 3.1.3).

Despite the high-level of detail and tracking accuracy achieved by monocular approaches, most
of them assume certain knowledge about the scene or require a 3D neutral model of the actor’s
face. Besides, they neither estimate nor parametrize personalized mid-scale deformations, such as
person-specific smiles, nose shapes, etc. Capturing such deformations not only contributes to a
better tracking, but also help decouple fine-scale transient details from true facial motion. This will
be quite beneficial when learning and especially editing face rigs, as demonstrated in Chapter 8.

In view of the current limitations, this chapter introduces a novel multilayer model-based approach
for capturing fully parametrized 3D models from unconstrained performances where no knowledge
about the scene is given, e. g., arbitrary videos downloaded from the Internet. At the heart of this ap-
proach is a new parametric face prior that jointly encodes plausible appearance and shape changes.
The appearance is modeled assuming Lambertian reflectance, whereas the shape is encoded by a
subspace of facial identity, person-specific expression variation and dynamics, and fine-scale skin
detail formation. Contrary to the method presented in Chapter 5 that focuses on acquiring accurate
3D face geometry without detailed personalization, we capture a detailed parametric 3D face model
which is gradually refined at multiple layers to model the specifics of a person. At the coarsest layer,
shape identity is parametrized using a principal component model and facial expressions are repre-
sented with a generic blendshape model. Person-specific idiosyncrasies in expression and identity
not modeled in this generic space are captured by a second layer using medium-scale corrective
shapes. A generative fine-scale detail model reconstructed over the face surface constitutes the final
most detailed layer. The parameters of this multilayer model are personalized to an actor’s video by
utilizing a new analysis-by-synthesis fitting approach to recover the coarse and medium layers, as
well as a shading-based refinement approach under general lighting to extract fine-scale detail. The
output of our algorithm is the personalized 3D face model (including all its shape-related parame-
ters), a detailed face albedo map, and an estimate of the scene lighting and camera’s parameters.

The method proposed in this chapter captures detailed, personalized models from arbitrary monoc-
ular video of actors, even from vintage footage, for which it would be impossible to automatically
capture the performance by any other standard means. It is important to stress that our approach
does not require manual intervention during fitting as in [Alexander et al. 2010; Weise et al. 2011],
nor does it need dense static 3D face geometry captured in a pre-processing step [Fyffe et al. 2014;
Ichim et al. 2015; Valgaerts et al. 2012b].

In summary the main contributions are: 1) A new automatic model-based approach for capturing
detailed personalized models from unconstrained monocular video, 2) a new multilayer paramet-
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Figure 7.2: Overview. Given an unconstrained monocular video and accurately detected 2D landmarks,

we first reconstruct a coarse model of the actor (identity and expressions) M C and also person-specific

medium-scale deformations M M (actor’s characteristics) – all based on a novel fitting energy. Finally, fine-

scale details M F are estimated in a shape-from-shading framework.

ric face representation in shape to reconstruct and represent 3D facial surface at different levels
of detail, and 3) a unified novel fitting approach based on inverse rendering that leverages both
color cues and sparse 2D landmarks to reconstruct the facial geometry at the coarse and medium
layer. Qualitative and quantitative results show that our multilayer face capture approach compares
favorably to alternative monocular and multiview methods in terms of reconstruction accuracy (see
Section 7.7.2).

7.2 Overview

The proposed method takes as input an unconstrained monocular video F = { f1, . . . , fT} as well as
2D facial landmarks Y = {Y1, . . . ,YT} tracked throughout the sequence1, as shown in Figure 7.2.
Note that T represents the total number of frames. The video can be recorded indoors, outdoors,
or downloaded from the Internet (e. g., vintage movie or YouTube video); therefore, the scene
information and 3D geometry of the actor’s face are generally unknown. To reconstruct the actor’s
face shape and appearance in the video, we propose an approach that inverts the image formation
process to model all relevant scene components, including camera parameters, scene lighting, skin
reflectance and dynamic 3D face geometry parametrized on multiple personalization layers. This is
performed in three main steps, as follows:

S0 Multilayer Personalized 3D Face Prior Creation (Section 7.3): We construct an adaptive
parametric 3D face prior that models the complete image formation process on a simple full
perspective camera projection model, as described in Section 2.2.1. This prior consists of
the camera’s intrinsics and extrinsics, the scene lighting, and a multilayer parametric 3D face
model which encodes actor-specific facial appearance and geometry, as well as motion on
three different layers: coarse-scale shape M C, medium-scale corrective shapes M M, and fine-
scale skin detail M F on the wrinkle level. This prior is modeled only once and its parameters
are updated to fit the observed face in the image.

S1 Coarse- and Medium-scale Layer Reconstruction (Section 7.4): We first track a generic
actor model from video by using a novel tracking energy that jointly optimizes for facial

1Refer to Section 4.3 for further details on 2D facial landmark tracking.
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shape, expression and illumination parameters, such that a photometric and feature consis-
tency measure is maximized. In this analysis-by-synthesis process, the camera’s parameters
are also estimated. Starting from this initial coarse shape and motion estimate M C, the quality
of the fit is further improved based on linear person-specific correctives, thereby yielding a
medium-scale corrective layer M M .

S2 Fine-scale Layer Reconstruction (Section 7.5): In a final step, we utilize inverse rendering
to solve for a wrinkle-level detail layer M F that optimally agrees with temporal changes in
shading cues observed in the input image sequence.

Section 7.6 provides a comprehensive algorithmic description of the multi-step optimization strat-
egy that was adopted to estimate all the scene parameters and personalization layers. The output of
the proposed method is the camera’s parameters, the scene lighting and a multilayer personalized
3D face model of the actor Mt ={M

C
t ,M M

t ,M F
t } at each frame ft , ∀t, including all extracted shape

parameters in the different layers, as well as an albedo map of the actor’s face.

7.3 Multilayer Personalized 3D Face Prior

Our reconstruction process inverts the image formation in the scene and recovers the camera’s
parameters, the scene lighting, and the multilayer face model that comprises the actor’s appearance,
identity (shape) and expression (deformation) parameters. Facial identity and expression variation is
parametrized on three different layers, as shown in Figure 7.3: a coarse-scale linear parametrization
of identity and expression, medium-scale corrective shapes based on manifold harmonics and a fine-
scale detail layer at the wrinkle level represented as triangle deformations. In the following, these
components are explained in more detail.

7.3.1 Camera Parametrization

To project the personalized parametric 3D model onto the image, we adopt a standard perspective
pinhole camera model with camera space position t ∈ R

3 and orientation R ∈ SO(3), where the
world coordinate system is centered at [0,0,0]⊤. Note that the coordinate system of the parametric
3D model is assumed to be aligned with the world space. Hence, C(v) = Rv+ t maps a world space
point v∈R3 to the camera’s local coordinate frame. An image of the parametric model in 3D world
space is then formed by projecting each surface point v of the model onto the camera’s 2D image
plane, as follows:

K̂(ΠC(v)) = Π̂C(v) , (7.1)

where Π : R3→ R
3 denotes a non-linear operator in homogeneous coordinates that performs per-

spective projection and K̂ ∈ R
2x3 is the matrix containing the camera’s intrinsics parameters in

non-homogeneous coordinates. A more detailed description of these operators can be found in Sec-
tion 2.2.1. Hence Π̂ : R3 → R

2 corresponds to the camera’s full perspective transformation that
converts a surface point into an image point.

In a pre-processing step, the camera’s full perspective transformation Π̂ is obtained by estimating
the optimal intrinsic camera parameters. To be more precise, the focal length, rigid-head pose
and the actor-specific shape parameters are jointly optimized based on the sparse set of accurately
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Figure 7.3: Scene description. A novel multilayer person-specific model is used to parametrize the identity,

facial motion, person-specific idiosyncrasies and fine-scale details of the actor’s face on monocular video

input. In addition, extrinsic camera parameters and the scene lighting are also extracted.

tracked 2D facial landmarks (see Section 4.3) over the first 100 frames of the input video sequence.
Note that the principal point is assumed to lie at the image center for the sake of simplicity, but
it could also be included in the optimization. However, this may result in overall less accurate
parameter estimates (please remember that this is already an ill-posed problem and more parameters
will add more uncertainty in the estimation).

7.3.2 Lighting and Appearance Model

Here, we assume a pure Lambertian skin reflectance model as in Chapters 5–6 and later works
[Ichim et al. 2015; Shi et al. 2014; Suwajanakorn et al. 2014]. This is a simplification of true skin
reflectance that offers a good trade-off between complexity and quality of the obtained results. Since
the scene is assumed to be purely Lambertian, the global illumination in the scene is represented
using a spherical environment based on spherical harmonics (SH) basis functions [Müller 1966]. In
spirit of Ramamoorthi and Hanrahan [2001], the first B = 3 SH bands are used here to represent the
outgoing lighting reflected at a surface point with surface orientation n and skin albedo c. Hence,
the irradiance at that point can be parametrized in terms of the illumination coefficients γ of the SH
basis functions, as follows:

B(n,c | γ) = c◦
B2

∑
b=1

γbYb(n) , (7.2)

where Yb(n) ∈ R is the b-th SH basis function evaluated on the surface orientation n and ◦ repre-
sents a point-wise multiplication. The irradiance is encoded using B2 = 9 vector-valued SH illumi-
nation coefficients γ = (γ⊤1 , . . . ,γ

⊤
B2)
⊤, where γb = (γr

b,γ
g
b ,γ

b
b )
⊤ ∈ R

3 denotes a vector that controls
the irradiance separately for each color channel. This leads to 3 ·9 = 27 parameters in the proposed
illumination model. A more detailed description of the image formation model and representation
of the irradiance can be found in Section 2.2.2.
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7.3.3 Coarse-scale Identity and Expression Model

The head is represented as a triangle mesh M = (V,C,G), where V = {vn}
N
n=1 is the set of N

vertices, C = {cn}
N
n=1 is the set of per-vertex skin albedos, and G ⊂ V×V denotes the mesh con-

nectivity. In addition, we associate with each vn a normal nn which is computed based on its
1-ring neighborhood. The mesh’s spatial embedding V and its per-vertex surface reflectance C is
parametrized using the statistical head prior of Blanz and Vetter et al. [1999], which encodes the
space of plausible human heads assuming a Gaussian distribution in the population. This linear head
model is derived from 200 high-quality scans of Caucasian heads (100 males and 100 females) and
compressed in a low-dimensional space using principal component analysis (PCA). Hence, vertex
positions vn = P s

n(α) and skin reflectances cn = P r
n(β ), ∀n can be parametrized as follows:

Shape:P s(α) = as +EsΣsα , (7.3)

Reflectance:P r(β ) = ar +ErΣrβ . (7.4)

Here, as, ar ∈ R
3N encode the per-vertex shape and reflectance of the average head, respectively.

The shape and reflectance spaces are respectively spanned by the matrices Es ∈ R
3N×Ks and Er

∈ R
3N×Kr , each containing the Ks = Kr = 160 first principal components of the shape and re-

flectance basis functions in their columns. Variations in shape and reflectance are controlled using
the corresponding shape and reflectance parameters, α ∈ R

Ks and β ∈ R
Kr . The diagonal matrices

Σs = diag(σα1 , . . . ,σαKs
) and Σr = diag(σβ1

, . . . ,σβKr
) encode the standard deviations correspond-

ing to the principal directions. Note that scaling the shape and reflectance bases by their standard
deviations guarantees a similar range of variation for the control parameters. Normally, we search
for identity parameters in the range [−3σ•,+3σ•], • ∈ {α ,β}, since this accounts for more than
99% of the variation and allows the model to discard unlikely head shapes and skin reflectances.

This linear shape model is extended to also cover facial expressions by adding Ke = 75 delta
blendshapes (i. e., displacements from the rest pose) taken from a combination of the Emily model
[Alexander et al. 2010] and the FaceWarehouse database [Cao et al. 2014b]:

Expression: P
e(α ,δ ) = P

s(α)+EeΣeδ , (7.5)

where the matrix Ee ∈ R
3N×Ke contains the Ke delta blendshapes in its columns, δ ∈ [0,1]Ke denote

the expression weights and Σe is a diagonal matrix of empirically determined scale factors. Note that
the delta blendshapes were transferred to the topology of the statistical shape model of Blanz and
Vetter using deformation transfer [Sumner and Popović 2004]. It is also important to remark that
the blendshapes in the Emily model are redundant (i. e., the rows of Ee are not linearly independent).
As such, we employ a sparsity prior on δ , as described in Section 7.4.1.

7.3.4 Medium-scale Corrective Shapes

The coarse-scale model restricts the facial identity and expression to a Ks = Kr = 160 and Ke = 75
dimensional linear subspace, respectively. Variations falling outside of this low-dimensional sub-
space cannot readily be expressed with the model. Li et al. [2013b] and Bouaziz et al. [2013]
showed that it is beneficial to leave this limited subspace to model characteristics in physiog-
nomy and expression. In the spirit of [Bouaziz et al. 2013], we use manifold harmonics func-
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tions [Vallet and Lévy 2008; Lévy and Zhang 2010] to parametrize a medium-scale 3D deformation
field:

Correctives: P c(τ) = Ecτ . (7.6)

Here, Ec = [H1⊗ I3×3, . . . ,HKc
⊗ I3×3] ∈ R

3N×3Kc contains three copies of the Kc linear manifold

harmonics basis functions Hk ∈ R
N as columns and the parameters τ = [τ⊤1 , . . . ,τ

⊤
Kc
]⊤ allow the

control of the shape of the deformation field. Since a full 3D deformation field is required to
control the corrective layer, each deformation coefficient τk ∈ R

3 is a vector itself. Note that the
graph harmonics form a spectral basis that generalizes the Fourier Transform to the mesh domain.
Here, Hk, ∀k represent the Kc = 80 lowest-frequency eigenvectors of the Laplace Beltrami operator
∆B computed on the estimated neutral shape P s(α) of the actor’s face. We use cotan-weights
to discretize ∆B and obtain a symmetric positive semi-definite linear operator. The eigenvectors
are efficiently computed using the band-by-band shift invert spectral transform, as suggested in
[Lévy and Zhang 2010; Vallet and Lévy 2008]. Note that the lowest-frequency eigenvector H1 has
zero eigenvalue and therefore the first three columns of Ec will just represent a global 3D translation
in P c. In view of this, H1 was discarded from the spectral basis Ec. Having estimated the correctives
parameters τ , we can then apply the resulting 3D deformation field on vertex level, i. e., vn +P c

n (τ),
where vn = P e

n (α ,δ ), ∀n is a vertex of the coarse-scale model M C. Applying such deformation field
then results in a medium-scale model M M.

Note that Bouaziz et al. [2013] infer correctives based on RGB-D data, while the proposed method
robustly estimates them from RGB video alone (see Section 7.4.1). It is important to remark that
the recent method of Ichim et al. [2015] does not estimate correctives from RGB video but modify
the blendshapes themselves during tracking; however, they mention that capturing full correctives,
as proposed here, will lead to better model personalization, but at the expense of a more involved
optimization.

7.3.5 Fine-scale Detail Layer

Correctives are well suited to capture medium-scale detail variations among individuals, but lack
the ability to represent static and transient fine-scale surface detail, such as wrinkles and folds. To al-
leviate this problem, we make use of an additional per-vertex displacement field to account for such
effects. These fine-scale deformations are encoded in the gradient domain based on deformation
gradients [Sumner and Popović 2004], which capture the non-translational surface deformation, in-
cluding rotation, scale and shear.

Let v̂(i), respectively ṽ(i), ∀i ∈ {1,2,3} be three 3D vertices of a triangle in the medium-scale M M

and fine-scale M F mesh, and n̂, ñ their corresponding medium-scale and fine-scale surface normals.
Then, the 3×3 affine deformation gradient A between the triangle faces of the two meshes is given
as the solution of the following linear system:

A · (v̂(2)− v̂(1), v̂(3)− v̂(1), n̂) = (ṽ(2)− ṽ(1), ṽ(3)− ṽ(1), ñ) . (7.7)

Since rotation, scale and shear are inherently coupled in the per-face deformation gradients {A j}
J
j=1,

where J is the number of triangles in the mesh, this representation does not allow for direct linear
interpolation. We use polar decomposition [Higham 1986] to decompose the affine matrices A j =
Q jS j into their rotation Q j and shear S j components, and parametrize Q j based on the matrix
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exponential (3 parameters) [Alexa 2002]. From S j we extract the scaling factors (3 parameters)
and the skewing factors (3 parameters), which represent the scale and parallel distortion along the
coordinate axes, respectively. In total, this leads to 9 parameters per triangle, each allowing for
simple direct linear interpolation. These per-face representations are stacked in a feature vector
p ∈R

9J , which is used for parametrization and interpolation of surface detail of the fine-scale layer.
As it will be shown in Chapter 8, such representation is very convenient for learning and generating
fine-scale skin details of an actor’s face rig.

7.4 Coarse- and Medium-scale Layer Reconstruction

For a given video F = ( ft)
T
t=1 of T image frames ft , the goal is to find the coarse- and medium-

scale parameters of our personalized parametric 3D model that best explain the observed face in
the scene. For the problem at hand, the recovery of the rigid head pose (R, t), the illumination γ ,
and the coarse (α ,β ,δ ) and medium-scale parameters τ is expressed as an energy minimization
problem, described as follows.

7.4.1 Energy Minimization

The model parameters X = (R, t,α ,β ,γ ,δ ,τ) in SO(3)×R
3×R

Ks ×R
Kr ×R

3B2
×R

Ke ×R
3Kc are

estimated based on an analysis-by-synthesis approach that maximizes the similarity between a syn-
thetically generated image of the head and an input RGB frame ft . This is formulated as a con-
strained multi-objective optimization problem:

X ∗ = argmin
X

[

Edata(X )+Eprior(α ,β ,γ ,δ ,τ)
]

, (7.8)

s.t. : 0≤ δ ≤ 1 . (7.9)

The data objective Edata measures the photo-consistency and facial feature alignment of the synthet-
ically generated image w. r. t. the input frame ft . Eprior is a statistical prior that takes into account
the likelihood of the identity and expression estimate. A box-constraint is imposed on the expres-
sion parameters δ to keep them in the range [0,1]. To make the optimization more tractable, the
hard box-constraint on the expression parameters in Equation 7.9 is relaxed and modeled as a soft-
constraint Ebound directly in the reconstruction energy Etotal (see Equation 7.10 below). This leads
to the following unconstrained non-linear optimization problem:

X ∗ = argmin
X

[

Edata(X )+Eprior(α ,β ,γ ,δ ,τ)+Ebound(δ )
]

︸ ︷︷ ︸

Etotal(X )

. (7.10)

Data Objective The data term measures how well the personalized 3D model explains the input
frame ft . To this end, we consider a photo-consistency measure Ephoto as well as the alignment to
salient facial features points E f eature:

Edata(X ) = w f E f eature(X )+wpEphoto(X ) . (7.11)
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The weights w f and wp control the relative importance of these two objectives. Photo-consistency
is measured on a per-vertex level. At vertex v̂n = P e

n (α ,δ )+ P c
n (τ), with associated reflectance

cn = P r
n(β ) and normal n̂n that depends on the same parameters, it compares the surface color

B(n̂n,cn | γ) synthesized according to the irradiance model in Equation 7.2 with the actual color
ft [Π̂C(v̂n)] in the input image. The corresponding energy reads as follows:

Ephoto(X ) =
N

∑
n=1

‖ ft [Π̂C(v̂n)]−B(n̂n,cn | γ) ‖
2
2 . (7.12)

In addition, the alignment of salient facial features is also taken into account. To this end, we
measure the distance between image projections {Π̂C(v̂nℓ)}

L
ℓ=1 of a selection of L = 66 feature

vertices on the model and their corresponding distinct detected facial landmarks Y={yℓ}
L
ℓ=1 in the

input image:

E f eature(X ) =
L

∑
ℓ=1

‖ Π̂C(v̂nℓ)−yℓ ‖
2
2 . (7.13)

Note that the 2D facial features are tracked with an off-the-shelf algorithm [Saragih et al. 2011a]
and their landmark trajectories are improved by utilizing optical flow between automatically se-
lected key-frames, as described in Section 4.3. To select the 3D feature points {v̂nℓ} on the model,
we automate and extend the strategy proposed in Section 5.4.2. In a pre-processing step, Ke = 75 dif-
ferent facial expressions of the average person are synthesized by activating one expression weight
δk at a time and frontal views of the resulting meshes are rendered under a fixed user-defined illu-
mination. Afterward, the off-the-shelf face tracker is employed to detect the 2D landmarks in the
synthetically generated images. The 2D landmarks are then back-projected to the nearest vertices
on the 3D model, discarding those that fall outside of the face region or inside the mouth cavity. Fi-
nally, the 3D positions corresponding to the same landmark are averaged and assigned to the nearest
valid vertex of the model.

Prior Objective 3D reconstruction from monocular RGB input is an ill-posed problem due to its
inherent depth ambiguity. As a result, many spatial configurations of mesh vertices lead to a similar
projection in the camera. This issue is tackled by incorporating suitable priors Eprior into the energy
of Equation 7.10. This allows us to disambiguate reasonable from unreasonable configurations and
steer the optimization into the right direction. To this end, we employ two probabilistic shape priors
(Eprob1 , Eprob2) and a sparsity prior Esparse on the expression coefficients:

Eprior(α ,β ,γ ,δ ,τ) = Eprob1(α ,β ,γ)+Eprob2(τ)+Esparse(δ ) . (7.14)

The probability of a certain scene configuration is accounted for by assuming multiple Gaussian
distributions over the parameters:

Eprob1(α ,β ,γ) = ws

Ks

∑
k=1

(
αk

σαk

)2

+wr

Kr

∑
k=1

(
βk

σβk

)2

+wl

B2

∑
b=1

∥
∥
∥
∥

γb

σ γb

∥
∥
∥
∥

2

2

, (7.15)

with the division in the last term being component-wise. Here, ws, wr and wl weigh the different ob-
jectives. As in [Blanz and Vetter 1999; Zollhöfer et al. 2014], the shape weights α and reflectance
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coefficients β are restricted to stay statistically close to the mean using L2-regularization. Since the
standard deviations of the lighting coefficients γ are unknown, Tikhonov-regularization constraints
[Hoerl and Kennard 2000] are imposed instead by setting σ γb

= [1,1,1]⊤.

In addition, the medium-scale shape correctives parameters are regularized based on their stan-
dard deviations (squared eigenvalues of the manifold harmonics functions Hk, ∀k described in Sec-
tion 7.3.4) and temporal smoothness w. r. t. the corresponding result of the previous frame τ prev is
further enforced, as follows:

Eprob2(τ) = wz

Kc

∑
k=1

∥
∥
∥
∥

τk

σ τk

∥
∥
∥
∥

2

2
+wt‖τ− τ prev‖2

2 , (7.16)

with component-wise divisions in the first term. Here, wz and wt are the weights controlling the
importance of the different objectives.

Following [Bouaziz et al. 2013], we also impose L1-regularization on the expression weights δ to
enforce sparsity. This avoids potential blendshape compensation artifacts due to the inherent redun-
dancy in the expression basis:

Esparse(δ ) = wd

Ke

∑
k=1

|δk| . (7.17)

Boundary Constraint The blendshape parameters are restricted to a reasonable range (δk ∈ [0,1])
by adding a soft box-constraint with a weight of wb to the energy:

Ebound(δ ) = wb

Ke

∑
k=1

φ(δk) . (7.18)

The function φ adds a penalty to the energy if and only if its parameter leaves the trusted region:

φ(x) =







x2 if x < 0,

0 if 0≤ x≤ 1,

(x−1)2 if x > 1.

(7.19)

We use a symmetric quadratic penalizer outside of the trusted region to tightly enforce the bounds
of this constraint.

7.5 Fine-scale Layer Reconstruction

Given the medium-scale result M M at each frame ft , ∀t of the previous optimization, fine-scale
static and transient surface details (i. e., wrinkles and folds) are recovered from shading cues in the
input RGB images by adapting the shading-based refinement approach under unknown lighting and
albedo presented in Section 5.6.

We compute shading-based refinement on a per-vertex level, yielding a high-quality refined mesh
M F . The previously estimated reflectance and illumination is utilized as initialization. A refine-
ment optimization then adapts the mesh’s vertex positions via inverse rendering optimization, such
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Figure 7.4: Fine-scale layer reconstruction. Shading cues in the input image (top) are exploited to aug-

ment the medium-scale model (middle) with fine-scale static and transient surface detail (bottom), thereby

creating a fine-scale layer of details.

that the synthesized shading gradients match the gradients of the illumination in the corresponding
input RGB image as well as possible. To further regularize this ill-posed problem, spatial and tem-
poral detail smoothness is enforced as a soft constraint [Garrido et al. 2013; Valgaerts et al. 2012b].
The final vertex normals are computed by averaging over a temporal window of size 5 for stability
[Nehab et al. 2005]. As mentioned in Section 7.3.5, the deformation field between the medium-
scale result M M and the refined high-quality geometry M F is parametrized using the proposed
deformation gradient-based feature vector representation p. Compared to M M, the resulting high-
quality reconstructions exhibit a considerable amount of fine-scale surface detail, as shown in Fig-
ure 7.4.

7.6 Multi-step Optimization Strategy

Given the input video F = { ft}
T
t=1, we find the best parameters X by minimizing the non-linear

objective Etotal(X ) of Equation 7.10 based on a multi-step optimization strategy which consists of
several Levenberg-Marquardt [Levenberg 1944; Marquardt 1963; Moré 1978] optimization stages.
Note that our Levenberg-Marquardt solver employs analytical partial derivatives to compute the
Jacobian matrix, which is used to iteratively update the parameters X . The partial derivatives of all
the terms of Etotal(X ) can be found in Appendix A (see Section A.2).

Algorithm 1 summarizes all the individual optimization steps to obtain the parameters of the multi-
layer parametric 3D face model. In a pre-processing step, the rigid head pose (R and t) is initialized
using the POSIT algorithm [David et al. 2004] on the detected facial landmarks, and (α , δ ) are ini-
tialized by solving Equation 7.13 with the parametric priors Eprob1(α), Esparse(δ ), and Ebound(δ ),
i. e., we optimize for (α , δ ) using only the facial feature point subspace. The other parameters (β ,
γ , τ) are initially set to zero.

After the initialization step, the first Tf irst ≈ 100 frames of the sequence are utilized to reconstruct
a coarse-scale estimate of the actor’s person-specific identity (α ,β ), as well as the illumination γ

in the scene. This step does not consider the corrective parameters τ; therefore, the corresponding
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Algorithm 1 Multi-Step Optimization Strategy

1: (R, t,α ,β ,γ ,δ ,τ)← Initialize();
2:

3: for (the first Tf irst frames ft) do ⊲ Identity Estimation
4: while (not converged) do

5: (R, t) ← Estimate_Head_Pose();
6: (α ,β ,γ)← Estimate_Identity_And_Illumination();
7: (δ ) ← Estimate_Expression();
8: end while

9: end for

10:

11: (Cp)← Build_Person_Specific_Albedo_Map();
12:

13: lighting_opt = get_lighting_option();
14: for every frame ft ∈ F do

15: while (not converged) do ⊲ Coarse-Scale
16: (R, t)← Estimate_Head_Pose();
17: (δ ) ← Estimate_Expression();
18: if lighting_opt == per_frame then

19: (γ)← Estimate_Illumination();
20: end if

21: end while

22: while (not converged) do ⊲ Medium-Scale
23: (R, t)← Estimate_Head_Pose();
24: (τ) ← Estimate_Correctives();
25: if lighting_opt == per_frame then

26: (γ)← Estimate_Illumination();
27: end if

28: end while

29: (p)← Compute_Detail_Layer(); ⊲ Fine-Scale
30: end for

terms are removed from the energy. The resulting per-frame estimates of the actor’s identity are
combined using a floating average.

Before tracking the complete sequence in the next stage, an actor-specific skin reflectance map Cp

is generated which replaces the per-vertex reflectance estimates from the parametric actor model.
To this end, we follow a similar strategy described in Section 6.7.1 and compute per-pixel albedo
values by dividing through the lighting term (sum on the right hand side of Equation 7.2) on a subset
of 10 frames. The resulting albedo values are averaged in the final map Cp using the aligned model.
This refined appearance step drastically improves the subsequent tracking performance, since the
generated reflectance map resembles the actor’s appearance much better (i. e., facial hair and fine-
scale skin detail are explicitly accounted for, see also [Zollhöfer et al. 2014]). Figure 7.5 shows that
the personalized albedo map rendered under the estimated scene lighting captures more fine-scale
albedo variations than the low-dimensional parametric model P r(β ), which in turn helps improve
the tracking (see for instance the details around the eyes and the mouth shape of the actor).

After estimating the identity and computing the personalized albedo map, the identity parameters
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Figure 7.5: Parametric reflectance model vs. personalized texture map. In contrast to the low-dimensional

parametric face model, the automatically computed personalized texture map captures fine-scale albedo

variations and contributes to a better fitting.

α are kept fixed and the complete sequence is tracked again, starting from the first frame. For each
frame ft , we first re-estimate the head pose (R, t) and compute the best fitting blendshape coeffi-
cients δ . The coarse-scale shape estimate and the head pose are then improved by optimizing for
the best corrective parameters τ , as well as R and t, based on the full reconstruction energy (see
Equation 7.8). Note that in this improvement step the blendshape coefficients δ stay fixed. It is
important to remark that the scene lighting can be re-estimated at each frame ft when estimating
the coarse- and medium-scale shape, if desired. Even though the fitting may improve with a refined
scene illumination, a high-frequency color flicker on the synthesized face was detected in the tempo-
ral domain and therefore the lighting was kept constant for the entire sequence. This is a sometimes
incorrect but fair assumption that works in most scenes and that was also used in other related ap-
proaches, e. g., in [Shi et al. 2014]. The final step reconstructs a parametric fine-scale detail layer p

based on shading-based shape refinement by exploiting shading cues in the input RGB frame.

7.7 Experiments

In this section, we present a qualitative and quantitative evaluation, and perform a thorough com-
parison w. r. t. the state-of-the-art in monocular face reconstruction. The robustness of the approach
presented in this chapter is demonstrated for a wide range of scenarios, from controlled studio se-
tups to uncontrolled legacy video footage. In total, the proposed approach was evaluated on 9 test
sequences: Three indoor sequences captured in a controlled setup (SUBJECT1, SUBJECT2, SUB-
JECT3), two outdoor sequences (SUBJECT4, SUBJECT5) and four legacy videos (ARNOLD YOUNG,
ARNOLD OLD, OBAMA, BRYAN) freely available on the Internet and downloaded from YouTube.
Please refer to Appendix A (see Section A.1) to find more information about the sequences. The
reconstructed personalized 3D face models consist of N = 200k vertices and J = 400k triangle
faces.

Most of the results and comparisons shown below are viewed best as video. Hence, the reader is
strongly advised to watch the supplemental videos at the project website2.

2http://gvv.mpi-inf.mpg.de/projects/PersonalizedFaceRig/

http://gvv.mpi-inf.mpg.de/projects/PersonalizedFaceRig/
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Parameters and Runtimes The proposed facial performance capture approach relies on weights
that specify the relative importance of the different objectives. During the performed tests, it turned
out that our approach is insensitive to the specific choice of parameters in the different sequences.
The following weights were then fixed and used in all the experiments: w f = 0.5, wp = 1, ws = 0.01,
wr = 1, wl = 0.1, wz = 40, wt = 4, wd = 100 and wb = 109.

The approach described above was implemented on the CPU using simple parallelization routines in
OpenMP. Overall, this implementation takes several hours to process a sequence of 1k frames when
executed on an Intel Core i7-3770 CPU (3.4 GHz). For each processed frame, the proposed method
requires 30 ms for facial landmark extraction, 1.5 s for landmark refinement, 40 s for identity fitting
(only run for the first 100 frames), 15 s for coarse-layer tracking, 9 s for medium-layer correctives
and 110 s for fine-scale shape refinement. Note that the last step was not optimized on the CPU and
runs on a single core.

By harnessing the data parallel processing power of modern GPUs, we have discovered in a recent
project (not part of this thesis) that a drastic reduction of the computation time is possible. This has
also been corroborated recently by different approaches that solve similar non-linear optimization
problems [Thies et al. 2015; Wu et al. 2014; Zollhöfer et al. 2014].

7.7.1 Qualitative and Quantitative Results

The proposed multilayer model-based approach estimates the actor’s facial identity and tracks
his/her facial expressions, where tracking progresses in a coarse-to-fine manner on the three layers:
Coarse-scale shape, medium-scale correctives and fine-scale wrinkle-level detail. Figure 7.6 shows
the output tracking results of the personalized 3D face reconstruction of OBAMA and ARNOLD

OLD for the three different layers of personalization. Note that the medium- and fine-scale layers
do not only lead to more realistic results in terms of high-frequency detail, but also deliver tracking
results of superior accuracy (please refer to the supplementary video available at the project website
to see a more interactive comparison between the reconstructed layers).

In addition, we quantitatively evaluate the geometric reconstruction accuracy obtained by the pro-
posed approach on the sequence of SUBJECT1. For this indoor sequence, two views are available
and high-quality ground truth 3D meshes have been generated using the binocular facial perfor-
mance capture approach of Valgaerts et al. [2012b]. Note that only one of the two views was em-
ployed to reconstruct the personalized parametric 3D model of the actor. Figure 7.7 shows a compar-
ison between our monocular method and the binocular stereo approach of Valgaerts et al. [2012b]
for a reconstruction of SUBJECT1 at neutral pose; therefore, it shows how well the proposed method
can reconstruct the identity of the actor. As illustrated in the heatmap overlay, the geometric error
(computed as the per-vertex Euclidean distance of the aligned reconstructions) is quite small (1.8
mm on average) and errors mainly appear in the nose region, stemming from depth inaccuracies.

7.7.2 Validations: Comparison to Performance Capture Approaches

In this section, we compare the reconstruction quality of the proposed monocular approach to exist-
ing multiview and monocular facial performance capture methods proposed in the literature (please
also refer to the second supplementary video available at the project website to examine the com-
parisons in more detail). It is important to remark that none of these methods capture a fully-
parametrized 3D model at different personalization layers: Coarse, medium and fine. As it will be
seen in Chapter 8, such a convenient parametrization will enable us to create a fully-controllable
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Figure 7.7: Geometric accuracy - SUBJECT1. Left to right: Input (neutral pose), binocular stereo recon-

struction, our monocular reconstruction, geometric error represented as a heatmap overlay. The proposed

multilayer approach obtains a detailed 3D model of similar quality (1.8 mm mean error) compared to the

binocular stereo reconstruction of Valgaerts et al. [2012b].

Figure 7.8: State-of-the-art comparison to the multiview in-studio approach by [Beeler et al. 2011] - SUB-

JECT3. The proposed multilayer method, which reconstructs detailed geometry from a single video under

general lighting, comes close in reconstruction quality to that of Beeler et al.’s method which requires a

professional setup with 6 high-quality cameras.

generative 3D model for person-specific expression and wrinkle synthesis in a flexible way, which
in turn will allow us to generate realistic personalized animations and perform complex video edit-
ing tasks.

Comparison to Beeler et al. 2011 Figure 7.8 shows a comparison with the high-quality off-line
performance capture method of Beeler et al. [2011]. This method requires a controlled setup with
6 high-quality cameras and controlled in-studio lighting to perform a variant of multiview stereo in
combination with a mesoscopic detail augmentation step. In contrast, the proposed method takes as
input a single monocular video under general lighting and is capable of achieving a reconstruction
quality that comes close to their approach.

Comparison to Cao et al. 2014a The state-of-the-art monocular performance capture approach
of Cao et al. [2014a] is able to reconstruct the actor’s identity and motion at a coarse-scale. While
reconstructions can be obtained at video rate, they lack fine-scale surface detail and do not capture
actor-specific idiosyncrasies in identity and motion, as it can be seen Figure 7.9. In contrast, the
proposed off-line approach reconstructs person-specific surface detail at a medium- and fine-scale
level of personalization, leading to high-quality reconstructions that fit the input face in the video
more closely.
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Figure 7.9: State-of-the-art comparison to [Cao et al. 2014a] - SUBJECT2. From left to right: Monocular

input, result obtained by the approach of Cao et al., our medium-scale result and our final fine-scale recon-

struction. Note that the medium-scale result matches the actor’s facial geometry better and the fine-scale

reconstruction adds even more realism.

Figure 7.10: State-of-the-art comparison to [Cao et al. 2015] - SUBJECT1. While the regression-based

approach of Cao et al. infers some of the actor’s fine-scale details, it produces less accurate results if poses

and identities are far from the training set. In particular, note the overall less accurate reconstruction of

identity (left), as well as the imprecise reconstruction of some wrinkles and the shape of the eyebrow (right).

In contrast, our reconstruction-based approach delivers results closer to the real input video. Please note

that fine-scale pores in the results of Cao et al. are merely hallucinated, as they are part of the model

learned from high-quality face scans.

Comparison to Cao et al. 2015 In [Cao et al. 2015], an extension to [Cao et al. 2014a] that
additionally regresses a wrinkle-level displacement map has been proposed. This approach learns
the correlation between image patches and surface detail from a database of 3D scans. While this
augments the coarse-scale reconstruction with detail, the inferred geometry is not metrically correct.
Thanks to the medium-scale corrective layer, our personalized multilayer face model overlays with
the input better, even if the fine-scale detail is ignored for a moment (see Figure 7.10). Furthermore,
the inverse rendering approach presented here allows us to obtain detail reconstructions that match
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Figure 7.11: State-of-the-art comparison to method presented in Chapter 5 - SUBJECT1. Compared to

the method proposed for semi-constrained setups, our multilayer-based reconstructions better match the

actor’s static and transient small-scale surface details. Note that the previous method requires a high-quality

laser scan of the actor as input, making it unsuitable for legacy video footage.

the true detail in the image closer than the regression result, which can only approximate as close
as possible (see especially the shape of the eyebrows in the figure).

Note that the fine-scale pores that appear on the meshes from Cao et al. [2015] are not reconstructed,
but only part of the high-quality template model used for learning their representation. Furthermore,
as their detail regression approach is based on cues in the input image, it cannot generate a detail
layer for an arbitrary novel expression specified by user-defined blendshape weights, which is nor-
mally required by animation artists as a de facto standard to create new realistic facial animations.
The proposed multilayer parametric method could in principle generate such details if a proper
mapping between the coarse and the other layers is provided. Chapter 8 presents such a method
that leverages the inherent semantics of the blendshape weights to learn person-specific characteris-
tics (including details) from the personalization layers captured by the current approach, making it
suitable for the scenario described above.

Comparison to Chapter 5 As shown in Figure 7.11 and Figure 7.12, the proposed multilayer
approach is able to obtain similar or even higher quality reconstructions than those of the monocu-
lar state-of-the-art facial performance capture method presented in Chapter 5. Furthermore, strong
out-of-plane head rotations can be handled much better by the current approach. Even though both
methods are able to track facial expressions and reconstruct fine-scale surface detail, the method pre-
sented in Chapter 5 requires calibrated cameras and heavily relies on a static high-quality 3D scan of
the actor as prior which is not always available. Therefore, unlike the proposed method presented in
this chapter, the previous approach is not applicable to cases where only legacy footage is available.
Also note that the current multilayer parametric representation is able to decouple medium-scale
corrective shapes from rigid pose, which turned out to be quite convenient when learning a face rig
for person-specific idiosyncrasy and detail generation, as it will be seen in Chapter 8.

Comparison to Shi et al. 2014 Finally, we compare to the high-quality monocular approach of
Shi et al. [2014]. Their method employs a multilinear model for face reconstruction and can also
be applied to legacy footage, as shown in Figure 7.13. The proposed multilayer approach is able
to attain higher-quality reconstructions on the coarse as well as on the fine-scale due to the use
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Figure 7.12: State-of-the-art comparison to the approach by [Shi et al. 2014] and [Garrido et al. 2013] -

SUBJECT4. Our monocular approach obtains better reconstruction quality than that of Shi et al.’s and

Garrido et al.’s method. Note the better tracking on the coarse geometry as well as on the fine-scale detail

layer.

Figure 7.13: State-of-the-art comparison to the approach by [Shi et al. 2014] - BRYAN. Our approach ob-

tains a closer fit than Shi et al.’s method. Note that the amount of fine-scale surface detail captured by the

multilayer model is much higher.

of dense correspondences to jointly optimize for identity and expression. Moreover, our approach
obtains a better model personalization and accurately tracks facial motion by employing medium-
scale corrective shapes. On the other hand, Shi et al. mainly resort to sparse correspondences to
estimate large-scale deformations, which are then slightly improved using normal maps estimated
in their shade-from-shading framework. This leads to a less accurate head pose, as well as less ac-
curate coarse- and fine-scale surface reconstructions, as illustrated in Figure 7.12. It is important to
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remark that in the method of Shi et al. medium- and fine-scale deformations are mixed together and
not parametrized, making it unsuitable for complex video editing tasks other than texture modifica-
tion. Our fully-parametrized approach, on the other hand, could potentially be used for such tasks,
though in a not very intuitive way. In Chapter 8 we learn a correlation model for person-specific cor-
rectives and wrinkles, thus allowing us to automatically adapt the captured detailed layers to match
person-specific idiosyncrasies in accordance to the activated expression, which is the foundation for
realistic video editing.

7.8 Discussion and Limitations

In this chapter, we have demonstrated that 3D facial geometry can accurately be reconstructed at
multiple parametric face layers in unconstrained setups, such as legacy footage downloaded from
YouTube. While these results are compelling and compete with (or sometimes overcome) those of
state-of-the-art monocular methods even in challenging cases (e. g., fast head motion, expressive
faces, and out-of-plane head rotations), the proposed method still has some limitations: Since our
reconstruction approach is based on temporal frame-to-frame coherence, videos that exhibit lots of
cuts are hard to handle automatically, requiring re-initialization of the parameters. Reconstructing
multiple actors from a single video also requires an extra face detection and recognition component
to keep the approach automatic. Even though the reconstructed layers are fully parametrized and
could potentially be used for facial animation and editing tasks, the medium- and fine-scale layers
do not provide any semantic parametrization nor are they correlated to blendshapes to allow an
intuitive control of the personalized 3D model. It would be much more desirable to indirectly
manipulate the layers through blendshape weights with which animation artists are more familiar.
Chapter 8 addresses this problem by learning a correlation model that couples standard expressions
in the blendshape weight domain with person-specific correctives and details, thereby resulting in
a personalized face rig that synthesizes new detailed expressions by simple modifying blendshape
controllers.

As in Chapters 5–6, the proposed approach also assumes Lambertian reflectance. Although this
is a fairly common assumption which has been established in the literature [Ichim et al. 2015;
Shi et al. 2014; Suwajanakorn et al. 2014; Valgaerts et al. 2012b], it introduces artifacts in the pres-
ence of specular highlights, as shown in Figure 7.14 (a). Consequently, subsurface scattering effects
are not modeled; instead, the scene’s light transport is parametrized using a low-dimensional SH
representation which assumes smooth distant illumination and no shadows. As such, extreme light-
ing (e. g., directional spotlights) and cast shadows lead to artifacts.

Mild occlusions on the face, such as hair can be handled by the current approach, but occluding
objects may be wrongly captured as facial features, both in the texture map and in the reconstructed
layers (especially the fine layer). Strong occlusions, such as a dense beard, pose a problem to both
the 2D face tracker and the identity reconstruction (non-skin reflectance and occluding objects are
not explained by our statistical prior). The optimization of the medium layer relies on global-support
corrective functions to correct tracking residuals and assumes that all facial features contribute
equally. Thus, face tracking is challenged by fast and complex local facial deformations, especially
in the mouth region, as shown in Figure 7.14 (b). Additional constraints and a semantic basis for
local corrections may alleviate this problem, but reconstructing accurate mouth/lip shape is still
challenging due to depth ambiguities and disocclusions of the lips. In Chapter 9, we address the
problem of accurate lip tracking from monocular video and propose a data-driven approach that
learns a robust lip shape regressor from high-quality multiview reconstructions to enhance the lip
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(a) (b)

Figure 7.14: Limitations. Reconstruction artifacts due to (a) specular highlights on the face and (b) the lack

of a local-support corrective basis and constraints to handle mouth deformations.

shape and motion of tracked facial performances.

Finally, we share the limitation of related work that no detailed mouth interior or eye/eyelid model
can be reconstructed from video alone. Therefore, eye geometry or blendshapes for blinking were
not modeled; the latter was reconstructed as shape detail in the shading-based refinement step.

7.9 Summary

This chapter has presented a new fully automatic model-based approach that can accurately capture
facial shape and expressions at multiple personalization layers (from coarse-scale shape up to a
layer that accounts for wrinkles and folds) in completely unconstrained videos where all scene
elements are unknown. The heart of this approach is a new multilayer parametric 3D face prior that
jointly encodes plausible appearance and shape changes in a low-dimensional space to model the
image formation process. A novel unified fitting approach that leverages both color cues and sparse
2D landmarks is used to accurately reconstruct the overall shape and appearance at the coarse and
medium layer. A fine-scale wrinkle model reconstructed over the face surface constitutes the final
most detailed layer. Overall, all the three layers are optimized in an inverse rendering framework,
making the method elegant and very robust. Qualitative and quantitative results have demonstrated
the high fidelity of the reconstructed parametric models for several actors from different sources of
video, including indoor, outdoor and YouTube footage.

The algorithmic improvements presented in this chapter considerably advance the state of the art in
unconstrained facial performance capture from monocular video. As it will be shown in Chapter 8,
the reconstructed multilayer parametric 3D models will constitute the basis for learning a fully-
controllable personalized face rig that can be used by digital artists for achieving complex facial
animation and video editing tasks.





Chapter 8
Beyond Face Capture: Face Rig
Creation, Animation and Editing

Figure 8.1: Fully personalized, detailed 3D face rig of the US president Barack Obama (bottom), recon-

structed from the sequence shown in Figure 7.1. By transferring the estimated blendshape parameters

from the input video (top), the facial rig can be used, for instance, for reenactment. Note that the rig pre-

serves the idiosyncrasies of the president and not of the input face.

So far monocular face capture approaches can reconstruct detailed dynamic 3D face surfaces, but no
method is able to create a face rig (i. e., a controllable model for person-specific expression and de-
tail generation) from arbitrary monocular data. Such a rig would be beneficial for animation artists
when no information about the actor is available other than a simple monocular video. This chapter
presents a novel regression-based approach for the automatic creation of detailed, personalized 3D
face rigs from arbitrary monocular performance capture data (Chapter 7) that can be conveniently
driven by intuitive blendshape weights to perform video editing and animation tasks (see Figure 8.1).
The method and results presented in this chapter are based on [Garrido et al. 2016a].

127
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8.1 Introduction

The creation of believable face animations for virtual actors in movies and games, or for avatars in
virtual reality or teleconferencing scenarios is a challenging task. Since our expert eye is attuned
to detecting small inaccuracies in face appearance and motion, animation artists spend tremendous
effort to model and animate high-quality facial animation rigs, especially in movies. A common
practice for an artist is to design a face animation rig with custom-made control parameters that
steer facial expression, face shape, and possibly face appearance and soft tissue deformation (see
Section 2.1.2 for further details). The de facto standard to parametrize expression control is a
blendshape model that linearly combines a set of basis expressions [Lewis et al. 2014]. Professional
rigs are normally derived from detailed laser scans and often feature hundreds of control parameters
(process that may take weeks of work). The resulting face rig is often animated from face mocap
data, a step requiring frequent manual intervention.

To simplify this complex animation pipeline, researchers have developed different methods to auto-
mate some of its steps. For instance, some algorithms employ dense camera and lighting arrays to
reconstruct dynamic face geometry and face appearance (Section 3.1.1), while other approaches ex-
tract components of face rigs from densely captured animation data, such as blendshape components
[Neumann et al. 2013; Joshi et al. 2003]. Despite its practical relevance, automatic rig creation has
received much less attention in the field. Meanwhile, performance capture methods were further
extended to work with only a single RGB camera (Section 3.1.3) or a single RGB-D sensor that
integrates both color and depth information (Section 3.1.2). However, there is still no approach that
fully-automatically reconstructs and animates a detailed personalized modifiable face rig, from only
a single RGB video of an actor filmed under general conditions (Section 3.3). Up to now, state-of-
the-art lightweight approaches, as well as the methods presented in previous chapters, reconstruct
default blendshape models that cannot capture and parametrize the person-specific nuances in face
shape (i. e., identity) and expressions, and therefore they lack personalization at a finer level of
detail.

In this chapter, we propose the first automatic method that builds a fully personalized, controllable
3D face rig (see Figure 8.1), given the multilayer 3D reconstructions captured in unconstrained
monocular video by the method presented in Chapter 7. This personalized rig is based on the
three distinct layers reconstructed in Chapter 7 (i. e., coarse, medium and fine layer) and learned
by coupling the coarse layer (represented by generic blendshape weights) to the medium- and fine-
scale detail layer via a novel sparse learning regression approach. This assures a semantic control
of the detailed layers in ways consistent with the deformations of the coarse facial expressions
(i. e., blendshapes). Hence, new expressions, even unseen ones, with proper fine-scale detail can be
created for the face rig by simply modifying blendshape controllers or activation curves (scenario
that fits nicely into an animator’s standard workflow). The proposed regression method creates
detailed, personalized face rigs from arbitrary monocular performance capture data, e. g., played by
our favorite vintage actor, for which it would be impossible to automatically capture a rig by any
other means.

The proposed method improves over existing state-of-the-art approaches in several important ways.
Some previous methods employ generic parametric expression and identity models for monocular
facial performance capture [Cao et al. 2014a; Shi et al. 2014], but they neither parametrize nor learn
a generative model for person-specific expressions and fine-scale details observed in video. Gener-
ative models of face wrinkle formation have been learned from high-quality expressions (out of a
vast set of examples) captured with a dense sensor array [Bermano et al. 2014; Cao et al. 2015] or
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Figure 8.2: Overview. The proposed method learns the coupling between the coarse-scale expression

changes (blendshapes) and medium-/fine-scale surface deformations (here for the sequence shown in Fig-

ure 7.2) to create a fully controllable 3D face rig that can synthesize new actor-specific detailed expressions

by simply modifying blendshape controllers.

with depth cameras [Li et al. 2015b], or also by interpolating dense high-quality scans in a video-
driven way [Fyffe et al. 2014]. In contrast, the proposed approach is fully automatic and learns such
a model from just arbitrary monocular performance capture data. Note that no manual intervention
during face rig creation is required as in [Alexander et al. 2010; Weise et al. 2011]. Moreover, no
additional input other than arbitrary performance capture data is needed, i. e., no specific sequence
of facial expressions [Ichim et al. 2015; Li et al. 2010] and no face detail regression model learned
off-line from a tailored database [Cao et al. 2015].

The first contribution is the automatic extraction of a parametrized rig that models the correlation
between coarse-scale blendshape weights and person-specific idiosyncrasies on the medium- and
fine-scale detail layer from monocular performance capture data acquired in unconstrained setups.
The second contribution is a novel sparse regression approach that exploits the local support of
blendshapes to produce more accurate and realistic face rig animations of the medium- and fine-
scale layers. This chapter presents captured face rigs for several actors reconstructed from various
monocular video feeds, ranging from HD input to vintage video from YouTube. New face anima-
tions can be generated with these rigs and they can be used to realistically edit video footage (see
Section 8.5).

8.2 Overview

Given an unconstrained video of an actor F = { f1, . . . , fT} (e. g., a vintage movie or YouTube
video) where T is the total number of frames, the method presented in Chapter 7 provides an
estimate of the scene lighting γ and computes a personalized albedo map of the actor’s face Cp.
In addition, it reconstructs a personalized 3D model M , parametrized on multiple layers: Coarse-
scale M C , medium-scale M M and fine-scale M F . As described in Section 7.3, the shape layers
are further parametrized by a sequence of blendshape weights ∆F = {δ (1), . . . ,δ (T )}, corrective
parameters TF = {τ (1), . . . ,τ (T )} and deformation gradients encoding fine-scale surface detail PF =
{p(1), . . . ,p(T )}, respectively. Please refer to Section 7.3 for further details.

To learn and intuitively control a personalized 3D face rig that models not only coarse-scale defor-
mation but also medium- and fine-scale shape detail from the captured data, two main steps are
performed, as shown in Figure 8.2:
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S1 Face Rig Learning (Section 8.3): An optimal affine map X̂{M,F} between the sequence of
blendshape weights ∆F and each detailed layer {TF ,PF } is learned separately using a novel
sparse regression approach.

S2 Face Rig Synthesis (Section 8.4): Given an input set of blendshape weights δ̂ obtained either
from blendshape controllers or a tracked performance, the linear maps X̂M, X̂F are then used
to predict a medium-scale corrective layer τ̂ and a fine-scale detail layer p̃, respectively. These
layers then enable us to synthesize a new instance of the model M .

The output is a personalized face rig that automatically couples medium- and fine-scale details
to intuitive blendshape weights (e. g., represented in the form of sliders), and can generate novel
person-specific expressions that preserve the mannerisms and details of a target actor, even when
such expressions have not been observed directly in the input data, as shown in Figure 8.2. As the
method proposed in Chapter 7 captures a personalized albedo map for the target actor, the face rig
can be rendered with photo-realistic face appearance and be used as a 3D avatar to perform facial
animation and editing tasks.

8.3 Face Rig Learning

The output of the method presented in Chapter 7 is a personalized parametric 3D model Mt for each
of the T frames ft that includes a coarse-scale, medium-scale and fine-scale detail layer. While the
coarse-scale parametric blendshape model allows for intuitive modification of the rig (e. g., by an
artist), there is no equally convenient and semantically meaningful way to create medium- and fine-
scale details that match new expressions. This is mainly because the detailed layers do not provide
any semantic parametrization nor are they coupled to blendshape expressions. To alleviate this
problem, we learn the correlation between blendshapes and the higher detail layers, thus enabling
full control of all detail levels by only using the blendshape coefficients.

In the following, a novel sparse and affine regression strategy is presented which learns a mapping
between activated blendshape weights and the detail layers, while taking into account the local
support of the expression basis.

8.3.1 Affine Parameter Regression of Correctives and Details

Given a sequence of input motion parameters ∆F and a corresponding sequence of details H ∈
{TF ,PF }, we aim to find an affine mapping to encode their correlation. To this end, the weights of
the Ke = 75 blendshapes are first stacked in a matrix W:

W =

[

δ (1) | · · · | δ (T )

1 | · · · | 1

]

∈ R
(Ke+1)×T . (8.1)

Note that the last row of W implements a constant bias in the estimation that is especially important
if certain blendshape weights are not activated in the training set. The detail layer H is stacked
accordingly in a corresponding matrix H ∈RH×T . It is important to remark that the dimensionality
of the parametric fine-scale detail layer is H = 9J (with J the number of mesh triangles), since
we regress the per-face deformation gradients. For the medium-scale detail layer, we regress the

weights τ , therefore H = 3Kc = 237. As a reminder, each per-face deformation p
(t)
j , ∀ j, t is encoded
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Figure 8.3: Sparse vs. global fine-scale detail prediction. The proposed novel sparse regression formu-

lation (top) obtains more realistic results than global regression (bottom). Note the wrong transient detail

around the left eye (red) when the right eyebrow’s blendshape is triggered.

by 9 parameters representing the rotation, scaling and shearing of the triangle in the model. Thus,
the deformation gradient p(t) is a 9J dimensional vector. Furthermore, the medium-scale corrective
layer is represented by a subspace of the Kc = 80 lowest-frequency eigenvectors of the Laplace Bel-
trami operator, which are replicated three times to represent a full 3D deformation basis. However,
since the lowest eigenvector has zero eigenvalue, it was discarded from the spectral basis, leading
to Kc = 79 basis vectors (and therefore 3 ·79 = 237 corrective parameters).

Our task is to learn an affine mapping X ∈ R
H×(Ke+1) that maps the blendshape weights onto the

corresponding details XW = H. This problem is solved in a least-squares sense by adding a ridge
regularizer on X:

X̂ = argmin
X

‖ XW−H ‖2
F +λ ‖X ‖2

F , (8.2)

where || . ||F denotes the Frobenius norm and λ is a user-defined ridge parameter that controls
the amount of regularization. Such a linear model is known in the literature as ridge regression
[Hoerl and Kennard 2000]. Here, the effect of the ridge regularizer is two-fold: 1) It prevents over-
fitting and 2) it regularizes high-frequency noise due to small tracking inaccuracies which may be
introduced by the method proposed in Chapter 7. A closed form least-squares solution for X̂ is
given by:

X̂ = (W⊤W+λ I)−1W⊤H , (8.3)

where I denotes the identity matrix.

8.3.2 Sparse Affine Regression of Fine-scale Details

For the medium-scale layer of correctives (H = TF ), simple affine regression is sufficient to obtain
high-quality results, since the spectral basis has global support. However, the same strategy leads
to artifacts when utilized for the prediction of fine-scale surface detail (H = PF ). As shown in
Figure 8.3, geometric detail may wrongly appear even if the triggered blendshape does not influence
the corresponding surface region. To alleviate this problem, the best affine mapping X̂F

j for each
triangle j ∈ [1 : J] is found independently by exploiting the spatial support of the blendshape basis
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during training, as follows:

X̂F
j = argmin

XF
j

‖ XF
j D jW−H j ‖

2
F +λ ‖ XF

j ‖
2
F , (8.4)

where H j = [p
(1)
j , · · · ,p

(T )
j ] ∈ R

9×T . The spatial support of the k-th blendshape w. r. t. the j-th

triangle is encoded in the diagonal discriminator matrix D j = diag(d j
1, · · · ,d

j
Ke
,1) ∈R

(Ke+1)×(Ke+1).
This allows each triangle to switch on or off certain blendshapes based on their influence:

d
j
k =

{

1 if δk influences the j-th triangle,

0 otherwise.

Due to some outlier support regions in the blendshapes, Ke = 75 manually corrected support masks
rather than the actual spatial supports were utilized to compute D j. Note that this correction was
performed only once as all the models share the same topology. This novel affine sparse regression
strategy for fine-scale details produces superior results, as illustrated in Figure 8.3.

8.4 Face Rig Synthesis

Once learned from data, the linear maps X̂M, X̂F in Section 8.3 are employed to incrementally
predict a medium-scale corrective layer τ̂ and a fine-scale detail layer p̃, which in turn are used to
synthesize a medium-scale M M and fine-scale M F model for new blendshape expressions, accord-
ingly.

8.4.1 Medium-scale Correctives Synthesis

Given new blendshape weights (with 1 appended) δ̂ ∈ [0,1]Ke+1, the medium-scale corrective layer
is predicted as τ̂ = X̂Mδ̂ , where X̂M is defined as in Equation 8.2 with H = TF .

Let us define P e
n (α , δ̂ ) as the coarse deformation field of the coarse-scale model M C, parametrized

by the blendshape weights δ̂ and the identity parameters α . Let us further define P c(τ̂) as the
corrective deformation field, parametrized by the corrective parameters τ̂ (further details about the
parametric model can be found in Section 7.3). Having the predicted medium-scale corrective layer
τ̂ , we can then reconstruct the corrective deformation field P c(τ̂) and apply it on a per-vertex level
to the coarse-scale model M C, yielding v̂n = P e

n (α , δ̂ )+P c
n(τ̂), where v̂n, ∀n ∈ [1 : N] denotes the

n-th vertex of the medium-scale model M M and N is the total number of vertices.

Since the regressed 3D displacements are not rotation invariant, this step is executed in canonical
model coordinates.

8.4.2 Fine-scale Detail Variation Synthesis

The high-frequency detail is synthesized on top of the medium-scale result v̂n, leading to the final
embedding ṽn.

Given the new blendshape weights δ̂ , we predict the detail p̃ j = X̂F
j δ̂ for the j-th triangle of the

parametric model M , where X̂F
j is defined as in Equation 8.4. From the 9-dimensional vector p̃ j,
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the per-face affine transformation matrix Ã j can be recovered by inverting the polar decomposition
explained in Section 7.3.5. Finally, we use the deformation transfer approach proposed by Sumner
and Popović et al. [2004] to augment the medium-scale result with the fine-scale surface detail,
yielding an instance of the fine-scale model M F . For rotation invariance, this transformation is also
applied in canonical model coordinates. Note that we neither learned nor regressed fine-scale detail
for the surface region inside the eyes, since it is implausible to assume that eye-region deformations
can be parametrized via blendshape weights. In view of this, we computed the mean deformation
of that region over the entire sequence and kept it fixed in the synthesis.

8.5 Experiments

We demonstrate the applicability of the reconstructed 3D face rigs in various application scenarios
that are relevant in facial animation and video editing. We also present qualitative and quantitative
evaluations that compare the prediction accuracy of the proposed sparse regression approach with
respect to tracked data (Chapter 7) and a state-of-the-art detail synthesis approach.

In total, 9 personalized face rigs were reconstructed from the sequences reported in Section 7.7 and
further described in Appendix A (see Section A.1). As a reminder, the test data include: Three
indoor sequences (SUBJECT1, SUBJECT2, SUBJECT3), two outdoor sequences (SUBJECT4, SUB-
JECT5) and four legacy videos (ARNOLD YOUNG, ARNOLD OLD, OBAMA, BRYAN) downloaded
from YouTube. The reconstructed face rigs consist of N = 200k vertices and J = 400k triangle faces,
and have an associated personalized albedo map obtained from the method introduced in Chapter 7.

Since most of the results, especially the reconstructed face rigs, can be appreciated best as video,
the reader is urged to watch the supplemental videos at the project website1.

Runtimes The proposed sparse regression approach was implemented on the CPU using simple
parallelization routines in OpenMP. Overall, our implementation takes 10 ms for the medium-scale
layer and 2 s for the fine-scale detail layer on an Intel Core i7-3770 CPU (3.4 GHz). These runtimes
consider both the prediction and synthesis of the different layers. We believe that the computation
of the fine-scale detail layer could be massively parallelized on the GPU, thus drastically reducing
the computation time.

8.5.1 Application Scenarios

The proposed method automatically creates a fully parametrized 3D face rig of an actor, given as
input monocular reconstructions captured from arbitrary footage. As the obtained face rigs are
represented on multiple detail layers in a flexible way and can be conveniently controlled by simple
blendshape expression parameters, they can be applied in many different application scenarios,
e. g., interactive animation, video modification and facial reenactment, which are illustrated in the
following.

Interactive Animation To demonstrate the versatility of the new parametric representation, we
allow the modification of blendshape parameters via interactive controllers to explore the rig’s ex-
pression space, as shown Figure 8.4. Note that this application scenario exemplifies, in a simple

1http://gvv.mpi-inf.mpg.de/projects/PersonalizedFaceRig/

http://gvv.mpi-inf.mpg.de/projects/PersonalizedFaceRig/
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Figure 8.4: Interactive animation - SUBJECT2. Our high-quality parametrized 3D rig allows for the creation

of novel and expressive poses of an actor by interactively adapting the corresponding blendshape weights.

Here, six different poses with (bottom) and without texture (top) have been interactively generated using an

interface with blendshape controllers. Note that the medium- and fine-scale details (top) are automatically

predicted using the learned sparse affine regression model.

Figure 8.5: Video modification - ARNOLD YOUNG (left), SUBJECT2 (right). The fine-scale detail layer of

both actors is exchanged with the fine-scale layer estimated on ARNOLD OLD for the sequence shown in

Figure 7.6. This produces a new synthetic face sequence (bottom) with slight wrinkles that are not part

of the original footage (top). Here, the exchanged fine-scale detail layer is dynamically controlled by the

expressions (i. e., blendshape weights) tracked in the input sequence of each actor.

way, the task performed by a digital artist in the animation step of the digitization pipeline. The au-
tomatically predicted person-specific medium-scale and fine-scale surface detail plausibly matches
the new coarse-scale facial expression. Note that these novel expressions are not part of the training
set that was used to learn the sparse affine regressor.

More examples of interactive face rig animation can be found in the second supplementary video at
the project website2.

Video Modification As the unconstrained model-based approach presented in Chapter 7 recovers
an estimate of the scene lighting as well as the intrinsic and extrinsic camera parameters, we can
exploit the potential of our high-quality 3D face rig to photo-realistically modify the face in the
original video. To be more precise, we can render a modified face model under the estimated scene
lighting and then overlay the correctly rendered and lit face on top of the video. Figure 8.5 shows
an example where we exchange the estimated fine-scale detail layer of ARNOLD YOUNG and SUB-
JECT2 with that of the fine-scale layer learned on ARNOLD OLD (see Figure 7.6) which contains
more face wrinkles. By resynthesizing the face rig with Arnold Old’s wrinkles and overlaying it on
top of the original video, a virtual aging effect can be simulated in video. Figure 8.6 illustrates a
more sophisticated video editing example. In this case, we employ the estimated medium-scale and

2http://gvv.mpi-inf.mpg.de/projects/PersonalizedFaceRig/

http://gvv.mpi-inf.mpg.de/projects/PersonalizedFaceRig/
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Figure 8.6: Video modification - SUBJECT2. The right eyebrow of the actor is virtually lifted to produce an

effect where the actor is playing the same scene in a different/worried mood.

fine-scale detail layer of SUBJECT2 and alter the original expressions of this subject by forcing the
right eyebrow to stay up in the whole performance. The modified face rig can then be rendered with
the estimated scene illumination over the original video to produce new photo-realistic expressions.
Please refer to the supplementary video available at the project website to appreciate both editing
effects in motion.

3D Facial Reenactment Since all face rigs are parametrized on the basis of the same blendshape
model, we can transfer facial performances between different actors, as shown in Figure 8.7. In
this case, the tracked blendshape expressions (i. e., the coarse layer) of SUBJECT2 (source actor)
were transferred to the captured face rigs of ARNOLD OLD and OBAMA (target actors). Please
note that the person-specific medium-scale and fine-scale detail corresponding to the target actors
are inferred for every transferred coarse expression using the sparse regression approach described
in Section 8.3, i. e., they are not a mere copy of the personalized layers of the source actor. This
leads to more natural and realistic results, since the expression transfer preserves person-specific
idiosyncrasies of the target actors. The creation of the rig and the animation is fully automatic and
solely based on data captured from a single monocular video sequence, i. e., neither a high-quality
face scan [Wu et al. 2016] nor a community photo collection [Suwajanakorn et al. 2014] of the actor
has been used in the process.

8.5.2 Validations

Cross-validation and Parameter Tuning To quantify the influence of the ridge regularization
term in the estimation of the medium- and fine-scale layer, we compared several regressors learned
with different ridge regression parameters λ by measuring the geometric prediction error. To per-
form the cross-validation, we employed two test sequences (SUBJECT1 and SUBJECT2) and learned
a regressor on each sequence for different values of λ . In our experiments, the first half of the
tracked sequence was used as training data, while the other half was employed to predict the de-
formation of the medium-scale layer τ̂ and fine-scale layer p̃. Note that the prediction error was
computed as the Euclidean distance of every predicted 3D vertex position to its corresponding
tracked 3D position. The average prediction error of the medium-scale and fine-scale detail layer
over the two test sequences can be found in Table 8.1 and Table 8.2, respectively.

As it can be observed in the tables, the lowest prediction error of the medium-scale layer is obtained
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Table 8.1: Cross-validation test. Average prediction error (medium-scale).

Prediction error (in mm)
Sequence λ = 0.25 λ = 0.5 λ = 1.0 λ = 1.5
SUBJECT1 0.98 ± 0.18 0.96 ± 0.17 0.95 ± 0.17 0.96 ± 0.17
SUBJECT2 0.87 ± 0.17 0.87 ± 0.17 0.87 ± 0.16 0.88 ± 0.16

Overall 0.93 ± 0.18 0.92 ± 0.17 0.91 ± 0.17 0.92 ± 0.17

Table 8.2: Cross-validation test. Average prediction error (fine-scale).

Prediction error (in mm)
Sequence λ = 0.1 λ = 0.25 λ = 0.5 λ = 1.0
SUBJECT1 0.30 ± 0.03 0.30 ± 0.03 0.29 ± 0.03 0.29 ± 0.03
SUBJECT2 0.53 ± 0.07 0.53 ± 0.06 0.54 ± 0.06 0.54 ± 0.05

Overall 0.42 ± 0.05 0.42 ± 0.05 0.42 ± 0.05 0.42 ± 0.04

Figure 8.8: Evaluation of the prediction accuracy. Our novel sparse regression strategy infers high-quality

medium-scale and fine-scale detail layers given a novel blendshape expression. Note that here we compare

quantitatively to the tracked ground truth reconstruction which is accurately reproduced. The geometric

prediction error of the medium and fine layer together is always smaller than 3.5 mm (1 mm mean and 0.16
mm standard deviation). The error is mainly explained by residuals in the medium layer, while the error of

the fine layer is mostly negligible (< 0.4 mm on average).

when λ = 1.0 is given. On the other hand, the prediction error of the fine-scale layer stays mostly
constant when increasing λ , but a higher regularization tends to over-smooth the results. This means
that low values of λ result in more detailed, but slightly noisier predictions due to extrapolation.
Empirical experiments showed that the noise is visually negligible for a value of λ = 0.1. This
value achieves good results and is used for all the experiments shown in the thesis.

Prediction Accuracy To evaluate the prediction accuracy, we trained our sparse affine regressor
on the first 700 frames of the test sequence (2000 frames in total), and then applied the learned
regressor to predict the medium- and fine-scale detail layers on the second half of the sequence. In
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Figure 8.9: Comparison to the state-of-the-art approach by [Bermano et al. 2014] - SUBJECT5. The pro-

posed method (bottom row) obtains predicted correctives and fine-scale detail comparable to Bermano

et al.’s method (middle row). However, the latter requires a tailor-made set of training sequences to en-

hance fine-scale detail and expressiveness.

this experiment, we utilized the values of λ that were found via cross-validation (i. e., λ = 1.0 for
the prediction of the medium layer and λ = 0.1 for the prediction of the fine-scale detail layer). As
ground truth for the comparison, the reconstruction method described in Chapter 7 was run on the
complete dataset to get the actually fitted medium-scale and fine-scale layers. Figure 8.8 shows the
qualitative and quantitative results. The proposed regressor is able to generalize well beyond the set
of expressions used for training.

Comparison to Detail Prediction Methods Our two-layer detail regression approach is com-
pared to the state-of-the-art method by Bermano et al. [2014] for the prediction of actor-specific
idiosyncrasies and detail. Figure 8.9 demonstrates that the proposed sparse regression formula-
tion for medium- and fine-scale detail prediction achieves results of comparable quality. Note that
Bermano et al.’s method requires a bespoke set of expressive training sequences that are captured
with a multiview camera system under controlled lighting from which the fine-scale detail and
actor-specific expressiveness are extracted. In contrast, the proposed sparse regression technique
was trained using only a subset of frames from the monocular input footage.

8.6 Discussion and Limitations

In this chapter, we have presented the first approach to create a high-quality modifiable 3D face rig
of an actor from monocular performance capture data acquired in unconstrained setups. Related to
our approach is the recent paper by Ichim et al. [2015] which aims at building a 3D face avatar from
video input, but it differs in several ways: First, their approach learns a personalized expression basis
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Figure 8.10: Limitations. Even though the monocular model-based approach presented in Chapter 7 tracks

actor-specific expressions (right) that accurately match the input data (left), the sparse affine regressor fails

to learn and predict the rich space of person-specific nuances and details (middle), mainly when trained

only on a short face sequence that does not show much expression variety.

from a specific sequence of captured facial expressions and some steps require manual intervention.
In contrast, our approach only needs arbitrary facial expressions of a general unscripted sequence
and is fully automatic. Second, Ichim et al. do not learn medium-scale correctives, but optimize the
blendshapes themselves. They discuss that learning a full personalized corrective layer, as presented
in this chapter, would lead to better personalization.

Despite the high fidelity of the reconstructed face rigs, the proposed data-driven approach relies on
the quality of the captured data and therefore shares the limitation of learning-based approaches.
Mild occlusions on the face, such as (facial) hair, may be captured as facial features by the method
presented in Chapter 7 and wrongly learned as person-specific characteristics, as shown in Fig-
ure 8.9. Furthermore, the detail layers are learned based on the correlation to the corresponding
expressions observed in the captured data. Thus, we require a sufficient amount of expression vari-
ation and detail revelation in the training. If only a short sequence is provided or the actors remain
mostly static, their expression space cannot be explored to its full extent. Figure 8.10 illustrates
such a limitation. Learning person-specific detailed expressions also requires robust tracking; oth-
erwise, less personalized idiosyncrasies or even geometric tracking drift may be learned, leading
to less convincing animations or artifacts in the synthesis. Even though the method introduced in
Chapter 7 is quite robust, the reconstruction of highly-deformable surfaces that require accurate
depth estimation is still a challenge in unconstrained monocular setups. As a result, our algorithms
may not be able to track and learn highly complex mouth deformations, such as kiss shapes and
rolling of the lips, which are crucial for photo-realistic 3D avatar animation in movies. Accurate lip
tracking from monocular video input is addressed next in Chapter 9. We believe that improvements
in this direction will contribute to learning personalized face rigs with very expressive lip shapes.

The reconstructed rigs lack a detailed model for the mouth interior and the (eye) lids. This shares
the limitation of related approaches that cannot reconstruct such models from video alone. As
such, the rigs were rendered with a static eye albedo map and average 3D eye (lid) shape obtained
from the tracked medium-scale and fine-scale layers, as this looks more natural than leaving holes
in the eyes. The limitations described above will be further discussed in Chapter 10. Although
our detailed rigs have shown themselves to be useful for high-quality animation and editing tasks,
they may still fall short of the very high detail and control level required for some professional
VFX applications in movies. Even in such cases, our reconstructions could be used by artists
as prototypes for customizing rigs or sketching facial animations as well as video editing effects
quickly.
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8.7 Summary

In this chapter, we have presented an approach for the automatic creation of a fully parametrized,
high-quality, and actor-specific 3D face rig from just arbitrary monocular data. The captured rigs
are composed of three distinct layers that encode the actor’s geometry on all scales: Starting from
coarse-scale shape detail up to a layer that accounts for static and transient fine-scale detail. By
explicitly learning the correlation between expression variation and the detail layers, a detail predic-
tion model is generated. This enables an intuitive control of the rig based on a small set of control
parameters with which artists are familiar. The high fidelity of the reconstructed rigs is shown
for several actors from different sources of video, e. g., YouTube footage. As a proof of concept,
we have demonstrated the potential of the proposed method for different tasks: Facial animation,
expression transfer, and video editing.

The algorithmic improvements proposed in this chapter as well as in Chapter 7 can be considered
as a big step towards automatic digitization of fully-controllable, photo-realistic 3D face avatars
from unconstrained monocular video input, e. g., legacy footage from feature films. We can antici-
pate that personalized face avatars will be particularly beneficial for more sophisticated retargeting
applications, such as visual dubbing (see Chapter 6) and VR teleconferencing.

To succeed in several applications scenarios, we also require accurate animation of the lip motion to
avoid misinterpretation of speech and change of intent. Up to now, our robust tracking algorithms
may still fall short of the accuracy we need for tracking complex mouth and lip shapes, mainly due
to inherent depth ambiguities and recurrent disocclusions that are hard to resolve from monocular
video alone. Improvements in this direction are presented next in Chapter 9.



Chapter 9
Beyond Face Capture: Accurate

Lip Tracking

Figure 9.1: Result obtained by the proposed approach - Subject S1. Expressive lip shapes (middle and

bottom row), such as kiss and lip rolling, can be reconstructed with high fidelity from just a monocular video

(top row).

Accurate capture of shape and motion of the lips is a fundamentally hard problem in facial perfor-
mance capture for which not many solutions exist (see Chapter 5 and Chapter 7). A solution to it
is of paramount relevance in speech recognition and photo-realistic facial animation. This chapter
presents a novel robust and versatile regression-based approach for fully automatic reconstruction
of detailed and expressive lip shapes, along with the dense geometry of the entire face, from monoc-
ular video footage (see Figure 9.1). The method and results presented in this chapter are based on
[Garrido et al. 2016b].
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9.1 Introduction

When designing virtual avatars, animation artists pay particular attention to the quality and re-
alism of the facial animation. Nowadays, animation artists usually rely on captured facial per-
formances which are used as a baseline to create facial animations, thus drastically simplifying
their workflow. Many state-of-the-art methods for high-quality facial performance capture en-
able dense, static and dynamic reconstruction of the human face from multiview data (see Sec-
tion 3.1.1). Some methods can now capture the geometry of the entire head, namely the eyelids
[Bermano et al. 2015], the eyeball [Bérard et al. 2014], facial hair [Beeler et al. 2012], or scalp hair
[Echevarria et al. 2014; Hu et al. 2015; Luo et al. 2012]. More recently, even lightweight methods
have been developed that acquire dense face geometry from RGB-D sensors (see Section 3.1.2) or
monocular RGB video footage (see Section 3.1.3).

Unfortunately, none of these methods accurately captures the incredible range of shapes and defor-
mations of moving lips. In particular, expressive mouth motions, such as a kiss or expressions with
rolling lips, are almost impossible to reconstruct, even with multiview methods in controlled studios.
Furthermore, subtle lip shape differences that may disambiguate a friendly smile from a smirk, are
very hard to capture. Passive photogrammetric reconstruction of lips is fundamentally hard, since
lips are specular and almost featureless in appearance, show subsurface scattering, and exhibit very
quick and shape-dependent changes of blood flow. In addition, they are highly deformable (their
skin strongly stretches and compresses) and exhibit strong self-occlusions complicating surface
tracking. Contour-based tracking is another option to estimate lip shapes. However, while the outer
contour of the lips corresponds to a fixed ring on the face, the inner contour is an occlusion boundary

which is not associated to any fixed location on the lips, making tracking very challenging.

Yet, accurate animation of the lip motion of virtual humans is of paramount importance. Face-
to-face communication is multi-modal, i. e., it needs visual and auditory channels. Subtle visible
nuances in face and mouth expressions can change interpretation of speech and intent, and exact
mouth motion is essential for the hearing impaired relying on lip reading. A video with a purpose-
fully modified lip motion can even make us hear a different consonant – an effect known as the
McGurk effect [Nath and Beauchamp 2012]. Thus, animation artists spend a lot of time and effort
to adjust incorrectly captured lips.

Only a few passive methods have addressed 3D lip shape reconstruction thus far (see Section 3.2.2).
However, most of these approaches require complex professional camera setups and the acquired lip
shapes are still limited in deformation range and expressiveness, e. g., lip rolling remains a challenge
to capture. Thus, this chapter presents the first automatic method to passively capture detailed
expressive lip geometry, along with the dense geometry of the entire face, from just monocular
RGB video. The first contribution is the adaptation of a state-of-the-art multiview face performance
capture system such that it reconstructs ground truth 3D lip geometry, including rolling and skin
stretching. This is accomplished by adding extra lip markers through the application of an artificial
color pattern. By using this setup, we can record a training set of high-quality 3D face and mouth
motions of several subjects, along with RGB video. The second contribution is a novel model-based
face capture method, designed for lip enhancement. At its core is a new regression method based
on a radial basis function network trained on the aforementioned database. Our regression method
learns the difference between inaccurate lip/mouth shapes found with the multilayer monocular face
capture method presented in Chapter 7, and true 3D shapes of lips as well as the surrounding face
region reconstructed by the high-quality multiview system. To improve regression accuracy, we
additionally use shape features computed from extracted inner and outer lip contours as input to a
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Figure 9.2: Lip shape correction framework. Given a coarse mesh C , and an inner and outer lip contours BI ,

BO computed by BEL [Dollár et al. 2006], our lip correction RBF network predicts a mesh with improved lips

L. The network is trained to learn the difference in geometry between true high-quality mesh deformations

H and inaccurate coarse reconstructions C by additionally leveraging lip shape features extracted from lip

contours B.

robust gradient domain regression strategy.

Quantitative and qualitative results demonstrate that the proposed method can capture complex lip
shapes and motions, e. g., protruding lip shapes and lip rolling, at much higher quality than naïve
monocular reconstructions. The results also show that our approach generalizes well to unseen in-
dividuals and general scenes, enabling high-fidelity reconstruction even from mobile phone videos
(see Section 9.6.1).

9.2 Overview

The proposed method takes as input a video of an actor from which a sequence of coarse meshes
C={C1, . . . ,CN}with inaccurate lip (and also mouth) shapes is reconstructed, where N is the number
of frames in the sequence. At each frame f , inner and outer contours of the lips BI

f , BO
f are also

extracted using a Boosted Edge Learning (BEL) algorithm [Dollár et al. 2006]. Given a coarse mesh
C f and contours BI

f , BO
f , our lip shape correction framework estimate a mesh L f with improved lip

shapes by using a Radial Basis Function (RBF) Network described in Section 9.5.2 (see Figure 9.2).
To train the network, three different steps are performed:

S1 Data collection (Section 9.3): We create a high-quality lip database and generate the training
examples for regression. Our training set consists of high-quality lip shapes H acquired
from a multiview camera system, coarse lip shapes C obtained using the method described in
Chapter 7, and lip contours BI ,BO in 2D images detected by BEL.

S2 Lip correction layer parametrization (Section 9.4): Next, we establish correspondences be-
tween the high-quality reconstructions H and coarse shapes C , and provide a robust parametriza-
tion of the lip shape correction layer based on deformation gradients.

S3 Lip shape regression (Section 9.5): Finally, we generate robust features for lip shape correc-
tion. These features are used by our RBF network to infer the lip correction layer that allows
us to reconstruct high-quality lip shapes L .
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(a) (b) (c)

Figure 9.3: High-quality lip database. Using a controlled multiview capture setup (a), and lip tattoos (b),

high-quality lip shapes are reconstructed for training (c).

9.3 Data Collection

The main goal is to enhance lightweight face capture methods, in particular by improved reconstruc-
tion of the lips (and the adjacent mouth region). Lips tend to be one of the most challenging facial
regions, especially for under-constrained capture approaches such as monocular reconstruction. To
this end, we construct a training database of high-quality lip shapes and learn a regression function
that explicitly maps approximate lip shapes from a lightweight capture method to high-quality and
accurate shapes.

9.3.1 High-quality Lip Database

We build a database of high-resolution 3D lip shapes with the state-of-the-art reconstruction method
of Beeler et al. [2011], which uses a multiview camera setup and controlled studio lighting to
produce high-resolution face meshes that are in full vertex correspondence over time. For the
application at hand, we configure the physical setup such that four cameras are directly focused and
zoomed-in onto the lip region (one stereo pair from above and one from below), and six additional
cameras (three stereo pairs) frame the entire face, see Figure 9.3 (a). Obtaining highly accurate
lip reconstructions even in such a controlled environment can be very challenging, since the lips
have very few features and change appearance over time. To overcome this and obtain the best
possible 3D data, we apply patterns to the lips via temporary tattoos1 as shown in Figure 9.3 (b),
which provide surface disambiguation and consistency of appearance over time, without drastically
altering the natural lip motions of the subject. Figure 9.3 (c) shows a subset of reconstructed lip
shapes.

The ground truth training data is cleaned up as a pre-process, e. g., gums are masked out to remove
penetrations. We assign correspondences between our base mesh and the ground truth reconstruc-
tions once per subject using the method described in Section 9.4.1. No further assignment is needed
as both meshes preserve temporal correspondence. Our training set, the first of its kind, contains a
very high-resolution and accurate lip shape H f for each frame f . The lip shapes span a wide range
of lip motions, including smiling, frowning, smirking, kissing, puffing, rolling in/out, sticky lips and
side-to-side mouth motions. The dataset consists of both transitions in and out of these complex
shapes, as well as general speech animations. The complete database of 3289 total shapes captured
from 4 different actors is one of the central contributions in this chapter. To examine the train-
ing set, please refer to the second supplementary video at the project website2. A comprehensive

1www.violentlips.com
2http://gvv.mpi-inf.mpg.de/projects/MonLipReconstruction/

http://gvv.mpi-inf.mpg.de/projects/MonLipReconstruction/
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(a) (b) (c) (d)

Figure 9.4: Monocular training data. After inpainting the lips (a), we apply the monocular face tracker

presented in Chapter 7 (b). The approximate lip shapes are shown in (c), while corresponding high-quality

reconstructions are given in (d).

description of the performed lip motions is provided in Appendix B.

9.3.2 Training Data for Regression

Given the acquired high-quality shape H f of frame f , we wish to learn the geometric difference be-
tween this shape and a coarse monocular approximation C f . In this chapter, we particularly enhance
the lightweight monocular facial tracker described in Chapter 7, but in theory any monocular recon-
struction technique could be utilized instead (see, for instance, Chapter 5). Even though the selected
monocular method captures dynamic face geometry at state-of-the-art quality (see comparisons in
Section 7.7.2), it still struggles to capture expressive lip shapes (see experiments in Section 9.6) like
most monocular approaches do.

In order to compute the shape difference for training, we run the lightweight tracker on one of the
frontal cameras of the multiview setup. However, the applied lip tattoos would lead to a bias when
training the regression function, since during testing the tracker will be applied to monocular data
without such artificially added features. To alleviate this problem, we digitally inpaint the sequences
to remove the tattoos (details below).

The difference in lip shape between the monocular C f and the high-quality reconstructions H f can
be seen for one pose in Figure 9.4. These differences will be used to train a regression-based lip
enhancement algorithm (see Section 9.4). It is important to remark that high-frequency details,
e. g., folds and wrinkles, were discarded from both reconstructions and not used for regression,
since these features normally represent idiosyncrasies of particular subjects and do not generalize
well across different subjects. In our experiments we found that the coarse lip shapes alone are an
insufficient feature for robust regression due to the amount of possible ambiguity (see Section 9.6.2).
For this reason additional lip contour constraints, detected in the input images using semi-supervised
learning, were also incorporated as features (details further down below).

Lip Tattoo Inpainting

Traditional digital inpainting involves replacing corrupt or unwanted image pixels in a semantically
meaningful way, typically using surrounding pixels for context. Removing the unwanted lip tattoos
is a special case where neither interpolation nor copy operations can generate plausible appearance
since the tattoos cover the entire lip region. Fortunately, here we have more information available,
namely the reconstructed 3D geometry. We can therefore apply a geometry-guided inpainting pro-
cess by capturing and reconstructing each actor one additional time without tattoos, and copying
the lip region from the un-tattooed image to the tattooed sequences. To this end, we record the
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Figure 9.5: Lip inpainting. Geometry-guided inpainting is performed in UV space to remove the lip tattoos.

Left to right: One image of the training set, the corresponding UV texture, the inpainted UV texture, and the

final inpainted image after compositing.

Figure 9.6: BEL contour detection. Left to right: Input image, inner lip contour, and outer lip contour.

actor in the high-resolution setup of Beeler et al. [2011] without wearing the lip tattoo and with the
mouth slightly open to avoid occlusions. During reconstruction of this pose, we use the same mesh
topology as in the lip shape database, putting the un-tattooed shape in a dense vertex correspon-
dence with the training data. We construct a UV texture for the un-tattooed lips by projecting the
geometry into the camera images. Then, inpainting each tattooed image can proceed by rendering
the lip geometry from the viewpoint of the camera using the un-tattooed texture and compositing
the output with the image using a feathering operation at the boundaries.

The drawback of this approach is that the inpainted lips will always exhibit the same appearance
and lack dynamic effects such as shape-dependent shading. However, we can compensate for such
effects through a shading-equalization scheme. Specifically, we compute the pixel-wise intensity
difference of the lip region between each frame and a reference pose, chosen to be similar to the
un-tattooed pose, and then add this frame-dependent appearance change to the un-tattooed texture.
An example inpainting is shown in Figure 9.5.

Lip Contour Detection

To increase the robustness of the regression function, 2D lip contour features are included in ad-
dition to the 3D geometric features. Lips are almost featureless, highly deformable and their ap-
pearance changes due to shape-dependent blood flow patterns. The most reliable visual features
of the lips are the inner and outer contours, of which the inner is an occluding contour. We em-
ploy the BEL algorithm proposed by Dollar et al. [2006] to automatically detect the contours. BEL
is a general-purpose supervised learning algorithm that classifies pixels as (non) boundaries over
a small image patch based on a large set of generic fast features, including gradients, histograms
of filter responses and Haar wavelets at different scales. We train two separate detectors for each
different illumination condition (i. e., indoors and outdoors) to regress the inner lip contour BI

f and
outer lip contour BO

f likelihood maps (see Figure 9.6) at each frame f .

In summary, the collected training data includes high quality 3D lip shapes and detected inner and
outer 2D lip contours, and corresponding approximate lip shapes from a lightweight face tracker.
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Figure 9.7: Mask used for correspondence association. The red region is employed for computing corre-

spondences between the topology of ground truth and monocular (see Figure 9.8) reconstructions.

9.4 Lip Correction Layer Parametrization

We parametrize the difference between the high-quality reconstructions H f and the corresponding
coarse monocular reconstructions C f in frame f using per-triangle deformation gradients, as pro-
posed in [Sumner and Popović 2004]. Later on, this differential lip correction layer ℓ f is used to get
an improved monocular reconstruction L f .

9.4.1 Dense Correspondence Association

The 3D reconstructions (H f and C f ) obtained by the two different reconstruction approaches are
not in vertex correspondence, and in general may not even share the same coordinate system. As a
first step, we compute a dense set of triangle-to-triangle correspondences based on a fully automatic
Laplacian surface registration technique, described below.

Since the only common element of the two reconstructions is the input image, we use image-
based landmarks as constraints for the deformation. To that end, we use a facial landmark tracker
[Saragih et al. 2011a] to compute a set of 66 sparse landmarks on the inpainted image of the neutral
face. Back-projecting the detected landmarks onto both the coarse mesh and the high-quality mesh
provide an initial sparse set of surface correspondences. Based on these constraints, we perform
Laplacian surface deformation of the coarse mesh, followed by a dense correspondence search via
spatial proximity. Finally, a second Laplacian registration step is performed based on these dense
constraints and the resulting alignment is used to establish dense triangle-to-triangle correspon-
dences.

We perform the two-step strategy described above only once per subject. Note that the selected
inpainted image is chosen to have the mouth slightly open to avoid potential wrong correspondences
in the lip region.

It is important to remark that the ground truth H and coarse C reconstructions differ in topology.
Each high-quality mesh in H is a full 3D head surface that also includes the inner mouth geometry
(see Figure 9.7), whereas each coarse mesh in C is mainly a 3D face surface (see Figure 9.8). To
further ensure the computation of a valid set of dense correspondences between topologies, we
manually define a subregion of the face in the ground truth topology (shown in red in Figure 9.7).
This subregion excludes, among others, the tongue and gums.
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Figure 9.8: Lip correction layer. The lip/mouth region used for regression is shown in red. Note that the

whole mesh was utilized for assigning correspondences to high-quality reconstructions (see Section 9.3.2).

9.4.2 Gradient-based Lip Shape Representation

We formulate the shape correction layer in the gradient domain. This is preferable over position-
based corrections because the high-quality and coarse meshes may differ by more than just lip shape,
e. g., the monocular tracker may also have a slight error in depth, and gradient-based correction is
ignorant of such global transformations. The gradient formulation is also advantageous since it
allows us to regress improved shapes for only the confined region of the lips and the surrounding
mouth area, yet to smoothly blend these improvements with the surrounding face in a subsequent
integration step.

The gradient-based lip correction layer captures differences in surface orientation, scale and skew
for all the T triangles in the lips and the local mouth region, as defined by the mask shown in

Figure 9.8. In a first step, per-triangle deformation gradients G
(t)
f ∈R

3×3 between the T faces of the
mesh C f and the corresponding triangles in H f are computed. We map from the monocular tracking
results to the high-quality reconstructions using a neutral frame (first frame f = 0 of the sequence)
as anchor point:

G
(t)
f = H

(t)
f

︸︷︷︸

H0→H f

· D̂(t)
︸︷︷︸

C0→H0

·
[

C
(t)
f

]−1

︸ ︷︷ ︸

C f→C0

. (9.1)

The deformation gradients C
(t)
f and H

(t)
f model the expression of the monocular and high-quality

reconstruction, respectively. The difference in identity, simply caused by the quality difference in
the two trackers, is encoded using D̂(t). This operator can also account for differences in topology
between the reconstructions, for instance, orientation of local mesh triangles. Note that with the pro-
posed deformation gradient operator G f only a simple per-triangle mapping needs to be computed.
This way, we can avoid any unnecessary deformation transfer step between coarse and high-quality
shapes which not only is inefficient, but also deteriorates the quality of the ground truth data.

As already explained in Section 7.3.5, the deformation gradients jointly encode the rotation, scale
and shear as a single matrix. This will be problematic for regression, as internally the correction
layer will be interpolated linearly.

The deformation gradients jointly encode the rotation, scale and shear as a single matrix. This
will be problematic for regression, as internally the correction layer will be interpolated linearly.
To overcome this problem, we compute the polar decomposition of the gradient matrix G

(t)
f =

Q
(t)
f S

(t)
f , factoring into rotation and shear. From these matrices, we extract rotation, skewing and

scaling factors (please refer to Section 7.3.5 for further details). In total, this leads to 9 parameters
per triangle which allow for linear interpolation. The lip shape correction layer ℓ f ∈ R

9T stacks
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Figure 9.9: Relative distance features. We use inter contour (green) and outer contour (yellow) distances

to define the robust features for lip shape regression.

the computed per-face deformation gradients, and will be the target of our regression framework
described in the following section.

9.5 Lip Shape Regression

We learn the difference between the inaccurate and true 3D lip shape based on a regression func-
tion. The captured training data T = {C f ,H f ,B

I
f ,B

O
f , ℓ f}

F
f=0 consists of the inaccurate monocular

reconstructions C f , the accurate multiview reconstructions H f , the computed inner BI
f and outer BO

f

BEL contour maps and the corresponding ground truth output layer ℓ f .

9.5.1 Robust Features for Lip Shape Regression

We use a set of discriminative features f that allow us to robustly predict high-quality lip shapes
given inaccurate monocular reconstructions. In the feature vector, we jointly encode the inaccurate
reconstruction result as well as the target contour constraints. We wish to encode the reconstruction
in a compact manner, which is also independent of the particular reconstruction method in order to
make the proposed approach as general as possible.

We define a low-dimensional shape subspace ψ by computing Principle Components Analysis
(PCA) on the 75 blendshapes used for monocular tracking and keep 99% of the variance. The
inaccurate results are then projected onto this subspace to obtain a shape vector of length |ψ |= 33.

Target contour constraints are defined by a set of relative features that take the shape of the detected
inner and outer lip contour into account. These features are normalized based on the inter-ocular
distance, to make the regression results independent of global depth changes. We sample the inner
and outer lip contour based on a search that starts from the monocular reconstruction result. To this
end, in a pre-process, we specify isolines of the outer lip contour on the template geometry. Starting
from sample points on the monocular reconstruction result of the outer contour, we search for the
closest maxima in the BEL likelihood maps along the gradient of the isolines. The found maxima
in the maps BI

f and BO
f are the corresponding points of the inner and outer contour, respectively. We

use the obtained outer and inner contour points to define a set of relative features that encode 10
distances on the outer contour and 10 distances between the two contours, see Figure 9.9. Note that
this exploits the correlation between the 2D contours and the actual 3D lip shape. Overall, together
with the PCA coefficients, the lip feature vector f has M = |ψ |+20 = 53 components.
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9.5.2 Local Radial Basis Function Networks

Given the per-frame lip features and corresponding lip correction layers {f f , ℓ f}
F
f=1, we learn for

each of the T triangles of the lip correction layer a regression function r(t) :RM→R
9 using a vector-

valued radial basis function network (RBFN). We use a network architecture with a single hidden
layer (see [Bishop 2006]), and the associated N ≪ F neurons Φn : RM → R have fixed prototypes
pn ∈ R

M in feature space and share the same scale β ∈ R:

Φn(f) = exp
(

−β · ||pn− f||22

)

. (9.2)

Prototypes pn are obtained by a temporally uniform sampling of the training sequences. The out-
put node implements a linear weighted summation of the per-neuron activation levels and adds a
constant bias parameter b ∈R

9:

r(t)(f) =

[
N

∑
n=1

w
(t)
n Φn(f)

]

+b . (9.3)

We tackle the problem of finding the N weights w
(t)
n ∈ R

9 for each triangle t using ridge regression
[Hoerl and Kennard 2000]:

min
{w

(t)
n }

N
n=1

[
F

∑
f=1

∥
∥
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f
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∥
∥

2

2
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∥
∥
∥w

(t)
n

∥
∥
∥

2

2
︸ ︷︷ ︸

Ereg

]

. (9.4)

Here, the data term Edata encodes how well the training data is reproduced and the ridge regularizer
Ereg prevents overfitting. The importance of the regularizer is controlled by the ridge parameter
α . Optimal values for α and the scale parameter β are found via cross-validation. Since the
optimization problem is quadratic, the minimizer can be found by solving a linear system. Note,
the linear system decomposes into 9 independent linear subproblems of size N ×N. Since all
subproblems share the same system matrix (only the right-hand sides differ), the regression function
can be efficiently computed.

Given a new input feature vector f̂, the corresponding per-triangle correction can be obtained by

ℓ̂
(t)

= r(t)(f̂). Afterwards, the high-quality lip shape L̂ can be reconstructed by integrating the per-
triangle deformation fields using deformation transfer (further details can be found in Section 8.4.2).
Note that all steps are performed in a canonical frame for rotation and translation invariance.

9.6 Experiments

We demonstrate the applicability of the proposed method on a variety of different datasets. In total,
we captured 3 female and 3 male subjects, henceforth referred to as S1-S6. S1-S5 were recorded
indoors in the multiview setup described in Section 9.3.1 using 4MP machine vision cameras, but
only S1-S4 were used for training. We additionally captured S3, S4 and S6 outdoors with an iPhone
camera (resolution 1920× 1080, 30 fps). Finally, we also tried our approach on a legacy video
downloaded from YouTube, where the US president (Barack Obama) commemorates Independence
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Figure 9.10: Reconstruction quality - Subject S1. The proposed RBFN regression successfully improves

the coarse base tracker (Chapter 7) to better handle stretching, bending and rolling of lips.

Day on July 4 (this sequence was also employed to generate the results shown in Section 7.7.1 and
Section 8.5.1). Overall, the proposed approach was evaluated on 11 sequences (4 captured using a
controlled studio setup and 7 in a general uncontrolled environment).

For the experiments shown below, we evaluate different design choices and compare with a model-
based tracking approach using enhanced lip blendshapes and explicit lip contour alignment con-
straints. In the different quantitative and qualitative evaluations, we use three different types of
regressors:

• PS: A person-specific regressor trained for a specific subject. This regressor is only applied
to sequences of the same subject. Note though that training and testing datasets are disjunct.

• MS: A multi-person regressor trained on four different subjects (S1-S4). The test subject can
be any of the four. Again, training and testing datasets are disjunct.

• GR: A generalization regressor trained on three or four subjects (out of S1-S4). The identity
of the test subject is not included in the training set.

The results reported here, especially the motion of the lips, are appreciated best as video. Thus, the
reader is strongly advised to watch the supplemental videos at the project website3.

Runtimes and Parameters On average, the runtime of our method (after training) is approxi-
mately 25 sec/frame on an Intel Xeon E5-2637 CPU (3.5 Ghz), where 20 seconds are spent on
monocular tracking (Chapter 7) and 5 seconds are added for our new lip correction approach. In all
performed experiments, we use every tenth frame of the training set to define the prototype vectors
of our RBF lip correction network. All parameters of our regressor remain constant during the ex-
periments (see Section 9.6.2). Note that the lip correction layer modifies T = 32k triangles faces,
which mainly correspond to the lip and mouth region of the coarse mesh.

9.6.1 Results

We use our novel lip correction network to improve the reconstruction quality of the monocular
face tracker presented in Chapter 7, to which we will refer to as coarse base tracker in the following.
To this end, we use data captured by one of the frontal cameras of the multiview setup, as well as
outdoor video footage captured under general uncontrolled illumination with an iPhone camera. A

3http://gvv.mpi-inf.mpg.de/projects/MonLipReconstruction/

http://gvv.mpi-inf.mpg.de/projects/MonLipReconstruction/
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Figure 9.11: Lip protrusion - Subject S1. The proposed regressor is more resilient to the depth ambiguity

inherently present in monocular tracking and can plausibly reconstruct protruding and rolling lips.

Figure 9.12: Results on outdoor scenes - Subjects: S3 (left), S4 (right). Our proposed regression frame-

work substantially improves on the lip shapes reconstructed by the coarse base tracker (Chapter 7). Note

how especially challenging lip motions, such as rolling or stretching, are better captured in the refined re-

sults. The regressor is even able to improve the reconstruction quality of the surrounding area, such as

nasolabial folds or the chin.

coarse base reconstruction is obtained and the regressed lip correction layer is applied. Figure 9.1
and Figure 9.12 show the coarse base and refined reconstructions for indoor and outdoor setups,
respectively. In this experiment, we used the MS regressor specified above. As it can be seen, the
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Figure 9.13: Generalization results to novel subjects - Subjects: S5 (left), S6 (right). Our generalized

regressor GR generalizes well to novel subjects and general outdoor scenarios.

regressor successfully improves the lip shapes of the monocular base reconstruction. Especially,
inward and outward rolling of the lips, lip protrusions, and the kiss shape are nicely captured. This
is further emphasized in Figure 9.11 and Figure 9.10, which visualize surface stretching and shape
change from side views.

Please further note that shape improvements are also visible in the face region surrounding the lips,
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Figure 9.14: 3D lip shape - Subject S6. Our generalized regressor GR nicely captures inward and outward

rolling of lips (even for novel subjects) given just a monocular video.

Table 9.1: Quantitative evaluation of different reconstruction strategies. Reconstruction error in cm, com-

puted as the average Euclidean distance to the ground truth lip reconstruction H . The reconstruction strate-

gies are (from left to right): Base tracker, base tracker with contour alignment constraints, personalized

regressor, multi-person regressor, and generalized regressor.

Base Contour RBFN (PS) RBFN (MS) RBFN (GR)

mean 0.40 0.39 0.33 0.30 0.32
std. dev. 0.14 0.12 0.12 0.10 0.11

where the regression adds plausible bulging and folding of the skin, which supports the lip shapes
(Figure 9.1, left; Figure 9.12, top left). In addition, we applied our generalized regressor GR to
novel subjects captured both indoors and outdoors; the latter recorded under conditions that sub-
stantially differ from the training environment, as shown in Figure 9.13. As it can be observed, the
lip correction network generalizes nicely to uncontrolled scenarios and different illumination condi-
tions, since the shape-based features used for regression are less sensitive to changing environment
conditions than photometric cues. Again, inspecting the lips closely and from the side (Figure 9.14)
clearly illustrates how the overall shape is improved by our regression strategy.

We also applied our approach to an uncontrolled sequence downloaded from YouTube, where the
US president speaks naturally in front of the camera4. Figure 9.15 shows that our approach also
generalizes well to unconstrained capture setups exhibiting some mild head motion and rotation.
Note that the regression-based lip correction approach improves the shape of the reconstructed lips
(even for blurry images) and captures details around the lips, e. g., the nasolabial folds and dimples.

9.6.2 Validations

Generalization Properties of the Regressor We evaluate the generalization properties of the
proposed lip correction RBF network. To this end, we trained a person-specific regressor PS, a
multi-person regressor MS and a generalization regressor GR. We qualitatively and quantitatively
evaluate the accuracy of these three architectures on a test sequence of S2. Figure 9.16 shows color
coded error maps with respect to ground truth reconstructions. For the corresponding numbers see
Table 9.1. The obtained reconstruction quality is largely independent of the regressor type. This
shows that our approach generalizes well to novel subjects and does not require person-specific
training data.

4https://youtu.be/d-VaUaTF3_k

https://youtu.be/d-VaUaTF3_k
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Figure 9.15: Results on internet video footage - Barack Obama. The proposed regression framework

generalizes well, even to internet video with general unknown lighting. Compared to the coarse base tracker,

our approach reconstructs higher quality lip shapes (even fast lip motions are significantly improved). Note

that nasolabial folds and dimples are also corrected.

Evaluation of the Regression Strategy We compare our RBFN regressor with a simple linear
affine regressor just as it was used in Chapter 8 for fine-scale detail deformation, see Figure 9.17.
Especially surface dynamics are better handled by the proposed non-linear approach. We also
quantitatively show this improvement in a cross-validation experiment. To this end, we train both
regressors on the same training data, while leaving out a set of validation clips (732 frames). In a
first step, we select the best parameters for both regressors using cross-validation. The RBF network
performs best for α = 0.1 and β = 0.1. For the linear affine regressor, the Tikhonov regularization
parameter α = 2.0 leads to the best results. With these parameters, our RBFN regressor obtains an
average feature space error of 0.13 (0.04 standard deviation). In contrast, the linear affine regressor
has a higher average feature error of 0.14 (0.05 standard deviation).

Influence of Input Features on Regression We also quantitatively evaluate the influence of dif-
ferent input features. To this end, we compare the cross-validation error as well as the tracking error
on our ground truth sequence of S2 for different feature descriptors. Table 9.2 and Table 9.3 show
that the use of both PCA coefficients and relative distance features improves upon descriptors that
are only based on one of these two features. This can mainly be ascribed to certain ambiguities that
cannot always be resolved by relative distances or lip shape geometry alone, e. g., symmetrically-
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Figure 9.17: Comparison between linear affine regression (middle) and the proposed RBFN regressor

(right) - Subject S2. The Euclidean distance between the regressed reconstructions and the ground truth

(shown as a heatmap overlay) confirms that non-linear regression leads to smaller errors.

Table 9.2: Influence of features. Cross-validation error in feature space (i. e., deformation gradients space),

computed as the average L2 norm of the difference between the true lip shape correction ℓ and predicted

correction ℓ̂.

PCA coefficients Relative distance features Combined
mean 0.14 0.17 0.13
std. dev. 0.05 0.06 0.04

Table 9.3: Influence of features. Reconstruction error in cm, computed as the average Euclidean distance

between the ground truth lip reconstruction H and the improved lip shapes L.

PCA coefficients Relative distance features Combined
mean 0.32 0.33 0.30
std. dev. 0.12 0.13 0.10

consistent lip deformations or depth-involving lip shapes, respectively.

Comparison to Model-based Lip Tracking In order to perform a baseline comparison, we ex-
tended the monocular face tracker presented in Chapter 7, which also serves as our base tracker,
by incorporating explicit lip blendshapes and lip contour alignment constraints. Person-specific lip
blendshapes have been computed based on the high-quality multiview reconstructions. In partic-
ular, we transferred 30 user-selected expressive lip shapes to the 3D identity shape estimated by
the monocular tracker using deformation transfer [Sumner and Popović 2004]. Lip contours are
detected using BEL and the optimization process tries to align the inner and outer contour of the
model with the ridges in the likelihood maps. Since the inner contour is an occluding one, we
perform this optimization in an iterative flip-flop fashion. This is similar to the approach used in
[Anderson et al. 2013a].

As can be seen in Figure 9.18, the regression-based approach obtains higher quality results, which
align to the ground truth better. Table 9.1 shows the corresponding statistics for the reconstruction
errors. This test shows that, in particular for capturing the true rolling and stretching of the lips,
even enhancing previous model-based methods with additional image constraints is not sufficient.
We can obtain a better spatial alignment, more expressive lip shapes and better recover stretching
and bending of the lips, without having to tediously augment a parametric 3D expression model per
person.
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Figure 9.18: Comparison between the proposed RBFN regressor (bottom row) and an augmented model-

based tracking (middle row) - Subject S2. The heatmap overlays show that the RBFN regressor outperforms

a model-based tracker which utilizes explicit contour alignment constraints and additional person-specific

lip blendshapes.

9.7 Discussion and Limitations

In this chapter, we have demonstrated high-quality lip shape reconstructions even for challenging
and expressive mouth motions, such as a kiss or rolling lips. While these compelling results are
obtained from just monocular video footage, the proposed approach still has some limitations: First,
it is based on a set of collected training data and shares the limitation of learning-based approaches,
i. e., it does not generalize well to situations that are drastically outside the span of training examples,
such as faster or more expressive motions than those used for training. This could be solved by
capturing more training data. Such an extension requires the availability of a high-quality multiview
setup; however, it is a one time investment.

Furthermore, while the employed feature descriptor is translation invariant, it is not invariant to
rotations, especially out-of-plane head orientations. Handling different head rotations would require
an extensive amount of additional training data. Alternatively, this problem could be alleviated by
compensating for rigid head motion before feature computation, i. e., projecting the sample points
onto a tracked plane in front of the mesh and computing the contour distances in 3D. It is also
important to remark that BEL is sensitive to lighting and strong color changes. Hence, the detector
must be re-trained for the individual illumination conditions (this could in theory be overcome with
a sufficiently large dataset containing these variations). By choice, one could also use a different
contour detection strategy that is more robust to these variations, which is totally feasible since our
algorithm does not directly depend on the chosen structure detector. Drastic appearance changes
(e. g., dark vs. pale skin color or beards) could be handled in a similar manner. On the contrary, our
shape features are only based on geometric properties and are therefore invariant to these situations.

Mild facial hair is normally captured as high-frequency detail by both the multiview reconstruction
and the baseline algorithm. As such, it can be decoupled from the coarse lip motion estimation and
does not pose a problem. Thick beards and occlusions, on the other hand, can make the approach
fail, since a robust detection of the lip contours would not always be possible. Overall, it is ex-
pected that the reconstruction quality can be further improved by increasing the amount of training
examples.

As demonstrated by the results in Section 9.6, the proposed lip correction method is capable of
regressing the lip shape very well, but since all the features are translation invariant, an accurate
alignment to the input data cannot be guaranteed. In many applications this is not of paramount
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importance, i. e., lip reading or movie dubbing. Future work will address this by incorporating the
detected contours as reprojection constraints into the gradient based reconstruction strategy.

9.8 Summary

In this chapter, we have presented an approach to fully automatically reconstruct expressive lip
shapes along with dense geometry of the entire face, from just monocular RGB data. At the core of
this approach is a novel robust regression function that learns the difference between inaccurate lip
shapes and true 3D lip shapes based on a captured database of high and low quality reconstructions.
Rather than resorting to unreliable photometric features, the proposed method utilizes shape features
computed from extracted inner and outer lip contours. Qualitative and quantitative results have
demonstrated that the proposed monocular approach reconstructs higher quality lip shapes, even
for lip rolling or kiss shapes, than previous monocular approaches.

Since subtle visible nuances in face and mouth expression strongly influence the interpretation of
speech and intent, we can anticipate that the approach presented in this chapter will be particularly
helpful for applications that deal with audiovisual content, i. e., movie dubbing (see Chapter 6) and
lip reading.

The algorithmic contributions proposed in this chapter greatly advance the state of the art in photo-
realistic facial animation. We believe that when combined with the contributions presented in pre-
vious chapters it will be possible to create and animate photo-realistic 3D face avatars with very
expressive personalized faces and mouth motions using arbitrary monocular video footage, either
captured on set, self-recorded, or even downloaded from the Internet.

There are still some challenges concerning the capture of faces that need to be addressed first to
enable full digitization of 3D avatars in the wild. Chapter 10 will give an outlook to future directions
in this regard.





Chapter 10
Conclusion

Cutting-edge advances in technology in the digitization pipeline now allow the movie industry to
create and animate virtual 3D face avatars with personalized expressions that look indistinguishable
from real actors. Digitizing photo-realistic faces, however, comes at the price of extensive manual
work and sophisticated multi-sensor capture systems that are expensive to build and that only work
with in-studio controlled illumination. They also cannot be used for actors that are physically not
present, e. g., vintage movie stars. Lightweight approaches have simplified and democratized the
capture process by using commodity sensors, but the reconstructed 3D models lack the amount of
detail and realism which is necessary to produce video-realistic animations.

We envisage an automatic, lightweight framework that takes the best of both worlds: It creates a
photo-realistic, fully-controllable 3D face avatar that can be used for performing complex facial
animation and video-realistic editing tasks while being obtained from a 2D video recorded under
uncontrolled setups. This way, we could revive vintage actors or even animate ourselves.

This thesis has presented a state-of-the-art toolbox of algorithms towards that goal: Photo-realistic
capture, animation, and editing of high-quality synthetic 3D face models from unconstrained 2D
video and that are affordable for anyone. Novel technical advances have been developed in three
different areas, as briefly sketched in Figure 10.1. On the capture side, we have developed accurate
and robust face tracking algorithms, from keyframe-based landmark location refinement and semi-
constrained model-based 3D capture to multilayer parametric 3D tracking and regression-based 3D
lip reconstruction in unconstrained video footage. On the animation side, we have started with 2D
video-based retargeting based on robust image metrics, followed by performance-driven transfer of
detailed 3D models. Finally, we have automatically created personalized, controllable 3D rigs to
improve retargeting. On the editing side, we have moved from simple image-based compositing to
capture-based editing using photo-realistic face albedo and plausible mouth interior synthesis. As
a proof of concept, we have tested our methods on different real-life application scenarios: simple
texture editing, reenactment, visual dubbing, and video rewriting.

In the following, we conclude the efforts achieved so far. First, we restate and discuss the presented
contributions. Then, we review some extensions not explored in this thesis, but recently developed
as joint work. Finally, we examine some open challenges towards full head digitization in the wild.

161
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Figure 10.1: Overview of the main contributions presented in this thesis. From left to right: Capture: Semi-

constrained model-based 3D face capture, personalized multilayer 3D face reconstruction in unconstrained

setups, and accurate 3D lip shape regression. Animation: Performance-driven transfer of detailed 3D

models, and animation of personalized, fully-controllable 3D face rigs. Editing (applications): Video-based

retargeting and simple compositing (reenactment), plausible mouth synthesis aligned to audio (visual dub-

bing), and photo-realistic face synthesis (visual dubbing, rewriting). Note that the edited results are shown

on the right side.

10.1 Summary and Discussion

This section recapitulates the core contributions presented in Chapters 4–9 and provides a brief
discussion of some remaining challenges that were not addressed in this thesis.

Chapter 4 presents a fully-automatic, video-based reenactment method that replaces the face of a
target actor with that of a user, while preserving the facial expressions of the target actor. At the heart
of the approach is an improved 2D tracking algorithm that exploits optical cues between keyframes
to track accurate landmarks, which in turn are used to detect and replace faces. Expression transfer
is formulated as a retrieval problem that selects source frames based on robust appearance and
motion descriptors as well as temporal clustering. Face replacement is performed using a simple,
yet effective, warping strategy that preserves facial shape while matching head pose.

Image-based tracking and transfer methods usually exhibit problems in the presence of challenging
facial motion and head rotations. To overcome these limitations, Chapter 5 introduces a state-of-
the-art model-based approach that captures detailed, spatio-temporally coherent 3D face geometry
as well as the incident illumination from 2D videos with known camera intrinsics and coarse 3D
geometry of the actor’s face. This approach leverages robust landmark tracking (Chapter 4) and
temporally-coherent dense optical cues to track the actor’s facial motion accurately on long se-
quences. An adapted shape-from-shading framework [Valgaerts et al. 2012b] allows us to recover
the scene lighting and fine-scale skin geometry by exploiting shading cues in the temporal domain.
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Chapter 6 exploits the potential of the previous model-based approach and introduces a performance-
driven system for video-realistic retargeting of detailed facial models whose mouth motion aligns
to a new audio signal to perform visual dubbing. Unlike Chapter 4, the mouth motion transfer is
conveniently carried out in the blendshape space. A new spatio-temporal rearrangement strategy
that employs both the actor’s and the dubber’s performance then allows us to retrieve a temporally-
consistent detail layer for the new synthetic performance, which is in sync with the dubbed audio.
Photo-realistic compositing is finally achieved by capturing a dense face albedo map of the actor’s
face and synthesizing a plausible mouth interior via a 3D teeth proxy and image warping. This
approach shows results of superior quality when compared to image-based compositing (Chapter 4)
that suffer from bleeding and ghosting artifacts.

Motivated by the inability to track performances in arbitrary videos as well as estimate and parametrize
person-specific mid-scale deformations, Chapter 7 proposes a fully-parametric personalized face
capture method that inverts the image formation process to reconstruct face models with multi-
ple layers of details from unconstrained footage, e. g., videos downloaded from the Internet. The
heart of this approach is a novel parametric face prior that jointly encodes the camera model as
well as plausible appearance and shape changes. The appearance is modeled by skin albedo and
scene lighting, whereas the shape is encoded by a subspace of coarse facial identity and expressions,
person-specific medium-scale correctives, and fine-scale skin details. These layers and other related
parameters are optimized automatically in a common inverse rendering framework.

Chapter 8 goes beyond face tracking and presents an automatic data-driven approach to the creation
of detailed, personalized 3D face rigs from arbitrary monocular performance capture data. The re-
constructed face rigs are based on three distinct shape layers (Chapter 7) and learned by coupling
the coarse layer to the medium- and the fine-scale detail layer through a sparse linear regression ap-
proach. Such coupling allows us to conveniently drive the rigs with intuitive blendshape controllers
to easily perform video editing and animation tasks.

Finally, Chapter 9 presents an effective data-driven approach for the automatic reconstruction of
detailed and expressive 3D lip shapes, along with the dense geometry of the entire face, from
monocular 2D video. Accurate lip shape is learned from a new database of high-quality multi-
view reconstructions using a robust gradient-domain non-linear regressor. The proposed regressor
is trained to infer accurate lip shapes from suboptimal monocular reconstructions and automati-
cally detected inner and outer 2D lip contours. Current results demonstrate superior quality when
compared to state-of-the-art face capture (Chapter 7), especially for challenging lip motions.

Discussion As stated in Chapter 1, capturing detailed facial models is the key to the success of
the digitization pipeline and any inaccuracies adversely affect the quality of the animation and edit-
ing step. In arbitrary monocular setups, reconstructing 3D models is per se an ill-posed problem,
since there is no information about depth and scene illumination. The presence of partial occlusions,
extreme head rotations, and lighting changes may render 3D face digitization even more difficult
and cause reconstruction artifacts. The state-of-the-art advances proposed in this thesis (see Chap-
ter 5 and Chapter 7) now allow us to estimate the incident lighting and track 3D models even for
challenging head rotations and expressive facial motions at high accuracy, thus assuring sufficient
realism in the animation and editing of digital faces. Furthermore, advances in lip tracking (see
Chapter 9) now enable us to handle strong deformations and disocclusions of the lips, which are of
paramount relevance in speech-related applications and photo-realistic facial animation. Remaining
challenges, such as harsh occlusions and local lighting changes, were not covered in this thesis and
are further discussed in Section 10.3.
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(a) (b) (c)

Figure 10.2: Limitations in the capture and animation of face rigs. (a) The eyes are not modeled but

rendered as a planar 3D surface with static albedo. (b) No tongue model is reconstructed. (c) The upper

and lower tooth rows are modeled with generic teeth proxies, which may lead to unrealistic 3D animations

for extreme poses.

Currently, the proposed framework, mainly the face capture step, runs offline. As stated in Chap-
ter 1, this thesis aims to obtain high-quality results with no (or minimal) user interaction, and not to
achieve realtime performance. The capture and animation of 3D face models from a few minutes
of 2D footage take several hours, which together is a drastic improvement compared to weeks of
manual work. However, immediate feedback is always a desirable feature and could help detect
any potential mistakes at early stages of the digitization process. Follow-up work in realtime face
capture has been conducted in this regard and is discussed in Section 10.2.1.

Advances presented in Chapter 8 enable the creation and animation of detailed and fully-controllable
3D face rigs from standard 2D video input. The reconstructed rigs, however, do not model the en-
tire human head and therefore lack important facial features, for instance, the tongue, the teeth, and
scalp hair. In Chapter 6, we have proposed a simple solution based on a generic 3D teeth proxy with
the appearance of the actor’s teeth to model part of the oral cavity. While such an approach pro-
duces plausible video compositing results in speech-related applications, it fails to produce realistic
facial animations under extreme facial expressions and non-frontal poses, as seen in Figure 10.2 (c).
Reconstructing realistic 3D teeth has been recently addressed in a joint work and is briefly reviewed
in Section 10.2.2. The reconstruction of other parts of the head, e. g., the tongue, remains an open
scientific question that will be examined in Section 10.3.2.

10.2 Extensions

This section briefly describes two relevant follow-up works concerning the challenges that were not
addressed in this thesis.

10.2.1 Realtime Performance Capture

State-of-the-art approaches, which solve a similar non-linear optimization problem to that presented
in Chapters 5 and 7, have demonstrated that a drastic reduction in computing time is feasible
by harnessing the data parallel processing power of the GPU [Thies et al. 2016; Wu et al. 2014;
Zollhöfer et al. 2014].

A joint project, which aims at realtime face capture in the wild, has been recently conducted with
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Figure 10.3: Reconstructed 3D teeth (right) from a set of photographs (left). The synthetic teeth accurately

fit the input data when overlaid over the images (center).

other members of the Graphics, Vision, and Video (GVV) group. In this project, we have im-
plemented the multilayer method introduced in Chapter 7, particularly the optimization of the
coarse and medium layer, on the GPU using the CUDA multi-threading model in a similar way
to [Thies et al. 2016]. However, we perform the optimization of the 3D face surface at the vertex
level.

To facilitate data parallelization, we replaced the Levenberg-Marquardt optimization stage described
in Section 7.6 by Gauss-Newton. At every step of the Gauss-Newton algorithm, an optimal linear
update δ̂ is obtained by solving the normal equations J⊤Jδ = −J⊤F via preconditioned conjugate
gradient, where J is the Jacobian matrix and F denotes the vector of residuals of the objective func-
tion. Both J⊤J and −J⊤F are efficiently computed on the GPU. Note that the parameters of the
different layers are now jointly optimized, as opposed to the multi-step optimization strategy de-
fined in Section 7.6. Such a data parallelization strategy now allows us to achieve realtime tracking
of the coarse and medium layer. We also expect a drastic reduction in the computation of the fine
layer in the future. We equally foresee that the algorithms proposed for facial animation and face
editing will benefit from the data parallelization on the GPU.

10.2.2 Beyond Face Capture: Model-based Teeth Reconstruction

The reconstruction of detailed teeth models has not received much attention but is crucial for the
digitization of avatars that must produce realistic expressions. In a recent co-authored paper pub-
lished at Siggraph Asia [Wu et al. 2016], we have presented a model-based, lightweight approach
for non-invasive reconstruction of person-specific high-quality tooth rows, and also gums, from a
short monocular video clip or a sparse set of photographs (see Figure 10.3). The reconstructed mod-
els can not only be used for digital actors, but also in medical applications for quick prototyping.

The key component of the proposed approach is a novel parametric tooth row prior for the upper
and lower teeth that is learned from a database of 86 high-quality dental scans. The prior encodes
the local shape variation of each tooth relative to an average tooth shape, the pose variation of each
tooth within the tooth row, as well as the global position and scale of the entire tooth row. Plausible
pose variation of each tooth is modeled as a multivariate Gaussian distribution and learned from the
database. Local shape variation is modeled using principal component analysis (PCA).

We also contribute a novel fitting approach that leverages the prior mentioned above as well as
automatically detected teeth contours to fit the tooth rows to the visible teeth regions while still
synthesizing plausible geometry for occluded teeth. Since teeth boundaries are not fixed, the op-
timization is implemented in an expectation-maximization framework. To account for shapes and
poses not explained by the prior, out-of-space deformation via Laplacian regularization is performed
in a second step. The deformed 3D model is colored via projective texturing and smoothly blended
in with the default colors of the model in occluded regions to obtain photo-realistic appearance for
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the teeth and gums (see Figure 10.3).

Note that this is the first method to reconstruct a personalized teeth and gum model at high fidelity
using a lightweight capture setup, e. g., a handheld device. These advances take us another step
closer to the digitization of photo-realistic 3D head avatars, though there are still limitations: The
teeth contours must be accurately detected to obtain high-quality 3D reconstructions. This is not al-
ways guaranteed for unconstrained input containing shadows and appearance changes in the mouth
interior. Additional constraints, such as inter-teeth collision and shape-from-specularity constraints,
could improve robustness and fitting quality. Furthermore, manual initialization is required to en-
sure convergence. Such a problem could be alleviated by anchoring the teeth to the tracked face
model. In fact, combining constraints of both models show great potential for accurate face tracking,
and we hope this will inspire future work.

10.3 Future Work and Outlook

In this section, we discuss other remaining aspects not covered in this thesis, including challenges in
the capture of the outer face and head geometry, as well as the reconstruction of other facial features,
e. g., tongue, eyes, and hair. We also share some thoughts on prospective research directions.

10.3.1 Challenges in Face Capture

In this thesis, we have assumed a pure Lambertian reflectance model to make face reconstruction
a mathematically tractable problem. However, the human face, especially the skin, is a complex
object that scatters and reflects incident light. As a consequence, the Lambertian assumption in-
troduces erroneous shape details in the presence of specular highlights and can also produce over-
smoothed face surfaces during rendering, as illustrated in Figure 10.4. Furthermore, extreme light-
ing, e. g., directional spotlights, can also lead to artifacts.

Given the problems mentioned above, a natural follow-up research topic is to decompose the face
in its intrinsic image components, i. e., diffuse shading, specular highlights, subsurface scattering
of skin, and possibly also albedo changes, as proposed in [Li et al. 2014; Li et al. 2015a]. Such
a decomposition could contribute not only to improve the tracking and the reconstruction of de-
tailed face models but also to edit video-realistic digital faces with advanced effects, e. g., make-
up [Li et al. 2015a]. Intrinsic face decomposition in video, however, is quite ambitious because
temporal consistency must be preserved, even in the presence of fast motion. Besides, robust,
yet efficient, parametrization of the intrinsic layers must also be guaranteed to reconstruct photo-
realistic face appearance models on videos of different length in a reasonable time. In this re-
spect, alternative parametrizations to conventional expensive physically-based models could be ex-
plored for efficiency. Some options may include the use of wavelet bases to represent specular
reflections [Li et al. 2013a] and texture space diffusion to simulate scattering of light in the skin
[Borshukov and Lewis 2003], particularly during rendering.

Another important assumption made in this thesis is that the face surface is not occluded by external
objects. The presence of occluding objects are known to cause artifacts in the generation of the
personalized albedo map as well as the reconstruction of fine-scale skin details, e. g., wrinkles. The
tracking algorithms proposed in Chapter 7, however, are still robust to mild occlusions, such as hair
on the forehead and light beards, thanks to the use of dense photometric correspondences. Strong
occlusions, e. g., hands in front of the face, pose a major problem for the tracking of the coarse- and
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Figure 10.4: Limitations of the Lambertian reflectance assumption in the reconstruction and synthesis of

faces. Left to right: Reconstruction artifacts due to specular highlights on the face. Renderings with over-

smoothed facial details.

the medium-scale layer, since these steps rely on landmark detection algorithms and priors that can
only understand image cues having distinctive facial features.

Very recently, Saito et al. [2016] employed deep learning to explicitly segment the face image from
occluding objects (e. g., hands, hair, glasses, and shadows) and showed that a clear foreground and
background separation could drastically help increase the robustness of tracking in 2D videos. Even
though they mainly show the potential of the segmentation for regressing coarse 3D shape, such
a segmentation could additionally be employed to discard photometric constraints in non-facial
regions to allow a reconstruction of fine-scale surface details that is free of artifacts. There are still
some important aspects to be considered. As the face segmentation works on a per-frame basis,
flickering boundaries appear when generating the segmentation masks, especially when occluding
objects suddenly (dis)appear, resulting in high-frequency jitter during 3D shape estimation. As such,
temporal priors should additionally be incorporated to enforce temporal robustness during tracking.
Still, we can anticipate that further advances in face segmentation will open up new directions in
the capture of 3D digital faces from in the wild setups.

10.3.2 Beyond Face Capture: Tongue, Eyes, and Hair Reconstruction

The capture framework proposed in this thesis shares the limitation of related work that no detailed
eye(lid) and tongue models can be reconstructed from a monocular video alone (see Figure 10.2).
Possible approaches to tackle this problem are explored in the following.

The synthesis of photo-realistic tongues is a desired feature in facial animation that can help im-
prove not only realism but also speech comprehension. Lighting changes and recurrent occlusions
in the oral cavity, however, make the reconstruction of tongues from visual cues alone difficult to
achieve. As such, tongue models are typically synthesized from speech using a large corpus of high-
resolution 3D faces that are correlated to audio data [Anderson et al. 2013a; Ypsilos et al. 2004].
Kawai et al. [2015] alternatively leveraged a large image set of 2D tongue and mouth deforma-
tions connected to audio to render quasi 3D animations of the mouth interior during speech. These
techniques, however, mainly focus on plausible speech animations, not on the synthesis of photo-
realistic 3D tongue models. A recent work proposed by Hewer et al. [2014; 2016] can now deform
a template mesh to MRI scans of the tongue muscle and learn a multilinear model that encodes
the shape and motion of the tongue extracted from multiple persons during speech. This opens
up a world of opportunities in mouth capture from video. In this thesis, we have already learned
that model-based approaches with strong priors offer a good trade-off between reconstruction qual-
ity and robustness when solving ill-posed problems like tongue reconstruction. As the tongue is
mostly non-visible, however, additional visual constraints in the lip and jaw region could be needed
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to estimate the motion of the tongue. The correlation of the tongue motion to audio units, e. g., tri-
phones [Bregler et al. 1997] or variable-length phonemes [Ma et al. 2006; Taylor et al. 2012], could
also increase accuracy and help capture coarticulation effects. Still, several challenges remain. The
appearance of the tongue is hard to capture due to occlusions and shadows, but it could be acquired
in advance from HD images of the oral cavity. Handling collisions with the lips and the teeth is also
a non-trivial task.

In this thesis, the eye region is represented as a simple 3D planar surface with a static eye albedo
map, which is then rendered under the estimated illumination (or any user-defined lighting con-
ditions), as shown in Figure 10.2 (a). Specially scanned eye models [Bérard et al. 2014] or syn-
thetic eyeball templates [Ichim et al. 2015] could be textured with an estimate or the actual color of
the actor’s eyes to produce photo-realistic animations of the human eye. To improve realism, the
movement of the eyes can be controlled by tracking the gaze of the actor in video, as proposed in
[Wang et al. 2016]. The reconstruction of a detailed, actor-specific eye model from a single video
is still very ambitious due to fast head motion, partial occlusions, and person-specific appearance
patterns in the sclera and the iris. Bérard et al. [2016] have recently shown that photo-realistic,
personalized eye models can be accurately captured from single images by leveraging a database of
high-quality pre-captured eye scans. This database allows for the creation of a statistical prior that
models detailed shape and appearance and that can be fitted to images using manual annotations.
So far, this is just the first step towards automatic digitization of eyes in unconstrained setups. It
can be expected that when combined with recent advances in eye-gaze tracking [Wang et al. 2016]
photo-realistic eye capture will be possible in arbitrary 2D video footage.

Another relevant aspect beyond the scope of this thesis is the reconstruction of hair models, which
is non-trivial due to the convoluted structures of the hair. Recent advances in the area now al-
low the reconstruction of static 3D hair models from single images. Here, we can find genera-
tive approaches that combine shape-from-shading based refinement with helical 3D priors to re-
construct fine-grained hair models [Chai et al. 2015]. We can also find hybrid methods that first
search and combine candidate exemplars from a large 3D database and then optimally deform the
combined model based on dense correspondences and estimated orientations of the hair strands
[Chai et al. 2016; Hu et al. 2015]. In principle, such approaches could be seamlessly integrated into
the proposed face capture framework to add a static hair layer to the 3D face models. Such a hair
layer could be obtained either from a single image or by averaging over multiple frames. While
this strategy is feasible and sufficient for short hair styles, the reconstruction of long hair styles in
unconstrained video may pose a problem as it is view dependent and lacks physics-based priors.
As a result, current approaches may fail to capture temporally-coherent hair dynamics and learn
hair strand motion that correlates with the head pose. Alternatively, dynamics could be simulated
with ad-hoc physics models during animation [Chai et al. 2014] or approximated by interpolating
between static reconstructions [Cao et al. 2016]. Learning possible deformations from video is also
an interesting future avenue that could replace complex modeling and physically-based simulations.

The interest in modeling and capturing hair, eyes, and tongues from optical data is quickly growing
and drawing attention to the scientific community. We can anticipate that hybrid approaches that
fully exploit discriminative and generative (prior) models from high-quality examples will be the
key to the reconstruction of robust, accurate, and detailed head models from unconstrained video
setups.
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10.4 Closing Remarks

The work presented in this thesis has been motivated by current limitations in the digitization
pipeline, i. e., restrictive capture and manually extensive work, and also by the inability of lightweight
approaches to create photo-realistic virtual faces in unconstrained setups. Several scientific contri-
butions, which significantly advance the state of the art in monocular facial performance capture
and face capture-based video editing, have been proposed in Chapters 4–9 to deal with the limita-
tions mentioned above. In fact, we have improved the toolbox available for creating photo-realistic
human face avatars from unconstrained 2D video footage.

Results attained on challenging application scenarios have confirmed the scientific advances in
the field and have shown great potential to automatize the digitization process. Animation artists
can now utilize the results obtained by our algorithms as high-quality prototypes to sketch facial
animations and editing effects without going through the entire conventional digitization process in
post-production, thus saving money and weeks of strenuous effort. Advances in the field also help
democratize the digitization technology.

Automatic digitization of photo-realistic human faces from monocular video has also recently
drawn the attention of other researchers in the field. Interesting follow-up work has been car-
ried out towards full head avatar digitization [Bérard et al. 2016; Cao et al. 2016; Ichim et al. 2015;
Wu et al. 2016]. There are still many challenges that need to be solved to digitize characters any-
where and everywhere at high fidelity, as discussed in Section 10.3. We still believe that the pro-
posed scientific contributions have paved the way for a new generation of lightweight, automatic
techniques for capture, animation, and editing in movies and games. Contacts from VFX studios
of Technicolor (MPC and The Mill) have confirmed the importance of our contributions and have
already expressed great interest in this work.

We hope that this thesis motivates the development of more sophisticated methods, e. g., the fusion
of generative and discriminative models, to digitize photo-realistic virtual models of entire heads
of a quality comparable to the standard pipeline in post-production, even for in the wild monocular
setups.
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Appendix A
Multilayer Model-based Face

Capture in Unconstrained
Setups

A.1 Test Sequences: Description and Specifications

The approach presented in Chapter 7 was evaluated on 9 different sequences, shown in Figure A.1.
They consist of five videos (SUBJECT11 , SUBJECT22 , SUBJECT33 , SUBJECT44 , SUBJECT55) cap-
tured indoors and outdoors under unknown and general lighting, and four legacy videos (ARNOLD

YOUNG6, ARNOLD OLD7, OBAMA8, BRYAN9) freely available on the Internet and downloaded
from YouTube. Further descriptions of the videos and more specifications are provided below.

SUBJECT1 Studio sequence captured indoors and employed in [Valgaerts et al. 2012b]. A stereo
reconstruction of this sequence is available on the Internet. The sequence consists of 714 frames
with a resolution of 1088×1920 pixels. The images were downsampled to half their resolution to
track the coarse and medium layer, but all other steps use full resolution images.

SUBJECT2 Studio sequence captured indoors and used in Chapters 5–6. An audio channel is also
available. The complete sequence consists of 2000 frames with a resolution of 1088×1920 pixels.
The images were downsampled to half their resolution to track the coarse and medium layer, but all
other steps use full resolution images.

1
http://gvv.mpi-inf.mpg.de/projects/FaceCap/

2
http://gvv.mpi-inf.mpg.de/projects/MonFaceCap/

3
http://graphics.ethz.ch/publications/papers/paperBee11.php

4
http://gvv.mpi-inf.mpg.de/projects/MonFaceCap/

5
http://www.disneyresearch.com/project/facial-performance-enhancement/

6
https://youtu.be/BkX2CMCXhM8

7
https://youtu.be/EgvdhvKreJI

8
https://youtu.be/d-VaUaTF3_k

9
http://students.cse.tamu.edu/fuhaoshi/FacefromVideo/index.htm
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Figure A.1: Test Sequences. Top row (from left to right): ARNOLD YOUNG, ARNOLD OLD, OBAMA, and

BRYAN. Bottom row (from left to right): SUBJECT1, SUBJECT2, SUBJECT3, SUBJECT4, and SUBJECT5.

SUBJECT3 Another studio sequence captured indoors and employed in [Beeler et al. 2011]. Note
that the actual capture setup consists of 6 high-quality cameras, one recording the actor from a
frontal view. The sequence consists of 347 frames with a resolution of 864× 1174 pixels. The
images were downsampled to half their resolution to track the coarse and medium layer, but all
other steps use full resolution images.

SUBJECT4 Outdoor sequence employed in Chapter 5 (and also in [Shi et al. 2014]). Here the
actor was recorded with a GoPro Hero 3 camera from a frontal view; however, the sequence also
shows challenging out-of-plane head rotations. This sequence consists of 651 frames at full HD
resolution (i. e., 1920× 1080 pixels). The images were downsampled to half their resolution to
track the coarse and medium layer, but all other steps use full resolution images.

SUBJECT5 This sequence shows a cluttered scene captured outdoors with an iPhone camera and
it was employed in [Bermano et al. 2014]. It consists of 806 frames at full HD resolution (i. e.,
1920×1080 pixels). The images were downsampled to half their resolution to track the coarse and
medium layer, but all other steps use full resolution images.

ARNOLD YOUNG This video shows an interview with Arnold Schwarzenegger about the launch
of the movie “Predator”. The sequence consists of a subset of 1489 frames with a resolution of
480×360 pixels. The video was processed at its original full resolution in all steps of the pipeline.

ARNOLD OLD This video shows Arnold Schwarzenegger’s message for DECC’s Energy Effi-
ciency Mission Launch. The sequence consists of a subset of 1000 frames with a resolution of
1280×720 pixels. The video was processed at its original full resolution in all steps of the pipeline.

OBAMA This video shows a greeting address by president Obama who commemorates Indepen-
dence Day on July 4. The sequence consists of a subset of 961 frames with a resolution of
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1280×720 pixels. The video was processed at its original full resolution in all steps of the pipeline.

BRYAN This video shows the actor Bryan Lee Cranston talking about the end of his journey with
the TV series “Breaking Bad”. The pipeline was run on a subset of 702 frames at a resolution of
640×360 pixels.

A.2 Energy Function: Derivatives

A.2.1 Data Objective

Feature Term Let us first rewrite Equation 7.13, as follows:

E f eature(X ) =
L

∑
ℓ=1

(

f
v̄x,nℓ

v̄z,nℓ

+ cx−yx,ℓ

)2

+
L

∑
ℓ=1

(

f
v̄y,nℓ

v̄z,nℓ

+ cy−yy,ℓ

)2

, (A.1)

where f denotes the focal length, c ∈ R
2 is the principal point and v̄ = Rv̂+ t. Note that R and t

denote the rotation matrix and translation vector, respectively.

Let φx,nℓ = f
v̄x,nℓ
v̄z,nℓ

+cx, φy,nℓ = f
v̄y,nℓ
v̄z,nℓ

+cy, ∀ℓ, and a = {x,y,z} be one axis of the Cartesian coordinate

system. The derivatives with respect to α , δ and τ then read as follows:
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(A.2)

where
∂ v̄nℓ

∂αk

= RÊs
nℓ,k

and Ês = EsΣs .

Note that Ês
nℓ,k
∈ R

3 is the vector corresponding to the k-th column of Ês at vertex index nℓ.
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(A.3)

where
∂ v̄nℓ

∂δ k

= RÊe
nℓ,k

and Êe = EeΣe .

Note that Êe
nℓ,k
∈ R

3 is the vector corresponding to the k-th column of Êe at vertex index nℓ.
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3.

∂E f eature(X )

∂τa,k
= 2 f ·

L

∑
ℓ=1

(φx,nℓ −yx,ℓ) ·

(
∂ v̄x,nℓ

∂τa,k
· v̄z,nℓ −

∂ v̄z,nℓ

∂τa,k
· v̄x,nℓ

)

·
1

v̄2
z,nℓ

+2 f ·
L

∑
ℓ=1

(φy,nℓ −yy,ℓ) ·

(
∂ v̄y,nℓ

∂τa,k
· v̄z,nℓ −

∂ v̄z,nℓ

∂τa,k
· v̄y,nℓ

)

·
1

v̄2
z,nℓ

,

∀a = {x,y,z}, ∀k ∈ (1,Kc) , (A.4)

where
∂ v̄nℓ

∂τa,k
= R1aHn,k .

Here Hn,k ∈ R is the n-th element of Hk and 1a ∈ R
3, ∀a = {x,y,z} are mutually orthogonal

unit vectors corresponding to the x-, y- or z-axis of the Cartesian coordinate system (e. g.,
1x = [1,0,0]⊤), and τa,k is the k-th deformation coefficient that parametrizes deformations in
the a-axis.

Photo-consistency Term Let us first rewrite Equation 7.12, as follows:

Ephoto(X ) =
N

∑
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2
2 (A.5)

=
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=
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γω
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, (A.7)

where cω
n is the skin albedo at vertex n̂n corresponding to the ω-th color channel. Yb(n̂n) and γb, ∀b

denote the spherical harmonics (SH) functions (parametrized in terms of n̂n) and their corresponding
weights, respectively. The SH functions are shown in Table A.1. Note that φx,n = f

v̄x,n

v̄z,n
+ cx and

φy,n = f
v̄y,n

v̄z,n
+ cy are the x and y coordinates of vertex v̄n projected onto the image plane.

Let us define ñn = ∑
|A|
h=1(v̄n− v̄1

h)× (v̄n− v̄2
h) and dn =‖ ñn ‖2, ∀n as the non-normalized normal

at vertex v̄n and its respective normalization factor, where A denotes the set of the triangle faces
adjacent to v̄n, and v̄1

h, v̄2
h are the two vertices of the h-th triangle face adjacent to vertex v̄n.

The derivatives with respect to β , γ , α , δ and τ then read as follows:
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where L̂n = ∑B2

b=1 γb ·Yb(n̂n), Ê = ErΣr and ◦ denotes a point-wise multiplication. Note that
Ên,k ∈ R

3 is a RGB vector corresponding to the k-th column of Ê at vertex index n.
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Table A.1: Spherical harmonics functions Yb(n̂) and their derivatives
∂Yb(n̂)
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are the image gradients computed using Sobel operators,

and 〈·〉 represents the dot product. The derivatives of ∂Yb(n̂)
∂α are shown in Table A.1. Note
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e,2
h,k) .
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The derivatives of ∂Yb(n̂)
∂τ

are shown in Table A.1. Note that H1
h,k,H

2
h,k ∈ R

3 are three copies

of an entry of Hk whose row index corresponds to that of vertex v̄1
h, v̄

2
h, respectively.

A.2.2 Prior Objective and Boundary Constraint

Probabilistic Shape Prior: Coarse-scale Model The derivatives Eprob1 with respect to α , β and
γ are:

1.
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To compute the derivatives of the sparsity prior term in the Levenberg-Marquardt algorithm, we
redefine Equation 7.17 as follows:
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where υ
(i)
k is an iterative weight assigned to δ 2

k at each i-th iteration. The derivatives of Esparse with
respect to δ then read as follows:
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At the first iteration υ
(0)
k = 1. In the next iterations, υ
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Probabilistic Shape Prior: Medium-scale Model The derivatives of Eprob2 with respect to τ
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Boundary Constraint The derivatives of Ebound with respect to δ read as follows:

1.
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Appendix B
Beyond Face Capture: Accurate

Lip Tracking

B.1 High-quality Lip Database: Training Examples

All lip motions that were captured to train the radial basis functions network presented in Chapter 9
are given in Table B.3, Table B.1, Table B.2, and Table B.4. The motions were performed sequen-
tially by the different subjects (S1, S2, S3, and S4), as listed in the corresponding tables (please
refer to the additional supplemental video at the project website for more details 1). To train the
generalization regressor (GR), we stacked the captured data of three or four of the subjects (three if
the test subject is one out of the four subjects) in the following order: S2, S3, S1, S4. The multiple
subject regressor (MS) uses the same order.

1http://gvv.mpi-inf.mpg.de/projects/MonLipReconstruction/
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Table B.1: High-quality lip database: Performed lip motions - Subject S2.

Action Features # Frames

Roll lips Outwards to inwards; mouth closed 51
Roll lips Outwards to inwards; mouth half-open 47
Roll lips Inwards to outwards; mouth open 39
Smile Mouth closed 17
Smile Mouth half-open 49
Smile Mouth open 51
Move left Mouth closed 30
Move right Mouth closed 32
Move left Mouth half-open 30
Move right Mouth half-open 26
Move left Mouth open 28
Move right Mouth open 21
Bite Lower lip; mouth closed 26
Open Mouth closed to half-open 76
Kiss Mouth closed 33
Round lips Mouth closed 27
Round lips Mouth half-open to open 74
Move lip Lower lip down; mouth closed 30
Move lip Upper lip up; mouth closed 31
Pull corners Mouth closed 33
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Table B.2: High-quality lip database: Performed lip motions - Subject S3.

Action Features # Frames

Kiss Mouth closed 25
Smile Mouth closed 32
Smile Mouth half-open 25
Smile Mouth open 27
Move left Mouth closed 18
Move left Mouth half-open 17
Move left Mouth open 27
Move right Mouth closed 17
Move right Mouth half-open 24
Move right Mouth open 18
Pout Mouth closed 25
Roll lips Inwards; mouth closed 15
Roll lips Inwards; mouth half-open 20
Roll lips Inwards; mouth open 25
Roll lips Outwards; mouth closed 20
Roll lips Outwards; mouth half-open to open 76
Move lips Both up; mouth closed 13
Move lip Lower lip down; mouth closed 22
Move lip Upper lip up; mouth closed 21
Pull corners Mouth closed 21
Pull corner Right; mouth closed 7
Pull corner Left; mouth closed 18
Open Mouth half-open to open 34
Open Mouth open to wide open 30
Open Mouth closed to half-open 42
Viseme f Exaggerated; mouth half-open to closed 22
Viseme S Exaggerated; mouth half-open to closed 18
Viseme m Exaggerated; mouth half-open to closed 18
Viseme T Exaggerated; mouth half-open to open 12
Viseme O: Exaggerated; mouth half-open 13
Viseme I: Exaggerated; mouth half-open 14
Viseme æ Exaggerated; mouth half-open to open 19
Viseme @U Exaggerated; mouth half-open to open 16
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Table B.3: High-quality lip database: Performed lip motions - Subject S1.

Action Features # Frames

Roll lips Outwards; mouth half-open 48
Roll lips Outwards; mouth open 28
Move lips Both up; mouth closed 14
Move lip Lower lip down; mouth closed 24
Move lip Upper lip up; mouth closed 20
Pull corners Mouth closed 43
Pull corner Left; mouth closed 29
Pull corner Right; mouth closed 19
Open Mouth closed to half-open 34
Open Mouth half-open to wide-open 54
Kiss Mouth closed 37
Smile Mouth closed 23
Smile Mouth half-open 38
Smile Mouth open 23
Move left Mouth closed 31
Move left Mouth half-open 21
Move left Mouth open 32
Move right Mouth closed 34
Move right Mouth half-open 26
Move right Mouth open 34
Pout Mouth closed 29
Roll lips Inwards; mouth closed 25
Roll lips Inwards; mouth half-open 36
Roll lips Inwards; mouth open 34
Roll lips Outwards; mouth closed 31
Viseme T Exaggerated; mouth half-open 17
Viseme I: Exaggerated; mouth closed to half-open 18
Viseme @U Exaggerated; mouth closed to open 32
Viseme f Exaggerated; mouth closed 15
Viseme S Exaggerated; mouth closed 16
Viseme m Exaggerated; mouth half-open to closed 32
Viseme O: Exaggerated; mouth closed to half-open 21
Viseme æ Exaggerated; mouth half-open to open 24
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Table B.4: High-quality lip database: Performed lip motions - Subject S4.

Action Features # Frames

Kiss Mouth closed 18
Smile Mouth closed 22
Smile Mouth half-open 31
Smile Mouth open 31
Move left Mouth closed 18
Move left Mouth half-open 22
Move left Mouth open 26
Move right Mouth closed 18
Move right Mouth half-open 31
Move right Mouth open 24
Pout Mouth closed 22
Roll lips Inwards; mouth closed 28
Roll lips Inwards; mouth half-open 25
Roll lips Inwards; mouth open 25
Roll lips Outwards; mouth closed 29
Roll lips Outwards; mouth half-open 20
Roll lips Outwards; mouth open 37
Move lips Both up; mouth closed 24
Move lip Lower lip down; mouth closed 20
Move lip Upper lip up; mouth closed 17
Pull corners Mouth closed 19
Pull corner Left; mouth closed 19
Pull corner Right; mouth closed 25
Open Mouth closed to half-open 50
Open Mouth half-open to wide-open 48
Open Sticky lips; mouth closed to half-open 24
Viseme f Exaggerated; mouth half-open to closed 21
Viseme S Exaggerated; mouth closed 23
Viseme m Exaggerated; mouth half-open to closed 22
Viseme T Exaggerated; mouth half-open 21
Viseme O: Exaggerated; mouth closed to half-open 23
Viseme I: Exaggerated; mouth closed 17
Viseme æ Exaggerated; mouth half-open to open 27
Viseme @U Exaggerated; mouth closed to open 18
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SUMNER, R. W. AND POPOVIĆ, J. (2004): Deformation Transfer for Triangle Meshes. ACM Trans.

Graph. 23 (3), 399–405 19, 22, 34, 38, 110, 111, 133, 147, 157

SUWAJANAKORN, S., SEITZ, S. M. AND KEMELMACHER-SHLIZERMAN, I. (2015): What Makes
Tom Hanks Look Like Tom Hanks. In Proceedings of the 2015 IEEE International Confer-

ence on Computer Vision, ICCV ’15, 3952–3960 39

SUWAJANAKORN, S., SHLIZERMAN, I. K. AND SEITZ, S. M. (2014): Total Moving Face Re-
construction. In Proceedings of the 13th European Conference on Computer Vision Vol-
ume 8692,, 796–812 27, 109, 124, 135

TAN, X. AND TRIGGS, B. (2010): Enhanced Local Texture Feature Sets for Face Recognition
Under Difficult Lighting Conditions. IEEE Trans. Image Processing, 19 (6), 1635–1650 49

TAYLOR, S. L., MAHLER, M., THEOBALD, B.-J. AND MATTHEWS, I. (2012): Dynamic Units
of Visual Speech. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Com-

puter Animation, SCA ’12, 275–284 35, 87, 168

TENA, J. R., TORRE, F. DE LA AND MATTHEWS, I. (2011): Interactive Region-based Linear 3D
Face Models. ACM Trans. Graph. 30 (4), 76:1–76:10 32

THEOBALD, B.-J., MATTHEWS, I., MANGINI, M., SPIES, J. R., BRICK, T. R., COHN, J. F. AND

BOKER, S. M. (2009): Mapping and manipulating facial expression. Language and Speech,
52 (2–3), 369–386 37, 91, 103

THIES, J., ZOLLHÖFER, M., STAMMINGER, M., THEOBALT, C. AND NIESSNER, M. (2016):
Face2Face: Real-time Face Capture and Reenactment of RGB Videos. In Proceedings of the

2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’16 2, 32, 43,
101, 164, 165



Bibliography XIV

THIES, J., ZOLLHÖFER, M., NIESSNER, M., VALGAERTS, L., STAMMINGER, M. AND

THEOBALT, C. (2015): Real-time Expression Transfer for Facial Reenactment. ACM Trans.

Graph. 34 (6), 183:1–183:14 2, 9, 10, 14, 15, 22, 32, 43, 118

TIAN, Y.-L., KANADE, T. AND COHN, J. F. (2000): Robust Lip Tracking by Combining Shape,
Color and Motion. In Proceedings of the 3rd Asian Conference on Computer Vision, ACCV
’00, 1–6 29

VALGAERTS, L., BRUHN, A., MAINBERGER, M. AND WEICKERT, J. (2012a): Dense Versus
Sparse Approaches for Estimating the Fundamental Matrix. Int. J. Comput. Vision, 96 (2),
212–234 70

VALGAERTS, L., BRUHN, A., ZIMMER, H., WEICKERT, J., STOLL, C. AND THEOBALT,
C. (2010): Joint Estimation of Motion, Structure and Geometry from Stereo Sequences.
In Proceedings of the 11th European Conference on Computer Vision Volume 6314,, 568–
581 76

VALGAERTS, L., WU, C., BRUHN, A., SEIDEL, H.-P. AND THEOBALT, C. (2012b): Lightweight
Binocular Facial Performance Capture Under Uncontrolled Lighting. ACM Trans. Graph.

31 (6), 187:1–187:11 14, 20, 21, 51, 68, 69, 76, 77, 78, 82, 83, 84, 106, 115, 118,
120, 124, 162, 173

VALLET, B. AND LÉVY, B. (2008): Spectral Geometry Processing with Manifold Harmonics. Com-

puter Graphics Forum, 27 (2), 251–260 111

VICON: Vicon Motion Systems Ltd. https://www.vicon.com 18

VIOLA, P. AND JONES, M. J. (2004): Robust Real-Time Face Detection. Int. J. Comput. Vision,
57 (2), 137–154 24, 48

VLASIC, D., BRAND, M., PFISTER, H. AND POPOVIĆ, J. (2005): Face Transfer with Multilinear
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