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Preface

Motivation for the Book
Traditionally, the database group at the University of Twente researched prob-
lems of data retrieval, where there is no uncertainty about the relationship
between the query and the results. In the 1990s, the group started to look into
non-traditional database applications, with a focus on multimedia databases.
A notable event from that time is the 1995 Multimedia Advanced Course, held
in a very nice hotel in Boekelo, a village close to the university. This summer
course, with famous lecturers like Christos Faloutsos, Karl Aberer and Wolf-
gang Klas, resulted in the book Multimedia Databases in Perspective (1997).
This edited volume was however targeted at fellow researchers, and not very
well suited for the average Master of Science program in computer science.

We quickly realized that one of the key problems in multimedia databases
is search, and that the proposed solutions to the problem of multimedia infor-
mation retrieval span a rather wide spectrum of topics outside the database
area, ranging from information retrieval and human computer interaction to
computer vision and pattern recognition. While we have taught our students
a varied mix of these topics over the years, often teaming up with colleagues
from the Human Media Interaction group, we never managed to find the MSc
level textbook covering a sufficiently broad range of topics without getting
superficial.

As a result, we have resorted year after year to collections of scientific arti-
cles selected on an ad-hoc basis. When the co-editors Henk Blanken and Ling
Feng were faced to organize again a course to address a variety of topics related
to multimedia search, they realized that more than 10 years passed by since
the advanced course, but without a text book on multimedia retrieval suited
for an audience of MSc students in computer science. So, we decided to create
this text book ourselves! We gathered a group of researchers from University
of Twente and colleagues affiliated to institutes with which we collaborated
in research projects, to cover the full spectrum of relevant research.
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Goals of the Book
Let us return for a moment to traditional database systems. These systems
allow queries to retrieve data by directly addressing the content of structured
data. For obvious reasons, this is not possible for objects like images, songs,
and video clips. The following figure pictures important steps in multimedia
storage and retrieval:
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Multimedia objects are archived, but also undergo an indexing process. In-
dexing applied to a multimedia object generates metadata that is stored in an
index. The major task of metadata is to describe the content of multimedia
objects in a (semi)-structured way. Metadata play a very important part in
multimedia retrieval. Instead of addressing the content of multimedia objects
directly, a user queries metadata. When the metadata satisfies certain restric-
tions, the corresponding multimedia objects may, but also may not, satisfy the
user’s information need. User satisfaction is the key indicator for the quality
of the retrieval process.

The goals of this book are to give state-of-the-art answers to the following
questions:

• How can we describe the content of text, speech, images, and video?
• What quality of the retrieval process can be achieved by now?
• How can users interact with a system and how does interaction obey

ownership rights?

Our Approach
We keep the three questions in mind. The first question deals with metadata.
Metadata describes the content of multimedia objects and can be derived man-
ually or automatically. To the first class belong descriptive data, like name
of author or creation date, and annotated text. In this book we explain in-
formation retrieval techniques to enable exploitation of annotated text. The
second class consists of features and we distinguish low level features like color
histograms and high level features like faces or trees. High level features are
more meaningful to the end user and in this book we strongly emphasize
the derivation and use of high level features. In fact, we deal with low level
features only to capture high level features.
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We apply mathematical techniques to extract features in media like im-
age and audio. As known, video is composed of a sequence of images often
accompanied by audio and subtitling (text). To derive high level features in
video we use mathematics to combine evidence coming from three sources.
So, mathematics plays a great part in feature extraction.

The second question addresses quality. We consider many aspects regard-
ing the quality of a multimedia system. We observe that, in the end, it is the
user who decides whether a retrieved object is relevant or not. So, when con-
sidering the quality of a system the end user must be strongly involved. As a
consequence we explain how to perform user oriented experiments. Moreover,
we report on the value of approaches by showing results of experiments.

Regarding the last question we mention the following. On one hand, users
need to interact with systems to phrase their information need. In that re-
spect we explain several interaction modes. But observe also that not every
multimedia resource is freely available to everyone. So, we pay attention to
certain standards, which are developed to guarantee the rights owners have.
On the other hand, the system must consider the limitations of the output
devices available to the user in order to present retrieved objects in a suitable
way.

Organization of the Book
The book consists of thirteen chapters. After the Introduction we treat three
languages to describe metadata (Dublin Core, RDF, MPEG-7). Chapter 3
gives an overview of important mathematical techniques in Pattern Recog-
nition like Support Vector Machines, Hidden Markov Models, and Dynamic
Bayesian Networks. The next chapter summarizes the state-of-the-art Infor-
mation Retrieval techniques. Chapter 5 is a long chapter dealing with images
and concentrating on image analysis. It gives a classification of objects occur-
ring in images and explains detection algorithms. Chapter 6 offers a math-
ematical approach to detect features by combining evidence from text and
images. Chapter 7 is devoted to audio processing, in this case mainly speech
recognition. The Chapters 8, 9, and 10 cover video applications. Evidence for
high level features in video may come from more than one source. The chap-
ters describe approaches to combine evidence. Chapter 11 gives a description
of interactions with a system and the presentation of results. Digital rights
management is the topic of Chapter 12. The final chapter handles the difficult
topic of evaluation of multimedia systems. Besides theoretical considerations,
many evaluation efforts are described ranging from important test sets to eval-
uation procedures as pursued by, for instance, the Text Retrieval Conference
(TREC).

Intended Audience
Writing the book, we had master students in computer science in mind. Maybe
the mathematics part is a little heavy, but this difficulty is certainly manage-
able. We think also that the book is interesting for students of adjacent studies
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like for instance electrical engineering, mathematics, and library sciences. Fi-
nally, PhD students and fellow researchers intending to broaden their scope
and/or looking for a research topic in multimedia retrieval may find the book
inspiring.

Guidelines for Teaching
The book can be lectured from the first chapter to the last. It depends on the
time available whether or not all chapters can be covered. When insufficient
time is available we advice to skip Chapter 2 as other chapters do not actually
use the languages for metadata too much. Chapter 6 gives a nice application
of mathematics to combining evidence, but is not necessary to understand
subsequent chapters. Chapters 8, 9, and 10 cover three video applications, one
per chapter. If time is a scarce resource you can consider to skip a chapter.
Depending on the interest of teacher and/or students, Chapter 12 (digital
rights management) can be skipped also.

The Website http://multimedia-retrieval.utwente.nl presents exer-
cises to help the students to master the material. The exercises range from
simple questions to projects. We will improve the exercises year by year using
results from our own course.

We are proud of the final result, and hope that this book will find its
way into the classrooms of all these institutes struggling with setting up a
course that gives credit to the diversity of expertise required for understanding
multimedia retrieval.
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Introduction

Henk Blanken, Ling Feng, Maurice van Keulen, and Henk Ernst Blok

University of Twente

1.1 Introduction
People interact with multimedia every day: reading books, watching televi-
sion, listening to music, etc. For quite some time we have faced astonishing
technological developments causing an explosion of digital multimedia infor-
mation. Large amounts of text, images, speech, and video are converted to
digital form. Think of catalog information of libraries, information about mu-
seums with nice pictures of paintings or famous speeches that are available
on DVD. Moreover, much information is produced directly in digital form:
TV programs, audio-visual data from surveillance cameras, photos. Major
advantages of digitized data over analog data are easy storage, processing and
sharing of data. Multimedia applications influence our daily life. Consider for
example the following scenarios.

1.1.1 Journalism
This scenario is based on a field study by Markkula and Sormunen [12]. A
journalist has to write an article about the influence of drinking alcohol on
driving. Of course, she does some investigations. She collects news paper arti-
cles about accidents, scientific reports, television commercials broadcasted on
behalf of the government, and interviews with policemen and medical experts.

After the article has been written, she has to illustrate it with one or
more photos. She searches in the publishers’ photo archives, and probably
tries the archives of some stock footage companies as well. The selection of
“good” photos from the candidate set is very subjective, and depends mainly
on visual and emotional attributes like “shocking”, “funny”, and so on.

1.1.2 Watching a TV program
Large digital video libraries will become more and more publicly available
as a result of recent technology developments in digital video, Internet, and
computers. The presentation of already recorded TV programs is possible.
This implies the storage and use of huge collections of TV programs in digital
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libraries. Consider a viewer who wants to see a movie. Sometimes she may be
able to identify the movie precisely by providing the title and the name of the
director. Another time the viewer may not be so sure. She is, however, able
to define the type of movie (e.g., adventure). If the library “knows” her taste,
“knows” the movies she has already seen, then some sensible suggestions can
be made to her. Still another time the viewer intends to explore science fiction,
a type of movie unfamiliar to her. However, her friend Cathy is very familiar
with science fiction. So, she states that she would like to see a science fiction
movie her friend Cathy favors.

1.1.3 Searching on the Web
Finding relevant information on the World-Wide Web is often a frustrating
task, partly due to the unstructured character of the data involved. Consider
the Australian Open web-site (see http://www.ausopen.org/) that contains
multimedia objects like text-fragments, images, and videos. These multime-
dia data show the latest results of players competing at this international
tennis tournament. We would like to access the Australian Open site in a
user friendly way using terms like player, match, and profile. Related to these
entities are attributes, like a player’s name, photo, age, and history, etc. Fur-
thermore, interesting events can be extracted from the multimedia data. Think
of players approaching the net or smashing the tennis ball. The integration of
conceptual terms and interesting events delivers the necessary ingredients to
effectively answer a content based query such as “Give information about fe-
male American tennis players and include video-segments showing the player
going to the net”.

1.2 Retrieval problem
Retrieval of multimedia data is different from retrieval of structured data.
Retrieving data from a (relational) database is rather “easy”. The database
structure is given and using a language like SQL a user can specify which data
she requires. Suppose that there is a relation which keeps information about
employees:

EMPLOYEE (Name: char(20), City: char(20), Photo: image)

Selecting employees living in the city of Amsterdam results in a query in
which the condition WHERE City = "Amsterdam" appears. Use is made of the
fact that the city of Amsterdam is identified by the text “Amsterdam”. A
problem arises when you want to select employees having a certain value for
the attribute Photo: specifying an image value is practically impossible. So,
for attributes with data type image, sound, video, etc. the “normal” way
of retrieving data does not work. This book concentrates on techniques that
enable retrieval of multimedia data. We start with taking a more detailed look
at various types of multimedia data.
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1.3 Characteristics of Media Data
What are the characteristics of text, audio, image, and video? It would take a
lot of space to describe these media. In this introduction we confine ourselves
to briefly giving some basic characteristics.

1.3.1 Medium
The general meaning of medium is a means to communicate. Here we define
a medium to be a type of information representation, like alphanumeric data,
audio, images, and video. Alphanumeric data are the data normally occurring
in SQL-like databases containing numeric and alphabetic (text/string) data.
Media types like audio, video, and image have traditionally analog represen-
tations. We are interested in digital representations and further on we pay
some attention to conversion of analog to digital data.

1.3.2 Static versus Dynamic Media
Media types can be classified according to the relationship with time, which
leads to two classes of media types: static and dynamic (or time continuous).

Static media do not have a time dimension, dynamic media do. Examples of
static types are alphanumeric data, images, and graphics. Audio, animation,
and video are examples of dynamic types. Presenting dynamic media puts
time requirements. When the human eye sees a video played at a rate of at
least 25 frames a second, then it perceives a smooth movement. Playing back
music puts even stronger requirements: only playback rates in a very strict
region make sense. Other rates are perceived as unnatural.

1.3.3 Multimedia
Multimedia refers to a collection of media types used together. (Notice that
a collection may have only one member.) At least one of the media types
must be non-alphanumeric. As stated before we are not interested in analog
audio or video representation: we deal with digitized, computer readable rep-
resentation. In this book we concentrate on images, video, and speech, but we
also devote a chapter to text only. Text may contain alphanumeric data only.
The term “multimedia” is mostly used as an adjective in phrases like multi-
media information, multimedia system, and multimedia applications. We use
the term multimedia object to refer to multimedia data to which a certain
meaning has been attached, like a video of a football match Ajax–Arsenal, or
an image of a Van Gogh painting.

1.3.4 Representation of Multimedia Data
Multimedia data are often represented in an analog way. Below we briefly
discuss the problem of obtaining a digital representation.
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Text
Plain text consists of alphanumeric characters. Optical character recognition
(OCR) techniques are applied to convert analog text to digital text. The most
common digital representation of characters is the American Standard Code
for Information Interchange (ASCII). For each character seven bits are needed
(often eight bits are used, where the eighth bit is reserved for a special pur-
pose). Notice that Chinese characters need more space. The required storage
space for a text document is equal to the number of characters. A text docu-
ment of say 15 pages of about 4000 characters requires 60 kilobytes. This is
quite moderate.

Structured text documents are becoming more and more popular. Such
a document consists of titles, chapters, sections, paragraphs, and so on. A
title may be presented to the user in a format different from a paragraph
or a sentence. Standards like HTML [20] and XML [19] are used to encode
structured information.

There are some techniques, e.g., Huffman and arithmetic coding [23], to
compress text, but as storage requirements are not too high, the compression
techniques are in general less important for text than for multimedia data.

Audio
Audio is caused by air pressure waves having a frequency and amplitude.
When the frequency of the waves is between 20 to 20,000 Hertz a human
hears a sound. For example, elephants are able to hear wider ranges. Besides
frequency, also the amplitude of a wave is important, see Figure 1.1a (Fig-
ure 1.1 has been taken from Lu [11]). A low amplitude causes the sound to be
soft.

How to digitize these pressure waveforms? First, the air wave is trans-
formed into an electrical signal (by a microphone). This signal is converted
into discrete values by processes called sampling and quantization. Sampling
causes the continuous time axis to be divided into small, fixed intervals, see
Figure 1.1b. The number of intervals per second is called the sampling rate.
The determination of the amplitude of the audio signal at the beginning of a
time interval is called quantization. So the continuous audio signal is approx-
imated by a sequence of values, see Figure 1.1c. If the sampling rate is high
enough and the quantization is precise enough the human ear will not notice
any difference between the analog and digital audio signal. The process just
described is called analog-to-digital conversion (ADC); the other way around
is called digital-to-analog conversion (DAC).
To give an indication of storage requirements, consider a CD-audio using
16 bits per sample, having 44,000 samples per second and two (stereo) chan-
nels. This gives rise to about 1.4 Mbit per second required storage capacity.
This is a lot, so compression techniques are welcome. To compress sound
within the entire audible range of 20 kHz a masking technique is often used.
The idea is that one sound can make it impossible to hear another as is the



1 Introduction 5

0

1

2

3

4

5

6

7

time

time

time

am
p

li
tu

d
e

001 011 100 100 010 001 011 110 110

(a)

(b)

(c)

(d)

Fig. 1.1. Analog-to-digital conversion: (a) Original analog signal; (b) sampling
pulses; (c) quantization; (d) digitized values.

case with a loud and a soft sound. The soft sound is supposed to be masked.
Because masked sounds are not audible, they can safely be discarded. For
speech (frequency lower than 7 kHz) other techniques are available. One tech-
nique uses the fact that low frequency speech is more important than high
frequency. The coding accuracy has to be accordingly.

Moving Pictures Expert Group, abbreviated as MPEG, is a standardiza-
tion group of ISO aimed to develop standards for coded representation of mov-
ing pictures, associated audio, and their combination for storage on devices
(e.g., CD-ROMs) as well as telecommunication channels, e.g., LANs. MPEG
has defined many standards, among others MPEG-Audio [18]. MPEG-audio
is a general audio compression standard that exploits among others masking.

Image
Digital images can be obtained by scanning (analog) photos and pictures using
a scanner. A scanner works according to the same principles as the ADC for
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audio: the analog image is approximated by a rectangle of small dots. In digital
cameras the ADC is built in. Another source of digital images is formed by
the frames of a digitized or digital video.

Images can be in gray-scale or in color. An image displayed on a screen
consists of many small dots or picture elements (pixels). To describe the gray-
scale of a pixel we need say one byte of eight bits. For a color pixel we need
three colors (e.g., Red, Green, and Blue) of one byte each. So, for a rectangular
screen we can compute the amount of data required for the image using the
formula

A = xyb

where A is the number of bytes needed, x is the number of pixels per horizontal
line, y is the number of horizontal lines, and b is the number of bytes per pixel.
For a screen with x = 800, y = 600, and b = 3 we get A = 1.44 Mbyte.

This amount of data is quite substantial, so compression is needed. Image
compression is based on exploiting redundancy in images and properties of the
human perception. It appears that pixels in a certain area are often similar;
this is called spatial redundancy . Think of the yellow sand on a beach or the
blue of a sky on a sunny day. Humans looking at images are tolerant regarding
some information error or loss meaning that the compressed image does not
need to exactly represent the original image. A compressed image with some
error may still allow effective communication. Notice that this does not hold
for alphanumeric data, where exact match is used for selecting data.

Several compression techniques are available, among others transform cod-
ing [5], and fractal image coding [10].

Video
A digital video consists of a sequence of frames or images that have to be
presented at a fixed rate. Digital videos can be obtained by digitizing analog
videos or directly by digital cameras. Playing a video at a rate of 25 frames
per second gives the user the illusion of a continuous view. It takes a huge
amount of data to represent a video. For example a one second video with
image size of 512 lines and 512 pixels per line, 24 bits per pixel and 25 frames
per second amounts to 512 × 512 × 3 × 25 = 19 Mbytes of storage. Imagine
what it takes for a movie of one hour. So, compression techniques are a must!

In general the image compression techniques can also be applied to the
frames of videos. The same principles as with images are used: reducing re-
dundancies and exploiting human perception properties.

Besides spatial redundancy we also have temporal redundancy . This means
that neighboring frames are normally similar. This redundancy can be re-
moved by applying the motion estimation and compensation where each image
is divided into fixed-size blocks. For each block in the current image the most
similar block in the previous image is determined and the pixel difference is
computed. Together with the displacement between the two blocks, this dif-
ference is stored and if needed transmitted. This is in general more efficient
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than manipulating the current block by itself. (By the way: shot detection in
a video uses the same pixel difference: as soon as this pixel difference is high a
shot change is supposed to be detected.) Using compression a gain of a factor
10–100 can be achieved, which is quite substantial.

MPEG-1 [3], MPEG-2 [4], and MPEG-4 [9] deal with coding of video data
of up to a speed of 1.5, 10, and 40 Megabits per second respectively. The
intention of MPEG-1 is to code VHS quality video; MPEG-2 is an extension
of MPEG-1 and provides high quality audio-visual encoding. MPEG-4 covers
storage, transmission, and manipulation of multimedia data. It provides tools
for decoding and representing atomic units of image and video objects, called
“video objects”, like a person in an image. While MPEG-1 and MPEG-2 per-
form pixel-based coding, MPEG-4 bridges the gap to object-based coding.
Object-based coding makes content-based indexing and retrieval of multime-
dia data achievable.

Summary of Storage Requirements
The storage requirements (without compression) of some media can be roughly
estimated in the following way:

a book of 500 pages 2 Mbytes
100 color images 144 Mbytes
1 hour of CD audio 635 Mbytes
1 hour of video 68.4 Gbytes .

1.3.5 Language for Composite Multimedia Documents
Multimedia documents contain data of different types. A scientific paper may
consist of text, figures, and tables. A financial document on the Internet may
have, besides text, also a spoken message and/or a video. There have been
developed languages to describe “real” multimedia objects, e.g., SGML [1]
together with HyTime [14]. We briefly describe the above mentioned language
XML.

XML is an international standard and derived from SGML. The language
enables the description of structured information; the description is indepen-
dent of the presentation of the information. With the help of XML the type
of a text document can be defined in a Document Type Definition (DTD).
A document is “marked up” according to a DTD and an XML processor can
check whether a document satisfies the type definition of the corresponding
DTD. If true, the document is said to conform to the DTD. The DTD deals
only with the structure of documents. To govern the presentation of docu-
ments that conform to a DTD, we relate structured elements of a DTD to
output specifications. This happens in a separate specification expressed in
the language DSSSL [6]. Roughly speaking the specification can be compared
with the style sheet of an MS-Word document.



8 Henk Blanken, Ling Feng, Maurice van Keulen, and Henk Ernst Blok

1.4 Metadata of Multimedia Objects
Let us return to the example in which we tried to find all employees having
a certain value for attribute Photo. The type of attribute Photo is image.
The question arises: how to search for images, or, in general, for multimedia
objects? Analyzing all employee photos one by one is mostly no option as it
takes too long. The standard way is to add information that describes in one
way or another the multimedia object; we call this information metadata. Of
course, these metadata have to be stored somewhere. So, instead of searching
for a multimedia object directly, we search for the metadata that have been
added to it. To be valuable in searching for multimedia objects, metadata
have to satisfy certain requirements:

• a description of a multimedia object should be as complete as possible;
• storage of the metadata must not take too much overhead; and
• comparison of two metadata values has to be fast.

Below we distinguish several kinds of metadata.

1.4.1 Descriptive Data
Descriptive data give some format or factual information about the multime-
dia object. Think of author name, creation date, length of the multimedia
object, used representation technique, and so on. There is a standard for de-
scriptive data called Dublin Core [8] that gives many possibilities to describe
a multimedia object. Let us assume we are looking for a certain movie and
we know the name of the director and the year of release. Then we can ad-
dress the metadata and formulate an SQL query in which this knowledge is
represented as conditions in the WHERE-clause.

1.4.2 Annotations
Text annotation is a textual description of the contents of the object. Think of
text added to photos in an album. Annotation can be a free format description
or a sequence of keywords. Text is added mostly manually making it time con-
suming and expensive. Another disadvantage of annotation is its subjectivity
and incompleteness. Later on we elaborate on so-called information retrieval
techniques. These techniques can be used to find multimedia objects based
on text annotation. The techniques are powerful and much used, especially
in combination with techniques addressing the content of multimedia objects
directly.

Besides text, also structured concepts can be used to describe the con-
tents of multimedia objects [24]. This results in a kind of Entity-Relationship
schema, which gives concepts, their relationships to each other and to multi-
media objects. The advantage is that use can be made of query languages with
an SQL like power. This can be a useful approach, especially in the realm of
a certain company where a tight control of the schema can be realized. Con-
ceptual annotation is manual, so, again, slow and expensive.
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1.4.3 Features
Now we turn our attention to approaches which try to derive characteristics
from the multimedia object itself. These derived characteristics are called
features. To describe features a kind of language is needed. MPEG-7 [13] is by
now the most important standard. In Chapter 2 we treat MPEG-7 in some
detail. The process to capture features from a multimedia object is called
feature extraction. This process is often performed automatically, sometimes
however with human support. Two feature classes are distinguished, namely
low-level and high-level features.

Low-Level Features
Low-level features grasp data patterns and statistics of a multimedia object
and depend strongly on the medium. Low-level feature extraction is performed
automatically. Let us start with the well-known text documents. Which “con-
tent” can be derived automatically? During the indexing process, words like
“the”, “it”, “a”, etc. are neglected: they do not bear any relevance for the
meaning of the document. In Chapter 4 the indexing process will be explained.
The result is essentially a list of keywords with frequency indicators, which is
supposed to describe the content of the text document.

An audio signal can be represented by an amplitude–time sequence: for
each sample value the air pressure is quantified. The amplitude belonging to
the air pressure of silence is represented as 0, an air pressure higher than
the silence pressure means a positive amplitude, and a lower air pressure
implies a negative amplitude. We derive some low-level features from this
amplitude–time sequence, among others average energy (indicates loudness
of signal), zero crossing rate ZCR (indicates the frequency of sign change in
signal amplitude), and silence ratio. A low silence ratio often indicates music,
while a high ZCR variability often indicates speech. The Discrete Fourier
Transform (DFT) of the amplitude–time representation is also used to derive
low-level features. In Chapter 7 more attention is paid to these features.

What about images? When processing images you can count the number
of pixels that have a color in a certain color range, giving rise to so-called
color histograms. We can use color histograms to distinguish images. In an
image also spatial relations may hold: we observe a spatial relation when, e.g.,
a blue area appears above a yellow area in a beach photo. If an image has
many dark spots neighboring light spots, then it has a high score regarding
the feature contrast. Many other features (e.g., shape, circularity) have been
defined [7]. Chapter 5 deals with images.

Videos are sequences of images, so low-level features of images also apply
to video. Video is a continuous medium and has as such a temporal dimen-
sion. Let us define a shot as a sequence of images taken with the same camera
position. The end of a shot can be determined by computing the pixel differ-
ence between subsequent images. As soon as the pixel difference between two
images is higher than a certain threshold we assume to have observed a shot
change. Chapters 8, 9, and 10 cover video.
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High-Level Features
Low-level features often have not too much meaning for the end user. Consider
for instance images. What does a color histogram really mean? Much green
may indicate many things: a golf course, or maybe a forest? With high-level
features (or high-level concepts) we mean features, which are meaningful for
the end user, like forest or golf course. There is obviously a gap between low
and high level features. This gap is called the semantic gap. High-level feature
extraction attempts to bridge this gap and tries to recognize concepts that
are meaningful for the user.

An important part of this book tries to answer the question: How can we
derive high-level features from low-level features? Low-level features in a text
document are keywords. Luckily enough, keywords have a strong relationship
with concepts in the human mind. When a document contains words like
“football”, and “referee” then this gives an indication of the content of the
document.

It also appears that in speech recognition much progress has been made.
For many languages reasonable speech to text translators have been built.
Suppose we know that a certain data source contains speech. Extractors can
automatically derive low-level features from speech and apparently translators
successfully bridge the gap between low-level features on one hand and words
and sentences on the other.

In areas like images, non-speech audio, and video deriving concepts from
low-level features is in general not possible. Focusing on a special application
domain fosters progress. For instance, consider videos of football matches.
Observing a loud sound coming from the crowd and a round object passing
a white line, followed by a sharp whistle, often indicates a semantically in-
teresting concept: a goal. A combination of low-level features may imply a
high-level feature (see also Chapters 9 and 10).

1.5 Schematic Overview of MIRS
We deal with a system that stores and retrieves multimedia objects. In this
book we concentrate on the retrieval part, which is the reason that we call
such a system a multimedia information retrieval system (MIRS). In Figure 1.2
we give a schematic overview of a MIRS. It shows that arriving multimedia
objects are archived while metadata are extracted and stored in a so-called
metadata server or index. A user poses queries in a certain way and with the
help of metadata from the index an answer set is composed. But, things are not
always that simple: querying has vague aspects. Sometimes, the user knows
what she is looking for but is not able to formulate it. It may happen that a
user does not know exactly what she is looking for, but she will know when
she sees the right result. The user operates more or less like a woman looking
for a dress in a shop. This kind of querying multimedia data is supported by
a blend of browsing and searching steps. Searching and browsing result in a
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list of multimedia objects that are sent to the user where it can be viewed or
played.

Below we treat the parts of a MIRS in more detail.

MM content
Server

Metadata
Server

Extractor
Feature

Browse
Search

Play
Client

Multimedia
Content

User

Fig. 1.2. Schematic view of a MIRS.

1.5.1 Archiving
The main characteristics of multimedia data that influence the architecture
of a MIRS are that they are voluminous and that visible or audible delays in
their playback are unacceptable. Hence, accessing multimedia content poses
fundamentally different requirements in comparison to ordinary data. There-
fore, there often is a strict separation between the “raw” multimedia content,
be it audio, video, or other documents, and the metadata describing it. The
multimedia content is managed separately in a special multimedia content
server. At storage time a multimedia object gets an identification that can be
used in other parts of the MIRS. Topics like compression and protection have
to be dealt with. In this book almost no attention will be paid to compression.

1.5.2 Feature Extraction (Indexing)
Metadata are extracted from an incoming multimedia object. Metadata con-
tain annotations and descriptions of the multimedia content, and features
extracted from content.

The extraction process is also sometimes called indexing . Metadata play
a dominant role in retrieval of multimedia objects, so it is important that
retrieval of metadata is efficient. Moreover, as the metadata can be voluminous
by itself, compact storage is also required. For example, the content of text
documents may be indexed by a sorted list of keywords. These keywords
together may require a lot of space.
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Extraction Dependencies
Metadata, especially features, not only depend on the raw data of a multi-
media object, but also on each other. Consider for example a content-based
video search system that allows the user to search for net playing or short-
est/longest rallies in tennis matches [2]. One can imagine the following steps
to be taken for the required annotation of the video objects with start and
end times of net playing and games:

• The video object is segmented and for each segment a key frame is chosen.
• Dominant color and other low-level features are extracted for the key

frames.
• Based on the low-level features of the key frames, the segments are clas-

sified into shots of the playing field, audience and close-ups.
• From the playing field shots, the position of the player is detected in each

frame.
• Another detector then extracts body-related features for the player like

eccentricity, orientation, positions of the arms relative to the body, etc.
• It is then determined where rallies and net playing starts and ends.

In this example, each step presupposes the results of one or more previous
steps to be available. The subsystem which controls the automatic feature ex-
traction has to take care of these dependencies and use them to call algorithms
and evaluate rules in the right order.

Incremental Maintenance
Complicating the task of the feature extraction subsystem further, the meta-
data stored in the database may reflect only the current status in an evolving
environment. There are several possible sources of change.

• Multimedia objects may be modified. Upon modification of a multimedia
object, features previously extracted from this object need to be inval-
idated and re-extracted. Note that this is a recursive process, because
features that depend on other invalidated features, need to be invalidated
and re-extracted as well.

• Detectors (feature extractors) may be modified. If an algorithm is im-
proved (or a bug fixed), features generated by the previous version need
to be invalidated and re-extracted (again recursively).

• The output/input dependencies between features may be modified. Any
feature that is generated based on dependencies that have changed, needs
to be invalidated and re-extracted.

Since feature extraction is an expensive process and the number of multimedia
objects and features handled may be huge, it is often not feasible to simply
do the feature extraction all over again when a number of such changes have
occurred. A feature extraction architecture like ACOI [22] as shown in Fig-
ure 1.3 analyzes the dependencies and reruns only those extractions which
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Fig. 1.3. ACOI feature extraction architecture.

are affected by the change. Any insert, delete, or modification of multimedia
content or detector results in a notification to the feature detector scheduler.
It invalidates the appropriate metadata and triggers the various detectors to
(re-)extract features for multimedia objects in the right order. In this way,
a complete rerun, including unnecessary reruns of expensive algorithms, is
prevented and the database is maintained incrementally.

1.5.3 Searching
An SQL query on a relational DBMS precisely describes the information need
of a user. The result of processing the query exactly satisfies the description.
In other words, there is an exact match between specification by the user
and result issued by the SQL system. In a multimedia environment this is
normally not the case. How to describe a multimedia object, e.g., a photo,
in a search condition? We are unable to specify the bits defining the photo.
Maybe we can use low or high level features or some annotation that is added
to the photo? Multimedia queries are diverse: the user can specify queries in
many different ways. In Figure 1.2 the arrow from the client into the system
indicates the issued query.

We distinguish two cases of specifying an information need, a direct and
an indirect case. In the direct case the user specifies the information need by
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herself. In the indirect case she relies on other users. These cases are sometimes
called pull and push respectively. See Figure 1.4 for an overview. Below we
discuss the possible querying scenarios.

User Query on metadata

Feature extraction

Fetch profile

Profiles

By example

By metadata

By profile

Fig. 1.4. Composition of query.

Queries Based on Profile
Let us start with the push case, which is also called collaborative searching.
In the push case users expose their preferences in one way or another. These
preferences are stored in the MIRS as a user profile. Suppose a user wants to
buy a New Age CD, but is not certain about her taste. She trusts, however,
the taste of a friend. Using the profile of the friend, the MIRS searches for
CDs and returns results to the user who makes her choice.

In the pull case the user may exploit each of the four kinds of metadata
described before, and also combinations of these. Indexes allow the MIRS
to find corresponding multimedia objects. Below we describe briefly the four
query types including the so-called query by example.

Queries Based on Descriptive Data
Queries can be based on format and factual information about a multimedia
object. As an example consider a query about all movies with DIRECTOR =
"Steven Spielberg".

Queries Based on Annotations
As shown before, annotations can be text based, but also based on concepts.
Let us address text based annotations. Queries can be a set of keywords or a
text in natural language. An example query can be: “Show me the movie in
which Tom Cruise marries Jennifer Lopez”. In this case a set of keywords is
derived from the query. The set of keywords is compared with the keywords
occurring in text annotations of movies and similarity is computed according
to information retrieval techniques (see later on).
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Queries Based on Features
These queries are also called content based queries as the features are derived
(semi-)automatically from the content of the multimedia object. Low and high
level features can be used. We are all familiar with querying text documents by
issuing a few keywords which characterizes the documents we are looking for.
Another example query might be: “Give all photos with a color distribution
like THIS” (THIS indicates a given photo!). Or “Give me all football videos
in which a goal occurs between the 75th and 90th minute”. In the latter query
the high-level feature “goal” must be known to the MIRS.

Query by Example (Search)
Suppose you want to see photos of beach scenes. A way to indicate that is
showing an example photo of a beach scene hoping that the MIRS is able to
find other ones. The MIRS extracts all kinds of features from the example
object. In fact, the resulting query is a query based on features.

Similarity
In multimedia retrieval the concept of similarity is important. Similarity de-
scribes the degree to which a query and a multimedia object of the MIRS are
similar. Similarity is calculated by the MIRS and is based on metadata of the
multimedia object and the query. Similarity tries to approximate the value or
relevance of a multimedia object for the user. In Figure 1.5 we briefly describe
the retrieval process.

Query on metadata

Similarity computation

Retrieval of similar objects Archive

Ranked list of IDs

Ranked list of objects

Index

Fig. 1.5. General retrieval model.

The output is a list of multimedia objects. Normally it is a descending ordered
list, the ordering criterion being the similarity value computed by the MIRS.
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The list can be very long. As users normally do not have much patience it
is very important that the most relevant objects are high on the output list.
Otherwise the users might miss them. The final judgment (relevant or not)
belongs always to the user. A problem is, however, that human judgment is
subjective and even context dependent. So, it may happen that the computed
similarity is high, while the user does not consider the object relevant.

Relevance Feedback
Users often do not know exactly what they are looking for, which causes a
problem with respect to query formulation. An interactive approach can help
to alleviate this problem. By specification or by issuing an example, the user
formulates a starting query. The MIRS composes a result set and the user
judges the output by saying relevant/not relevant to objects. The MIRS uses
this relevance feedback to improve the retrieval process. In Figure 1.6 relevance
feedback is pictured.

User Query formulation

MIRS

Initial query

Relevance feedback

Ranked list of objects

Fig. 1.6. Relevance feedback.

In a query you can of course combine the types mentioned here. If videos have
text annotations, then queries based on text annotation and video features
can be formulated.

1.5.4 Browsing
As stated before users often may not be able to precisely specify what they
want. They can, however, recognize what they want when they see it. This
phenomenon underlies relevance feedback, but also allows a process called
browsing. Browsing multimedia objects means scanning through those objects.
Browsing often exploits hyperlinks which lead the user from one object to the
other. As soon as the MIRS shows an object, the user can judge its relevance
and proceed accordingly. As objects tend to be huge often small representative
“icons” are displayed in browsing mode. See also the next subsection.

There are several ways to obtain a starting point for browsing. One way is
to start with a query that describes the information need as good as possible.
Another way is to ask the system for a starting point. When browsing does
not end up in a satisfying result, the user asks for another starting point, and
so on. Finally, a third way is to classify objects in one way or another, e.g.,
on topic. Topics may have subtopics, and so on. This classification can be
exploited by the user to obtain a sensible starting point.
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1.5.5 Play: Output Presentation
A MIRS returns an (ordered) list of multimedia objects. First, the system
has to determine whether the user has the right to see the objects. Now we
enter the realm of digital rights management DRM (see also Chapter 12). Let
us assume that the user has the necessary rights, so presentation may start.
In general, the objects are huge. Moreover, the number of objects in a result
set is often large. So the question arises how to service the user as good as
possible.

Of course, the user interface should be able to present all kinds of multi-
media data. Besides text, this means also audio, video, and images. To deal
with the size of objects, the MIRS has to take measures. Presenting the whole
object is out of the question, but the user still has to get a perception of
the content of the object. The problem is to extract and present essential in-
formation for users in order to continue browsing and selecting objects. The
familiar way for text documents is to give a title of the document with some
additional information about the content: a kind of summary, or the places in
the document where the query keywords occur. Summarizing audio is not that
easy. From a song you can select a tune or the start. For images this means
that the MIRS constructs and presents small summaries of images (called
thumbnails). But how to summarize a video? We can cut a video into scenes
and we can choose from each scene a prime image. Together these images give
an impression of the video. Other techniques are available as well.

In many settings, multimedia content is accessed by many users through
a network. Especially for audio and video, there are special requirements re-
garding smooth real-time playing. It is not acceptable when parts of the screen
do not correspond with the rest, and that audio and video do not synchronize
or that the screen is blank for short periods. Furthermore, it is usually not
acceptable that a user has to wait for an audio or video file to be completely
downloaded before it can be played. Therefore, a multimedia content server is
often equipped with support for streaming. The content is sent to the client at
a specific rate and, except for buffering, played directly. With current network
technology, glitch-free streaming data is hard to deliver, because

• An audio or video stream is in fact a stream of packets. This stream
cannot, however, be delivered as a continuous stream of packets, but only
as many individual packets that compete equally with other applications
for network resources.

• The large number of packets needed to deliver audio or video consumes a
huge amount of disk, bus and network resources.

• A shared Ethernet network card can drop packets due to transmission
timeouts in heavy network traffic.

Measures to deal with such problems are

• Using switched Ethernet instead of shared Ethernet establishes a dedi-
cated link to each client.
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• Disk and bus problems in the content server itself can be dealt with by
using striping. An audio or video object is stored on multiple disks in a
fragmented way such that reading consecutive fragment means accessing
many disks at the same time.

• For glitch-free enjoyment of audio or video, it is necessary that all avail-
able frames are actually played. Skipping frames during play-back is a
common technique for graceful degradation in quality when resources be-
come scarce like insufficient network bandwidth or temporary congestion.

When the amount of multimedia content and/or number of client requests
grows larger than can be handled by one server system, scalability problems
come into play. The multimedia content can be fragmented over several con-
tent servers. A logical component in between client and server is needed to
divert client requests to the corresponding server. To deal with the problem
of too many clients, video content can be replicated over different servers. A
similar intermediary component is needed for load balancing.

Sometimes presentation of multimedia objects is accompanied by adver-
tisements, banners, and the like. A user may specify that she is not interested
in those data. Of course, these wishes have to be met. Chapter 11 concentrates
on user interaction meaning querying, browsing, and output presentation.

1.6 Quality of an MIRS
To compare relational database management systems, efficiency is often taken
as a criterion. How fast are certain important queries answered? The underly-
ing assumption is that correct results are obtained by all competing systems.
Matters are more complicated for MIRSs as in general the results to a certain
query are not equal. In other words, different MIRSs compute different result
sets. The users have to decide how relevant these results are. Remember, the
user determines the relevance and not the system! So, how to compare MIRSs?

The effectiveness of a system is mostly expressed in recall and precision.
Let r be the number of relevant documents retrieved by the system, n the
number of documents retrieved, and R the number of relevant documents in
the considered collection. Then recall is defined as the fraction of the relevant
objects that is actually retrieved, which is r/R. Precision is the fraction of
the objects retrieved that appear to be relevant, which is r/n.

The concepts of recall and precision come from the information retrieval
society. Based on these concepts, this society defined an approach to evaluate
Information Retrieval systems (IR systems). The Text REtrieval Conference
(TREC) [15] is a conference where IR systems are evaluated. First of all, a
set of text objects is selected. Then a set of queries is defined that has to be
applied to the object set. All IR systems are requested to process the queries.
Often, each IR system also indicates the degree to which this object is similar
to the user request. The collective results are judged by humans whether they
are relevant for the queries or not. Finally, TREC determines a measure to
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which the IR systems are compared and a judgment of the IR systems is
computed.

In the meantime TREC has tracks involved in evaluating MIRSs [16, 17].
So now queries involving audio, video, and other media types are defined, a
collection of multimedia objects is obtained, and so on. Chapter 13 addresses
the problem of evaluating MIRSs.

1.7 Role of DBMSs
Multimedia data strongly differ from structured alphanumeric data. We have
proposed an MIRS to deal with multimedia objects. As is known, (relational)
DBMSs have been defined to handle large amounts of structured, alphanu-
meric data. Can a DBMS be helpful to implement an MIRS? Before answering
that question we first summarize some differences between multimedia objects
and structured, alphanumeric objects:

• Multimedia objects are in general huge in size.
• Continuous, multimedia objects have a temporal dimension.
• The meaning of multimedia objects is often unclear and at least subjective.
• Multimedia objects lack obvious semantic structure.
• To capture the meaning of multimedia objects, metadata have to be de-

rived.

A DBMS has a schema that gives the structure to which the data in the
database have to conform. For collections of multimedia objects it is mostly
impossible to define such a schema. Moreover, a DBMS is based on the exact
match paradigm, which does not apply to an MIRS. So, query formulation
and query processing is essentially different. To make things worse, a DBMS
is suitable to present structured, alphanumeric results, but not to present
multimedia data with continuous aspects. So, a MIRS cannot be mapped
simply onto a DBMS.

A DBMS can, however, be useful to manage a part of a MIRS, namely the
metadata that play an important part in capturing the meaning of multimedia
objects. Brief textual annotations, a color histogram, the average pitch level of
an audio signal, all these data can be described by structured, alphanumeric
data. So a DBMS could be used to manage metadata. This does not go,
however, without problems: current DBMSs have to be extended. For example,
to store and access color histograms efficiently, a DBMS must offer access and
storage structures for multidimensional data. Today, many DBMSs do not
offer those structures.

1.8 Role of Information Retrieval Systems
Information retrieval systems have a long history. These systems have been
designed and used to allow storage and retrieval of text documents. Text doc-
uments form an important information source in most organizations. Think
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of libraries containing books, letters, manuals, and so on. IR techniques can
be used to query such libraries. Text can, however, also be used to annotate
multimedia objects like images and videos. Therefore the same IR techniques
can be used to retrieve multimedia objects. Text also results when a speech
recognizer processes speech. Consider a video in which speech is transformed
to text. These videos can be searched for later on using conditions applied to
spoken text. So, IR techniques can be useful to support multimedia retrieval.
Think, e.g., of query formulation, similarity computations, and evaluation of
systems.

1.9 Organization of the Book
The book consists of 13 chapters.

In this introductory chapter, we have given a schematic description of an
MIRS. In Chapter 2 we sketch languages to describe various types of metadata,
namely Dublin Core, RDF, and MPEG-7/MPEG-21 [21]. The descriptions will
be a starting point for mapping of metadata on database structures. During
indexing metadata are stored in a DBMS. At query time a MIRS exploits
these metadata to compose the result set.

Low-level features are not suitable for searching directly. Pattern recogni-
tion tries to derive a high-level description of the multimedia data. Chapter 3
introduces various methods of pattern recognition and shows what role these
methods play in multimedia content analysis. As such this chapter plays a
central place in the book. For example, hidden Markov models, unsupervised
learning and pattern clustering, and dimension reduction are nicely described.

Chapter 4 deals with retrieval of text documents. The indexing process
is described briefly. Mathematical formulas to compute similarity between a
text document and a query are explained and formulas are compared.

Chapter 5 concentrates on analysis of static images. This results in a de-
scription of the content of the image. A hierarchy of data representation (pix-
els, points, line segments, and so on until objects) is used as a guideline. Not
only image analysis, but also the other way around is covered: find images
based on a description which may be abstract or based on an example. We
also cover some underlying mathematics.

Chapter 6 provides generative probabilistic models for text and image
retrievals. Such kinds of models offer a concise description of the (visual)
characteristics of the document, which is useful in a retrieval setting.

Speech indexing is the topic of Chapter 7. Speech recognition is a pattern
matching problem and the solution heavily rests on training. An architecture
of speech recognizers will be given. The mathematics behind a recognition
process get significant attention.

Chapter 8 proposes a generic approach for semantic video indexing. It
combines some successful methods into a semantic value chain. The approach
is based on the video production process covering notions of content (e.g.,
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words in audio modality), style (e.g., camera distance), and context (e.g.,
news setting).

High-level features of video play an important part in Chapter 9. The
chapter deals with a tennis case and shows how low-level features are used
to automatically derive high-level features like smash, service, etc. A spatial-
temporal and a probabilistic approach are described and even combined. Also,
some experiments give an indication of retrieval effectiveness.

A common way to add semantics to multimedia data is to annotate with
text. Chapter 10 discusses, again, an automatic approach for high-level fea-
ture derivation. High-level concepts (e.g., start of race, passing) which occur
in Formula-1 car races are introduced. Low-level features are derived from
videos and fed into a (dynamic) Bayesian Network to derive concepts. Param-
eters, i.e., conditional probabilities, of the network are obtained by a training
process. Various networks are used in experiments and results are given.

Chapter 11 focuses on interaction. How to input a query and how to issue
relevance feedback? How does a user keep control during browsing? Which
techniques can a MIRS use to implement collaborative searching? These and
other questions are covered together with issues regarding the presentation of
output results.

Users may not freely retrieve all kinds of multimedia objects. Most objects
are protected against unauthorized access. This is the area of digital rights
management (DRM). When a user accesses a certain object, however, her
privacy must be guaranteed as well. In Chapter 12 various techniques regard-
ing protection of content and privacy are described. Attention is paid to the
balance between protection of content and privacy of user.

Finally, Chapter 13 elaborates on the important topic of evaluating mul-
timedia retrieval systems. Efficiency is of minor importance in this chapter.
Most attention is devoted to effectiveness. As an MIRS deals with many me-
dia types, evaluation becomes much more complicated than in the context
of traditional text documents. Questions to be answered are: which media to
include, which queries to be selected, which collections of multimedia objects
to choose. Notice that a query may address many media. The TREC confer-
ences, well-known in the information retrieval community play an important
part. TREC has extended its task to include also multimedia data.
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2.1 Introduction
2.1.1 What is Metadata?
The term meta origins from the Greek word μετα, meaning after. The word
Metaphysics is the title of Aristotle’s book coming after his book on nature
called Physics. This has given meta the modern connotation of a nature of a
higher order or of a more fundamental kind [1]. Literally, metadata is “data
about data”. It can be any descriptive information about other data sources
that is used to aid the organization, identification, representation, localization,
interoperability, management, and use of the data [1, 14, 17].

Well-known examples of metadata are data such as title, author and year
of publication that libraries use to organize their books and to make them
retrievable. Disk space on personal computers is ever growing in size and is
used to store entertainment data. As a consequence of the popularity of dig-
ital photography and gadgets such as MP3 players and iPods many people
have become librarians (of files) themselves. Every owner of a substantial col-
lection of digital music finds out the importance of good metadata. At first,
the collection is restricted and it is easy to find songs on the basis of their
filename only. When, however, the collection expands good metadata become
indispensable. The problem is to keep the metadata on the personal computer
up-to-date: CDs do not electronically contain metadata like title, genre, and
so on. Therefore, software for ripping CDs such as Windows Media Player and
iTunes use music databases on the Internet to store metadata of songs on the
personal computer. The software recognizes the album by its unique finger-
print consisting of the duration of all the songs on the album in sequence or
of each separate song based on its unique acoustic properties [11]. Once rec-
ognized, the appropriate metadata of songs and albums can be retrieved from
the Internet databases. These music databases are never perfect, no matter
whether they are maintained by professionals or by communities of volun-
teers. Spelling mistakes are made, the choice of genre is disputable or wrong
etc., resulting in inconveniences for the owners of digital music collections. For
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instance, suppose someone wants to select all the songs from the artist Pink
from a collection of music. Unfortunately, for one of Pink’s albums her name
is spelled as “P!nk” while for the others it is spelled as “Pink”. In this case a
query “Pink” might not retrieve all of Pink’s songs. Still, for owners of large
collections of digital music, partly incorrect metadata are much better than
nothing.

In a multimedia context, metadata is used to deal with the complexity of
describing, managing, and using multimedia data. Some of this complexity
comes from the following facts:

• Multimedia objects are very large in size, making them expensive to trans-
mit and process, and difficult to scan and search for specific contents.

• Multimedia objects are usually stored in compressed formats, making the
extraction of subsets of information difficult.

• Multimedia is content-rich but in a way that is not easy to summarize in
textual, or structured forms.

• There are emergent properties of multimedia data that require significant
amounts of processing and expertise before they are accessible, but which,
once extracted can easily be put in a structured format. For example, it
requires a serious amount of processing to segment a video in shots but
once done it is easy to store the first and last frame number.

• Multimedia can have a complex creation process both from a technical
and an economical or rights perspective.

• Multimedia can have many different components for which the mutual
relation is important.

The complexity of multimedia itself is reflected in its metadata, demanding
various kinds of metadata description and presentation methods [3]. However,
metadata still helps to overcome the complexity of multimedia by providing
structure [3]. Data is often unusable without knowing its structure. In par-
ticular for multimedia it is often better to consider the whole package, media
data together with its metadata, as one media object. This means that there
is a certain amount of arbitrariness in where the data ends and the metadata
begins: what is metadata for one application may be data for another. For
example, the metadata of a music collection can be put in a database by an
application to organize music collections. When a media player queries for this
metadata it will look to the database system like any other query for data.

The subject of this chapter is languages, extra structure, to handle the
metadata themselves. This means that in this chapter it will sometimes seem
as if the metadata are the “real” data. The relation with the content lies in the
semantics of the metadata, and that semantics is only very partially encoded
in the data itself.
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2.1.2 Why Do We Need Metadata?
To better understand the relation between data and metadata we have to
understand what metadata is used for [14, 3, 15, 17]. We can summarize the
key functions as follows [1]:

• Description – to describe and identify data sources. Such descriptions
allow to create indexes and catalogs, etc., thereby improving access to
them.

• Querying – to formulate queries. While people are very good at recognizing
pictures or sounds, it is hard to formulate queries as sounds or images.
Even though research has been in query by humming or drawing, widely
used systems allow users to use titles, descriptions, authors, composers,
tag labels, etc. to formulate a query. In fact querying for author or subject
is also useful for texts even though they can be searched full text.

• Administration – to provide information to help manage and administrate
a data source, such as when and how it was created, and who can legally
access it.

• Preservation – to facilitate data archival and preservation like data re-
freshing and migration, etc.

• Technical – to indicate how a system functions or metadata behaves, such
as data formats, compression ratios, scaling routines, encryption key, and
security, etc.

• Use – to indicate the level and type of use of data sources like multiversion,
user tracking, etc.

In Chapter 1 we mention some scenarios of multimedia usage: journalism,
media selection for radio and TV channels, and searching the Web. The list
of applications can be easily extended, for instance e-commerce with per-
sonalized advertising, control of traffic by surveillance cameras, and Internet
shopping while searching for clothes that one likes. All these applications have
in common that querying and updating metadata play a major part.

2.1.3 Semantics of Metadata and Metadata Languages
Since metadata serves as an interface to the content proper, it is important
that different parties have a shared understanding of the meaning of the meta-
data. This is the reason that metadata languages exist. By using a metadata
language with a standardized semantics, we can make applications interoper-
able with content from different sources. In this context the word semantics
has a computer technical and a conventional layer. For example, if we have an
author as a metadata element for books, then on a technical level this might
be standardized as a null terminated string of ASCII characters. Technically
this allows the publisher of this book to fill the author metadata element with
any string of ASCII characters he likes, for example with his own name. If an
application is conforming to the standard it will have no problems display-
ing the author. Both the publisher and the application held to the technical



26 Ling Feng, Rogier Brussee, Henk Blanken, and Mettina Veenstra

part of the standard. However, on the convention level the publisher clearly
breached the rule that the author element is supposed to be used for the au-
thor of the book.3 Metadata describes the relation between the media content
and the outside world and a metadata language must enable this.

2.1.4 Relation to Other Chapters
The Description function mentioned in Section 2.1.2 is important for retrieval
purposes. Metadata as explained in Chapter 1 concentrates on this function.
The current chapter introduces the reader to some of the languages that people
use to give metadata descriptions of content. It describes three representative
languages for metadata, which can facilitate the specification and management
of multimedia contents including text, image, video, and audio to be addressed
in subsequent chapters of the book.

2.1.5 Outline
First, we give a brief discussion of metadata in the life cycle of multimedia ob-
jects in Section 2.2.1 We present three prominent metadata schemas, namely
Dublin Core, Resource Description Framework (RDF), and MPEG Multime-
dia Metadata Standard. These languages are described in Section 2.3, 2.4,
and 2.5, respectively. Dublin Core has been designed to deal with what has
been called descriptive metadata in Chapter 1. RDF offers facilities to de-
scribe the semantics of Web resources. MPEG-7 and MPEG-21 are geared
towards multimedia objects of type text, audio, image, and video. The last
two sections summarize the chapter and give some hints for further reading.

2.2 Metadata in Multimedia Retrieval Systems
2.2.1 Metadata in the Life Cycle of Multimedia Objects
A multimedia object undergoes a life cycle consisting of production, organi-
zation, searching, utilization, preservation, and disposition. Metadata passes
through similar stages as an integral part of these multimedia objects [1, 10]:

• Creation. Objects of different media types are created often generating
data of how they were produced (e.g., the EXIF files produced by dig-
ital cameras) and stored in an information retrieval system. Associated
metadata is generated accordingly for administrating and describing the
objects.

• Organization. Multimedia objects may be composed of several compo-
nents. Metadata is created to specify how these compound objects are
put together.

3 This example is not as far fetched as it might seem. Many Word documents
have metadata that names the author of the template style file as author of the
document, and publishers routinely distribute such style files!
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• Searching and retrieval. Created and stored multimedia objects are subject
to search and retrieval by users. Metadata provides aids through catalog
and index to enable efficient query formulation and resource localization.

• Utilization. Retrieved multimedia objects can be further utilized, repro-
duced, and modified. Metadata related to digital rights management and
version control, etc. may be created.

• Preservation and disposition. Multimedia objects may undergo modifica-
tion, refreshing, and migration to ensure their availability. Objects that
are out-of-date or corrupted may be discarded. Such preservation and
disposition activities can be documented by the associated metadata.

2.2.2 Classification of Metadata
Metadata directly affects the way in which objects of different media types are
used. Classifying metadata can facilitate the handling of different media types
in a multimedia information retrieval system. Based on its (in)dependence on
media contents, metadata can be classified into two kinds, namely content-
independent and content-dependent metadata [15, 16]:

• Content-independent metadata provides information which is derived in-
dependently from the content of the original data. Examples of content-
independent metadata are date of creation and location of a text docu-
ment, type-of-camera used to record a video fragment, and so on. These
metadata are called descriptive data in Chapter 1.

• Content-dependent metadata depends on the content of the original data.
A special case of content-dependent metadata is content-dependent de-
scriptive metadata, which cannot be extracted automatically from the
content but is created manually: annotation is a well-known example. In
contrast, content-dependent non-descriptive metadata is based directly on
the contents of data (see the next paragraph for examples).

Some authors divide content-dependent non-descriptive metadata into two
categories [15, 16]:

• Domain-independent metadata. This type of metadata captures informa-
tion presented in the data without using domain specific concepts. For
example, the color histogram of an image. We call these metadata low-
level features in Chapter 1.

• Domain-dependent metadata. This type of metadata uses domain specific
concepts, like land cover [9], the GIS domain or fly outs in a Formula 1
car race. We call these metadata high level features in Chapter 1.

2.3 Dublin Core (DC)
The Dublin Core Metadata Element Set arose from the first OCLC/NCSA
Metadata workshop in 1995 held in Dublin, Ohio (USA).
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The continuing development of the Dublin Core and related specifications
are managed by the Dublin Core Metadata Initiative (DCMI), an organization
dedicated to prompting the widespread adoption of interoperable metadata
standards and developing specialized metadata vocabularies for describing
resources that enable more intelligent information discovery systems [8].

2.3.1 Dublin Core Elements
The Dublin Core is a framework for descriptive metadata. It standardizes the
way bibliographical information that you can find in the colophon of many
books such as title, author and date of publication, is structured and de-
scribed. It was developed to be simple, concise, extensible, and semantically
interoperable for cross-domain information resource description. An informa-
tion resource can be anything, but the primary application domain is books,
pictures, articles, videos, Web pages etc, for which there are human consumers
and producers. The Dublin Core element set has achieved significant accep-
tance within diverse sectors including libraries, universities, healthcare, gov-
ernmental agencies, museums, and commercial organizations. The set and its
supporting documentation have been translated into at least 24 languages to
date. It is widely used in applications such as word processors, video editors
or content management systems. Since the title and author of a resource is
rather obviously useful information, there are many examples of other meta-
data schemes where (a subset) of the metadata can be translated to and from
(a subset of) the Dublin Core set.

The Dublin Core metadata element set has 15 core elements [7]:

• Contributor – an entity (person, organization) responsible for making
contributions to the content of the resource

• Coverage – The extent or scope of the content of the resource, for exam-
ple the jurisdiction under which a legal text is relevant

• Creator – An entity primarily responsible for creating the content of the
resource

• Description – A textual description of the content of the resource
• Date – A date of an event in the life cycle of the resource, typically its

date of publication. Recommended practice is to use an encoding scheme,
such as the W3CDTF profile of ISO 8601

• Format – The physical or digital manifestation of the resource. Recom-
mended best practice is to use a controlled vocabulary such as mime-type.

• Identifier – An unambiguous reference to the resource within a given con-
text. Recommended best practice is to use a formal identification system,
for example an url or the ISBN number of a book

• Language – A language of the intellectual content of the resource. Rec-
ommended practice is to use the two-letter code4 of RFC 3066 (ISO 639)

4 Some very small languages have three-letter codes.
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• Publisher – An entity responsible for making the resource available, typ-
ically the publisher

• Relation – A reference to a related resource. Recommended best practice
is to use an identifier in a formal identification system

• Right – Information about rights held in and over the resource, typically
statements about copyrights and other intellectual copyrights

• Source – A reference to a resource from which the present resource is
derived. Recommended practice is to use a formal identification system

• Subject – A topic of the content of the resource. Typically, the topic
will be represented using keywords, key phrases, or classification codes.
Recommended practice is to use a controlled vocabulary

• Title – A name given to the resource
• Type – The nature or genre of the content of the resource described.

Recommended best practice is to use a controlled vocabulary such as
the DCMI type vocabulary that contains terms such as Text (books,
articles, newspapers, etc.), InteractiveResource (Webpage, applets, etc.),
MovingImage (films, videos, etc.), PhysicalObject, Event, etc.

Here is a small example of a Dublin Core record for a Web resource:

Identifier = "http://dublincore.org/"
Title = "Dublin Core Metadata Initiative -- Home Page"
Description = "The Dublin Core Metadata Initiative Web site"
Date = "2006-12-18"
Format = "text/html"
Language = "en"
Creator = "The Dublin Core Metadata Initiative (DCMI)"
Contributor = "The Dublin Core Usage Board"
Type = "InteractiveResource"

The example shows a particular encoding of the information model described
above. Other encodings exist. For example the <meta> XHTML tag is com-
monly used to embed Dublin Core data in Web pages.

The simplicity of the Dublin Core framework makes it easy to mix with
existing practices and applications and this has been a very important fac-
tor in its success. On the other hand the standard is not very precise. For
example, the date field may refer to the date of “some event” in the content
creation process. Moreover, the standard is standardizing the attributes, but
the values are just strings for which at best a recommended practice exists.
This means that the attributes can be full text searched or presented for hu-
man consumption (two very important applications) but that interoperability
in a cross organizational or cross domain setting may be restricted to using
common conventions.

The Dublin Core standard has been extended in several directions. There
are several standards that incorporate (part of) the Dublin Core as a baseline



30 Ling Feng, Rogier Brussee, Henk Blanken, and Mettina Veenstra

standard for the description of media objects often after some minor syn-
tactic change. For example the MPEG-7 standard, which we will discuss in
Section 2.5, and the IEEE-LOM, which is used in educational environments,
use Dublin Core this way.

There are also the so-called Dublin Core qualifiers [6] that allow us to be
more precise about the attributes of the core set. For example, the broadly
defined “date” attribute can be qualified to a “date.created”, “date.modified”
to express the creation, respectively the modification date of a document. The
DCMI has defined some controlled vocabularies that are recommended to be
used for the value strings of the attributes.

Finally, there has been push to do something about the lack of formal
meaning of the value fields. For example, the Dublin Core author field is com-
monly filled with the name of the author. However, there are many different
ways to write a persons name, with or without their first name, with initials
before or after their name, etc. This would be solved if the value of the author
attribute would be a typed “Person” data structures that can themselves have
different attributes both of value types like strings and integers and dates and
other data structure objects. This point of view is useful not just for media
objects, but for many other things that benefit from being described. A pop-
ular language for expressing this in an open environment like the Web is the
so-called resource description framework (RDF), which we will describe in
Section 2.4. The Dublin Core and its qualifications therefore have been given
a binding to RDF that allows to describe more of the intended semantics of
the standard, of both attributes and values, in a more precise and formal way.

2.4 Resource Description Framework (RDF/RDFS)
RDF is a family of World-Wide Web Consortium (W3C) specifications which
for our purposes includes the RDF schema language RDFS. As stated in the
W3C documents [20, 22], RDF is originally based on the syntax format XML
and intended to represent metadata about Web resources, such as the title,
author, copyright, and modification date of a Web document. However, it was
later realized that RDF is in fact a language for expressing metadata state-
ments about “things” called resources having “attributes” called properties.
Once this became clear, it also became clear that XML only provides one
among several possible notations. Many RDF applications will therefore use
the RDF language and a concrete RDF schema, which is itself expressed in
RDF. The schema and the RDF language are used together to annotate con-
crete resources like Web pages with concrete properties like their author. For
example the Dublin Core framework discussed in Section 2.3 can be expressed
in an RDFS schema that defines the Dublin Core attributes as RDF proper-
ties, one for each attribute. This combo is then used to denote Dublin Core
metadata statements about concrete Web pages, documents or video’s with
an RDF syntax. Thus, the RDF language is one level of abstraction above
that of Dublin Core.
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Below we describe the most important elements of RDF. It will become
clear that RDF has similarities to the binary relational and the object oriented
data model.

2.4.1 Basic Information Model
The basic concept of RDF is a statement which we can think of as a binary
predicate. Figure 2.1 shows a graph model for an RDF statement, consisting
of a node for the subject, a node for the object, and an arc for the predicate,
directed from the subject node to the object node.

Property Value
Property

Resource

Statement

Predicate
ObjectSubject

Fig. 2.1. Graph model for an RDF statement.

A collection of such statements builds up an directed labeled graph, by iden-
tifying nodes with the same labels. RDF is nothing more than a syntax to
define such labeled directed graphs, and any semantics that RDF statements
have is defined in terms of this graph. Conversely by cutting a graph in ele-
mentary edges we can denote any labeled graph with RDF. The one caveat
here is that RDF has special syntax for compactly describing class hierarchies
which means that some RDF statements will actually generate several edges
in the graph. We will see this when we discuss classes and subclasses.

In the following, we exemplify the basic ideas behind the RDF model using
the turtle syntax [2]. This is an RDF/XML equivalent large subset of the N3
language specified by Dave Beckett. The N3 language [12] was designed by
Berners Lee to express RDF in a human friendly and compact syntax and is
therefore well suited for a book like this. Unlike the XML syntax it is mostly
self explanatory. More detailed descriptions of RDF/XML syntax can be found
at the W3C Website [20, 22].

We introduce the following terminology:

• A Resource is anything that exists in RDF.
• A Property is a specific attribute, property or a relation used to describe

a resource.
• A Property Value is the value of a property for a certain resource. There

are two types of property values: literals of type integer, string, XML
string, date, url, etc., and resources.
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• A Statement or triple is the assertion that a resource (called the subject)
has an attribute or property (called the predicate) with a certain value
resource (called the object). A triple is itself a resource.

The RDF language specifies that resources and properties (nodes and edges)
are labeled by URI’s. URI’s are used as Web wide unique identifiers where
uniqueness is helped by the fact that it is considered impolite to choose a URI
in a domain that you do not control.

Example 1
Assume a simple English expression:
“http://www.example.org/index.html has as creation-date August 16, 1999”.
The RDF graph for this expression, after assigning a URI to the creation-date
property, is shown in Figure 2.2.

August 16, 1999

http://www.example.org/index.html

http://www.example.org/terms/creation−date

Fig. 2.2. An RDF graph for the example statement (Example 1).

The same information can also be put in Table 2.1. We observe that the
subject as well as the property happens to be a resource, while the object is
a literal of type date.

Table 2.1. An RDF statement example (Example 1).

Subject (Resource) http://www.example.org/index.html (resource)
Predicate (Property) http://www.example.org/terms/creation-date (resource)
Object (Property Value) 1999-09-16 (date value)

The corresponding RDF/Turtle statement is the following triple:

<http://www.example.org/index.html>
<http://www.example.org/terms/creation-date>
"1999-08-16"^^<http://www.w3.org/2001/XMLSchema#date>.

The subject, predicate, and object are thus simply listed with as much whites-
pace as we want, ending the triple with a dot. A resource or property can be
denoted by putting angle brackets around its URI label. A string is put be-
tween quotes, a non-negative integer is written in decimal form without quotes,
and for more uncommon data types such as a date, we borrow simpletypes
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from XML schema [23] and denote it with a string in the XML schema defined
format followed by two carets and the data type. Because it is annoying to
read and write long URI’s we can abbreviate this by declaring and using some
namespaces and write exactly the same triple as:

@prefix exterms: <http://www.example.org/terms/>.
@prefix xs: <http://www.w3.org/2001/XMLSchema#>.

<http://www.example.org/index.html>
exterms:creation-date "1999-08-16"^^xs:date.

Example 2
An RDF graph consisting of multiple statements (i.e., one resource with sev-
eral properties and corresponding values at the same time) can be represented
through multiple RDF triples. For example, consider Figure 2.3.

http://www.example.org/index.html

http://www.example.org/staffid/85740

en

August 16, 1999

http://www.example.org/terms/creation−date

http://purl.ord/dc/elements/1.1/language

http://prl.org/de/elements/1.1/creator

Fig. 2.3. An RDF graph containing multiple statements (Example 2).

We recognize that the graph is a group of statements about the same resource
http://www.example.org/index.html. We can use the following turtle code
to denote the RDF graph:

@prefix dc: <http://purl.org/dc/elements/1.1/>.
@prefix exterms: <http://www.example.org/terms/>.
@prefix xs: <http://www.w3.org/2001/XMLSchema#>.

<http://www.example.org/index.html>
exterms:creation-date "1999-08-16"^^xs:date.

<http://www.example.org/index.html> dc:language "en".
<http://www.example.org/index.html>

dc:creator <http://www.example.org/staffid/85740>.

Because it is common that the subject is repeated, the three triples may be
abbreviated to:
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<http://www.example.org/index.html>
exterms:creation-date "1999-08-16"^^xs:date;
dc:language "en";
dc:creator <http://www.example.org/staffid/85740>.

This example also shows how Dublin Core metadata is expressed using RDF
together with the RDF encoded Dublin Core metadata vocabulary. In Sec-
tion 2.4.3 we will see how to define such a vocabulary as a predefined metadata
schema

For this simple example we will also give the RDF/XML notation corre-
sponding to the graph in Figure 2.3. This can be skipped at first reading, but
is useful for understanding RDF/XML files. We should warn that there are
several ways of expressing an RDF graph in XML.

1. <?xml version="1.0">
2. <rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3. xmlns:dc="http://purl.org/dc/elements/1.1/"
4. xmlns:exterms="http://www.example.org/terms/">
5. <rdf:Description

rdf:about="http://www.example.org/index.html">
6. <exterms:creation-date

rdf:datatype =
"http://www.w3.org/2001/XMLSchema#date"

>1999-08-16</exterms:creation-date>
7. <dc:language>en</dc:language>
8. <dc:creator

rdf:resource =
"http://www.example.org/staffid/85740"/>

9. </rdf:Description>
10. </rdf:RDF>

Lines 1–4 are general “housekeeping” necessary to indicate that these lines
contain RDF/XML content. Line 1 states that the following code can be
parsed by an XML parser and specifies what XML version is used. This parser
understands angle brackets and namespaces but as far as its concerned RDF
is just like any other XML file. Line 2 and line 10 indicate that we deal
with RDF text. The terms the syntax of the RDF/XML are made available
by declaring the XML namespace http://www.w3.org/1999/02/22-rdf-syntax-
ns#. All tags prefixed with rdf: are part of this namespace. Likewise in line 3
we associate the prefix exterms: with the namespace identified by the URI
http://www.example.org/terms/. Lines 5–9 specify the statement in Figure 2.3.
In line 5, the rdf:Description element defines the subject resource whose label is
the value of the about attribute. Elements inside the rdf:Description element are
interpreted as properties. Line 5 provides a property element exterms:creation-
date. The content of this property element is the object (i.e., the property
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value) of the statement, the literal 1999-08-16. Because we have added the
rdf:datatype = "http://www.w3.org/2001/XMLSchema#date" as an attribute
the value is interpreted as a date rather than the plain string. In line 8 the
object of the dc:creator property is itself a resource whose URI has to be
spelled out including its long namespace.

2.4.2 Structured Property Values: Blank Nodes
Sometimes the property value is structured. For example we may want to
describe the author of a document as a person which has a first and a last
name, an email address, telephone number, homepage etc. However, people
do not have a natural URI that identifies them in a globally unique way. RDF
uses the concept of a blank node to solve this problem.
Example 3
Figure 2.4 shows an RDF graph saying that “The document http://www.w3.
org/TR/rdf-syntax-grammar has a title ‘RDF/XML Syntax Specification’
and has an editor. The editor has a name ‘Dave Beckettt’ and a home page
http://purl.org/net/dajobe/”.

http://www.w3.org/TR/rdf−syntax−grammar

http://purl.org/net/dajobe/
Dave Beckett

RDF/XML Syntax Specification

http://www.example.org/terms/homePage http://www.example.org/terms/fullName

http://purl.org/dc/elements/1.1/titlehttp:/www.example.org/terms/editor

Fig. 2.4. An RDF graph containing a blank node (Example 3).

Leaving out the namespace declarations (which are as in Examples 1 and 2)
we can express this in RDF/turtle as follows:

<http://www.w3.org/TR/rdf-syntax-grammar>
dc:title "RDF/XML Syntax Specification";
exterms:editor [ exterms:fullName "Dave Beckettt";

exterms:homePage
<http://purl.org/net/dajobe/>].



36 Ling Feng, Rogier Brussee, Henk Blanken, and Mettina Veenstra

Alternatively we can give the Dave Beckett node a name which has scope in
the RDF file in which it is defined. The blank node is given a name in the
pseudo namespace :

<http://www.w3.org/TR/rdf-syntax-grammar>
dc:title "RDF/XML Syntax Specification";
exterms:editor _:dave.

_:dave exterms:fullName "Dave Beckettt";
exterms:homePage <http://purl.org/net/dajobe/>.

The advantage of the latter construction is that the :dave node can be used
in several other triples just like a node with a URI label. For example, Dave
Beckett has also written the turtle specification. We can express this fact by
adding the triples:

<http://www.dajobe.org/2004/01/turtle>
dc:title "Turtle - Terse RDF Triple Language";
exterms:author _:dave.

Note that the corresponding RDF graph is not a tree, since it has two root
nodes. Many metadata descriptions start out as trees. This is an efficient data
representation but the world is simply not always organized as a tree.

There are several ways to represent graphs containing blank nodes in
RDF/XML [22]. The simplest way to create a blank node is to create an
<rdf:Description> element without an rdf:about attribute.

2.4.3 RDF Schema
RDF provides a way to express simple statements about resources via named
properties and values. However, it provides no means for defining application-
specific classes and properties associated with these classes. RDF Schema is
an extension of RDF, which provides facilities needed to describe such classes
and properties, and to indicate which classes and properties are expected to
be used together. Note that RDF Schema itself does not provide application-
specific classes and properties either. It merely provides the mechanism to
describe such application-specific classes and properties [21].

Class in RDF Schema
Class in RDF Schema is superficially like a class in an object-oriented pro-
gramming languages such as Java. We can state that a resource belongs to
one or more classes, and classes can be organized in a hierarchical fashion via
subclass relationship [20, 21]. If we look more closely we see that a class in
RDF is more like a classification mechanism for instances. No assumption is
made about the structure of the instance because the instance does not have
an underlying data structure.

By definition, a resource x is a member of a class C if there is a triple:
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x rdf:type C.

Because rdf:type is common idiom, turtle uses the special suggestive notation:

x a C.

Classes in RDFS are themselves resources. A resource C is a class if and only
if there is a triple C rdf:type rdfs:Class. Using the turtle abbreviation this
becomes:

C a rdfs:Class.

The special-general relationship between two classes is described using the
predefined rdfs:subClassOf property. Thus, C is a subclass of D if and only if
there is a triple:

C rdfs:subClassOf D.

So far there is nothing special about rdfs:subClassOf and rdf:type. However the
special-general relation is transitive. Therefore it is part of the semantics of
the RDFS language that:

C rdfs:subClassOf D.
D rdfs:subClassOf E.

implies

C rdfs:subClassOf E.

Likewise, if an instance is member of a class it is a member of all its super-
classes. Therefore it is also part of the semantics of RDFS that:

x rdf:type C.
C rdfs:subClassOf D.

implies

x rdf:type D.

As a consequence, the labeled directed RDF graph defined by the triples
involving rdf:type and rdfs:subClassOf is the transitive closure of the labeled
directed graph defined by the triples themselves.

Property in RDF Schema
In addition to describing the specific classes of things, RDF Schema also pro-
vides a vocabulary for describing specific properties that instances may have.
In addition one can express how these properties and classes are intended to
be used together. A property p is itself a resource and a resource is a property
if it has rdf:type of rdf:Property (note, not rdfs:Property). Thus a property is
declared by:

p a rdf:Property.
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Since properties are used in triples to relate instances, the most important
information about a property is the class of instances that can occur as subject
and the class of instances that can occur as object. This can be stated using
the RDF Schema properties rdfs:range and rdfs:domain [20, 21] respectively.
More precisely it is part of the semantics of the RDFS language that:

p a rdf:Property;
rdfs:domain D;
rdfs:range R.

x p y.

implies

x a D.
y a R.

However, many tools to create RDF enforce that the type of x and y is already
known before you can “apply” p.

Just like classes can be hierarchically organized, properties in an RDF
Schema can be organized in more and less specialized properties using the
predefined rdfs:subPropertyOf property. A property may be a subproperty of
zero, one, or more properties. The semantics of subproperty is that:

p rdfs:subPropertyOf q;
x p y.

implies

x q y.

RDF Schema rdfs:range and rdfs:domain properties that apply to an RDF
property also apply to each of its subproperties.
Example 4
As we have seen in Section 2.3 the Dublin Core defines the contributor at-
tribute of a media object whose value is anybody who contributed in the life
cycle of a media object. We have earlier defined an editor property that is
supposed to indicate the editor role. Suppose we mean that the editor role is
that of a human editor of a journal. We can express (more of) the intended
semantics of the properties as follows:

@prefix dc: <http://purl.org/dc/elements/1.1/>.
@prefix exterms: <http://www.example.org/terms/>.

exterms:Journal a rdfs:Class;
rdf:comment "the class of journals".

exterms:Person a rdfs:Class;
rdf:comment "the class of persons".

exterms:editor a rdf:Property;
rdfs:domain exterms:Journal;
rdfs:range exterms:Person;



2 Languages for Metadata 39

rdf:comment "the person who edits the journal";
rdfs:subPropertyOf dc:contributor.

This mechanism has been proposed for standardization in the RDF binding
of Dublin Core Qualifiers (see the end of Section 2.3.1) .

A Vehicle RDF Schema Example
As an example outside of the metadata world consider a more elaborate con-
ceptual schema of a Vehicle class hierarchy. It contains among other things
classes MotorVehicle, PassengerVehicle, Van and MiniVan. PassengerVehicle
and Van are subclasses of MotorVehicle, and MiniVan is a subclass of Van and
PassengerVehicle. Property registeredTo applies to any MotorVehicle and its
value belongs to the LegalPerson class. Property rearSeatLegRoom cm applies
only to instances of class PassengerVehicle. Its value is an integer giving the
number of centimeters of rear seat legroom. The RDF Schema representation
for this kind of vehicle class hierarchy and associated properties is as follows:

@prefix veh: <http://example.org/schemas/vehicles#>.
@prefix law: <http://example.org/schemas/law#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix xs: <http://www.w3.org/2001/XMLSchema#>.

xs:integer a rdfs:Datatype.
xs:string a rdfs:Datatype.

law:LegalPerson a rdfs:Class.
law:Person a rdfs:Class;

rdfs:subClassOf law:LegalPerson.

law:name a rdf:Property;
rdfs:domain law:LegalPerson;
rdfs:range xs:string.

veh:MotorVehicle a rdfs:Class.
veh:PassengerVehicle a rdfs:Class;

rdfs:subClassOf veh:Motorvehicle.
veh:Van a rdfs:Class;

rdfs:subClassOf veh:MotorVehicle.
veh:MiniVan a rdfs:Class;

rdfs:subClassOf veh:Van, veh:PassengerVehicle.
veh:RenaultEspace a rdfs:Class;

rdfs:subClassOf veh:MiniVan.

veh:registeredTo a rdf:Property;
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rdfs:domain veh:MotorVehicle;
rdfs:range law:LegalPerson.

veh:registration a rdf:Property;
rdfs:domain veh:MotorVehicle;
rdfs:range xs:string.

veh:rearSeatLegRoom_cm a rdf:Property;
rdfs:domain veh:PassengerVehicle;
rdfs:range xs:integer.

veh:driver a rdf:Property;
rdfs:domain veh:MotorVehicle;

rdfs:range law:Person.
veh:primaryDriver a rdf:Property;

rdfs:subPropertyOf veh:driver.

Note that Renault Espace is considered to be a class. After all there are many
Renault Espaces driving around! Also note that it might have been useful to
borrow the notion of person from another schema.

A schema like this can be used to denote that a Renault Espace owned by
Lease Boys Inc. is driven by John and Mary with Mary as preferred driver.
Leaving out namespaces this would become:

lb:leaseBoys a law:LegalPerson;
law:name "Lease Boys inc.".

lbcar:12AB34 a veh:RenaultEspace;
veh:registration "12-AB-34";
veh:registeredTo lb:leaseBoys;
veh:rearSeatLegRoom_cm 75.

lbcust:john a law:Person;
law:name "John Doe".

lbcust:mary a law:Person;
law:name "Mary Doe".

lbcar:12AB34 veh:driver lbcust:john, lbcust:mary;
veh:preferedDriver lbcust:mary.

Note that this bit of RDF mentions instances and that the schema is effectively
the language to describe them.

It is problematic to say that the Renault Espace has a legroom of 75 cm,
because writing

veh:RenaultEspace veh:legRoom_cm 75.

would imply that the Renault Espace (a class of vehicles) is itself a passen-
ger vehicle. In fact, the legroom of different Renault Espace members varies.
However treating a class as an individual is common practice (or according
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to some, abuse). More elaborate schema languages like OWL [19] allow one,
and force one, to be more precise in such matters.

2.4.4 Other RDF features
Containers and Collections
Property values that are set valued can be described by RDF containers and
collections. The contained resources are called members which may be re-
sources (including blank nodes) or literals.

An RDF container is a resource that contains other resources. RDF defines
three types of containers, namely, rdf:Bag a group of resources or literals
possibly containing duplicates, rdf:Seq a sequence of resources possibly with
duplicates where order is important, and rdf:Alt a group of resources that
are alternatives [20]. A typical use of an RDF container is to express that a
property value is a group of things. Note however that properties in RDF are
effectively multivalued because triples with the same subject and predicate
but different objects are allowed. Therefore container classes are not needed
as often as one might think.

An RDF collection, is a resource of type rdf:List. A resource x is a member
of a rdf:List L if either L rdf:first x or L rdf:rest M and x is a member of M. The
predefined list rdf:Nil has no members.
Example 5
The sentence “The players in the tournament are Jeroen, Johann, and Maria”
can be represented using the RDF graph in Figure 2.5.

http://example.org/tournament

http://www.w3.org/1999/22−rdf−syntax−ns#nil

http://example.org/players/Jeroen

http://example.org/players/vocab#players

http://www.w3.org/1999/22−rdf−syntax−ns#rest

http://example.org/players/Johannhttp://www.w3.org/1999/22−rdf−syntax−ns#rest

http://www.w3.org/1999/22−rdf−syntax−ns#rest

http://example.org/players/Maria

http://www.w3.org/1999/22−rdf−syntax−ns#first

http://www.w3.org/1999/22−rdf−syntax−ns#first

http://www.w3.org/1999/22−rdf−syntax−ns#first

Fig. 2.5. An RDF collection example (Example 5).

In turtle this would be:
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ex:tournament
ex:players [ a rdf:List;

rdf:first ex:jeroen;
rdf:rest [ a rdf:List;

rdf:first ex:johann;
rdf:rest [ a rdf:List;

rdf:first ex:maria;
rdf:rest rdf:Nil]]].

Since this quickly becomes unreadable this can be abbreviated to:

ex:tournament ex:players (ex:jeroen ex:johann ex:maria).

2.4.5 Statements about Statements: Reification
RDF statements (triples) are themselves resources of type rdf:Statement The
statement itself is encoded using the properties rdf:subject, rdf:predicate, and
rdf:object. This is useful because for a reified statement we can state what the
source is, where and when it was made etc. For example the statement:

ex:john ex:loves ex:mary.

can be reified to:

_:lovedeclaration a rdf:Statement;
rdf:subject ex:john;
rdf:predicate ex:loves;
rdf:object ex:mary.

and we can now state that this declaration of love was made on Valentine
in 2000:

_:lovedeclaration dc:date "2000-02-14"^^xs:date.

John may or may not love Mary happily ever after, but a love declaration is
not the same as an eternal fact.

2.5 Moving Picture Experts Group (MPEG)
The ISO/IEC Moving Picture Experts Group (MPEG) has developed a suite
of standards for digitally coded representation of audio and video. One of these
standards, MPEG-7 (Multimedia Content Description Interface, ISO/IEC
15938 [13]), addresses languages and technology for multimedia content de-
scription. MPEG-7 is a large and complex standard that includes several sub-
languages and specific vocabulary for media like audio and video and the way
they are segmented. Moreover, it tries to cover a wide field with vocabulary
for such different aspects as rights management and image, audio, video and
speech analysis.
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For some parts of the standard the semantics of the standard is highly
non-trivial. For example MPEG7 allows descriptions of texture of image ele-
ments by a few numerical values. These numbers will represent the coefficient
in a wavelet transforms5 of that image element. These numbers can there-
fore not be properly used by an application without software implementing a
wavelet transform texture classification or texture generation algorithm. Writ-
ing such software requires a description of the precise model used to represent
texture through wavelets. Such non-trivial semantics account for a great deal
of the complexity of MPEG-7. A separate standard, MPEG-21 (Multimedia
Framework, ISO/IEC 21000) [5] defines how the whole MPEG architecture
including MPEG-7 and media formats such as MPEG-4 are related to each
other. The sheer size and complexity of the standard has been a significant
impediment to its wide adoption even though it has never been the intention
that applications implement all the parts meant for specialized areas.

MPEG-7 defines the metadata elements that are used to describe audiovi-
sual objects including still pictures, graphics, 3D models, music, audio, speech,
video, and multimedia collections. Some of the main elements describe the
structure of the media objects and the relationships between different compo-
nents. The main elements of the MPEG-7 standard are:

• A Description Definition Language(DDL). The language to define the
syntax of the Descriptors and Description Schemes. It is a version of XML
schema [24] with some extensions to represent things like large arrays of
real numbers. The DDL allows the creation of new, and the extension and
modification of existing Description Schemes.

• Descriptors (Ds) A descriptor is a predefined vocabulary to describe an
aspect of a media object. A descriptor can be used in different schemas.
Hundreds of predefined DDL classes for descriptors are defined.

• Description Schemes (DSs) A descriptor scheme is a schema in DDL
that specifies the syntactic structure for composing descriptors. A descrip-
tion scheme consists of other description schemes and descriptors.

• A binary format (BiM) A format to encode the verbose XML in a binary
format which is more efficient for streaming and storage while leaving the
tree structure of the XML intact.

• System Tools The software needed to support storage and transmis-
sion, synchronization of descriptions with contents, and management and
protection of intellectual property.

Figure 2.6 shows the relationships among different MPEG-7 elements. The
DDL is used to define descriptors and description schemes. Predefined de-
scriptors are used to define more specialized description schemes in DDL. User
defined schemes can also reuse other description schemes. DDL can also be
used for defining completely new descriptors, effectively extending the MPEG7

5 Wavelet decompositions are a clever mathematical trick to zoom into details of a
pattern. They are somewhat similar to Fourier transforms.
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universe. A particular media object can be annotated with metadata in an
MPEG7 document that conforms to a particular descriptor scheme. If neces-
sary such instantiation of the descriptor scheme can then be further encoded,
packaged and transmitted by an MPEG7 aware system tool.

Tags

<scene id=1>
<time> ....
<camera>..

<annotation
</scene>

Instantiation

Descriptors:
(Syntax & semantic
of feature representation))

D7

D2

D5

D6
D4

D1

D9

D8

D10

101011 0

Encoding
&

Delivery

D3

Language
Description Definition ⇒⇒ extension

Definition

Description Schemes

D1

D3D2

D5D4D6

DS2

DS3

DS1

DS4
Structuring

Fig. 2.6. MPEG-7 main elements [13].

As we can see there is a similarity between the MPEG-7 and RDF frame-
works. MPEG-7’s DDL provides the mechanism to create new descriptors
and descriptors scheme similar to RDFS. Metadata for a particular media
object is denoted with such a descriptor scheme and the facilities provided
by DDL. Likewise, we can have to metadata for a particular media ob-
ject in an RDFS defined schema and the facilities of RDF. However unlike
RDF/RDFS, MPEG-7 provides predefined vocabulary in the form of descrip-
tors, for concrete multimedia related domains. Indeed, RDF has strongly influ-
enced MPEG-7, in particular the DDL. However, it was decided to base DDL
on XML schema rather than RDF because RDF was not finished when MPEG-
7 was standardized and XML tools were (and are) much wider available. Work
is being done to encode MPEG-7 in OWL, an extension of RDF [18].

Figure 2.7 shows an instantiation of a hypothetical Descriptor Scheme for
a video clip As we can see there are different Descriptors for different aspects
of the media, and for the way that the media can be decomposed in smaller
parts. Each of the parts can be annotated separately. Some of the descriptors
reuse Dublin Core for descriptive metadata. Descriptors for visual and audio
objects are defined separately using a hierarchy of elements and subelements.
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Fig. 2.7. Example MPEG-7 descriptor scheme.

2.5.1 Structure of MPEG-7 Documents
In the following (adapted from Kosch [9]), we show the flavor of MPEG-7
documents using the XML Schema based Descriptor Description Language
(DDL). Note that the following description is by nature sketchy since the
complete DDL defines several hundreds of types [13].

The main parts of an MPEG-7 document are a header, a root element, top
level elements, and segments. The header information declares an MPEG-7
document as an XML document. In the root element <Mpeg7> the MPEG-
7 namespace urn:mpeg:mpeg7:schema:2001 and the XML schema-instance
and XML namespace are declared. The MPEG-7 top level element can be
either a description unit or a complete description. The description of a part
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of the media object uses the former, that of the whole uses the latter. For
example, the description of an image uses a complete description if the image
is the whole media object and that of description unit if it is the illustration
of a book. Complete descriptions or description units can themselves be built
up out of description units that describe different aspects, e.g., the shape or
color of an image.

Figure 2.8 shows the hierarchy of classes that can occur as top level de-
scription units. The term abstract means that only more specific subclasses
with subelements that detail more parts can be instantiated in a concrete
MPEG-7 metadata file.

ImageAudioVideo
...

...

...
Summary Description

User Description

(abstract)

Content AbstractionContent Entity

(abstract)

Content Management

Creation Description

Semantic Description

(abstract)

Multimedia Content

(abstract)

Complete Description

(abstract)

Content Description

Fig. 2.8. MPEG-7 Top-Level Type Hierarchy [9].

Here is an example definition of a ContentEntityType in DDL:

<! - Definition of ContentEntity Top-level Type ->
<complexType name="ContentEntityType">
<complexContent>

<extension base="mpeg7:ContentDescriptionType">
<sequence>

<element name= "MultimediaContent"
type="mpeg7:MultimediaContentType"
minOccurs="1" maxOccurs="unbounded"/>
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</sequence>
</extension>

</complexContent>
</complexType>

Segment elements are used to describe the decomposition of a multimedia
object in smaller parts. Each segment may be separately annotated, which
can lead to a hierarchical description of content, where a global overview
can coexist with detailed descriptions of smaller subobjects. The definition of
segment depends on the medium. For streaming media we can describe the
structure of the content object in temporally defined segments such as shots
or songs. For visual objects, including video, there are descriptors for the
visual segmentation. Each segment can be further annotated with, e.g., textual
descriptions, color, texture, shape, motion or basic structure relationships and
localization.

The SegmentType is the root descriptor type for describing the character-
istics (e.g., creation, media, usage, semantics, text annotation, and matching
hints, etc.) of segments. For more specific descriptions, types derived from
SegmentType such as VideoSegmentType are used. The VideoSegmentType is
a subtype of SegmentType, so it inherits all the elements of SegmentType. In
addition, it has elements specific to video. Likewise the StillRegionType is used
for describing an image or a two-dimensional spatial region of an image or a
video frame. It extends the SegmentType in a similar fashion as VideoSegment-
Type. In Figure 2.9 the segment type class hierarchy is given and in Figure 2.10
a list is given of the elements of some of these types.

StillRegion DS

Segment DS

StillRegion3D DS InkSegment DS

MovingRegion DSAudioSegment DS

ImageText DS VideoSegment DSMosaic DS

(abstract)

AudioVisualSegment DS

MultimediaSegment DS

Fig. 2.9. MEPG-7 subclasses of the segment description schemes [9].

Some specialized visual objects such as faces have their own descriptors. Many
of the descriptors only make sense as parameter input for specialized algo-
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SegmentType

− MediaInformation: MediaInformationType
− MediaInformationRef: ReferenceType
− MediaLocator: MediaLocatorType
− StructuralUnit: ControlledTermUseType
− CreationInformation: CreationInformationType
− CreationInformationRef: ReferenceType
− UsageInformation: UsageInformationType
− UsageInformationRef [0..*]: ReferenceType
− TextAnnotation [0..*]: TextAnnotationType
− Semantic[0..*]: SemanticType
− SemanticRef[0..*]: ReferenceType
− MatchingHint[0..*]: MatchingHintType
− PointofView[0..*]: PointofViewType
− Relation[0..*]: RelationBaseType

VideoSegmentType

− MediaTime: MediaTimeType
− TemporalMask: TemporalMaskType
− VisualDescriptor[0..*]: VisualDType
− VisualDescriptoScheme[0..*]: VisualDSType
− VisualTimeSeriesDescriptor[0..*]
− MultipleView: MultipleViewType
− Mosaic[0..*]: MosaicType
− SpatialDecomposition[0..*]
− SpatialTemporalDecomposition[0..*]
− MediaSourceDecomposition[0..*]

StillRegionType

− SpatialLocator: SpatialLocatorType
− SpatialMask: SpatialMaskType
− MediaTimePoint: MediaTimePointType
− MediaRelTimePoint:
− MediaRelIncrTimePoint:
− VisualDescriptor[0..*]: VisualDType
− VisualDescriptorScheme[0..*]: VisialDSType
− GridLayoutDescriptor[0..*]
− MultipleView: MultipleViewType
− SpatialDecomposition[0..*]

Fig. 2.10. MPEG-7 SegmentType and its subtypes [9].

rithms which means that their semantics is standardized together with that
of the descriptors themselves.

Audio descriptors are divided into low-level descriptors that are common
to audio objects across most applications, and high-level descriptors that are
specific to particular applications of audio. The cross-application low-level
descriptors cover structures and temporal and spectral features The domain-
specific high-level descriptors are meant to describe special types of sounds.
For example for music, musical instrument timbre, and melody may be de-
scribed. Likewise, for speech there is a complete spoken content description
scheme that is meant to be output by an automatic speech recognition engine.
Example 6
Below is an example taken from Kosch [9] of an MPEG-7 document for a
video containing one shot, the Leaning Tower of Pisa. For clarity, white space
has been added in the body of the elements. The video is located at a certain
URL and has a title in English: “Pisa video”. Moreover, some administrative
and timing information is given. We hope that the text is self explanatory:

<Mpeg7>
<Description xsi:type="ContentEntityeType">
<MultimediaContent xsi:type="videoType">

<Video>
<MediaLocator>
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<MediaUri>file://pisa.mpeg</MediaUri>
</MediaLocator>
<CreationInformation>
<Creation>
<Title xml:lang="en"> Pisa Video </Title>
<Abstract>

<FreeTextAnnotation>
This video shows the Pisa Leaning Tower

</FreeTextAnnotation>
</Abstract>
<Creator>

<Role href=
"urn:mpeg:mpeg7:cs:RoleCS:2001:PRODUCER">

<Name xml:lang="en"> Anchorman </Name>
</Role>
<Agent xsi:type="PersonType">

<Name>
<GivenName> Stephan </GivenName>
<FamilyName> Herrmann </FamilyName>

</Name>
</Agent>

</Creator>
</Creation>
<Classification>

<ParentalGuidance>
<ParentRating href=

"urn:mpeg:mpeg7:cs:FSKParentalRatingCS:2003:1"/>
<Region>de</Region>

</ParentGuidance>
</Classification>

</CreationInformation>

<TemporalDecomposition>

<VideoSegment id="VS1">
<MediaTime>
<MediaTimePoint>T00:00:00:0F25</MediaTimePoint>
<MediaIncrDuration mediaTimeUnit="PT1N25F">218
</MediaIncrDuration>
</MediaTime>
<SpatialTemporalDecomposition>
<StillRegion>

<MediaRelIncrTimePoint
mediaTimeUnit="PT1N25F"> 23

</MediarelIncrTimePoint>
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<SpatialDecomposition/>
</StillRegion>

</SpatialTemporalDecomposition>
</VideoSegment>

</TemporalDecomposition>
</Video>

</MultimediaContent>
</Description>

</Mpeg7>

2.6 Summary
Metadata is indispensable for effective management and use of multimedia
information. In this chapter, we review three prominent metadata schemas
for managing multimedia objects, namely, Dublin Core, Resource Description
Framework (RDF), and MPEG multimedia metadata. The characteristics of
these standards and their applications are also presented. Dublin Core con-
centrates on descriptive data and is widely used. RDF is in fact a general
data model, so can also be used to describe metadata. MPEG-7 offers fa-
cilities detail metadata for audio-visual data. The standard is extensive and
complicated. The prospective success is, however, therefore doubtful.

2.7 Further Reading
Some general introduction to metadata and its usage in the multimedia envi-
ronment can be found at various places [1, 3, 10, 15]. Dublin Core is completely
described at several Websites [4, 8, 7]. Documents related to the RDF from
the W3C can be found in W3C publications [20, 22, 21]. The OWL extension
of RDF is described in another W3C document [19]. For detailed description
of MPEG-7 and its usage in the multimedia domain, please refer to [9, 13].
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3.1 Introduction
3.1.1 Recognizing Patterns in Multimedia Content
This chapter looks at the basics of recognizing patterns in multimedia con-
tent. Our aim is twofold: first, to give an introduction to some of the general
principles behind the various methods of pattern recognition, and second, to
show what role these methods play in multimedia content analysis.

We start by diving right in by exploring two examples that give a first
flavor of how pattern recognition can contribute to a better understanding
and description of multimedia content.

Example 1: Semi-automatic Annotation of Multimedia Content
One of the foremost uses of pattern recognition is in fulfilling the need for
high-quality metadata, a key ingredient of successful multimedia retrieval sys-
tems. Low-level multimedia bitstreams are not suitable for searching directly,
and pattern recognition is needed to obtain more meaningful and useful de-
scriptions of the data.

Traditionally, multimedia retrieval systems have been based on manual
annotations of the content. Given the typical quantities of material produced,
such annotation is generally a labor-intensive, and thus also expensive, task.
One may think, for example, of the BBC broadcasting company which, on a
daily basis, needs to archive material of four television stations as well as a
large number of radio stations. Additionally, for some programs, a single hour
of broadcasting may require an archivist more than 7 hours of cataloging.

For many applications such manual annotation is not very practical, and
thus we have a natural need to automate this process. And although it is
currently not yet possible to design systems that annotate with the same level
of detail as that of well-trained human annotator, there is nevertheless great
scope for systems that provide some basic annotations automatically.

A promising approach to tackle this automatization problem is by means of
a combination of pattern classification methods and carefully designed concept
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hierarchies. The latter serve to provide a standard for the multimedia content
descriptions. One example is the large scale concept ontology for multimedia
initiative, or LSCOM [23], defining about 1000 concepts divided into categories
such as Activities (e.g., walking), Scene (e.g., indoor), People (e.g., soldier,
Pope), Objects (e.g., car) and Events (e.g., crash).

Given such a well-defined set of concepts, the pattern classification ap-
proach to automated annotation is to design classifiers for each of the con-
cepts in the set. In practice, this means that a small part of the multimedia
collection is still annotated by hand in order to obtain a set of annotated
examples to train the classifiers. Once the classifiers are trained, the bulk of
the collection is then annotated automatically.

Example 2: Surveillance and Automatic Interpretation of
Multimedia Streams
Another very promising field of study is automatic activity recognition in
videos. Currently, a commercially interesting example is the automatic inter-
pretation of data from surveillance cameras, with applications such as:

• monitoring customer behavior in shops, both for security purposes, and
data mining for marketing;

• smart home applications, e.g., to keep the elderly and children out of
danger, or to automatically put on the lights or heating;

• various security applications, e.g., detecting suspicious behavior in parking
garages or on the street, monitoring high-risk objects like nuclear power
plants, airports and stations;

• detection of emotions and moods for more natural human computer in-
teraction.

Here various pattern recognition approaches can be used. Again, detection
of activities may be based on classification and supervised learning. However,
more explicit modeling of the situation also has proven to be very useful, and
has given excellent results in a number of applications.

For example, an often used approach is to model what is going on in the
data stream by means of finite state descriptions. Each state corresponds to a
dominant activity in the data stream. For example, the default state may be
that nothing happens, e.g., somebody is walking normally. Other states cor-
respond to less likely or unexpected events, such as an elderly person falling
down, or a burglar breaking into a car. Detailed scenarios can be modeled
by means of hidden Markov models and Bayesian networks. These models
describe the dependencies between the states using different parameters, e.g.,
the state transition probabilities, the state emission probabilities etc. As be-
fore, the model parameters can be learned from a training set of, possibly
multimodal, video sequences for example by labeling shots as “normal” and
“falling”.

Yet another approach would be to analyze the multimedia streams by
methods of unsupervised learning to discover patterns without first explicitly
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modeling them. For example in the application of customer behavior monitor-
ing in shops, we could observe the order in which different shelves are visited.
Then analyzing the many sequences collected for all the customers, recurring
spatial patterns can be clustered. This in turn may result in suggestions for
improving the spatial layout of the shop.

3.1.2 The Pattern Recognition Process
Pattern recognition is a well-developed subject of study which has close ties to
the field of machine learning. It is the study of how machines can “observe” the
environment and learn to discover and distinguish interesting patterns from
a possibly cluttered background. Based on these patterns some reasonable
assumptions and decisions about the environment can be made.

Pattern recognition (PR) aims to classify the data (patterns) based on
either a priori knowledge or on statistical information extracted from them.
Roughly, a PR system consists of a sensor that gathers the data to be de-
scribed; a feature extractor that computes numeric or symbolic representa-
tions (features) from the data; and a classifier which uses the extracted fea-
tures to classify the patterns to suitable categories.

The sensor provides the measurements, or “raw data”, from the environ-
ment, e.g., the pixels of an image provided by a digital camera. Preprocessing
and feature extraction may include some signal processing such as smooth-
ing and noise filtering. Next, while it is possible to handcraft a classifier,
benchmark results have proven that better recognition accuracy is often ob-
tained with systems that have tunable parameters that can be adjusted to
correctly classify a set of given training examples. In multimedia information
retrieval a wide variety of learning machines have been used, ranging from sim-
ple classical methods such as “nearest neighbors” to, for instance, the more
sophisticated support vector machines. For some recognition tasks, the classi-
fier/learner can be complemented by systems that take contextual information
into account. For example, in handwriting or speech recognition applications,
language models or grammars are often incorporated in the postprocessing
stage.

More formally, PR systems may be subdivided by their relations between
the inputs and output of the system:

• Pattern classification/supervised learning
Pattern classification is based on a collection of example patterns for which
the desired system output has been specified. The output is usually a class
or category assigned to the patterns. Based on the collection of input–
output pairs, the training set, the system learns a prediction function
which can then be used to obtain the class of newly supplied (input)
patterns.
The aim of pattern classification is to provide good generalization perfor-
mance from the set of example patterns. Ideally a classification method
captures the true structure in the example patterns, while not overfitting
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to peculiarities and coincidences. Pattern classification will be discussed
in detail in Section 3.2.

• Reinforcement learning
In this case no correct input-output pairs are presented; instead, the sys-
tem responds to a given input pattern by generating its own output. This
output is then rewarded (or punished) according to a given reward func-
tion. This allows the system to assess the appropriateness of the generated
output. Reinforcement learning is usually used in a context where the in-
puts are perceived states, and the outputs are actions of the system. Since
the system is not explicitly corrected for sub-optimal actions, an important
issue is the balance between exploring new actions and the exploitation
of already acquired knowledge of actions that provide a good reward.

• Pattern clustering/unsupervised learning
With unsupervised learning, no feedback is given at all and the system
is expected to discover natural structure in unlabeled patterns by itself,
for instance by grouping the patterns into clusters. Various methods used
for clustering patterns occurring in multimedia content are discussed in
Section 3.4.

Recently there has also been a lot of interest in methods for semi-supervised
learning. For these labeled and unlabeled examples are combined to obtain
better classifiers. This is illustrated in Figure 3.1.

Fig. 3.1. Semi-supervised learning. The use of unlabeled examples (right) may
improve classifier performance.

Focusing mainly on pattern classification and pattern clustering, we can sub-
divide the pattern recognition process in the following main stages:

1. Pattern representation: feature extraction and feature selection.
In this stage the data is collected, and a feature representation for the
patterns is chosen. Features for multimedia content may vary widely in
type.
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Feature selection may already occur at this stage and is generally desir-
able: the features should be as relevant as possible for the task at hand.
Insights from later stages may further contribute to feature selection. Fea-
ture extraction can also take the form of transforming the features to
obtain new features that are better adapted to the data.

2. Modeling
Next, a learning method needs to be decided upon. This means that, ex-
plicitly or implicitly, we need to choose a model to explain the system
output in terms of the available pattern features. After that, learning
amounts to figuring out the best parameters of the model in order to ob-
tain a prediction function explicitly relating the inputs to the outputs.
In some applications, very elaborate models are devised to describe this
relationship. An important class of models, often used in multimedia pat-
tern analysis, are hidden Markov models. These are introduced in detail
in Section 3.3. Also, very commonly, models for the prediction function
are defined implicitly by the choice for a particular machine learning tech-
nique. For example, if a support vector machine method is chosen, this
implies a model consisting of a certain kernel function together with a
high-dimensional separating hyperplane; similarly, boosting is often used
in combination with decision tree models. A number of models underlying
learning methods are discussed in Section 3.2.

3. Learning: classification or clustering
This is the training stage where the collected data is used in conjunction
with the model to determine the prediction function or clustering. For
explicit models this may take the form of Bayesian parameter estimation.
The training stage often involves further dimension reduction, e.g., in the
case of decision trees.
For classification, training usually proceeds by minimizing the error on
the training set, possibly regulated by a complexity penalty. This is dis-
cussed in more detail in Section 3.2. Unsupervised clustering is discussed
in Section 3.4.

4. Evaluation
To assess the performance of a PR system it is desirable to test the system
using an independent test set. In case no such independent test set is avail-
able cross-validation may offer a good alternative. This is also discussed
further in Section 3.2.2.

These stages do not always proceed independently; they may, and generally
should, interact to get good performance. Two examples of such interactions
are: (i) The evaluation stage may offer feedback on the training stage, e.g.,
straightforward training may lead to overfitting; evaluation through for in-
stance cross-validation may regulate this tendency. (ii) The learning stage
often provides new insight into which features are useful for class discrimina-
tion. This may lead to further feature selection and dimension reduction. This
is discussed in more detail in Section 3.5.
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3.1.3 Relation to Other Chapters
Many methods for object recognition (e.g., template matching, statistical
shape models, image features and feature extraction) in the area of image
processing are presented in Chapter 5, Image Processing. Parameter estima-
tion (more specifically the EM algorithm) is discussed in Chapter 6, Gener-
ative Probabilistic Models. In Chapter 7, Speech Indexing, hidden Markov
models are used for speech recognition. Chapter 8, Semantic Video Indexing,
deals with the semantic indexing as pattern recognition problem and uses sup-
port vector machines. Chapter 9, Detection of Object and Events in a Tennis
Video, uses hidden Markov models for stochastic event recognition as well as
Bayesian networks. Chapter 10, Fusion of Evidence for Video Events, uses
Bayesian networks for detection of excited speech.

3.1.4 Outline
The basics of pattern classification are presented in Section 3.2. Explicit mod-
eling of multimedia content via hidden Markov models is the topic of Sec-
tion 3.3. Unsupervised learning and pattern clustering are introduced in Sec-
tion 3.4. Finally, methods for dimension reduction are discussed in Section 3.5.

3.2 Pattern Classification
3.2.1 Introduction
The main aim of pattern classification is to generalize from the class structure
of a set of labeled example patterns. What this usually means is that for a
set of example patterns (i) we know what class they have, and (ii) we have
their feature representations, i.e., each pattern can be considered as a point
(or vector) in a feature space. From this information we would like to be able
to decide the class of new input patterns, also represented as features. This
immediately gives rise to a host of issues that need to be taken into account,
for example:

• Residual uncertainty. Even though most pattern classification proce-
dures lead to a prediction function, i.e., a deterministic function mapping
pattern features to pattern classes, the true relationship between features
and pattern classes is generally not deterministic. Rather, it is probabilis-
tic in the sense that given a pattern feature vector, the pattern class is
not fully determined and the remaining uncertainty can be quantified by
means of a probability distribution over the different classes. Conceptu-
ally, we can thus represent the true relationship between pattern features
x and pattern class k as a joint probability function p(x, k). However, note
that we generally do not know this function.

• Limited availability of data. When classifying a new pattern feature,
we would like, ideally, to have a number of samples at that particular
feature point. We could then estimate which class has the highest proba-
bility and then assign the new pattern to that class. In fact, this is precisely
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the topic of statistical decision theory. This field studies the definition of
optimal classifiers given a certain joint probability function and given a
penalty function describing the cost of misclassification. One famous re-
sult describes the optimal classifier for the so-called zero–one loss penalty
function. This standard penalty function assigns unity cost to each mis-
classification. The optimal prediction function in this case is the Bayes’
classifier , which is defined as:

f(x) = argmax
k∈K

p(k|X = x). (3.1)

This equation states that the best we can do to minimize expected loss is
to assign each pattern feature x to that class k ∈ K that has the highest
probability given the feature. In practice, of course, we often do not have
a number of samples at every feature point, so our methods should be
designed to still do a decent job also with limited data.

• Need for prior assumptions. Not having sufficient data usually takes
quite extreme forms: not only do we not have several samples at a feature
point, most of the time we have none at all. It is clear that it is ill-
advised to decide the class for a pattern if it is not somehow sufficiently
represented by the example data. When we are confident that the data
do give sufficient information on a new pattern feature, we can use the
available data to interpolate or extrapolate the observed class structure
to the desired point. An immediate consequence is that we must make
prior assumptions about the form of our classifier, thereby implicitly or
explicitly stating how the true relationship is expected to behave. The
so-called no-free-lunch theorems [44] state that there is no reason to favor
any assumptions on purely theoretical grounds. This means that the as-
sumptions must ideally be decided based on the problem and the data at
hand. Assumptions often take the form that the behavior of the prediction
function is to some extent regularized, i.e., limited in its complexity. This
means that we assume, unless we have information to the contrary, that
the prediction function changes gradually between data points.

• Noise and error. The available data may be affected by noise and there
may be measurement errors. This may be the case for both feature and
class measurements. Ideally, the mentioned assumptions on the regularity
of the prediction function can also deal to some extent with false and
misleading measurements, i.e., lead to a method that is robust in the
sense that it is not too strongly affected by mistakes and outliers in the
sample set.

• Under- and overfitting This brings us to a key issue in learning: on the
one hand we do not want to make our assumptions so restrictive that we
cannot sufficiently capture the class variation through the feature space
(a phenomenon called underfitting), and on the other hand we do not
want the prediction function to react to every single peculiarity of the
data (overfitting) such as to the errors mentioned early, but also to, for
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instance, variations in density of representation through the feature space.
Finding the balance in how much variation to allow in our prediction
function, based on our data and knowledge of a problem, is one of the
main challenges in designing classification systems.

• Irrelevant feature variables. A final issue we mention is that in many
classification problems we are working with a feature space where some
of the feature variables are irrelevant to the classification task. Such vari-
ables just serve as more noise to deal with and can seriously hamper the
performance of the classifier. Selecting those variables really relevant to
the task is another main challenge in designing the classification system.

After introducing some more general terminology in the next section, we
briefly visit a number of popular classification methods. Our goal is not to
explain these methods in great detail, but rather to take a tour along some of
the exciting ideas important to modern classification.

We start out with two approaches, N -nearest neighbors and discriminant
analysis, that directly implement the insight contained in the Bayes’ classifier:
estimate the class probabilities at a given feature point, and then assign to
the most likely class. Next, we discuss support vector machines (SVMs) as an
example of margin-maximizing approaches. Finally, we introduce boosting as
an example of an ensemble method.

3.2.2 Measuring Classifier Performance: Training and Test Error
The result of a classification procedure is a classifier, or prediction function,
that maps feature values to classes. All the points which map to a certain class
form a subset of the feature space. The prediction function thus partitions the
feature space into disjoint regions, each corresponding to a certain class; note
that the region belonging to a certain class does not have to consist of single
connected component.

The subset of points where the regions belonging to different classes meet,
is called the decision boundary . Depending on the classification method this
boundary is defined in different ways. For the Bayes’ classifier it consists of
those feature values for which the two most likely classes have equal proba-
bility.

One obvious method to assess the performance of a classifier is to consider
how well the prediction function maps the training samples to their provided
labels. This can be measured using the training error for the prediction func-
tion f̂(x). If the training set is given by X = {(x1, y1), . . . , (xn, yn)} for feature
vectors xi and class labels yi, then the training error is defined as:

ē(X , f̂) =
1
n

n∑

i=1

L(yi, f̂(xi)),

where L is a loss function describing the cost of misclassification for a single
sample. A commonly used loss function is the already mentioned zero-one loss,
defined by:
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L(yi, f̂(xi)) =
{

0 if yi = f̂(xi)
1 if yi �= f̂(xi) ,

i.e., a misclassification is given a penalty of 1 and a correct classification gets
no penalty. With this loss function the training error is simply the fraction of
training samples that do not get mapped to their labeled class.

Many classification approaches guarantee that zero training error can be
achieved. However, in the previous we have already seen that we must be-
ware of overfitting to the data, and that zero or small training error does not
mean that we have a good classifier: a less complex classifier that misclassifies
some of the training examples may have a better performance on new data.
Generally, the best way to establish the performance of a classifier is to mea-
sure the performance on a set of new, independently obtained, patterns that
have not been used to train the classifier. Loss measurement on a previously
unseen data set provides an estimate to the ultimate measure of classifier
performance: the test error . It is defined as:

e(f̂) = Ep(x,y)[L(Y, f̂(X)],

i.e., as the expectation of the loss if both Y and X are drawn from their (true)
joint distribution p(x, y).

In practice we often do not have too many annotated samples, and we
would like to use them all for training, rather than keep a subset apart for
testing only. In this case we can still get a (more biased) estimate of classifier
performance on new data by means of so-called (K-fold) cross-validation. The
idea there is to split the sample set into K (often K = 10 is used) subsets.
Then K tests are performed where at each test one of the sets is taken to be
the test set and the other K − 1 sets are used to train the classifier. The K
errors of these tests are averaged to give an estimate for the test error.

3.2.3 Nearest Neighbor and Discriminant Methods
The Bayes’ classifier tells us that if we want to minimize the number of clas-
sification errors, we should classify patterns with feature vector x to the class
with the highest probability given that feature vector. As mentioned already,
ideally we would have several sample patterns with feature x such that we can
estimate these class probabilities. Unfortunately, usually this is not the case.
However, a natural approach to find the most probable class is to compare
class frequencies in a neighborhood of x. This leads to the N -nearest neighbor
method of classification which classifies patterns x to the most dominant class
in the set of the N training sample patterns closest to x.

For satisfactory performance, two key requirements must be met: (i) we
need enough patterns sufficiently close to x to be representative for patterns
in x, and (ii) we need a sensible distance metric between the patterns. Both
requirements are generally hard to fulfill in high-dimensional feature spaces. In
particular performance tends to deteriorate rapidly with an increasing number



62 Elena Ranguelova and Mark Huiskes

of feature dimensions that are not strictly relevant to the task at hand, and
that influence the distance metric. To prevent such performance degradation
calls for a careful feature selection process.

Another issue with nearest neighbor methods is that they do not have a
training stage. The prediction function follows directly from an interpolation
of example features. This has the disadvantage that the entire data set must
be kept, and that all work has to be done at run-time.

Despite these characteristics, nearest neighbor methods are often used in
multimedia retrieval applications. Since multimedia applications typically deal
with very large data sets, it is particularly pressing to make sure that for each
classification we do not have to visit all samples of the data set to determine
the nearest neighbors. Many indexing structures have been developed to pre-
vent this; Böhm et al. [8] provide an overview of such methods particularly
geared to the requirements of multimedia databases.

Discriminant methods also implement the insight contained in the Bayes’
classifier. However, unlike the nearest neighbor methods, they do not estimate
class probabilities directly. Instead they first estimate the probability density
of feature values given a certain class, and next use Bayes’ law to obtain
estimates for the class probabilities given a feature value x:

p(Y = k|X = x) =
p(X = x|Y = k)P (Y = k)

p(X = x)
=

pk(x)πk

P (X = x)
, (3.2)

where the πk are the prior probabilities for class k, and pk(x) the probability
density functions of the features x given class k. For classification we are only
interested in the relative magnitudes of the class probabilities, so we may use:

δk(x) = pk(x)πk (3.3)

as discriminant functions to obtain a discriminant classifier given by:

argmax
k∈K

δk(x). (3.4)

Discriminant methods thus require us to estimate the feature value densities
for each class. Different choices of how to do this lead to different discriminant
methods. Assuming a multivariate Gaussian density for each of the classes
leads to the well-known method of linear discriminant analysis if we also
assume that the class densities share a common covariance matrix. If we relax
this assumption such that each class may have its own covariance matrix, this
leads to quadratic discriminant analysis. Also mixtures of Gaussians can be
used in case we require multimodal density models; we refer to the book by
Hastie et al. [22] for further details.

Despite the fact that the assumptions in discriminant analysis are often
not fully warranted, discriminant methods have shown to provide competitive
performance for many classification problems. A likely reason is that their
usually simple assumptions prevent overfitting to the data.
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3.2.4 Support Vector Machines
Support vector machines (SVMs) derive their, generally excellent, perfor-
mance from a number of interesting ideas and insights. First, the training ex-
amples are mapped nonlinearly into a, usually, high-dimensional space. There,
in order to obtain the support vector classifier, a linear decision boundary be-
tween the classes is determined by constructing an optimal separating hyper-
plane. To obtain good generalization performance despite the high dimension
of the space, this hyperplane is chosen in such a way that the training examples
are as far away from the decision boundary as possible. The linear decision
boundary obtained from this process of margin-optimization corresponds to
a nonlinear decision boundary in the original space.

Another crucial feature of support vector machines is that the map from
the original space into the new space is usually not constructed explicitly.
Instead, it is implicitly defined by the choice of a kernel function k(x, x′). It
turns out that evaluating a kernel function is equivalent to first mapping its
arguments by a certain map Φ into an inner product space and then taking
the inner product of the resulting vectors, i.e., k(x, x′) = 〈Φ(x), Φ(x′)〉. If
we have an algorithm formulated in terms of inner products and replace the
inner products by the kernel function, the result is that we are still using the
same algorithm but now in the mapped space instead of the original space.
This, currently very popular, method of using kernels in inner product-based
algorithms is known as the kernel trick .

In the following, we first discuss margin optimization and the construction
of separating hyperplanes, and then show how we can apply the kernel trick
to the resulting algorithm.

Following the book by Schölkopf [39], we first assume that our training exam-
ples have already been mapped into an inner product space H. We consider
a two-class problem and, for convenience, assume that the training examples
(xi, yi), i = 1, . . . , n are labeled by yi = 1 or yi = −1.

The margin of a correctly classified training example is defined as its dis-
tance to the decision boundary. Our aim is to construct a hyperplane that:
(i) separates the two classes as well as possible, and (ii) makes the margins
as large as possible. For standard support vector classifiers the latter goal
is implemented by maximizing the minimum margin, which is known as the
geometrical margin of the training set.

A general hyperplane can be defined by:

〈w, x〉 + b = 0, (3.5)

where w determines the orientation of the plane, and b its offset from the
origin. The hyperplane can be used as linear decision boundary for a classifier
by taking f(x) = sign(〈w, b〉 + b). Input values on one side of the hyperplane
are classified as 1 and values on the other side as −1. Note that we have a
choice in how we scale the vector w. The equations above are understood
most easily by taking the vector w to be of unit size and interpreting 〈w, x〉
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as a projection on w. However, for the purpose of working with margins,
it turns out to be more convenient to scale w differently: we assume that
the length of w is such that the distance of the hyperplane to the labeled
examples with smallest margins is equal to 1/||w||, in other words: we assume
that the geometrical margin is 1/||w||. If we define the hyperplane in this way,
the hyperplane is in canonical form. It is an easy exercise to check that for a
hyperplane in canonical form the dashed hyperplanes in Figure 3.2 are defined
by 〈w, x〉 + b = ±1.

Fig. 3.2. Separating hyperplane.

Thanks to this canonical form we can formulate the construction of a sepa-
rating hyperplane as a simple constrained minimization problem:

min
w∈H, b∈IR

1
2
||w||2 (3.6)

subject to yi(〈w, xi〉 + b) ≥ 1, for i = 1, . . . , n. (3.7)

The constraints make sure that the training examples are correctly classi-
fied, and minimizing ||w|| corresponds to maximizing the geometrical margin
(1/||w||). A solution to this problem will exist only if the training examples
can indeed be separated by a linear hyperplane. As this is not always the case
and it is important to build in robustness to outliers, usually a soft margin
formulation based on “slack” variables ξi (i = 1, . . . , n) is used:

min
w∈H, b∈IR

1
2
||w||2 + C

n∑

i=1

ξi (3.8)

subject to yi(〈w, xi〉 + b) ≥ 1 − ξi, ξi ≥ 0, for i = 1, . . . , n. (3.9)
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Positive values ξi > 0 of the slack variables correspond to violations of the
constraints, i.e., to training examples that are either misclassified, or are still
correctly classified but are within the geometrical margin. The parameter C
controls the trade-off between margin maximization and training error mini-
mization.

The classic method to characterize the solutions of constrained optimiza-
tion problems is as a saddle points of the Lagrangian function:

L(w, b, ξ, α) =
1
2
||w||2+C

n∑

i=1

ξi−
n∑

i=1

(αi(yi(〈w, xi〉+b)−1+ξi)+βiξi). (3.10)

To obtain solutions to (3.8), the Lagrangian should be minimized with respect
to the primal variables w, b, and ξ, and maximized with respect to the La-
grange multipliers, or dual variables, αi and βi. The Lagrange multipliers αi

are zero for inactive constraints, and non-zero for active constraints, i.e., only
for training examples that are either on the geometric margin, or for examples
with positive slack variables. Such examples are known as the support vectors
of the problem, and it can be shown that:

w =
n∑

i=1

αiyixi, (3.11)

giving:

f(x) = sign

(
n∑

i=1

αiyi〈x, xi〉 + b

)
(3.12)

as the support vector classifier. Note that this means that the outcome of the
classifier is determined only by the support vectors; the examples with higher
margins could be left from the training data without changing the resulting
classifier. To determine the Lagrange multipliers, one has to solve the dual
problem:

max
α∈IRn

n∑

i=1

αi −
1
2

n∑

i,j=1

αiαjyiyj〈xi, xj〉 (3.13)

subject to 0 ≤ αi ≤ C, for i = 1, . . . , n and
n∑

i=1

αiyi = 0. (3.14)

For a detailed discussion on how to derive the dual problem as well as to gain
a better grasp of the geometry of the setting, we recommend the textbooks
by Schölkopf et al. [39] and Bazaraa et al. [4].

One advantage of the dual formulation is that the constraints are simplified
considerably. The most important advantage, however, is that the training
examples enter the problem exclusively through their inner products. This is
exactly what is needed to be able to use the kernel trick.
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To apply the kernel trick, we replace the inner products by a kernel func-
tion k, giving:

max
α∈IRn

n∑

i=1

αi −
1
2

n∑

i,j=1

αiαjyiyjk(xi, xj) (3.15)

under the same conditions as before; the classifier is now given by:

f(x) = sign

(
n∑

i=1

αiyik(x, xi) + b

)
. (3.16)

As mentioned above, replacing the inner product by a kernel in this manner,
implicitly corresponds to mapping into an inner product space followed by
taking the inner product in that space. Given a kernel, there are different
ways to construct the inner product space. One insightful way to do this is
by means of reproducing kernel Hilbert spaces which allow the kernel to be
interpreted, to some extent, as a similarity measure. Unfortunately, this theory
is beyond the scope of the current chapter, and we must refer to Chapter 2
of the book by Schölkopf et al. [39] for more details; Chapter 13 of the same
text provides further detail on how to design kernel functions for specific
problems. For general purpose problems the most commonly used kernels are
the Gaussian kernel:

k(x, x′) = exp
(
−||x − x′||2

2σ2

)
, (3.17)

and the, homogeneous and inhomogeneous, polynomial kernels:

k(x, x′) = 〈x, x〉d, and k(x, x′) = (〈x, x〉 + c)d. (3.18)

Performance of these kernels often turns out to be quite similar in practice.
The parameters are usually determined by cross-validation, see Section 3.2.2.
Finally we mention that an excellent resource for SVM software is available
at http://www.kernel-machines.org.

3.2.5 Ensemble Methods and Boosting
Ensemble methods construct a set of classifiers and then combine these to
obtain a new classifier by taking a (weighted) vote of their predictions. Classic
ensemble methods are Bayesian averaging and bagging. The latter method
uses the original set of samples to bootstrap new training data sets and then
simply takes a majority vote of the classifiers resulting from these sets. Here
we will focus on boosting which in particular in combination with decision tree
classifiers often provides excellent off-the-shelf performance.

Boosting has its origins in PAC learning (Kearns [28] gives an introduction;
“PAC” stands for probably approximately correct). Schapire [38] has shown
that using boosting a so-called weak learner (a classifier that performs at
least slightly better than random) can be transformed into a strong learner
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(a classifier that is PAC in a well-defined mathematical sense) by combining
a weighted sum of the weak learners.

With boosting we start with a base (weak) classifier. Theoretically this
should be a learner that can obtain better than random performance on any
sample from the true data distribution. In practice, one usually takes a deci-
sion tree classifier, often even a tree stump, i.e., a classifier that partitions the
feature space into two classes by splitting along a single dimension. The base
classifier is trained and then the performance on the training set is evaluated.
The main idea of boosting is now to train the next classifier by giving more
weight to the samples that were misclassified in the previous stage. This can
be done in two ways: if the method to train the base classifier allows it, we can
work with weighted examples; if this is not the case, we may also resample
from the original data set using sampling probabilities that reflect the weights
given to the samples. This is repeated a number of iterations and then the
final classifier is obtained by taking a weighted vote of the individual classi-
fiers. The classifier weights depend on the performance of the classifier on the
training data.

The most well-known scheme that implements these ideas is AdaBoost
(“Adaptive Boosting”), introduced by Freund and Schapire [17]. The Ada-
Boost procedure consists of the steps listed in the box on the next page [16].
Note that again we have assumed two classes that are labeled as 1 and −1.

The AdaBoost procedure can be motivated in a number of interesting
ways. One is that it implements an iterative process where at each step a new
classifier is added such that a loss function in terms of the example margins
is minimized. This means that, just as SVMs, boosting can be understood to
increase the margins of the training samples in a specific feature space. For
example Hastie et al. [22] show that if an exponential loss function is used,
the classifier weights that minimize the loss are those of (3.19) below.

An interesting effect that is sometimes observed with boosting is that
even after the training error has reached zero, further iterations still lead to
better generalization performance, as witnessed by a decreasing test error.
This can, partially, be explained by the fact that even when examples are
already correctly classified their margins can still be increased. For a more
detailed introduction to AdaBoost and its various variants we refer to Freund
and Schapire [16].
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AdaBoost algorithm

1. Initialize the sample weights, or sample probability distribu-
tion:

mi(1) =
1
n

, i = 1, . . . , n.

2. For iteration t = 1 to T :
• Train base learner ft(x) according to example distribution

mi(t).
• Compute the weighted training error:

εt =
n∑

i=1

mi(t)I(yi �= ft(xi)) =
∑

i:ft(xi) �=yi

mi(t).

• Compute the classifier weight:

αt =
1
2

log((1 − εt)/εt). (3.19)

• Update the example distribution:

mi(t + 1) = mi(t)
exp(αt · I(yi �= ft(xi)))

Zt
,

where Zt is a normalization factor such that the distribu-
tion sums to one.

3. The resulting classifier is f(x) = sign
(

T∑
t=1

αtft(x)
)

.

3.3 Modeling
Hidden Markov Models (HMMs) are a very popular choice for modeling in
multimedia applications. HMMs are stochastic automata consisting of con-
nected states with transition probabilities, as well as probabilities describing
the possible outputs of the states. Only the outputs of the states can be
observed, not the states themselves, hence the name hidden Markov mod-
els. HMMs are widely used in speech recognition to describe acoustic model
probabilities, see Chapter 7, Speech Indexing. Rabiner [37] presents a clas-
sic tutorial on HMMs and applications in speech recognition. HMMs are also
widely used in other fields, such as image processing and computer vision,
text recognition, control theory, communications, the biosciences, and mete-
orology to mention just a few. To get some hands-on experience with hidden
Markov models, we recommend the Matlab HMM toolbox which is available
at: http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html.
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Markov Models and the Markov Property
Consider a simple example: we want to predict the weather in our city based
on the weather in the past few days. Let us assume the weather can be in
any of three states: Sunny (S), Rainy (R) or Foggy(F ) and is constant for one
day. In this case the conditional probability for the weather qn, expressing
the dependence of the weather on day n on the weather of the preceding
n − 1 days, seems like a reasonable statistical model for our predictions. The
larger n, the more accurate the prediction, but also the larger the amount
of weather observations we must collect. Therefore often a first-order Markov
assumption is used, i.e., we assume the probability of a certain observation at
time n depends only on the observation at time n − 1:

P (qn|qn−1, qn−2, . . . , q1) = P (qn|qn−1). (3.20)

This is also known as a Markov property . Suppose that the transition proba-
bilities for our weather example are given in Table 3.1.

Table 3.1. Transition probabilities from today’s to tomorrow’s weather.

Tomorrow
Today

S R F

S 0.8 0.05 0.15
R 0.2 0.6 0.2
F 0.2 0.3 0.5

These first-order Markov model transition probabilities can also be depicted
as the finite state automaton shown in Figure 3.3.

0.8
0.15

0.2

0.5

0.2
0.3

0.05

0.2

0.6

S

R

F

Fig. 3.3. Markov model for the weather with transition probabilities as in Table 3.1.

Using the transition probabilities, we can answer questions like: “Given that
today is sunny, what is the probability that tomorrow will also be sunny and
the day after tomorrow rainy?”:
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P (q2 = S, q3 = R|q1 = S) = P (q3 = R|q2 = S, q1 = S) · P (q2 = S|q1 = S)
(Markov assumption →) = P (q3 = R|q2 = S) · P (q2 = S|q1 = S)

= 0.05 · 0.8 = 0.04. (3.21)

We can arrive at the same result by moving along the corresponding finite
state automaton path.

Hidden Markov Models
HMMs are tools for representing probability distributions over sequences of
observations. Two main characteristics of HMMs are: (i) the observation at
time n is generated by a process whose state is hidden from the observer, and
(ii) the state of the process satisfies the Markov property.

In the context of the weather example, we can get a hidden Markov model
if we assume that the weather outside cannot be directly observed but we can
observe, for example, if a person carries an umbrella into the house: (U) or
not (Ū). Then for day i, we denote the observation for weather state qi by
oi. Let’s assume that the probabilities relating the outside weather and the
person’s umbrella are given in Table 3.2.

Table 3.2. Probability of carrying an umbrella based on the weather.

Weather Probability of umbrella U

S 0.1
R 0.8
F 0.3

To calculate the probability of the weather given “umbrella” or “no umbrella”,
we use Bayes’ rule:

P (qi|oi) =
P (oi|qi)P (qi)

P (oi)
. (3.22)

This equation can be generalized for a sequence of weather states Q =
{q1, q2, . . . , qn} and umbrella observations O = {o1, o2, . . . , on}. To draw con-
clusions about the weather outside, given our umbrella observations, we use
the likelihood L given the Markov assumption:

P (Q|O) ∝ L(Q|O) = P (O|Q) · P (Q)

=
n∏

i=1

P (oi|qi) ·
n∏

i=1

P (qi|qi−1). (3.23)

Example: Consider a case where the initial weather states are assumed to
be equiprobable (so for instance P (q1 = S) = 1/3), and we don’t observe
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any umbrellas for 3 days. We would like to calculate the likelihood that the
weather over these three days has been Q = {q1 = S, q2 = F, q3 = S}:

L(q1 = S, q2 = F, q3 = S|o1 = Ū , o2 = Ū , o3 = Ū) =
P (o1 = Ū |q1 = S) · P (o2 = Ū |q2 = F ) · P (o3 = Ū |q3 = S)·

P (q1 = S) · P (q2 = F |q1 = S) · P (q3 = S|q2 = F ) =
0.9 · 0.7 · 0.9 · 1/3 · 0.15 · 0.2 = 0.0057. (3.24)

HMM variables and parameters:

• States: S = {s1, s2, . . . , sNS
}. In the weather example context, there are

NS = 3 weather states: {S,R, F}.
• Initial state distribution (prior probabilities) π: πi = P (q1 = si), i.e.,

the probability that si is the first state of the sequence. If the states are
equiprobable πi = 1

NS
.

• Transition probabilities: A = (ai,j), where ai,j = P (qn+1 = sj |qn = si) is
the probability that the HMM goes from state si to state sj .

• Emission probabilities B:
– for discrete HMMs on ∈ {ν1, . . . , νK}, B is a matrix of emission prob-

abilities bi,k = P (on = νk|qn = si), i.e., the probability of observing
νk given that the current state is si. For the weather example K = 2:
ν1 = U, ν2 = Ū .

– for continuous HMMs on ∈ R
D, we can similarly define conditional

probability density functions for the outputs given the state.

Trellis Diagram
A Trellis diagram is used to visualize likelihood calculations of HMMs.

Figure 3.4 (on the left) shows such a diagram for a HMM with 3 states.
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Fig. 3.4. Trellis diagram: left: general three-states HMM; right: weather example.

Each column of the diagram shows the possible states at time n. Each state
in one column is connected to each state in the adjacent columns by the
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transition probability ai,j ; bi,k is the probability of an observation on = νk in
state qn = si. The observation sequence O is at the bottom of the diagram.

A Trellis diagram for the weather example is shown in Figure 3.4 (on the
right). The likelihood of the state sequence given the observed sequence can
be found easily by following the path in the Trellis diagram and multiplying
the transition and observation probabilities:

L = πS · bS,Ū · aS,R · bR,Ū · aR,S · bS,Ū

= 1/3 · 0.9 · 0.15 · 0.7 · 0.2 · 0.9 = 0.0057. (3.25)

Pattern Recognition with HMMs
There are three basic HMM problems:

• Evaluation. Computing the probability of an observation sequence O
given an HMM model λ = (A,B, π). For the evaluation of an HMM
the forward algorithm is used. Rabiner [37] gives further details of the
algorithm. This problem appears in classification tasks.

• Decoding. Given the observation O and the model λ, how do we find the
optimal state sequence, i.e., the one which explains the observations best?
The Viterbi algorithm is used in recognition tasks.

• Learning. How to adjust the model parameters to maximize the proba-
bility of the observation given the model P (O|λ). The Baum–Welch (or
forward–backward) algorithm is used to solve this problem.

The learning algorithm is an Expectation-Maximization (EM) algorithm;
Lance Pérez [1] gives more details. The evaluation algorithm consists of the
E-step only.

The likelihood of an observation sequence O given the model λ can be
written as:

p(O|λ) =
∑

every possible Q

p(O,Q|λ), (3.26)

i.e., as the sum of the joint likelihood of the sequence over all possible state
sequences (see the Trellis diagram in Figure 3.4). The näıve solution to the
evaluation problem is computationally very expensive as there are NN

S possible
state sequences (even for small HMMs, e.g., with NS = 10 states and N =
10 observations, there are 10 billion different paths). A better approach to
the solution of the evaluation and decoding problems is the use of dynamic
programming.

In speech recognition (see Section 7.2.2, Acoustic modeling, in Chapter 7,
Speech Indexing) and other PR applications, it is useful to associate an “op-
timal” state sequence to an observation sequence given the parameters of the
model: Q∗ = argmaxQ P (Q|O, λ). The main idea of the Viterbi algorithm is
to keep the best state sequences to reach a certain state at a certain step. We
define two variables:
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1. δn(i): the maximum likelihood of a single path among all paths ending in
state si at time n:

δn(i) = max
q1,q2,...,qn−1

p(q1, q2, . . . , qn−1, qn = si, o1, o2, . . . , on|λ), (3.27)

2. ψn(i): the best path ending in state si at time n:

ψn(i) = argmax
q1,q2,...,qn−1

p(q1, q2, . . . , qn−1, qn = si, o1, o2, . . . , on|λ). (3.28)

The algorithm inductively finds the most probable path at each intermediate
step up to the terminating state:

Viterbi algorithm

1. Initialization:

δ1(i) = πibi,o1 , i = 1, . . . , NS

ψ1(i) = 0.

2. Recursion:

δn(j) = [ max
1≤i≤NS

δn−1(i)ai,j ] · bj,on
, 2 ≤ n ≤ N, 1 ≤ j ≤ NS .

ψn(i) = [argmax
1≤i≤NS

δn−1(i)ai,j ], 2 ≤ n ≤ N, 1 ≤ j ≤ NS

3. Termination:

p∗(O|λ) = max
1≤i≤NS

δN (i)

q∗N = argmax
1≤i≤NS

δN (i).

4. Backtracking:

Q∗ = {q∗1 , q∗2 , . . . , q∗N}
q∗n = ψn+1(q∗n+1), n = N−1, N−2, . . . , 1.

Example: For a simple illustration of the Viterbi algorithm consider again our
weather model. Assume that the initial true weather is not known and that
we observe {Ū , Ū , U}. We want to find the most probable weather sequence
for these three days using the Viterbi algorithm:

1. Initialization
n = 1:

δ1(S) = πSbS,Ū = 1/3 · 0.9 = 0.3, ψ1(S) = 0

δ1(R) = πRbR,Ū = 1/3 · 0.2 = 0.0667, ψ1(R) = 0

δ1(F ) = πF bF,Ū = 1/3 · 0.7 = 0.233, ψ1(F ) = 0.
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2. Recursion
n = 2:
We calculate the likelihood of getting to state ‘S’ from all states in S,
choosing the most likely one:

δ2(S) = max(δ1(S) · aS,S , δ1(R) · aR,S , δ1(F ) · aF,S) · bS,Ū

= max(0.3 · 0.8, 0.0667 · 0.2, 0.233 · 0.2) · 0.9 = 0.216
ψ2(S) = S.

The same is repeated for states: ‘R’ and ‘F ’:

δ2(R) = max(δ1(S) · aS,R, δ1(R) · aR,R, δ1(F ) · aF,R) · bR,Ū

= max(0.3 · 0.05, 0.0667 · 0.6, 0.233 · 0.3) · 0.2 = 0.01398
ψ2(R) = F

δ2(F ) = max(δ1(S) · aS,F , δ1(R) · aR,F , δ1(F ) · aF,F ) · bF,Ū

= max(0.3 · 0.15, 0.0667 · 0.2, 0.233 · 0.5) · 0.7 = 0.08155
ψ2(F ) = F

n = 3:

δ3(S) = max(δ2(S) · aS,S , δ2(R) · aR,S , δ2(F ) · aF,S) · bS,U

= max(0.216 · 0.8, 0.01398 · 0.2, 0.08155 · 0.2) · 0.1 = 0.017
ψ3(S) = S

δ3(R) = max(δ2(S) · aS,R, δ2(R) · aR,R, δ2(F ) · aF,R) · bR,U

= max(0.216 · 0.05, 0.01398 · 0.6, 0.08155 · 0.3) · 0.8 = 0.0196
ψ3(R) = F

δ3(F ) = max(δ2(S) · aS,F , δ2(R) · aR,F , δ2(F ) · aF,F ) · bF,U

= max(0.216 · 0.15, 0.01398 · 0.2, 0.08155 · 0.5) · 0.3 = 0.012
ψ3(F ) = F.

3. Termination
The globally most likely path is determined by looking at the last state
of the most likely sequence:

p∗(O|λ) = max(δ3(i)) = δ3(R) = 0.0196
q∗3 = argmax(δ3(i)) = R.
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4. Backtracking
The optimal sequence can be obtained backtracking the values of ψ (see
Figure 3.5):
n = N − 1 = 2:

q∗2 = ψ3(q∗3) = ψ3(R) = F

n = N − 2 = 1:
q∗1 = ψ2(q∗2) = ψ2(F ) = F.

Therefore, the optimal (most likely) weather sequence given the observa-
tions and the model is: Q∗ = {q∗1 , q∗2 , q∗3} = {F, F,R}.

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

o
1Sequence:

n=1

time

ST
A

T
E

S

= o
2

n=2

= o
3

n=3

=

(     ) = 0.012

(     ) = 0.0017

δ2

δ
3

1δS

F

R (     ) = 0.0196

S

R

F

U UU

Fig. 3.5. Trellis diagram for the most likely weather sequence found via the Viterbi
algorithm.

The HMMs can be considered as a simple type of Bayesian network. We do
not treat such networks here; a thorough presentation of the theory and a
good example of using Bayesian Networks can be found in Section 4.3.4 in the
context of ranked retrieval of text documents. Also in Chapter 10, Fusion of
Evidence for Video Events, Section 10.3 presents an example of using Bayesian
networks for detection of excited speech.

3.4 Unsupervised Learning and Clustering
Jain et al. [26] define clustering as “the unsupervised classification of patterns
(observations, data items, or feature vectors) into groups (clusters)”. Cluster-
ing methods may differ in how they form such groups, yet most use similarity
or proximity measures to group patterns that are sufficiently similar to each
other. Other methods more explicitly aim to discover the sparse and, in par-
ticular, the dense regions in a data set. Pavel Berkhin [5] gives an excellent
overview.

Clustering methods can be roughly divided in hierarchical methods, and
iterative optimization methods. The former simply group items/clusters that
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are closest to each other in the order of their proximity (or split the far-
thest pair by increasing distance). The latter optimize a certain criterion that
measures the quality of the obtained clustering. These are typically iterative,
where at each iteration patterns are relocated from one cluster to another to
further optimize the clustering criterion.

In almost all methods a prominent role is played by the function defining
the distance between two patterns. The quality of the resulting clusters de-
pends to a large extent on how meaningful this distance measure is for the
task at hand. Also, we often require a distance measure between clusters (i.e.,
groups of patterns), and as a special case, between clusters and individual
patterns. Depending on how we define such measures, we may place more
emphasis on the similarity between patterns in a cluster, or on the connec-
tivity between the patterns in a cluster. In the first case, we aim for compact
clusters where all cluster members are similar to each other; in the second
case, we allow individual cluster members to be far apart as long as they are
connected through other cluster members.

3.4.1 Hierarchical Clustering
Hierarchical clustering does not explicitly aim for optimal clusters; rather it
keeps merging the closest pair of patterns/clusters until a threshold distance is
reached and no further merging is possible within that distance. This results
in clusters that themselves consist of subclusters, which have been formed
earlier: hence the name “hierarchical”.

The general form of (agglomerative) hierarchical clustering methods, given
a threshold ε, is:

1. Compute the distance, or connectivity, matrix containing the distance
between each pair of patterns. Treat each pattern as a cluster.

2. Find the most similar pair of clusters using the connectivity matrix (i.e.,
find the pair with the smallest distance). If this distance is smaller than
ε, merge these two clusters into one cluster. Otherwise, stop.

3. Update the connectivity matrix to reflect this merge operation. If we do
not already have one large cluster, return to step 2.

Methods differ in the way they characterize the similarity between a pair
of clusters. Two commonly used varieties are single link and complete link
clustering. In the single link method, two clusters are within distance ε of
each other, already if even a single link between the clusters is smaller than ε.
The distance between two clusters is defined as the minimum of the distances
between all pairs of patterns in the two clusters, where one element is from
the first cluster, and the other from the second.

In the complete link algorithm, two clusters are within distance ε of each
other, only if all links between the clusters are smaller than ε. The distance
between two clusters is defined as the maximum of all pairwise distances
between patterns in the two clusters.
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Figure 3.7 (together with 3.6) demonstrates the difference between these
two methods for an example in which we cluster the colors in an image. The
figure shows two boxes; one box has a very gradual color gradient going from
white to black; the other box has a white region on the left and a black region
on the right, with in between a small region with a strong gradient of shades
going from white to black.

We are clustering the colors (or gray levels) only and do not take into
account the spatial layout of the pixels. With single link clustering we obtain
one large cluster, as, due to the gradient, all colors are connected by in-between
colors. For the top box with a small spatial gradient this is indeed what is
desired, but in other “applications” this may not be appropriate behavior: in
the bottom box such clustering is not desirable. Complete link clustering has
the opposite behavior. The spectrum of colors is split into clusters of similar
colors. Now the white and black of the bottom box are nicely separated, but
the top box is over-segmented.

The figure also shows the hierarchical nesting structure of the clusters by
means of a dendrogram. The level of the horizontal lines connecting different
clusters indicates the distance between the respective clusters. If the value
of the threshold is higher than this value these clusters are merged. As can
be seen from these dendrograms, single link clustering leads to large clusters
more easily.

Many varieties with different link measures have been devised, e.g., average
link (distance between clusters is the average link distance), methods based on
cluster representations by a single point (e.g., centroid, and minimum variance
links), and methods based on cluster representations based on a subset of
points (e.g., CURE [18]). This latter method also takes special care of outliers.

The outcome of hierarchical clustering depends only on the distances (dis-
similarities) between the sample points. However, keeping the entire connec-
tivity matrix of these distances needs in memory is generally not feasible for
larger data sets. One solution to this issue, other than the general strate-
gies for dealing with large databases (see Section 3.4.3), is to keep only the
distances to the nearest neighbors (see, e.g., CHAMELEON [27]).

For categorical data, two hierarchical methods are ROCK [19] and COB-
WEB [13].

3.4.2 Partitioning Relocation Methods
The second family of clustering methods creates clusters that optimize a qual-
ity criterion. Usually the result is a single partitioning of the data set. A sim-
ple, yet useful, representative is the K-means clustering method, which is also,
arguably, the most well-known and popular of all clustering methods.

K-means clustering is an iterative method that aims to minimize the
squared error cluster quality criterion. Given a pattern set X = {x1, . . . , xn},
the goal is to assign each pattern to one of K clusters, such that the summed
squared distances to the centers ck of the clusters are minimized. The number
of clusters K is fixed beforehand: determining a proper value of K is treated
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Original image

Fig. 3.6. Hierarchical clustering. See companion Figure 3.7 for explanation.

as a separate problem. Formally, the aim is to find a labeling L = [l1, . . . , ln]
with li ∈ {1, . . . ,K} such that the squared error criterion:

e2(X ,L) =
K∑

k=1

∑

i∈Ck

||xi − ck||2

is minimized. The “prototypes” ck, k = 1, . . . , K, are the centroids of the
clusters of patterns with label k, defined by:

ck =
1
nk

∑

i∈Ck

xi,

with nk the number of items in cluster k.
Figure 3.8 together with 3.9 gives an illustration of the iterative process to

minimize this criterion. We start out with K initial cluster prototypes. Given
a set of prototypes, we can assign each data set item to its closest prototype.
This is known as the assignment stage and creates K clusters. Next, in the
update stage, new prototypes are determined by computing the centroids of
the items now belonging to the different clusters. This can be repeated until
a certain level of convergence is reached. Two possible termination criteria
are, for instance, detecting that no reassignment of items has occurred, or
detecting insufficient decrease in the optimization criterion.

Many other iterative relocation methods follow a similar strategy for as-
signment and update as in K-means clustering. This leads for instance to the
following variations:

• Instead of computing the centroid, the prototype can be computed in
a different way, e.g., as a medoid (or, “the point at the center of the
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Complete link color clustering and dendrogram

Single link color clustering and dendrogram

Fig. 3.7. Hierarchical clustering. Observe the effect of the linkage measure on the
resulting clustering. The complete link measure leads to compact clusters. The single
link measure puts more emphasis on color connectivity leading, in this case, to one
cluster consisting of all the gray scales. Also shown are the dendrograms of the two
methods (see text).
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Original data set to be clustered, and initial prototype seeds

Iteration 1 – left : assignment; right : update

Fig. 3.8. Iterative clustering. See companion Figure 3.9 for explanation.

cluster”, similar to the one-dimensional median). Such alternate cluster
representatives are usually designed to be more robust to outliers; on the
other hand such methods may be less amenable to statistical analysis.

• Instead of hard assignment of each pattern to a single cluster, one may also
opt for soft, or fuzzy, assignment. In this case the method assigns each
pattern with degrees, or probabilities, of membership to belong to the
clusters. A straightforward “fuzzification” of the K-means method leads
to the prominent fuzzy c-means algorithm, see the book Fuzzy Cluster
Analysis [24].

• Still more generally we can use probabilistic models to describe pattern
clusters. The assignment/update process is then usually based on the
EM-procedure [32]. In the “E”-, or expectation-stage, the class proba-
bilities for the different training patterns are estimated, corresponding
to a soft assignment of the patterns to the various classes. In the “M”,
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Iteration 2 – left : assignment; right : update

Iteration 3 – left : assignment; right : update

Fig. 3.9. Iterative clustering.

or maximization-stage these soft assignments are assumed to be given in
order to be able to obtain the maximum likelihood estimates of the pa-
rameters of the probability density functions describing the clusters in the
feature space. The case where mixtures of Gaussians are used to model the
pattern clusters is discussed in detail in Chapter 6, Generative Probabilis-
tic Models. Regular K-means clustering can be interpreted as a special
case of the mixture of Gaussians model where all Gaussians have isotropic
variances.

All of these methods struggle with their dependence on the initial choice of
prototypes: different initial choices may converge to different local optima of
the clustering criterion; there are no guarantees that a global optimum will
be found. One common strategy to deal with this problem to some extent is
to try out many sets of initial prototypes. Another strategy is to start with
random prototypes and run the clustering method on a subset of the original
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data set; next, the resulting prototypes are used as initial seeds to cluster the
entire set.

3.4.3 Clustering for Large Databases
When clustering patterns for multimedia databases, simple implementations
of the previously discussed methods are generally not feasible: the number of
patterns will be simply too large. In particular, pattern sets are often so large
that the required data for the cluster computations does not fit into main
memory. If no special measures are taken, runtimes will then be dominated
by disk paging of the data back and forth into main memory. In this section
we will discuss a number of strategies to deal with this issue. Note that it may
also be the case that databases are large in the sense that the patterns are
represented by high-dimensional features; this problem is addressed separately
in Section 3.5 on dimension reduction.

In case we are working with prototype methods such as K-means cluster-
ing, one obvious strategy to deal with space complexity is to split the original
data set into smaller sets. First, each of these sets are clustered independently.
Next, the resulting prototypes are combined into a new set which can, in turn,
also be clustered. Additional stages can be used if this is required to keep the
sets sufficiently small. This so-called divide and conquer approach [26] is dis-
cussed by Murty [34].

Another way to deal with space limitations are the incremental ap-
proaches. Here patterns are visited one at a time and then discarded. They
are either added to the already existing clusters, or a new cluster is formed.
A disadvantage of these methods is that they are order-dependent: the re-
sulting clustering depends on the order in which the patterns are visited. The
BIRCH method [45] deserves a special mention. In the first scan, it creates a
height-balanced tree of nodes that summarize the data by accumulating its
zero, first, and second moments. Additional passes through the data can be
used to improve the tree.

Finally, clustering approaches can be speeded up by parallel processing,
e.g., Dhillon [11] discusses a parallel implementation for the K-means cluster-
ing algorithm; Olson [35] discusses parallel hierarchical clustering.

3.5 Dimension Reduction
Dimension reduction is the process of reducing the number of features for pat-
tern representation. As already mentioned in Section 3.2, features irrelevant
to the problem can seriously hamper classification accuracy and selecting a
set of relevant features is often crucial for effective classification. Generally, a
limited set of salient features simplifies the representation and also requires
fewer memory and time resources. On the other hand, reduction of the number
of features can affect the classifier’s performance due to loss of discriminant
power. The importance of a careful choice of suitable features is further sup-
ported by Watanabe’s ugly duckling theorem [12] according to which any two
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patterns are similar if encoded by a sufficiently large number of redundant
features.

Dimension reduction can be divided into feature extraction and feature se-
lection. Feature extraction methods aim to construct an appropriate subspace
of a lower dimension than the original feature space by using transforma-
tions of the original features. Feature selection methods select a subset of the
original feature set in order to reduce classification error.

Fodor [14] gives a good survey on dimension reduction techniques.

3.5.1 Feature Extraction
Feature extraction methods create new features by combination and trans-
formation of the original features. Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA) are two commonly used methods to re-
duce dimension by obtaining transformed features.

Principal Component Analysis (PCA)
PCA, also known as the discrete Karhunen–Loève transform (KLT), is a linear
technique for dimension reduction. The idea is to retain only those character-
istics of the data set that contribute most to its variance. To this end, first
the directions in the data of maximum variance are identified. Next, the data
is projected into the lower-dimensional space formed by these directions of
highest variance. As a result we obtain the principal components, i.e., the
new coordinates after transformation of the data. The first principal compo-
nent accounts for as much of the variability in the data as possible, the second
component accounts for as much of the remaining variability as possible, and
so on.

The derivation of the PCA transformation proceeds by finding linear pro-
jections that maximize the variance in the data after projection. We start with
a data set of n vectors {x1, x2, . . . , xn}, all of dimension m, i.e., consisting of
m components. The sample covariance matrix of such set is given by:

Σ̂ =
n∑

i=1

(xi − x̄)(xi − x̄)T

n
, (3.29)

where x̄ is the sample mean x̄ =
∑n

i=1 xi/n. Given a vector w of unit length,
the variance in the data after projection on w is given by σ2(w) = wT Σ̂w.
This means (see for instance the article by Hotelling [25]) that the k principal
axes {w1, w2, . . . , wk} that maximize variance after projection are given by
the (normalized) eigenvectors corresponding to the k largest eigenvalues of
the sample covariance matrix. We thus have:

Σ̂wj = λjwj , j = 1, . . . , k, (3.30)

where the λj are the k largest eigenvalues of Σ̂. To obtain the transformed
coordinates yi for the data vector xi, we first subtract the sample mean and
then project the data on these orthonormal eigenvectors, i.e.:
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yi = WT (xi − x̄), (3.31)

where W = (w1;w2; . . . ;wk). The new coordinates are uncorrelated: it is easy
to check that the new sample covariance matrix

∑n
i=1 yiy

T
i /n is diagonal with

elements λi. It is also common to “sphere” the data, i.e., to transform the
data using ỹ = Λ− 1

2 WT (x − x̄). In that case the resulting transformed data
is uncorrelated and has unit variance for each component.

Another property of PCA is that of all orthogonal linear projections,
as (3.31), the principal component projection minimizes the squared recon-
struction error

∑n
i=1 ||xi − x̂i||2, where the optimal linear reconstruction x̂ is

given by:

x̂ = Wy + x̄. (3.32)

We will illustrate how PCA works with a simple example.

Example: The input is the simple 2D data illustrated in Figure 3.10.
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Fig. 3.10. Original PCA data plot.

1. Subtracting the sample mean
The first step is to “center the data” by subtracting the sample mean in
each dimension.

2. Covariance matrix
The sample covariance matrix is computed using (3.29). For example:

Σ̂ =
(

0.61656 0.61544
0.61544 0.71656

)
.

The positive non-diagonal elements of Σ̂ confirm the positive correlation
between the first and second components of the data vectors.
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3. Eigenvectors and eigenvalues of the covariance matrix
The eigenvalues of Σ̂ are λ1 = 0.049083 and λ2 = 1.284. The matrix with
the eigenvectors is: (

−0.73518 −0.67787
0.67787 −0.73518

)
.

Figure 3.11 illustrates the normalized data and the eigenvectors. It can
be seen that the eigenvectors are indeed orthogonal to each other. The
direction of the solid line is the direction with the largest variance in the
data.
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Fig. 3.11. Normalized PCA data and the principal components.

4. Selecting principal components
The eigenvector w1 of the largest eigenvalue (in our example λ2) corre-
sponds to the first principal component of the data set (again the solid
line in Figure 3.11).
In general, once the eigenvectors have been computed the next step is
to order them in decreasing order of the corresponding eigenvalues. This
gives the components in order of decreasing variance. Ignoring components
with small variance leads to loss of information, but that loss is small if
the eigenvalues are small, i.e., dimension reduction may be achieved at
little cost. The original data set had data of dimension m; by choosing
the k most significant components, we reduce the dimension to k. In our
example we have only two components, so there are two options: (i) to
keep both components as features and (ii) ignore the smaller component.
In the former case the linear transform is defined via:

W = (w1;w2) =
(
−0.67787 −0.73518
−0.73518 0.67787

)
,



86 Elena Ranguelova and Mark Huiskes

while in the latter via:

W = (w1) =
(
−0.67787
−0.73518

)
.

5. Transformation of the data set
The new data set is obtained by projecting the original data set to the new
basis W by applying (3.31). In the first case of keeping both components
the transformed data values are shown on the left in Figure 3.12.
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Fig. 3.12. Left: transformed PCA data plot; right: reconstructed data transformed
using a single principal component.

This plot is a rotated (and translated) version of the original data plot;
we have no loss of information as we did not reduce the dimension. For
case (ii), the transformed data is one-dimensional, corresponding to the
first coordinate in the left graph of Figure 3.12.

The reconstruction of the original data set can be obtained using (3.32). The
loss of information when only one principal component has been kept as fea-
ture is illustrated in the right graph of Figure 3.12. Comparing with the orig-
inal data set (Figure 3.10), we observe that while the variation along the
principal eigenvector has been kept, the variation along the other component
has been removed.

In the context of multimedia analysis, PCA is often applied in face recog-
nition (see the book Computer Vision and Pattern Recognition [43]). The
face images are first decomposed into a set of characteristic feature images.
These images, which are the principal components of the original training set
of face images, are called eigenfaces. Recognition is performed by projecting
new face images onto the subspace spanned by the eigenfaces, followed by a
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classification. The eigenface approach has certain advantages over other face
recognition methods such as speed, simplicity, learning capability and robust-
ness to small changes.

In the information retrieval community, PCA is used in Latent Seman-
tic Indexing (LSI [10]). The covariance matrix of the data in PCA corre-
sponds to the document-term matrix multiplied by its transpose. Entries in
the covariance matrix represent co-occurring terms in the documents. The
eigenvectors of this matrix corresponding to the dominant eigenvalues are re-
lated to dominant combinations of terms (topics, semantic concepts) occurring
in the corpus. A transformation matrix constructed from these eigenvectors
projects a document onto these latent semantic concepts, and a new lower
dimensional representation is achieved. The eigen-analysis can be performed
efficiently using a sparse variant of the singular value decomposition (SVD)
of the document-term matrix.

Linear Discriminant Analysis (LDA)
PCA deals with the data in its entirety; it does not take into account any
underlying class structure. Dimension reduction based on Linear Discriminant
Analysis (LDA) on the other hand, explicitly aims to find those directions in
the data that best separate the classes. If the dimension reduction is required
for a classification, i.e., supervised, problem this can be a distinct advantage
compared to the unsupervised approach in PCA.

As already mentioned in Section 3.2.3, discriminant methods construct a
classifier by picking the class with maximum posterior probability:

argmax
k∈K

pk(x)πk, (3.33)

where pk(x) is the feature probability density given class k, and πk is the prior
probability for class k. Assuming a multivariate Gaussian density:

pk(x) =
1

(2π)m/2|Σk|1/2
exp (x − μk)T Σ−1

k (x − μk), (3.34)

for each class, where μk are the class means, leads to a linear discriminant
if we assume a common covariance matrix, i.e., Σk = Σ, ∀k. After substitut-
ing (3.34) in (3.33) and some derivation we obtain:

δk(x) = xT Σ−1μk − 1
2
μT

k Σ−1μk + log(πk). (3.35)

The decision boundary between two classes k and l is x : δk(x) = δl(x), or:

log
(

πk

πl

)
− 1

2
(μk + μl)T Σ−1(μk − μl) + xT Σ−1(μk − μl) = 0. (3.36)

Example: Let’s consider a simple binary 2D classification example. We assume
that the classes are equiprobable, i.e., π1 = π2 = 0.5. The parameters of the
bivariate Gaussian distributions are μ1 = (0, 0)T , μ2 = (2,−2)T and:
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Σ =
(

1 0
0 0.5625

)
.

The probability distribution of the mixture is illustrated on the left in Fig-
ure 3.13. The decision boundary obtained via (3.36) is then 5.56−x1+3.56x2 =
0 . The class separation is illustrated on the right in Figure 3.13.
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Fig. 3.13. Two class problem. Left: mixture distribution; right: 2D contour plot of
the distributions and the LDA decision boundary.

Based on the linear discriminants we can reduce the dimension of the problem
by leaving out directions that are not relevant to class separation. Basically the
idea is that after transforming the data based on the within-class covariance,
using a transformation as in PCA, the data can be summarized by their
distances to the class means. Distances perpendicular to the plane of class
means are not relevant for classification. In the book Elements of Statistical
Learning [22] it is shown that we can achieve further dimension reduction
by applying a PCA on the transformed class means, such that we obtain
directions that optimally separate the classes. This turns out to be equivalent
to the direct approach of Fisher linear discriminants (FLD) where coordinates
are chosen corresponding to directions that maximize the ratio of the between-
class variance to the within-class variance. The criterion to be maximized in
the Fisher-LDA is:

J(w) =
wT SBw

wT SW w
, (3.37)

where SB and SW are the between-class and within-class scatter matrices
(which are proportional to the covariance matrices). The scatter matrices are
defined as follows:

SB =
∑

k∈K
nk(μk − x̄)(μk − x̄)T (3.38)

and
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SW =
∑

k∈K

∑

i∈Ck

(xi − μk)(xi − μk)T , (3.39)

where μk = 1
nk

∑
i∈Ck

xi is the mean vector for class k, and nk is the number
of data items belonging to class k.

Martinez and Kak [31] compare PCA and LDA for face recognition ap-
plications, and Torkkola [41] discusses an application of LDA in document
classification.

3.5.2 Feature Selection
The problem of feature selection can be characterized as follows: given a set of
n features, select a subset of relevant features of size k < n which are useful for
building a good classifier. For a discussion about “relevance” and “usefulness”
see the overview paper by Blum and Langley [7].

Guyon and Elisseeff [20] give a good overview of up-to date feature selec-
tion methods. They also present a heuristic checklist for choosing an appro-
priate feature selection algorithm. We follow their three main types of feature
selection methods: filters, wrappers and embedded methods.

• Filter Methods.
These are methods which aim to filter out the irrelevant features prior to
the learning stage (Figure 3.14).

selection
Feature subset Learning machineInput feature set

Fig. 3.14. The filter approach to feature selection.

Many filter methods have variable ranking as the main feature selection
mechanism. The ranking is done by ordering the variables in decreasing
order of the value of a given scoring function. It is a preprocessing step
and is independent of the learning algorithm. Under some assumptions,
however, the ranking can be optimal in respect to a given predictor. For
example using the FLD (3.37) as a ranking criterion can be optimal for
Fisher’s linear discriminant classifier [12].
Let {(xi, yi)}, i = 1, . . . , n be a set of labeled examples with m input
variables xi,j , j = 1, . . . , m, and yi a scalar output variable. A widely used
scoring function is based on the estimate of the correlation coefficient:

R(j) =
∑n

i=1(xi,j − x̄j)(yi − ȳ)√∑n
i=1(xi,j − x̄j)2

∑n
i=1(yi − ȳ)2

. (3.40)

Another approach is to select variables based on their predictive power
when used in single variable classifier. The predictive power of the variable



90 Elena Ranguelova and Mark Huiskes

can be measured in terms of the error rate. George Forman [15] gives
an extensive study on a number of feature selection metrics for binary
variables in text classification.
Another important criterion for variable selection is the mutual infor-
mation (MI) between each variable and the class variable (target). For
discrete variables it is defined as:

MI(j) =
∑

xj

∑

y

P (X = xj , Y = k) log
P (X = xj , Y = k)

P (X = xj)P (Y = k)
, (3.41)

where P (Y = k) are the class prior probabilities, P (X = xj) is the distri-
bution of the input variable and P (X = xj , Y = k) is the joint probability.
For the continuous case it is harder to estimate these probabilities; a dis-
cretization of the variables is considered by Torkkola [42]. For using MI
between images and their associated text for the purpose of data mining,
see the article by Barnard and Yanai [3].
Taking one variable at a time obviously has some limitations: presumably
redundant variables can help each other, and similarly, a variable that is
useless by itself, can be useful with others.

• Wrapper Methods.
Where the filter methods are essentially a preprocessing step, wrapper
methods treat the learning machine as a black box, calling it as a subrou-
tine to evaluate the usefulness of a given subset of variables (Figure 3.15).

Input feature set
Feature subset selection

Feature selection
search

Feature evaluation

Learning machine

Learning machine

Fig. 3.15. The wrapper approach to feature selection.

The general argument for the wrapper methodology is that the learner
used on a subset of the features will give a better estimate of the perfor-
mance accuracy than a separate measure. Four main issues when consid-
ering a feature selection method as a heuristic search [7] are: (i) selecting
a starting point in the feature space, (ii) organization of the search, i.e.,
how to go through all of the possible variable subsets, (iii) evaluation of
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the prediction performance of a learning machine and (iv) how to halt the
search.
Considering the starting point, there are two main approaches: forward
selection and backward elimination. Forward selection refers to starting
with an empty set of features and progressively incorporating new features
into larger and larger subsets, while backward elimination starts with the
full set of features progressively eliminating the least promising ones. The
former approach is preferred due to computational reasons of building fast
classifiers with just a few features, while the latter, which may be better
at capturing feature interactions, is computationally more expensive.
The feature space can be explored using exhaustive search only for a small
number of variables. The problem is NP-hard and the search quickly be-
comes computationally intractable. A wide range of search strategies can
be used, such as greedy search, simulated annealing or genetic algorithms;
Kohavi [29] gives an overview.
Performance evaluation is usually done using a validation set or by cross-
validation (see Section 3.2.2). Another issue is the choice of predictor.
Popular choices are decision trees, näıve Bayes, least-squares linear pre-
dictors and SVMs.
Considering the learning machine as a black box (i.e., the method is not
important, but only the interface) makes the wrapper methods universal.
A disadvantage of the wrappers is their computational cost, because they
invoke the learner at each step of the feature selection search; efficient
search strategies can alleviate this problem to some extent.

• Embedded Methods.
These methods embed the feature selection within the learning process and
thus are dependent on the particular algorithm. They use the same criteria
for the usefulness of features and performance validation measurement as
the wrappers, but the search is guided by the learning process. As a result,
the embedded methods tend to be less computationally expensive and less
prone to overfitting than the wrappers. Also they do not need to split the
data into training and validation sets.
The embedded methods can be further divided in three main groups:
into forward and backward selection methods (as already explained above)
and into nested methods. Whereas in the forward selection methods new
features are added and in the backward selection methods- removed, in
the nested approaches features may be either added or deleted at each
iteration.
Methods in the first group include those based on least squares forward
selection and decision trees. Forward selection using Gram–Schmidt di-
agonalization is introduced by Stoppiglia [40]. The main idea there is
as follows: select a first feature x with maximum cosine with the target
cos(x, y) = 〈x, y〉/||x||||y||. For each remaining feature xj project it and
the target y on the null space of the features already selected and com-
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pute the cosine of xj with the target in the projection. Select the feature
xj with maximum cosine with the target in the projection. This can be
considered as an embedded method for the linear least square predictor.
Embedded methods using decision trees include the classical CART
method [9] and C.4.5 [36] which have built-in mechanisms to perform
variable selection. Decision trees are built iteratively by splitting the data
depending on the value of a specific feature. The “splitting” feature (node)
is chosen according to its importance for the classification task.
An important method in the group of the backward elimination methods
is Recursive Feature Elimination (RFE [21]). The main idea is as follows:
start with the set of all features and train a learning machine l on the
current subset of features by minimizing some risk functional J(l). For
each (remaining) feature xj estimate, without retraining l, the change in
J(l) resulting from the removal of xj . Remove the feature xj that results
in improving (or least degrading) J . RFE is an embedded method for
SVMs, kernel methods and neural networks.
Embedded methods are relatively new methods for feature selection. Lal
et al. [30] give a good overview as well as a unified theoretical framework.

3.6 Summary
This chapter gives an introduction to the main pattern recognition tools used
in multimedia content analysis. The fields of pattern recognition and more
generally of machine learning are very broad, therefore it is difficult to make a
complete overview. We have opted for presenting representative methods used
in the main stages of the recognition process and to illustrate them with simple
examples. The chapter presents the main issues in pattern classification such
as uncertainty, limited and noisy data, over- and underfitting and measuring
classifier performance. The Bayes classification paradigm is presented together
with classical approaches such as nearest neighbors and discriminant functions
and the topical support vector machines and boosting. Hidden Markov models
are presented because of their suitability for explicit modeling of the patterns
in multimedia data. The large area of unsupervised learning and clustering
is also introduced outlining both the main concepts and methods as well as
the specific issues of clustering in large databases. Finally, we have given an
overview of the main methods for dimension reduction.

In conclusion, it is clear that the quality of our “computational under-
standing” of multimedia is directly related to the quality of the metadata we
can acquire. As pattern recognition is exactly aiming at the effective acquisi-
tion of such metadata, the importance of the area to automatic multimedia
analysis can hardly be overemphasized.
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3.7 Further Reading
A classic for the field is Pattern Classification by Duda, Hart and Stork [12].
Another good book is Bishop’s Neural Networks for Pattern Recognition [6]
which covers material, in particular on classification using neural networks,
not presented in this chapter. A very good introduction to statistical learn-
ing is provided by Hastie, Tibshirani and Friedman in Elements of Statistical
Learning [22]. Schölkopf [39] gives an excellent introduction to kernel-based
methods and support vector machines; good introductions to boosting are pro-
vided by Meir and Rätsch [33] and Freund and Schapire [16]. A good starting
point into the clustering literature, focused on large databases, is offered by
Pavel Berkhin [5]. A number of interesting articles on feature selection meth-
ods have been published in the special issue on Variable and Feature Selection
of the Journal of Machine Learning Research [2].
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4.1 Introduction
Many documents contain, besides text, also images, tables, and so on. This
chapter concentrates on the text part only. Traditionally, systems handling
text documents are called information storage and retrieval systems. Before
the World-Wide Web emerged, such systems were almost exclusively used by
professional users, so-called indexers and searchers, e.g., for medical research,
in libraries, by governmental organizations and archives. Typically, profes-
sional users act as “search intermediaries” for end users. They try to figure
out in an interactive dialogue with the system and the end user what it is
the end user needs, and how this information should be used in a successful
search. Professionals know the collection, they know how documents in the
collection are represented in the system, and they know how to use Boolean
search operators to control the number of retrieved documents.

Many modern information retrieval systems, like Internet search engines,
are specifically designed for end users who are not familiar with the collection,
the representation of the documents, and the use of Boolean operators. The
main requirements for these systems are the following. Firstly, users should
be able to enter any natural language word(s), phrase(s) or sentence(s) to the
system without the need to enter operators. Secondly, the system should rank
the retrieved documents by their estimated degree or probability of usefulness
for the user.

In this introduction we will reconsider some concepts from previous chap-
ters and describe what these concepts mean in the information retrieval realm.

4.1.1 Text Documents
A (text) document has an identification and can be considered to be a list
of words. So, a book is a document, but so is a paper in the proceedings
of a conference or a Web page. The identification may be an ISBN number
for a book, the title of the paper together with the ISBN of the conference
proceedings or a URL for a Web page.
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Retrieval of text documents does normally not imply the presentation
of the whole document (this is too space and time consuming). Instead the
system presents the identifications of the selected documents possibly together
with brief descriptions and/or their rankings.

4.1.2 Indexing
Indexing is the process of deriving metadata from documents and storage of
the metadata in an index. The index describes in one way or another the
content of the documents; for text documents the content is described by
terms like social or political. During retrieval, the system uses the index
to determine the output.

There are two ways to fill the index, namely manually and automatically.
Professional users like librarians may add so-called assigned terms to docu-
ments as a kind of annotation. Sometimes these terms are selected from a
prescribed set of terms, the catalog. A catalog is composed by specialists and
describes a certain (scientific) field. An advantage of this approach is that the
professional users know the allowed terms to be used in query formulation.
A clear disadvantage is the amount of work needed to perform the manual
indexing process.

Describing the content of documents can also be done automatically re-
sulting in so-called derived terms. Several steps are required, for instance a
step in which an algorithm identifies words in an English text and puts them
to lower case. Other steps use basic tools like stop word removal and stemming.
Stop words are words in the document with little meaning, mostly function
words like “the” and “it”. These words are removed. Stemming conflates the
words in the document to their stem. For instance, the stemmer introduced by
Porter [23] conflates the words “computer”, “compute” and “computation” to
the stem comput.

4.1.3 Query Formulation
The process of representing the information need is often referred to as the
query formulation process. The resulting formal representation is the query.
In a broad sense, query formulation might denote the complete interactive
dialogue between system and user, leading not only to a suitable query but
possibly also to a better understanding by the user of his/her information
need. Here, however, query formulation denotes the formulation of the query
when there are no previously retrieved documents to guide the search, that
is, the formulation of the initial query.

Again we must distinguish between the professional searcher and the casual
end user. The first one knows the document collection and the assigned terms.
The professional will use Boolean operators to compose the query and will be
able to adequately rephrase the query depending on the output of the system.
If the result set is too small, the professional must broaden the query, if too
large the professional must make the query more restrictive. See Section 4.2.



4 Searching for Text Documents 99

The end user likes to communicate the need for information to the system
in natural language. Such a natural language statement of the information
need is called a request. Automatic query formulation includes receiving the
request and generating an initial query by applying the same algorithms as
used for the derivation of terms. The query consists in general of a list of
query terms. The system accepts this list and composes in one way or another
a result set. The end user may indicate the documents that are considered to
be relevant. This relevance feedback allows the system to formulate a successive
query.

4.1.4 Matching
Probably the most important part of an information retrieval system is the
matching algorithm. The algorithm compares the query against the docu-
ment representations in the index. We distinguish exact matching and inexact
matching algorithms. To start with the first kind: a Boolean query formulated
by a professional searcher defines exactly the set of documents that satisfy
the query. For each document the system generates a yes/no decision.

If a system uses inexact matching, it delivers a ranked list of documents.
Users will walk down this document list in search of the information they need.
Ranked retrieval will hopefully put the relevant documents somewhere in the
top of the ranked list, minimizing the time the user has to invest on read-
ing the documents. Simple but effective ranking algorithms use the frequency
distribution of terms over documents. For instance, the words “family” and
“entertainment” mentioned in a small part of a book, may occur relatively
infrequent in the rest of the book, which indicates that the book should not
receive a top ranking for the request “family entertainment”. Ranking algo-
rithms based on statistical approaches easily halve the time the user has to
spend on reading documents. The description of ranking algorithms is a major
theme of this chapter.

4.1.5 Relation to Other Chapters
If a document contains text and for instance images, then an algorithm needs
to separate those parts. In Chapter 3 approaches are described to deal with
this problem.

In Section 4.3.6 we deal with the PageRank algorithm used in the Google
Web search engine. The algorithm takes into account the hyperlink struc-
ture on the Web and has some similarities with collaborative filtering that
is explained in Chapter 11. In this technique the opinion of users regarding
documents influences the selection process.

4.1.6 Outline
In the traditional information retrieval systems, which are usually operated by
professional searchers, only the matching process is automated; indexing and
query formulation are manual processes. These information retrieval systems
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use the Boolean model of information retrieval. The Boolean model is an exact
matching model, that is, it either retrieves documents or not without ranking
them. The model also supports the use of structured queries, which do not
only contain query terms, but also relations between the terms defined by the
query operators AND, OR and NOT. In Section 4.2 we explain the Boolean
model.

In modern information retrieval systems, which are commonly used by non-
professional users, query formulation is also automated. Mathematical models
are used to model the matching process. There are many candidate models for
the matching process of ranked retrieval systems. These models are so-called
inexact matching models, that is, they compute a ranking for each document
retrieved even if the document only partly satisfies the query. Each of these
models has its own advantages and disadvantages. However, there are two
classical candidate models for approximate matching: the vector space model
and the probabilistic model. In Section 4.3 we explain these models as well
as other ranking models like the p-norm extended Boolean model, and the
Bayesian network model.

So-called language models were first used in telecommunications and some
time later in speech recognition. Language models build a mathematical model
of a language. This model can be used for instance to determine the probability
that a certain word follows a recognized word. Recently the models got much
attention in the IR community. Language models are treated in Section 4.3.5.

Web search engines are a rather new phenomenon and the most successful
engine is probably Google. Besides some content oriented ranking techniques,
Google also exploits the so-called PageRank algorithm. The idea is that the
opinion of the user community with respect to a document, that is Web page,
influences the ranking of the page. The opinion is modeled by considering the
reference pattern which can be derived from the Web. Section 4.3.6 discusses
Google’s ranking mechanism.

Until now terms are treated equally in a query and in the document as
represented in the index. Much attention in IR research has been paid, how-
ever, to so-called term weighting algorithms. A term weight is a value of the
term’s importance in a query or a document. Term weighting is described in
Section 4.4.

4.2 Boolean Model
The Boolean model is the first model of information retrieval and probably
also the most criticized model. The model is based on set theory and can be
explained by thinking of a query term as an unambiguous definition of a set of
documents. For instance, the query term economic simply defines the set of all
documents that are indexed with the term economic. Using the operators of
George Boole’s mathematical logic, query terms and their corresponding sets
of documents can be combined to form new sets of documents. Boole defined
three basic operators: AND, OR, and NOT [4]. Combining terms with the
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Fig. 4.1. Three Boolean combinations of sets visualized as Venn diagrams.

AND operator will define a document set that is smaller than or equal to
the document sets of any of the single terms. For instance, the query social
AND economic will produce the set of documents that are indexed both with
social and economic. Combining terms with the OR operator will define
a document set that is bigger than or equal to the document sets of any of
the single terms. So, the query social OR political will produce the set of
documents that are indexed with either social or political, or both.

This is visualized in the Venn diagrams of Figure 4.11 in which each set
of documents is visualized by a disk. The intersections of these disks and
their complements divide the document collection into eight non-overlapping
regions, the unions of which give 256 different Boolean combinations of so-
cial, political and economic documents. In Figure 4.1, the retrieved sets are
visualized by the shaded areas.

4.2.1 Proximity Searching: ADJ, NEAR
With the emergence of automatic full text indexing (meaning that every word
of the document is indexed), commercial retrieval systems added new Boolean
operators to the standard Boolean operators. These operators use positions
1 Often, the NOT-operator is implemented as a logical difference instead of a set

complement, requiring the use of A NOT B instead of A AND NOT B
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of words in text. The ADJ operator allows for the search of exact phrases by
looking for documents that contain two adjacent terms in the specified order.
For instance, environmental ADJ damage selects only documents containing
the exact phrase “environmental damage”. The NEAR operator allows for the
search of two terms that are near to each other without any requirements on
the order of the words. Table 4.1 list some examples.

Table 4.1. Proximity operators.

Query Interpretation

waste ADJ management select documents containing the
exact phrase “waste management”

waste NEAR management select documents containing, e.g.,
“waste management”, “manage-
ment of waste” or “waste of

valuable management talent”

(hazardous OR toxic) ADJ wastes select documents containing
either “hazardous wastes”
or “toxic wastes”

(hazardous AND waste) ADJ management ill-defined because “management”
could not be adjacent to both
“hazardous” and “waste”

The last example of Table 4.1 requires some explanation. Some systems pro-
duce an error if such a query is entered as these systems claim that it is
impossible that a term management is adjacent to two other terms hazardous
and waste. But management may occur many times in a document and usu-
ally system designers decide to process the last example as (hazardous ADJ
management) AND (waste ADJ management).

4.2.2 Wildcards
Wildcards are used to mask a part of a query term with a special character,
allowing it to match any term that maps to the unmasked portion of the
query term. Table 4.2 shows some examples of the use of wildcards, taken
from Kowalski [14].

From the options in Table 4.2, suffix searches are the most common. In
some systems suffix searches are the default without the user having to specify
this. Suffix truncation is also the easiest of the options above to implement.

4.2.3 Discussion
We give two advantages of Boolean retrieval. Firstly, the model gives (ex-
pert) users a sense of control over the system. It is immediately clear why a
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Table 4.2. Wildcards.

Query Interpretation

dog∗ suffix truncation selects documents containing, e.g.,
“dog”, “dogs” or “doggy”, but also “dogma”
and “dogger”

∗computer prefix truncation: selects documents containing, e.g.,
“minicomputer”, “microcomputer” or “computer”

colo∗r infix truncation: selects documents containing, e.g.,
“colour”, “color”, but also “colorimeter” or
“colourbearer”

multi$national single position truncation: selects documents
containing “multi-national” or “multinational”,
but no “multi national” as it contains two
processing tokens

document has been retrieved given a query. If the resulting document set is
either too small or too big, it is directly clear which operators will produce
respectively a bigger or smaller set. Secondly, the model can be extended with
proximity operators and wildcard operators in a mathematically sound way,
which makes it a powerful candidate for full text retrieval systems as well.

We also give two disadvantages of the Boolean model starting with its
inability to rank documents. For this reason, the model does not fit the needs
of modern full text retrieval systems like for instance Web search engines. On
the Web, and for many other full text retrieval systems, ranking is of utmost
importance.

A second disadvantage is that the rigid difference between the Boolean
AND and OR operators does not exist between the natural language words
“and” and “or”. For instance, someone interested in “social” and “political”
documents, should enter the query social OR political to retrieve all pos-
sibly interesting documents. In fact, the Boolean model is more complex than
the real needs of users would justify. Expert users of Boolean retrieval systems
tend to use faceted queries. A faceted query is a query that uses disjuncts of
quasi-synonyms: the facets, conjoined with the AND operator. The following
query for instance has two facets: (economic OR financial OR monetary)
AND (internet OR www OR portal).

4.3 Models for Ranked Retrieval
The Boolean model’s inability to rank documents is addressed by the models
presented in this section. A key issue of models of ranked retrieval is auto-
matic query formulation. Non-expert users should be able to enter a request
in natural language, or possibly just a couple of terms, without the use of op-
erators. Both ranking and the fact that operators are not mandatory is shared
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by the approaches presented in this section. Pros and cons are identified for
each model.

4.3.1 The Vector Space Model
Luhn [16] was the first to suggest a statistical approach to search for informa-
tion. He suggested that in order to search in a document collection, the user
should first prepare a document that is similar to the needed documents. The
degree of similarity between the representation of the prepared document and
the representations of the documents in the collection are used to search the
collection.

Salton [30] found a nice theoretical underpinning of Luhn’s similarity cri-
terion. They considered the representations of the documents in the index
and the query as vectors embedded in a high-dimensional Euclidean space,
where each term is assigned a separate dimension. The document’s index
representation is a vector d = (d1, d2, · · · , dm) of which each component dk

(1 ≤ k ≤ m) is associated with an index term, while the query is a similar
vector q = (q1, q2, · · · , qm) of which the components are associated with the
same terms.

The similarity measure is usually the cosine of the angle that separates the
two vectors d and q. The cosine of an angle is 0 if the vectors are orthogonal
in the multidimensional space and 1 if the angle is 0 degrees:

score(d,q) =
∑m

k=1 dk · qk√∑m
k=1(dk)2 ·

√∑m
k=1(qk)2

. (4.1)

The metaphor of angles between vectors in a multidimensional space makes it
easy to explain the implications of the model to non-experts. Up to three di-
mensions, one can easily visualize the document and query vectors. Figure 4.2
visualizes an example document vector and an example query vector in the
space that is spanned by the three terms social, economic and political.

Relevance Feedback
Measuring the cosine of the angle between vectors is equivalent with normal-
izing the vectors to unit length and taking the vector inner product:

score(d,q) =
m∑

k=1

n(dk) · n(qk) where n(vk) =
vk√∑m

k=1(vk)2
. (4.2)

Some rather ad hoc, but quite successful retrieval algorithms are nicely
grounded in the vector space model if the vector lengths are normalized. An
example is the relevance feedback algorithm by Rocchio [26]. He suggested the
following algorithm for relevance feedback, where qold is the original query,
qnew is the revised query, d (i)

rel (1 ≤ i ≤ r) is one of the r documents the user



4 Searching for Text Documents 105

⎯q

⎯d

economic

social

political

Fig. 4.2. A query and document representation in the vector space model.

selected as relevant, and d (i)
nonrel (1 ≤ i ≤ n) is one of the n documents the

user selected as non-relevant:

qnew = qold +
1
r

r∑

i=1

d (i)
rel − 1

n

n∑

i=1

d (i)
nonrel. (4.3)

The normalized vectors of documents and queries can be viewed at as points on
a hypersphere at unit length from the origin. In (4.3), the first sum calculates
the centroid of the points of the known relevant documents on the hypersphere.
In the centroid, the angle with the known relevant documents is minimized.
The second sum calculates the centroid of the points of the known non-relevant
documents. Moving the query towards the centroid of the known relevant
documents and away from the centroid of the known non-relevant documents
is guaranteed to improve retrieval performance. The sphere is visualized for
two dimensions in Figure 4.3. The figure is taken from Savino [32].

Discussion
A strong point of the vector model is the ease of explaining it to non-expert
users. The main disadvantage of the vector space model is that it does not in
any way subscribe what the values of the vector components should be. Now
we touch the problem of term weighting which is addressed in Section 4.4.
Early experiments [27] already suggested that term weighting is not a triv-
ial problem at all. A second disadvantage of the vector space model is that
it is not possible to include term dependencies into the model, for instance
for modeling of phrases or adjacent terms. It is however possible to give a
geometric interpretation of Boolean-structured queries, which is described in
Section 4.3.3. A third problem with the vector space model is its implemen-
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Fig. 4.3. Rocchio’s relevance feedback method.

tation. The calculation of the cosine measure needs the values of all vector
components, which may be difficult to provide in practice [41].

4.3.2 The Probabilistic Model
Sometimes it is argued that a retrieval system should rank the documents in
the collection in order of their probability of relevance. This seems a rather
trivial requirement indeed, since the objective of information retrieval sys-
tems is defined in Chapter 1 as “to help the user to find relevant documents”.
However, Robertson showed that optimality of ranking by the probability of
relevance can only be guaranteed if the following conditions are met. Firstly,
relevance should be a dichotomous variable, either yes or no. Secondly, rele-
vance of a document to a request should not depend on the other documents
in the collection.

The Probability of Relevance
Whereas Luhn’s intuitive similarity criterion raises the question “What ex-
actly makes two representations similar?”, Robertson’s probability ranking
principle raises the question “How, and on the basis of what data, should the
probability of relevance be estimated?”

Relevance is ultimately determined by the end user. So, the probabilistic
model that is based on relevance, is only useful if the system has information
about relevance of documents. This information may be given by the end user
as a result of relevance feedback.

It is possible that the similarity criterion and the relevance criterion do
not coincide as the following reasoning shows. First let us make the notion
“probability of relevance” explicit. Robertson adopted the Boolean model’s
viewpoint by looking at a term as a definition of a set of documents. Suppose
a user enters a query containing a single term, for instance the term social. If
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all documents that fulfill the user’s need were known, it would be possible to
divide the document collection into four non-overlapping subsets as visualized
in the Venn diagram of Figure 4.4. The figure contains additional informa-
tion about the size of each of the non-overlapping subsets. The collection in
question has 10,000 documents, of which 1000 contain the word “social”; only
11 documents are relevant to the query of which 1 contains the word “so-
cial”. If a document is taken at random from the set of documents that are
indexed with social, then the probability of picking a relevant document is
1/1000 = 0.0010. If a document is taken at random from the set of documents
that are not indexed with social, then the probability of relevance is bigger:
10/9000 = 0.0011. Since the user entered only one index term, the system has
only two options: either the documents indexed with the term are presented
first in the ranking, or the documents that are not indexed with the term are
presented first. In the example of Figure 4.4, it is wise to present the user first
with documents that are not indexed with the query term social, that is, to
present first the documents that are “dissimilar” to the query. Clearly, such a
strategy violates Luhn’s similarity criterion.

social RELEVANT
1

999 10
8,990

Fig. 4.4. Venn diagram of the collection given the query term social.

Notation
Let L be the random variable “document is relevant” with a binary sample
space {0, 1}, 1 indicating relevance and 0 non-relevance. Let a query contain
n terms. To each document n random variables are assigned and let Dk (1 ≤
k ≤ n) be a random variable indicating “the document belongs to the subset
indexed with the kth query term” with a binary sample space {0, 1}. We
concentrate on the kth query term and assume it to be social. We compute
the four conditional probabilities P (Dk|L) by the sizes of non overlapping
subsets caused by the term social. Figure 4.5 shows the Venn diagram of
documents indexed with social. The sizes are defined by R: the number of
relevant documents, nk: the number of documents indexed with social, rk:
the number of relevant documents that is indexed with social and N : the
total number of documents in the collection.

The Binary Independence Assumption
If the user enters two terms, for instance the terms social and political,
then there are four sets that must find their place in the final ranking:
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Fig. 4.5. Definition of probabilities.

social AND political, social NOT political, political NOT social
and NOT(social OR political). Each of these Boolean subsets can be rep-
resented by a pair of binary values, the first value indicating whether the
subset includes documents indexed with social, the second value indicating
whether the subset includes documents indexed with political. The four
Boolean subsets are represented by respectively (1, 1), (1, 0), (0, 1) and (0, 0).
Below we detail the probability computations; first we consider increasing the
number of query terms.

The number of non-overlapping subsets increases exponentially with the
number of query terms. To make the computation of the probability of rel-
evance possible in reasonable time, the binary independence assumption is
introduced:

In documents terms occur independently from each other.

In our example this means that the probability that a relevant document con-
tains both social and political is equal to the product of the probabilities
of the terms alone:

P(social, political |L=1) = P (social |L=1) P (political |L=1).

We would like to compute the probability that a document is relevant
given values for the random variables D1,D2, · · · ,Dn. We will show that
in that computation the independence assumption will be used. First we re-
mark that the computation may involve many multiplications of sometimes
small probabilities. To prevent computational problems often a logistic trans-
formation of probabilities is used. Equation (4.4) is a variation of Bayes’
rule that uses a logistic transformation of probabilities, which is defined by
logit P (L) = log(P (L) / (1−P (L))). The transformation is strictly monotonic,
so ranking documents by (4.4) will in fact rank them by the probability of
relevance. Let L and Dk (1 ≤ k ≤ n) be defined as before. Given a query of
length n documents will be assigned the value defined by (4.5). Documents
with the same values for D1,D2, · · · ,Dn should be ranked equally [25, 39].
Note that duplicate query terms retrieve the same subset of documents and
should be ignored in the formulas:
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logit P (L=1|D1,· · ·,Dn) = log
P (L=1|D1, · · · ,Dn)
P (L=0|D1, · · · ,Dn)

(4.4)

= log
P (L=1)P (D1, · · · ,Dn|L=1) /P (D1, · · · ,Dn)
P (L=0)P (D1, · · · ,Dn|L=0) /P (D1, · · · ,Dn)

= log
P (D1, · · · ,Dn|L=1)
P (D1, · · · ,Dn|L=0)

+ logit P (L=1)

=
n∑

k=1

log
P (Dk|L=1)
P (Dk|L=0)

+ logit P (L=1), (4.5)

and, regarding the latter term,

logit P (L=1) = log
P (L=1)

1 − P (L=1)
= log

P (L=1)
P (L=0)

.

The binary independence assumption is used to derive 4.5 from 4.4.

Implementation
Equation (4.5) needs some computation for subsets for which Dk = 0, that
is for non-matching query terms. In the vector space model non-matching
terms are assigned zero weight, which is usually convenient for implementation
reasons. Therefore,

∑n
k=1 log(P (Dk =0|L=1) /P (Dk =0|L=0)) is subtracted

from the score of each document subset. This does not affect the ranking of
the documents and assigns a score of zero to documents with no matching
terms:

P (L=1|D1, · · · ,Dn) ∝
∑

k ∈match-
ing terms

log
P (Dk =1|L=1)P (Dk =0|L=0)
P (Dk =1|L=0)P (Dk =0|L=1)

. (4.6)

Relevance Computation
The values of nk and N are available to the system, but the values of rk and
R are only available if the user provides those to the system, typically by
marking some previously retrieved documents as relevant. If rk and R are not
available to the system, it is necessary to make some assumptions about them.
Robertson et al. [25] simply add 0.5 to each non-overlapping subset and Croft
et al. [5] assume a constant value for P (Dk|L=1). If the additional assumption
is made that the number of relevant documents is much smaller than the size
of the collection, more specifically: R, rk � N,nk, then documents might be
ranked by a idf-like measure: log((N−nk) / nk) (see Section 4.4).

Discussion
The probabilistic model is one of the few retrieval models that do not need
an additional term weighting algorithm to be implemented (see Section 4.4).



110 Henk Blanken and Djoerd Hiemstra

Ranking algorithms are completely derived from theory. The probabilistic
model has been one of the most influential retrieval models for this very
reason. Unfortunately, in many applications the distribution of terms over
relevant and non-relevant documents will not be available. In these situations
probability of relevance estimation is of theoretical interest only.

The main disadvantage of the probabilistic model is that it only defines
a partial ranking of the documents. For short queries, the number of differ-
ent subsets will be relatively low. By looking at a term as a definition of a
set of documents, the probabilistic model ignores the distribution of terms
within documents. In fact, one might argue that the probabilistic model suf-
fers partially from the same defect as the Boolean model. It does not allow
the user to really control the retrieved set of documents. For short queries it
will sometimes assign the same rank to, for instance, the first 100 documents
retrieved.

4.3.3 The p-norm Extended Boolean Model
The p-norm extended Boolean model was developed by [29], following the
vector space model’s metaphor of documents in a multi-dimensional Euclidean
space. If the two terms social and political are again considered, the vector
space spanned by the terms can be easily visualized. If document vectors are
normalized to unit length, then the point (1,1) in the space represents the
situation that both terms are present with weight 1 (which implies a length
greater than one!). This is the desirable location for a document matching
the query social AND political. For the query social OR political on
the other hand, the point (0,0) representing the situation that both terms are
absent, is the undesirable location for a document.

Therefore, AND-queries should rank documents in order of increasing dis-
tance from the point (1,1) and OR-queries in order of decreasing distance
from the point (0,0). If the distances are properly normalized to fall between
0 and 1, then the following formulas apply. In the formula da denotes the
weight of the term a in a document with index representation d:

score(d, a OR b) =

√
(da − 0)2 + (db − 0)2

2

score(d, a AND b) = 1 −
√

(1 − da)2 + (1 − db)2

2
.

(4.7)

Salton [29] suggested two generalizations of the basic idea. First of all, query
term weights were included to reflect the importance of individual terms.
Secondly, the Euclidean distance measures were generalized by introducing
a parameter p for each set operator. The resulting p-norm model uses the
following formulas:
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score(d,q OR(p)) =
(∑m

k=1(qk)p(dk)p

∑m
k=1(qk)p

)1/p

score(d,qAND(p)) = 1 −
(∑m

k=1(qk)p(1 − dk)p

∑m
k=1(qk)p

)1/p

.

(4.8)

For p = 2 the formulas will use the Euclidean distance measures as in (4.7).
For p = 1 the OR-operator and the AND-operator produce the exact same
results and the model behaves like the vector space model. If p → ∞ then the
ranking is evaluated according to the standard fuzzy set operators [44].

The p-norm model belongs to the best performing extended Boolean mod-
els. Based on recent publications about such models, the p-norm model is prob-
ably more popular for extended Boolean retrieval than other well-performing
algorithms. Greiff et al. [8] copied the behavior of the p-norm model in their
inference network architecture and Losada and Barreiro [15] propose a belief
revision operator that is equivalent to a p-norm case.

A disadvantage of the p-norm model is that it needs an additional term
weighting algorithm to be implemented.

4.3.4 Bayesian Network Models
A Bayesian network is an acyclic directed graph that encodes probabilistic de-
pendency relationships between random variables. A directed graph is acyclic
if there is no directed path A → · · · → Z such that A = Z. Probability theory
ensures that the system as a whole is consistent. Some alternative names for
Bayesian networks are belief networks, probabilistic independence networks,
influence diagrams and causal nets [21]. This is further explained by the fol-
lowing simple model suggested by Turtle [37, 38], and Ribeiro [24].

D

3TT2

Q

T1

Fig. 4.6. Simple Bayesian network.

The nodes in the Bayesian network of Figure 4.6 represent binary random
variables with values {0, 1}. Arrows indicate probabilistic dependency rela-
tionships, e.g., the arrow from node D to node T1 indicates that the value
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for D influences the probability distribution of T1. A missing arrow indicates
probabilistic independence. So, T1 and T2 are independent. The random vari-
ables T1, T2, and T3 stand for query terms, in our case social, political,
and economic. If the document is relevant (D = 1), then the probability will
be high that some of the terms will be present in the document. The informa-
tion need of the user is indicated by Q. Expression Q = 1 indicates that the
need is satisfied. The occurrence of (some of) the terms in the document will
increase the probability that the information need is satisfied.

We now consider the joint probability distribution of the random variables
of the Bayesian network. By the chain rule of probability, the joint probability
is:

P (D,T1, T2, T3, Q) =
P (D)P (T1|D)P (T2|D,T1)P (T3|D,T1, T2)P (Q|D,T1, T2, T3).

(4.9)

Independence relationships in the Bayesian network are used to simplify
the joint probability distribution as follows. The second, third and fourth
term in (4.10) are simplified because T1, T2 and T3 are independent given
their parent D. The last term is simplified because Q is independent of D
given its parents T1, T2 and T3:

P (D,T1, T2, T3, Q) = P (D)P (T1|D)P (T2|D)P (T3|D)P (Q|T1, T2, T3).
(4.10)

We proceed using the network. If it is hypothesized that the document is
relevant (D = 1), the probability of query fulfillment P (Q=1|D=1) can be
used as a score to rank the documents:

P (Q=1|D=1) =
P (Q=1,D=1)

P (D=1)
(4.11)

=

∑
t1,t2,t3

P (D=1, T1=t1, T2=t2, T3=t3, Q=1)
P (D=1)

. (4.12)

The joint probability distribution defined by (4.10) can be used to calculate
the score. The only thing that is still missing is the specification of the prob-
abilities. These are shown in the form of tables in Fig. 4.7. For example, the
conditional probability P (Q|T1, T2, T3) is given in the lower left table. With
help of these tables, P (Q=1|D=1) can be computed for each document.
The table of P (Q|T1, T2, T3), however, shows a potential difficulty of this ap-
proach. The number of probabilities that have to be specified for a node grows
exponentially with its number of parents, so a query of n non-equal terms
requires the specification of 2n+1 possible values of P (Q|T1, T2, · · · , Tn). De-
spite the simplifying assumptions made by the conditional independencies,
the model has to make additional simplifying assumptions to make it possible
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P (D=0) P (D=1) D P (T1 = 0) P (T1 = 1)
0.999 0.001 0 0.60 0.40

1 0.05 0.95
T1 T2 T3 P (Q=0) P (Q=1)
0 0 0 1.000 0.000 D P (T2 = 0) P (T2 = 1)
0 0 1 0.901 0.099 0 0.88 0.12
0 1 0 0.887 0.113 1 1.00 0.00
0 1 1 0.992 0.008
1 0 0 0.547 0.453 D P (T3 = 0) P (T3 = 1)
1 1 0 0.332 0.664 0 0.97 0.03
1 0 1 0.271 0.729 1 0.02 0.98
1 1 1 0.220 0.780

Fig. 4.7. Example specification of the model’s parameters.

to calculate the probability in reasonable time. Turtle [37, page 53] therefore
suggests the use of four canonical forms of P (Q|T1, T2, · · · , Tn) which can be
computed on the fly in linear time. The four canonical forms which are called
“and”, “or”, “sum” and “weighted sum” (“wsum” for short), are displayed in
Figure 4.8. The weights w1, w2 and w3 in the last columns are restricted to
positive values and should sum up to one.2

Pand(Q) Por(Q) Psum(Q) Pwsum(Q)
T1 T2 T3 0 1 0 1 0 1 0 1

0 0 0 1 0 1 0 1 0 1 0
0 0 1 1 0 0 1 2

3
1
3

1 − w3 w3

0 1 0 1 0 0 1 2
3

1
3

1 − w2 w2

0 1 1 1 0 0 1 1
3

2
3

1−w2−w3 w2+w3

1 0 0 1 0 0 1 2
3

1
3

1 − w1 w1

1 0 1 1 0 0 1 1
3

2
3

1−w1−w3 w1+w3

1 1 0 1 0 0 1 1
3

2
3

1−w1−w2 w1+w2

1 1 1 0 1 0 1 0 1 0 1

Fig. 4.8. Canonical forms of P (Q|T1, T2, T3).

Suppose for now that the values of P (T1|D), P (T2|D) and P (T3|D) are known
and given by p1, p2 and p3. The calculation of P (Q=1|D=1) by the canonical
forms of Figure 4.8 will give the same results as the following calculations,
which only require linear time:

2 The definition of “wsum” by Turtle [37] is more general.



114 Henk Blanken and Djoerd Hiemstra

Pand(Q=1|D=1) = p1 p2 p3

Por(Q=1|D=1) = 1 − (1−p1)(1−p2)(1−p3)
Psum(Q=1|D=1) = (p1 + p2 + p3) / 3

Pwsum(Q=1|D=1) = w1 p1 + w2 p2 + w3 p3.

(4.13)

The main advantage of the Bayesian network models [38] is that the network
topology can be used to combine evidence in a complex way. Many other
recent approaches to information retrieval seek for new ways of combining
evidence from multiple sources [7, 33, 40, 43].

R2

3TT2T1 4T

R1

D

Q3

Q1

Q2

I

and

or

sum

wsum

Fig. 4.9. Complex Bayesian network.

Figure 4.9 shows such a complex Bayesian network. In the network R1 and
R2 define different representations of the document, for instance one might
represent the document’s title words, whereas the other might represent words
from the abstract. The model’s probabilities might indicate that title words
are more important than words from the abstract. The nodes Q1, Q2 and Q3

represent different queries for the same information need, which is represented
by the node I. The query represented by Q2 is evaluated as or(and(T1 T2)
T3)), whereas the query Q3 is evaluated as wsum(T2 T3 T4).

There are two disadvantages of the Bayesian network models presented
in this section. Firstly, the approaches do not suggest how the probability
measures P (Ti|D), (1 ≤ i ≤ n) should be estimated. Instead, the approaches
suggest the use of Bayesian probabilities. In a nutshell, the Bayesian proba-
bility of an event is a person’s degree of belief in that event, which does not
have to refer to a physical mechanism or experiment. In contrast, the classi-
cal probability always implies such an experiment and therefore can always
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be interpreted as a relative frequency. Considering probabilities as a person’s
degree of belief is quite practical if a medical expert system is built [9]. For
full text information retrieval systems however, experts are by definition not
available for specifying the probabilities of the network because it implies
manual indexing of the collection. The models therefore use one of the term
weighting algorithms that use term frequencies and document frequencies as
presented in Section 4.4. The joint probability distribution defined by (4.10)
can be used as follows to calculate the score.

A second disadvantage of the Bayesian network models presented in this
section is that the calculation of the probabilities generally takes exponential
time in the number n of non-equal query terms. The introduction of the
four canonical forms solves this problem, but it could have been solved by
the network topology. For instance the definition of Pand in (4.13) actually
suggests (conditional) independence between the probabilities p1, p2 and p3

and, for instance the definition of Pwsum suggests the use of a mixture model
topology [13]. By using the four canonical forms, the network is tractable
if it is used for inference, but it is still intractable if used for updating the
probabilities. Updating the probabilities might be an effective approach to
relevance feedback. Although the Bayesian network formalism comes with
efficient learning algorithms, these algorithms can in practice not be applied
in reasonable time on the network model presented in this section [36].

4.3.5 Language Model
A language model is a mathematical model of a language. Such a model can
be very simple, for instance a list with the words of a language together with
the frequency with which the word occurs in sentences. Language models
have been around for quite a long time. They were first applied by Andrei
Markov at the beginning of the 20th century to model letter sequences in
works of Russian literature [17]. Later on language models were also used to
model word sequences [34]. At the end of the 1970s language models were
first successfully used for automatic speech recognition. Recently, statistical
language models are very popular in the area of information retrieval. In this
case one builds a simple language model for each document in the collection
and given a query, documents are ranked by the probability that the language
model of each document generated the query. It may be instructive to describe
the process of generating the query from the model as if it were a physical
process.

An Informal Description: the Urn Model Metaphor
The metaphor of “urn models” [19] might give more insight. Instead of drawing
balls at random with replacement from an urn, we will consider the process
of drawing words at random with replacement from a document. Suppose
someone selects one document in the document collection; draws at random,
one at a time, with replacement, ten words from this document and hands



116 Henk Blanken and Djoerd Hiemstra

those ten words (the query terms) over to the system. The system can now
make an educated guess as from which document the words came from, by
calculating for each document the probability that the ten words were sampled
from it and by ranking the documents accordingly. The intuition behind it
is that users have a reasonable idea of which terms are likely to occur in
documents of interest and will choose query terms accordingly [22]. In practice,
some query terms do not occur in any of the relevant documents. This can be
modeled by a slightly more complicated urn model. In this case the person
that draws at random the ten words, first decides for each draw if he will draw
randomly from a relevant document or randomly from the entire collection.
The yes/no decision of drawing from a relevant document or not, will also
be assigned a probability. This probability will be called the relevance weight
of a term, because it defines the distribution of the term over relevant and
non-relevant documents. For ad hoc retrieval all non-stop-words in the query
will be assigned the same relevance weight. The user’s feedback might be used
to re-estimate the relevance weight for each query term.

Definition of the Corresponding Probability Measures
Based on the ideas mentioned above, probability measures can be defined to
rank the documents given a query. The probability that a query T1, T2, · · · , Tn

of length n is sampled from a document with document identifier D is defined
by:

P (T1, T2,· · ·, Tn|D) =
n∏

i=1

((1−λi)P (Ti) + λiP (Ti|D)). (4.14)

In the formula, P (T ) is the probability of drawing a term randomly from
the collection, P (T |D) is the probability of drawing a term randomly from
a document and λi is the relevance weight of the term. If a query term is
assigned a relevance weight of λi = 1, then the term is treated as in exact
matching: the system will assign zero probability to documents in which the
term does not occur. If a query term is assigned a relevance weight of 0, then
the term is treated like a stop word: the term does not have any influence
on the final ranking. It can be shown that this probability measure can be
rewritten to a tf.idf term weighting algorithm.

Parameter Estimation
It is good practice in information retrieval to use the term frequency and
document frequency as the main components of term weighting algorithms.
The term frequency tf(t, d) is defined by the number of times the term t occurs
in the document d. The document frequency df(t) is defined by the number
of documents in which the term t occurs. Estimation of P (T ) and P (T |D)
in (4.14) might therefore be done as follows [10, 12]:
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P (Ti = ti|D = d) =
tf(ti, d)∑
t tf(t, d)

(4.15)

P (Ti = ti) =
df(ti)∑
t df(t)

. (4.16)

From the viewpoint of using language models for retrieval and from the view-
point of the urn model metaphor, (4.16) would not be the obvious method
for the estimation of P (T ). One might even argue that it violates the axioms
of probability theory, because P (Ti=ti1 ∪ Ti=ti2) �= P (Ti=ti1) + P (Ti=ti2)
if ti1 and ti2 co-occur in some documents. Therefore the following equation,
(4.16b), would be the preferred method for the estimation of P (T ), where the
collection frequency cf(t) is defined by the number of times the term t occurs
in the entire collection:

P (Ti = ti) =
cf(ti)∑
t cf(t)

=
∑

d tf(ti, d)∑
d

∑
t tf(t, d)

. (4.16b)

The latter method was used by various authors [1, 18, 20, 22]. We try to
relate the language modeling approach to the traditional approaches, so we
will use former method. By using (4.16), the language modeling approach
to information retrieval gives a strong theoretical backup for using tf.idf term
weighting algorithms: a backup that is not provided by the traditional retrieval
models. The prior probability P (D=d) that a document d is relevant, might
assumed to be uniformly distributed, in which case the formulas above suffice.
Alternatively, it might be assumed that the prior probability of a document
being relevant is proportional to the length of the document as in:

P (D = d) =
∑

t tf(t, d)∑
t

∑
d tf(t, d)

(4.17)

It can be included in the final ranking algorithm by adding the logarithm
of (4.17) to the document scores as a final step.

4.3.6 Ranking in Google
The World-Wide Web has become increasingly important. A Web page may
contain all kinds of information: text, images, and so on. We consider a Web
page to be a hypertext document, which means that besides text also the
HTML referencing mechanism (=link) is available. Many search engines have
been developed to address the huge document collection offered by the Web;
the dominant search engine is without doubt Google. This engine offers high
performance and ease of use. Ease of use is achieved by allowing the user
to issue natural language search terms that are subsequently processed as if
they were separated by ANDs. In the meantime other Boolean operators (OR,
NOT) are allowed via an advanced search interface. Actually, Google uses a
Boolean matching model.
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The decisive factor, however, in the success of Google is probably its rank-
ing mechanism. An important part in this mechanism is the so-called PageR-
ank algorithm [3]. The algorithm is based on the citation index, which is
generally accepted in the academic world: the importance of a paper can be
judged by the number of references to it. In Web terms: the number of links
referring to a Web page.

Within the past few years many adjustments and modifications regarding
Google’s ranking mechanism have occurred. PageRank is only part of the
mechanism determining what results get displayed high up in a Google output.
For example, there is some evidence to suggest that Google is paying a lot of
attention these days to the text in a link’s anchor when deciding the relevance
of a target page. PageRank remains, however, an interesting algorithm. Below
we will describe one of the first versions of the algorithm.

PageRank
The original PageRank algorithm as described by Brin and Page is given by:

PR(A) = (1 − d) + d

(
PR(T1)
C(T1)

+· · ·+ PR(Tn)
C(Tn)

)
, (4.18)

where PR(A) is the PageRank of page A, PR(Ti) is the PageRank of a page
Ti, C(Ti) is the number of outgoing links (=references) from the page Ti, and
d is a damping factor in the range 0 < d < 1, usually d = 0.85.

So, the PageRank of a Web page is the sum of the PageRanks of all pages
referring to the page (its incoming links), divided by the number of links on
each of those pages (its outgoing links). This means that the influence of a
referring page is positively related to its PageRank and negatively by the
number of references it makes.

PR is a recursive function: To compute PR(A), we must know PR(Ti) of
all pages referring to A. But to compute these PR’s we need to know the PR
of referring pages (may be from page A), and so on. An iterative algorithm
solves this problem after assigning a starting PageRank value of 1 to each
page on the web.

Example
Consider a small Web consisting of three pages A, B, and C. Page A refers
to B and C; page B to A and C, and page C to B. Let us assume that
the damping factor d = 0.5. Actually, the damping factor appears to have a
significant influence on the convergence characteristics of the algorithm, but
for explanation purposes it is not relevant. Now we get:
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PR(A) = 0.5 + 0.5
(

PR(B)
2

)

PR(B) = 0.5 + 0.5
(

PR(A)
2

+ PR(C)
)

PR(C) = 0.5 + 0.5
(

PR(A)
2

+
PR(B)

2

)
.

Solving these equations results in the following PageRank values for the pages:

PR(A) =
4
5
; PR(B) =

6
5
; PR(C) = 1.

The sum of all PR’s equals the total number of Web pages (= 3).
Page and Brin published a second version of the algorithm to compute

PR. In that version the term 1−d is divided by N , the total number of pages
on the web. It can be shown that the PageRanks now form a probability
distribution over the web pages, so they sum up to one.

Random Surfer Model
In their publications, Page and Brin describe the random server model which
is a justification for the PageRank formula. The random server visits a Web
page with a probability which is derived from the PR of the page. Now the
surfer randomly selects one link on the page and follows that link. However,
from time to time (probability (1−d)/N) the surfer gets bored, does not follow
a selected link, but jumps to another random page instead. In this way an
intuitive reasoning for the computation of PR results.

Remark
It may be commercially interesting for a Web page to get a high ranking. So
Google pays a lot of attention to obstruct efforts of Webmasters to elude the
system. For instance, Google introduced the concept of the “importance” of
the page. This may help to minimize the effect of artificially generated Web
pages which refer to a certain page in order to increase its ranking.

4.4 Term Weighting
Of the models presented in Section 4.3, the vector space model, the p-norm
model and the Bayesian network models all need an additional term weight-
ing algorithm before they can be implemented. Weighting of search terms is
the single most important factor in the performance of information retrieval
systems. The development of term weighting approaches is as much an art
as it is a science: Literally thousands of term weighting algorithms were used
experimentally during the last 25 years, especially within the Smart projects.
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These algorithms often imply the use of some statistics on the terms, that is,
they somehow take into account the number of occurrences of terms in the
documents or in the index to compute rankings.

In this section we give an example of term weighting and choose the tf.idf
weights of the original Smart retrieval system. This system was developed at
Harvard University in the early 1960s and later developed at Cornell Univer-
sity. Salton [31] experimented with weighting algorithms that use the so-called
inverse document frequency. They suggested to combine it with the frequency
of a term within a document, the term frequency, tf for short. The assump-
tion is that if a term occurs frequently, it is likely to be characteristic for a
document.

The document frequency df of a term is defined by the number of docu-
ments a term occurs in. A term with a low document frequency is more specific
than a term with a high document frequency. Sparck et al. [35] suggested that
therefore, the system should treat matches on non-frequent terms as more
valuable than ones on frequent terms. An intuitive way to relate the matching
value of a term to its document frequency is suggested by a Zipf-like distribu-
tion of words in a vocabulary [17]. If f(df) = m such that 2m−1 < df ≤ 2m,
and N is the number of documents in the collection, then the weight of a term
that occurs df times is f(N)−f(df).3 A continuous approximation of f is the
logarithm to the base 2. The ranking algorithm is displayed in Figure 4.10.
The weight log(N/df) will be called the “inverse document frequency”: idf for
short.

cosine: score(d,q) =

Pm
k=1 dk · qk

pPm
k=1(dk)2 · pPm

k=1(qk)2

term weights: dk = qk = tf · log
N

df

Fig. 4.10. Original tf.idf with cosine normalization (tfc.tfc).

The introduction of the so-called tf.idf weights is one of the major break-
throughs of term weighting in information retrieval. Most modern weighting
algorithms are versions of the family of tf.idf weighting algorithms. Salton’s
original tf.idf weights perform relatively poor, in some cases even poorer than
simple idf weighting.

Salton [28] summarizes the results of 20 years of research into term weight-
ing with the Smart system. A total of 1800 different combinations of term
weight assignments were used experimentally, of which 287 were found to be

3 The adding of 1 used by Sparck–Jones [35] was ignored because it is no longer
used in later papers.
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distinct. Experimental results of these term weighting algorithms on six doc-
ument collections were reported. Term weighting algorithms were named by
three letter combinations. The first letter indicated the tf component, the
second component indicates the idf component and the third component in-
dicates the normalization component. For instance, the three letter code tfc is
the code for the original tf.idf weights with cosine normalization introduced
above. They concluded that the best performing algorithm is one that maps
the document vectors differently in the vector space than the query vectors.
Figure 4.11 displays the tfc.nfc formula which uses a normalized tf factor for
the query term weights.

cosine: score(d,q) =

Pm
k=1 dk · qk

pPm
k=1(dk)2 · pPm

k=1(qk)2

document term weight: dk = tf · log
N

df

query term weight: qk =

„

0.5 +
0.5 tf

max tf

«

· log
N

df

Fig. 4.11. tfc.nfc term weighting algorithm.

4.5 Summary
A brief description of thirty years of IR research has been given. Two classes
of users are identified, namely professional indexers and searchers on one hand
and casual end users on the other. The formulation of queries for these two
groups is described and the process of deriving a query from a natural language
request is briefly sketched. Most attention has been paid to matching prob-
lems. The Boolean approach resulted in exact matching; other approaches
included ranking of resulting documents (which means inexact matching).
Several approaches to ranking are given. The vector space approach maps
documents and queries in a n-dimensional vector space. Relevance feedback
nicely fits into this approach. The probabilistic approach tries to estimate
the probability that a document is relevant for the user. If users are able to
characterize relevant (or irrelevant) documents this approach may be useful.
An example may be email documents where users are able to specify terms to
characterize spam. The Bayesian approach is useful when evidence from many
different sources have to be integrated. Think of evidence coming from an au-
dio, and image channel in a video. A language model is originally a (simple)
mathematical model of a language. In the meantime these models are heavily
used in IR. Systems built on these models are very competitive and perform as
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well as, or better than, today’s top-performing algorithms. The World-Wide
Web is a collection of interconnected Web pages. Google searches the Web and
its ranking algorithm (PageRank) takes these connections (=hyperlinks) into
account. Some retrieval models perform dramatically better if query terms
that occur in documents get a weight. Some variants have been discussed, but
term frequency (how often does the term occur in a document) and document
frequency (in how many documents does the term occur) play an important
part.

4.6 Further Reading
This chapter briefly introduces probabilistic retrieval models. Fuhr [6] elabo-
rates on this topic.

IR deals with documents containing free text. For presentation purposes
free text is more and more embedded in a language like HTML. More re-
cent is the development to use XML to structure documents. This poses new
challenges to IR systems. For instance, how to deal with queries that contain
conditions related to both structure and content? Blanken et al. [2] give more
information on IR and structured data.

Retrieval models deal with structured queries, relevance feedback, ranking,
term weighting, and so on. There have been attempts to model these phenom-
ena into one framework [38]. Section 4.3.5 introduces the language model. An
extension of the model integrates structured queries and relevance feedback
into one mathematical framework [11].

Implementation aspects did not get much attention. Consider queries like:
how to store terms in an index, and how to access indexes? Efficiency is of
course an important topic. Witten et al. deal with indexing in Chapter 3 of
their book [42].

In this chapter, architectural aspects are totally neglected. Brin and
Page [3] give more information about architectural aspects of Google.
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5.1 Introduction
The field of image processing addresses handling and analysis of images for
many purposes using a large number of techniques and methods. The appli-
cations of image processing range from enhancement of the visibility of cer-
tain organs in medical images to object recognition for handling by industrial
robots and face recognition for identification at airports, but also searching
for images in image databases. The methods applied range from low-level ap-
proaches like boundary detection and color based segmentation to advanced
object detection using statistical geometric models. Often several techniques
must be combined to obtain a desired result, e.g., first low-level feature extrac-
tion, next clustering into regions, extraction of shape parameters and finally
object recognition.

Whereas image processing basically includes all thinkable operations on
images, its subfield image analysis addresses the extraction of certain infor-
mation from images and aims to generate a description of (part of) the image
or objects present in the image. In this chapter the emphasis will be on im-
age analysis rather than on image processing in general and on static images
rather than on image sequences. Examples of generating descriptions of im-
ages are recognition of a face in an image, counting the number of a certain
type of cell in an image and labeling the different organs in a CT image of the
chest (heart, lungs, ribs). Thus, given an image, image analysis aims to gen-
erate a description. On the other hand, the common task of image processing
in multimedia database applications is to find images based on a description,
where the description can range from an abstract description to an example of
an object in the form of another image. Of course, both viewpoints are closely
related, because in order to find an image based on a description, one must
also be able to generate a description from an image.
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5.1.1 Relation to Other Chapters
Images form one of the main types of data used in multimedia retrieval sys-
tems. The other types of data are covered in Chapter 4 (text), Chapter 7
(speech) and Chapters 9 and 10 (video). In Chapter 1 querying and retrieval
were introduced. In the case of image data, formulating queries refers to prop-
erties and/or contents of the images. This chapter gives an overview of which
features and descriptions can be extracted from images and how they can be
extracted and does this from an image analysis point of view. Forming queries
and retrieval themselves are not addressed here. For details on querying and
retrieval, please refer to Chapters 6 and 11. Of course there is a close relation
between image and video data. Often, more accurate and robust image analy-
sis is possible and a more complete description of the scene can be generated if
a sequence of images of the same object or scene is available instead of a single
image. In this chapter, however, only static imagery is considered. Chapters 9
and 10 deal with video data.

5.1.2 Outline
This chapter gives an overview of the main applications for and methods used
in image processing, where the emphasis is on techniques for image analysis.
In Section 5.2 a brief overview of the different types of image processing and
the main application fields of image processing is given. The subsequent sec-
tions are devoted to image analyses and techniques used in image analysis.
In Section 5.3 an overview is given of the types of data that can be distin-
guished and the methods used in image analysis. Furthermore, a model-based
framework for image analysis is introduced and low-level versus high-level and
bottom-up versus top-down approaches will be discussed. Often, an important
first step in any image analysis approach is the extraction of basic features,
like color, edges, lines, shapes etc. from the raw image. Section 5.4 addresses
the types of features used in image analysis and the extraction of the fea-
tures from images. In Section 5.5 several important image analysis methods
are presented, both illustrating the operation of the model-based approach as
well as how and what kind of descriptions are generated from images.

5.2 Types of Image Processing and Applications
5.2.1 Types of Image Processing
Image processing in principle incorporates all operations on images that can
be imagined. Here, an overview is given of some of the most important types
of image processing.

Image Acquisition
Image acquisition is the process that creates images from a real world scene.
The best known and most widespread method of image acquisition is of course
using a color or black-and-white camera for visible light. The image is pro-
jected on the image sensor using a system of lenses. Nowadays, mostly CCD
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or CMOS image sensors are used that consist of a grid of image elements (pix-
els). Each image element produces a signal that has a direct relation with the
intensity of the incoming light. This signal is in its turn quantized using an
analog to digital converter (ADC). For many applications, e.g., in industrial
vision, not only the camera itself, but also the illumination and a carefully
planned setup are of great importance for the acquisition of images that can be
used for reliable image analysis. In order to perform accurate measurements
with cameras, they must be calibrated, i.e., the position and orientation of
the camera relative to a world coordinate system must be determined and
the parameters of the optical system (focal distance and lense distortions)
and the image sensor (position and measures of the image elements) must
be determined. The position and the orientation of the camera are called the
extrinsic parameters, while the properties of the camera itself (focal distance,
lens distortion, sensor characteristics, like area of the sensor) are called in in-
trinsic camera parameters. Apart from this geometric calibration, radiometric
calibration might be required as well in order to allow precise measurements
using intensity and color. The camera and its extrinsic geometric parameters
are shown in Figure 5.1. Except for single images, sequences of images may
be recorded and multiple imagers can be used, like, e.g., a set of cameras to
obtain stereo images.

(a) (b)

focal distance

ADC number

projection of objectlens

object

image plane

image elements

x−axisz−axis
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φz

Fig. 5.1. The standard CCD/CMOS camera. (a) projection of an object on the
image plane, the incident light is integrated over the area of each image element and
over time and converted to a digital representation; (b) extrinsic geometric camera
parameters: three position and three orientation parameters.

Apart from these regular cameras many other imaging devices exist, like doc-
ument scanners (flat bed scanners), finger print scanners, and in the medical
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world X-ray imagers, CT (computer tomography) and MR (magnetic reso-
nance) scanners and US (ultra sound) devices. The latter do not use direct
projection on an image plane, but rather reconstruct images from measur-
ing the spatial distribution of other entities. For example, in CT (Computer
Tomography), absorption of X-rays by the different tissues of the body is
measured. By projecting the X-rays under different angles, the absorption as
a function of position can be reconstructed, resulting in a 2- or 3-dimensional
X-ray absorption image. In MRI (magnetic resonance imaging), the resonance
properties of certain molecules in a strong magnetic field are exploited. The
resonance frequency of these molecules depends on the strength of the mag-
netic field and the molecules can be brought into resonance by applying a
rapidly changing magnetic field with the same frequency. When the changing
magnetic field is removed again, the density of the resonating molecules can be
measured using the induction currents caused in a receiver coil. By a carefully
designed place and time dependent coding of the magnetic field, the density
of the molecules can be measured as a function of position, resulting again in
a 2- or 3-dimensional image. In ultrasound, the reflection of high frequency
sound at the interface between different tissues is exploited and positional
information is obtained by using the speed of sound as well as using multiple
sensors.

In the end all image acquisition methods generate images in the form of
a matrix of numbers. The indices of the matrix define the position on the
image plane (or the imaged volume) and the corresponding value represents
the measured entity.

Image Restoration
Often recorded images suffer from distortions, like geometric distortions
caused by imperfect lens systems, noise caused by, e.g., low light conditions,
unsharpness (blur) as a result of incorrect focusing, motion etc. Image restora-
tion attempts to find out how the image would have been without these dis-
tortions. In the case of geometric distortions, this means a geometric warping
of the image. In the case of the presence of noise, different techniques for
noise suppression can be applied. The sharpness of blurred images can be im-
proved by, e.g., deconvolution. Some examples of image distortions are shown
in Figure 5.2.

Image Reconstruction
The aim of image reconstruction is to construct an image using models, e.g.,
a model of the acquisition system. Examples were already mentioned in the
paragraph on image acquisition above. Another example is reconstruction of
an image as if it were generated from another viewpoint or using another
imaging device.

For example, one can generate from a stereo pair of images an image from
a new viewpoint where actually no camera is present. In image analysis, some-
times it is possible to reconstruct an image using a previously generated de-
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(a) (b)

(c) (d)

Fig. 5.2. Image distortions. (a) original image; (b) lens distortion; (c) noisy image;
(d) unsharp image.

scription. In Section 5.5.2 it is shown how a facial image can be reconstructed
using a weighted sum of so-called eigenfaces.

Image Enhancement
If image processing is used to improve the visibility of certain objects or
properties in the image, we are speaking of image enhancement. Image en-
hancement is mainly used for visualization for human observers to allow them
to better interpret the images. Classical examples are contrast enhancement,
histogram normalizations and edge enhancement.

Image Registration
In many applications images must be either registered or aligned to each other
or to a fixed coordinate system. In medical applications images from different
modalities like CT and MR may have to be aligned or images of the same
modalities but recorded at a different time, in order to measure the progression
of a disease. In cartography a scanned map may have to be aligned with an
aerial photograph or satellite image. A third example of image registration
is the alignment of facial images for face recognition to a coordinate system
based on the positions of the eyes, nose and mouth. Image registration can be
divided into rigid registration (translation, rotation and scaling) and non-rigid
registration where the actual shape is changed.
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Image Compression, Storage and Transmission
Images and especially video image sequences and 3D volume images represent
large amounts of data. In order to be able to handle, store and transmit these
images, compression is often required. Two ways of compression can be distin-
guished: lossless and lossy. An image compressed with a lossless compression
method can be exactly reconstructed. Lossy compression methods on the other
hand only allow an approximate reconstruction. An example of lossless com-
pression is run-length encoding. The best-known lossy compression methods
are JPEG for static images and MPEG for image sequences.

Image Analysis
Of all the types of image processing, probably the one that appeals most
to our imagination is image analysis, because it resembles human vision and
because it poses the largest challenge. Ultimately, image analysis aims to
interpret the image, recognizing imaged objects, the relations between the
objects and the properties of the imaged objects. Such a complete analysis of
an imaged scene may be required for guiding autonomous moving robots. For
many applications however, a partial description of the image suffices, e.g.,
detection of and measurements on a single object in the image (measuring the
diameter of an ink-droplet for inspection of inkjet printer cartridges). Thus
we can define image analysis as follows: Image analysis aims to generate a
description of (part of) the image or of objects present in the image.

5.2.2 Application Areas
Image processing has applications in many areas. Some examples for the most
important application areas are described here.

Medical Imaging
A large application area for image processing including 3D image processing
is medical imaging. Many of the image processing problems are typical for the
types of images and imaging devices (MR, CT and US). Much of the medi-
cal image processing is tailored towards visualization and storage in so-called
PACS (Picture Archiving and Communication System). Two of the main areas
of research in medical imaging are segmentation of images into segments rep-
resenting the different tissues and organs and registration of images acquired
with different scanners and at different times.

Geo Information Systems, Satellite and Aerial photography and Cartography
Processing aerial and satellite images and using them to produce and update
maps is an important and extensive application area for image processing.
Different types of image restoration, image enhancement and image recon-
struction are used to obtain images with the required properties and from
the correct perspective. In order to compare photographs with maps for up-
dating the maps or with other photographs to determine changes, they must
be aligned using a registration technique. Geographical Information Systems
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(GIS) can be regarded as the high tech equivalent of the map in which differ-
ent sets of information from a map (roads, settlements, vegetation, etc.) are
stored and can be used as required. This provides flexibility far beyond the
traditional paper map. Because the data are stored on a computer, analysis
and modeling become possible, e.g., optimal path planning for a heavy trans-
port between buildings in a city. Of course, creating and keeping a GIS up to
date requires extensive processing of the available photographic material.

Biometry
Image processing for biometric purposes is mainly concentrated on face
recognition and fingerprint recognition. Other, smaller subjects are hand-
palm recognition and tracking people. For face recognition, there are so-
called feature-based approaches and holistic approaches. The feature-based
approaches try to detect significant features like the eyes, nose and mouth,
and based on the characteristics of these features and their relations attempt
to identify a face. In the holistic approaches the appearance of the whole face
is used as the input of a classifier. An example of the holistic approach is the
eigenface based method described in Section 5.5.2.

Optical Character Recognition
One of the first large scale successes for image processing was optical charac-
ter and hand writing recognition especially for cheques, document processing
and automatic handling of post. A more recent application is license plate
recognition for vehicles.

Industrial Vision
One of the largest application areas of image processing is industrial vision.
Industrial vision ranges from relatively simple applications like measuring the
volume of an ink droplet to vision systems for programmable autonomously
moving and operating robots. Other examples are the inspection of weldings
and sorting fruit. For industrial vision often careful planning of the camera
setup and illumination is necessary to obtain reliable results. Careful condi-
tioning of the environment can make a large difference in the reliability and
cost effectiveness of a system. For example, recognition of nuts and bolts that
lie separated on a homogeneous background is much easier than when they
lie on a pile on top of each other, see Figure 5.3.

Multimedia and Image Databases
A relatively new application area of image processing is that of multimedia
image databases. The main objectives in this area are to be able to retrieve
images based on a description of their content (e.g., find all pictures with red
cars of a certain brand or in medical databases all MRI recordings of hearts
with a certain disease) or, e.g., based on similar images (e.g., a picture or a
drawing of a fish). Another example is to be able to find a point in a video
stream based on certain image properties, like the appearance of a certain
person or object.
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Fig. 5.3. In industrial vision, conditioning of the setup is of great importance:
recognition of separated objects is much easier than of a pile of objects.

5.3 Image Analysis
5.3.1 The Type of Output of Image Analysis Systems
The goal of image analysis is to extract information from an image. The ob-
jective of computer vision, for instance, is to obtain a meaningful description
of the objects in a scene being imaged. In other areas, such as in the “query-
by-image” paradigm, there is no strict need for such a semantic description
of an image. Here, it suffices to describe the image in terms of, for instance,
the shapes, the colors, or the textures. In any case, we may distinguish the
various image analysis systems according to the type of their output. The
different types vary from simple output (i.e., one bit information) to complex,
e.g., hierarchically structured data. Table 5.1 presents an overview. In all ex-
amples presented in this table there is a direct relation between the output
and the imaged object(s). As such they are typical computer vision applica-
tions. However, the issues mentioned in the table also apply to non-semantic
descriptions of the image. For instance, in a “query-by-image” application a
relevant question could be “are there textured regions in the image”, i.e., a
detection problem.

Table 5.1. Different types of output.

issue output range example

detection boolean burglar alarm (yes/no)

classification finite set of classes classification of different types of fruits
(“apples”, “pears”, “oranges”)

parameter
estimation

vectors geometrical parameters (position, orienta-
tion, size, shape)

structural
analysis

structured data document analysis (sender + address, logo,
body text, date, signature, etc.)
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Some of the issues occur in different versions. For instance, in biometrical
applications, verification is the task of authorizing a person based on his/her
biometrical signature (e.g., a fingerprint). It boils down to a detection problem
where it is decided whether the person is found in a database, or not. Combi-
nations of different types of problems also occur. Identification is the process of
finding out whether an object (or person) is in a database (a verification prob-
lem), and if so, to what entry in the database this object corresponds. Thus,
here we have a combined detection and classification problem. The task of a
vision system of a pick-and-place robot is to detect the objects in an image, to
classify each object, and finally, to estimate their positions and orientations.
Here we have combined detection/classification/estimation problems. These
kinds of combinations are typical in structural analysis.

5.3.2 Methodology for Image Analysis
Early research in digital image analysis and computer vision stems from the
1960’s. Since then, an impressive amount of literature has been produced and
published in the many periodicals, conference proceedings, and textbooks de-
voted to this field of science. The yearly flow of new publications is still in-
creasing. This overwhelming research effort has lead to a diversity of tech-
niques and methods. Therefore, it is difficult to present a unifying framework
in which each method fits. Nevertheless, the overview shown in Figure 5.4
is an attempt in that direction. The figure shows a computational structure
which we call “an elementary data processing step” because in most image
analysis applications it reoccurs at different levels of the data representation,
see below.

feature
extraction

comparison

model
selection

observed data
(e.g. image data)

model features

database of
models

features
observed

selected
model

match criterion

Fig. 5.4. An elementary data processing step in image analysis and computer vision.

All approaches lean strongly on models that embody prior knowledge that
we have concerning the image and the objects therein. Prior knowledge is
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the information that we have about objects (or other entities in the image)
before actually having acquired the image. For instance, in a pure classification
problem the prior knowledge of a given application is the classes of objects that
can occur (e.g., “apple”, “pear”, and “orange”), along with their probability
of occurrence, and a list of discriminating features of the objects (e.g., the
colors and shapes that are typical for the various classes). The model of an
apple is that its contour is approximately round with two small indentations
at opposite sides. Its color varies between green, yellow and red.

In Figure 5.4, the prior knowledge is represented in the block “database”.
The word “database” suggests that the knowledge is stored in a systematic
way, and that transparent facilities are available for managing it. However, the
word is loosely used here, because in practice, much of the prior knowledge
is implicitly hidden in the code that implements the image analysis. Because
models take a central position in the framework of Figure 5.4, this is often
called the model-based image processing framework.

The features stored in the database are called “model features” in order to
discriminate them from the “observed features”. The latter are features that
are extracted from the observed image. The purpose of feature extraction is
twofold. The first goal is to achieve data reduction, i.e., to remove the non-
relevant aspects in the image data in order to obtain a more concise data
representation of the information. The second goal is to transform the data to
a data representation that carries the information in a more explicit way. For
example, the image data can be transformed into shape features (describing
the contours of the imaged objects). These shape features are much more
concise (usually about ten shape features are sufficient to grossly typify a
contour), but it depends on the application whether the shape features are
really informative. For example, shape features are usable to discriminate
apples from bananas, but not usable if one would like to distinguish apples
from oranges.

The obtained observed features and model features should be at the same
level. If this is the case, then we are able to compare observed features with
model features. This allows us to select the model whose model features best
match the observed features. The image analysis task basically boils down to
the application of a selection strategy which consults the database to find the
model whose features fits with the observed features.

When implementing this generic framework many choices still have to be
made. These choices relate to:

1. the selection of the features that will be used;
2. the representation of the models;
3. the matching criterion;
4. the selection strategy.

Conceptually, numerous types of features could be extracted from the observed
data. These features can be found at different levels of a hierarchy (see below):
pixel features, regions, regional properties, and so on. In some applications and
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techniques it is immediately clear which features should be used. But in other
applications, it is not. In that case, a learning process might be needed in
which a number of proposed features are empirically evaluated.

The representation of prior knowledge is another design issue. We may
distinguish procedural knowledge (knowing how) from declarative knowledge
(knowing that). As an example, consider the following statement: “in a Gaus-
sian classification problem, the optimal classifier implements quadratic deci-
sion functions”. This statement represents procedural knowledge. An example
of declarative knowledge is “the shape of an apple is approximately round with
some indentations”. Procedural knowledge is often hard coded in the com-
puter program. Declarative knowledge can be represented in different ways.
For instance, we can represent the knowledge in parameters of probabilistic
models, e.g., the shape of an apple can be represented by means of an ex-
pectation vector of a shape feature vector together with a covariance matrix
(that represents the uncertainty around the expectation). Alternatively, we
can represent the knowledge by storing many examples (e.g., the contours of
many different apples previously seen).

In order to evaluate a selected model we have to compare the associated
model features with the observed features. The result of this evaluation is a
matching score that quantifies how well the proposed model fits the observed
data. Many different matching criteria exist. Criteria that express a proba-
bilistic measure include risk, a posterior probability, likelihood, and, mean
square error. These criteria have a probabilistic view on the set of allowable
models. Alternatively, in the data fitting approach, the criterion is based on
a metric in the feature domain, that is, on the differences between model fea-
tures and observed features. Criteria in this category include the least squared
error (sum of squared differences) and robust error norms (such as Geman–
McClure) for real valued feature vectors, the Hamming distance for binary
feature vectors, and the Tanimoto metric for comparing sets.

The task of the model selector is to find the best model. With the adoption
of a quantitative matching criterion, selection of the best model boils down
to an optimization problem (either a maximization or a minimization; this
depends on the criterion). A first dichotomy is between bottom-up and top-
down strategies. The bottom-up strategy is data-driven. The data (features)
are processed in a first layer (or iteration) yielding intermediate results. These
intermediate results are processed in a second layer (iteration), and so on. This
continues until the final result is obtained. An example is a feed-forward neu-
ral network (often trained to minimize the sum of squared errors). Another
category of bottom-up strategies are the iterative function minimization pro-
cedures (e.g., the Gauss–Newton optimizer). Top-down strategies use the hy-
pothesis generation/refinement/verification paradigm. Hypothesis generation
comes down to proposing a solution (either generated randomly, or generated
using prior knowledge). If necessary, a proposed solution can be refined using
the data. The next step is to verify the solution. If the solution fits the data,
we can accept it. If not, we have to reject it, and we must generate a new



136 Ferdi van der Heijden and Luuk Spreeuwers

hypothesis. Possibly, this procedure is repeated to achieve more robust and
accurate solutions.

Hierarchies
Image analysis seldom occurs in one single processing step. Usually, the data
is regarded at different levels of abstraction. These levels form a hierarchy.
Figure 5.5 provides an example. The original image data (pixels representing
intensities (gray levels), or RGB color components) form the lowest level. At
the top, we have the objects and their attributes. Various intermediate levels
exist in-between. Just above the lowest level, we have point features, i.e., pixels
that are marked as special: edge elements, line elements, corner points, and
so on. Edge and line elements that are grouped together as a chain form line
segments. Line segments, grouped together, may form a closed contour, thus
defining a region in the image plane. Such a region may also be defined directly
by grouping pixels that share a common property (e.g., color). Regions are
characterized by their properties in the geometric domain (shape, position,
orientation, size) and in the radiometric domain (color, texture). Relations
between regions (e.g., “adjacent-to”, “surrounds”, “larger-than”) are often
represented as an attributed graph similar to a semantic network.

pixels

line segments

regions

region descriptors

relations

points

low level

high level

(gray levels, rgb)

(geometry, shape, colour)

(rag, semantic network)

(edges, line elements, corners)

top-down

bottom-up

objects

Fig. 5.5. A hierarchy of data representations.

The elementary data processing step in Figure 5.4 is often applicable at dif-
ferent levels of the hierarchy. For instance, the detection and localization of
edge elements is generally referred to as “edge detection”, but in fact, it can
be phrased as a combined detection/estimation problem. The features are the
gray levels of the pixels in a neighborhood. Usually, the model of an edge is
a 2-dimensional step function with parameters “position” and “orientation”.
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Segmentation (the determination of regions) can be phrased as a pixel clas-
sification problem using color or texture as features. Regional description is
often in essence a parameter estimation problem. In simple applications, ob-
ject recognition can be regarded as a classification problem (with regional de-
scriptors as features). In more involved applications, object recognition comes
down to matching structures (e.g., attributed graphs). Note that the trans-
formation of the data from one level to the next level can be done either
bottom-up (data driven) or top-down (hypothesis generation/verification) as
outlined above.

Coping with Disturbing Factors
A complicating factor in all these techniques is the presence of nuisance pa-
rameters. These are unknown parameters that affect the data, but do not
provide information about the entity of interest. For instance, in image based
object recognition, the viewpoint of the camera strongly affects how the ob-
ject appears in the image (perspective projection). An object can have many
different views (appearances), but still all those views must lead to the same
solution.

There are many techniques to undo the influence of the nuisance parame-
ters, e.g.:

• Normalizing the features with respect to the nuisance parameters.
For example, in order to describe the shape of a region, we may first want
to resize the region such that its area is normalized. This prevents that
the size of the region influences the shape description.

• Transforming the features to a domain which is not affected by the nui-
sance parameters.
As an example, consider the ratio between the area and the squared
perimeter of a region. This feature is not influenced by the position, size
and orientation of the region, and, therefore, only describes the shape.

• Storing all possible appearances as model features in the database.
• Robust estimation.

The strategy here is to use only the part of the data that seems to be
reliable.

5.4 Features and Feature Extraction
This section presents an overview of different features that are used in com-
puter vision and image analysis techniques. The section is organized in four
subsections which correspond to four levels in the hierarchy of data represen-
tation. Several techniques to compute features from images are introduced.

To understand how features can be calculated from images, it is important to
realism that an image is actually a 2-dimensional signal. An image is repre-
sented by a matrix of values of N rows and M columns. A pixel is addressed
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by the row index n and the column index m and the pixel value (generally
the intensity or brightness of the pixel) is denoted by f(n,m). So, the inten-
sity can be regarded as a function of the position (n,m) in the image. This
means all kinds of mathematical operations on images are possible, e.g., a
derivative in the row or column direction: ∂f(n,m)/∂n and ∂f(n,m)/∂m. Of
course, since n and m are discrete, we need discrete mathematical operators.
For ∂f(n,m)/∂n a possible discrete implementation is:

∂f(n,m)
∂n

=
f(n + 1) − f(n)

Δ
, (5.1)

where Δ is the distance between two pixels and is usually set to 1. Figure 5.6
shows an image of a chess board and the derivatives to the row and column
indices.

(a) (b) (c)

Fig. 5.6. Result of taking the derivative of an image: (a) original image f(n, m);
(b) ∂f(n, m)/∂n; (c) ∂f(n, m)/∂m; “gray” in the derivative images means “0”.

An operation used in this section that may need some introduction, is the
Fourier transform. It transforms a signal f(x) into the frequency domain using:

F (k) =
∫ ∞

−∞
f(x)e−2πjkxdx. (5.2)

Here k are the frequencies present in the signal f(x) and F (k) indicates the
strength of the frequency k. F (k) consists of a real and an imaginary part. Of-
ten the magnitude ‖F (k)‖ is used, resulting in a power density spectrum. For
example, a constant signal results in a single spike (δ function) at frequency 0,
a sine results in a single spike at the frequency of the sine, and a block signal
results in spikes at the base frequency and all its higher harmonics. In image
processing, Fourier transforms can be used to analyze repetitive structures in
images, like textures (Section 5.4.4). For discrete signals, like images, a dis-
crete Fourier transform is used. For further details on the Fourier transform,
see the book by Bracewell [2].
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5.4.1 Pixel Features
The original image data form the features at the lowest level. The image is
represented by a matrix F of pixels consisting of N rows and M columns.
A pixel f(n,m) of the image is either an intensity (in case of achromatic
imagery), or a vector consisting of 3 RGB components (in case of a color
image). Other representations also exist, but are used less frequently.

Neighborhood and Image Filtering
In some applications, it suffices to regard each separate pixel as an individ-
ual feature. In that case, a feature is either 1-dimensional (an intensity), or
3-dimensional (the RGB components). In other applications, the context be-
tween neighboring pixels is an important clue. Here, pixels should be grouped
together. The image plane is divided then into rectangular blocks of size K×L.
In some algorithms non-overlapping blocks may suffice. This is, for instance,
the case in algorithms for image compression. But in image analysis, the blocks
are usually overlapping. In fact, each pixel in the input image can be associ-
ated with its own block. Such a block is called the neighborhood of the pixel.
The neighborhood is a K × L sub-image F(n,m) centered on the concerning
pixel (n,m). Sometimes, it is convenient to represent the data in the neighbor-
hood as a vector f(n,m) of dimension KL (intensity images) or 3KL (color
images).

Neighborhood processing is used to obtain higher level features (point
features, regions). Usually, the first stage of the operation is a linear operation.
That is:

g(n,m) = hT f(n,m), (5.3)

where h is a KL-dimensional vector (or 3KL-dimensional in case of color).
The results g(n,m) can be arranged in a N ×M dimensional matrix G which
can be regarded as an output image. The operation in (5.3) essentially imple-
ments a linear image filter. For intensity images, the operation is mathemati-
cally equivalent to:

g(n,m) =
∑

k

∑

�

h(k, �)f(n − k,m − �), (5.4)

where h(k, �) is a K×L array called the kernel of the operator. The operation
itself is called (discrete) convolution, and is often denoted by the symbol ∗.
That is, g(n,m) = h(n,m) ∗ f(n,m). The elements h(k, �) of the kernels are
found back as the coefficients in the vector h.

The linear operation of (5.3) can easily be extended to:

g(n,m) = Hf(n,m), (5.5)

where H is a P × KL matrix. The resulting pixel features are now P -
dimensional. Equation (5.5) can also be regarded as a parallel bank of P
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image filters. The kernels of the filters correspond to the rows of H. The con-
cept can also easily be extended to color images. In that case, H is P × 3KL
dimensional. Often, the three components of the color image are filtered indi-
vidually by using a parallel bank of 3P filters.

Scale Space and Derivatives
The scale at which objects are seen in an image depends on the distance
between object and camera. Variations of the distance not only cause propor-
tional zooming of the imaged objects, but also influence the fineness of detail
that can be resolved. Scale space theory [17] is a theory for handling image
structures at different scales. The original image corresponds to the finest
scale. This image is linearly filtered and possibly zoomed out to get images at
a courser scale. The so-called scale parameter σ is a parameter that controls
the level of fineness. The original image is associated with σ = 0. An image
at scale σ is obtained by filtering the original image with a Gaussian kernel
(Figure 5.7a):

h(k, �) =
1

2πσ2
exp

(
−(k2 + �2)

2σ2

)
. (5.6)

Application of the filter with a range of values of σ produces a stack of images.
In fact, the 2-dimensional structure of an image is extended to a 3-dimensional
space. Figure 5.7 provides an example. Here, the scale range is sampled at five
points logarithmically distributed between 0 and 2. Thus, each input pixel is
transformed into a 5-dimensional feature vector. Note that, since images of
a larger scale contain less detail, the size of the image can also be reduced
without losing information. Smaller images take up less storage and also op-
erations on the images are sped up significantly (often linear with the number
of pixels). If one would create a stack of all images with increasing scale with
the largest scale at the top and appropriate image size reduction, a pyramid
results. Such a stack is sometimes called a resolution pyramid.

Scale space theory is a sound basis for the definition of the derivatives
of a digital image, and for their numerical calculation. The derivatives are
features that are important for edge detection, point feature detection, and
so on. The derivatives of a digital image are numerical approximations of
the derivatives of continuous images, i.e., f(x, y) with (x, y) ∈ �

2. Since
continuous images are always smooth, the definition of derivatives is clear:
fx(x, y) = ∂f(x, y)/∂x, fxy(x, y) = ∂2f(x, y)/∂x∂y, and so on. For convolu-
tion and differentiation the following theorem holds true:

∂

∂x
(f(x, y) ∗ h(x, y)) = f(x, y) ∗ ∂

∂x
h(x, y). (5.7)

The numerical approximation of the derivatives is obtained with the (discrete)
convolution:

fx(n,m) = f(n,m) ∗ hx(n,m), (5.8)
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(a) (b)

k

�

(c)

Fig. 5.7. The scale space. (a) Gaussian kernel; (b) original image; (c) images at
scales 0.7, 1, 1.4, 2, respectively.

where hx(n,m) is the first derivative of the Gaussian with respect to n. The
spatial support (which is always needed in numerical differentiation) is fully
controlled by the scale parameter σ. As a rule of thumb, K = L ≈ 7σ. The
smallest scale that can be applied is σ ≈ 0.7. Figure 5.8 shows an example of a
derivative of a Gaussian, and the application of this kernel to the giraffe image
in Figure 5.7. Other derivatives, fy(n,m), fxy(n,m) and so on, are computed
in likewise manner.

Texture
Many surfaces of objects are made up of a small elementary pattern that is
repeated periodically or quasi-periodically along the surface. The origin of
the patterns are either geometrical (e.g., a rough surface) or radiometric (e.g.,
wallpaper), or both (the bricks in a wall). Textured surfaces in the scene will
create textured regions in the image. Therefore, textures in the image are
important clues for segmenting the image plane into meaningful regions. In
order to find these textured regions, each pixel in the rough image should be
transformed to texture features.

The transformation should be such that different textures are mapped to
non-overlapping areas in the feature space. Since textures are repetitions of
an elementary pattern, a texture is typified by the following properties:

• the distance over which the pattern is repeated;
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(a) (b)

�

k

Fig. 5.8. Differentiation using the scale space. (a) First derivative of a Gaussian
kernel; (b) Application to the giraffe image; σ = 2.

• the direction in which the pattern is repeated;
• the properties of the elementary pattern.

As the repetitions occur more or less randomly, it is not easy (or perhaps
even impossible) to catch these properties with a few descriptors. In addition,
the repetitions can be isotropic implying that a preference direction does not
exist. Anyway, the strategy is to find an operator that takes into account pairs
of pixels that hold a specific spatial relation. The spatial relation is defined
by a separation distance ρ and an orientation θ. Consider the pair of pixels
(n1,n2) (with n1 = (n1,m1) and n2 = (n2,m2)), then the separation distance
ρ and the orientation θ are:

ρ = ‖n2 − n1‖
θ = ∠(n2 − n1).

(5.9)

For each neighborhood, and for each value of (θ, ρ), a finite set of pixel pairs
with this spatial relation exists. The purpose of the operator is to measure
the concurrence of intensities of the pairs within such a set.

A possible measure is provided by the so-called co-occurrence matrices [10].
Such a matrix is a 2-dimensional histogram: the intensity scale is divided into a
number of bins. An element Cθ,ρ(i, j) of the co-occurrence matrix Cθ,ρ equals
the count of pairs (n1,n2) within the set for which f(n1) falls in the i-th bin
and f(n2) in the j-th bin. Since many separation distances and orientations
are possible, there are as many co-occurrence matrices. The calculation of
all possible co-occurrence matrices in a neighborhood is unwieldy. Some sort
of data reduction is needed. The data reduction can be obtained by using a
property of the 2D histogram instead of the whole histogram. An example of
such a property is the covariance between f(n1) and f(n2). The covariance
is a measure for how much f(n1) and f(n2) covariate. This, and some other
properties are discussed in Section 5.4.4.
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Another possibility for extracting texture features is to project the neigh-
borhood on a number of templates. Let hp(k, �) be a K ×L image containing
the p-th template. Arrange the elements of hp(k, �) in a KL-dimensional vec-
tor hp, then the projection on a neighborhood equals hT

p f(n,m). Thus, the
projection on P different templates is equivalent to (5.5), and can be im-
plemented as a parallel bank of P image filters. A template should match a
translated version of the elementary pattern. Since the orientation and dis-
tance of the repetition is unknown, a number of templates should be applied
with different orientations and distances of the translation.

A popular choice of the templates is the so-called Gabor filters [18]:

hp(k, �) =
1

2πσ2
p

exp
(
−(k2 + �2)

2σ2
p

)
exp (j2π (upk + vp�)) . (5.10)

cosine, 0 deg cosine, 45 deg cosine, 135 degcosine, 90 deg

sine, 45 degsine, 0 deg sine, 90 deg sine, 135 deg

Fig. 5.9. Gabor filters.

Figure 5.9 provides some examples of these templates. Each filter consists
of a real part (the cosine) and an imaginary part (the sine). These can eas-
ily be derived from (5.10) using: ejθ = cos θ + j sin θ, where j =

√
−1. The

templates are parameterized by the spatial frequency (up, vp) and the scale
σp. The two frequency parameters define the orientation and separation dis-
tance to which the template is sensitive. The templates in Figure 5.9 have a
separation distance of about 8 pixels, orientations of 0◦, 45◦, 90◦, and 135◦,
and a scale of 5. The idea behind these filters is that any elementary pattern
can be decomposed into a weighed sum of these templates (conform Fourier
transforms).

Figure 5.10 shows an example of the application of the four texture filters.
The original image has two types of textured regions which are hatched in
two different orientations. The spatial frequencies in Figure 5.9 are selected
such that they more or less match these repetitive patterns.
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(a) (b)

Fig. 5.10. Texture features using Gabor filtering. (a) Original; (b) the results from
the filters shown in Figure 5.9.

5.4.2 Point Features
Some pixels in the image are special because they mark a distinctive position
in the image plane. Some of these points are inherently isolated (e.g., corner
points). Others are inherently linked together because they should form a
curve in the image plane (e.g., line elements that form a line segment).

Interest Points
Interest points are pixels in the image that are distinctive from their immediate
surroundings. Examples are corner points and spots. The detection of these
points is of interest in a number of applications, including video tracking,
stereo matching, and object recognition. Many techniques have been proposed
to find interest points. Here, we discuss briefly the Harris corner detector [11]
(Figure 5.11a) and the SIFT keypoints detector [13](Figure 5.11b).
Harris considers an image f(n,m) and a shifted version of this image f(n +
x,m + y). Suppose that we want to test whether a point (n,m) is distinctive.
What we need to do is to check whether all pixel intensities surrounding (n,m)
are distinctive from f(n,m), that is, whether f(n+x,m+y) is distinctive from
f(n,m) for all small values of (x, y). A suitable specification of the problem
is as follows:

E(x, y)
def
=
∑

k,�

h(k, �) (f(n − k,m − �) − f(n + x − k,m + y − �))2. (5.11)
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(a) (b)

Fig. 5.11. Interest points. (a) Harris’ corners; (b) SIFT keypoints (only a subset
is shown).

The function h(k, �) is a Gaussian window that is used to suppress the influ-
ence of noise. The criterion is that E(x, y) should change fast for small shifts
(x, y) in any direction. This can be made effective by approximating E(x, y)
in a truncated Taylor series expansion:

E(x, y) ∼=
∑

k,�

h(k, �) (xfx(m + k,m + k) + yfy(n + k,m + k))2, (5.12)

which can be written as:

E(x, y) ∼= ax2 + by2 + 2cxy,

with :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a =
∑
k,�

h(k, �)f2
x(n + k,m + k)

b =
∑
k,�

h(k, �)f2
y (n + k,m + k)

c =
∑
k,�

h(k, �)fx(n + k,m + k)fy(n + k,m + k),

(5.13)

where fx(n,m) and fy(n,m) are the first derivatives of f(n,m). To find out
whether E(x, y) changes rapidly Harris proposes the following test variable:

g = ab − c2 − α (a + b)2 , (5.14)

where α is a constant set to 0.04. The test variable is defined such that it
is invariant to rotations of the image data. That is, g does not depend on
the accidental choice of the orientation of the coordinate system. The term
ab − c2 is large only if E(x, y) changes rapidly in all directions. The second
term (a + b)2 is large if at least one direction exists for which E(x, y) changes
rapidly. The constant α is selected such that g is positive at corners or isolated
spots, and negative for edges. Pixel (n,m) is marked as an interest point if g
exceeds some predefined threshold.
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If (5.13) and (5.14) are executed for all image points, then a, b, c and g can
be regarded as images. The operations in (5.13) become convolutions, e.g.,
a(n,m) = h(n,m)∗f2

x(n,m), and so on. Corners and spots are detected at all
positions where g(n,m) is larger than the threshold, and where g(n,m) is a
local maximum. The latter requirement guarantees that the found points are
isolated.

Another approach for finding a descriptive set of stable points is the so-
called SIFT (scale invariant feature transform). Here, the following stack of
images is considered:

d(n,m, σ)
def
= σ2f(n,m) ∗ (hxx(n,m, σ) + hyy(n,m, σ)) , (5.15)

where hxx and hyy are the second derivatives of a Gaussian with scale σ.
SIFT keypoints are points in the 3-dimensional space spanned by (n,m, σ)
for which d(n,m, σ) forms local extrema (Figure 5.11b). Projected on (n,m)
these points are scale invariant. SIFT keypoints are usually attributed with
descriptors that typify the local structure of the image around the keypoints
in terms of local orientations.

Line Elements
In mathematical terms, a line segment has length, but possesses no width.
Line-like objects in the scene have a width in the image equal to the scale
of the image. Consequently, a line-like structure in the image must have a
Gaussian shaped profile across the line. Measured along the line, the intensities
do not change much. The width of the profile matches the scale of the image.
Therefore, it depends on the scale at which the image is considered whether
an elongated image structure is seen as a line or not.

If we regard the image as a landscape with the altitude given by the
intensities, then line elements are the pixels that are on the ridge or on the
valley of the landscape (see Figure 5.12). A cross-section of the image taken
in the direction orthogonal to the ridge (or valley) will have a zero crossing of
the first derivative, and a local extreme in the second derivative. Therefore,
one method for extracting line elements is to calculate the second derivative
in the direction orthogonal to the gradient vector. Unfortunately, this feature
is not always stable because at the ridge the gradient vector might be zero
and the direction is ill-defined.

A more stable result is obtained by approximating the neighborhood of
each candidate line element by a quadratic surface: f(n−k,m−�) ∼= f(n,m)+
ak2 + b�2 + 2ck�. Here, (n,m) is the position of the candidate line element.
Using a truncated Taylor expansion it can be seen that:

f(n − k,m − �) ∼= f(n,m) +
[
k �

]
H
[

k
�

]
with H =

[
fxx fxy

fxy fyy

]
. (5.16)
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(a) (b) (c) (d) (e)

Fig. 5.12. Line structures. (a) Gray-level image; (b) viewed as a 3D landscape; (c)
cross-section perpendicular to the ridge; (d) first derivative; (e) second derivative.

A brief notation for derivatives is used, e.g., fxx ≡ fxx(n,m, σ), and so on. H is
the Hessian matrix. Its eigenvalues λ1 and λ2, called the principal curvatures,
are the second derivatives taken across and along the line, respectively. The
direction of the line coincides with the eigenvector associated with the smallest
eigenvalue. For a true line element, one eigenvalue should be large, and the
other should be small. Thus, if the eigenvalues are ordered, |λ1| ≥ |λ2|, then
|λ1| should be large and |λ2| should be small. The latter requirement is not
so important because the case where |λ1| and |λ2| are both large are rare (it
corresponds either to an isolated spot or to a saddle).

(a)

(b) (c)

Fig. 5.13. Line elements. (a) Original image; (b) line features; (c) detected line
elements.
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Figure 5.13a shows an example of an image containing a number of lines. The
|λ1|-image is shown in Figure 5.13b. The detected line elements (Figure 5.13c)
are found by the application of a non-local maximum suppression of the |λ1|-
image in the vertical direction and one in horizontal direction, and next by
thresholding the result. Steger [19] discusses more advanced line extractions
from images.

Edge Elements
The usual model of an edge element is that of an abrupt stepwise transition
between two flat plateaus in the intensity landscape. The positions of these
transitions are called edge elements, or just edges. Neighboring edge elements,
linked together, form an edge segment. Often, the edge segments are assumed
to be a smooth curve. In fact, the step edge model is a bit unrealistic since in
any real image transitions never occur abruptly. However, most edge detectors
rely on the availability of derivatives. If the scale at which these derivatives
are calculated is large enough, then the errors introduced by assuming abrupt
transitions is negligible.

At the position of an edge, the gradient vector is large. Therefore, the
gradient magnitude (f2

x + f2
y )

1
2 , also called the edgeness, must be large for

an edge, and small for a non-edge. Seen in the direction across the edge, the
gradient magnitude must have a local maximum located at the position of
the edge. The gradient vector itself points in the direction across the edge.
Suppose that w is that direction (so that |fw| = (f2

x + f2
y )

1
2 is the edgeness).

Then, at the position of an edge, the directional second derivative fww must
be zero. fww can be expressed in fx, fxx, etc. using the following relation:
|fw|2 fww = f2

xfxx + f2
y fyy + 2fxfyfxy. The proof is beyond the scope of this

text. Using the results up to now, we mark a pixel (n,m) as an edge if:
√

f2
x(n,m) + f2

y (n,m) > threshold

and
g(n,m) = 0 with g = f2

xfxx + f2
y fyy + 2fxfyfxy.

(5.17)

This approach is accredited to Canny [3]. In fact, Canny proposed a whole
family of edge detectors; the one described above being one of them. A demon-
stration of the Canny edge detector is provided in Figure 5.14.

For linear edge segments, the procedure can be simplified. For linear edge
segments, the second derivative along the edge is also zero. Thus, if v is the
direction along the edge, we have fvv = 0. From fww = 0 we conclude that
fvv + fww = 0. However, fvv + fww is the Laplacian of the image. Since the
Laplacian is rotational invariant, it equals fvv + fww = fxx + fyy. Therefore,
the zero crossing criterion can also be expressed as fxx+fyy = 0. This criterion
was originally proposed by Marr and Hildreth [14].

5.4.3 Regions
The purpose of image segmentation is to partition the image plane into a
number of disjoint, meaningful regions. The term “meaningful” refers to the
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(a) (b)

(c) (d)

Fig. 5.14. Edge elements. (a) Original image; (b) edginess; (c) second directional
derivative fww; (d) detected edge elements.

property that the regions in the image should have a direct correspondence
with (parts of) the objects in the scene.

A first dichotomy for image segmentation techniques is the difference be-
tween top-down versus bottom-up approaches (see above). In the top-down
approach, the shape, position and/or orientation of the regions are restricted
using knowledge from the application domain. For instance, in the applica-
tion of analyzing a tennis play the image of a tennis court has a given pattern
of line segments (Figure 5.13) that can be used to guide the segmentation
process. In a pure bottom-up process such restrictions are not used. The seg-
mentation is much more difficult then. Often the result is over-segmented
(i.e., a region corresponding to a single part of an object is fragmented into a
number of smaller segments), or under-segmented (i.e., two regions from two
different neighboring parts of the objects are found as one segment). Only if
the application is well-conditioned pure bottom-up approaches are successful.

A second dichotomy can be made on the basis of area-based versus edge-
based techniques. Area-based segmentation groups neighboring pixels together
in a single region if these pixels share some local homogeneous property (e.g.,
the color). In contrast, edge-based segmentation strives for finding the bound-
aries between regions, i.e., locations where the homogeneity of a property
breaks down.
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Area-based Segmentation
A possible implementation of area-based segmentation is the merge-and-split
approach. Starting point is some initial partitioning of the image plane. The
partitioning can, for instance, consist of a number of square regions that to-
gether fill the complete image area. The split process involves a check whether
some local property within each region passes a homogeneity test. If not, the
concerning region is split into two smaller regions. The process is iteratively
applied to each region. The iterations continue until all regions have suc-
cessfully passed the homogeneity test. The next step is merging. We select
arbitrarily two neighboring regions and check whether these two regions can
be grouped together without violating the homogeneity test. This process also
continues iteratively. That is, until no pair of neighboring regions can be found
that passes the homogeneity test successful.

Possible homogeneity tests are, for instance:

max-min criterion: max
(n,m)∈region

(fn,m) − min
(n,m)∈region

(fn,m) < threshold

(5.18)
and

squared error criterion : 1
arearegion

∑
(n,m)∈region

(fn,m − μ̂region)2 < threshold.

(5.19)
Here, μ̂region is the mean value of the intensities within the region. arearegion

is the number of pixels within the region. These criteria can easily be extended
to encompass color and local texture parameters. Also models of shaded re-
gions (with a small gradient in the intensities) can be implemented.

Another approach for area-based segmentation is pixel classification. The
idea is that each pixel can be assigned a class label. The assignment occurs
on the basis of features that are extracted for that pixel. A region is formed
by a group of neighboring pixels that carry the same class label.

An obvious choice for the feature in an intensity image is the pixel intensity
itself. This finds wide applications in industrial vision if the image acquisition
is well-conditioned. A careful design of the illumination enables a division of
pixels in a group of background and a group of foreground pixels (Figure 5.15)
simply by comparing the pixel intensities against a threshold. Unfortunately,
in many other applications this method fails because of the non-uniformity of
background and objects.

Pixel classification is largely improved by extending the features. In a color
image, we can use the three RGB components for each pixel. If this does not
suffice, the feature space can be further enlarged by involving the intensities
(or RGB components) in the neighborhood of each pixel. However, this possi-
bility is also limited. Considering a color image and a 3× 3 neighborhood the
dimension of the feature space (= number of features per pixel) is already 27.
Handling such a dimension not only forms a computational burden. It also
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(a) (b)

Fig. 5.15. Area based segmentation using the intensity. (a) Original image; (b)
segmented by intensity thresholding.

becomes problematic to establish a suitable classification rule. Therefore, the
number of features should be limited. A possibility for that is to use the tex-
ture features mentioned in Section 5.4.1. As an example, consider the Gabor
texture features shown in Figure 5.10. The four filters produce four texture
feature images. By stacking these four images each pixel has four texture
features thus forming a 4-dimensional feature space. These features are used
to classify each pixel using three possible classes: “hatched 1”, “hatched 2”,
and “not hatched”. The classification rule is established here by interactively
creating a training set consisting of 3000 pixels (1000 pixels from each class).
The applied rule is the so-called K nearest-neighbor rule. That is, a new pixel
is classified according to the majority of votes coming from the K samples
in the training set that are nearest to the feature vector of the new pixel. In
this application, K = 13 appeared to be a good choice. The result is shown
in Figure 5.16a. It can be seen that some pixels are erroneously classified. We
may improve the results a little by applying some morphological operations
as shown in Figure 5.16b.

Edge-based Segmentation
Usually, the first step in bottom-up, edge-based segmentation is the detection
of edge elements (or line elements) resulting in an edge (or line) map. Most
edge and line detectors not only provide the positions of the elements, but also
directions. The second step involves the linking of neighboring elements to a
chain. This is not a trivial step because the chain is often fragmented. Con-
sequently, some gaps should be bridged. In addition, most edge and line de-
tectors show some anomalous behavior in the vicinity of corners, T-junctions,
and crossings. Furthermore, a textured area may give rise to an area crowded
with spurious edge elements. The chains of edge (or line) elements form line
segments that should be post-processed to form topologically correct regions.

As an example, consider the line elements shown in Figure 5.13c. From the
application domain (scenes of a tennis court), we know that the configuration
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(a) (b)

Fig. 5.16. Area based segmentation using pixel classification with texture features.
(a) Labeled pixels; (b) cleaned.

of line elements form straight line segments. The so-called Hough transform
(see, e.g., Jain’s book [12]) is a technique to find these straight lines. A straight
line is described in the (x, y)-domain by an equation ax+by = 1. This equation
can be rewritten as:

ρ = x sin θ − y cos θ. (5.20)

Here, θ is the angle of the line with the x-axis and ρ is a signed distance to the
origin. The Hough domain is the space spanned by the θ and ρ parameters. A
straight line in the (x, y)-domain corresponds to a single point in the Hough
domain. On the other hand, all possible lines through a single point the in
(x, y)-domain correspond with a curve in the Hough domain (x and y are
constants in (5.20) and θ runs from 0 to π). If two points lie on a straight
line in the (x, y)-domain, the θ and ρ parameters of the line are found by the
intersection of the two corresponding curves in the Hough domain.

In order to determine straight lines in an image, a Hough image is created
of which each pixel corresponds to a certain (θ, ρ), i.e., a straight line in
(x, y)-domain. The value of the pixels is set to the number of curves that
pass through the pixel. This is done for each line pixel in the (x, y)-domain
generating the corresponding curve in the Hough domain and increasing all
pixels in the Hough image through which the curve passes. The maxima on
the Hough images correspond with the intersections (see Figure 5.17b) and
with the straight lines that are supported by most edge pixels in the (x, y)-
domain (or: received most votes). The Hough image for the line elements from
Figure 5.13c is shown in Figure 5.18a.

Detection of these local maxima (indicated by square marks in Fig-
ure 5.18a) reveals the parameters of the lines. The corresponding lines are
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Fig. 5.17. The Hough transformation. (a) Line in (x, y)-domain; (b) curves corre-
sponding to the four points; the intersection gives the parameters of the line.

superimposed on the image in Figure 5.18b. Here, the lines are shortened us-
ing a mask that is created from the original line elements. The final step is to
produce a topologically correct segmentation (Figure 5.18c) by pruning the
isolated endpoints of line segments, and to remove isolated line segments.

In this application, top-down segmentation is possible due to the fact that
the lines in a tennis court have a pattern. The knowledge of this pattern can
be used to get a more stable and robust result. The pattern manifests itself,
for instance, in the Hough transform as 6 points in the vicinity of θ ≈ −90◦ or
θ ≈ +90◦. These points correspond to the 6 horizontal lines of the court. The
5 vertical lines are represented by the 5 points around θ = 0◦. The top-down
approach boils down to looking for the typical configuration of the 6+5 points
in the Hough domain.

5.4.4 Regional Description and Relations
The step following after segmentation is the characterization of the regions.
The description of the regions includes the following aspects:

• radiometry (mean and variance of intensities or RGB components; texture
parameters);

• geometry (position, orientation and shape);
• relations with other regions (adjacencies, relative size, etc.).

Radiometric Properties
The regional radiometric properties are derived from the intensities (or RGB
components) of the pixels within the region. Perhaps the simplest description
is just the mean value of the intensities within the region. For color images,
the mean color:
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(a)

(b) (c)

Fig. 5.18. Edge based segmentation. (a) Hough transform of Figure 5.13c; the
squares indicate the parameters of the found lines; (b) original image with the
found lines superimposed; (c) segmented image.

R̄ =
1

arearegion

∑

(n,m)∈region

R(n,m)

Ḡ =
1

arearegion

∑

(n,m)∈region

G(n,m)

B̄ =
1

arearegion

∑

(n,m)∈region

B(n,m)

(5.21)

is a good descriptor for objects that are characterized by their color (for
instance, some fruits). These descriptions are easily extended by other first-
order statistical moments (such as variance, skewness and kurtosis).

For textured regions the second-order statistics is relevant. These follow
readily from the co-occurrence matrices Cθ,ρ (Section 5.4.1) calculated over
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the whole region. Parameters that can be derived from the co-occurrence
matrices are, for instance:

contrast
∑
i,j

(i − j)2 Pθ,ρ(i, j)

energy
∑
i,j

P 2
θ,ρ(i, j)

correlation
∑
i,j

(i−μ)(j−μ)
σ2 Pθ,ρ(i, j).

(5.22)

Here Pθ,ρ is the normalized co-occurrence matrix derived from Cθ,ρ (the el-
ements Pθ,ρ(i, j) must sum to one) and μ and σ are the mean and standard
deviation of the elements of Pθ,ρ.

As an example, consider the regions (background, roof, wall) in Fig-
ure 5.16b obtained from the image in Figure 5.10a. Figure 5.19a shows the
correlation of the three regions for the following separation distances and ori-
entations:

θ = 0◦(horizontal) : ρ = 0, 1, · · · , 30
θ = 90◦(vertical) : ρ = 0, 1, · · · , 30.

The periodic nature of the two hatched regions is clearly reflected in these
correlations. This is even more explicit in Figure 5.19b where the Fourier
transforms of the correlation functions (the power density spectra, i.e., the
strength of the pattern as a function of its spatial frequency) are shown. The
background region has a maximum at spatial frequency 0, which means, there
is no repeating pattern. The roof region has a strong peak at a horizontal
frequency of ca. 0.12 [pixel−1] and a weaker peak at a vertical frequency of
ca. 0.07 [pixel−1]. The wall has a strong peak at a vertical frequency of ca. 0.12
[pixel−1] and at a horizontal frequency of ca. 0.07 [pixel−1].

Geometric Properties
The geometry of a region concerns aspects like: position, orientation, size and
shape. These features can be extracted using the region seen as an area, but it
is also possible to extract them from the contour of the region. First consider
an area-based approach. Geometric properties can be extracted using the
moments of a region. A well-known example is the center of gravity (centroid)
defined by:

x̄ = 1
area

∑
(n,m)∈region

n ȳ = 1
area

∑
(n,m)∈region

m , (5.23)

where area is the number of pixels within the region. Often, (x̄, ȳ) is used as
the definition for the position of the region.

In fact the center of gravity can be defined in terms of moments. That is,
x̄ = M10 and ȳ = M01, where the moment of order pq is defined as:

Mpq =
1

area

∑

(n,m)∈region

npmq. (5.24)
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Fig. 5.19. Texture parameters for the three regions in Figure 5.10a. (a) Correlation
function; (b) power density spectrum.

The centralized moments are moments that are made invariant to the position
of the region:

μpq =
1

area

∑

(n,m)∈region

(n − x̄)p(m − ȳ)q. (5.25)

The second-order moments provide some rough information about the orien-
tation and extension of the region. For that purpose, define the second-order
matrix:
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[
μ20 μ11

μ11 μ02

]
. (5.26)

The principal axes of the region are spanned by the eigenvectors of this matrix.
The corresponding eigenvalues are called principal moments. Their square root
is a measure of the extension of the region in the direction of the corresponding
principal axes. The direction of the largest principal axis is a measure for the
orientation of the region. Figure 5.20 shows the principal axes of the regions
obtained in Figure 5.15b. Note that the directions of the rings and nuts are
indeterminate due to the rotational symmetry of these objects.

Fig. 5.20. Principal axes derived from the second-order moments of the regions.

Another possibility to describe the geometry of a region is by considering the
contour of the region. The contour is formed by the set of pixels that belong
to the boundary of the region. A contour can be represented by a parametric
curve (x(s), y(s)) where the parameter s is the running arc length. (x(0), y(0))
is some arbitrarily selected starting point of the contour. s is the length of the
path along the contour. If P is the perimeter of the region, then the curve is
periodic with period P , i.e., x(s+P ) = x(s) and y(s+P ) = y(s). Figure 5.21a
illustrates the contour representation of a region.

Since x(s) and y(s) are periodic functions of s, their Fourier spectra are
discrete. In other words, the functions can be built using a weighed sum of
complex harmonic functions:

x(s) + jy(s) =
+∞∑

k=−∞
Zk exp

(
2πj

ks

P

)
. (5.27)
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The complex amplitudes Zk, called the Fourier descriptors, are obtained an-
alytically using the Fourier transform:

Zk =
1
P

P∫

s=0

(x(s) + jy(s)) exp
(
−2πj

ks

P

)
ds. (5.28)

In practice, the contours extracted from the regions are discrete (sampled),
and the Fourier descriptors are calculated using the FFT-algorithm (Fast
Fourier Transform). For the analytic case, the number of Fourier descriptors
is infinite, but for the discrete case, the number of usable Fourier descriptors
will never exceed the number of points on the contour. So, practically a range
from, say, Z−16 up to Z16 is sufficient.
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Fig. 5.21. Geometrical properties based on normalized Fourier descriptors. (a)
Contour representation and NFDs; (b) scatter diagram using Fourier descriptors.
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The Fourier descriptors can be used to extract information with respect to
position, orientation and size. For instance, the position of the contour is given
by Z0 because according to (5.28):

Z0 =
1
P

P∫

s=0

(x(s) + jy(s)) ds. (5.29)

Thus, Z0 is the center of gravity of the contour. The orientation of the region
is encoded in the phase of the Fourier descriptors. As said before the starting
point of the traced contour is often arbitrarily selected. This starting point
is also encoded in the phase. So we need at least two Fourier descriptors to
entangle the orientation and the starting point. The size of the objects, i.e.,
the square root of the area (or optionally the radius of the best fitting circle),
is proportional to the magnitude of the descriptors. Therefore, a measure for
the size can easily be extracted.

Having the position, orientation, starting point and size of the contour, the
descriptors can be made invariant to these aspects by normalizing them, that
is, by giving the contour a standard position, orientation, starting point and
size. The resulting descriptors are called NFDs (normalized Fourier descrip-
tors). Figure 5.21a shows the magnitudes of the NFDs. The range of NFDs
shown there are k = −31, · · · ,−1 and 2, · · · , 32. Z0 and Z1 are excluded since
they do not carry any information (they are sacrificed for the normalization:
Z0 ≡ 0 and Z1 ≡ 1). The scatter diagram in Figure 5.21b is obtained by, for
every object in the image 5.15, first calculating the Fourier descriptors, then
from these extracting two features using Fisher’s linear discriminant analy-
sis [6] (a linear transformation resulting in a dimension reduction) and plotting
the symbol (cross, triangle, box, star) of the objects at the position defined by
the found features. The scatter diagram illustrates that the NFDs are usable
for shape recognition, because the different objects form clusters that can be
separated by e.g., quadratic boundaries.

Relations
In the preceding section each region was considered individually. In addition to
that, relations between regions are also clues for object recognition. As an ex-
ample, consider the segmented image of a tennis court shown in Figure 5.18c.
A proper interpretation of the regions in this image is given in Figure 5.22.
It will be difficult to classify these regions without taking into account the
context in which they appear. In fact, all regions are rectangles that have
been transformed under an (unknown) perspective projection. Therefore, the
shape parameters do not provide much information. The eccentricities of the
rectangles might be a clue, but this parameter is not invariant to a perspective
projection. An additional difficulty rises because the presence of the net cord
causes an over-segmentation of the courts.

The context of the regions can be described by relations. A relation is a
property between two regions. Relations between three or more regions do
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Fig. 5.22. Labeled regions of the tennis court image.

exist as well, but these are not discussed here. These relations are either
quantifiable attributes of the pair of regions, or propositions that can be true
or false. The following is a list of quantities that can be attributed to any two
regions A and B:

• Relative size: the size of region A relative to the size of region B:

s(A,B) =
area(A)
area(B)

or s(A,B) =
|Z1(A)|
|Z2(A)| . (5.30)

|Z1(A)| is the magnitude of the first Fourier descriptor of region A, i.e.,
the radius of the circle that best fits its contour.

• Normalized distance: the distance between two regions relative to their
size:

drelative(A,B) =
d(A,B)√

|Z1(A)| |Z1(B)|
. (5.31)

d(A,B) is the distance between A and B, defined, for instance, using the
centers of gravity.

• Similarity: a measure of alikeness of shape. A possibility, using the nor-
malized Fourier descriptors Zk, is:

sim(A,B) =
√∑

k

(Zk(A) − Zk(B))2. (5.32)

• Adjacency: a measure a(A,B) of the extent to what region A is adjacent
to region B. It can be defined as the fraction of the boundary of A that
is adjacent to the region B. Thus if A and B do not share a common
boundary, then a(A,B) = 0. If A is completely surrounded by B, and A
does not contain holes, then a(A,B) = 1.

Examples of propositions are:
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• A is adjacent to B;
• A surrounds B;
• A is left from B;
• A is above B;
• A is similar to B.

Many of these propositions can be derived simply by thresholding the corre-
sponding quantifiable properties.
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Fig. 5.23. Region adjacency graph (RAG) of the tennis court image.

The representation of the regional properties and the relation is often that
of an attributed graph. The simplest version is the so-called region adjacency
graph (RAG) shown in Figure 5.23. The nodes in the graph represent the
regions found in the image. Two nodes are connected by an arc if (and only if)
the two corresponding regions are adjacent. The RAG can easily be extended
to a directed, attributed graph. Figure 5.24 gives an example (only part of the
graph is visualized). Here, labels have been attributed to both the nodes and
the arcs. These labels contain the observations that have been made in the
image. Labels attached to the nodes are region properties. Labels attached
to the arcs are relations. In Figure 5.24 only propositions are given. But, if
needed, they can be extended by quantifiable properties.

Instead of an area-based description of regions and relations one can also
exploit edge- or line-based descriptions. In fact, the analysis of the tennis court
image is easier using relations between the lines that make up the tennis court.
Figure 5.25a is an overview of the lines that are defined by the International
Tennis Federation. Assuming that the point of view of the camera is always
lengthwise with respect to the tennis court (which is usually the case), the
baselines, the service lines, and the net are horizontally aligned in the image.
Figure 5.25b is a relational model of these lines. The model for the sidelines,
i.e., the vertical lines, is likewise. The horizontal lines are subjected to the per-
spective projection of the camera. Consequently, these lines share a common
intersection point, called the vanishing point, see Figure 5.26. Depending on
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Fig. 5.24. Attributed graph describing the regional and relational properties.

the orientation of the camera with respect to the court the vanishing point of
the horizontal lines must be either left or right from the image. The vanishing
point of the vertical lines must be situated above or below the image. This
knowledge is exploited in Figure 5.25b in order to find the set of horizontal
lines.

In Figure 5.25b the relations “have-a”, “is-a”, and “is-a-kind-of” are bor-
rowed from the semantic network representations developed in classic artificial
intelligence. The proposition “A is-a B” means that A is an instance of the
set B. The proposition “A is-a-kind-of B” means that A is a subset of the set
B. The proposition “A has-a B” relates an object B to A. Figure 5.25b shows
that horizontal lines are made up by subsets “baselines” and “service lines”,
and by the instances “net cord” and “center line”. The subset “baselines”
consists of the instances “lower baseline” and “upper baseline”. The subset
“service lines” consists of the instances “lower service line” and “upper service
line”.

The center line is distinguished by the fact that it is positioned midway
between the two service lines (and the baselines). However, this predicate only
holds true in a metrically correct domain. Due to the perspective projection
the image plane does not satisfies this constraint. One way to deal with this
problem is to rectify the image using the vanishing points. Figure 5.26 shows
an example. A possible additional advantage of this geometric transformation
is that the further analysis of the tennis play might be facilitated.

5.5 Object recognition
In the previous section mainly bottom-up strategies are described to arrive
at regional and relational descriptions of images (see the hierarchy of Fig-
ure 5.5). In this section three top-down approaches to object recognition will
be presented: template matching, eigenobjects and statistical shape models.
Also, it will be shown how these methods fit into the model-based framework
to image analysis presented in Figure 5.4.
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Fig. 5.25. Model of the lines in the tennis court image. (a) Definitions of the lines;
(b) relational model of the horizontal lines.

5.5.1 Template Matching
Template matching is a straightforward method for object recognition and
localization in images. The objects that must be detected are represented by
templates, which often simply are images of the object. To detect an instance
of an object in an image, the corresponding template is placed at a certain
location on the image and the pixel values of the template and the image
under the template are compared to each other. Figure 5.27 shows a scanned
document and a template of the letter “a”. Template matching would result in
low difference values at the positions of a’s in the document and high difference
values elsewhere.

There are many ways to compare templates to image data. Probably the
simplest is the absolute difference measure:

dT,I(x, y) =
m∑

u=−m

n∑

v=−n

|T (u, v) − I(x + u, y + v)|, (5.33)

where T (u, v) is the pixel value at coordinates u, v of the template T and
I(x+u, y + v) is the pixel value at the corresponding position in the image I.
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Fig. 5.26. Rectification using the vanishing points.

Fig. 5.27. Template matching by comparing a template (the “a” character on the
right) with the underlying image. If the template of an object is positioned exactly
over the same object in the image, the difference between template and underlying
image will be minimal.

The size of the template is 2m+1x2n+1. Generally, the difference measure is
calculated for all positions in the image and an object is located by finding the
maxima in the resulting difference image that are below a certain threshold.
Often, the pixel values of templates and instances of the corresponding objects
in the image differ, because of, e.g., difference in illumination. In this case the
absolute difference is not a good distance measure. A better choice is then to
use cross-correlation:

CT,I(x, y) =
m∑

u=−m

n∑

v=−n

T (u, v) · I(u − x, y + v), (5.34)

or normalized cross-correlation:



5 Image Processing 165

NCT,I(x, y) =

m∑
u=−m

n∑
v=−n

T (u, v) · I(x + u, y + v)
√

m∑
u=−m

n∑
v=−n

(T (u, v))2
m∑

u=−m

n∑
v=−n

(I(x + u, y + v))2
. (5.35)

These cross-correlation measures are higher if the image under the template
differs less from the template.

The normalized cross-correlation of the template in Figure 5.27 with the
scanned document is shown in Figure 5.28 on the left. At the positions of an
“a” character in the document, a bright spot can be observed. At some posi-
tions with characters that have some similarity with the template darker spots
can be observed, while the background is completely dark. At the right, the
positions of the maxima of the matching results are overlayed on the original
document image, showing that all “a” characters were properly detected.

Fig. 5.28. Result of the template matching giving maxima for “a”-like characters
and the detected characters overlayed on the original scanned document.

The template matching approach fits neatly in the model-based framework as
is shown in Figure 5.29.

The model simply consists of the template. The feature consists of a win-
dow in the image at a position x, y of the size of the template, the pixels of
which are directly compared with the template using the absolute difference
or cross-correlation measures. The template matching approach can easily be
extended to incorporate multiple templates and to allow rotation and scaling
of the templates. Also, instead of comparing image data directly, it is possi-
ble to first extract features of the template and the image and perform the
comparison between the extracted features.

5.5.2 Eigenobjects
Eigenobjects is a method for object recognition that is based on the idea that
any object O can be represented by a mean object Ō plus a weighted sum of
the eigenobjects ei:
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Fig. 5.29. Template matching approach cast in the model-based structure.

O = Ō +
∑

i

wiei. (5.36)

The eigenobjects are determined from a set of example or training objects
and a technique called principal component analysis (PCA). An object is
recognized by comparing the weights wi of the object to those of objects in
a database of known objects. Details are given by, amongst others, Turk and
Pentland [21]; they use the technique for face recognition. An object O is
characterized by a vector of features u. The elements of such a feature vector
could, e.g., be the intensities of the pixels in an image or other features, like
shape, size and color. For an object with index i and n features, this results
in the following feature vector:

ui = {ui
1, u

i
2, . . . , u

u
n}. (5.37)

If there are m example object feature vectors, the average object feature vector
becomes:

ū =
1
m

m∑

k=1

uk. (5.38)

Let us consider the case that the number of features is larger than the number
of examples: n > m, as is often the case if whole images are used as feature
vectors. In this case the eigenobjects ei are calculated using:

ei
l =

1√
λi

m∑

k=1

vi
k(uk

l − ūl), (5.39)

where λi and vi = {vi
1, v

i
2, ..., v

i
m} are the eigen values and eigenvectors of the

m × m matrix:
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L = AT A, (5.40)

where A = [u1 − ū,u2 − ū, ...,um − ū] is an m × n matrix. If the number of
features is less than the number of examples: n < m, then the eigenvectors of
the n × n matrix AAT are used.

Any input feature vector u of a new object can now be decomposed in the
eigenobjects ei. The coefficients are calculated using:

wi = (ei)T (u − ū). (5.41)

The feature vector u of the object can now be reconstructed using the coeffi-
cients wi, the eigenobjects ei and the mean object feature vector ū:

û =
m∑

k=1

wkek + ū. (5.42)

Identification of the object takes place by determining a distance measure
(e.g., the Euclidian distance) between the weights of the object to identify
and the weights of objects in a database. Often fewer than m eigenobjects are
used for reconstruction and identification. Eigenobjects with corresponding
eigenvalues of relatively small magnitude explain only little of the variation
of the example set and can, therefore, be discarded without introducing sig-
nificant reconstruction errors. If the eigenobjects ei are ordered according to
the magnitude of the corresponding eigenvalues λi, we can simply discard
eigenobjects em′+1 to em and 5.42 reduces to:

û =
m′∑

k=1

wkek + ū, (5.43)

where 1 ≤ m′ ≤ m and m′ is chosen such that most of the variation in the
training set is explained by the first m′ eigenobjects.

The eigenobjects approach to object recognition can be cast into the
model-based framework as displayed in Figure 5.30. Since the weights of the
objects are compared, the model must predict the weights of the object in
the image. The model, therefore, consists of a database of objects of which
features are extracted and the principal components using (5.41). The model
contains information of the objects in the training set in the form of the
eigenobjects ei and the mean object feature vector ū as well as of the objects
in the database (which may differ from those in the training set). For an input
image in which an object must be recognized, first the features vector of the
object is extracted and next the weights of the principal components are ex-
tracted using (5.41). The parameter to be estimated is the index of the object
in the database of objects and the model selection box in the model-based
scheme just walks through the complete list of objects and selects the object
with the weights closest to the weights w of the object in the input image.
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The resulting “description” of the image is in this case the object index or
label. In order to increase recognition speed, the PCA-weights of all objects
in the database can be pre-calculated.
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weights of eigen objects

weights of individual to test

weights for eigen objects of

Fig. 5.30. Eigenobjects method cast in the model-based structure.

The eigenobject recognition method has been successfully applied to face
recognition, in which case it is called eigenface method. The input vectors
of features u consist of the intensities of the pixels of facial images images.
This means for facial images of, e.g., 100 × 100 pixels that the feature vector
u has 10,000 elements. Generally only the first few hundred elements are
used as they explain 95–98% of the variation in training sets. An example of
the average face image and the five most significant eigenfaces is shown in
Figure 5.31. These images were obtained by training with 1408 images from
the so-called FERET facial image database [15].

5.5.3 Statistical Shape Models
Statistical shape models and active shape models are described by Cootes et
al. [5]. A shape like a contour of the hand or the features of a face can be
represented by a set of (connected) landmarks. In Figure 5.32 the shapes of
the bolts from Figure 5.3. A set of examples of these shapes can be used to
build a statistical shape model, provided that the landmarks are consistent
between the shapes.

The first step to build such a statistical model is to align all shape examples
by procrustes analysis, i.e., rotate, scale and translate each of them such that
the sum of squared difference to the mean of the set is minimized. Each shape
can then be represented by a vector with the coordinates of the landmarks.
If there are n landmarks on a shape, then a shape i is given by the 2n-
dimensional vector:
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Fig. 5.31. Average face and first few eigenfaces of a face recognition system based
on PCA. The eigenfaces can be seen as variations on the average face.

Fig. 5.32. Shapes defined by a set of landmarks.

xi = [xi1, yi1, xi2, yi2, .., xin, yin]T . (5.44)

Like in the previous section about eigenobjects, the a shape i can be described
as the sum of a mean shape and weighted shape variations using principal
component analysis:

xi = x̄ + Pbi, (5.45)

where the vector x̄ is the mean of the aligned shapes, the matrix P describes
the modes of variations and the vector b contains the weights. If there are N
shapes in the example set, then:
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x̄ =
N∑

i=1

xi. (5.46)

The 2n × 2n matrix P consists of the unit eigenvectors pk of the covariance
matrix:

C =
1
N

N∑

i=1

(xi − x̄)(xi − x̄)T . (5.47)

Thus P = [p1,p1, ...,p2n] and for each eigenvector pk the following holds:

Cpk = λkpk and pT
k pk = 1. (5.48)

The λk are the corresponding eigenvalues and the eigenvectors are ordered
such that λk ≥ λk+1.

Any shape in the example set can be approximated using the mean shape
x̄ and a weighted sum of the first t modes of variations:

xi ≈ x̄ + Ptbt, (5.49)

where Pt = [p1,p1, ...,pt] and bt = [b1, b2, ..., bt]
T . New shapes that are not in

the example set can be generated by varying the weights bk. By setting certain
limits to the weights, shape constraints can be imposed. Suitable limits are
typically in the order of:

−3
√

λk ≤ bk ≤ 3
√

λk. (5.50)

Figure 5.33 shows variation of the main modes of variation for the active shape
models of Figure 5.32. The first mode of variation appears to be the thickness
of the bolt relative to the head and the second main mode of variation is the
flatness of the head of the bolt. Remember, that the variation in position,
orientation and scaling has been eliminated by procrustes analysis.

Fig. 5.33. The main modes of variation for the statistical shape models of Fig-
ure 5.32 are the thickness of the bolt and the flatness of the head relative to the
length of the bolt.
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The next step is now to use the statistical shape model to locate similar objects
in images. This requires estimation of the position, orientation (rotation) and
scale of the object as well as the weights for the modes of variation of the
statistical shape model. If the center of a shape s is given by Xc, Yc and the
scaling s and rotation by θ are defined by the matrix M(s, θ), then an instance
of the model can be written as:

X = M(s, θ)x + Xc, (5.51)

where Xc = [Xc, Y c,Xc, Yc, ...,Xc, Yc]
T . Now assume that an instance of the

model is placed on an image near an object. In order to fit the model, ad-
justments to the landmarks will have to be found to move them to a better
position. If the model points represent the boundaries of the object, this can
be realized by moving them to the image edges, e.g., to the maximum gradient
near the points. The adjustments of the model points form a vector:

dX = [dX1, dY1, ..., dXn, dYn] . (5.52)

By using procrustes analysis again, a new estimate for the scaling s′, the
orientation θ′ and the center X′

c results, such that:

M(s′, θ′)(x + dx) + X′
c = X + dX, (5.53)

where dx are the residual adjustments that cannot be interpreted by global
scaling, rotation and translation of the model. These residual adjustments
must be compensated for by adapting the shape of the model, i.e., adjusting
b. First, dx is determined from (5.53):

dx = M−1(s′, θ′)(X + dX − X′
c) − x. (5.54)

In order to find the adjustments for b, the residuals dx are transformed into
the model parameter space. Using (5.49):

x + dx ≈ x̄ + Pt(bt + dbt). (5.55)

Subtracting (5.49) gives:

dx ≈ Ptdbt. (5.56)

Now dbt can be obtained by inversion of Pt and since Pt consists of the unit
eigenvectors of a covariance matrix, P−1

t = PT
t :

dbt = PT
t dx. (5.57)

In order to ensure that the model only deforms into shapes that are consis-
tent with the shapes in the example set, the weights b are limited according
to (5.50). The whole procedure from (5.52)–(5.57) is repeated until no signifi-
cant change occurs. Figure 5.34 shows some examples of the bolt model fitted
to bolts not present in the example set.
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Fig. 5.34. Results of fitting the statistical model of a bolt.

This method of fitting statistical shape models to images is often called
the Active Shape Model (ASM). There is an extension to the ASM, which not
only describes the shape using a statistical model, but for the texture as well.
This combined shape and texture model is called Active Appearance Model
(AAM) [20]. Numerous applications exist for ASMs and AAMs, ranging from
lung detection in X-ray photographs to 2D and 3D segmentation of organs in
medical CT and MRI images to face recognition.

In Figure 5.35 the active shape model approach to object recognition is
cast into the model-based image processing approach. Since here a number
of parameters must be optimized, the model selection approach is more com-
plicated. It handles the steps described in (5.53)–(5.57), i.e., it calculates a
new instance of the model (the global position, pose and scale and the shape
parameters b) from the displacements dX.

feature
extraction

image
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comparison

model
selection
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outline of object

distances dX

position
pose
scale
shape

shape model
statistical

Fig. 5.35. Active shape model approach to object detection cast into the model-
based framework.
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5.6 Summary
This chapter gives an overview of the application areas of and techniques used
in image processing. Because the field of image processing is very broad, it
is impossible to give an exhaustive overview and it was necessary to make
a selection of subjects. The emphasis in this overview is on image analysis,
where image analysis is defined as the extraction of descriptions of images,
imaged scenes or objects in images.

It is explained that these descriptions can contain detections of the pres-
ence of objects or features in the image, a classification of objects or features,
estimated parameters and structural information. Also, a model-based frame-
work is introduced and the notions of low level, high level and bottom-up and
top-down are described. Feature extraction is treated in depth for a range of
features from simple pixel based features to high level features describing the
shape and appearance of objects.

Finally, examples are given for object recognition in images: character
recognition using correlation, face recognition using eigenobjects and recogni-
tion of bolts using active shape models.

5.7 Further Reading
There exists an overwhelming amount of literature on image processing. Clas-
sical publications on the fundamentals of image processing are the books by
Pratt [16], Jain [12] and Castleman [4]. An online available book is Image Pro-
cessing Fundamentals [23] by Young, Gerbrands and van Vliet. More in-depth
information on object recognition and parameter estimation can be found in
[22] by van der Heijden.

Other, more recent books are Gonzalez, Woods and Eddins’ book on im-
age processing using MATLAB [8] and the Handbook on Image and Video
Processing by Bovik [1].

Image processing in multimedia systems has been treated in books by
Furht, Smoliar and Zhang [7] and Guan Kung and Larsen [9].

Apart from the many books published on the subject of image processing,
many journals and conference proceedings are available, reflecting the ongo-
ing research developments in the field. Some of the most important journals
on image processing are the IEEE Transactions on Image Processing, Com-
puter Vision and Image Understanding by Elsevier, IEEE Transactions on
Pattern Analysis and Machine Intelligence and The International Journal of
Computer Vision by Kluwer. Some important conferences are the IEEE In-
ternational Conference on Image Processing (ICIP) and the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

Finally, many of the subjects described in this chapter are explained ex-
tensively on different Webpages.
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For example, www.wikipedia.org gives quite extensive explanations and
further links on subjects like Hough transform, Fourier transform, cross-
correlation, etc.
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6.1 Introduction
Many content-based multimedia retrieval tasks can be seen as decision theory
problems. Clearly, this is the case for classification tasks, like face detection,
face recognition, or indoor/outdoor classification. In all these cases a system
has to decide whether an image (or video) belongs to one class or another
(respectively face or no face; face A, B, or C; and indoor or outdoor). Even
the ad hoc retrieval tasks, where the goal is to find relevant documents given a
description of an information need, can be seen as a decision theory problem:
documents can be classified into relevant and non-relevant classes, or we can
treat each of the documents in the collection as a separate class, and classify
a query as belonging to one of these. In all these settings, a probabilistic
approach seems natural: an image is assigned to the class with the highest
probability.3

The generative probabilistic approach to image retrieval described in this
chapter is one such approach. To get a feeling for the approach, the following
analogy to solving jigsaws is useful. Suppose we have been solving a number of
jigsaw puzzles all weekend and put all puzzles in their respective boxes again
on Sunday evening. Now it is Monday morning and while cleaning the room,
we find a forgotten piece of one of the jigsaws. Of course, in practice, we would
keep the piece separate until we solve one of the puzzles again and discover
that a piece is missing. But suppose that we have to make an immediate
decision and put the piece in one of the boxes. To put it in the proper box,
we have to guess to which puzzle this piece belongs. The only clues we have
are the appearance of the piece at hand and our memory of the puzzles we
solved. A good solution would be to put the piece in the box to which it most
likely belongs given these clues. If for example, the piece at hand is mainly

3 If some misclassifications are more severe than others, a decision theoretic ap-
proach should be taken, and images should be assigned to the class with lowest
risk.
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blue with a watery texture, it is most likely to come from a jigsaw with a lot
of water.

In the retrieval framework presented here, instead of boxes with jigsaws
we have a collection of documents, instead of a forgotten jigsaw piece, we have
a query, and instead of our memories of the puzzles we have models of the
documents. The goal now, is to find the document that is most likely given
the query, similar to choosing the most likely box to put the jigsaw piece in.
This generative approach to information retrieval – find the generating source
of a piece of information – has proved successful in media specific tasks, like
language modeling for text retrieval [2, 8, 16] and Gaussian mixture modeling
for image retrieval [7, 14, 21, 23].

6.1.1 Relation to Other Chapters
Many chapters in this book discuss techniques for extracting features or knowl-
edge about multimedia content or for generating metadata. This chapter intro-
duces a method for building abstract models from such features. The models
described here are independent of the type of features that are used. While
the examples in this chapter use different features, the models can easily be
adapted to use many of the features discussed in Chapter 5. In addition, the
language modeling technique discussed in Chapter 4 is a special case of using
generative probabilistic models for information retrieval. Finally, generative
models play an important role in speech recognition (cf. Chapter 7).

6.1.2 Outline
As generative models can be nicely described without going into the details
of parameter estimation, those two aspects are treated separately here. This
chapter starts with a basic example of a generative model, followed by de-
tailed descriptions of generative models for visual and textual information in
Section 6.2. Such models are concise descriptions of the characteristics of the
document, which is useful in a retrieval setting. Section 6.3 explains how the
models can be used in a retrieval setting. Section 6.4 continues with a de-
tailed description of the parameter estimation process. Here we explain how
the models can be learnt from training data. Finally, Section 6.5 discusses
how the two modalities can easily be combined for a truly multimodal search.

6.2 Generative Probabilistic Models
Since the goal in information retrieval is to find the best document given a
query, one could decide to model the probability of a document given a query
directly. In the jigsaw example, this would mean that a direct mapping from
the appearance of a piece to a jigsaw box is needed, i.e., we need to calcu-
late the likelihood of the box given the piece, i.e., P(box|piece). This way of
modeling the problem is known in the classification literature as discrimina-
tive classification. In some cases, for example when there are many different
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boxes, it is hard to learn this direct mapping. In such cases, it is useful to
apply Bayesian inversion and estimate for each box the probability that this
box produced the piece at hand, i.e., P(piece|box). This approach is known as
generative classification. In this approach, each box has a model of the type of
pieces it generates. The probability of generating the jigsaw piece at hand is
computed for each model and that probability is used to find the most likely
box.

First, the basic explanation of the generative models is continued. In in-
formation retrieval, many possible sources for a query exist; each document
in a collection can be a source. Therefore, learning a discriminative classifier
is hard and a generative approach is a natural way of modeling the problem.
It is important to realism that in such an approach, a separate distribution is
estimated for each of the documents in the collection. One of the nice things
about generative probabilistic models is that they can easily be understood
without digging into the details of estimating the models’ parameters. There-
fore, in the remainder of this section parameter estimation is put aside and
only the basics of the models are explained. This section starts with simple ex-
amples of generative models (Section 6.2.1). Sections 6.2.2 and 6.2.3 specialize
to generative image models and generative text models respectively.

6.2.1 Examples
Generative probabilistic models are random sources that can generate (infi-
nite) sequences of samples according to some probability distribution. In the
simplest case, the model generates samples independently, thus the probability
of a particular sample does not depend on the samples generated previously.
These simple models, often called memoryless models, will be the primary fo-
cus in this chapter. A good example of a generative source with a memoryless
model is an ordinary die. The model describes the process of throwing the
die and and observing the outcome. If the die is fair, throwing it generates
positive integers between 1 and 6 according to a uniform distribution:4

P(i) =
1
6
, for i ∈ {1, 2, 3, 4, 5, 6}. (6.1)

In a memoryless model, the observations or samples are assumed to be inde-
pendent, so the probability of observing a particular sequence is calculated as
the product of the probabilities of the individual observations:

P({i1, i2, . . . , in}) =
n∏

j=1

P(ij). (6.2)

4 Throughout this chapter, random variables are omitted from the notation of prob-
ability functions, unless this causes confusion. Thus, P(i) means the probability
that the random variable describing the observed outcome from throwing the die
takes value i.
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Section 6.3 returns to calculating the probabilities of observations. Here, the
focus is on the probabilistic models themselves. A probabilistic model is an ab-
straction from the physical process that generates the data. Instead of specify-
ing that the sequence of positive integers is produced by throwing an ordinary
fair die, it suffices to state that there is some source that generates integers
between 1 and 6 according to a uniform distribution, (6.1). The underlying
physical process can remain unknown. Still, to understand the models it is
often useful to think of simple processes like throwing a die, drawing colored
balls from an urn, or drawing jigsaw pieces from a box.

Generative models can be more complex and have a hierarchical structure
like in the following example. Suppose we have two dice (where we represent
a die as a list of faces): Die A, with the usual faces 1 through 6, i.e., A =
(1, 2, 3, 4, 5, 6), and die B, which has ones on all faces, B = (1, 1, 1, 1, 1, 1).
Now we can imagine the following random process:

1. pick a die according to a uniform distribution;
2. sample a number by throwing the chosen die.

For this generative process, the probability of observing a single sample i is:

P(i) = P(A) · P(i|A) + P(B) · P(i|B) =

{
1
2 · 1

6 + 1
2 · 0, for i ∈ {2, 3, 4, 5, 6}

1
2 · 1

6 + 1
2 · 1, for i = 1.

(6.3)
A generative process with a model like this is called a mixture model . It is
a weighted sum of a number of different probability distributions. As will
become clear in Section 6.2.2, mixture models are useful for describing the
mixture of aspects that can be present in images.

It is often insightful to represent generative models in a graphical man-
ner. For graphical representations, we follow the standards described in [11],
where random variables are represented as nodes and dependencies between
them as edges. Observed variables are represented as solid nodes and hidden,
or unobserved, variables as open nodes. A box or plate around a part of the
graph indicates repetition, i.e., the repeated sampling of variables. As an ex-
ample, Figure 6.1 represents two variants of drawing a sequence of N numbers
from the hierarchical dice. The variant on the left represents the process as
described above: for each of the N numbers, we pick a new die. The variant on
the right represents the case where we select a die once for the whole process
and then repeatedly sample numbers by throwing that die.

The remainder of this section introduces generative models for images and
text.

6.2.2 Generative Image Models
As stated in the introduction to this chapter, generative image models are like
the boxes of jigsaw puzzles, from which one can randomly draw pieces. An
important difference though, is the following. Jigsaw boxes contain a finite
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Sampling with repeated choice of dice Sampling from a single die

Fig. 6.1. Graphical representations for dice example variants.

number (say 1000) of discrete pieces; a piece is either in there or not. By
sampling from the box with replacement, we can draw infinitely many pieces,
but each piece has to be one of the fixed set of 1000 pieces. The generative
image models described below, however, are probability distributions over a
(high dimensional) continuous feature space. The number of different samples
that can be drawn is infinite. The models describe the location in the feature
space where we are most likely to observe samples and what kind of variance
can be expected. The nature of the feature space, i.e., the set of features
used for describing a sample is not discussed in this chapter. The models are
independent of the features. Here we simply assume an image is represented
as a set of samples (V = {v1,v2, . . . ,vS}), each described by a n-dimensional
feature vector: v = (v1, v2, . . . , vn), as illustrated in Figure 6.2. The nature of
the samples is independent of the models. The examples used in this chapter
are based on DCT coefficients5 and position information, but in principle
other features like for example the ones introduced in Chapters 5 and 9 can
be used.

blocks feature vectors

→

.

.

.

: 562.37 -10.24 4.06 -1.28 6.74. . .

: 574.62 -4.11 -1.75 -1.37 -1.12 . . .

: 616.37 8.87 6.45 -2.26 -14.70 . . .

: 609.62 -39.01 -10.14 -1.88 -8.47 . . .

: 647.00 -8.37 8.00 -2.65 6.37 . . .

: 668.50 23.07 -11.45 -3.04 1.29 . . .

.

.

.

Fig. 6.2. Illustration of visual document representation.

Gaussian Mixture Models
The generative image models discussed in this chapter are based on Normal
distributions, or Gaussian distributions as they are often called. These distri-
butions are appropriate models for the situation in which an ideal point in a
5 The Discrete Cosine Transform (DCT) captures both intensity and texture infor-

mation and is also used in JPEG compression.
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feature space exists and where all observations are assumed to be versions of
this ideal feature vector that are randomly corrupted by many independent
small influences [4]. For simple images this is the case, one can easily imagine
a single ideal point in feature space describing for example the perfect water
texture. All observations from the water class can be seen as versions of the
ideal water texture that have been corrupted by many independent causes
(lightning condition, camera angle, etc.). However, most real-life images show
more than a single texture or object. Therefore, instead of using a single Gaus-
sian distribution, it makes sense to use a mixture of Gaussian distributions
for modeling images with multiple colors and textures [21].

In general, a finite mixture density is a weighted sum of a finite number (C)
of density functions [20, 4]:

p(x) =
C∑

i=1

P(ci)p(x|ci). (6.4)

(Notation: in this chapter we consistently use capital P for a probability mass
function and lowercase p for a density.)

The mixing weights P(ci) are the prior probabilities of the components ci

in the mixture. The density functions p(x|ci) each describe a bit of the total
density. These densities are Gaussian distributions in the case of a Gaussian
mixture model, but of course other densities can be used in other situations.

Titterington et al. [20] divide the usage of mixture models in two broad
classes: direct application and indirect application. Direct application is used
to refer to situations in which it is believed that there exists a number (C)
of underlying categories or sources such that the observed samples all be-
long to one of these. Indirect application refers to a situation in which the
link between probability distributions and categories is less clear and where a
mixture model is merely used as a mathematical way of obtaining a tractable
form of analyzing data. Modeling images using finite mixture models is some-
where halfway on the continuum from direct to indirect application. On the
one hand, the idea is that an image can contain only a finite number of things;
each sample is assumed to be generated by one of the mixture components.
For example, one component might describe the grass, another the water and
a third the sky in an image. This is the direct application view. On the other
hand, we do not explicitly model grass, water and sky. We merely believe that
to model the many different facets of an image, a mixture of distributions is
needed. This mixture model describes image samples without explicitly sepa-
rating the components. In that sense, mixture modeling is just a mathematical
tool to describe images (indirect application view). Still, the direct applica-
tion view with separate components for modeling grass, water and sky, is a
useful way of thinking about finite mixture models for images, especially for
understanding the parameter estimation discussed in Section 6.4.
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Gaussian Mixture Models for Representing Images
A Gaussian mixture model can describe an image. The idea is that the model
captures the main characteristics of the image. The samples in an image are
assumed to be generated by a mixture of Gaussian sources, where the number
of Gaussian components C is fixed for all images in the collection. A Gaus-
sian mixture model is described by a set of parameters θ = (θ1, . . . ,θC) each
defining a single component. Each component ci is described by its prior prob-
ability P(ci|θ), the mean μi and the variance Σi, thus θi = (P(ci|θ),μi,Σi).
Details about estimating these parameters are deferred to Section 6.4.1. The
process of generating an image is assumed to be the following (see Figure 6.3):

1. Take the Gaussian mixture model θ for the image.
2. For each sample v in the document:

(a) Pick a random component ci from Gaussian mixture model θ accord-
ing to the prior distribution over components P(ci|θ).

(b) Draw a random sample from ci according to the Gaussian distribution
N (μi,Σi).

Fig. 6.3. Graphical representation of Gaussian mixture model.

Here, θ is an observed variable, i.e., the mixture model from which the sam-
ples for a given image are drawn, is known. For a given sample however, it
is unknown which component generated it, thus components are unobserved
variables. The probability of drawing a single sample v from a Gaussian mix-
ture model with parameters θ is thus defined as the marginalization over all
possible components:

p(v|θ) =
C∑

i=1

P(ci|θ)p(v|ci,θ) (6.5)

=
C∑

i=1

P(ci|θ)
1√

(2π)n|Σi|
e−

1
2 (v−μi)

T Σi
−1(v−μi). (6.6)

A visualization of the model built from the image in Figure 6.2 is shown in
Figure 6.4. For this example, a Gaussian mixture with three components is
estimated from the set of feature vectors extracted from the image (cf. Fig-
ure 6.2).6 The resulting model is described by the mean vectors and covariance
6 The process of building a model is described in Section 6.4.1
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matrices of the three components in the high-dimensional feature space and
by the prior probabilities of the components. The figure shows a projection
of the components onto the two-dimensional subspace defined by the position
in the image plane (i.e., the space spanned by the x and y coordinates of the
feature vectors). The ellipsoids in the image plane show the mean position of
the three components along with their variance. The filled areas, are the areas
in the image plane, where the standard deviation from the mean position for
a given component is below 2. The coloring of the area is a representation of
the component’s other dimensions: it shows the mean color and mean texture.
Variance in color and texture information are not visualized. The bars to the
right of each component indicate the component’s prior probability.

Fig. 6.4. Visualization of a model of the image in Figure 6.2.

In the example, three Gaussian components are used, but that is not neces-
sarily enough to capture all information in an image. Any distribution can be
approximated arbitrarily closely by a mixture of Gaussians. The higher the
number of components in the mixture, the better the approximation can be.
However, keeping in mind that the models will be used for retrieval, a perfect
description of an image is not the ultimate goal. The goal is to find images
that are similar to a query image. A perfect model would only be able to
find exact matches and those are not the most interesting ones. Therefore, it
is important to avoid over-fitting. Experiments have shown that eight com-
ponents are typically enough to capture the most important aspects of an
image [22, 24].

6.2.3 Generative Language Models
Language models are discussed in Chapter 7, where they are used for speech
recognition, and Chapter 4 demonstrates their use for information retrieval.
To highlight the generative nature of these models as well as the similarity to
the image models discussed above, we look at them again in this chapter.

To repeat what was said before, a language model is a probability distri-
bution over strings of text in a given language. It simply states how likely
it is to observe a given string in a given language. For example, a language
model for English should capture the fact that the term the is more likely
to occur than the term restaurant. When context is taken into account this
might change. For example, after seeing the phrase:
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“They went to an Italian”,

restaurant is a more likely completion than the. As discussed in Chapter 7,
for speech recognition (but also for example for spelling error correction), this
contextual information is important; a limited amount of context is typically
taken into account and so called n-gram models are used [12]. In n-gram
models, the probability of observing a given term only depends on the previous
n−1 terms. If bigram models (n = 2) are used, the probability of the next
term in the example given above would only depend on Italian.

For information retrieval context is of minor importance (cf. Chapter 4).
Although language models are generative models, in retrieval they are not
used to generate new pieces of text. As long as the models capture most of
the topicality of a text, they are useful. Therefore, context is typically ignored
in information retrieval and terms are assumed to be generated independently.
The models are thus memoryless. In language modeling memoryless language
models are known as unigram language models. Song and Croft experimented
with higher order (n-gram) language models for information retrieval and
found no significant improvement over unigram models [18].

Unigram Language Model
In the unigram language modeling approach to information retrieval, docu-
ments are assumed to be multinomial sources generating terms. This multi-
nomial basis is not always mentioned explicitly (Chapter 4 ignored it), but, in
this chapter, it is useful to take this view because it clearly shows the genera-
tive probabilistic nature and it nicely separates the model from the estimation
of the model parameters, which is discussed in Section 6.4.1.

Multinomial sources are often introduced using urns with colored balls, but
the boxes with jigsaw pieces we used before are equally suitable. Suppose we
have a jigsaw puzzle box that contains pieces with grass, pieces with water and
pieces with sky. Now, if we draw ten pieces from this box with replacement,
what is the probability of observing exactly five grass pieces, two water pieces
and three sky pieces? This can be modeled using a multinomial distribution.
For unigram language modeling, instead of jigsaw pieces of a particular type
(grass, water, sky), we have terms in a given language. A question could now
be: If we draw six terms from the English language, what is the probability of
observing each of the terms an, Italian, restaurant, they, to and went exactly
once? In the language modeling approach to information retrieval, instead of
having a single model for a whole language, each document in a collection is
modeled as a separate multinomial source. Each of these models is described
by a vector of term probabilities φ = (φ1, φ2, . . . , φT ), where T is the size of
the vocabulary and φi is the probability of seeing termi under model φ.

The generative process for textual documents, as visualized in Figure 6.5
is very simple:

1. Pick the language model φ for the document.
2. For each term:
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draw a random term from φ according to the multinomial distribution
mult(φ).

Fig. 6.5. Graphical representation of language model.

Like with the Gaussian mixture models for images, the model that generates
the samples (terms) is an observed variable; each document has its own, known
generative model φ. The probability of observing a particular document t =
(t1, t2, . . . , tT ), from this model is defined as:

P(t|φ) =

(∑T
i=1 ti

)
!

∏T
i=1 ti!

T∏

i=1

φti
i . (6.7)

The second factor in this equation,
∏T

i=1 φti
i , is the joint probability of observ-

ing the term counts for individual terms, P(termi|φ) = φi. The unigram as-
sumption states that all observations are independent, thus the joint probabil-
ity is simply the product of the probabilities of the individual terms. The nor-
malization factor

(∑T
i=1 ti

)
!/(
∏T

i=1 ti!) implements the bag-of-words model,
it states that an observation (a query or a document) is a bag, the ordering
of the terms is unimportant. A simple example will clarify this. Suppose we
have a vocabulary with only four terms: A,B,C and D and observation ABAC,
then t = (2, 1, 1, 0). Note that in the representation of the observation, the
order of the terms is already ignored, it simply says there are two A’s, one B,
one C, and no D’s. Thus, the probability of observing this t from a given
model φ, is in fact the probability of drawing any permutation of the original
string ABAC: P(t) = P(ABAC)+P(AABC)+P(ABCA)+P(ACAB)+ . . ..
In total (2+1+1+0)! / (2!·1!·1!·0!) = 24

2 = 12 different possible permutations exist.
Thus P(t) = 12φ2

1 φ1
2 φ1

3 φ0
4.

6.3 Retrieval Using Generative Models
By drawing enough observations from a single model (or pieces from a box,
to take the jigsaw analogy), a random document or a random image can
be generated. An example of a random image from the model visualized in
Figure 6.4 is shown in Figure 6.6. Different models will produce different
random images, just like different boxes can contain different jigsaws. This
idea can be used to rank documents.
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Fig. 6.6. Random sample from image model presented in Figure 6.4.

6.3.1 Sample Likelihood
The idea of ranking models based on observations is illustrated by a simple
dice example. Suppose we have two dice:

D1 = (1, 2, 3, 4, 5, 6)
D2 = (1, 1, 3, 4, 5, 6). (6.8)

Say someone tells us that a sequence of five throws with one of them resulted in
the observation: O = (4, 3, 4, 3, 1). We can then easily calculate the likelihood
of observing this sequence given each of the models:

P(O|D1) = (1
6 )5

P(O|D2) = (1
6 )4 · 2

6 .
(6.9)

Since P(O|D2) > P(O|D1), the observation is more likely under D2. We call
this probability of an observation O given a model D the Sample Likelihood :
it is the likelihood of observing this sample.

The same principle can be used to rank documents given a query. The
assumption is that the query is an observation from one of the generative
document models in the collection and the goal is to find the document model
under which this query is most likely. For a visual query V = {v1,v2, . . . ,vS},
assuming memoryless models, we can compute the joint likelihood of observing
all samples by taking the product of the likelihoods for the individual samples
vj :

p(V) =
∏

v∈V
p(v|θ). (6.10)

For textual queries q = (q1, q2, . . . , qT ), we can simply use (6.7).

6.4 Estimating Model Parameters
6.4.1 Maximum Likelihood Estimates
In the previous sections, the assumption has been that the model parame-
ters (θ) are known. Given the parameters, it is straightforward to use the
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models for ranking documents (as we have seen in Section 6.3). In general
however, the parameters of a specific document model are unknown. Usually,
the only available information is the representation of the documents, i.e., the
feature vectors. A common way to use this data is to assume that they are ob-
servations from the models and use them as training samples to estimate the
unknown model parameters. As a first step to estimating these parameters,
we will use the maximum likelihood estimate. This estimate is defined as the
parameter setting which maximizes the likelihood of the observed samples.
Thus, for a set of training samples S = {s1, s2, . . . , sK} and model parameter
ψ, the maximum likelihood estimate ψML is defined as:

ψML = arg max
ψ

∏

s∈S
P(s|ψ). (6.11)

Below this approach is applied to Gaussian mixture models and language mod-
els. Techniques for handling unobserved data and for improving generalization
capabilities are discussed in Section 6.4.2.

Estimating Gaussian Mixture Model Parameters
The maximum likelihood estimate for a Gaussian mixture model from a set
of samples V (an image) is defined as follows:

θML = arg max
θ

∏

v∈V
P(v|θ) (6.12)

=
∏

v∈V

C∑

i=1

P(ci|θ)
1√

(2π)n|Σi|
e−

1
2 (v−μi)

T Σi
−1(v−μi).

This equation is hard to solve analytically, but we can use the Expectation
Maximization (EM) algorithm [3] to find parameters for the model. To un-
derstand this iterative procedure, it is useful to assume that an image shows
a limited number of different things (such as grass, sky, water), each of which
is modeled by a separate Gaussian distribution. Each sample in a document
can then be assumed to be generated from one of these Gaussian components.

To accurately describe the different components of a Gaussian mixture
model for a given document, it is necessary to decide which of the document’s
samples are generated by which component. The assignments of samples vj to
components Ci are unknown, but they can be viewed as hidden variables and
the EM algorithm can be applied. This algorithm iterates between estimating
the a posteriori class probabilities for each sample given the current model
settings (the E-step) and re-estimating the components’ parameters based on
the sample distribution and the current sample assignments (M-step).

The EM algorithm first assigns each sample to a random component. Next,
the first M-step computes the parameters (θi) for each component, based on
the samples assigned to that component. Using maximum likelihood estimates,
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this comes down to computing the mean and variance of the feature values
over all samples assigned to the component.

This assignment of samples to components is a soft clustering, a sample
does not belong entirely to one component. In fact, we compute means, co-
variances and priors on the weighted feature vectors, where the feature vectors
are weighted by their proportion of belonging to the class under consideration.
In the next E-step, the class assignments are re-estimated, i.e., the posterior
probabilities, P(ci|vj) are computed. We iterate between estimating class as-
signments (expectation step) and estimating class parameters (maximization
step) until the algorithm converges. Figure 6.7 is a visualization of training
a model from the image in Figure 6.2. From top to bottom, it alternates
between showing sample assignments (E-step) and visualizations of the inter-
mediate models (M-step). After 10 iterations already, the model accurately
distinguishes water, grass and elks.
More formally, to estimate a Gaussian mixture model from a document V =
{v1,v2, . . . ,vS}, the following steps are alternated:

E-step
Estimate the hidden assignments hij of samples to components for each
sample xj and component ci:

hij = P(ci|vj) =
p(vj |ci)P(ci)∑C

c=1 p(vj |cc)P(cc)
. (6.13)

M-step
Update the component’s parameters to maximize the joint distribution of
component assignments and samples: θnew = arg maxθ p(V,H |θ), where
H is the matrix with all sample assignments hij . More specifically, this
means:

μnew
i =

∑
j hijvj∑

j hij
, (6.14)

Σnew
i =

∑
j hij(vj − μnew

i )(vj − μnew
i )T

∑
j hij

, (6.15)

P(ci)new =
1
N

∑

j

hij . (6.16)

The algorithm is guaranteed to converge [3]. The error after each iteration is
the negative log likelihood of the training data:

E = − log p(V) = −
∑

v∈V
log p(v|θ). (6.17)

This error will decrease with each iteration of the algorithm, until a minimum
is reached.7
7 The found minima are local ones. The effects of this on retrieval quality need

thorough investigation.
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Fig. 6.7. Visualization of the estimation of parameters for a Gaussian mixture
model built from the image shown in Figure 6.2. E and M steps are shown after
initialization and after 1, 3 and 10 iterations. The E-steps show to what degree each
sample is assigned to each component (higher transparency indicates a lower degree
of assignment). The M-steps show visualizations of the models (cf. Figure 6.4).



6 Generative Probabilistic Models 191

Estimating Language Model Parameters
The maximum likelihood estimates for the parameters of the multinomial
distribution for a given document are straightforward. They are simply the
relative frequency of the terms in the document. If a document is represented
as a vector of term counts, t = (t1, t2, . . . , tT ), then φi, the probability of term
i in this document, is estimated by:

φiML =
ti∑T

j=1 tj
. (6.18)

6.4.2 Smoothing
If maximum likelihood estimates, (6.18), are used to find the language model
parameters, we run into the so-called zero-frequency problem, a sparse data
problem. Terms that did not occur in the training data for a document are
assigned zero probability (φi = 0 for these terms). This means that a query
containing such a term will get zero probability for this document model, no
matter how likely the other query terms are.

Consider for example the dice example of Section 6.3, where we introduced
the following two dice:

D1 = (1, 2, 3, 4, 5, 6)
D2 = (1, 1, 3, 4, 5, 6). (6.19)

Now, if we observe the sequence O = (1, 2, 1, 4, 3), we would conclude the
observation comes from D1, since P(2|D2) = 0 and thus P(O|D2) = 0. If D2

indeed does not have a 2 on one of its faces, this is correct, but if the distri-
bution is estimated from data (as it is in the generative document models)
it may not be. Suppose we buy a die in a shop, we roll it six times and we
observe the sequence (1, 1, 3, 4, 5, 6), concluding that these six observations
correspond to the six faces and that there is no 2 on this die does not seem
wise.

Interpolation
Smoothing solves the zero-frequency problem by transferring some of the prob-
ability mass from the observed samples to the unseen samples. The specific
smoothing technique used commonly in the language modeling approach to
information retrieval is interpolation, also known as Jelinek–Mercer smooth-
ing [10]. For multimedia material, and especially for video data, interpolation
is useful, since it allows for easy extension of the language models for describ-
ing different levels of a document, like shots, scenes and videos (discussed
later in this section). For other smoothing techniques, the interested reader is
referred to [12] and [25].

In Jelinek–Mercer smoothing, the maximum likelihood estimates are in-
terpolated with a more general distribution, often called background model ,
or collection model ; the maximum likelihood estimates are often referred to
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as foreground models or document models. The smoothed estimates are calcu-
lated as follows:

φi = λφiML + (1 − λ)φiBG , (6.20)

where φiBG = P(termi) is the background probability of observing termi and
λ is a mixing parameter indicating the relative importance of maximum like-
lihood estimates.8 The background probability is usually estimated using ei-
ther collection frequency, the relative frequency of the term in the collection
(φiBG =

∑
d td,i/

∑
d

∑
j td,j), or document frequency the relative fraction of

documents that the term occurs in (φiBG = df(ti)/
∑

j df(tj)). The mixing
parameter λ can be estimated on a training set with known relevant query-
document pairs.

The idf Role of Smoothing
Besides avoiding the zero-frequency problem, smoothing also serves another
purpose, namely that of explaining common query terms and reducing their
influence [25]. Because common terms have high background probability, the
influence of their foreground probability on the ranking will be relatively
small. This becomes apparent when we substitute the φs in the retrieval func-
tion, (6.7), for the smoothed estimates, (6.20), and do some formula manipu-
lation:

P(q|φ) =

(∑T
j=1 qj

)
!

∏T
j=1 qj !

T∏

i=1

[λφiML + (1 − λ)φiBG ]qi (6.21)

=

(∑T
j=1 qj

)
!

∏T
j=1 qj !

T∏

i=1

[
λφiML

(1 − λ)φiBG

+ 1
]qi T∏

i=1

[(1 − λ)φiBG ]qi . (6.22)

For terms that are not present in the document λφiML = 0 and the correspond-
ing factor reduces to 1. Thus the first product needs only to be considered
for query terms that are matched in the document; The latter is document
independent and can be ignored for ranking. Also the normalization factor
does not affect the ranking. The reduced formula is:

P(q|φ) ∝
∏

i∈{1,...,T}:ti>0∧qi>0

[
λφiML

(1 − λ)φiBG

+ 1
]qi

. (6.23)

In this last equation, it is clear that the background probability (φiBG) plays a
normalization role, similar to idf in traditional tf.idf weighting [17]. Common
terms, i.e., terms with high φiBG , contribute less to the final ranking; for these
terms, the influence of φiML is reduced.

8 Note that the smoothed distribution is a mixture model (cf. Section 6.2.2), with
φiML and φiBG describing the class densities and where λ and 1− λ are the class
priors.
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Interpolated Language Models for Video
Besides smoothing, interpolation can serve other purposes. For example when
a document collection contains video material, we would like to exploit the
hierarchical data model of video, in which a video is subdivided into scenes,
which are subdivided into shots, which are in turn subdivided into frames.
Interpolation based smoothing is particularly well-suited for modeling such
representations of the data. To include the different levels of the hierarchy, we
can simply extend estimation of the mixture of foreground and background
model, (6.20), with models for shots and scenes:

φi = λShotP(termi|Shot) + λSceneP(termi|Scene) + λCollP(termi),
where λColl = 1 − λShot − λScene. (6.24)

The main idea behind this approach is that a good shot contains the query
terms and is part of a scene having more occurrences of the query terms. Also,
by including scenes in the model, misalignment between audio and video can
be handled. Depending on the information need of the user, a similar strategy
might be used to rank scenes or complete videos instead of shots, that is,
the best scene might be a scene that contains a shot in which the query
terms (co-)occur. Finally, interpolated language models are not only suitable
for video retrieval, they can be used in any situation where language has
a hierarchical structure. For example, it can be used for passage retrieval
from (xml) documents, where a document can be a hierarchical structure of
chapters, sections and paragraphs [15].

Interpolated Gaussian Mixture Models
The zero-frequency problem does not exist for images, since they are modeled
using Gaussian mixture models and Gaussians have infinite support. However,
the idf role of smoothing is also useful in image retrieval, since it distinguishes
between common and typical features of a document. Suppose we have a
query image depicting a clear blue sky over a snowy mountain. Now, if all
images in our collection have clear blue skies, than the retrieval results should
mainly depend on the snowy and mountainy bits. This means we may want
to down-weight the influence of the sky bits. This can, like in the text case, be
achieved by interpolating with a more general, background distribution. The
new version of the likelihood for a single image sample v, cf. (6.5), becomes:

p(V) =
∏

v∈V
κp(v|θ) + (1 − κ)p(v), (6.25)

where κ is used as the mixing parameter. The background density p(v) can
be estimated by marginalization over all document models in a reference col-
lection Θ:

p(v) =
∑

θ∈Θ

p(v|θ)P(θ). (6.26)
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The reference collection Θ can be either the current collection, a representative
sample, or a separate, comparable collection.

This interpolation of foreground and background probabilities has the
same effect as in the text case; it will decrease the influence of samples v
with a high background probability p(v) on the final ranking. Experiments
have shown that, this interpolation with a background collection is crucial for
retrieval performance [22, 24].

6.5 Combining Visual and Textual Information
Above, we have described models for visual and textural information in iso-
lation, but it makes sense to combine the two. One could imagine textual
information setting the context (this shot is about Yasser Arafat), whereas
visual information could filter the shots in the video where the person (or his
patterned scarf) is actually visible. Vice versa, visual information could set
a context (there is an object against a clear blue sky visible), and textual
information could help in deciding whether it is a helicopter, an aircraft or a
balloon. If both textual and visual information are modeled in a generative
framework like discussed in this chapter, combining the modalities is a viable
option.

6.5.1 Joint Probability
When both visual and textual information are described using generative
probabilistic models, we can simply compute the joint probability of observing
textual and visual part of a multimedia query, QMM = {V, q}:

p(QMM |D) = p(V|θD)P(q|φD). (6.27)

This requires two independence assumptions:

1. Textual terms and visual samples are generated independently:
p(V, q|·) = p(V|·)P(q|·).

2. The generation of documents in one modality is independent of the model
in the other modality. The generation of textual terms only depends on
the language model and the generation of visual terms only on the visual
model.

Treating textual and visual information independently, contradicts the as-
sumption that textual information is useful for visual multimedia retrieval. If
textual information can actually help in retrieving relevant visual images or
shots, then documents that have a high likelihood based on textual informa-
tion should be more likely to be visually relevant than documents with a low
textual score. Clearly, textual and visual information are dependent. As soon
as a document is likely to be relevant based on the textual information, then
the likelihood of observing something visually similar to the query examples
should increase. For example, if the name Yasser Arafat is mentioned, the
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likelihood of observing him increases. Theoretically, this might lead to overly
high scores for documents that match on both textual and visual information.
In practice this simple multimodal model gives reasonable results, although
in many settings textual information is most useful for finding the relevant
information [24, 22].

6.6 Summary
In this chapter the main principles of generative probabilistic models are in-
troduced. These models provide concise descriptions of the characteristics of
a document. The particular instance of generative models described in this
chapter, Gaussian mixture models, is well-suited for describing documents
with a variety of different characteristics, and therefore useful for modeling
heterogeneous images.

In a retrieval setting, the generative properties are used to decide which
documents to show to the user. Documents are ranked by decreasing proba-
bility of generating the various parts of the query. These query parts can be
small descriptions of visual information in a visual setting, query terms in a
textual setting, or a combination of both in a multimodal setting.

To train the generative models from data, we start from a maximum like-
lihood approach. The parameter setting of a model describing a document
are those that maximize the likelihood of observing that document. The max-
imum likelihood estimate however does not distinguish between characteristics
that are common for many documents in a collection and characteristics that
are typical of a particular document. For retrieval, this distinction is very
important. Therefore, we interpolate with a background model, a model de-
scribing the main characteristics shared by many documents in the collection.
This interpolation decreases the influence of common characteristics and thus
improves retrieval results.

Finally, we show how the modeling of textual information in the same gen-
erative probabilistic framework can be adapted to describe video documents.
The two modalities can then be combined using a simple joint probability.
Even though the independence assumption needed for this joint probability
is somewhat counter intuitive, in practice this combination of modalities is
useful.

6.7 Further Reading
A very thorough introduction to generative models can be found in the book
by Duda et al. [4]. The book covers many aspects related to this chapter
such as maximum likelihood estimation, mixture models and the expectation
maximization (EM) algorithm as well as many other pattern classification
techniques.

Few examples exist of the application of generative models for multimedia
retrieval. The work most closely related to the models presented in this chapter
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is that of Vasconcelos et al. [21] and that of Greenspan et al. [7]. Both model
each of the images in the collection using a mixture of Gaussians like discussed
above. Instead of then using the maximum likelihood for ranking, they also
estimate a Gaussian mixture model for the query image and directly compare
the models. Gaussian mixture models that model not only color and texture,
but also the dynamic aspects of those are discussed in [6, 9]. Generative models
are also in computer vision sometimes to classify objects [5] or medical video
clips [14].

A collection of high-quality papers on the application of language mod-
eling techniques is available in the book Language Modeling for Information
Retrieval, edited by Croft and Lafferty [2]. A number of papers in this col-
lection are of particular interest. First of all, the paper by Sparck-Jones and
others [19] started some controversy around the idea of using language models
for information retrieval, since the notion of relevance is absent from the frame-
work and the goal is to find the document that generated the query terms,
implying there can only be one relevant document. Lavrenko and Croft [13]
solve the problem by estimating relevance models rather than document mod-
els. Finally, Lafferty and Zhai argue that the language modeling framework
and the traditional probabilistic framework are probabilistically equivalent [2].

We briefly discussed the combination of visual and textual information.
Of course they can be more tightly coupled than by their joined probability.
Blei et al. [1] give a fine discussion of a generative approach for representing
images and captions simultaneously.

Finally, the work that lead to this chapter has been published previously
in many places. Elsewhere [22, 23] we give more extensive discussions on the
techniques presented here.
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7.1 Introduction
The amount of metadata attached to multimedia collections that can be used
for searching is very much dependent on the available resources within the
organizations that create or own the collections. Large national audiovisual
institutions, such as Sound&Vision in The Netherlands,4 put a lot of effort
in archiving their assets and they label collection items with at least titles,
dates and short content descriptions (descriptive metadata, see Chapter 2).
However, many organizations that create or own multimedia collections lack
the resources to apply even the most basic form of archiving. Certain collec-
tions may become the stepchild of an archive — minimally managed, poorly
preserved, and hardly accessible.

Although the saying “information is in the audio, video is for entertain-
ment5” puts it somewhat strongly, it gives an impression of the potential for
the deployment of audio and for the application of information extraction
techniques to support multimedia information retrieval tasks. Especially the
speech in audio is an important information source that, once transformed
into text and/or enriched with linguistic annotation, can enable the concep-
tual querying of video content. The basic idea is to use automatic speech
recognition technology to generate such a linguistic annotation or textual rep-
resentation (see Figure 7.1) and to use this as (a source for) automatically
created metadata that can be used for searching by applying standard text-
based information retrieval techniques.

Next to the words spoken, also information about the speaker can be ex-
tracted from the speech waveform, referred to as speaker classification. Typical
examples are the speaker’s identity or gender, which can be useful for the de-
tection of document structure (who is speaking when), or even the speaker’s
background (social, geographic, etc.) or emotional state. Apart from speech,

4 Sound&Vision: http://www.beeldengeluid.nl/
5 Richard Schwartz (BBN Technologies) at the Multimedia Retrieval Video-Con-

ference at the University of Twente in 1999.
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often other clues in the audio can have added value, such as background
noise sources, sounds, music, adverts, channel characteristics and bandwidth
of transmission.

manually
generated
metadata

audio
classification

speech 
recognition

automatically
generated
metadata

multimedia
collection

Fig. 7.1. Automatic metadata generation using the audio stream.

This chapter will focus on the automatic extraction of information from the
speech in multimedia documents. This approach is often referred to as speech
indexing and it can be regarded as a subfield of audio indexing that also
incorporates for example the analysis of music and sounds. If the objective
of the recognition of the words spoken is to support retrieval, one commonly
speaks of spoken document retrieval (SDR). If the objective is on the coupling
of various media types the term media mining or even cross-media mining
is used. Most attention in this chapter will go to SDR. The focus is less on
searching (an index of) a multimedia database, but on enabling multiple views
on the data by cross-linking all the available multifaceted information sources
in a multimedia database. In Section 7.6 cross-media mining will be discussed
in more detail.

7.1.1 Relation to Other Chapters
Throughout this book, the searching process is generally described as try-
ing to find a match between an information need, formulated in a query and
represented in a query representation, and a collection of documents, repre-
sented in a document representation (often referred to as an index). From a
user’s perspective, using natural language to formulate an information need
in a query, is the most evident choice although other modalities are thinkable
(see also “Interaction” in Chapter 11). However, with audiovisual content, the
representation of a natural language query does not match the representation
of the documents (images in pixels, audio in samples). The main focus of this
chapter (and also Chapters 5, 8, and 9) is on solving this representation mis-
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match by converting the document collection to the natural language query
representation:�

�

�

�

Solving the representation mismatch:

• convert the document collection to the natural language query
representation (e.g., speech to text);

• adjust the query to the document representation (e.g., example
image as query);

• convert both document and query representation to an interme-
diate representation (e.g., query and speech to sound units).

7.1.2 Outline
The remainder of this chapter starts with a brief introduction to speech recog-
nition in general (Section 7.2), and a detailed overview of the application of
speech recognition technology in the context of multimedia indexing in a sec-
tion on spoken document retrieval (Section 7.3). Here, the synchronization
or time alignment of collateral data sources, large vocabulary speech recog-
nition, keyword spotting and SDR using subword unit representations will
be discussed. In the section on robust speech recognition and retrieval (Sec-
tion 7.4), we zoom in on the optimization of speech recognition performance
in the context of spoken document retrieval, discussing query and document
expansion, vocabulary optimization, topic-based language models and acous-
tic adaptation. The chapter will be finalized by discussing audio segmentation
(Section 7.5) and a topic that links speech indexing to other modalities in the
multimedia framework: cross-media mining (Section 7.6).

7.2 Brief Introduction to Speech Recognition
In the speech recognition process several steps can be distinguished. Recogni-
tion systems convert an acoustic signal into a sequence of words via a series
of processes that are visualized in a very simplified manner in Figure 7.2.

7.2.1 Feature Extraction
First the digitized acoustic signal is converted into a compact representation
that captures the characteristics of the speech signal using spectral informa-
tion. This step is usually referred to as feature extraction. A spectrum describes
how the different frequency components in a waveform vary in time and this
information is represented by vectors of features which are computed for ex-
ample every 10 ms for a 16 ms overlapping time window. An LPC (Linear
Predictive Coding) spectrum is an example of a smoothed spectrum. Often,
the spectral features are modified in one way or another in order to make them
more consistent with how the human ear works (e.g., Mel-scale), and averaged
over spectral bands. A commonly used feature set is based on a derivation of
the spectrum, the cepstrum, that is computed by taking a Discrete Cosine
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Transform of a band-filtered spectrum. When the resulting Cepstral Coef-
ficients are Mel-scaled we end up with the popular MFCC (Mel Frequency
Cepstral Coefficients) feature set.

speech

                                                             
decoding

acoustic
model

language
model

manual
transcription

feature
extraction

speech
transcript

statistical
modeling

dictionary

feature
extraction

statistical
modeling

example
audio
data

example
text
data

Fig. 7.2. Simplified overview of a speech recognition system: on the left the flow
from speech to a speech transcription via feature extraction and a decoding stage
that includes the acoustic model, the language model and dictionary; on the right
the flow of required statistical (audio & text) and manual information.

7.2.2 Acoustic Modeling
In the statistical speech recognition framework, the feature vectors are treated
as acoustic observations, O. The task is formulated as to find the sequence of
words W = {ω1, ω2, . . . , ωN} that are most likely to have been spoken on the
basis of the the acoustic observations O. The probability of a sentence being
produced given some acoustic observations is typically expressed as P (W |O).
The most likely sentence, Ŵ , is found by computing P (W |O) for all possible
sentences and choosing the one with the highest probability:
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Ŵ = arg max
W

P (W |O). (7.1)

Using Bayes’ rule, the conditional probability of a sentence W being spoken,
assuming that certain acoustic observations O were made, can be expressed
as:

P (W |O) =
P (O|W ) · P (W )

P (O)
, (7.2)

where P (O|W ) is the likelihood that specific acoustic observations are made
given a sentence W , and P (W ) is the prior probability of the sequence of
words W , which can be estimated using a statistical language model, and
finally P (O) is the probability of observing the given speech input. As for
the computation of the most probable sentence given a certain speech input,
P (O) is the same for all possible W , and it may be regarded as a normalization
factor that can well be removed from the computation:

Ŵ = arg max
W

P (W |O) = arg max
W

AM︷ ︸︸ ︷
P (O|W ) ·

LM︷ ︸︸ ︷
P (W ) . (7.3)

The most popular approach in speech recognition is to use hidden Markov
models (HMMs) to compute the acoustic model probabilities P (O|W ) and
language model probabilities P (W ). An HMM is a stochastic automaton that
consists of a set of connected states, each having a transition probability
and an output or emission probability associated with it (probability density
functions, see below). The transition probabilities model the transitions from
one state to the other. The output probabilities model the observation like-
lihoods of an observation being generated from a particular state. In HMM
speech recognition, the problem of finding P (O|W ) can be expressed as finding
P (O|M), the likelihood that the observations O were generated by a sequence
of word HMM models (M) that are associated with a sentence W . The word
models are in turn composed of subword unit models, typically models based
on the smallest unit in speech, the phone. In other words, the calculation of
P (O|W ) involves the computation of the likelihood that the observations O
are generated by a particular set of HMM states. The usual HMM training
approach is to construct probability density functions (PDFs) that model the
likelihood of HMM states emitting a particular observation. These PDFs are
typically Gaussians or mixtures of Gaussians. The parameters of the PDFs are
typically estimated so as to model the training data. The Viterbi algorithm
or alternatively a best-first search algorithm (stack decoding or A∗-search),
is then used to find the best path through the network of HMMs given the
observations.

7.2.3 Language Modeling
The prior probability of a sentence P (W ) in speech recognition can typically
be estimated using statistical n-gram models. Using the chain rule of proba-
bility, P (W ) can be formally expressed as:
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P (W ) =
n∏

i=1

P (ωi|ω1, . . . , ωi−1), (7.4)

where P (ωi|ω1, . . . , ωi−1) is the probability that the word ωi was spoken, im-
mediately following the preceding word sequence ω1, . . . , ωi−1, that is referred
to as the history of the word ωi. However, computing the probability of a
word given a long history of words is not feasible. Theoretically, it depends on
the entire past history of a discourse. The n-gram language model attempts
to provide an adequate approximation of P (ωi) by referring to the Markov
assumption that the probability of a future event can be predicted by looking
at its immediate past. N -gram language models therefore use the previous
n−1 words (typically one or two words) as an approximation of the entire
history. That this approximation is reasonably adequate can be derived from
the fact that n-gram language models were introduced in speech recognition
in the 1970’s and still remain state-of-the-art. For a two-word history, trigram
models can be generated by reformulating (7.4) as:

P (ω) ≈ P (ω0) · P (ω1|ω0) ·
n∏

i=2

P (ωi|ωi−2, ωi−1). (7.5)

Probability estimates for n-grams can be computed using the relative fre-
quencies, called maximum likelihood estimates (ML): the normalized counts
of n-grams in a training corpus. For a trigram model it is:

P (ω3|ω1, ω2) = f(ω3|ω1, ω2)
.=

C(ω1, ω2, ω3)
C(ω1, ω2)

, (7.6)

or in a generalized form:

P (ωi|ωi−1
i−n+1) =

c(ωi−1
i−n+1)∑

wi
c(ωi−1

i−n+1)
, (7.7)

where we used the notation ωj
i for the sequence of words ωi, ωi+1, . . . , ωj . As

even very large training corpora can never cover all possible n-grams for a
language, it is possible that perfectly acceptable n-grams are not encountered
in the training corpus. A language model based on (7.6) would assign a zero
probability to such “unseen” n-grams. So regardless of the evidence provided
by the acoustic signal in favor of an n-gram not encountered in the training
data, the n-gram will never be reproduced by the language model. Moreover, it
is well-known that using relative frequencies as a way to estimate probabilities,
produces poor estimates when the n-gram counts are small. To create a more
uniform distribution, it is necessary to smooth these zero-probability and low-
probability n-grams.

7.2.4 Dictionary
The speech recognition vocabulary is a list of all the words in the language
model. It can be considered the model of pronunciation in the recognition sys-
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tem. By presenting for every word in the vocabulary a pronunciation, the pro-
nunciation dictionary is the link between the acoustic model and the language
model. Word pronunciations can be viewed as rules for the concatenation of
phone models to arrive at the words contained in the language model. During
decoding, the words in the dictionary are usually compactly represented by
networks of phones, e.g., in the form of a lexical tree, where each path through
the network represents a word. Using this network, a Viterbi based search can
be performed to find the most probable path through the network.

To obtain word pronunciations for the large and dynamic speech recogni-
tion vocabularies, speech recognition developers usually deploy a large back-
ground pronunciation lexicon to enable a flexible generation of word pro-
nunciations. When word pronunciations are not in the background lexicon,
word transcripts can be manually generated, or produced by a grapheme-
to-phoneme6 converter (G2P) that uses rules or machine-learning techniques
for pronunciation generation. As generating pronunciations manually is time
consuming, a G2P converter is often indispensable, especially in the dynamic
news domain that has a lot of proper names and names of cities and places
that are often not included in background lexicons.

Background lexicons and especially G2P tools usually provide canonical
word pronunciations only, according to a normative, “average” pronunciation
of words. In practice however, words are pronounced in numerous variations in
different degradations from the canonical pronunciation. Among others things
this is due to age, gender or dialect (inter-speaker variability) and speaking
style, speaking rate, co-articulation or emotional state of the speaker (intra-
speaker variability). It has been estimated that in spontaneous speech around
40 % of the words is not pronounced according to the canonical representa-
tion. As such mismatches may occur both at acoustic modeling training stage
and at the recognition stage, such variations result in a degradation of word
accuracy of the speech recognition system. By incorporating pronunciation
variations in the lexicon, the number of inaccurate phone-to-word mappings
can be reduced.

7.2.5 Summary
Speech recognition is based on two important techniques, modeling and search.
The task of modeling is to capture the acoustics of speech, the pronunciation
of words and the sequence of words in a way that these models are general
enough to describe the various sources of variability found in speech (speaker,
coarticulation, word choice), whilst being specific enough to extract the lin-
guistic information. The task of the search is to find the sequence of models
that fit the observed speech data best in an efficient way.

6 Also referred to as text-to-speech or letter-to-phone/sound.
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7.3 Spoken Document Retrieval
To support spoken document retrieval, the crucial step is to create a textual
representation of an audiovisual document by automatically annotating the
speech in the data. The resulting representation can be regarded as automati-
cally generated metadata that can either be used as a replacement for missing
human-generated metadata, or as an additional information source. Especially
for smaller organizations that own multimedia collections, resources are often
lacking to apply even a basic form of archiving. In such cases, applying spo-
ken document retrieval is the only way to provide means for searching the
collections. For larger organizations with audiovisual archives, administrative
metadata, such as rights metadata (who is the legal owner of a video item)
and technical metadata (such as the format of a video item), is usually avail-
able. Often even descriptive human-generated metadata is also preserved with
the collection items, such as the title, duration, a short content description
and a list of names and places that are mentioned. Although the informa-
tion density in this type of metadata is usually low, it can nevertheless be
very helpful for locating specific documents in a collection. This type of in-
formation is therefore sometimes referred to as “bibliographic” or “tombstone
information” among librarians.7 However, locating specific parts within doc-
uments (e.g., the passage where a specific subject is addressed) remains time
consuming as it requires manual scrolling through a (possibly large) mul-
timedia document. Although multimedia documents can often be structured
using available information sources (such as the occurrence of speaker changes,
speech/non-speech boundaries, large silence intervals or shot boundaries) and
techniques are being developed to support quick browsing of video documents
(e.g., by enabling fast playback of speech), going manually through large video
documents can still be cumbersome.

7.3.1 Manual versus Automatic Annotation
In theory, instead of using speech recognition technology, the annotation of
the speech could as just well be carried out manually. In fact, in the meeting
domain, manual annotation of the speech is quite common. Usually meeting
minutes are generated, either stenographically or not. When the meetings are
recorded on video, such annotations can very well be used as a textual rep-
resentations for indexing and retrieval. Often however, such annotations do
not exist and it is usually too expensive to generate them manually. In spe-
cific cases though, manual annotation can be a valid option, especially when
the collection is relatively small and fixed, and/or the quality of automatic
annotations is too low.

The application of automatic speech recognition (ASR) technology for
indexing purposes has been made possible thanks to the large improvements

7 Note that besides administrative and descriptive metadata, a third type of meta-
data is often distinguished: information about the structure and organization of
a multipart digital object that can be encoded MPEG-7/21.



7 Speech Indexing 207

in the performance of ASR systems in recent years. This is partly due to the
increase in computer power but also to massive speech recognition research
efforts especially in the context of benchmark evaluations (often sponsored
by DARPA8) ranging from evaluations focusing on read speech (Wall Street
Journal) in the early 1990s, via broadcast news speech in the second half of
the 1990s and conversational speech early this decennium to meeting room
speech most recently.

7.3.2 Requirements for Recognition Performance
IR-oriented benchmarks such as TREC (Text Retrieval Conference) demon-
strated that deploying ASR techniques has become more than a theoretical
option for the automatic annotation of speech for retrieval purposes. This is
especially the case in the broadcast news domain which is very general and
makes data collection for training a speech recognition system relatively easy.
For the broadcast news domain, speech transcripts approximate the qual-
ity of manual transcripts, at least for several languages. Spoken document
retrieval in the American-English broadcast news (BN) domain was even de-
clared “solved” with the Spoken Document Retrieval track at TREC in 2000.
However, in other domains than broadcast news and for other languages, a
similar recognition performance is usually harder to obtain due to a number
of factors including the lack of well-balanced speech databases for certain lan-
guages, the lack of domain-specific training data for certain domains, and of
course due to the large variability in audio quality and speech characteristics.
Some of these issues will be discussed in more detail in Section 7.4, but first
a number of general techniques used in spoken document retrieval will be
outlined.

7.3.3 Spoken Document Retrieval Techniques
Below, a number of techniques that can play a role in spoken document re-
trieval will be described in detail. Which combination of techniques is chosen
for the disclosure of a specific multimedia database depends on a number of
factors. For each of the techniques these factors will be listed. We will discuss:

• synchronization of available textual resources;
• large vocabulary speech recognition;
• keyword spotting;
• using subword as unit for representation.

The first two are the most frequently used techniques. The last two are some-
times used as the primary annotation strategy, but often in combination with
the first two techniques.

8 The Defense Advanced Research Projects Agency (DARPA) is the central re-
search and development organization for the US department of Defense.
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Synchronization of Collateral Data Sources
To allow the conceptual querying of video content without having to set-
up a speech recognition system to generate full-text transcriptions, collateral
textual resources that are closely related with the collection items can be
exploited. A well known example of such a textual resource is subtitling infor-
mation for the hearing-impaired (e.g., CEEFAX pages 888 in the UK) that
is available for the majority of contemporary broadcast items, in any case
for news programs. Subtitles contain a nearly complete transcription of the
words spoken in the video items and provide an excellent information source
for indexing. Usually, they can easily be linked to the video by using the time-
codes that come with the subtitles. The Dutch news subtitles even provide
topic boundaries that can be used for segmenting the news show into subdoc-
uments. Textual sources that can play a similar role are teleprompter files (the
texts read from screen by an anchor person, also referred to as auto-cues) and
scenarios. Teletext subtitles can relatively easy be obtained using the teletext
capturing functionality in most modern television boards. Teleprompter files
and scenarios of course have to be provided by the producers of the videos.

The time labels in these sources are crucial for the creation of a textual
index into video. In the collateral text sources mentioned above, the available
timelabels are not always fully reliable and can even be absent. In that case
the text files will have to be synchronized. Examples of such text sources are
minutes of meetings or written versions of lectures and speeches. Below, two
approaches for the automatic generation of timestamps for minutes will be
described using two scenarios: the synchronization of (i) the so-called Han-
delingen, i.e., the meetings of the Dutch Parliament, and (ii) the minutes of
Dutch city council meetings to the video recordings of the meetings. Due to
the difference in accuracy of the minutes, two different approaches are needed.

The minutes of the meetings of the Dutch Parliament are stenographic
minutes that closely follow the discourse of the meeting, only correcting slips
of the tongue and ungrammatical sentences. Given the close match with the
actual speech, a relatively straightforward so-called forced alignment proce-
dure could be used. Forced alignment is a technique commonly used in acoustic
model training in automatic speech recognition (ASR). In order to be able to
train phone models, words and phones in pre-segmented sentences are aligned
to their exact location in the speech segments using an acoustic model.9 Given
a set of words from a sentence the acoustic model tries to find the most op-
timal distributions of these words given the audio signal on the basis of the
sounds the words are composed of. When using alignment for indexing, pre-
segmented sentences are evidently not available but as long as the text follows
the speech well enough, the word alignment can be found by using relatively
large windows of text.

9 In the first iteration usually an “averaged” bootstrap model is used. The align-
ment and the model should improve iteratively.
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The alignment procedure works well even if some words in the minutes are
actually not in the speech signal. However, if the text to be aligned does not
match the speech too well, as was the case with city council meetings, and
if the text segments are too large, the alignment procedure will fail to find a
proper alignment. In order to produce suitable segments, a two-pass strategy
can be used, incorporating the following steps as visualized in Figure 7.3:

1. a baseline large vocabulary speech recognition system10 is used to generate
a relatively inaccurate transcript of the speech with word-timing labels,
referred to as hypothesis;

2. the hypothesis is aligned on the word level to the minutes using a dynamic
programming algorithm;

3. at the positions where the hypothesis and the minutes match (a match
may be defined as three words in a row are correctly aligned), so called
“anchors” are placed;

4. using the word-timing labels provided by the speech recognition system,
the anchors are used to generate suitable segments;

5. individual segments of audio and text are accurately synchronized using
forced alignment.

The described methods allow for the synchronization of audiovisual data to
available linguistic content that approximates to a certain extent the speech
in the source data and they enable the processing of conceptual queries of the
audiovisual content. In the second alignment procedure, an initial hypothesis
is generated by a large vocabulary speech recognition system. As this hypoth-
esis is only needed for finding useful segments, the performance of the system
is not crucial as long as it is able to provide “anchors”. However, the relevance
of speech recognition performance increases when textual resources suitable
for alignment with audiovisual data are not available. In the next section, the
application of speech recognition technology as the primary source for gener-
ating a textual representation of audiovisual documents that can be linked to
other linguistic content, is described.

Large Vocabulary Speech Recognition
Using speech recognition technology to convert spoken audio into text for re-
trieval purposes, may seem a rather obvious solution. However, in order to
obtain reasonable retrieval results, a speech recognition system has to pro-
duce reasonably accurate transcription of what was actually spoken. When
a system produces lots of errors, successful retrieval will be doubtful. When
it produces perfect transcripts, retrieval will resemble the performance of re-
trieving text documents. How accurate exactly speech recognition should be
for acceptable retrieval performance was uncertain at the outset of SDR re-
search, although some experience was gained with the retrieval of corrupted

10 Optionally the speech recognition is somewhat adapted to the task for example
by providing it with a vocabulary extracted from the minutes.
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Fig. 7.3. Alignment procedure: synchronization of text and audio in a number of
steps.

documents (e.g., from OCR) at TREC-5 in 1996. At the first SDR evaluation
at TREC-6 on broadcast news data, word error rates fell between 35 % and
40 % which appeared to be good enough for acceptable retrieval results in a
known-item retrieval task, simulating a user seeking one particular document.
Already at TREC-7, where the known-item retrieval task was replaced by
the ad hoc retrieval task of searching multiple relevant documents from sin-
gle topics, speech recognition performance was improved substantially – the
University of Cambridge HTK recognition system produced error rates below
the 25% – and almost all retrieval systems performed reasonably well. Also at
TREC-7, evidence could be provided for the assumption that better speech
recognition performance will also result in better retrieval performance. A
speech recognition performance of 50% WER is on the other hand regarded
as a minimum for obtaining useful retrieval performance.

In the TREC SDR tracks, retrieval systems that used automatic anno-
tations from a speaker-independent large vocabulary speech recognition sys-
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tems outperformed other approaches (e.g., phone based approach, see be-
low). Most multimedia retrieval systems that use speech transcripts nowadays
use such large vocabulary systems that exists in many flavors and configura-
tions. All systems are speaker-independent and have large vocabularies. The
speaker-independence is required in the context of indexing multimedia col-
lections as it is usually not known which speakers appear in the collection.
Although speaker adaptation strategies are often applied (for example by clus-
tering audio of single speakers and creating adapted, speaker specific models),
speaker-independent models are the basis for LVCSR in the context of mul-
timedia indexing. Speaker-independent models are typically trained using a
large amount of example audio data from the task domain to make sure that
most of the inter-speaker variabilities are captured. The large vocabulary is
also a prerequisite, given the variety of words encountered in fluent speech
and the fact that it is often very hard to predict which words are going to
be used by speakers in a task domain. Typically a vocabulary of 65 thousand
words (65 K) is used in LVCSR. Large corpora of text data are needed to train
language model probabilities for the words in the vocabulary.

Because of the the requirements for training a LVCSR system, setting up a
large vocabulary speech recognition system for a certain language in a specific
domain is complex and time consuming. It is crucial that sufficient amounts of
in-domain training data are available to enable the capturing of the acoustic
and linguistic variability in the task domain and to train robust acoustic mod-
els and language models. To give an impression of the amounts of data that are
used for typical systems in the English broadcast news benchmark tests, the
LIMSI/BBN11 2004 English Broadcast News speech recognition system uses
for acoustic model training some 140 hours of carefully transcribed broadcast
news audio data and for language model training the manual transcriptions of
the acoustic BN data (1.8 M words), the American English GigaWord News
corpus for a total amount of approximately 1 billion words of texts, and a few
hundreds of million words of other text data. A large part of this data became
available with the broadcast news benchmark evaluations (Hub4). For other
languages than English and for other domains than news such amounts of
annotated data can often not be laid hands on easily. In such cases, one has
to come up with strategies to deal with this lack of training data.

Especially in the context of retrieval, the out-of-vocabulary (OOV) prob-
lem in speech recognition deserves special attention. When a word is not in
the speech recognition vocabulary, it cannot be recognized and hence, will
not turn up in an annotation of a video document. In Section 7.4 strategies

11 The Computer Sciences Laboratory for Mechanics and Engineering Sciences
(LIMSI) is a research laboratory associated to Paris-6 and Paris-11 Universi-
ties and is one of the major players in large vocabulary speech recognition re-
search (www.limsi.fr). BBN technologies is a US company that has been per-
forming pioneering research in automatic speech recognition since the early 1970s
(www.bbn.com).
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that try to deal with this OOV problem are described in detail. One of these
strategies is making use of keyword spotting that is addressed next.

Keyword Spotting
Because of its relative simplicity, earliest attempts to deploy speech recogni-
tion technology in SDR made use of word spotting techniques to search for
relevant documents in audio material. A keyword spotter searches the audio
material for single keywords or multiword expressions (such as “New York” or
“football game”). An acoustic model is used to recognize phones and a small
vocabulary of keywords with phonetic transcriptions provide the link to the
keywords. Keyword searches are often weighted using a simple grammar (such
as a Finite State Grammar). Weighting can be uniform for all keywords or be
based on the probability distribution of the keywords in the database. Nor-
mally the spotter has a facility to reduce incorrect keyword hypotheses (false
alarms). This may be one single “garbage” model matching all non-keywords
or even a vocabulary of non-keywords.

A speech recognizer in keyword-spotter mode has the advantage of being
relatively light-weight as it does not use a computationally costly language
model. Therefore, keyword spotting was a feasible approach at times when
computer power was still limited. In early systems, keywords were usually
carefully fixed in advance. After the keyword spotting process was performed,
the spoken documents in the collection could be represented in terms of the
keywords found in the documents. Although, this method worked well within
a very restricted domain (such as the detection of weather reports) or topic
identification in speech messages, the fixed set of keywords often appeared to
be too limited for realistic tasks.

As computer power increased, keyword spotting could also be deployed
at retrieval time, enabling the search for any keyword given by the user.
However, keyword spotting at retrieval time may result in unacceptable delays
in response time, especially when the document collection is large. To avoid
this, an alternative word spotting technique called phone lattice scanning
(PLS) can be deployed. In PLS word spotting, phone lattices are created and
searched for the sequence of phones corresponding to a particular search term.
In this way keywords do not need to be chosen a priori so that any set of words
can be searched, and as the phone lattices are created before retrieval time,
delays in response time can be minimized.

But using keyword spotting for retrieval purposes has disadvantages. Re-
trieval will suffer from false alarms and missed keywords and especially short
words are hard to spot as keyword spotting relies solely on acoustic informa-
tion. This attracted SDR researchers to use large vocabulary speech recogni-
tion systems (LVCSR, discussed below) that can benefit from the restrictive
power of language models or to combine other speech recognition techniques
with word spotting. Especially when the mismatch between speech recogni-
tion vocabulary and domain vocabulary is hard to model and tends to produce
many out-of-vocabulary words, having word spotting functionality available
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as an ad hoc tool for searching either the audio directly or a phone or phone
lattice representation of the document be profitable. A typical example of a
deploying word spotting approach in combination with a full text transcrip-
tion approach would be the following strategy to recover names that were
misrecognized: (i) the initial speech recognition transcript is used to find re-
lated collateral text data; (ii) named entity detection in the collateral data
source provides relevant named entities given the document topic; (iii) the oc-
currence (and timings) of these named entities in the source data are recovered
using a word spotting approach.

In spite of its disadvantages, keyword spotting can be regarded as a use-
ful technique for the retrieval of spoken documents. The focus of the SDR
community however shifted toward large vocabulary speech recognition in the
late nineties due to massive research efforts resulting in substantial improve-
ments in speech recognition performance in SDR. But utilizing word spotting
techniques, either alone or in combination with other speech recognition tech-
niques, remains a good choice for a variety of applications, especially when
heavy-weight speech recognition is not feasible or useful.

SDR using Subword Unit Representations
While keyword spotting and LVCSR approaches largely focus on words as
representation units of the decoded speech in the document, an alternative
category of SDR approaches use subword unit representations such as phones,
phone n-grams, syllables or broad phonetic classes to deal with the retrieval
of spoken documents. Subwords are generated by either taking the output
of a phone recognizer directly (phones) or by post-processing this output to
acquire phone n-grams or other representations. A significant characteristic
of subword based approaches is that the document is represented in terms
of these subword units. At retrieval time, query words are translated into a
sequence of subword units which are matched with subword document repre-
sentations.

Note that keyword spotting using a phone lattice as described earlier,
resembles this type of approaches in the way that the query is translated into
a sequence of subword units, namely phones, that are matched with the phone
representation of the documents. However, keyword spotting aims at matching
particular sequences of phones in the document representations themselves
in order to map them to words, whereas in subword based approaches, the
matching is done using subword indexing terms.

As a phone recognizer requires only an acoustic model and a small phone
grammar to generate sequences of phones, the recognition process can do
with a relatively simple decoding algorithm. Compared to computationally
expensive large vocabulary speech recognition approach, the decoding step of
a subword based approach is much faster. Also, by deploying a phone rec-
ognizer, collecting large amounts of domain specific text data (that may be
unavailable) for language model training can be circumvented, which reduces
training requirements to the acoustic model training. Finally, as the phone
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recognizer does not need a vocabulary of words, a subword based approach
is less sensitive to out-of-vocabulary words, provided that the query words
can be converted to the subword representations using grapheme-to-phoneme
conversion tools.

However, depending solely on acoustic information, phone recognition sys-
tems tend to produce higher error rates, resulting in less accurate docu-
ment representations. To compensate for the decrease in precision, hybrid
approaches have been proposed where for example the subword unit approach
is used as a pre-selection step for a word spotting approach.

7.4 Robust Speech Recognition and Retrieval
If speech recognition technology is deployed to support retrieval tasks, the
recognition accuracy must be analyses in this context. Whereas in dictation
systems for example, it is of utmost importance to have a high speech recogni-
tion accuracy level for all words, for retrieval purposes it is important to have
at least the content words right, e.g., nouns, proper names, adjectives and
verbs. During the indexing process, function words (articles, auxiliary verbs,
etc.) are filtered out anyway. The usually smaller function words bear less
acoustic information and therefore have a high change to be misrecognized by
speech recognition systems. Therefore, analyzing the global word error rate of
an ASR system for evaluating its feasibility for retrieval may not always be
adequate. The word error rate is based upon a comparison of a reference tran-
scription of the test material with the output of the recognizer referred to as
the hypothesis transcription. The scoring algorithm searches for the minimum
edit distance in words between the hypothesis and reference and produces the
number of substitutions, insertions and deletions that are needed to align the
reference with the hypothesis. The word error rate WER is then defined as:

WER =
Insertions + Deletions + Substitutions

Total words in reference
. (7.8)

Disregarding words that are in a list of stop-words during evaluation is one
of the strategies that can be used for scaling the word error rate. Another
strategy is to compute the term error rate TER, that is defined as:

TER =
∑

t∈T |R(t) − H(t)|
|T | , (7.9)

where R(t) and H(t) represent the number of occurrences of query term t in
the reference and the hypothesis respectively, and |T | =

∑
t∈T R(t). The TER

gives a more accurate measure of speech recognition performance conditioned
on a retrieval system as it takes only the misrecognized query terms into
account.

In practice, the word error rate is nevertheless frequently used as an indica-
tion of quality. In general, a word error rate of 50% is regarded as an adequate



7 Speech Indexing 215

baseline for retrieval. However, for certain collections, it can be hard enough to
achieve this goal of having at least half of the words right. In the following sec-
tion, we describe a strategy that aims at improving retrieval based on noisy
speech recognition transcripts itself by making use of parallel text corpora
(Section 7.4.1). Next, three strategies to reach optimal speech recognition are
described: optimization of the speech recognition vocabulary in Section 7.4.2,
generation of topic specific language models in Section 7.4.3, and acoustic
model adaptation in Section 7.4.4.

7.4.1 Query and Document Expansion
A technique applied in information retrieval that is specifically worth men-
tioning in the context of spoken document retrieval, is query expansion. As
the term already suggests, this technique simply adds words to the query
in order to improve retrieval performance. In query expansion the document
search is basically performed twice. After an initial run, a selection of the top
N most relevant documents generates a list of terms ranked by their weight
(e.g., a tf.idf weight). The top T terms of this list are then added to the query
and the search is repeated using the enriched query. Query expansion can be
performed using retrieved documents from the same collection, or using re-
trieved documents from another (parallel) corpus. In the former case, query
expansion is referred to as blind relevance feedback , in the latter it is called
parallel blind relevance feedback. As the speech recognition system in a spoken
document retrieval task may have produced errors or may have missed impor-
tant words, it can be useful to apply parallel blind relevance feedback using a
corpus without errors, such as a manually transcribed corpus, in order to re-
duce retrieval misses due to speech recognition errors. In other approaches to
query expansion, compound words are split, geographic names are expanded
(e.g., “The Netherlands” to “Amsterdam, . . . , Zaandam”) and hyponyms of
unambiguous nouns are added (e.g., “flu, malaria, etc.” are added given “dis-
ease”) using thesauri and dictionaries. Also the opposite approach, document
expansion is applied to alleviate the effect of speech recognition errors on re-
trieval performance. However, this approach does not work that well when
story segmentation is unknown.

7.4.2 Vocabulary Optimization
For successful retrieval, the minimization of out-of-vocabulary (OOV) words
in the speech-to-text conversion step is important. OOV words may result
in OOV query words (QOV): words that appear in a user’s query and also
occurred in the audio document but – as they were OOV – could not be rec-
ognized correctly. OOV’s damage retrieval performance in two ways: firstly,
given a query with a QOV word, the QOV word leads to a word miss in
searching. Secondly, its replacement potentially induces a false alarm for other
queries. Document expansion and query expansion techniques are often de-
ployed to compensate for QOV’s in information retrieval. However, especially
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when OOV words are named entities, attempts to minimize the number of
OOV words beforehand is beneficial. To enable the selection of an appropri-
ate set of vocabulary words, typically text data that closely resemble the task
domain are deployed to obtain an indication of the word usage in the task
domain. The broadcast news (BN) domain is a relatively “open” with respect
to word usage. Predicting exactly which words are to be used in news items
is virtually impossible and as a result of this, the usual approach is to include
as many words as possible in the vocabularies so that at least the majority
of the words occurring are covered. The maximum number of words that can
be included in the vocabulary is restricted by the number of words a speech
recognition system can deal with, typically 65 K words12 But as news topics
are constantly changing, it is necessary to revise the selection of vocabulary
words with regular intervals. By doing so, words that have shown an increased
news value due to recent events, but were not in a vocabulary created earlier,
can be recognized as well. On the other hand, words that become outdated,
such as for example the name of a former minister that has a very low chance
to appear in the news again, should be removed in order to avoid that these
obsolete words are confused acoustically with other words in the vocabulary.
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Fig. 7.4. Relative frequency statistics plotted in time of the words “Clinton” and
“Bush”. “Clinton” is showing a decreasing news value, whereas “Bush” is increasing.

12 The reason for limiting the vocabulary to 65K words in large vocabulary speech
recognition is often for efficiency reasons. Words in the language model are repre-
sented by an integer index, which fit in 16-bit integers when the vocabulary size
is limited to 216 = 65536.
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Fig. 7.5. Relative frequency statistics plotted in time of “Poederbrief” showing that
word suddenly appears in the news.

In Figures 7.4–7.6 the changing news value of words are visualized. Relative
frequency statistics of word occurrences in a newspaper database are plotted
in time (1999–2003). Figure 7.4 shows the decrease in news value of the word
“Clinton” in favor of “Bush”, whereas Figure 7.5 shows the word “poeder-
brief” (letter containing possibly poisonous powder) that suddenly appears
after the 9/11 terrorist attacks. In the first example, one could think of re-
moving “Clinton” from the vocabulary after a certain period of time. The
appearance of word in the second example however cannot be “foreseen” (it
suddenly appears) and can only be incorporated in the speech recognition
vocabulary after it is first seen. Another category of words appear only (or
mostly) in certain times of the year such as “Santa-Claus”, “Christmas” and
“Prinsjesdag”(see Figure 7.6). One could decide to include such words in the
vocabulary only during the relevant periods with a certain overlap.

In order to use a dynamic vocabulary that is updated on the basis of the
news value of words, a parallel text corpus is needed for generating word oc-
currence statistics. An obvious approach is to extract text data from Internet
news sites on a daily basis. Having such a corpus available a vocabulary se-
lection strategy has to be chosen. Typically new words that exceed a certain
frequency threshold are added to the vocabulary but other, more fine-grained
strategies are conceivable, depending on available parallel text corpora. Note
however that for commercial applications, intellectual property rights (IPR)
can make the exploitation of text corpora difficult.
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Fig. 7.6. Relative frequency statistics plotted in time of “Christmas” and “Santa-
Claus”.

7.4.3 Topic-based Language Models
The use of topic-based language models is a somewhat different approach
towards domain adaptation on the word level then the vocabulary selection
approach discussed in the previous section. Here, instead of selecting words
that are expected to appear in a task domain globally, words are selected
with a focus on a specific segment of an audio document. Moreover, topic-
based language model also try to incorporate those n-gram that are specific
for a certain topic. A very simple example would be n-grams concerning the
word ‘bank’: in a financial topic the four-gram “go to the bank” is more likely
then “sit on the bank”. A financial-specific language model should reflect
these topic specific statistics. More generally, one could interpret topic-specific
language models as attempts to model topic-specific “matters of speaking”,
more accurately.

Building topic-based language models in principle requires five steps:

• segmentation of the audio file;
• initial speech recognition on the audio segments;
• defining the “topic” on the basis of the speech transcripts;
• creating a topic specific language model;
• final speech recognition run using topic-based language model.
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Ideally a segmentation of the audio file in order to apply topic-based language
models results in a number of subsequent segments that can be interpreted to
be on one single topic. In practice, real topic segmentations are usually not
known a priori so that often readily available segmentations, such as on the
change of speaker, on longer silence intervals or even fixed time windows (see
also Section 7.5 below), are chosen to divide the audio document in smaller
parts. These parts are then further regarded as representing single topics. For
each segment, a baseline speech recognition system provides an initial textual
transcription.

On the basis of the speech transcript a topic must be assigned to the
segment, either implicitly or explicitly. An explicit topic assignment refers
to using specific topic labels, for example generated on the basis of a topic-
classification system that assigns thesaurus terms. From a collateral text cor-
pus (e.g., a newspaper corpus) that is labeled with the same thesaurus terms
documents that are similar to the topic in the segment can be harvested for
creating a topic-specific language model. For implicit topic assignment, an
information retrieval system is used for the selection of documents from an
unstructured collateral text source that have a similar topic: on the basis of
the speech transcript (stop-words removed) that serves as a query, a ranked
list of similar documents is generated; the top N documents of the list in
turn serve as input for language modeling. Having created a topic specific
language model a second speech recognition run is performed on the same
segment with the new language model to generate the final transcript. The
procedure is visually depicted in Figure 7.7.

A drawback of the procedure is that the two recognition runs, the search
for related text documents and building the language models takes quite some
time. When the topics are broadly defined (e.g., economics, sports, etc.) the
language models could best be created a priori therefore. Note also that in
an alternative set-up, the segmentation can in theory be done on the basis of
topic segmentation on the speech transcript of the complete audio document.
However, as the initial speech transcripts has errors, the accuracy of the text-
based topic segmentation may be low.

7.4.4 Acoustic Adaptation
A robust speech recognition system can be defined as a system that is capable
of maintaining good recognition performance even when the quality of the
speech input is low (environment, background noises, cross-talk, low audio
quality) or when the acoustical, articulatory, or phonetic characteristics of
the speech encountered in the training data differ from the speech in the
task data. Speaker-to-speaker characteristics may vary enormously due to a
number of factors, including:

• vocal tract length difference (gender);
• age;
• speaking style (pronunciation, speed);
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• regional accents;
• emotion;
• non-nativeness.

Even systems that are designed to be speaker independent cannot cover all
the speaker variations that may occur in the task domain. A possible strategy
to deal with the variation encountered in the task domain would be to collect
domain specific data for additional training in order to capture the environ-
ment characteristics or, when there are only a few speakers, train speaker
dependent models. This strategy however has some drawbacks. Firstly, set-
ting up a domain specific training collection is costly. For acoustic training
purposes the speech data needs to be annotated on the word level, which takes
an experienced annotator approximately 10 hours for every hour. Secondly,
the variability in the task domain can simply be too large for additional train-
ing to be successful (multiple acoustic conditions, large number of speakers of
varying signature, etc.).

The alternative of doing additional training is to apply normalization pro-
cedures (speaker normalization, noise suppression) and dynamic adaptation
procedures. The idea is to start with a general, relatively stable baseline
system and tune this system to the specific conditions in the task domain
automatically. Below, three frequently used techniques are discussed in brief.
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Vocal Tract Length Normalization
The vocal tract is the area in between the lips and the glottis. It is often
imagined as a tube which length and shape have a determining effect on
the resonance characteristics and hence the characteristics of the speech. The
length of the vocal tract of speakers differs. The average length for white
American adult males is said to be 17 cm, but this varies strongly with the
physical dimension of the person. A short vocal tract tends to result in for-
mants at a higher frequency and long vocal track lengths with lower formant
frequencies.

Over the past 10 years VTLN has become a standard normalization tech-
nique in speaker-independent speech recognition. With vocal tract length nor-
malization (VTLN) the aim is to compensate for the acoustic difference due to
vocal tract length by normalizing the spectra of speakers or clusters of speakers
to that of a “generic” speaker during training and testing. The normalization
is done by warping the frequency axis of the spectra by an appropriate warp
factor prior to the feature extraction procedure. Different warping techniques
have been reported: frequency warping both linear and exponential nonlinear
and Bark/Mel scale warping.

MAP and MLLR Adaptation
Whereas with VTLN the adaptation is done by normalizing spectral infor-
mation (feature space normalization), other adaptation methods aim at ad-
justing the model parameters (model-space transformation). The advantage
of the model-space transformation is that the normalization has to be per-
formed only once instead of every time new speech input has to be decoded.
A disadvantage however is that one may end up with a variety of adapted
models.

Model adaptation can be done off-line or at preparation time and online, at
runtime. Off-line (or batch) adaptation refers to situations in which is known
that the acoustic model has to be adapted for one single speaker or acoustic
condition (typically in dictation tasks). The approach here is to collect as
little adaptation data as possible to achieve an acceptable performance as
collecting the adaptation data can be expensive (as discussed above). In on-
line adaptation, the adaptation is during at recognition time. As a consequence
only very little data is available and the adaptation algorithms should not be
too complex in order to avoid huge delays. Often, online-adaptation requires
multiple decoding passes.

As in the context of spoken document retrieval on-line adaptation is most
needed, we restrict ourselves to this adaptation mode. A very effective and
popular model adaptation technique is Maximum Likelihood Linear Regression
(MLLR). With MLLR estimation the aim is to capture the general relation-
ship between the speaker independent modal set and the current speaker by
transforming the model means to fit the adaptation data. This is done by
estimating a global linear model transformation matrix in order to maximize
the likelihood of generating the adaptation data.
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In MLLR adaptation clusters of model parameters are transformed simul-
taneously using a shared function that is estimated from available adaptation
data. Because of this sharing, transformation-based adaptation techniques
are especially attractive in situations where the amount of adaptation data is
limited. MLLR adaptation is an indirect model adaptation approach. Direct
model adaptation techniques do not assume any underlying functional trans-
formation. Here, acoustic units are re-estimated for which adaptation data is
available. As acoustic units that are not observed in the adaptation are not
modified, this type of adaptation leads to local adaptation. In direct adapta-
tion Bayesian learning, often implemented via maximum a posteriori (MAP)
estimation, is a commonly used approach. MAP adaptation combines the in-
formation provided by the adaptation data with some prior knowledge about
the model parameters described by a prior distribution. When the amount
of adaptation data increases, MAP converges slowly to maximum likelihood
estimation. A large amount of adaptation data is needed however to observe
a significant performance improvement.

7.5 Audio Segmentation
Although timelabeled speech transcripts can directly be used to identify rele-
vant items in within an audio collection, segmenting of longer audio documents
is a helpful intermediate step. Segmentation can be done according to a par-
ticular condition such as speaker, speech/non-speech, silence, or even topic,
into homogeneous subdocuments that can be accessed individually. This is
convenient, as scrolling through a large unstructured audio or video fragment
to identify interesting parts can be cumbersome. Audio segmentation can be
advantageous from a speech recognition point of view as well, as it allows
for segment based adaptation of the recognition models as will be discussed
below. A frequently applied adaptation scheme is based on speaker identity.

Using a fixed overlapping time window, or fixed number of words to seg-
ment an audio stream is a simple but in cases very effective segmentation
approach that does not rely on special segmentation tools. When the win-
dow and overlap ranges are chosen well, it can provide a document struc-
ture that can already usefully be deployed for certain retrieval tasks, such
as word-spotting. But a segmentation based on audio features is much more
informative and helpful both from a retrieval and speech recognition point
of view. With a segmentation according to speaker for example, a retrieval
results can be structured and presented according to speaker identity (us-
ing an ID or even a name when combined with speaker identification). In
addition speaker dependent modeling schemes can be applied in order to im-
prove speech recognition performance. Useful segmentation cues are in general
provided by techniques that aim at the labeling of the source of audio data
(e.g., acoustic environment, bandwidth, speaker, gender), often referred to as
“diarization” or “non-lexical information generation”.
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7.6 Cross-media Mining
In Section 7.3.3 the alignment of collateral data such as subtitling information
to the audiovisual source was discussed as a convenient metadata generation
approach. Ideally one would not only synchronize audiovisual material with
content that approximates the speech in the data such as with subtitles or
minutes, but take even one step further and exploit any collateral textual
resource, or even better: any kind of textual resource that is accessible, in-
cluding open source titles and proprietary data (e.g., trusted Web pages and
newspaper articles). Another way of putting it is to shift the focus from in-
dexing individual multimedia documents to video-mining in truly multimedia
distributed databases. In the context of meetings for example, usually an
agenda, documents on agenda topics and CVs of meeting participants can
be obtained and added to the repository. Mining these resources can support
information search because it yields annotations that offers the user not just
access to a specific media type, but also different perspectives on the available
data. An agenda could help to add structure that can for example be pre-
sented in a network representation, whereas CVs can be linked to annotations
resulting from automatic speaker segmentation. In addition, both documents
and CVs would allow for multisource information extraction.

A typical example of what the cross-media perspective can yield in the
broadcast news domain is the linking of newspaper articles with broadcast
items and vice versa. Links can be established between two news objects
which count is similar on the basis of the language models assigned to them
via statistical analysis. Typically such language models are determined by the
frequency of the linguistic units such as written or spoken words and their
co-occurrences. The similarity between two documents can be decided for
each pair of documents, but a more common approach is to pre-structure a
document collection into clusters of documents with similar language models.
Similarity of language models predicts similarity of topic, and therefore this
technique is known as topic clustering.13

In addition to linking documents with a similar topic profile, which can
be supportive in a browser environment, also the available semantic annota-
tion for documents with similar profiles can be exchanged and exploited for
conceptual search. If a newspaper article has been manually classified as be-
longing to, e.g., economy or foreign politics, a broadcast item with a similar
language model can be classified with these conceptual labels as well.

7.7 Summary
In this chapter the focus was on the automatic extraction of information from
the speech in multimedia documents. The larger part of this chapter was con-
cerned with the use of speech recognition technology for automatic metadata
13 The functionality commonly known as topic detection and tracking (TDT) for

dynamic news streams has been built upon it and plays a central role in the
evaluation series for TDT organized by DARPA.
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extraction. After a brief introduction to speech recognition a number of spoken
document retrieval techniques have been discussed: alignment of available tex-
tual data sources, keyword spotting, subword unit based approach, and finally
large vocabulary speech recognition. It was shown that for certain domains
acquiring a speech recognition performance that is suitable for retrieval pur-
poses can be hard and that approaches aiming at robust speech recognition
on the one hand, and search error minimization on the other hand can be
deployed in such difficult domains. The chapter was finalized by discussing
some properties of segmentation, an important topic from both a information
retrieval and speech recognition development point of view, and by introduc-
ing the concept of cross-media mining where the focus is less on searching (an
index of) a multimedia database, but on enabling new views on the data by
cross-linking all the available multifaceted information sources in a multimedia
database.

7.8 Further Reading
Given the large amount of topics that are relevant in the context of informa-
tion extraction from speech, it is hardly feasible to provide a list of interesting
(key) publications for further reading. A lot of information on large vocabulary
speech recognition and spoken document retrieval can be obtained via the In-
ternet, for example via NIST (http://www.nist.gov/speech/tests/rt/ or
http://www.nist.gov/speech/publications/index.htm) and via the pub-
lication lists of important players in the field such as the LIMSI Spoken
Language Processing Group (http://www.limsi.fr/tlp/), BBN technolo-
gies (http://www.bbn.com/), the SRI Speech Technology and Research Lab-
oratory (http://www.speech.sri.com/) or the Speech Research Group at
Cambridge (http://mi.eng.cam.ac.uk/research/speech/), to name only
a few.

A selection of journals in the area of speech recognition and spoken docu-
ment retrieval are:

• Speech Communication;
• Computer, Speech and Language;
• Journal of the Acoustical Society of America;
• IEEE Transactions on Speech and Audio Processing.

A large number of text books are available on topics such as speech processing,
signal analysis, and speech recognition. Two examples are:

• Speech and Language Processing, An Introduction to Natural Language
Processing, Computational Linguistics, and Speech Recognition, Daniel Ju-
rafsky and James H. Martin, Prentice Hall, 2000.

• Statistical Methods for Speech Recognition, Frederick Jelinek, The MIT
Press, January 1998.
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8.1 Introduction
Query-by-keyword is the paradigm on which machine-based text search is
still based. Elaborating on the success of text-based search engines, query-
by-keyword also gains momentum in multimedia retrieval. For multimedia
archives it is hard to achieve access, however, when based on text alone. Mul-
timodal indexing is essential for effective access to video archives. For the
automatic detection of specific concepts, the state-of-the-art has produced so-
phisticated and specialized indexing methods. Other than their textual coun-
terparts, generic methods for semantic indexing in multimedia are neither
generally available, nor scalable in their computational needs, nor robust in
their performance. As a consequence, semantic access to multimedia archives
is still limited. Therefore, there is a case to be made for a new approach to
semantic video indexing.

The main problem for any semantic video indexing approach is the seman-
tic gap between data representation and their interpretation by humans, as
identified by Smeulders et al. [32]. In efforts to reduce the semantic gap, many
video indexing approaches focus on specific semantic concepts with a small
intra-class and large inter-class variability of content. Typical concepts and
their detectors are sunsets by Smith and Chang [33] and the work by Zhang et
al. on news anchors [43]. These concepts have become icons for video index-
ing. Although they have aided in achieving progress, this approach is limited
when considering the plethora of concepts waiting to be detected. It is simply
impossible to bridge the semantic gap by designing a tailor-made solution for
each concept.

In this chapter we present a generic semantic video indexing method, which
builds on the observation that produced video is the result of an authoring
process. When producing a video, an author departs from a conceptual idea.

∗ © 2006 IEEE. Reprinted, with permission, from IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(10):1678–1689, October 2006 [38].
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The semantic intention is then articulated in (sub) consciously selected con-
ventions and techniques for the purpose of emphasizing aspects of the content.
The intention is communicated in context to the audience by a set of com-
monly shared notions. We aim to link the knowledge of years of media science
research to semantic video analysis, see for example Boggs and Petrie [7] and
Bordwell and Thompson [9]. We use the authoring-driven process of video
production as the leading principle for generic video indexing.

Viewing semantic video indexing from an authoring perspective has the
advantage that the most successful existing video indexing methods may be
combined in one architecture. We first consider the vast amount of work per-
formed in developing detection methods for specialized concepts [2, 5, 16, 18,
33, 43, 41]. If we measure the success of these methods in terms of benchmark
detection performance, Informedia [18, 41] stands out. They focus on com-
bining techniques from computer vision, speech recognition, natural language
understanding, and artificial intelligence into a video indexing and retrieval
environment. This has resulted in a large set of isolated and specialized con-
cept detectors [18]. We build our generic indexing approach in part on the
outputs of their detectors, but we do not use them in isolation.

In comparison to specialized detection methods, generic semantic indexing
is rare. We discuss three successful examples of generic semantic indexing ap-
proaches [3, 13, 39]. Firstly, Fan et al. [13] propose the ClassView framework.
The framework combines hierarchical semantic indexing with hierarchical re-
trieval. At the lowest level, the framework supports indexing of shots into
concepts based on a large set of low-level visual features. At the second level
a Bayes classifier maps concepts to semantic clusters. By assigning shots to
a hierarchy of concepts, the framework supports queries based on semantic
and visual similarity. As the authors indicate, the framework will provide
more meaningful results if it would support multimodal content analysis. We
aim for generic semantic indexing also, but we include multimodal analysis
from the beginning. Secondly, Amir et al. [3] propose a system for semantic
indexing using a detection pipeline. The pipeline starts with feature extrac-
tion, followed by consecutive aggregations on features, multiple modalities,
and concepts. The pipeline optimizes the result by rule-based post filtering.
We interpret the success of the system by the fact that all modules in the
pipeline select the best of multiple hypotheses, and the exhaustive use of ma-
chine learning. Moreover, the authors were among the first to recognize that
semantic indexing profits substantially from context. We adopt and extend
their ideas related to hypothesis selection, machine learning, and the use of
context for semantic indexing. All of the above generic methods ignore the
important influence of the video production style in the analysis process. In
addition to content and context, we identify layout and capture in [39] as im-
portant factors for semantic indexing of produced video. We propose in [39]
a generic framework for produced video indexing combining four sets of style
detectors in an iterative semantic classifier. Results indicate that the method
obtains high accuracy for rich semantic concepts, rich meaning that concepts
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share many similarities in their video production process. The framework is
less suited for concepts that are not stylized. In the current paper, we gener-
alize the idea of using style for semantic indexing.

We propose a generic approach for semantic indexing, we call the seman-
tic pathfinder. It combines the most successful methods for semantic video
indexing [3, 18, 39, 41] into an integrated architecture. The design princi-
ple is derived from the video production process, covering notions of content,
style, and context. The architecture is built on several detectors, multimodal
analysis, hypothesis selection, and machine learning. The semantic pathfinder
combines analysis steps at increasing levels of abstraction, corresponding to
well-known facts from the study of film and television production [7, 9]. Its
virtue is its ability to learn the best path, from all explored analysis steps, on a
per-concept basis. To demonstrate the effectiveness of the semantic pathfinder,
the semantic indexing experiments are evaluated within a case study, using
85 hours of broadcast news video [30, 31].

8.1.1 Relation to Other Chapters
Chapter 2 discussed the important issue of multimedia management using
metadata standards. An overview of basic machine learning techniques for
recognizing patterns in multimedia content was presented in Chapter 3. Chap-
ters 4, 5, and 7 presented an in-depth coverage of unimodal media analysis
approaches on text, image, and speech respectively. In this chapter we present
a unifying view to automatic extraction of metadata from multimedia sources,
specifically focusing on multimodal video analysis in combination with ma-
chine learning.

8.1.2 Outline
The organization of this chapter is as follows. First, we introduce the broadcast
news case study in Section 8.2. We highlight the data set used and elaborate
on the lexicon of concepts that we index in a generic fashion. Our system
architecture for semantic video indexing is presented in Section 8.3. We discuss
its general machine learning architecture and its successive analysis steps. We
present results in Section 8.4.

8.2 A Case Study on Broadcast News Video
8.2.1 Multimedia Archive
We focus on news video as a case study to study the problem of generic
semantic indexing. The archive of choice is composed of 184 hours of ABC
World News Tonight and CNN Headline News and is recorded in MPEG-
1 format. The training data contains approximately 120 hours covering the
period of January until June 1998. The 2004 test data contains the remaining
64 hours, covering the period of October until December 1998. Together with
this video archive, CLIPS-IMAG [26] provided a camera shot segmentation.
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We evaluate our semantic indexing approach on this data set to demonstrate
the effectiveness of the semantic pathfinder for semantic access to multimedia
archives.

8.2.2 Concept Lexicon
Before we elaborate on the video indexing architecture, we first define a lexicon
ΛS of 32 semantic concepts. The lexicon is indicative for future efforts to detect
as much as 1000 concepts [17]. At present, it serves as a non-trivial illustration
of concept possibilities. The semantic concept lexicon consists of the following
concepts:

ΛS = {airplane take off, American football, animal, baseball, basket scored,
beach, bicycle, Bill Clinton, boat, building, car, cartoon, financial news
anchor, golf, graphics, ice hockey, Madeleine Albright, news anchor, news
subject monologue, outdoor, overlayed text, people, people walking, physical
violence, road, soccer, sporting event, stock quotes, studio setting, train,
vegetation, weather news}.

Instantiations of the concepts in the lexicon are portrayed in Figure 8.1. The
lexicon contains both general concepts, like building, boat, and outdoor, as well
as specific concepts such as news subject monologue and people walking. We
aim to detect all 32 concepts with the proposed system architecture.

8.3 Semantic Pathfinder
The semantic pathfinder is composed of three analysis steps. It follows the
reverse authoring process. Each analysis step in the path detects semantic
concepts. In addition, one can exploit the output of an analysis step in the

Airplane

take off

Physical

violence

News subject

Monologue

American

football

Animal Baseball Basket

scored

Beach Bicycle Bill Clinton

Boat Building Car Cartoon Financial news

anchor

Golf Graphics Ice hockey

Madeleine

Albright

News anchor Outdoor Overlayed text People People walking

Road Soccer Sporting event Stock quotes Studio setting Train Vegetation Weather news

Fig. 8.1. Instances of the 32 concepts in the lexicon, which we aim to detect with
the semantic pathfinder.



Semantic Video Indexing 229

Multimedia raw data

Feature vector

Semantic concept probability

Semantic classifier

Annotations

Data flow conventions

Fig. 8.2. Data flow conventions as used in this chapter. Different arrows indicate
difference in data flows.

path as the input for the next one. The semantic pathfinder starts in the
content analysis step. In this analysis step, we follow a data-driven approach
of indexing semantics. The style analysis step is the second analysis step. Here
we tackle the indexing problem by viewing a video from the perspective of
production. This analysis step aids especially in indexing of rich semantics.
Finally, to enhance the indexes further, in the context analysis step, we view
semantics in context. One would expect that some concepts, like vegetation,
have their emphasis on content where the style (of the camera work that is)
and context (of concepts like graphics) do not add much. In contrast, more
complex events, like people walking, profit from incremental adaptation of the
analysis to the intention of the author. The virtue of the semantic pathfinder
is its ability to find the best path of analysis steps on a per-concept basis.

The analysis steps in the semantic pathfinder exploit a common archi-
tecture, with a standardized input-output model, to allow for semantic inte-
gration. The conventions to describe the system architecture are indicated in
Figure 8.2. An overview of the semantic pathfinder is given in Figure 8.3.

8.3.1 Analysis Step General Architecture
We perceive semantic indexing in video as a pattern recognition problem.
We first need to segment a video. We opt for camera shots, indicated by
i, following the standard in literature. Given pattern x, part of a shot, the
aim is to detect a semantic concept ω from shot i using probability p(ω|xi).
Each analysis step in the semantic pathfinder extracts xi from the data, and
exploits a learning module to learn p(ω|xi) for all ω in the semantic lexicon
ΛS . We exploit supervised learning to learn the relation between ω and xi. The
training data of the multimedia archive, together with labeled samples, are
for learning classifiers. The other data, the test data, are set aside for testing.
This division prevents overtraining of the classifier. The general architecture
for supervised learning in each analysis step is illustrated in Figure 8.4.
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Fig. 8.3. The semantic pathfinder for one concept, using the conventions of Fig-
ure 8.2.

Supervised learning requires labeled examples. In part, we rely on the ground
truth, which accompanies our news video data, provided by [20]. We remove
the many errors from this manual annotation effort. It is extended to arrive
at an incomplete, but reliable ground truth for all concepts in lexicon ΛS .
We split the training data a priori into a non-overlapping training set and
validation set to prevent overfitting of classifiers in the semantic pathfinder. It
should be noted that a reliable validation set would ideally require an as large
as possible percentage of positively labeled examples, which is comparable to
the training set. In practice this may be hard to achieve, however, as some

Fig. 8.4. General architecture of an analysis step in the semantic pathfinder, using
the conventions of Figure 8.2.
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concepts are sparse. The training set we use contains 85% of the training data,
the validation set contains the remaining 15%. We summarize the percentage
of positively annotated examples for each concept in training and validation
set in Table 8.1.

We choose from a large variety of supervised machine learning approaches
to obtain p(ω|xi). For our purpose, the method of choice should be capa-
ble of handling video documents. To that end, ideally it must learn from a
limited number of examples, it must handle unbalanced data, and it should
account for unknown or erroneously detected data. In such heavy demands,
the Support Vector Machine (SVM) framework [12, 40] has proven to be a
solid choice [3, 35]. In this framework each pattern x is represented in an n-
dimensional space, spanned by extracted features. Within this feature space
an optimal hyperplane is searched that separates it into two different cate-
gories, where the categories are represented by +1 and −1 respectively. The
hyperplane has the following form: ω|(w · x + b)| ≥ 1, where w is a weight
vector, and b is a threshold. A hyperplane is considered optimal when the dis-
tance to the closest training examples is maximum for both categories. This
distance is called the margin, see the example in Figure 8.5. The problem of
finding the optimal hyperplane is a quadratic programming problem of the
following form [40]:

min
w,ξ

{1
2
w · w + C

( l∑

i=1

ξi

)}
, (8.1)

under the following constraints:

ω|(w · xi + b)| ≥ 1 − ξi, for i = 1, 2, . . . , l , (8.2)

where C is a parameter that allows us to balance training error and model
complexity, l is the number of shots in the training set, and ξi are slack vari-
ables that are introduced when the data is not perfectly separable. These slack
variables are useful when analyzing multimedia, since results of individual fea-
ture detectors typically include a number of false positives and negatives. The
usual SVM method provides a margin, γ(xi), in the result. We prefer Platt’s
conversion method [25] to achieve a posterior probability of the result. It is
defined as:

p(ω|xi) =
1

1 + exp(αγ(xi) + β)
, (8.3)

where the parameters α and β are maximum likelihood estimates based
on training data. SVM classifiers thus trained for ω, result in an estimate
p(ω|xi,q), where q are parameters of the SVM yet to be optimized.

The influence of the SVM parameters on concept detection is signifi-
cant [22]. We obtain good parameter settings for a classifier, by using an
iterative search on a large number of SVM parameter combinations. We mea-
sure average precision performance of all parameter combinations and select
the combination that yields the best performance, q∗. Here we use a three-
fold cross-validation [19] to prevent overfitting of parameters. The result of
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Table 8.1. Semantic concepts and the percentage of positively labeled examples
used for the training set and the validation set.

Semantic concept Training (%) Validation (%)

Weather news 0.51 0.43
Stock quotes 0.26 0.30
News anchor 3.91 3.99
Overlayed text 0.26 0.17
Basket scored 1.07 0.97
Graphics 1.06 1.05
Baseball 0.74 0.66
Sporting event 2.27 2.44
People walking 1.92 1.97
Financial news anchor 0.35 0.35
Ice hockey 0.36 0.47
Cartoon 0.60 0.73
Studio setting 4.94 4.65
Physical violence 2.73 3.14
Vegetation 1.60 1.59
Boat 0.55 0.45
Golf 0.14 0.25
People 3.89 3.99
American football 0.05 0.10
Outdoor 7.52 8.60
Car 1.57 2.10
Bill Clinton 0.97 1.41
News subject monologue 3.84 3.96
Animal 1.35 1.34
Road 1.44 1.98
Beach 0.42 0.61
Train 0.21 0.36
Madeleine Albright 0.18 0.02
Building 4.95 4.81
Airplane take off 0.89 0.87
Bicycle 0.28 0.27
Soccer 0.06 0.09

the parameter search over q is the improved model p(ω|xi,q∗), contracted to
p∗(ω|xi).

This concludes the introduction of the general architecture of all analysis
steps in the semantic pathfinder.

8.3.2 Content Analysis Step
We view video in the content analysis step from the data perspective. In
general, three data streams or modalities exist in video, namely the auditory
modality, the textual modality, and the visual one. As speech is often the
most informative part of the auditory source, we focus on textual features
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Margin

Fig. 8.5. Visual representation of the support vector machine framework. Here a
two-dimensional feature space consisting of two categories is visualized. The solid
bold line is chosen as optimal hyperplane because of the largest possible margin. The
circled data points closest to the optimal hyperplane are called the support vectors.

obtained from transcribed speech and visual features. After modality specific
data processing, we combine features in a multimodal representation. The
data flow in the content analysis step is illustrated in Figure 8.6.

Visual Analysis
In the visual modality, we aim for segmentation of an image frame f into
regional visual concepts. Ideally, a segmentation method should result in a
precise partitioning of f according to the object boundaries, referred to as
strong segmentation. However, weak segmentation, where f is partitioned into
internally homogenous regions within the boundaries of the object, is often
the best one can hope for [32]. We obtain a weak segmentation based on a
set of visual feature detectors. Prior to segmentation we remove the border
of each frame. The basis of feature extraction in the visual modality is weak
segmentation.

Invariance was identified in [32] as a crucial aspect of a visual feature de-
tector, e.g., to design features which limit the influence of accidental recording
circumstances. We use color invariant visual features [15] to arrive at weak
segmentation. The invariance covers the photometric variation due to shadow
and shading, and geometrical variation due to scale and orientation. This in-
variance is needed as the conditions under which semantic concepts appear in
large multimedia archives may vary greatly.

The feature extraction procedure we adhere to, computes per pixel a num-
ber of invariant features in vector u. This vector then serves as the input for
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Fig. 8.6. Feature extraction and classification in the content analysis step, special
case of Figure 8.4.

a multiclass SVM [12] that associates each pixel to one of the regional visual
concepts defined in a visual concept lexicon ΛV , using a labeled training set.
Based on ΛS , we define the following set of regional visual concepts:

ΛV = {colored clothing, concrete, fire, graphic blue, graphic purple, graphic
yellow, grassland, greenery, indoor sport court, red carpet, sand, skin, sky,
smoke, snow/ice, tuxedo, water body, wood}.

As we use invariant features, only a few examples per visual concept class are
needed; in practice less than 10 per class. This pixel-wise classification results
in the image vector wf , where wf contains one component per regional visual
concept, indicating the percentage of pixels found for this class. Thus, wf is
a weak segmentation of frame f in terms of regional visual concepts from ΛV ,
see Figure 8.7 for an example segmentation.

We use Gaussian color measurements to obtain u for weak segmenta-
tion [15]. We decorrelate RGB color values by linear transformation to the
opponent color system [15]:

⎡

⎣
E
Eλ

Eλλ

⎤

⎦ =

⎛

⎝
0.06 0.63 0.27
0.3 0.04 −0.35
0.34 −0.6 0.17

⎞

⎠

⎡

⎣
R
G
B

⎤

⎦ . (8.4)

Smoothing these values with a Gaussian filter, G(σ), suppresses acquisi-
tion and compression noise. Moreover, we extract texture features by ap-
plying Gaussian derivative filters. We vary the size of the Gaussian filters,
σ = {1, 2, 3.5}, to obtain a color representation that is compatible with vari-
ations in the target object size (leaving out pixel position parameters):
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Fig. 8.7. Computation of the visual features, see Figure 8.6, is based on weak
segmentation of an image frame into regional visual concepts. A combination over
time is used to select one frame as representative for the shot.

Êj(σ) = Gj(σ) ∗ E, Êλj(σ) = Gj(σ) ∗ Eλ, Êλλj(σ) = Gj(σ) ∗ Eλλ, (8.5)

where j ∈ {∅, x, y} indicates either spatial smoothing or spatial differentiation
and that from now on the hat symbol (̂·) implies a dependence on σ. Nor-
malizing each opponent color value by its intensity suppresses global intensity
variations. This results in two chromaticity values per color pixel:

Ĉλ =
Êλ

Ê
, Ĉλλ =

Êλλ

Ê
. (8.6)

Furthermore, we obtain rotationally invariant features by taking Gaussian
derivative filters and combining the responses into two chromatic gradients:

Ĉλw =
√

Ĉ2
λx + Ĉ2

λy, Ĉλλw =
√

Ĉ2
λλx + Ĉ2

λλy, (8.7)

where Ĉλx, Ĉλy, Ĉλλx, and Ĉλλy are defined as:

Ĉλx =
ÊλxÊ − ÊλÊx

Ê2
, Ĉλλx =

ÊλλxÊ − ÊλλÊx

Ê2
,

Ĉλy =
ÊλyÊ − ÊλÊy

Ê2
, Ĉλλy =

ÊλλyÊ − ÊλλÊy

Ê2
. (8.8)

The seven measurements computed in (8.5)–(8.7), and each calculated over
three scales, yield a 21-dimensional invariant feature vector u per pixel.

Segmenting image frames into regional visual concepts at the granular-
ity of a pixel is computationally intensive. We estimate that the processing
of the entire case study data set would have taken around 250 days on the
fastest sequential machine available to us. As a first reduction of the analysis
load, we analyze 1 out of 15 frames only. For the remaining image processing
effort we apply the Parallel-Horus software architecture [29]. This architec-
ture, consisting of a large collection of low-level image processing primitives,
allows the programmer to write sequential applications with efficient parallel
execution on commonly available commodity clusters. Application of Parallel-
Horus, in combination with a distributed cluster consisting of 200 dual 1-GHz
Pentium-III CPUs [6], reduced the processing time to less than 60 hours [29].
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The features over time are combined into one vector for the shot i. Aver-
aging over individual frames is not a good choice, as the visual representation
should remain intact. Instead, we opt for a selection of the most representa-
tive frame or visual vector. To decide which f is the most representative for
i, weak segmented image wf is the input for an SVM that computes a prob-
ability p∗(ω|wf ). We select wf that maximizes the probability for a concept
from ΛS within i, given as:

vi = arg max
f∈fi

p∗(ω|wf ). (8.9)

The visual vector vi, containing the best weak segmentation, is the final result
of the visual analysis.

Textual Analysis
In the textual modality, we aim to learn the association between uttered
speech and semantic concepts. A detection system transcribes the speech into
text. From the text we remove the frequently occurring stopwords. After stop-
word removal, we are ready to learn semantics.

To learn the relation between uttered speech and concepts, we connect
words to shots. We make this connection within the temporal boundaries of
a shot. We derive a lexicon of uttered words that co-occur with ω using the
shot-based annotations of the training data. For each concept ω, we learn a
separate lexicon, Λω

T , as this uttered word lexicon is specific for that concept.
We modify the procedure for Person X concepts, i.e., Madeleine Albright and
Bill Clinton, to optimize results. In broadcast news, a news anchor or reporter
mentions names or other indicative words just before or after a person is
visible. To account for this observation, we stretch the shot boundaries with
five seconds on each side for Person X concepts. For these concepts, this
procedure assures that the textual feature analysis considers even more textual
content. For feature extraction we compare the text associated with each shot
with Λω

T . This comparison yields a text vector ti for shot i, which contains
the histogram of the words in association with ω.

Multimodal Analysis and Classification
The result of the content analysis step is a multimodal vector mi that inte-
grates all unimodal results. We concatenate the visual vector vi with the text
vector ti, to obtain mi. After this modality fusion, mi serves as the input for
the supervised learning module. To optimize parameter settings, we use three-
fold cross-validation on the training set. The content analysis step associates
probability p∗(ω|mi) with a shot i, for all ω in ΛS .

8.3.3 Style Analysis Step
In the style analysis step we conceive of a video from the production perspec-
tive. Based on the four roles involved in the video production process [39, 34],
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this step analyzes a video by four related style detectors. Layout detectors
analyze the role of the editor. Content detectors analyze the role of produc-
tion design. Capture detectors analyze the role of the production recording
unit. Finally, context detectors analyze the role of the preproduction team,
see Figure 8.8. Note that in contrast to the content analysis step, where we
learn specific content features from a data set, content features in the style
analysis step are generic and independent of the data set.

Style Analysis
We develop detectors for all four production roles as feature extraction in the
style analysis step. Each style detector uses an existing software implemen-
tation as a basis. The output of such a base detector is then aggregated and
synchronized to a camera shot. We categorize the resulting production-derived
features based on experimentally obtained thresholds. Together, these three
components define a style detector. We refer to our previous work for specific
implementation details of the detectors [34, Appendix A],[39]. We have chosen
to convert the output of all style detectors to an ordinal scale, as this allows
for easy fusion.

For the layout L the length of a camera shot is used as a feature, as this
is known to be an informative descriptor for genre [36]. Overlayed text is an-
other informative descriptor. Its presence is detected by a text localization
algorithm [27]. To segment the auditory layout, periods of speech and silence
are detected based on an automatic speech recognition system [14]. We ob-
tain a voice-over detector by combining the speech segmentation with the
camera shot segmentation [39]. The set of layout features is thus given by:
L = {shot length, overlayed text, silence, voice-over}.

As concerns the content C, a frontal face detector [28] is applied to de-
tect people. We count the number of faces, and for each face its location
is derived [39]. Apart from faces, we also detect the presence of cars [28].
In addition, we measure the average amount of object motion in a camera
shot [35]. Based on speaker identification [14] we identify each of the three
most frequent speakers. The camera shot is checked for the presence on the
basis of speech from one of the three [39]. The length of text strings recog-
nized by Video Optical Character Recognition [27] is used as a feature [39]. In
addition, the strings are used as input for a named entity recognizer [41]. On
the transcribed text obtained by the LIMSI automatic speech recognition sys-
tem [14], we also apply named entity recognition. The set of content features is
thus given by: C ={faces, face location, cars, object motion, frequent speaker,
overlayed text length, video text named entity, voice named entity}.

For capture T , we compute the camera distance from the size of detected
faces [28, 39]. It is undefined when no face is detected. In addition to camera
distance, several types of camera work are detected [4], e.g., pan, tilt, zoom,
and so on. Finally, for capture we also estimate the amount of camera mo-
tion [4]. The set of capture features is thus given by: T = {camera distance,
camera work, camera motion}.
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Fig. 8.8. Feature extraction and classification in the style analysis step, special case
of Figure 8.4.

The context S serves to enhance or reduce the correlation between seman-
tic concepts. Detection of vegetation can aid in the detection of a forest for
example. Likewise, the co-occurrence of a space shuttle and a bicycle in one
shot is improbable. As the performance of semantic concept detectors is un-
known and likely to vary between concepts, we exploit iteration to add them
to the context. The rationale here is to add concepts that are relatively easy
to detect first. They aid in detection performance by increasing the number of
true positives or reducing the number of false positives. As initial concept we
detect news reporters. We recognize news reporters by edit distance matching
of strings, obtained from the transcript and video text, with a database of
names of CNN and ABC affiliates [39]. The other concepts that are added to
the context stem from ΛS . To prevent bias from domain knowledge, we use
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the performance on the validation set of all concepts from ΛS in the content
analysis step as the ordering for the context. For this ordering we again refer
to Table 8.1. To assign detection results for the first and least difficult con-
cept, ω1 = weather news, we rank all shot results on p∗i (ω1|mi). This ranking
is then exploited to categorize results for ω1 into one of five levels. The basic
set of context features is thus given by: S = {news reporter, content analysis
step ω1}.

The concatenation of {L, C, T ,S} for shot i yields the style vector si. This
vector forms the input for an iterative classifier that trains a style model for
each concept in lexicon ΛS .

Iterative Style Classification
We start from an ordering of concepts in the context, as defined above. The
iteration of the classifier begins with concept ω1. After concatenation with
the other style features this yields si,1 the first style vector of the first it-
eration. si,1 contains the combined results of the content analysis step and
the style analysis step. We classify ω1 again based on si,1. This yields the a
posterior probability p∗(ω1|si,1). When p∗(ω|si) ≥ δ the concept ω1 is con-
sidered present in the style representation, else it is considered absent. The
threshold δ is set a priori at a fixed value of 0.5. In this process the classifier
replaces the feature for concept ω1, from the content analysis step, by the new
feature ω+

1 . The style analysis step adds more aspects of the author influence
to the results obtained with the content analysis step. In the next iteration
of the classification procedure, the classifier adds ω2 = stock quotes from the
content analysis step to the context. This yields si,2. As explained above, the
classifier replaces the ω2 feature from the content analysis step by the styled
version ω+

2 based on p∗(ω2|si,2). This iterative process is repeated for all ω in
lexicon ΛS .

We classify all ω in ΛS again in the style analysis step. As the result of
the content analysis step is only one of the many features in our style vector
representation in the style analysis step, we also use three-fold cross-validation
on the training set to optimize parameter settings in this analysis step. We use
the resulting probability as output for concept detection in the style analysis
step. In addition, it forms the input for the next analysis step in our semantic
pathfinder.

8.3.4 Context Analysis Step
The context analysis step adds context to our interpretation of the video.
Our ultimate aim is the reconstruction of the author’s intent by considering
detected concepts in context.

Semantic Analysis
The style analysis step yields a probability for each shot i and all concepts ω
in ΛS . The probability indicates whether a concept is present. We use the 32
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concept scores as semantic features. We fuse them into context vector ci, see
Figure 8.9.

Fig. 8.9. Feature extraction and classification in the context analysis step, special
case of Figure 8.4.

From ci we learn relations between concepts automatically. To that end, ci

serves as the input for a supervised learning module, which associates a con-
textual probability p∗(ω|ci) to a shot i for all ω in ΛS . To optimize parameter
settings, we use three-fold cross-validation on the previously unused data from
the validation set.

The output of the context analysis step is also the output of the entire
semantic pathfinder on video documents. On the way we have included in
the semantic pathfinder, the results of the analysis on raw data, facts derived
from production by the use of style features, and a context perspective of
the author’s intent by using semantic features. For each concept we obtain
a probability based on content, style, and context. We select from the three
possibilities the one that maximizes average precision based on validation set
performance. The semantic pathfinder provides us with the opportunity to
decide whether a one-shot analysis step is best for the concept only concen-
trating on content, or a two-analysis step classifier increasing discriminatory
power by adding production style to content, or that a concept profits most
from a consecutive analysis path using content, style, and context.

8.4 Indexing Results on 32 Semantic Concepts
We evaluated detection results for all 32 concepts in each analysis step. Given
the already enormous size of the data sets and the large amounts of annotation
– yet limited in terms of completeness – we have performed one pass for
32 concepts through the entire semantic pathfinder. We report the precision
at 100, which indicates the number of correct shots within the first 100 results
in Table 8.2.



Semantic Video Indexing 241

Table 8.2. Test set precision at 100 after the three steps, for a lexicon of 32 concepts.
The best result is given in bold. The corresponding path is selected in the semantic
pathfinder.

Semantic Content Style Context Semantic
concept analysis step analysis step analysis step pathfinder

News subject monologue 0.55 1.00 1.00 1.00
Weather news 1.00 1.00 1.00 1.00
News anchor 0.98 0.98 0.99 0.99
Overlayed text 0.84 0.99 0.93 0.99
Sporting event 0.77 0.98 0.93 0.98
Studio setting 0.95 0.96 0.98 0.98
Graphics 0.92 0.90 0.91 0.91
People 0.73 0.78 0.91 0.91
Outdoor 0.62 0.83 0.90 0.90
Stock quotes 0.89 0.77 0.77 0.89
People walking 0.65 0.72 0.83 0.83
Car 0.63 0.81 0.75 0.75
Cartoon 0.71 0.69 0.75 0.75
Vegetation 0.72 0.64 0.70 0.72
Ice hockey 0.71 0.68 0.60 0.71
Financial news anchor 0.40 0.70 0.71 0.70
Baseball 0.54 0.43 0.47 0.54
Building 0.53 0.46 0.43 0.53
Road 0.43 0.53 0.51 0.51
American football 0.46 0.18 0.17 0.46
Boat 0.42 0.38 0.37 0.37
Physical violence 0.17 0.25 0.31 0.31
Basket scored 0.24 0.21 0.30 0.30
Animal 0.37 0.26 0.26 0.26
Bill Clinton 0.26 0.35 0.37 0.26
Golf 0.24 0.19 0.06 0.24
Beach 0.13 0.12 0.12 0.12
Madeleine Albright 0.12 0.05 0.04 0.12
Airplane take off 0.10 0.08 0.08 0.08
Bicycle 0.09 0.08 0.07 0.08
Train 0.07 0.07 0.03 0.07
Soccer 0.01 0.01 0.00 0.01

Mean 0.51 0.53 0.54 0.57

We observe from the results that the learned best path (printed in bold) in-
deed varies over the concepts. The virtue of the semantic pathfinder is demon-
strated by the fact that for 12 concepts, the learning phase indicates it is best
to concentrate on content only. For five concepts, the semantic pathfinder
demonstrates that a two-step path is best (where in 15 cases addition of style
features has a marginal positive or negative effect). For 15 concepts, the con-
text analysis step obtains a better result. Context aids substantially in the
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Fig. 8.10. Influence of the style analysis step on precision at 100 performance for
a lexicon of 32 semantic concepts. Note a considerable decrease (American football)
or increase (news subject monologue) in performance when adding production style
information.

performance for five concepts. As an aside we note that the precision at 100,
when averaged over all concepts, steadily increases from 0.51 to 0.57 while
traversing the different semantic analysis paths.

The results demonstrate the virtue of the semantic pathfinder. Concepts
are divided by the analysis step after which they achieve best performance.
Some concepts are just content, style does not affect them. In such cases as
American football there is style-wise too much confusion with other sports
to add new value in the path. Shots containing stock quotes suffer from a
similar problem. Here false positives contain many stylistically similar results
like graphical representations of survey and election results. For complex con-
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Fig. 8.11. Influence of the context analysis step on precision at 100 performance
for a lexicon of 32 semantic concepts. Note a considerable decrease (golf) or increase
(people) in performance when adding context information.

cepts, analysis based on content and style is not enough. They require the use
of context. The context analysis step is especially good in detecting named
events, like people walking, physical violence, and basket scored. The results
offer us the possibility to categorize concepts according to the analysis step
of the semantic pathfinder that yields the best performance.

The content analysis step seems to work particularly well for semantic con-
cepts that have a small intra-class variability of content: weather news and
news anchor for example. In addition, this analysis step aids in detection of
accidental content like building, vegetation, bicycle, and train. However, for
some of those concepts, e.g., bicycle and train, the performance is still disap-
pointing. Another observation is that when one aims to distinguish subgenres,
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e.g., ice hockey, baseball, and American football, the content analysis step is
the best choice.

After the style analysis step, we obtain an increase in performance for 12
concepts, see Figure 8.10. Especially when the concepts are semantically rich:
e.g., news subject monologue, financial news anchor, and sporting event, the
style helps. As expected, index results in the style analysis step improve on the
content analysis step when style is a distinguishing property of the concept and
degrade the result when similarity in style exists between different concepts.

Results after the context analysis step in Figure 8.11 show that perfor-
mance increases for 13 concepts. The largest positive performance difference
between the context analysis step and the style analysis step occurs for concept
people. Concept people profits from sport-related concepts like baseball, bas-
ket scored, American football, ice hockey, and sporting event. In contrast, golf
suffers from detection of outdoor and vegetation. When we detect golf, these
concepts are also present frequently. The inverse, however, is not necessarily
the case, i.e., when we detect outdoor it is not necessarily on a golf course.
Based on these observations we conclude that, apart from named events, de-
tection results of the context analysis step are similar to those of the style
analysis step. Index results improve based on presence of semantically related
concepts, but the context analysis step is unable to capture the semantic
structure between concepts and for some concepts, this is leading to a drop
in performance.

The above results show that the semantic pathfinder facilitates generic
video indexing. In addition, the semantic pathfinder provides the foundation
of a technique taxonomy for solving semantic concept detection tasks. The fact
that subgenres like ice hockey, golf, and American football behave similarly
indicate the predictive value of the pathfinder for other subgenres. The same
holds for semantically rich concepts like news subject monologue, financial
news anchor, and sporting event. We showed that for named events, such
as basket scored, physical violence, and people walking, one should apply a
detector that is based on the entire semantic pathfinder. The significance of
the semantic pathfinder is its generalizing power combined with the fact that
addition of new information in the analysis can be considered by concept type.

8.4.1 Usage Scenarios
The results from the semantic pathfinder facilitate the development of various
applications. The lexicon of 32 semantic concepts allows for querying a video
archive by concept. Elswhere [37] we combined into the MediaMill semantic
video search engine query-by-concept, query-by-keyword, query-by-example,
and interactive filtering, see Figure 8.12. In addition to interactive search,
the set of indexes is also applicable in a personalized retrieval setting. A
feasible scenario is that users with a specific interest in sports are provided
with personalized summaries when and where they need it. The sketched
applications provide a semantic access to multimedia archives.
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Fig. 8.12. Interface of the MediaMill semantic video search engine. The system
allows for interactive query-by-concept using 32 concepts. In addition, it facilitates
query-by-similarity in the form of query-by-keyword, and query-by-example. Results
are presented in a storyboard.

8.5 Summary
In this chapter, we present the semantic pathfinder for semantic access to
multimedia archives. The semantic pathfinder is a generic approach for video
indexing. It is based on the observation that produced video is the result of an
authoring process. The semantic pathfinder exploits the authoring metaphor
in an effort to bridge the semantic gap. The architecture is built on a vari-
ety of detector types, multimodal analysis, hypothesis selection, and machine
learning. The semantic pathfinder selects the best path through content anal-
ysis, style analysis, and context analysis. After machine learning it appears
that the analysis is completed after content analysis only when concepts share
many similarities in their multimodal content. It appears also that the seman-
tic path runs up to style analysis when the professional habits of television
are evident to the concept. Finally, it exploits a path based on content, style,
and context for concepts that are primarily intentional, see Table 8.2 and
Figures 8.10 and 8.11.

Experiments with a lexicon of 32 semantic concepts demonstrate that the
semantic pathfinder allows for generic video indexing, while confirming the
value of the authoring metaphor in indexing. In addition, the results over the
various analysis steps indicate that a technique taxonomy exists for solving
semantic concept detection tasks; depending on whether content, style, or
context is most suited for indexing. For some concepts the precision at 100
performance is still quite low. For selecting illustrative footage, this may al-
ready be sufficient. This is not yet so for tasks that require accurate retrieval.
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However, the trend in results over the past years indicates that automated
search in video archives lures at the horizon.

8.6 Further Reading
Basic techniques for video indexing are discussed in the review papers by Bolle
et al. [8] and Brunelli et al. [10]. Smeulders et al. [32] present an in depth
overview of content-based image retrieval. Where these papers emphasize the
visual analysis in video indexing, the review paper of Wang et al. [42] stresses
audio analysis. For an overview of text analysis methods we refer to the book
by Manning and Schütze [21]. A broad introduction to multimodal semantic
video indexing literature can be found in our previous work [36] and the work
of Naphade and Huang [23].

Statistical pattern recognition is an indispensable tool for anyone work-
ing in semantic video indexing. An excellent introduction and overview is in
the paper by Jain et al. [19]. At present, the support vector machine frame-
work is the classifier of choice in the most successful semantic video indexing
systems [1, 3, 38] An in depth theoretical discussion on the support vector
machine is in the book by its inventor Vapnik [40]. A more accessible tutorial
is the paper by Burges [11].

For recent updates on the state-of-the-art in the field we refer to the pro-
ceedings of the yearly ACM Multimedia Conference, the International Confer-
ence on Image and Video Retrieval, and the IEEE International Conference
on Multimedia & Expo. The most important journals in the field are IEEE
Transactions on Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on Multimedia, IEEE Multimedia, and ACM Transactions on Multime-
dia Computing, Communications and Applications.

We have deliberately left out the NIST TRECVID video retrieval bench-
mark in our discussion on semantic video indexing, as this benchmark is the
topic of Chapter 13. The benchmark aims to promote progress in video re-
trieval via open, metrics-based evaluation [30, 31]. Tasks include camera shot
segmentation, story segmentation, semantic concept detection, and several
search tasks. Because of its widespread acceptance in the field, resulting in
large participation of teams from both academic and corporate research labs
worldwide, the benchmark can be regarded as the de facto standard to evalu-
ate performance of semantic video indexing and retrieval research. The most
recent developments in semantic video indexing are accessible via the elec-
tronic proceedings of the TREC workshop on Video Retrieval Evaluation [24].
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9.1 Introduction
In this chapter we address two approaches to extract high-level concepts from
video footage and show the integrated use of both. We also describe an ex-
periment used for validation.

The spatio-temporal approach deals with space and time. Reasoning about
space and time is a major field of interest in many areas, for instance in
navigation of autonomous mobile robots. Its overall goal is to increase the
understanding of reasoning processes that apply to moving objects in space.
Spatio-temporal formalization is also used to infer semantics from low-level
video features. The formalization presented in this chapter has been validated
in at least three case studies. A medical case deals with modeling of walking
persons defining events like “walking on toes”, “wide walking”, etc. In the
sports domain there are two case studies dealing with soccer and tennis re-
spectively. The soccer case describes formalizations for events such as “player
has the ball”, “pass”, “scoring a goal”, etc. Elsewhere we have described the
soccer and the medical case [11].

Here we concentrate on the tennis case. We encounter high-level objects
(“player”, “ball”, “net”) together with spatial (“covered by”, “east of”) and
temporal relations (“before”, “during”). Using these objects and relations, we
formalize and derive events like “net playing” and “rally”. We may apply this
approach to even more complex events, like strokes (“forehand”, “backhand”,
and so on). Unfortunately, we then run into accuracy problems, as shown by
Sudhir et al. [17], for example.

So, how to recognize strokes? Some recent research shows that it is pos-
sible to recognize human activities from their binary representations, see for
example [14]. Moreover, we notice that probabilistic methods often exploit
automatic learning capabilities to derive knowledge. For example, Naphade
et al. [9] use hierarchical hidden Markov models to extract events like explo-
sions. This motivates us to train and use hidden Markov models. In order to
achieve this goal we start to extract the player from the background and to
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derive informative features from the player’s binary representation. So, in this
chapter we explain the use of hidden Markov models to recognize strokes and
we describe some experiments to validate the approach.

To experiment with, we have built a prototype system with a general
architecture that allows the development of video applications from several
areas. Experiments reported in this chapter are based on video footage taken
from ordinary TV broadcast tennis videos with different players at different
tennis tournaments, like the Australian Open, Swisscom Challenge, Vienna
Open, etc. Objects and events are high-level concepts (metadata) that are
stored within a database management system. We give an example of a query
which requires exploitation of both approaches.

9.1.1 Relation to Other Chapters
In this chapter we deal with video. Some of the image processing techniques
described in Chapter 5, are used here. To capture high-level concepts we also
follow a probabilistic approach. The approach is based on hidden Markov
models, which are explained rather extensively in Chapter 3. Text processing
is applied to frames to detect names of players. In Chapter 10 text processing
is discussed in more detail.

9.1.2 Outline
The remainder of this chapter is organized as follows. Next three sections
investigate the practical exploitation of spatio-temporal reasoning and hid-
den Markov models in a real situation using ordinary TV broadcasts of ten-
nis matches. Section 9.2 details some necessary video analysis techniques re-
garding shot detection, low-level features, and object detection and tracking.
Section 9.3 is dedicated to the detection and recognition of video events us-
ing spatio-temporal formalizations, while in Section 9.4, we introduce hidden
Markov models and demonstrate how they can be used for recognition of ten-
nis strokes. In Section 9.5, we describe a prototype system that implements
the approaches. We present an example of integrated querying. The last two
sections summarize the chapter and give some hints for further reading.

9.2 Tennis Video Analysis
Before we extract high-level concepts we have to do some preprocessing. This
includes reconstruction of the video structure, i.e., shot detection and classifi-
cation, but also object segmentation and tracking, and finally low-level feature
extraction. We explain this process with help of Figure 9.1. In this figure the
tennis video is pictured by the frames at the top.

9.2.1 Shot Detection and Classification
A typical video of a tennis match consists of different video shots (do not
confuse a video shot with a tennis shot!). The majority of shots show a tennis
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court with two players (we only consider single matches). These shots are
called playing shots. However, there are also some advertisement and close
up shots, as well as shots showing audience, which are usually taken during
game breaks. This can be seen in the second row of frames in Figure 9.1.
Selection of video shots containing a tennis court from other shots is necessary,
since our analysis is limited to playing shots. As video segmentation and shot
classification is already described in Chapter 3 we only briefly explain how
it is applied here. A tennis video is first segmented into different shots using
differences in color histograms of neighboring frames. For each shot, we extract
its dominant color. A simplified robust M-estimator is used to estimate the
parameters of the Gaussian, discarding other color pixels as outliers. The
dominant color that repeats the most number of times is supposed to be
the color of the tennis court. By analyzing the dominant color of shots on
other surfaces, we generalize our segmentation algorithm to different classes
of tennis courts: clay, grass, and so on.

Counting the number of skin-colored pixels and using a certain threshold
helps us to define close up shots. Also audience shots have a high number of
skin-colored pixels, but now entropy (mean and variance) are used as distin-
guishing characteristics. Remaining shots are called “other”. From now on we
concentrate on playing shots.

9.2.2 Player Segmentation and Tracking
The first step in the segmentation of players is to filter the dominant color (in
a playing shot this is the color of tennis court). Assume the leftmost frame
of the second row of Figure 9.1 to be the first frame of a playing shot. We
carry out the initial quadratic segmentation of the first two frames of the
playing shot using estimated statistics of the dominant color. The obtained
black-white frame is shown in the third row. Then, the player is detected as the
largest compact region in the lower half of the frame using some morphological
operations [10]. The other player and the ball may be detected too.

We fit the 3D tennis court model to the actual lines in the image. The new
knowledge about the scene is used to form the start values for robust estima-
tion of the parameters of a number of Gaussian models. Model parameters for
the color of the field, the lines and eventually the net are estimated using the
data from some neighborhood of the initially detected player. These values
are used to refine the player segmentation [19]. (Having the human figure in
this particular application, we extract special parameters trying to maximize
their informative content.) The center of mass of the region is taken as the
player position. The algorithm processes the next frame and searches for a
region similar to the region of the detected player using the player’s position.
Doing this for more frames delivers an estimate for the speed. This segmenta-
tion and tracking algorithm is a bit rough, but satisfactory, and is described
by Petković et al. [12].
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Fig. 9.1. Tennis video analysis.

9.2.3 Audio and Text
Until now we have focused on images. The audio signal, as one of the essen-
tial video components, provides a rich source of information to supplement
understanding of a video. Combining audio with other modalities gives more
information than any modality alone. The raw audio data can be divided into
speech and non-speech parts. Speech recognition results into a time-aligned
transcript of spoken words. Non-speech parts can be put into clusters with
textual descriptions like cheering and stroke sound. See Chapter 10 for more
information.

We observe that at the start of the match the names of the players appear
in a frame sequence. Using OCR techniques we detect which players are play-
ing and are able to keep these names during the match using player specific
characteristics. The text showing names of players has to be distinguished
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from text appearing in advertisements, and so on. These and other problems
are extensively dealt with in Chapter 10.

�

}

}

ca

Fig. 9.2. Orientation and eccentricity.

9.2.4 Low-Level Image Features
In previous sections we already introduced some low-level features. The list of
features includes the color histogram (f1), which is in fact a list of 256 values,
the dominant color (f2), entropy characteristics mean (f3), and variance (f4),
number of skin colored pixels (f5), player position (f6), area (f7), orientation
(f8), and eccentricity (f9). Area denotes the actual number of pixels in the
region. Orientation is the angle between the X-axis and the major axis of
the ellipse that has the same second moment as the region (in Figure 9.2 it
is called α). Eccentricity is the ratio of the distance between the foci of the
ellipse and its major axis length (in Figure 9.2 this is c/a). The eccentricity
takes a value between zero and one; these values are actually degenerate cases.
An ellipse with eccentricity zero is a circle, while an ellipse with eccentricity
one is a line segment.

Fig. 9.3. Specific features: (a) extracted shape; (b) pie features; (c) skeleton fea-
tures.

The features defined until now are used by both the spatio-temporal and the
hidden Markov model approach. We have, however, also some features which
are used by the second approach alone. The latter features are:
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• The position of the upper half of the mask with respect to the mass center
(f10−11), its orientation (f12), and the eccentricity (f13). Those features
describe the upper part of the body that contains most of the information.

• For each circle sector that is centered at the mass center, we count the
percentage of pixels in the pie (f14−21) as shown in Figure 9.3b.

• The sticking-out parts (f22−23) are extracted by filtering and finding local
maxima of the distance from a point on the contour to the mass center.
Only certain angles are considered, as indicated in Figure 9.3c.

9.3 Spatio-temporal Approach
Now we turn our attention to the spatio-temporal approach. First, we define
spatial and temporal relations that can hold between spatial objects. Then
we give rules to describe object and event types and we conclude with an
example query.

9.3.1 Spatial Relations
The concept of neighborhood is defined by topological relations which stay
invariant under transformations such as translation, rotation, and scaling.
Order in space is defined by direction relations. A notion of distance between
points is the last element of spatial relations. The most often used distance
metric is the well-known Euclidian metric.

Topological Relations
Each object is represented in two-dimensional space as a point set, which has
an interior, a boundary, and an exterior. The nine intersections of the three
properties of each of two objects describe the topological relations between
any two objects. The following eight relations are meaningful for region ob-
jects [3]: “disjoint”, “meet”, “equal”, “overlap”, “contains”, “inside”, “covers”,
and “covered by”.

Directional Relations
A video object is very often represented by a polygon. However, it is a common
strategy when dealing with spatial objects to use the Minimum Bounding
Rectangle approximation to increase efficiency. The reason is that we need to
store only two points (one corresponding to the lower left and another to the
upper right corner of the Minimum Bounding Rectangle). We base directional
relations on the cone-shaped concept of directions. They are defined using
angular regions between objects, which are abstracted as single points based
on the center of mass. Therefore, there are eight directional relations, namely
“north”, “east”, “north-east”, and so on.
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9.3.2 Temporal Relations
Video shots take time and so do actions of tennis players. A time interval has
a start time, an end time, and a duration. Tracking spatial objects defines
time intervals in which certain conditions like “player near the net” may hold.
Allen [1] defines thirteen relations between two time intervals. They can be
represented by the following seven: “before”, “meets”, “overlaps”, “during”,
“starts”, “finishes”, “equal”. The other six are inverse relations. For example,
“after” is the inverse relation of “before”. Only the equality relation has no
inverse. We refer to Allen [1] for a formal definition of the temporal relations.

9.3.3 Rules for Object and Event Types
To describe object and event types we use rules expressed in a syntax.
These rules form a part of an object and event grammar. Low-level fea-
tures and spatio-temporal relations form rules. The grammar is described
by Petković [10]. Below we will use a simplified form of the syntax.

We distinguish between simple and compound objects. In a soccer match
we may consider a ball to be a simple object and a goal post a compound
one. A goal post is then composed of two vertical bars and one horizontal
bar with their well-known spatial relationships. We also distinguish between
simple and compound event types. Simple event types are defined with help
of features types, object types, and all kinds of relations, but no event types.
Compound event types have event types in their defining rule.

The video analysis delivers a set of feature types:

{f1, f2, f3, f4, f5, f6, f7, f8, f9}

Moreover, we assume that the video analysis also established two sets of basic
visual object and audio event types:

{SpatialObject, Ball, Net}
{Cheering, StrokeSound, SighSound}

In the remainder of this section, we first give some rules to describe simple
object and event types. Then we present some rules to define compound types
that build on already defined concepts.

Simple Types
Consider a video frame. A simple object description that defines the player
closer to the camera (than the other one) using shape features and the spatial
relation contain is defined as:

PlayerCloserToCamera ::=
{r1: SpatialObject, r2: rect(0, 144, 384, 288)},
{700 < f7(r1) < 1200}, {contain(r2, r1)}
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In fact, in all frames of a playing shot the same player would be the
PlayerCloserToCamera. There are two regions involved: r1 corresponds to
a spatial object and r2 to the lower half of the frame. The criterion concern-
ing the area feature f7 has to be fulfilled. Furthermore, the region r2 has to
contain the region r1.

Let us consider a simple event type. The rule defines events in which Venus
Williams is playing close to the net for a given period of time:

PlayerNearTheNet ::=
{o1: PlayerCloserToCamera}, {o1.name = ‘‘V.Williams’’},
{y_distance (o1, Net) < 50}, {duration > 60})

Assume that the object types PlayerCloserToCamera and Net are already de-
fined. The new PlayerNearTheNet event type is expressed in terms of spatio-
temporal object interactions. Among others the distance to the net along the
Y-axis must be smaller than 10. The temporal relation says that this event
type should last for a specific period, as well as that the spatial relation should
be valid for that period of time. This description also shows how event types
can be parameterized (a user might be interested not only in Venus Williams,
but in other players playing as well).

Compound Types
In the description of the event type PlayerNearTheNet audio characteristics
do not play a part. The following event type descriptions use an audio event
type:

ForehandTouch ::=
{o1:PlayerCloserToCamera, o2:Ball}, {s:StrokeSound},
{IsRightHanded(o1)}, {overlap(o1, o2), east(o2, o1)}

BackhandTouch ::=
{o1:PlayerCloserToCamera, o2:Ball}, {s:StrokeSound},
{IsRightHanded(o1)}, {overlap(o1, o2), west(o2, o1)}

The rules define event types based on the occurrence of an event of type
StrokeSound, some conceptual information about the player, the topological
operator overlap, and the direction operators east and west. The direction
operators ensure that the ball is on the correct side of the player.

A user can also reuse already defined event types in order to define other
ones. For example, in our case study the “rally” event is defined as a compound
event type. First, we define simple event types PlayerInRightCorner and
PlayerInLeftCorner. An event like PlayerInRightCorner lasts as long as
the defining conditions remain true:

PlayerInRightCorner ::=
{o1:PlayerCloserToCamera}, { f6.x(o1)>=190, f6.y(o1)>=170}

PlayerInLeftCorner ::=
{o1:PlayerCloserToCamera}, { f6.x(o1)<190, f6.y(o1)>=170}
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Notice that these rules use feature f6, the position of the player. Having
defined these two event types, we create a compound event type that can be
used to extract all frame sequences in which a player goes two times from the
left part of the court to the right part and back. This event type is called
left-to-right rally. The rule includes the temporal relation meet: the relation
meet means that the first event has to finish at the moment the second event
starts:

LtRRally ::=
{e1,e2:PlayerInLeftCorner, e3,e4:PlayerInRightCorner},
{e1.o1 = e2.o1 = e3.o1 = e4.o1},
{meet(e1,e3), meet(e3,e2), meet(e2,e4)}

So, a user can build new event types. The list of described event types grows
very quickly. For example, in the following event description, some lobs are
retrieved by describing a new event type using the already defined event types
PlayerNearTheNet and PlayerNearTheBaseline and some additional crite-
ria:

Lob ::=
{e1: PlayerNearTheNet, e2: PlayerNearTheBaseline},
{e1.o1 = e2.o1}, {meet (e1, e2)}

This rule captures the situations that a player is near the net and has to run
back to the baseline to fetch the ball. However, a query with this event type
will not retrieve all lobs (for example, the ones where the player stays at the
net or smashes the ball at the service line will not be retrieved). To be able
to retrieve all lobs, the position of the ball must be taken into account.

9.3.4 Discussion
The spatio-temporal approach works for “simple” object and event types and
is easy to understand for the end user. In Section 9.1 we already mentioned a
major drawback of the spatio-temporal approach: the difficult task of defining
object and event types. An expert can help, but even then for some events the
approach will not grant the best results. Furthermore, we are able to specify
rules for forehand and backhand, but to recognize more different strokes will
not result in reasonable accuracy (as shown by Sudhir [17], for example). We
can enrich the rules with the concept of “ball position” together with some
other features. This might increase the accuracy, but, unfortunately, this will
make these descriptions even more complicated. Finally, it is very difficult to
find and track the ball because of its high speed (can be more than 200 km/h)
and occlusion problems. So, for the recognition of tennis strokes we try the
probabilistic approach.
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9.4 Stroke Recognition Using Hidden Markov Models
In this section we concentrate on hidden Markov models to map strokes into
classes such as forehand, smash, and service. To this end we use low-level
visual features.

Performing a stroke, the shape of a player is changing over time. So, we
have to map time-varying patterns into stroke classes.

9.4.1 Feature Extraction
The first step is to extract specific features from the player silhouette to
reduce the dimensionality of the problem. For each frame we obtain a vector
of feature values as described in Section 9.2.4. In Figure 9.4 each dot or + sign
represents a feature value in an n-dimensional space.

Time Feature extraction

Time

Fig. 9.4. Feature values extracted from a stroke.

Codebook
Having the low-level features extracted as described in Section 9.2.4, we pro-
ceed with vector quantization. This means that a vector of feature values that
characterizes the shape of the player is represented by only one discrete sym-
bol. The set of possible discrete symbols is called the codebook. This step is
required by the used discrete hidden Markov models, see further on.
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Vector quantization is the joint quantization of a vector of feature values.
This process implies that n-dimensional space is partitioned into M clusters,
where n is the number of feature types, while M is the codebook size. A simple
example of a quantization process, where two feature types are jointly quan-
tized using a codebook size of three symbols (A, B, C), is given in Figure 9.5.

A

B

C

Fig. 9.5. Example of vector quantization.

In order to design a codebook we use an iterative clustering algorithm known
in the pattern-recognition literature as the k-means algorithm. However, the
k-means algorithm can only converge to a local minimum of the quantiza-
tion error. Hence, it is wise to repeat it a number of times with different
initial values for cluster centers, and then choose the clustering with the min-
imum overall quantization error. Selection of the codebook size is a trade-off
between a smaller quantization error (larger codebook size) and faster opera-
tions (smaller codebook size).

9.4.2 Hidden Markov Models
Hidden Markov models are very effective tools for modeling time-varying pat-
terns with automatic learning capabilities. They are applied in many fields,
such as speech recognition, and more recently in human gesture recognition
and handwriting recognition.
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Hidden Markov models are explained in Chapter 3. Figure 9.6 pictures
some parameters of a stroke considered as a hidden Markov model. The num-
ber of hidden states NS = 3, the number of observation symbols, i.e., the
codebook size, K = 20, the sequence of observed symbols is pictured by the
line of numbers, and so on.

time

… …

hidden states

observation symbols

1 16 1 16 16 16 16 16 19 16 19 19 19 4 16 16 1 16 4 16 16 16 19 13 19 7 7 7 19 7 19 7 7 7 7 7 7 7 7 7 7 19 19 19 19

Fig. 9.6. A stroke and some related HMM parameters.

We observe that a stroke is a continuous movement of the player. In a stroke
it is unlikely that a certain posture recurs. This property leads us to an impor-
tant class of Hidden Markov models, namely a first order left-to-right hidden
Markov model. A left-to-right model always starts from the first state to the
left and is allowed to make transitions only toward right states or to the same
state, see Figure 9.7.

In Chapter 3 the learning, evaluation, and decoding problems are intro-
duced. In that chapter a general discussion on solutions to these three prob-
lems is given. Our aim is to recognize strokes and we do this is two steps. First,
we solve the learning problem using training video sequences with strokes.
This results in a hidden Markov model for each stroke class. Then we use the
obtained models to evaluate strokes in new video sequences.
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V20

Fig. 9.7. A left-to-right model.

9.4.3 Learning Process
For each stroke class (forehand, volley, etc.) we have to find the optimal hidden
Markov model, meaning that we have to optimally estimate the probabilities
of the model by using the observations in the training process.

Training sequences with strokes were manually selected, using a tool that
was developed for video annotation and pre-processing. Then we set up the
hidden Markov model parameters, which include the number of states and the
size of a codebook, based on some heuristics. Subsequently, we trained 50 dif-
ferent models for each stroke class using the Baum–Welch algorithm with the
modified re-estimation formula for the training with multiple observation se-
quences [2]. Finally, after trying different codebook sizes and number of states
from 4 to 48, we selected the codebook size of 24 symbols and hidden Markov
models with 8 states. This gave the models with the highest probability to
represent a class of strokes.

The experiments, we carried out, are divided into two series based on the
number of stroke classes used.

9.4.4 Recognizing Strokes of Six Classes
Having a model for each class of strokes, we perform stroke recognition using
the first order, left-to-right, discrete hidden Markov models.

In the first experiment, we aimed at achieving of two goals: (1) determine
the best feature set and (2) investigate person independence of different fea-
ture sets. Hence, we have performed a number of experiments with different
feature combinations. In order to examine how invariant they are on different
male or female players, two series of experiments have been conducted: 1a
and 1b. In the series 1a, we used the same player in the training and eval-
uation sets, while in 1b hidden Markov models were trained with one group
of players, but strokes performed by another group were evaluated. In both
cases, the training set contained 120 different sequences, while the evaluation
set contained 240 sequences.
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We selected stroke classes to be recognized: forehand, backhand, service,
smash, forehand volley, and backhand volley. In each experiment, six hidden
Markov models were constructed – one for each stroke class we would like
to recognize. Each stroke sequence was evaluated by all six hidden Markov
models. The one with the highest probability was selected as the result. This
is called parallel evaluation.

Table 9.1. Recognition results (%).

Feature/Experiment 1a 1b 2

f8−11 82 79 76
f8−13 85 82 80
f8−9,12−13 81 78 76
f8−9,22−23 89 88 87
f8−23 86 82 79
f9−11,22−23 91 89 88
f14−21 85 78 78
f14−23 93 87 86

The recognition accuracies in Table 9.1 (percentages of rightly classified
strokes using parallel evaluation) show that the combination of pie and skele-
ton features (f14−23) achieved the highest accuracy in experiment 1a. The
recognition rates dropped in experiment 1b as expected. Two feature combi-
nations showed to be the most person independent, i.e., invariant on different
player constitutions. The first is the combination of eccentricity, the mass cen-
ter of the upper part, and skeleton features, while another is the combination
of orientation, eccentricity, and skeleton features.

9.4.5 Recognizing Strokes of Eleven Classes
In the second experiment, we investigated recognition rates of different feature
combinations using an extensive classification of strokes from tennis litera-
ture [20]. There are 11 different stroke classes: service, backhand slice, back-
hand spin, backhand spin two-handed, forehand slice, forehand spin, smash,
forehand volley, forehand half-volley, backhand volley, and backhand half-
volley. The training and the evaluation set remained the same as in exper-
iment 1b, only the new classification was applied. Although at first glance
some strokes in this new classification are very similar to each other (for ex-
ample volley and half-volley or backhand slice and spin), the performance
(Table 9.1, last column) dropped only slightly. The results have proved that
there is an evident difference between, for example, backhand slice and spin
stroke. The arm position and the swing are different. In this experiment, the
majority of false recognitions remained the same as in experiment 1. Nearly
65% comes from forehands recognized as backhands and vice versa, as well
as from forehand-volleys recognized as forehands and vice versa. A reason for
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that can also be an unbalanced number of strokes in different stroke classes in
our test set. A bigger test collection with the exactly same number of strokes
in each stroke groups would lead to a more comprehensive analysis of mis-
recognition in this experiment with expanded classification of tennis strokes.

9.4.6 Discussion
The recognition rate did not drop much from experiment 1a to experiment
1b. We believe that this is due to the advanced, very informative, invariant
features (in the first place novel skeleton features). The high recognition rate
we achieved is certainly more significant taking into account that we used
TV video scenes with a very small player’s shape. In order to improve the
performance of our approach, one could further fine-tune feature extraction
taking into consideration human body parts and their kinematics. The use of
shape axis model introduced by Liu and Geiger [8] would be interesting in
this context. On the other hand, having the ball position known (an attempt
is reported by Pingali [13]) would certainly make the distinction between fore-
hand and backhands as well as between volleys and half-valleys more robust
and significantly increase the recognition rate. The approach presented here
has some limitations. The performance of stroke recognition depends on the
camera position and the noise strength, as skeleton features are very sensitive
on video quality. Some features are also dependent on the resolution of input
images. Furthermore, we used only right-handed players in our experiments.
Introducing left-handed players would require training of additional hidden
Markov models and further experiments to assess the accuracy of stroke recog-
nition of mixed right- and left-handed players. However, an easier way is to
use conceptual information from the player profile and then choose the right
hidden Markov models for recognition.

9.5 Prototype
Based on the architecture shown in Figure 9.8 we implemented a prototype
system. In this system raw video data are stored as files. As metadata server we
choose the MONET database system, which has been extended with modules
to deal with hidden Markov models, (dynamic) Bayesian networks, and rules.
We added also an interface to simplify definition of object and event types
and the formulation of queries.

Using the interface, a user can easily define a query by selecting particular
features and by setting constraints on them. Moreover, the event grammar
allows users to define new events types and build the metadata themselves.
For example, a user can define a new event called “rallies with net playing”
by introducing the “overlap” temporal operation between the “playing on the
net’ and “rally” event types. After the evaluation of the query, results are
added to the metadata. This speeds up further querying of this event, which
is resolved directly in the event layer of metadata without performing costly
join operation for resolving the temporal relation.
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Fig. 9.8. Architecture of prototype.

The feature extraction component is used for video segmentation and fea-
ture extraction purposes.

The advantage of this framework is that it supports the integrated use of
different techniques for semantic extraction (elsewhere we give more details
about the integrated use [10, 11]). Therefore, we can benefit from using the
spatio-temporal event formalization together with the stochastic formaliza-
tion. The system can answer very detailed complex queries, such as “Select
all video sequences from the game between Kournikova and Kuti Kis where
one of the players smashes being near the net”. Figure 9.9 shows a graphical
user interface that allows to formulate a query like this one:

SELECT vi.frame_seq
FROM video vi
WHERE s_contains (vi.frame_seq,

SmashOnNet = ({e1: PlayerNearTheNet, e2: Smash},
{overlap (e2, e1)},e1.o1= e2.o1)) = 1 AND
vi.name = ‘KournikovaKutiKis’

The query retrieves all video segments from the game between Kournikova
and Kis. The name of the video is “KournikovaKutiKis”. The query is for-
mulated using an extended OQL, where s_contains is a function that checks
whether a frame sequence contains requested objects or events. The query
comprises a new event type, namely the SmashOnNet event type that consists
of two event types. PlayerNearTheNet is defined using the spatio-temporal
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approach, while Smash has been detected with the hidden Markov model ap-
proach.

Fig. 9.9. Graphical user interface for combined queries.

9.6 Summary
We have presented a framework for automatic extraction of high-level concepts
(objects and events) from raw video data. The extraction is supported by two
components. The rule-based component formalizes descriptions of high-level
concepts using spatio-temporal reasoning. The stochastic component exploits
the learning capability of hidden Markov models to recognize events in video
data automatically. By integrating these techniques within the database man-
agement system, the users are provided with ability to define and extract
events dynamically. These two approaches have been applied for retrieval in
the particular domain of tennis game videos. The spatio-temporal approach
is used for retrieval of more “exact” events such as “net-playing” and “rally”,
while hidden Markov models are used for the retrieval of more “fuzzy” events
like “forehand”, “service”, etc. Consequently, the complete set of video pro-
cessing tools for the Tennis domain has been introduced, starting from shot
segmentation and classification, through player segmentation and tracking,
to feature extraction. A number of experiments with hidden Markov mod-
els have been carried out in order to find which combination of features, but
also which hidden Markov model parameters give the best results. The results
have proved that specific features, such as the skeleton and the pie features are
of the greatest importance. Furthermore, experimental results with a regular
classification of tennis strokes demonstrated that our hidden Markov model
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approach is promising to realize statistics of tennis games automatically using
normal TV broadcast videos.

9.7 Further Reading
The problem addressed in this chapter is to automatically derive high-level
representation of video content based on low-level features. In order to solve
this problem, several domain-dependent research efforts have been under-
taken. These approaches take an advantage of using domain knowledge to
facilitate extraction of high-level concepts directly from features. In partic-
ular, they mainly use information on object positions, their transitions over
time, etc., and relate them to particular events (high-level concepts). For ex-
ample, methods have been proposed to detect events in football [7], soccer [5],
and hunting [6], etc. Motion (for review see [16]) and audio are, in isolation,
very often used for event recognition. Rui et al. [15] for example, base ex-
tracting highlights from baseball games on audio only. Although these efforts
resulted in the mapping from features to high-level concepts, they are essen-
tially restricted to the extent of recognizable events, since it might become
difficult to formalize complex actions of non-spatial objects using rules. Fur-
thermore, rules require expert knowledge and have problems when dealing
with uncertainty.

On the other hand, some other approaches use probabilistic methods that
often exploit automatic learning capabilities to derive knowledge. For example,
Naphade et al. [9] used hierarchical hidden Markov models to extract events
like explosions. Structuring of video using Bayesian networks alone [18] or
together with hidden Markov models [4] has been also proposed.
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10.1 Introduction
This chapter is a case study showing how important events (highlights) can be
automatically detected in video recordings of Formula 1 car racing. Numerous
approaches presented in literature have shown that it is becoming possible to
extract interesting events from video. However, the majority of the approaches
uses individual visual or audio cues. According to the current understanding
of human perception it is expected that using evidence obtained from different
modalities should result in a more robust and accurate perception of video. On
the other hand, fusion of multimodal evidence is quite challenging, since it has
to deal with indications which may contradict each other. In this chapter we
deal with three topics, one being fusion of evidence from different modalities.

Firstly, we explain how Bayesian and dynamic Bayesian networks (DBNs)
can use the evidence obtained from audio signal analysis in detecting interest-
ing events in the race. We observe that as soon as the voice of the commen-
tator of the race becomes excited, probably a highlight has occurred. We use
low-level features first to localize speech in the audio signal and then to de-
tect excited speech. Furthermore, certain words uttered by the commentator
may also indicate excitement. To recognize words, we do not use, however, a
full-blown speech recognizer. Instead we use a simple recognizer that is able
capture only a very limited set of words frequently used to describe highlights
in car racing. To process recognized words and detected low-level features,
we design BNs and DBNs. By experimentation, we try to get an idea of the
influence of the structure of a (D)BN on detection of excited speech.

Secondly, we focus on the problem of fusion of information coming from
different modalities. By exploiting audio only, some highlights may have been
unnoticed. So, we also analyze the image stream of the video to obtain cues
for highlights like the start of the race. DBNs may also fuse evidence obtained
from audio and video cues in order to detect time-boundaries of highlights
automatically.

Thirdly, we also deal with superimposed text. In order to improve user
understanding, text is projected on the TV screen. This text contains infor-
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mation about the name of a driver (e.g., Schumacher), the position of a driver
in the race, and so on. Of course this information is related to the highlights
obtained from audio/video analysis. Combining all information obtained so
far we are able to answer queries like: “Give video sequences showing Michael
Schumacher passing another car”.

A more elaborate version of this chapter can be found in a technical report
belonging to this project [10].

10.1.1 Information Sources
The approach described in this chapter is validated in the domain of Formula 1
races. For that domain, we introduce a robust audio-visual feature extraction
scheme, as well as a text recognition and detection method.

We digitized three Formula 1 races of the 2001 season, namely the German,
Belgian, and USA Grand Prix (GP). The average duration of these Formula 1
races was about 90 minutes or 135,000 frames for a PAL video. Videos were
digitized as a quarter of the PAL standard resolution (384×288). Audio was
sampled at 22 kHz with 16 bits per audio sample.

Several low-level features are extracted from both the audio and video
signals. Together with domain knowledge these features form the basis for the
derivation of highlights such as start of the race, and passing and fly-out of
cars.

10.1.2 Relation to Other Chapters
This chapter deals among others with speech, so there is a relationship with
Chapter 7. Chapter 4 introduces Bayesian networks, and among others it is
shown how the probability is computed that a query is answered by a docu-
ment. To this end many conditional probabilities have to be given. Recall how
Chapter 3 and 6 give algorithms that compute the conditional probabilities
in hidden Markov models from observed low-level features in a training set
of video data. In the current chapter we use a similar approach and compute
probabilities for (D)BNs given features from training data.

10.1.3 Outline
Sections 10.2 and 10.3 aim to detect moments of excited speech occurring in
the voice of the commentator. The assumption is that excited speech indi-
cates a highlight. We use (dynamic) Bayesian networks to capture moments
of excitement and try to detect the influence of network structure on retrieval
results.

Exploiting only audio may leave some highlights undetected. So, in Sec-
tion 10.4 we also take images into account and in Section 10.5 we fuse image
and audio cues. As dynamic Bayesian networks are shown to be more robust
and more effective for detecting excited speech we use them for highlights
detection.
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The third modality is superimposed text. Detection and usage of this text
is the topic of Section 10.6.

Combining the results derived from audio and images together with
the knowledge obtained from superimposed text allows answering complex
queries. We give some examples in Section 10.7. The chapter ends with a
summary section and a section that gives some hints for further reading.

10.2 Processing the Audio Signal
The Formula 1 audio signal is complex and ambiguous. It consists of human
speech, car noise, and various background noises, such as crowd cheering,
horns, etc. To deal with this complexity, we focus on low-level features that
allow to filter speech from other sounds. Moreover, dependent on the sport,
keywords derived from speech may suggest highlights. For instance, in For-
mula 1 racing a keyword like start or accident may suggest an interesting
event. So, keyword spotting techniques get attention in this section. Finally,
we give a brief overview of other relevant low-level features and integrate
them into (dynamic) Bayesian networks. We describe experiments in which
the quality of search results of several networks is compared and evaluated.

10.2.1 Low-Level Audio Features
We use low-level features to try to locate speech segments in the audio signal.
A great number of features can be extracted from audio signals. We select four
of them, namely Short Time Energy (STE), pitch, Mel-Frequency Cepstral
Coefficients (MFCCs), and pause rate. For the recognition of specific keywords
in commentator’s speech, we use a keyword-spotting tool based on a finite
state grammar. Below we give a brief summary.

Short Time Energy (STE)
The main usage of this feature is to separate speech from non-speech seg-
ments. It is useful in noisy environments, because noise signals have lower
average short time energy than regular speech. Short time energy represents
average waveform amplitude, defined over a specific time interval. Usually it
is computed after performing sub-band division of the audio signal. Indicative
bands for audio characterization are lower sub-bands that is with a frequency
of less than 4400 Hz. The average short time energy of the interval with N
samples preceding sample m can be mathematically expressed as follows:

Em =
1
N

m∑

n=m−N+1

(x(n)2 · w(m − n)), (10.1)

where x(n) is the input audio sample, and w(m−n) is a window function.
The sample values may vary a lot. Window functions allow to manipulate
the sample values. There are many of those functions and in Figure 10.1 we
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picture two of them, namely the rectangular and the Hamming window (notice
that the considered interval is pictured here as [−1, 1]). A rectangular window
simply weights all values in the interval the same. A Hamming window uses
the function 0.54+0.46 cos(πt) resulting in less weight for values at the borders
of the interval. In other words, it avoids the sharp discontinuity at the end
of the segments, resulting in better description of a harmonic structure of
the speech signal when applying fast Fourier transform (FFT). Therefore, we
employed Hamming window in our approach.

�� O �

�

�� O �

�

Fig. 10.1. A rectangular window and a Hamming window.

Pitch
Pitch (fundamental frequency, F0) is an important feature for audio analy-
sis, especially for detection of emphasized human speech. It represents the
leading frequency of a complex audio signal. In speech, the pitch often gets
higher values when the speaker is excited. Many techniques have been pro-
posed for pitch estimation and tracking, such as cepstrum analysis, harmonic
product analysis, autocorrelation analysis, maximum a posterior (MAP) pitch
estimation, difference analysis, etc.

All these techniques for pitch estimation demand appropriate bandwidth
of audio signal for accurate estimation of the pitch. Since human speech is
usually under 1000 Hz, we are particularly interested in determining pitch
that is under this frequency range. We decided to use the autocorrelation
function in our approach of pitch estimation. The autocorrelation function
for a random signal is defined as:

A(k) =
1

2N + 1

N∑

n=−N

x(n) · x(n + k), (10.2)

where k is the number of overlapping samples. The autocorrelation function
of a periodic signal (like, e.g., the speech signal) is also periodic. The first
value A(0) is the average energy of the signal. From (10.2) we can compute
peak values for different values of k. Pitch for a particular window is defined
as the largest peak value max(A(k)), only if the autocorrelation function is
above a certain threshold (0.3 in our case). Otherwise the pitch is unknown.

It is shown that detection of emphasized human speech for complex sounds
can be achieved by pitch tracking. We can even learn these pitch character-
istics for a particular talker (see for an example [1]). The only thing we have
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to do is to carefully determine the pitch threshold for every talker. In our
approach we use the pitch as evidence in a DBN for finding the segments of
excited speech.

Mel-frequency Cepstral Coefficients
Mel-frequency cepstral coefficients (MFCCs) is a type of phoneme-level feature
for characterizing audio signals. It is based on a sub-band division of entire
frequency spectrum, and uses Mel-scale. Mel-scale is a gradually warped linear
spectrum, with coarser resolution on higher, and finer resolution on lower
frequencies. It is metrically adapted to the human perception system.

MFCCs are a simple cosine transform of the Mel-scale energy for different
filtered sub-bands. For audio characterization, MFCCs (especially their first
derivatives) bring good results for determining speech phonemes, and are very
useful for speech recognition and speaker detection. More details on usage of
MFCC and their first derivatives can be found in the book by Rabiner and
Juang [12].

Pause Rate
The feature pause rate intends to determine the quantity of speech in an audio
clip. The pause rate can be used as an indication of emphasized human speech.
The higher the pause rate, the lower the indication for excitement. Pause rate
can be easily calculated by counting the number of silent audio frames in an
audio clip and dividing this number by the total number of frames. Silent
audio frames can be detected based on low short-term energy values and low
values of first derivatives of MFCCs (see below).

10.2.2 Speech Sequence Detection
We use short time energy (STE) and Mel-frequency cepstral coefficients
(MFCC) to detect speech sequences. These low-level features are also used
by Rui et al. [13], where the audio signal was extracted from a baseball game.
The Formula 1 signal seems to be similar to that of a baseball game. We divide
the audio signal into audio frames of 10 ms. Ten frames add up to an audio
segment of 100 ms.

First, we have to filter background noises: sounds made by engines, and so
on. To this end we process the audio signal so that only a signal of 0–882 Hz
remains. This elimination is important, especially when we have to determine
silent segments. We decide to employ the Hamming window for processing
STE because it showed higher accuracy in speech sequence detection than the
rectangular one.

For MFCC calculations we use only first three coefficients, because exper-
iments show that they are the most indicative for speech detection.

We calculate STE and MFCC values for audio frames. Moreover, for a
segment we compute the average and maximum value as well as dynamic range
of STE. For MFCC only the average and maximum value are interesting.
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Figure 10.2 shows STE values for an audio signal of 1000 audio frames
(in total 10 s). Appropriate thresholds for audio features are based on experi-
ments. As a result we receive an indication for each 100 ms segment whether
it is a non-speech segment or not.

Non-speech segments

Fig. 10.2. Short-term energy calculations for 1000 audio frames with indications
for non-speech segments.

10.2.3 Keyword Spotting
The commentator reports on the events of the race. In the previous section
we demonstrated how we can detect speech in the audio signal.

Chapter 7 addresses speech recognition techniques. It appeared that these
techniques are still not perfect today. We now have two options: either we go
for a general speech recognizer or for one that focuses on the recognition of a
limited number of words. The first approach recognizes in principle every word
at the cost of generating false alarms. The second approach is more limited,
but has less false alarms assuming sufficient training data. We decided for
the second approach and selected about 30 words that may be used when a
commentator of a Formula 1 race gets excited. We tried two different acoustic
models, see Chapter 7, for this purpose. One was trained for the clean speech,
and the other was aimed for word recognition in TV news. The latter showed
better results, so it has been chosen.

10.3 Detection of Excited Speech using (D)BNs
We now face the task to detect those parts of the audio signal in which the
commentator is excited. We hope that this is an indication for an interesting
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event, a highlight. In previous subsections we have already gathered indica-
tions for excited speech. For instance, in Figure 10.3 we see pitch values for
1000 audio frames of 10 ms; as known, high values suggest excited speech.

Low pitch
activity

High pitch
activity

Non-speech
segments

Fig. 10.3. High pitch values indicating excited speech.

We split the audio signal into segments, also called time slices. For each seg-
ment we derive many features: keywords (f1), pause rate (f2), average values
of STE (f3), dynamic range of STE (f4), maximum values of STE (f5), average
values of pitch (f6), dynamic range of pitch (f7), maximum values of pitch (f8),
average values of MFCCs (f9), and the maximum values of MFCCs (f10).

This information forms an input to a probabilistic framework, namely a
(dynamic) Bayesian network (see also Section 4.3.4). Therefore, these features
are considered as evidence nodes for a BN or a DBN. The features within a
segment (i.e., time instance) have certain dependencies which are captured in
the (dynamic) Bayesian network through the hidden nodes that are stochastic
variables.

A dynamic BN (DBN) is a Bayesian network that deals with the time
aspect. This implies that features and stochastic variables from one segment
(time instance) may depend on features and stochastic variables in other seg-
ments. A DBN satisfies the first order Markov property. So, a stochastic vari-
able at time t may depend on one or more stochastic variables (or features) at
time t−1 and/or some at time t. The conditional probabilities between hidden
and evidence nodes (stochastic variables and features) define the evaluation
model.

A Bayesian network (BN) is a network where dependencies between vari-
ables from one segment and from the segment before it are not allowed. There-
fore, only conditional probabilities between hidden and evidence nodes exist.
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The probabilities in a (D)BN can be learned from a training data set.
We follow an approach that has some similarities with the one described in
Chapter 9, where hidden Markov models were trained. Note that an HMM is
a special case of a DBN.

As we work with DBNs that have hidden states we employ the Expecta-
tion Maximization learning algorithm. In the inferencing process, we use the
modified Boyen–Koller algorithm for approximate inference [3].

10.3.1 Influence of Network Structure
Many different networks can be used to describe the problem of the case study.
Figure 10.4 proposes three possible network structures, and we investigate how
these perform the task of detecting excited speech. We use either “simple” BNs
(Figure 10.4) or DBNs where temporal dependencies between nodes from two
consecutive time slices of DBNs are defined as in Figure 10.5, resulting in six
candidate networks.

EA

EA

Context

f1

f1

f9

f9

f3

f3

f6

f6

f5

f5

f8

f8

f2

f2

f10

f10

f4

f4

f7

f7

STE

STE

Pitch

Pitch

MFCC

MFCC

EA

f1

f9f3 f6f5 f8

f2

f10f4 f7

STE Pitch MFCC

(a)

(b)

(c)

Fig. 10.4. Different structures for processing of audio features: (a) fully parame-
terized structure; (b) structure with direct influence from evidence to query node;
(c) input/output BN structure.
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The query node is Excited Announcement (EA), since we want to determine
whether the commentator raises his voice which may be caused by an inter-
esting event that is taking place. The shaded nodes represent evidence nodes,
which receive their values based on features extracted from the audio signal
of the Formula 1 video. Other nodes represent hidden nodes.

EA EA

AC AC

STE STE

Pitch Pitch

MFCC MFCC

Fig. 10.5. Temporal dependencies for the DBNs.

We learned the BN conditional probabilities on a video segment, consist-
ing of 3000 evidence values, 100 ms each (300 s in total) extracted from the
audio signal. For the DBNs, we used the same video segment of 300 s, which
was divided into 12 subsegments with 25 s duration each. The inference was
performed on audio evidence extracted from the digitized German Grand
Prix (GP). The evaluation is then performed on the same Grand Prix as well
as the two others: Belgian Grand Prix and USA Grand Prix. For each network
structure we computed precision and recall.

Note that we had to process the results obtained from BNs since the out-
put values cannot be directly employed to distinguish the presence and time
boundaries of the excited speech. This is shown in Figure 10.6a. Therefore, we
accumulated values of a query node over time to make a conclusion whether
the commentator is excited.

The results obtained from a DBN were much smoother (see Figure 10.6),
as DBNs perform a kind of smoothing when propagating probabilities from
the previous to the current time slice. Therefore, we did not have to process
the output. The results from conducted experiments with previously described
networks are shown in Table 10.1. As the effectiveness of DBNs corresponding
to BNs given in Figures 10.4b and 10.4c were poor (less than 50% for both
precision and recall) we do not report them.

Table 10.1. BNs and a DBN for detection of excited speech.

Network structure BN BN BN DBN
(Fig. 10.4a) (Fig. 10.4b) (Fig. 10.4c) (Fig. 10.4a, Fig. 10.5)

Precision 60% 54% 50% 85%
Recall 66% 61% 76% 81%
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Fig. 10.6. Results of audio BN (a) and DBN (b) inference for 300 s of audio.

By comparing different BN structures we can see that there is no significant
difference in precision and recall obtained from them (Table 10.1). The corre-
sponding DBNs perform worse than BNs, except for the DBN that corresponds
to the BN with fully parameterized structure (Figure 10.4a). It gives much
better results than the other BN/DBN networks (last column in Table 10.1).

10.3.2 Influence of Temporal Dependencies
Next, we explored the influence that different temporal dependencies have
on learning and inference procedures in DBNs. We developed three DBNs
with the same structure of one time slice (Figure 10.4a), but different tempo-
ral dependencies between two consecutive time slices: (1) the structure with
emission query node (Figure 10.7a), (2) one with collecting query node (Fig-
ure 10.7b), and (3) one with dependencies as in Figure 10.5.

The first introduces conditional dependencies only between hidden nodes
from the previous time slice and EA node in the current time slice, as well as
the EA node from the previous time slice to all hidden nodes in the current
time slice. The second one assumes that each hidden node from the previous
time slice has influence on corresponding node from the current time slice and
on EA node. Finally, the third one is the same as the second except that EA
node has influence to all nodes in the current time slice. Therefore, the first
two DBNs are a less connected versions of the third DBN.

The evaluation showed that the third DBN (Figure 10.5) significantly out-
performs the first and slightly the second DBN.

Finally, we selected the fully parameterized DBN structure (Figure 10.5) as
the most powerful DBN structure for detection of the emphasized announce-
ments. To evaluate the chosen network structure we employed it for detecting
the emphasized speech in the audio signal of all three races (Table 10.2).
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Fig. 10.7. Temporal dependencies: emission (a), collecting (b).

Table 10.2. Evaluation results for the audio DBN.

Race German GP Belgian GP USA GP

Precision 85% 77% 76%
Recall 81% 79% 81%

10.3.3 Discussion
Conclusions from experiments performed are twofold. From the first group
of experiments we conclude that the DBN learning and inference procedures
depend a lot on the selected DBN structure for one time slice. We observe
that this is not the case when inference and learning are performed with
BNs. These experiments also showed the advantages of the fully parameterized
DBN structure over the other BN/DBN networks. Secondly, we conclude that
chosen temporal dependencies between nodes of two consecutive time slices
have strong influence on the results of DBN inference. The best result was
obtained with temporal dependencies depicted in Figure 10.5.

10.4 Analyzing the Image Stream
In the previous section we focused on audio only. We extracted segments of the
Formula 1 race where the commentator raises his voice. However, interesting
events missed by the commentator could not be detected. This leads to high
precision and low recall. The aim of this section is to improve recall by taking
into account the images of a video as well.

Visual features such as color histogram, dominant color, shape moments,
etc., characterize low-level visual content. In Chapter 5 low-level features are
extensively described. One feature not covered is the motion feature, which is
related to video. In this section we briefly introduce the techniques used for
the extraction of motion feature.

Subsequently we describe the segmentation of a video into shots, which is
a familiar technique and is based on the differences of color histograms among
several consecutive frames.

Afterwards we present replay detection approaches, and the simple ap-
proach that we use. Finally, we pay attention to the semantic content of a
video. Detection of the content is based on low-level features and domain
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dependent characteristics of the video. Our domain is car racing, so we ap-
ply detectors related to car racing to characterize events like passing, start,
fly-out, and replay.

The features extracted from video frames and used as input to a (D)BN
are simple low-level features that do not require much computational power.
We emphasize that the usage of more advanced image feature would lead to
higher effectiveness.

10.4.1 Motion
Motion information is based on block-matching or optical flow techniques.
Motion features can be seen as low- or high-level features. Low-level features
are moments of the motion field, motion histogram, and global motion pa-
rameters. They can be extracted from the motion vectors. High-level features
reflect the camera motion such as panning, tilting, and zooming. For our pur-
pose, we used optical flow techniques based on motion vectors formed from
pixel colors.

10.4.2 Shot Segmentation
For shot segmentation we employed a simple histogram based algorithm. Ac-
cording to Chang et al. [4], shot cuts can be detected by comparing histograms
from two consecutive frames. If these two frames are substantially different we
could separate them as belonging to different shots. This histogram difference
HD is defined as:

HD(Hi,Hi−1) =
N∑

i=1

(Ht(i) − Ht−1(i))2

Ht(i)
, (10.3)

where Ht is the histogram for the time t, and N is the total number of colors
in an image. If we put an appropriate threshold for this histogram differ-
ence, based on experiments in the specified domain, we will be able to sepa-
rate shots with the high accuracy. Unfortunately, if we have the digital shot
change effects (such as fade, morphing, etc.) this technique will yield poor
results. Therefore, we modified it in sense that we calculate histogram dif-
ference among several consecutive frames in the multimedia document. This
algorithm resulted in over 90% of accuracy, which we considered satisfactory.

10.4.3 Replay Detection
Broadcast sport videos usually contain a large amount of replay scenes. Ex-
traction of these scenes is not an easy task. Domain knowledge about the
production of TV sport programmes plays a significant role in replay detec-
tion. The simplest way to detect replays is to detect when the superimposed
text Replay is put on the screen. However, this will not always happen. Some-
times replays are a slowed down representation of live scenes. Replays may
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also be characterized by special shot change operations. They are termed Dig-
ital Video Effects (DVEs) and are present in the beginning and at the end of
a replay scene. A technique for replay detection based on DVEs is described
by Babaguchi et al. [2].

We could employ the DVE-based detection, but the problem is that these
DVEs must be learned for every race. Even then, since they may vary, and
even be omitted for some replays, this would lead to small replay recognition
accuracy. Moreover, these algorithms are time consuming and computationally
expensive. Therefore, we decided to employ a simpler algorithm based on color
difference between two consecutive frames. We computed the differences of
RGB color components for each pixel in the central area (usually depicting
Formula 1 cars) for two consecutive frames. As our algorithm was not perfect,
we manually improved the results if necessary. We call this feature f12.

10.4.4 Start of Race
We consider the start of a race to be defined by two parameters, namely the
amount of motion in the scene, and the semaphore presence in the image.
To detect the amount of motion we used pixel color difference between two
consecutive frames. By experimentation we observed that red, green, and blue
pixel color difference brings good results. We called the feature f13.

In car racing a semaphore is used to indicate the start of the race. It is a
red colored rectangular shape that increases and decreases along the vertical
dimension. As soon as the red color disappears cars may start. We try to filter
the red component of RGB pixel color representation of a still image which
results in feature f14.

10.4.5 Passing
We did not try to use powerful motion analysis, instead we used some less
computationally demanding features. We calculate the movement properties
on several consecutive pictures, based on motion histogram obtained from
them. Such obtained outputs enable us to derive an indication that one car
passes another one. Note, that we employed a very simple and näıve approach
for passing detection. By applying more powerful techniques for object tracing
we could obtain much better results. As evidence we exploit the features color
difference f13, like for the start highlight, and amount of motion f17.

10.4.6 Fly-outs
Fly-outs usually come with a lot of sand and dust. Therefore, we had to rec-
ognize presence of these two characteristics in the picture. We resolve this
problem using the filtered RGB image for dominant colors. First we deter-
mined a dominant color in several still images of fly-outs. Then, we employ
color filtering to extract the amount of presence of these dominant colors in
the still image of Formula 1 video. An example of a color histogram of such an
image is given in Figure 10.8. The evidence comes from two features, dust f15
and sand f16.
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High percentage
of pixels

representing dust

Fig. 10.8. Fly-out suggested by dust colors.

10.5 Highlight Detection using DBNs
To improve the results obtained solely from audio cues we developed an audio-
visual DBN for highlight detection. The structure that represents one time
slice of this network is depicted in Figure 10.9. The Highlight node was cho-
sen to be the main query node; other nodes are Start, Fly-out, and Passing.
We used the same kind of temporal dependencies as for the audio network.
Evidence nodes in audio-visual DBN obtain the values from the various audio
and video features mentioned before.

EA

Context

f1 f9f3 f6f5 f8f2 f10f4 f7

STE Pitch MFCC

Highlight

Context

f12 f11 f14 f15 f16 f17

f13

Start Fly-out Passing

Fig. 10.9. Audio-visual DBN for one time slice.
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We employed the learning algorithm on 6 sequences with 50 s duration
each using the German Grand Prix (similar to audio DBN). The evaluation
is done again on the three races: German Grand Prix, Belgian Grand Prix,
and USA Grand Prix. The results are shown in Table 10.3. Based on the
value of the main query node depicting the highlight in the race, the values
of the other query nodes are calculated. We calculated the most probable
candidates during each “highlight” segment, and pronounce it as a start, fly-
out, or passing based on values of corresponding nodes. For segments longer
than 15 s we performed this operation for each 5 s segment to enable multiple
selections.

The supplemental query nodes are incorporated in the scheme in order to
classify different interesting events that take place in the Formula 1 race. We
can see from Table 10.3 that for the German GP we gained high accuracy
for highlights and start, while the most misclassifications were for fly-out and
passing events. Main reason for this is that we used very general and less
powerful video cues for fly-out, and especially passing.

Table 10.3. Evaluation results for audio-visual DBN.

Audio/video DBN German GP Belgian GP USA GP

Highlights Precision 84% 43% 73%
Recall 86% 53% 76%

Start Precision 83% 100% 100%
Recall 100% 67% 50%

Fly-out Precision 64% 100% –
Recall 78% 36% –

Passing Precision 79% 28%
Recall 50% 31%

(Note: There were no fly-outs in the USA GP, denoted with “–”. Moreover, the
results in that column are obtained by the audio-visual DBN that excludes the
passing subnetwork.)

For the Belgium and the USA GP we had a big decrease in effectiveness
for highlights detection. This is mostly because of the “passing” part of the
network, as depicted in the second column of Table 10.3 where precision and
recall values for passing are around 30%. Therefore, we simplified the overall
audio-visual network, and excluded the “passing” subnetwork for the USA
Grand Prix. A significant difference in results obtained with (Belgian) and
without the passing subnetwork (USA) can be seen in Table 10.3.

The network with the passing subnetwork worked fine in the case of the
German GP, but failed with the other two races. The explanation for this
might be different camera work in the German GP than in other two races,
as well as the usage of basic image features. This just confirms the fact that
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general low-level visual features might yield very poor results in the context
of high-level concepts (to characterize passing we used pixel color difference).
Obviously, more domain dependent features, which characterize the trajecto-
ries of Formula 1 cars, would be more robust and give better results for the
passing event.

10.6 Superimposed Text
The third modality we used is the text that is superimposed on the screen.
This is another type of on-line annotation offered by the TV programme
producer. The text is intended to help viewers to better understand the video
content. The superimposed text often brings some additional information that
is difficult or even impossible to deduce otherwise.

Text appearing in digital videos can be broadly divided into two classes,
namely scene text and superimposed (overlay) text [9]. Scene text occurs
as a natural part of the actual scene captured by the camera. Examples of
scene text include billboards, text on vehicles, writings on human clothes, etc.
Superimposed text on the other hand is text manually added to video frames
in order to supplement the visual and audio content.

Before superimposed text can be recognized, it has to be detected and
that is a major problem. One characteristic of superimposed text is that it has
certain spatial properties (see Lienhart’s survey for a number of properties [9]).
For instance, regions with superimposed text satisfy certain constraints with
respect to the minimum and maximum bounds. Detected text regions which
do not satisfy these constraints can be eliminated.

Since the process of text detection and recognition is complex, we will
divide it into three steps, namely detection of text region, refinement of the
detected regions, and recognition of the text itself.

In Figure 10.10 a summary of the process is given. In the lower part of
the scene we detect the region where text is projected. First, the region is
magnified by means of interpolation. Then the colors are mapped to black and
white in a process that is called binarization. Subsequently, we extract words
from the text region. Finally, we perform text recognition. A limited number
of words characteristic for the race is determined. By pattern matching the
projected word on the screen is recognized (see lower part of the figure).

10.6.1 Detection of Text Region
A useful characteristic of superimposed text is that it usually spans quite some
time. So, many frames have the same superimposed text, which is important
as text detection on every frame would be computationally too expensive.

A text region can be defined as a horizontal rectangular structure of clus-
tered sharp edges. To detect regions we use a horizontal differential filtering.
This filtering searches for horizontal rectangular structures of clustered sharp
edges, which in most cases represents text regions. Usually filter magnitude is
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Fig. 10.10. Text recognition.

3×3 pixels. By applying appropriate binary thresholds we are able to extract
vertical edge features and based on them we can define text regions.

In our case superimposed text is placed in the bottom of the picture. To
ease reading, the background is shaded and the characters are bright (light
blue, yellow, or white) for contrast.

Our algorithm is a two-pass text detection algorithm. In the first part we
determine whether a shaded region is present in the bottom part of every
frame in a video sequence. We conclude that a frame is shaded based on the
color feature for every pixel in the bottom part of the frame. Since shaded
regions in Formula 1 video can have two different sizes we employ synthesized
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detection for both of them. Computing the number of these shaded regions
in consecutive frames, we skip all the short segments that do not satisfy the
duration criteria.

The second part analyzes the same time-dependent properties of shaded
regions. We calculate the duration, number, and variance of bright pixels
present in these shaded regions. If computed values for the video sequence
satisfy constraints defined for the text detection algorithm then this video
sequence is marked as a sequence with superimposed text.

10.6.2 Refinement of Text Regions
A text region that we receive as a result of region detection usually contains
the text of similar intensities and same background. Therefore, we can put
a simple threshold to distinguish characters from the background. Then we
could binarize the text region, to make characters stand out. The binarization
threshold is based on histogram values obtained from the text region. This is
one way of cleaning up the text. However, it does not always supply us with
clean and regular character forms, especially if the size of characters in the
text is small. To overcome this problem, we employed some algorithms. The
refinement process consists of two steps, namely filtering of text regions, and
interpolation of text regions.

We need to filter the text regions in order to enable better separation from
the background, as well as for sharpening the edges of characters. Filtering
was executed through minimizing or maximizing pixel intensities over several
consecutive frames. However, this filtering is not sufficient for text recognition.
Therefore, we had to employ an interpolation algorithm to enlarge characters
and make them clearer and cleaner. In this interpolation algorithm the text
area is magnified four times in both directions.

After this refinement, we have magnified text regions with much better
character representations. After these actions, the text is ready for the text
recognition step. Elsewhere we have described the filtering and interpolation
algorithms [10].

10.6.3 Text Recognition
Given a text printed against a clean background, current optical character
recognition (OCR) techniques perform rather well and give good recognition
accuracy. However, since we are interested in recognition of the text printed
against shaded and textured backgrounds, OCR technology cannot handle
such texts. Hence, we developed a specific algorithm.

The text recognition task should enable extracting words and sentences
from purposely-added superimposed text. This procedure should supply us
with additional information about a video scene that can be used for conclu-
sions about the content of a video sequence (in our case also as an input for
probabilistic framework). In the Formula 1 domain, two important properties
can be exerted about the superimposed text:
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• there are not many different words superimposed on the screen, and
• the font used for superimposed text is the same.

Based on these properties we developed our text recognition algorithm. As-
suming that we received a clean and sharpened text from the previous step,
we can now begin character/word recognition process.

The character recognition process is somewhat more complex and time
consuming, but it is more robust and more general, because we can employ it
on any font size. On the other hand, word recognition is limited on a specified
number of defined words (extracted reference patterns), but it is less compu-
tationally demanding. We decided to recognize words based on extracted text
regions with one or several successive characters.

Our algorithm is based on pattern matching techniques, mainly because of
a small number of different words superimposed on the screen. These words
are names of the Formula 1 drivers, and some informative words, such as
pit stop, final lap, classification, winner, etc. Therefore, the first task was
to extract patterns for these words. Since the processing of a color image is
computationally expensive and slow, we decided to extract reference patterns,
and to perform matching with black–white pictures. Black–white text regions
are obtained from the color text regions by filtering RGB components on a text
region. After applying thresholds on the text region, we marked characters as
white space on the black background. For character extraction we used the
horizontal and vertical projection of white pixels. Since characters can have
different heights we used double vertical projection in order to refine the
characters better. However, we did not match characters to reference patterns
because they are usually irregular and can be occluded or deformed. Thus,
we connect characters that belong to one word into a region. This was done
based on the pixel distance between characters. Regions that are close to
each other are considered as characters that belong to the same word. Having
the regions containing one word, we perform pattern matching. To make this
matching algorithm faster and more powerful, we separate words into several
categories based on their length, and perform matching procedures only for
reference patterns with similar length. Simple metric of pixel difference PD
that is used for pattern matching is described by the following equation:

PD =
∑

(x,y)

Iref (x, y)(n) · Iextr(x, y), (10.4)

where the black and white images of the referenced and extracted regions
are compared. By specifying an appropriate threshold for similarity matching
(0.225 in our case), we were able to recognize the superimposed word. Thus,
a reference pattern with largest metric above this threshold is selected as the
matched word or character.
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10.7 Integrated Querying
In this section we give some examples that show integrated use of different
semantic extraction techniques. We modeled by DBNs the following concepts:
highlights, excited speech, start, passing, and fly-out.

Except for those concepts, the videos can be queried based on recognized
superimposed text. For example, a user can ask for the race winner, the classi-
fication in the ith lap, the position of a driver in the ith lap, relative positions
of two drivers in the ith lap, pit stop of a specific driver, the final lap, etc. All
this information is extracted from the superimposed text. To give the reader
an impression, some query examples follow:

“Retrieve the video sequences showing the car of Michael Schumacher”
“Retrieve the video sequences with Michael Schumacher leading the race”
“Retrieve the video sequences showing Barrichello in the pit stop”
“Retrieve all fly-outs”.

For querying the superimposed text, we can imagine a suitable user interface
(see Figure 10.11). In this way, the user benefits of combining the results
obtained from different techniques for semantic extraction. In the following
examples, the user sees results acquired from dynamic Bayesian networks and
text recognition, and gets an answer to very detailed complex queries, such
as:

“Retrieve all highlights showing the car of Barrichello” (see Figure 10.11)
“Retrieve all fly-outs of Mika Hakkinen in this season”
“Retrieve all highlights at the pit line involving Juan Pablo Montoya”.

The answer to the query defined in Figure 10.11 is composed by intersecting
all video sequences annotated as highlights with the segments in which the
text “Barrichello” is superimposed in the screen as a driver signature.

10.8 Summary
This chapter addresses the problem of automatic derivation of high-level video
content representations from raw video data.

Videos from Formula 1 car racing provide experimental data. We consider
these videos to contain three modalities, namely audio, the stream of video
frames, and superimposed text projected by the producer on the frames. From
these modalities we can derive low-level features that may contain cues for
certain events, for instance the start of a race or a fly-out of a car. It is
important to find techniques that can be effectively used to fuse evidence
obtained from the modalities present in video.

In this chapter, we focused on (dynamic) Bayesian networks. Bayesian net-
works model excited speech based on cues (low-level features) derived from
videos. Moreover, dynamic Bayesian networks take the time aspect into ac-
count by splitting the video into a number of segments or time slices.
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Fig. 10.11. Pit stop with Barrichello.

First, we focused on the audio signal and detected the parts with speech.
Interesting events may occur when the commentator becomes excited. Mod-
eling the cues that may indicate excited announcements, we evaluated the
influence of the network structure and temporal dependencies. We carried
out numerous experiments with different atemporal and temporal connec-
tions within BNs/DBNs. They have shown that the inference in BNs does not
vary much with the change of atemporal connections. However, the chosen
atemporal, but also temporal dependencies between the nodes of two consec-
utive time slices, have strong influence on the results of dynamic BN inference.
This demonstrates the importance of taking time into account meaning that
a video should not be considered as a set of independent frames.

With BNs we obtained results for precision and recall in the range from
50% to 75%, while the best DBN reached around 80% for both precision and
recall, in detecting excited announcer speech.

Next, we analyzed video frames, the second modality. Again, low-level
features may contain cues for interesting high-level concepts. We integrated
these cues into an audio-visual DBN. The aim was to detect all highlights
(and not only the ones where announcer is excited) as well as which highlight
can be considered as a start, fly-out or passing.

Results varied a lot depending on the event and on the race. On German
Grand Prix precision and recall were above 50% for all events, and more
than 80% for highlights detection. Due to the usage of basic low-level features
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precision and recall on Belgian and USA Grand Prix were lower than 50%
for passing. Eliminating the passing subnetwork resulted in the increase of
precision and recall (more than 70% on USA Grand Prix).

Finally, we introduced text extraction schemes, which are applied to super-
imposed text. Names of drivers, position in the race, lap information, and so on
are projected on the screen with a strong varying background. The used opti-
cal character recognition techniques make this valuable and otherwise difficult
to grasp information available. The effectiveness of text recognition algorithm
was almost perfect.

Together, the techniques described in this chapter automatically derive
interesting events in Formula 1 racing. This allows us to answer queries like:
“In which lap did Schumacher make a fly-out?”.

10.9 Further Reading
To solve the gap between low-level features and high-level concepts, several
domain-dependent research efforts have been undertaken. They mainly use
information on object positions, their transitions over time, etc., and relate
them to particular events (high-level concepts). Methods have been proposed
to detect events in football [7], soccer [5], and hunting [6], etc. For example,
Chang et al. [4] presented an integrated audio and video analysis for content-
based video indexing. The goal was to develop a system for automatic indexing
of sports videos based on speech understanding and video analysis. Authors
choose to apply their algorithms for extracting touchdowns in a football game.
For audio signal analysis authors used word spotting to recognize when the
commentator pronounces the word touchdown, and cheering detection. They
fused these two features by using a simple logic. They also used video features
to detect shot changes. Based on the audio cues they were able to detect
touchdown shots. These approaches have a problem of creating the mapping
for each domain manually. In addition, many of these methods are not ex-
tensible for detecting new events because they are very dependent on specific
artifacts used in the broadcasts of domain programmes.

Other approaches use stochastic methods that often exploit automatic
learning capabilities to derive knowledge. Structuring of video using Bayesian
Networks alone or together with HMMs has been proposed. Syeda-Mahmood
and Srinivasan [14] use a probabilistic model to combine results of visual and
audio event detection in order to identify topics of discussion in a classroom
lecture environment. Another probabilistic framework that comprises multi-
media objects within a Bayesian multinet has been proposed by Naphade
and Huang [11]. The closest to work described in this chapter is the one pre-
sented by Rui et al. [13]. It concentrates solely on the audio analysis for video
characterization. The paper describes how audio features can be used to ex-
tract highlights for TV baseball programmes. The authors rely only on audio
features, but they used a combination of generic audio features, and baseball-
specific features as well. Based on these features they developed subsystems
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for noisy environment, speech endpoint detection, excited speech classification,
and baseball hits detection. Some of the algorithms for calculation of these
features are used in this chapter, and they yield good results. It is important
to state that they did not cut these values by threshold. On the contrary, they
employed probabilistic framework and support vector machines to obtain the
best results. However, only few of the mentioned approaches use fusion of
audio and video cues using a probabilistic framework for such purpose.

Another related problem is the video classification problem. Kobla et al. [8]
tackled this problem and presented various techniques for extraction of video
features that will enable identification of sports videos. They used the presence
of action replays, amount of scene text in video, and computations of vari-
ous statistics on camera and/or object motion. The authors also presented
novel technique for the automatic detection of slow motion action replays.
They focused on development of a system that will be able to automatically
distinguish sports scenes from other scenes.
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11.1 Introduction
The challenge of coping with the overload of multimedia data has been growing
since the advent of digital cameras and broadband connections to the home.
Not only the techniques for storing, annotating and search are essential for
helping the user to face this challenge, a well-considered user interaction design
and an intuitive user interface are equally important in helping the user to
find interesting content.

Some challenges in the domain of user interaction with multimedia systems
are:

• Taking into account the mismatch between a user’s mental model of a
multimedia system and the technical structure of a multimedia system.

• Handling video, which is, because of its linearity and length, a tough
medium.

• Coping with bad, incomplete, and inconsistent metadata.
• Helping users express what they need. Users often have a fuzzy under-

standing of what they are looking. Generally, it is hard for a user to
express their information needs in a clear and precise way in a language
required by the application.

Following up on the last point, many researchers support the idea that users
learn during the search process about their information needs, as opposed to
the idea that they are able to precisely express their information need at the
start of the search process.

Bates [5] introduces the “berry-picking” model of information seeking,
taking picking berries as a metaphore for searching. New information may
yield new ideas and new directions. And according to this model, interesting
information is scattered like berries among bushes. The information need is
therefore not satisfied by a single, final retrieved set; it is satisfied by a series
of selections and bits of information found along the way.

Similar to the berry picking model, Pirolli and Stuart [13] propose a the-
ory of “information foraging” as an approach to analyzing human behavior in
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information retrieval. Information foraging uses the analogy of wild animals
gathering food to analyze how humans collect information. The theory links
the way in which predators decide which prey to hunt to the way in which hu-
mans choose which information resources to pursue. In the real world, strong
scents lead animals to food; in information retrieval, “information scents” lead
humans to the information they need. Humans are always judging the cues in
their environment with respect to their experience, saying what information
is relevant to what. Like animals adapting their search strategies, humans
adapt their search tactics, and modify their own information environments
and information organization to make their searches more productive.

11.1.1 Relation to Other Chapters
Many chapters in this book focus on algorithms and techniques that are aimed
at efficient and effective metadata generation and query solving. Examples are
Chapters 2, 4 and 5. Those issues are not directly visible to the user; they are
the “nuts and bolts” of a Multimedia Information Retrieval System (MIRS)
and remain hidden to the user. This chapter looks at the part of the system
that is visible to the user. It discusses ways of interaction between user and
system, the problems that may arise and the algorithms and techniques that
take care of efficient and effective communication between user and system.
Chapter 1 showed how the components that realize this user interaction relate
with the other components of a MIRS. One way of user interaction is by
natural speech. While this technique is only briefly discussed in this chapter,
the details are discussed in Chapter 7. Content-based queries (“queries by
example”) are described briefly in this chapter while the principles behind
them are discussed extensively in Chapter 9.

11.1.2 Outline
This chapter starts with discussing four typical ways of user-system inter-
action in Section 11.2. Each type of user interaction has its own division of
tasks between user and system. The next sections each discuss aspects of user
interaction that play an important role in one or more of these interaction
types. Section 11.3 shows the different ways in which users can express their
information needs. Once the results are presented to the user, the system may
ask the user how relevant they find the results so that the system can present
even better results in the next iteraction. This technique is called Relevance
Feedback and is explained in Section 11.4. Section 11.5 discusses a technique
called “personalization” that is used to learn the user’s taste and needs and
tailor the results from a query accordingly. Section 11.6 shows techniques of
presenting query results to the user. The same section explains how visualiza-
tion may help the user with the interpretation of the results in case the result
set is large or complex. The last step in multimedia information retrieval is
to actually show or play the movie, image or soundtrack. The multimedia
item may have to be adapted according to the device it is to be shown on,
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or according to the situation the user is in. This process is called “content
adaptation” and is discussed in Section 11.7.

11.2 Interaction Types
This section discusses four ways of user interaction with multimedia systems,
varying from one in which the user can ask complex questions, to one in
which the user does not have to ask anything but where the system pushes
interesting content to the user; see also Van Setten’s PhD Thesis [19].

11.2.1 Retrieval
The first type of user interaction is simply called “retrieval”. It is the most
common way of interaction found in applications today. Retrieval starts with a
person having an information need. The first task that retrieval systems expect
a user to do is to specify that need in a way such that the system understands
what the user is looking for. The specification of that information need is
called “query”. The system then matches the query with the data collection
and returns those items that match the query. Two aspects from the user
interaction point of view are important here:

• the user should formulate the query in the syntax that the system requires;
• the user should formulate the query such that it correctly represents the

information need (semantics).

Since inability of the user or the limitations of the system may cause one or
both requirements not to be met in practice, information retrieval is often an
iterative process of query specification, examining the results, reformulating
the query, etc. until the user is satisfied with the results (or is convinced that
the information required is simply not available in the information retrieval
system at hand). Some systems allow the user, as part of this iteration, to
explicitly express how relevant they find the results found by the system (see
Section 11.4). The remainder of this section explains the two types of queries
commonly found in retrieval:

• Concept-based queries, e.g., “Find images showing a police car”;
• Content-based queries, e.g., “Find images with mainly red colors”.

Concept-based Queries
Concept-based queries consist of keywords, natural language, or other seman-
tically rich descriptions of what the user is looking for. This type of query is
typically solved by matching it with the high-level features of the multimedia
content while content-based queries (discussed below) are matched with low-
level features (see also Chapter 1). The concept-based query is widely used in
both non-multimedia systems as well as multimedia systems like GoogleIm-
ages: the user types in one or more keywords, and the system returns objects
whose descriptions satisfy the keywords.
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The big advantage of these queries is that they are very easy for the user:
they are close to the natural language in which the user would express their
information need. That makes these types of queries highly expressive and
easy to use.

The disadvantage is the possible mismatch between the metadata used to
describe the multimedia objects and the keywords in the query. There are two
reasons for this mismatch:

• Different people use different words to annotate the same object. For ex-
ample, an image of a collection of trees may be annotated by different
persons as “wood”, “forest”, or “lots of trees”. A solution might be to
force the user to use only predefined keywords in their queries (“forced
vocabulary”). Another solution is to have the system take care of the
mapping between different terms for the same concept (ontologies).

• The metadata might be incomplete; it might not describe the specific
property the user is interested in. For example, images of Monica and
Bill shot before the hussle about the two are not likely to be annoted as
showing “Monica Lewinsky and Bill Clinton”, since at the time the image
was annotated and stored, Monica was someone unknown.

Another drawback is that these type of queries are less suitable for highly
visual information needs that are difficult to describe in text. For instance, a
Web designer may be looking for images that fit the style of his Web site in
terms of color distribution, and atmosphere. Those search criteria are hard to
describe in concepts.

Content-based Queries
Content-based queries are solved on the level of features. Features are au-
tomatically deductible characteristics of a multimedia object, like color his-
togram, shape, brightness, etc. Features are at a lower semantical level than
concept-level queries. Content-based queries are often specified by using the
“Query by Example” paradigm, which is a rather intuitive way of constructing
content-based queries. The user simply gives one or more examples of what
they are looking for and specifies what aspect of the example(s) is impor-
tant to them. For example: “here is a set of images, find images that have
similar colors and preferably similar shapes”. Advanced query languages for
constructing queries-by-example exist, allowing to give weights to the differ-
ent aspects (expressing that color is more important than shape) and weights
to the different examples (expressing that one image is more representative
for what the user is looking for, than another).

Content-based queries are often fuzzy queries, i.e., queries that are not
unambiguous. Queries like “Find images with lots of red” are fuzzy because
“lots of red” is not a very precise way of expression. Queries by example are
in itself fuzzy: the word “similar to” in the query “Find images similar to this
example image” is a fuzzy term. Fuzzy querying often needs a few iterations
before users find what they need.
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11.2.2 Dynamic Query Interaction
The characteristic for this type of user interaction is the very visual way of
how users specify their information need. Sliders, buttons and other visual user
interface components allow the user to compose queries in a very fast way.
In dynamic query interaction, results are updated very fast by the system
and immediate reflect the changes in user input. Figure 11.1 shows the user
interface of the FilmFinder application from Ahlberg [2], an example of a
system that uses dynamic query interaction. When the user drags the sliders
on the right-hand side, the left-hand side quickly adapts to the new slider
settings, showing the movies that comply with the slider settings.

Fig. 11.1. The FilmFinder interface (© University of Maryland HCI Lab).

Although the user still poses queries and the system still presents the results,
like in the previous section, the iteration cycles in dynamic querying are so
short that the user is almost flying through the information space, steering
with sliders, buttons and other simple and visual means of input. The separa-
tion of action (posting query) and reaction (presenting results) is completely
gone. Schneidermann [15] gives these characteristics for dynamic query user
interaction:

• visual presentation of the query’s components;
• visual presentation of the results;
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• rapid, incremental, and reversible control of the query;
• selection by pointing, not typing;
• immediate and continuous feedback.

Queries in this type of interaction are less expressive than those in retrieval
where natural language concepts can be used to express rich and precise
queries, but more expressive than browsing where the query concept is com-
pletely gone.

11.2.3 Browsing
The previous section explained how the user can specify their information
needs by composing a query. But rather than having a system solve a query
and present (hopefully) the items a user is looking for, users may investigate
the search space by themselves. Like you browse the Internet by following
hyperlinks jumping from Web page to Web page, you can also browse multi-
media data. It’s like looking for a movie in a video rental store: reading the
backs of the DVD boxes, looking at the front image, putting it back, going to
the next box, going to another section, etc. Even flipping through TV channels
fits into this model: you browse the multimedia content that is broadcasted
to you. The characteristic for the browsing model is that there is no explicit
specification of information need, like there is in query specification.

Browsing is a useful interaction model:

• to get an impression of the search space;
• to find something without having a clear notion of its characteristics. For

example, looking for a “nice” movie, without being able to specify values
for title, actors, genre, etc.

Because of the complexity of multimedia objects, there are two levels of brows-
ing multimedia databases:

• browsing through a collection of multimedia objects (e.g., when looking
for a movie);

• browsing within a multimedia object (e.g., when looking for a frame within
a movie).

A clear visualization of the search space (i.e., the way the multimedia items
are presented) is very important, since users have to find their own way in the
sometimes large and unstructured search space (see Section 11.6.2).

Browsing can be done on the original search space, but is not limited to
that. Browsing the results from a query (so a portion of the search space)
is very common: alternating querying and browsing is a powerful interaction
model. Browsing can be done on various levels: a user may browse through
the metadata of a collection of videos, but may also browse within a video,
searching for a certain shot, scene or still image.

Browsing can even be done in a collection of keywords or concepts. Fig-
ure 11.2 shows the Aquabrowser; a tool that allows for browsing in predefined
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Fig. 11.2. A World Cloud in the AquaBrowser (© Medialab Solutions B.V.).

concepts with which the content is annotated. The concepts are represented
as nodes in a graph. Two concepts in the graph are connected by a vertex if:

• One concept is the translation of another (“bread” and the French trans-
lation “pain” are connected). This allows for quickly browsing from one
language to another.

• One concept is a spelling variation of another (“bread” and the German
translation “brot” are connected). This allows for quickly correcting mis-
takes the user may have made in the initial query.
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• One concept is semantically related to another (“bread” and “grain” are
connected, so are “bread” and “baker”). This allows for quickly browsing
the domain the concept is part of.

This visualization gives the user a way to quickly adapt the query while brows-
ing through concepts, their spelling variations, their translations and seman-
tically related concepts. The same principle could be applied to browsing
through a collection of multimedia items. Instead of the concepts, you would
find movie titles that are connected to each other based on a semantical re-
lation (e.g., having the same genre, actors or subject), spelling variation or
translation.

11.2.4 Recommendation
The interaction types discussed so far all required initiative from the user:
either a query or other input, in response to which the system provides or
adapts the results. All these fall in the pull category: the user pulls results
from the system. The recommendation interaction model differs from these
in that the system itself takes the initiative. As soon as interesting content
is available, the system sends them to the user, without the user having to
specifically ask for them or having to specify a query. This is called the push
scenario. Examples are personal mail advertisements and movie recommenda-
tions. The source is often dynamic: new items are added or updated regularly
and users are informed when new items appear that are of their interest. This
interaction type typically addresses the user’s long term interests and taste,
and not, like in the previous interaction models their instant and time-specific
information need (to be expressed in a query). Personalization is an important
technique in systems based on this interaction model. Section 11.5 explains
how personalization can be used to select items that match a user’s taste and
interest.

11.3 Modalities for User Input
Modalities refer to the human channels of perception: for example, visual, au-
ditory or tactile modalities. In human–computer interaction the term “modal-
ity” is also used to refer to the channels of perception an interface has through
the available input devices. For example, a touch screen, an electronic pen, a
camera, a microphone, an eyetracker, a locality sensor, a mouse, or a keyboard.

Natural interaction between humans is multimodal and does not require
a manual. For the same reason we can aim at multimodal interaction with a
computer: use speech to retrieve a speech fragment, point to a preferred item
among a list of items, show a picture to retrieve a similar one, hum to retrieve
a song and nod to confirm a choice. In these examples there is an almost one-
to-one mapping between the input modality and the media type of the item
that has to be retrieved. Obviously, there is no need for that. A textual query
can retrieve a speech or video fragment and a query that is formulated by
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drawing a picture can retrieve a text related to that picture. As well, a query
for a single-media item can be composed using several modalities and, on the
other hand, a single-modality query can retrieve a multimedia item. In current
multimedia systems querying is often done using one input modality only.
Examples are the traditional textual queries (keywords, a phrase, a sentence
or a piece of text), music retrieval by playing or humming a song, picture
retrieval by drawing a picture, etc.

Users have to express their information needs and some ways to express
these needs are more natural than others. For example, describing spatial
relations using speech only is far from easy. If the information is related to
a map, displayed on a wall or on a table, speech and pointing are natural
ways to formulate queries. If a 3D object has to be retrieved, gestures can be
used to describe the object. If we want to retrieve information about a certain
person, we can try to describe that person, but we can also try to imitate that
person (voice, characteristic postures, and movements) or have a combination
of imitation and description.

In particular, in ambient intelligent environments, that is, sensor-equipped
environments with embedded intelligence and intelligent and social interfaces
a user’s actions and behavior can be captured. Being able to perceive the user
also allows the computer to better interpret and handle the input the user
provides. Queries are often ambiguous. Context to disambiguate and refine
the query can be provided by information obtained from the various input
modalities the interface distinguishes. Gestures can disambiguate speech and
vice versa. Pen input can compensate for errors in speech recognition. From
the facial expression of the user the urgency of a request can be determined.

The main problems in modeling multimodal interaction deal with the syn-
chronization and the fusion of the input coming from different channels re-
quired to interpret a multimodal request or the feedback by the user. From
experiments [8, 10] it has been observed that users not necessarily use all avail-
able modalities simultaneously. Rather they switch between modalities. Other
problems that are tackled in multimodal interaction research are related to
the patterns of multimodality choices. Individual users may have preferences
for certain modalities or for sequences and combinations of modalities. These
preferences also depend on their management of their cognitive load while
interacting [11, 12]. Dynamically adapting the interface to such preferences is
an important issue of research.

11.4 Relevance Feedback
Some multimedia systems allow the user to give feedback on the results pre-
sented by the system. This is called relevance feedback. After the user poses
a query, the system solves the query and presents the results. Some systems
then allow users to give their opinion on how relevant they find each of the
results, or how satisfied they are with the results. Using this feedback, the
system can refine the original query and present even better results. This is
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a form of query expansion, as explained in Chapter 4. Of course, clicking a
result from the result list to get more information, or to get directed to the
actual content, is an indication of whether the user finds the result promising.
When being presented with the result list from Google, for instance, a user
probably will click on the results that they think are best. Some systems allow
for more precise ways of expressing relevance of results.

11.4.1 Binary Relevance Feedback
In the binary relevance feedback scheme, a user can indicate for each of the
results whether or not the result is relevant. An example is given in Figure 11.3
showing the user interface of the MetaSeek tool [6]. It shows images that are
retrieved in reponse to a query. The user can indicate for each of the images
whether they are (more or less) corresponding to what the user is looking
for. The positivily rated images serve as a new example set with which the
query is expanded. The negatively rated images can serve as a contra-example
set. Relevance feedback is especially usefull in fuzzy queries, in which users
cannot express precisely what they are looking for. After a few iterations with
relevance feedback the results will get better and better.

Fig. 11.3. User interface of the MetaSEEK system.

11.4.2 Weighed Relevance Feedback
In weighed relevance feedback the user can specify the amount of relevance of
the results, i.e., a gliding scale from being completely irrelevant, to completely
relevant. Figure 11.4 shows a sketch of a corresponding user interface in a
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query by example system. The distance from the image to the center indicates
the amount of relevance of that image. By dragging the images to the middle
of the target circle the user indicates that those images are relevant. Dragging
them to the outside means that the images are less relevant.

Fig. 11.4. Sketch of user interface for weighed relevance feedback.

11.5 Personalization
11.5.1 Definition
Personalization permits users to adapt a service in a specific context and to
individual goals, by providing the users with a high quality product or service
they really need and can use at best [14]. This definition is one of many that
can be found in literature.

Originally, the term comes from one-to-one marketing, and is used there
to indicate the process of trying to pin-point possibly interested users for a
new product or service. Closer to the subject of this book, personalization is
an important concept in the domain of information delivery. There, personal-
ization means filtering information in such a way that a person only receives
relevant information, targeted at the person’s unique and individual needs. It
is a means of coping with today’s information overload, helping finding people
what they need and/or like.
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11.5.2 Examples
Practical use of personalization already can be found on the Web. When en-
tering Amazon’s Website for instance, a message like “Hello John, we have
new recommendations for you” appears. A list of books and other items is
provided that Amazon thinks you will like, based on previous purchases and
click-through behavior. This is a so called recommendation system, it recom-
mends possibly interesting items to the user.

Another example of a personalized service is LaunchCast, an Internet radio
station that claims to learn the user’s taste and only plays music that the user
likes. Users can skip a song when they don’t like it, or give an explicit rating
(good, mediocre, bad). After a while, the system learns from this feedback,
playing songs that the user likes more and more.

The previous two examples show how personalization can be used to push
interesting content to the user: the initiative is taken by the application. An
example in which the user takes the initiative (and not the application) is
Google’s personalized search. This application orders search results based on
what the user has searched for in the past. That way, it tries to learn the
domains of interest to the user, so that when a user searches for “java”, it
shows references to the Indonesian Island instead of the programming lan-
guage, because it might have learned from previous queries that the user is
a-technical and fond of travelling.

11.5.3 The personalization process
Figure 11.5 gives the basic steps in the personalization process. Personalization
starts with building a user profile (left-hand side of the figure). This user
profile is a description of the user and is used to filter metadata and retrieve
results that believed to be relevant to that specific user. The right-hand side
of the figure shows the two common ways of filtering, which will be explained
in more detail below.

User Profile Building
In order to be able to find information for an individual person, you have to
know the user’s information needs and store that information as the repre-
sentation of that user. That representation is called the “user profile”, it is
the description of the user’s taste and needs in a certain domain (e.g., books,
movies, etc.)

Building a user profile is a complex task. An application could simply
ask users about their information needs. A movie recommender system, for
instance, could explicitly ask users about the type of movies they like. There
are two problems with this approach:

• Even users themselves might not be able to express their taste in a clear
and uniform way in natural language, let alone in a language that the
system understands.



11 Interaction 307

��������	
�����
�
�� ��������	
����
��

Fig. 11.5. The Personalization Process.

• Users tend to be passive and are often not enthusiastic about filling in
endless questionnaires before they get to use a recommendation system.

Another approach is to build a user profile by looking at the way users use
the application. In an online shop, for instance, a profile can be built based
on the items that a user buys or the items that a user clicks on to get more
information (click-through behavior). In an intelligent VCR a user profile can
be built based on the programmes the user watches, records, replays, etc.
This approach is not very reliable either. Most online shops do not make a
distinction between users buying things for themselves and users buying gifts
for someone else. If someone buys a present for someone else, this purchase
information should not be used for adapting the profile of the bying user.

In practice, the two approaches often are combined. Amazon.com for in-
stance, explicitly asks users to rate books (with 1 to 5 stars) and uses in
addition implicit information based on user’s purchases and click-through be-
havior.

Content Filtering
Once the taste of a user is represented in a user profile, the recommendation
system can use it to find interesting content.

There are two well known methods for selecting content, given a user pro-
file. A hybrid version, combining the two, is sometimes also used. We’ll explain
the two methods by taking an intelligent VCR as an simplified example. This
VCR (like TiVo) can record television programmes digitally on a hard disk. It
builds user profiles by keeping track of the programmes that its user (John)
records and plays back. When John comes home from a long tiring work day
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and wants to see something interesting on television, it can recommend in-
teresting programmes that will be broadcasted that night and might have
recorded some interesting shows. From previous behavior, the VCR stored
the following information about John’s behavior:

• John recorded Friends three times during the past month.
• John recorded the movies Die Hard, The Jackal and The Story of Us.
• John recorded Soccer: UEFA championship 2005.
• John watched all three recorded episodes of Friends, some of them twice.
• John watched Die Hard and Seven completely and he watched only two

minutes of The Story of Us.
• John did not (yet) watch Soccer: UEFA championship 2005.

11.5.4 Content-based Filtering
Content-based filtering methods select content items that have a high degree
of similarity to the user’s profile and recommends those items to the user. A
user profile in content based filtering consists of attribute-value pairs, together
with an indication of how much each attribute-value pair is fitting the user’s
taste.

Let us take John’s behavior profile from above as an example. When using
content-based filtering, the information about John’s behavior is stored in the
following profile:

Attribute Value Fit
title Friends 0.9
genre comedy 0.9
genre action 0.7
actor Bruce Willis 0.7
genre romance 0.1

The first line in this profile means that John likes very much programmes
which title equal Friends. The last line specifies that he dislikes programmes
of the romantic genre.

This is a rather simplified one-dimensional profile. A more accurate repre-
sentation of the user’s taste would store the fact the the user does like Bruce
Willis but only in action movies, and not in romantic comedies. Besides, in
real life, it takes much more information about user behavior before a profile
like this can be derived: to base the assumption that John dislikes romance
on just one indication is statistically not plausible. But for the sake of clarity,
we will stick with this simple example profile here. Note that the profile is
not on the level of multimedia items (televions programmes), but on the level
of their properties (genre, title, etc.). In content-based filtering the attributes
are the things that the content is matched with, while in social-based filtering
(see below) it is the multimedia items.

Matching of the user profile with multimedia items takes place in vector
space. This means that the user profile is an n-dimensional vector and so
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is each individual multimedia item. Each [attribute name, attribute value]
pair forms a dimension in this vector space. The dimension [genre, “action”]
indicates how well the programme fits the “action” genre, i.e., it indicates how
much action there is in the programme. The dimension [actor, Bruce Willis]
indicates whether or not Bruce Willis plays a role in the programme. And
since vector space is non-binary, this dimension can indicate if Bruce Willis
plays a main role (value close to 1), a smaller part (value closer to 0) or does
not play at all (value equal to zero).

Figure 11.6 shows how the user profile and a few TV programmes are
represented in a simplified vector space with only these two dimensions. For
simplicity reasons we only consider two dimensions: in reality there are thou-
sands of dimensions; one for each possible [attribute name, attribute value]
pair.
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Fig. 11.6. User profile and TV programmes in vector space.

The closer a multimedia item is to the user profile, the more likely it is that
the item is interesting for the user. This closeness, or similarity, is based on the
angle α between the user profile vector u and the item vector pi. The smaller
the angle, the more similar the item is to the user profile, and the more likely
the user will find the item interesting. This similarity can be calculated as
follows:

sim(pi, u) = cosα =
pi • u

|pi| × |u| . (11.1)

Disadvantages of content-based filtering are the following:
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• Quality of recommendations is dependent on quality and availability of
metadata.

• Expressing similarity in terms of properties is tough. One comedy starring
Bruce Willis may be very different from another comedy starring Bruce
Willis, yet in metadata terms, they may be quite similar.

• New user problem. A new user does not have a profile yet; it takes some
time to collect enough information about the user to build a reliable pro-
file. Until then, no reliable recommendations can be provided using this
approach.

11.5.5 Social-based Filtering: Collaborative Filtering
Collaborative Filtering (CF) techniques draw on the experiences of a group
of users rather than on the experience of an individual user. Imagine your
friends telling you that they saw this great movie (that you didn’t see yet).
You might be tempted to go and see that movie as well, since you trust their
advice. CF can be seen as the automated version of this “Word of Mouth”
principle. In short, this method tries to find people that have similar taste to
the user at hand. If those people gave a high rating to a movie that the user at
hand did not see, that movie is recommended to that user. In this way, items
are recommended on the basis of user similarity rather than item similarity.

Let’s go back to John. In CF John’s profile would look like:

Programme Fit
Friends 0.9
Die Hard 0.7
Seven 0.7
The Story of Us −0.2

The first line means that John likes the programme Friends very much. The
last line means that John dislikes the programme The Story of Us. The values
in the profile can be seen as ratings. CF now tries to find people with similar
profiles as John.

One common way of calculating the similarity simi,j between two people i
and j is by using the Pearson correlation formula (11.2). This formula finds
out whether there is a correlation between the ratings vi,p of one person i and
those vj,p of another person j on programmes p. If two people rate programmes
the same way, the value is close to 1. If two people constantly disagree about
programmes, their ratings being the opposite of each other, the value is close
to −1. When no correlation can be found, the value is zero:

simi,j =

∑
p(vi,p − vi)(vj,p − vj)√∑

p (vi,p − vi)
2∑

p (vj,p − vj)
2
. (11.2)

In this equation vi denotes the average of all ratings of person i. By using
the difference between the actual rating and the average rating, the equation
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accounts for the effect that some people tend to rate significantly higher than
others.

Now the ratings of other users can be used to predict a rating for a pro-
gramme that the target user did not yet see. If this prediction is high, the
programme is probably a good recommendation for the user. If the prediction
is low, the programme should not be recommended to the user. A predicted
rating ri,p of programme p for user i could be calculated as follows:

ri,p = vi +

∑
j(vj,p − vj)simi,j∑

j |simi,j |
. (11.3)

In this equation, the similarity simi,j between two persons i and j is used as
a weight factor: the more two persons i and j are alike, the larger the share of
the rating of j will be in the predicted rating for person i. Again, vecvi and
vecvj denote the average ratings of persons i and j respectively.

Advantages of CF are:

• Explicit content representations are not needed. As seen above, in CF the
system does not have to store any information about the movie, except
for a way to uniquely identify it (title or ID). The knowledge-engineering
problem of finding proper characteristics of movies and how to represent
and store those is non-existent.

• CF is domain independent: it is equally suitable for recommending movies,
as it is for recommending books, holiday destinations or French Cheese.

Disadvantages of CF are:

• Thousands of users are needed, each having rated dozens of items, before
enough information is available for generating reliable recommendations.

• Cold start problem: New users have only a small number of ratings in
their profile which makes it hard to similar people to base prediction on.

• Unusual user problem: for users that have unusual taste, it is hard to find
similar people to base predictions on.

• New item problem: when a new movie is released, no or not many people
have rated that movie. This makes it unlikely that that movie will be
recommended to anyone.

11.6 Presentation
In the context of multimedia information retrieval systems, presentation plays
a role on two different levels. First, the results of a query need to be presented
to the user. Since multimedia objects are large in general , these results are not
presented by the multimedia objects themselves, but by metadata describing
those objects (e.g., a list of movie titles). The actual multimedia object (e.g.,
the movie), is presented after the user selected it from the list of results. So
presentation deals with both the description of the multimedia objects found,
as well as the multimedia objects themselves.
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11.6.1 Presentation Modalities
Since an MIRS contains content in various modalities (text, speech, music,
images, video, etc.), the results of a query typically consist of various modali-
ties as well. When presenting the items found, the most appropriate modality
for each item needs to be selected. This selection is a complex and knowledge
intensive process that needs to take into account the type of information that
needs to be conveyed, the specific (dis)advantages of each modality, and the
preferences and abilities of the user. Further complexity is added because the
combination of modalities also needs to be effective.

Given the complexities involved, it is not surprising that human designers
need to be involved to balance the different trade-offs. In an MIRS how-
ever, this selection has to be done automatically, on-the-fly. Bachvarova et
al. [3] discuss an automated system for presentation modality selection. It
uses the following rule: Modality combinations that employ different percep-
tion channels (visual and auditory) and encode information both verbally and
non-verbally are optimal from an information processing perspective.

visual verbal visual
nonverbal

auditory
verbal

auditory
non-verbal

visual verbal −− + − +
(text) two pieces of

text
text and image text and

speech
text and music

visual non-verbal − ++ +
(image,
animation)

two images image and
speech

image and
music

(auditory, verbal) −− +
speech, songs two pieces of

speech
speech and
music

auditory
non-verbal

−

(music, environ-
mental sound)

two pieces of
music

Fig. 11.7. Possible binary combinations of modalities in terms of their property
values.

Figure 11.7 shows all possible combinations of two modalities as well as how
they rank with respect to effective cognitive processing effectiveness. The rank-
ing results from applying the optimal combination rule derived earlier in this
section. With ++ we denote the highest ranking position, that is the most
preferable combination; −− denotes the most unfavorable ranking position,
that is a combination which is almost impossible or impossible to process. A
very important assumption we make when analyzing and modeling modality
combination process is that we consider the cognitive effect of the simultane-
ous presentation of different modalities. Thus the combination of two pieces
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of text is impossible to process simultaneously (in the table this combina-
tion is marked with −−) but if the user addresses the two texts one at a
time then this turns into an entirely acceptable combination. The described
distinction raises questions about the relation between modality combination
and temporality which is a further issue we plan to investigate.

11.6.2 Visualization
Although the term visualization is close to presentation, there is a slight differ-
ence. Visualization is more than presenting results; in visualization, techniques
are used to interpret the data and help presenting the data in a more under-
standable form. Instead of wading through a long list of results, visualization
can serve to cluster similar items and identify regions of potential interest. Vi-
sualization can also be used for iterating the search process, narrowing in on
areas of potential value. Since humans have a highly developed visual ability,
visualized data is much faster to understand than text. It helps people gain
more insight in a huge collection of data. Sometimes it even reveals informa-
tion that is hidden in the data.

Goals of visualization:

• enhancing understanding of concepts and processes;
• gaining new (unexpected, profound) insights;
• making invisible visible;
• effective presentation of significant features;
• quality control of simulations, measurements;
• increasing scientific productivity;
• medium of communication/collaboration.

Below we discuss two example visualizations that are suitable for visualizing
multimedia collections: treemaps and graphs. Then we discuss 2D and 3D
graphics. The last section discusses visualization of video material, which is a
complex, linear and long data type.

Treemaps
Treemaps visualize a hierarchy of data as nested squares. The location and
nesting of the squares indicate the position of a data item in the hierarchy.
The size of the square can be used to reflect some property of the data item.
In addition, color, texture, and even motion can be used to express other
properties of the data items.

An example of multimedia data set represented in a treemap can be taken
from the TV domain. The classical representation of TV programmes is to list
their metadata (title, start-time, genre, description) in an ordered list, one list
per channel per day. Browsing such a TV guide would become infeasable when
the number of available channels grow to a couple of hundreds or even thou-
sands in the next decade. Using the hierarchy of genres of TV programmes,
a treemap can be used to visualize many programmes in one view. This gives
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the user a better overview of the available programmes in one glance. Fig-
ure 11.8 shows an example. The left-hand side of the picture shows the tree of
a TV-programme guide. Each node represents a genre, except for the leaves,
which are the actual TV programmes. A treemap visualization of this tree is
given at the right-hand side.

Fig. 11.8. A tree representing a collection of TV-programmes (left) and the corre-
sponding treemap (right).

The challenge in using treemaps is how to map k-dimensional properties of
multimedia items to an n-dimensional visualization, where n is the number
of visual characteristics of the visualization. Examples of these characteristics
are position of the rectangle, its size, its length/width, its color, etc.

A 3D version of Treemaps, called Treecubes, was introduced by Tanaka
et al. [17] where instead of rectangular boxes, cubes are used. This gives one
extra visual dimension that can be used to visualize an item’s property.

Graphs
Another popular way of visualizing the search space are 2D or 3D graphs.
Each node represents a multimedia item, each vertex represents some relation
between the items. The kind of relation chosen is application specific. Fig-
ure 11.9 gives an example of a visualization of part of a multimedia database
containting audio clips [1]. Each node represents a song or an artist, each
songs node is connected to one artist node, and artist nodes are connected to
each other according to similarity between artists.
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Fig. 11.9. Music items represented in a 3D graph.

Starfield Display
In the Starfield Display each multimedia item is a dot on a 2D plane, or in a
3D space with the axes representing some attribute of the item. Contrary to
the graphs discussed in the previous section, relationship between the items
are not explicitly visualized. The FilmFinder (Figure 11.1) shows an example
of movies plotted in 2D space. The horizontal axe indicates the year in which
the movie is released, the vertical axe gives the average rating on a scale from
0 to 10. Colors of the dots indicate the genre of the movie.

In fact, this visualization plots the items in 2D or 3D vector space. In
Section 11.5.4 vector space was mentioned as a way to represent multimedia
items. The difference is that here we are stuck to two or three dimensions
because in visualization that is the maximum; in storing items, vector space
dimensionality can be much larger.

Visualization for Video Browsing
Browsing a video in order to get an impression of the visual contents of a
video or in order to look for a specific frame in the video is very hard because
of the length of the video material and its linear nature. When using a player,
one could use the fastforward function to speed up the process, but it would
still take an hour to browse through a feature movie.

One way of visualizing video is to break it into segments, and show from
each segment one frame. This gives a summarized version of the video, much
shorter than the original video. First, a process called shot detection is per-
formed on the video. This breaks the video down into individual shots. Then,
for each shot, a representative frame is selected. This frame is called the
keyframe of the shot. The video is then presented by displaying all keyframes,
similar to a storyboard often used in the production process of a movie.

Some systems group shots into scenes, which are shots that semantically
belong together. Like the shots, each scene is represented by a keyframe,
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chosen from the keyframes that represent each shot within the scene. This
allows for a hierarchical visualization of the video, where on the top level the
video is represented as a series of scenes. Each scene is represented by the
keyframes of its shots. Browsing a video comes down to browsing through the
scenes, and once an interesting scene is found, browsing through its shots.
Figure 11.10 gives an example of a video browser by Guillemot et al. [9] based
on this concept.

Fig. 11.10. User interface of a video browser.

11.6.3 Embodied Conversational Agents
Multimedia systems are used more and more by non-professional people. On-
line photo-archives, Electronic TV programme guides, have become common
tools nowadays. Many people are still reluctant to use these systems since
they are “scared” by the apparent complexity of the user interface. Embodied
Conversational Agents (ECAs) are one way to solve this problem. An ECA
is a computer-generated cartoon-like character that can be used as a guide in
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helping the user use a system, or as a very easy-to-use interface as an alterna-
tive for the existing interface discussed in the book Embodied Conversational
Agents [7]. ECA demonstrates many of the same properties as humans in face-
to-face conversation, which makes them, for some people, more comfortable
to interact with than existing interfaces. Experienced users may prefer the
more complicated, possibly more efficient, interface without an ECA.

11.7 Content Adaptation
Content adaptation plays a role when presenting multimedia content to the
user. Whereas Section 11.6 discussed ways to present multimedia query re-
sults, often in the form of metadata, this section is about presenting the actual
multimedia content itself. The way in which the multimedia content is pre-
sented, depends on:

• the capabilities of the device on which the content is played;
• the context the user is in;
• the capabilities of the user.

When the form in which the content is stored does not comply with either
of these three factors, the content needs to be adapted to overcome any de-
vice/user disabilities. A video for instance may have to be reduced in size
or colors, or it may have to be subtitled if the user in question is not able to
understand or hear the language spoken in the video. This content adaptation
can be seen as the final phase of the content delivery process.

Device capabilities typically refer to properties like

• screen size
• screen resolution
• color depth
• refresh rate
• format support (jpg, mpg, mp3)
• audio quality
• 3D capabilities
• etc.

An example of a user context in which content adaption is needed, is one
where the user is driving a car. The user cannot watch video for more than a
few seconds nor can read long texts. Audio however, is a much more suitable
modality in that context.

Content adaptation is also needed in case of limited user capabilities, e.g.,
when the user suffers from color vision deficiency or low-vision capabilities.
Note that these capabilities are context-independent and user specific.

Some types of content adaptation are:

• Transcoding: bringing content from one storage format to another, e.g.,
from video in MPEG7 to video in MPEG4. Note that the modality stays
the same.
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• Transmoding: changing the modality of the content, e.g., from audio to
text, from video to still images.

• Content summarization: e.g., from text to textual summarization or from
video to a collection of keyframes. In this type of content adaptation
information is lost. Both modality and storage format might change.

11.8 Summary
Well-considered user interaction design is equally important as the techniques
for storing, annotating and search. An MIRS should allow users to express
their information needs, formulate their queries, and understand search re-
sults. We distinguish four interaction types:

• Retrieval: users formulate their information needs in a (possibly complex)
query, which is solved by the MIRS. The system presents the results to
the user.

• Dynamic query interaction: the user formulates simple queries by means of
sliders, buttons, and other visual user interface components. The system
gives instant feedback by continuously updating the visual presentation
of the results.

• Browsing: with only an initial query, or no query at all, the user wanders
through the search space, selecting the promising items.

• Recommendation: the system takes the initiative by sending the user in-
teresting items. Personalization techniques are used to find items that
match the user’s personal taste.

Personalization is a technique used to filter information targeted at a person’s
unique and individual needs. The personal information needs of a user are
stored in a user profile. This profile is either matched with the metadata of
a collection of items (Content-based filtering) or with other users’ profiles
(Collaborative Filtering), resulting in personal recommendations.

Relevance feedback allows a user to give feedback on the results presented
by the system. The system uses this feedback to improve the resultset in an
iterative way.

Interaction with an MIRS is not limited to using keyboard, mouse and
monitor. Multimodal interaction allows for visual, auditory and tactile inter-
action: use speech to retrieve a speech fragment, show a picture to retrieve a
similar one, hum to retrieve a song and nod to confirm a choice. A one-to-one
mapping between the input modality and the media type of the item to be
retrieved is not needed though. When presenting multimedia items, various
output modalities can be used as well. The appropriate output modality de-
pends on the type of information, the specific (dis)advantage of each modality,
and the preferences and abilities of the user.

Visualization techniques aim at presenting data in a clear and intuitive
way. The user will see areas of interest at a glance and may gain new and
unexpected insights in the data presented. Treemaps are a common way to
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visualize hierarchical data, while graphs are typically suitable to visualize
(dis)similarity between data items.

Multimedia items may have to be adapted to the capabilities of the user,
and to the capabilities of the device they are presented on. Some types of
content adaptation are:

• transcoding: changing the storage format, while keeping the modality un-
changed;

• transmoding: changing the modality;
• summarization: creating a shorter version of the data (in time or in space).

11.9 Further Reading
Baeza-Yates et al. [4, chapter “User Interfaces and Visualization”] give a clear
introduction on the interaction aspects of an MIRS, explaining (graphical)
ways of query specification, relevance feedback, and user interface specific
issues like window management.

Both Soukup et al. [16] and Tufte [18] give a thorough introduction in
the area of visualization. The former focuses on visualization of business data
with rather traditional tools like column and bar graphs, trees and maps. It
also explains visual data mining: the visualization of data in such a way that
patterns can be detected easily. The latter is not focused on one data type,
but covers a wide range of data types and corresponding ways of visualization.
It covers historical aspects of visualization and is more philosophic than the
former.
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12.1 Introduction
Digital Rights Management, or DRM for short, is a much-discussed topic
nowadays. The main reason for this is that DRM technology is often mentioned
in the context of protection of digital audio and video content, for example
to avoid large scale copying of CDs and DVDs via peer-to-peer networks in
the Internet. However, DRM technology is much more than a simple copy
protection technology. It is one of the enabling technologies that open the
way to secure distribution and exchange of digital content over open digital
infrastructures such as the Internet.

In order to show how DRM addresses this challenge, we will discuss what
DRM technology actually is. There are two main lines of DRM technology
based on two different approaches to the problem. The first approach is pre-
ventive, while the second approach is reactive.

12.1.1 Preventive DRM Technology
Preventive DRM technology aims at preventing behavior that violates the reg-
ulations. The technology is based on encryption of the content. The encrypted
content can only be accessed through an encryption key. The use of this key
is regulated by so called usage rights. A typical electronic distribution system
consists of a client-server system. At the server side the content is encrypted
and sent to the client. The client needs to be in possession of both the key
and the usage right to access the content. The DRM software that runs on
the client checks that this is the case. The key and usage right together are
typically contained in a data object that we call license. More details and
examples can be found in the section on DRM architecture and the case.

12.1.2 Reactive DRM Technology
Reactive DRM technology aims at tracing of behavior that violates the reg-
ulations. The approach is also called forensic tracking. The technique that
is commonly used is that of embedding information in the content itself that
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allows tracing the origin of the content. The main technology that is exploited
in this context is that of watermarking. Watermarking allows inserting infor-
mation in music or movies in such a way that consumers do not perceive any
difference from the original. It is very difficult to remove or detect a watermark
when the characteristics of the watermark are not known. A typical reactive
DRM system consists of a server that inserts the watermark containing infor-
mation on the client at the moment a client downloads content. Violations can
be detected by using a watermark detector. Such a detector may, for example,
be used to monitor content distribution in the network. If, for example, a us-
age rule does not allow a client to redistribute the content and the content is
nevertheless spotted in the distribution network, the watermark can be used
to trace the client that originally downloaded the content.

12.1.3 Relation to Other Chapters
This chapter discusses the protection of multimedia data using DRM. It also
positions DRM in the Multimedia Information Retrieval System architecture
presented in Chapter 1. In this extended architecture both the content server
and the client are extended with DRM functionality. DRM introduces the con-
cept of licenses, which may be regarded as metadata. The concept of metadata
is introduced in Chapter 2, which provides an overarching framework to en-
sure interoperability of digital multimedia objects, including protection and
management of rights.

12.1.4 Outline
In the remainder of this paper we concentrate on preventive DRM systems.
The next section discusses the context in which DRM operates such as the
legal framework and the applications areas for DRM. Section 12.3 describes
the general DRM architectural principles. Section 12.4 discusses a case to
highlight a number of technical aspects relating to DRM. As an example the
Personal Entertainment Domain (PED) DRM concept is chosen. We focus on
the person-based and domain-based aspects of PED-DRM. We conclude with
further reading and a summary.

12.2 DRM Context and Application Areas
12.2.1 DRM and the Legal Framework
It is important to note that DRM is more than technology alone. DRM tech-
nology functions in the context of a legal framework that outlines the reg-
ulations that DRM technology supports to enforce. Examples of such legal
frameworks are copyright laws, privacy laws and antitrust laws.

Copyright law differs per jurisdiction although mostly the same principles
are present. The background of these principles can be found in an interna-
tional treaty called the Berne Convention for the Protection of Literary and
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Artistic Works. In daily life most relevant are the Digital Millennium Copy-
right Act (DMCA) in the United States, and the European Union Copyright
Directive that is used as a basis for copyright law in the EU countries. New
provisions in the DMCA and EUCD also address DRM technology by out-
lawing circumvention technology.

12.2.2 DRM for Secure Audio and Video Content Management
The secure management of audio and video content is an important appli-
cation area for DRM. The fact that digital audio and video content can be
easily transported over electronic networks opens the way for electronic deliv-
ery of music and movies. Both consumers and content owners are interested
in exploiting this new way of content distribution. For example a networked
version of a video rental store would be advantageous to both consumers (that
do not need to drive to the rental store) and content owners (that will rent
more videos due to a lower threshold). However, in this example there is one
issue: how to make sure that the consumer does not watch the video any
longer after the rental period is over? Of course this problem also exists with
physical distribution, since the consumer can make a copy of the video at
home before returning the original to the shop. However, due to the ease of
digital content distribution, the impact of such behavior is much larger in a
digital world, something that was clearly demonstrated by the peer-to-peer
networks already mentioned before. As a result the development of electronic
music and video distribution services is taking up slowly.

12.2.3 Standardization and Products
There are several activities going on around the standardization of DRM tech-
nology. Important activities are taking place in DVB (Digital Video Broad-
casting) for the secure delivery of digital TV and for the secure sharing of this
in home networks [32], in OMA (Open Mobile Alliance) for the secure delivery
of music and video to devices including mobile phones [22], in Marlin JDA
(Joint Development Association) [21] focusing on efficient implementation of
DRM in consumer electronics devices, in the Coral Consortium focusing on
DRM interoperability (i.e., solving the problem of content exchange between
different DRM systems) [5], and in MPEG-21 focusing more broadly on the
secure exchange of digital items [16].

Next to standardization a number of proprietary DRM systems exist, the
best known currently is FairPlay that comes with Apple iTunes, but also
Microsoft with its Windows Media DRM (WM DRM) technology is offering
DRM functionality as well as Sony with its Open Magic Gate system and
RealNetworks with its Helix DRM.

12.2.4 DRM in Other Areas
Although the current application focus of DRM is on secure delivery of music
and movies, DRM can be used in a much wider range of applications. It can be
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used to protect any digital document, and as such it can be used to implement
secure document management or workflow systems for example.

Enterprise DRM is one of such applications. The focus lies on protecting
company documents such that only authorized people have access to their
contents. Important players are Microsoft with its extensible Windows Rights
Management Services, which is also used by other companies as a technology
platform, and Adobe with its Adobe Live Cycle Policy Server product.

Another interesting application domain is healthcare. Healthcare has strict
regulations with respect to privacy of medical data, e.g., the Health Insurance
Portability and Accountability Act (HIPAA) in the US. At the moment we see
a starting digitization in healthcare. Increasingly, medical information is be-
coming available in digital form. Already inside hospitals medical information
is managed by departmental information systems, and hospital information
systems emerge. The next step will be the exchange of medical information
between hospitals and all kinds of parties involved in the healthcare processes,
leading to the creation of electronic health records containing a lot of privacy
sensitive information. DRM technology has the potential of becoming a key
technology for the secure exchange of all kinds of medical information. Re-
search in this field is emerging [27] and some DRM vendors start to address
this. For example Microsoft presents their Windows Rights Management Ser-
vices as a solution for protecting electronic content in Healthcare, and Sealed-
Media offers a similar proposition with its solutions targeted at healthcare
applications. Both solutions advertise their audit facilities next to preventive
DRM methods.

Different DRM applications share the basic technical principles, although
aspects may differ. For example DRM for audio/video content is often device
oriented meaning that certain devices are authorized to access content, while
enterprise DRM is often more identity or user oriented, and medical DRM
typically has special measures to support emergency cases.

12.3 DRM Architecture and Technology
Figure 12.1 depicts the generic DRM system architecture. The essential infor-
mation exchanged between components are content and licenses. The policies
that control content use are defined by the rules of the DRM system itself and
by the licenses.

Separation between content and licenses is a core characteristic of DRM.
This characteristic is present in all major commercial systems like WM DRM
and OMA DRM. That said, many systems support embedding of licenses
in the content container to make content use more convenient. The main
benefit of separating licenses and content is that it allows for a wide variety of
distribution and business models, while still having an efficient system with
respect to bandwidth, storage and processing requirements at servers and
networks.
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Fig. 12.1. General DRM architecture.

Content packager, license server, DRM client and content decryptor are
the main DRM components. Content packager is responsible for protecting
the content and fitting it in a DRM format. License server issues licenses after
content is bought. DRM client interprets a license and makes the content key
available to the content decryptor to decrypt the content for the renderer.

Next to the core DRM components, front-end components play a role
such as Web browsers and Web shops with a catalog and ordering system.
Also backend systems play a role such as rights or royalty clearing systems
that facilitate payment of the copyright holders, and payment services that
serve as intermediaries for payments by end-users.
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In reality the client side is more complex than illustrated in the figure. In-
stead of just one DRM client people have multiple devices with heterogeneous
capabilities. For example, some devices such as a PC can buy licenses, while
other devices such as portable music players cannot. Naturally, users want to
use their content on all their devices. This implies that content and licenses
must be distributed to these devices and use of the content on these devices
must be authorized. To address these issues concepts are introduced like do-
mains, tethered devices, and person-based DRM. Section 12.4 elaborates on
a number of these aspects.

From now on we mainly focus on the DRM functionality at the client and
server side. Commercial front-ends as shops and payment are not considered
further, while backend DRM functionality like content packaging only get
minimal attention.

Figure 12.2 depicts the DRM functions and the relation between content
and licenses. This approach achieves enforcement of the intended policy set
by the content shop. From a data management perspective content has the
role of data, while all supporting information such as licenses, keys and iden-
tifiers are metadata. The metadata facilitates data management and policy
enforcement on the data. The following sections describes in more detail how
content management and license management achieves content security and
enforcement of the intended policy.

License
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Rights
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Content Key
(CK)

Content
Container

E{CK}[Content]
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key flow

key control
Subject (User/Device/
Domain) management

License/Rights
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Fig. 12.2. Functional and informational DRM architecture.
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12.3.1 Content Management
Content management in the context of DRM comprises the protection of con-
tent, the handling of content through the system, e.g., moving, copying and
accessing audio/video/text assets, and the insertion of new content in the
system.

Content protection has as a goal to prevent unauthorized access to con-
tent. One method is content protection during storage or transmission. The
content is embedded in a secure content container by a process called con-
tent packaging. The main purpose of the content container is to offer confi-
dentiality by means of encryption of the content using a content encryption
key. Many content container definitions exist, typically one for each propri-
etary DRM system, but also standards exist such as ISMACryp [14], MPEG-2
Transport Streams (TS) [6] and OMA DCF (DRM Content Format) [23]. IS-
MACryp is intended for streaming content and makes use of the secure RTP
(Real-Time Protocol) on top of IP for the content, and RTSP (Real-Time
Streaming Protocol) and SDP (Session Description Protocol) for control and
key management. Encryption is applied on packets with MPEG content, while
authentication is done at transport level. MPEG-2 TS as defined by DVB is
typically used for conditional access pay TV and also encrypts at the content
level. DCF is a content file format that contains the encrypted content, some
content metadata such as identifiers, and metadata related to DRM such as
licenses. DCF has a profile for discrete media such as pictures which can be
used for any type of content, and a profile for continuous or streaming con-
tent such as audio and video content. DCF also offers integrity protection to
the content. Integrity and authentication of protected content may serve the
end-user who is assured that he gets what he paid for, but also the content
and service providers who have a means to control who can insert content into
the DRM system infrastructure.

The handling of protected content is not much different than the handling
of unprotected content, because licenses and content are separated. The same
protocols to move, copy and stream content are typically used with sometimes
small extensions to improve user convenience. For example UPnP AV [31] may
be used to move content around in a home network. DRM metadata extensions
indicate to the user and the receiving system that it is DRM protected content.

Insertion of new content happens frequently, for example when music labels
release new music albums. Insertion of new content involves content protection
by the content packager component. The content key is distributed to the
license server, and the availability of new content is signaled to the catalog
and Website to make it available for sale.

12.3.2 Rights/License Management
In a classic DRM system a license defines the rights that are issued for the
content. A license is a signed statement by a content provider that indicates
under what conditions it is allowed to use the content encryption key and
access a piece of content. A typical license has a structure like:
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License = { ContentID, ContentKey, Subject, RightsExpression,
SignatureContentProvider }.

The content identifier forms the link between the license and the content to
find the right license for some content and vice versa. For this purpose it is
necessary that the content can be uniquely identified. If the content identifier
is also used for other purposes such as rights clearing then often standards
are used like DOI (Digital Object Identifier) [13] and MPEG-21 DII [15].

The rights expression indicates how the subject may use the content. Typ-
ical examples for rights expressions include unlimited play (a user “owns” the
content, see Figure 12.3), play for one month (a user has a subscription), play
three times, copy once and write to CD. The rights expression format can
be ranging from copy control bits to XML rights expression languages (REL)
such as ODRL [12], XrML [4] and MPEG21-REL [17]. Most full-fledged DRM
systems nowadays use a REL, although still systems exist that use implicit
rights such as FairPlay in which the rights are defined by the system. All
main RELs are based on a model that relates assets (content), subjects or
principles, permissions, constraints on permissions, and conditions, although
the exact terminology differs per standard.

Security of licenses relates to three main aspects, namely integrity of the
rights expression, confidentiality of the content key and integrity of the state
for so-called stateful licenses, e.g., ensuring that a play-three-times license is
not played four times. Integrity of the rights expression is typically addressed
by a signature of the content provider. Confidentiality of the content key is
realized by protecting the content key using some other key, e.g., encrypting
the license with the public key of the target device or by a domain key. The
management for these keys is system specific and therefore we will give one
example in Section 12.4. Integrity of license state is the responsibility of the
DRM client, which will typically maintain the state in some secure license
storage.

12.3.3 User, Device and Domain Management
Granting access to content based on licenses is key to DRM. Access may be
granted because a certain device is used. Access could also be granted because
a certain person has authenticated and requests access. Alternatively, content
access is granted if a device is used that belongs to a certain domain, i.e., a
group of devices. Figure 12.2 conveniently summarizes these three cases with
the term subject. A license server binds a license to a subject as part of license
acquisition after the content is bought.

The above principle requires identification and authentication of devices
and users. For this purpose devices get an identity and are certified. Certifi-
cation has the further advantage that it allows to make distinction between
trustworthy compliant devices that follow the rules of the DRM system and
devices that do not. Only compliant devices may have access to DRM secrets
and keys.
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<o-ex:rights>
 <o-ex:context>
  <o-dd:version>2.0</o-dd:version><o-dd:uid>RightsObjectID</o-dd:uid>
 </o-ex:context>
 <o-ex:agreement>
  <o-ex:asset>
   <o-ex:context><o-dd:uid>ContentID</o-dd:uid></o-ex:context>
   <o-ex:digest>
    <ds:DigestMethod ds:Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
    <ds:DigestValue>DCFHash</ds:DigestValue>
   </o-ex:digest>
   <ds:KeyInfo>
    <xenc:EncryptedKey>
    <xenc:EncryptionMethod
      xenc:Algorithm="http://www.w3.org/2001/04/xmlenc#kw-aes128"/>
     <xenc:CipherData>
      <xenc:CipherValue>EncryptedCEK</xenc:CipherValue>
     </xenc:CipherData>
    </xenc:EncryptedKey>
    <ds:RetrievalMethod ds:URI="REKReference"/>
   </ds:KeyInfo>
  </o-ex:asset>

<o-ex:permission><o-dd:play/></o-ex:permission>
 </o-ex:agreement>
</o-ex:rights>

Fig. 12.3. OMA DRM 2.0 license (simplified) for unlimited play right using ODRL.

12.4 Case: Content Management in the Personal
Entertainment Domain
The previous section presented the general DRM architecture. We continue
with a more detailed discussion for a specific case. We have selected the Per-
sonal Entertainment Domain (PED) concept. We sketch the PED-DRM con-
cept and a realization. PED-DRM builds upon two hot topics in DRM, namely
domain-based and person-based DRM.

The objective of this case is to give an impression what aspects and consid-
erations play a role if we want to access content on a number of devices and
based on user presence. The solutions and mechanisms presented highlight
certain aspects rather than that they present a blueprint of a DRM system.
The architecture deviates on some aspects from existing approaches such as
OMA DRM or WM DRM. This follows mainly from other assumptions and
requirements. For this case we assume that DRM functions should be per-
formed on devices instead of servers where possible, and that devices should
be able to operate while they are not online.

Content management in PED-DRM for commercial audio/video content
is a special case of data management, because of its distribution model and
required security. The distribution model of commercial audio/video content
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is typically characterized by a download from a server to some device over a
public channel, followed by small scale distribution in a local network. Secu-
ritywise, content in this case requires usage control next to access control.

12.4.1 Personal Entertainment Domain concept
Digital Rights Management (DRM) with support for domains [11, 32] needs
to fulfill the requirements of both the content owners and the users, which
often appear to be conflicting. The general idea is that content can flow freely
between the devices that belong to the domain, while content transactions
between domains are restricted.

Companies [10, 26, 29] and standardization bodies such as DVB (Digital
Video Broadcasting) [32] and OMA (Open Mobile Alliance) are investigating
and developing the concept of domains [9, 18]. Traditionally people have taken
a device-oriented approach [11], where a domain groups a set of devices that
belong to a certain household.

Many of the device-based domain concepts suffer from technological or
user convenience problems, e.g., with respect to enabling the user to access
content anywhere, at any time and on any device. The PED-DRM concept [20]
does not have many of the disadvantages of device-based domains. More im-
portant, it starts with a comprehensive concept that users can understand,
i.e., a limited number of rules and no differentiation between device classes.
This is different compared with current DRM systems like FairPlay and WM
DRM that do make this distinction, e.g., between PCs and portables.

PED-DRM is characterized by its structure, i.e., the relationship between
various entities such as content, devices and persons, and by its policy, i.e.,
the rules that govern content access and proliferation. Key characteristics of
the PED-DRM structure are that one single person is the member/owner
of the domain, that content is bound to that person and that a number of
devices is bound to the user (see Figure 12.4). Key characteristics of the
PED-DRM policy are that content can be accessed on the domain devices
and on all other compliant devices after user authentication. Content access
on the set of permanent domain devices without user authentication allows
for convenient content usage at home, including the sharing of content among
family members. The only thing people must do is to register their device to
their domain once. Temporary content access on all other compliant devices
after user authentication enables people to access their content anywhere and
at any time. Devices may be a member of multiple domains, both permanent
and temporary.

Two small scenarios form the foundation of the PED-DRM concept as
they illustrate the expected user experience and interaction, namely use of
family content at home, and personal content use at another remote place.
We assume that a user has a user identity device, such as a smartcard or mobile
phone, with which he can authenticate conveniently to other devices. Access
to family content at home is typically done on a central device in the living
room such as a media center or PVR connected to the TV. A user can operate
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Fig. 12.4. PED-DRM concept.

his media center and select a movie bought by another family member using
the remote control. The movie starts rendering after he presses play. Access
to personal content at a remote location, conveniently called guest access, is
typically done in a hotel or at a friend’s house. The user decides he wants to
render some content stored on his media center at home and he authenticates
to the hotel TV using for example his mobile phone. The TV lists his available
content and after the user selects some content the TV renders the content,
which is streamed from his home over the Internet.

12.4.2 Functional PED-DRM Architecture and Design
Figure 12.5 shows a functional and data view of PED-DRM. The typical do-
main aspects of PED-DRM build upon the user, device and domain manage-
ment functions (Figure 12.5, right). Domain management concerns the man-
agement of the set of permanent devices in the domain. It has a loose coupling
to the rest to limit the effect on the traditional DRM functions (Figure 12.5,
left). The relation between rights management and domain management is
typically realized by means of a user identifier embedded in the license. This
relation illustrates that a user owns a piece of content.

User and Device Management
User and device management in PED-DRM is not different than normal DRM.
Users get provisioned with a certificate and corresponding public/private key
pair.

Devices in PED-DRM are given a DeviceID certificate and key pair that
they can use to prove their compliance. Devices are also given explicit autho-
rization to fulfill certain functions. This limits the effects of a security breach
by preventing the certificate and keys of a hacked device from being mis-
used for other functions, e.g., keys from a rendering device cannot be used to
register devices to the domain.
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Fig. 12.5. PED-DRM functions and data overview.

Domain Management
Domain management in PED-DRM concerns the relation between users and a
number of devices, as depicted in Figure 12.5 where a UserID and a number of
DeviceIDs are brought together by a DomainDevices (DD) data object. Here,
we present an approach in which DD is a certificate containing a reference to
the user of the domain, references to a number of devices, a version number
and the signature of the domain manager (DomainManager in Figure 12.6):

DD = { DomainID, Version, UserID, DeviceID1, . . . , DeviceIDn,
SignDomainManager }.

The first advantage of making DD a certificate is that it shows who issued it.
The second advantage of putting all domain members in one certificate is that
this allows a simple but secure signaling mechanism to show which devices
are in the domain. The third advantage of the DD certificate is the ability
to report domain information to the user on any domain device at any time.
Alternatively, a device gets a domain membership certificate that only lists
itself. This is an option, but it lacks amongst others the latter two advantages.

To make optimal use of the DD certificates devices should exchange each
other’s DD certificate as part of common DRM operations such as license
exchange of licenses belonging to the domain. When a domain device receives
a valid DD certificate with a higher version number than its stored DD cer-
tificate, it replaces the stored DD with the new DD, provided that it is still
contained in the new DD certificate, otherwise it removes its DD completely.

It is typically a security requirement that in case of a hacked device that
only content is compromised that was available to the device, i.e., the domain
content. To address this requirement domain-based DRM systems often base
their security on domain key(s), e.g., SmartRight [29], xCP [26], PERM [10]
and OMA DRM 2.0 [22]. In these systems the content key is typically en-
crypted with the domain key. We address this requirement differently by lim-
iting license distribution to permanent and temporary domain devices.
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System Components and their Interaction
Figure 12.6 presents the main client side DRM components – DomainMan-
ager, DRMClient and UserIdentity – that group PED-DRM functionality, and
the interaction between them. These components interact with Terminal for
interfacing with the end-user, and License Server to acquire licenses for con-
tent.

The typical connectivity means that enable interaction between the com-
ponents are also indicated: combined on the same device (local), connected
through a network (IP) or via wired/wireless connection with a limitation on
the distance (near-field).

The DomainManager, DRMClient and UserIdentity must run on a com-
pliant device which has a DeviceID certificate because they manage domain
or content-related sensitive data. In a typical deployment of components over
devices UserIdentity and DomainManager components are combined on one
device, e.g., on a smartcard or mobile phone. Alternatively, DomainManager
runs as a service on the Internet, an approach similar to OMA DRM 2.0
and Apple’s FairPlay. Ideally, the DRMClient and Terminal are combined on
one device, allowing straightforward domain management operations using
the user interface of the device for interaction with the user. Typical devices
include media centers and connected renderers (TVs).

UserIdentity
user management

DRMClient
license management
content management
device management

DomainManager
domain management
policy enforcement

near-field
device (de)registration

IP/near-field
license exchange
license transfer

content exchange

near-field
user authentication

LicenseServer
license acquisition

rights clearing

IP
license acquisition

Terminal
control point

user interactionlocal/near-field/IP

Fig. 12.6. PED-DRM client side components and their interaction.
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Domain Policy and Domain Management
The domain policy specifies under which conditions entities are entitled to be
part of the domain and thereby largely defines the scale of content proliferation
in a domain-based DRM system. It is evident that end-users prefer a policy
with a relaxed regime, while copyright holders prefer more tight regimes. As
in most domain-based DRM systems, PED-DRM has a domain policy that
is fixed for the system. OMA DRM 2.0 takes a slightly different approach by
making solely the license issuer responsible for domain policy enforcement.
The drawback of the latter is that a user has to redefine his domain for each
shop he wants to buy content from.

We propose a simple and straightforward basic domain policy enforced by
the DomainManager. The policy is based on a maximum number of devices
per domain. Furthermore, a DomainManager only registers DRMClients that
are in direct proximity. This limits the domain size and content proliferation
to places that the user visits. Devices may be a member of multiple domains
to support sharing of content between people who share devices.

Technically, enforcement of the domain policy by DomainManager is the
main part of domain management together with the creation and manage-
ment of DD certificates. Other aspects are secure domain registration and
deregistration protocols. In a successful run of the registration protocol the
device is authenticated as a compliant device, the request is evaluated against
the domain policy, and the device gets an updated DD certificate with its own
identity listed.

Content and License Management
The working of a DRM system is largely defined by the protocols and processes
for content and license management. This section discusses the PED-DRM
protocols for the leading example presented in Figure 12.7.
The leading example starts with some content bought by the user (U1). Fig-
ure 12.7 shows that the license server stores the encrypted content (contentB)
and the related content key (keyB). The first action is the acquisition of a
license for this content by a device containing a DRMClient (A). After that
the DRMClients belonging to the domain (D1) exchange the content, and the
receiving DRMClient (B) renders the content. Subsequently the content is
exchanged with another DRMClient (C) which renders it. The exchange and
rendering are both based on authentication of the user (U1). Finally, the user
transfers the content ownership to another user (U2). This user has its own
domain (D2) that includes his device with DRMClient (C).

The figure also shows that all devices have compliance certificates (certX)
and related public/private key pairs (pubKeyX/privKeyX). The DRMClients
are member of a domain for which they store a DD certificate. As defined
before, DD consists of the domain ID, the version number of the certificate,
the domain user, the domain devices and a signature by the domain manager.
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certX = {ID_X, pubKeyX, …, sign(privKeyIssuer)}
DD_D1 = {ID_D1, v1, ID_U1, {ID_A, ID_B}, sign(privKeyDM_Z)}
DD_D2 = {ID_D2, v1, ID_U2, {ID_C}, sign(privKeyDM_W)}

UserIdentity U1
{certU1,

privKeyU1}

User
Authentication

{conte
ntB}

Content Access

Fig. 12.7. Leading example content and license management.

The protocols follow the general principle that content keys are only dis-
tributed to devices that can access the content. This affects the license acqui-
sition and license exchange protocols, because the content key is part of the
license. For example, devices distribute the license encrypted by the public
key of the target device so that only the target device can decrypt it. Further-
more, devices keep the licenses in their secure storage database. Devices are
responsible for sufficiently protecting their secure storage database.

Content and License Acquisition
Content acquisition in a DRM context involves buying content, acquiring a
license and downloading the content. We assume that the user already bought
and paid for the content. Figure 12.8 depicts the starting point and subsequent
steps for license acquisition for our example.
The essential part of license acquisition is the binding of the license to the user
identity and his domain. Therefore, the license acquisition request contains the
license ID and the DD certificate.

The license server must be assured that it delivers the license and content
key to a compliant trustworthy DRMClient (A). Therefore, the license server
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Fig. 12.8. Content and license acquisition.

uses the device certificate (certA) to verify that it is compliant. Of course, the
license server also verifies that the signature of the request is from the device.

The license server furthermore requires that the domain (D1) has an ac-
ceptable policy. The license server verifies the signature on the DD certificate
(DD D1) to determine if it can trust the domain it issues content to. In sys-
tems with a fixed domain policy like here any domain created by a trustworthy
DomainManager is accepted by a license server. The trustworthiness of the
DomainManager follows from its certificate. Alternatively, it is possible to
have different domain policies. In that case the domain policy should be in-
dicated in the DD certificate. That enables the license server to determine
if it delivers the license, withholds the license, or charges more. Finally, the
license server checks if the requesting device is part of the domain. For this
purpose it verifies that the device ID from the certificate (ID A) is listed in
the provided DD certificate (DD D1).

After the checks the license server continues with the creation of a license
(licB). This license binds the content (contentB) to the user (U1) and do-
main (D1), and also identifies the relevant content key (keyB). The license
server encrypts the content key with the public key of the requesting device
(pubKeyA) before it responds to the request.

The DRMClient of the device (A) verifies that it receives the correct license
(licB) for the requested content (contentB), that it is bound to the right
domain (D1), and issued by the license issuer to which the request was sent.
This helps to detect accidental and malicious errors, and prevents license
acquisitions from rogue license servers.
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The transfer of the content (contentB) completes the license and content
acquisition. Figure 12.8 depicts a simplified case where the content is served by
the same server as the license. As explained earlier there is no security related
to this transmission from the perspective of the content owner and license
issuer. The device can verify that it received the correct content using the
metadata in the content container and verifying the integrity of the content
using information in the license. As a final step the device stores the license,
key and content. This leads to the situation depicted in Figure 12.9.

Content and License Exchange
Content and license exchange concerns the organization of content and licenses
over devices. This is especially relevant in domain based DRM systems because
content may be rendered on any domain device. Content and license exchange
only changes the location of content and licenses, but not the ownership. We
talk about transfer of ownership later.

The exchange of a user’s license between two of his domain devices is de-
picted in Figure 12.9. The responding DRMClient (A) has the encrypted con-
tent (contentB) and the corresponding license (licB) and content key (keyB).
These are exchanged with the requesting DRMClient (B), which afterwards
holds a copy as depicted in Figure 12.10.

DRMClient A
{certA, privKeyA,

DD_D1}

DRMClient B
{certB, privKeyB,

DD_D1}

2.1. decrypt keyB using privKeyB
2.2. store licB and keyB

1.1. check for licB if ID_B is
       member of DD_D1
1.2. encrypt keyB with pubKeyB

{licB,
keyB}

1. licenseRequest(licID_B,
  certB, sign(privKeyB))

2. licenseResponse(licB, {keyB}encr(pubKeyB))

{ }

{conte
ntB}{ }

3. transferContent(contentB)

Fig. 12.9. Content exchange between domain devices.

The license exchange protocol starts with a license request. The request in-
dicates the desired license and contains the necessary proof to convince the
responder (A) to send the license. The proof consists of the requesters certifi-
cate and signature. The responding DRMClient (A) uses the certificate and
signature in the request to determine that the requesting DRMClient (B) is
compliant. Furthermore, it must be assured that both DRMClients belong to
the same domain. For this purpose the responding DRMClient (A) retrieves
the license (licB) from its license store, compares the domain indicated in the



338 Paul Koster and Willem Jonker

license (DD D1) with the DD certificate (DD D1) it possesses, and verifies
that the request or’s ID (ID B) is also listed in the DD certificate.

After the responding DRMClient (A) has done all checks it encrypts the
content key (keyB) with the request or’s public key (pubKeyB), and sends
the response including the license (licB) and encrypted content key. The re-
questing DRMClient (B) decrypts the content key and stores both the license
and the content key after verifying that it received the requested license.

The protocol above only shows the basic steps. In a more elaborate version
the DRMClients exchange their DD certificate to ensure that both possess
the latest version. This ensures that both have the same view on the domain,
which may have changed since recent domain changes. Another improvement
is to sign the response to convince the requesting DRMClient that the license
originates from the intended responder. Also, a challenge/response should
be included to prevent that an old response is replayed. Finally, revocation
should be taken into account, i.e., the responding DRMClient checks that the
requesting DRMClient is not listed on a certificate revocation list.

The above protocol assumes that the receiving device is member of the
user’s domain to which the license is bound. Alternatively, the user could
have authenticated to the receiving device, which is depicted in Figure 12.11
and also discussed in more detail in the next section.

Content Access
Content access is the general term for usage of content such as rendering and
printing. This involves DRM processing like license evaluation and content
decryption. It takes the secure content container and the license as input.
Furthermore, context is an important parameter, e.g., date/time for subscrip-
tion based licenses, but also current authentication sessions.

The process for content access only involves the device itself as depicted
in Figure 12.10. In our example the DRMClient (B) has knowledge of the
license (licB), its device identity (certB), domain information for the domain
(DD D1), and has access to the content key (keyB). The DRMClient verifies
that it may use the license based on the user ID (ID U1) listed in the license.
This user ID must match the user ID in the DD certificate (DD D1). In ad-
dition, the domain ID (ID D1) in the license and DD certificate must also
match. The DRMClient verifies that its identifier (ID B) is listed in the cor-
responding DD certificate (DD D1). One may question why this verification
is still necessary, since licenses can only be distributed to devices after they
have proven to be member of the domain as described for the license exchange
protocol. However, time may have passed after the distribution of licenses. In
the meantime the device could be deregistered from the domain. Therefore, it
is verified upon content access that a device is still member of the domain. To
complete the evaluation also the other conditions stated in the rights expres-
sion of the license are verified. After that the DRMClient releases the proper
content decryption keys to enable decrypting and rendering of the content.
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Fig. 12.10. Content access on a domain device.

An alternative course of action for license exchange and content access is based
on user authentication instead of domain membership of the DRMClient. The
main difference is that the necessary proof now comes from the UserIdentity
device and not from the DD certificate. Figure 12.11 depicts the relevant
protocols for our example.

The first protocol is the authentication protocol (steps 1–3). To ensure
presence of the user, a proximity verification is performed between the user’s
authentication token and the device. An unilateral challenge/response au-
thentication convinces the DRMClient (C) that UserIdentity (U1) is present.
Furthermore, the authentication response can serve as proof to other com-
ponents that the DRMClient authenticated the user’s token. This solution is
just a basic version of the protocol and some extensions can improve security.
An example is mutual authentication where UserIdentity also authenticates
DRMClient and includes the identity in the response. Another security im-
provement is the inclusion of the validity time of the authentication in the
proof.

The license exchange protocol works slightly different when based on user
authentication (see Figure 12.11, step 4). The requesting DRMClient (C) in-
cludes the proof from the UserIdentity (U1). The responding DRMClient (B)
uses this instead of the DD certificate. The responding DRMClient (B) veri-
fies that the authentication proof it gets contains a reference to the same user
ID (ID U1) as the license (licB). The proof may be any signed statement, for
example the authentication response message. If the proof contains a valid-
ity period then the DRMClient must verify that it is not expired to prevent
that the authentication happened too far in the past. The DRMClient (B)
also performs the other standard checks and responds with the license, key
and content. The requesting DRMClient (C) stores these for the subsequent
content access.

Content access follows the standard steps described before and depicted in
Figure 12.10, except that the proof is used from the UserIdentity token (Fig-
ure 12.11, step 6). Next to the standard checks, it suffices for the DRMClient
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DRMClient B
{certB, privKeyB,

DD_D1}

DRMClient C
{certD, privKeyD,

DD_D2}

{licB,
keyB}

{ } UserIdentity U1
{certU1,

privKeyU1}

1. proximity
        enforcement

2. authenticationRequest()

{conte
ntB}

{ }

4. License Exchange
    (check if ID_U1 in licB matches authenticationResponse)
5. Content Transfer

6. Content Access
    (check if ID_U1 in licB matches authenticationResponse)
7. Expire authentication session of U1

3. authenticationResponse(certU1, sign(privKeyU1))

Fig. 12.11. License exchange and content access after user authentication.

(C) to check that the authenticated user ID (ID U1) matches with the license
(licB).

Finally, the authentication session on the DRMClient (C) expires (step 7).
After this no licenses can be obtained from other devices for the domain (D1)
or the user (U1), and the content cannot be rendered anymore. Securitywise
it is no problem to keep the license and content on the DRMClient for future
use.

As a closing note we should mention that the figure shows a basic version
of identities and certificates stored on UserIdentity. In a flexible solution the
token has separate certificates for compliance and user identity. This allows
for example that users later obtain a token by buying a token and register it
with their identity. These organizational and infrastructural aspects of user
authentication and identity management have been largely omitted here.

Content Transfer
Content ownership transfer enables giving away or trading of multimedia con-
tent. The typical means to realize content transfer in a DRM system is to bind
the license to a new user, which we call license transfer. License transfer is
technically more challenging than license exchange, because it is not enough to
distribute the license to another device. Instead, a new license must be created
or the old license must be amended. Both approaches have to deal with trust
issues. We take the approach to let the current owner (or one of his devices)
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create a transfer license, which has the advantage that it works offline. This
transfer license declares that the owner transfers a license to another user.
This transfer license can only be used in conjunction with the original license.
This approach maintains the integrity of the old license. Thereby trust issues
stay limited to the transfer itself performed by the device. This avoids attacks
where standalone devices create new licenses. In such an attack not only the
owner could be changed but also the conditions in the rights expression. A
possible extension is to exchange the transfer license together with the original
license at the license server for a new license. After that the transfer license
can be discarded.

The license transfer protocol for our example is depicted in Figure 12.12.
The interaction is very similar to license acquisition. The major differences
are the creation of the transfer license and the revocation of the license on
the domain devices of the old owner. The protocol starts when the requesting
DRMClient (C) requests the license (licID B) to be transferred and provides
the new domain (DD D2) including the user information (ID U2). The re-
sponding DRMClient (B) verifies that the requesting DRMClient (C) is com-
pliant, and that the domain (DD D2) is genuine. It also verifies that it is
entitled to transfer the license, for which we adhere to the rule that it must
belong to the domain of the license. After that it creates the transfer license
(transferLic), which rebinds the license from the owner (U1) to the new owner
(U2). Furthermore, it should initiate revocation of the licenses (licB) in the old
domain (D1), because those should not be used anymore after the ownership
has been transferred. After that, it sends the license, the transfer license, and
the content key (keyB) to the requesting DRMClient (C). As for the other
protocols the content key is encrypted with the public key of the requesting
DRMClient (C). The requesting DRMClient (C) receives and stores the li-
censes and key. As an additional check the requesting DRMClient (C) verifies
if the other DRMClient is entitled to transfer it. Here, this check consists of
checking if the responding DRMClient belongs to the domain at the moment
of transfer. This is verified using the DD certificate (DD D1). To complete
the transfer also the content is sent to the requesting DRMClient.

Rendering of the content is now possible on the requesting DRMClient
(C). However, the evaluation process now also requires the evaluation and
interpretation of the transfer license. For example, a rendering DRMClient
must check that the transfer license is issued by a compliant device. Exchange
of this content and license with other domain devices in the domain (D2) is
possible using the license exchange protocol. This license exchange should also
include the transfer license. For efficiency reasons it is best if the license and
transfer license are kept closely together from this point onwards since they
cannot be used apart.

License revocation is essential for license transfer because content may only
be rendered by the new owner and not by the former. For license revocation
no good general solution has been found yet. Also current commercial DRM
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Fig. 12.12. Content transfer between users and their domains.

systems do not support license revocation. Therefore, license revocation is a
topic that still requires research.

12.5 Summary
In this chapter the foundations of DRM have been introduced. DRM is based
on copyright law. However, DRM goes further since it also covers content
usage. The scope of DRM ranges from protecting audio/video entertainment
content to enterprise rights management to protect business data, e.g., in the
area of healthcare.

A general principle found in the DRM architecture is the separation be-
tween content and licenses, where the former can be characterized as data and
the latter as essential metadata. The DRM architecture assumes trustworthy
compliant devices to enforce the security of licenses and content. This provides
the foundation for preventive DRM in which only allowed actions on content
are possible.



12 Digital Rights Management 343

A case on person-based and domain-based DRM showed that users need
a clear DRM concept. The PED-DRM concept enables fair scenarios such as
accessing family content at home and accessing personal content anywhere.
Key management is also important in DRM and has been illustrated in a
number of protocols for license and content management.

12.6 Further Reading
More information on DRM architecture, technology, research and news can
be found in the following sources. Several books [1, 30] provide an intro-
duction to DRM and various architectural and technological aspects. To get
an insight in the structure and engineering side of DRM one could read the
OMA DRM version 2 architecture overview and DRM specifications [22]. Sci-
entific conferences and workshops in the field of DRM are the annual ACM
DRM workshop which exists since 2001, the annual IEEE workshop on DRM
Impact on Consumer Communications since 2005, the annual IFIP Confer-
ence on Communications and Multimedia Security (CMS), and the conference
on Digital Rights Management: Technology, Issues, Challenges and Systems
(DRMtics) which had its first edition in 2005. For DRM news, technological
developments and accessible overview information one can access online In-
ternet sources like DRMWatch [8], DRM News Blog [7] and the Wikipedia’s
article on DRM [34].

DRM is a topic that has gone through a long history already and is still
being researched and standardized. A number of current research topics are
introduced below together with some references to existing work. A first topic
is research in the field of person and identity-based DRM, e.g., the Personal
Entertainment Domain concept [20], and in the OPERA project [33]. Closely
related to this is the further work on domain research, e.g., secure content
exchange in OMA DRM [24], domain management, and license state manage-
ment in domains. The introduction of person identities in DRM also raises
privacy and user control issues in the area of DRM [2, 3, 28]. DRM interop-
erability [19] gets higher on the agenda now actual DRM systems are getting
introduced in the market, giving momentum to initiatives like Coral [5]. Fur-
thermore, DRM systems start to allow import from and export to other con-
tent protection systems. For example in OMA work is ongoing to unify secure
flash storage with DRM [25]. A final topic that requires further research is
the transfer of ownership of content, e.g., to give it away or to trade, which
raises issues like license revocation.
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13.1 Introduction
In this chapter, we provide the tools and methodology for comparing the
effectiveness of two or more multimedia retrieval systems in a meaningful
way. Several aspects of multimedia retrieval systems can be evaluated without
consulting the potential users or customers of the system, such as the query
processing time (measured for instance in milliseconds per query) or the query
throughput (measured for instance as the number of queries per second). In
this chapter, however, we will focus on aspects of the system that influence
the effectiveness of the retrieved results. In order to measure the effectiveness
of search results, one must at some point consult the potential user of the
system. For, what are the correct results for the query “black jaguar”? Cars,
or cats? Ultimately, the user has to decide.

Doing an evaluation involving real people is not only a costly job, it is also
difficult to control and therefore hard to replicate. For this reason, methods
have been developed to design so-called test collections. Often, these test
collections are created by consulting potential users, but once they are created
they can be used to evaluate multimedia retrieval systems without the need
to consult the users during further evaluations. If a test collection is available,
a new retrieval method or system can be evaluated by comparing it to some
well-established methods in a controlled experiment. Hull [15] mentions the
following three ingredients of a controlled retrieval experiment:

1. a test collection consisting of (1) multimedia data, (2) a task and data
needed for that task, for instance image search using example images as
queries, and (3) ground truth data or so-called relevance judgments (i.e.,
the correct answers);

2. one or more suitable evaluation measures that assign values to the effec-
tiveness of the search;

3. a statistical methodology that determines whether the observed differ-
ences in performance between the methods investigated are statistically
significant.
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Multimedia retrieval systems typically combine many components and tools.
For instance, for a video retrieval system, a component might be a large-
vocabulary speech recognition system; other components might detect low-
level feature representations such as color histograms and Gaussian mixtures;
the system might have a component that performs shot detection and key
frame selection based on the low-level features, to allow the user to search
for video shots, etc. We assume that a system component is an input-output
device: feed in a video and get out some annotation of the video data. We also
assume that components may be pipelined: some components will input the
output of one or more other components to produce annotations. The quality
of a system component will affect the quality of the system as a whole. So,
there are two approaches to test the effectiveness of complex systems such as
multimedia search systems [13]:

1. glass box evaluation, i.e., the systematic assessment of every component
of a system; and

2. black box evaluation, i.e., testing the system as a whole.

For some of the components mentioned above, it is easy to define a clear
task, and it is possible to come up with meaningful ground truth data. For
instance, for the speech recognition subtask, we can ask a human annotator
to define the ground truth speech transcript of the test data; we can run our
large-vocabulary speech recognition system on the data; and we can compute
the word-error rate (the percentage of words that was wrongly recognized).
Similarly, for the shot detection task, we can ask a human annotator to mark
the shot boundaries; we can run our shot detector; and report precision and
recall of the shot detection component (see Section 13.3 and 13.5). For complex
systems that are composed of such components, glass box evaluation is a good
option. An advantage of a glass box evaluation procedure is that it easily
pinpoints the parts of the systems that should be improved.

For other components it is less clear what the ground truth data should
be. For instance, for a component that extracts color histograms or Gaussian
mixture models, it is impossible to say what constitutes a good histogram or
mixture. The only way to evaluate a low-level feature extraction component,
is to do a black box evaluation: Test the system as a whole with compo-
nent A; then test a system as a whole with component B; and see if there
is a significant difference. Even components for which we seem to be able to
do a meaningful evaluation – such as the speech recognition and shot detec-
tion components mentioned above – we do not know upfront what the effect
of the component’s quality will be on the overall system quality. In general,
a better speech recognition component will result in a better system, how-
ever, a 100% improvement in word error rate does in practice not result in
a 100% improvement of precision and recall (see Section 13.3) of the overall
system [12].

In this chapter, we will discuss the evaluation of multimedia retrieval sys-
tems by following the three ingredients of Hull: a test collection, an evaluation
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measure, and a statistical methodology. In Section 13.2, we will discuss some
multimedia test collections and the retrieval tasks or subtask that can be eval-
uated with them. In Section 13.3, some well known evaluation measures are
introduced. Section 13.4 briefly introduces significance testing. Finally, Sec-
tion 13.5 will discuss the TRECVID collection and evaluation workshop in
more depth.

13.2 Test Collections and Evaluation Workshops
The scientific evaluation of multimedia search systems is a costly and labori-
ous job. Big companies, for instance Web search companies such as Yahoo and
Google, might perform such evaluations themselves, but for smaller companies
and research institutions a good option is often to take a test collection that
is prepared by others. In order to share resources, test collections are often
created by the collaborative effort of many research groups in so-called eval-
uation workshops of conferences. This approach was first taken in the Text
Retrieval Conferences (TREC) [31]. The TREC-style evaluation approach is
now taken by many smaller workshops that aim at the evaluation of multime-
dia search systems. An evaluation workshop typically follows a yearly cycle
like the following: (1) the cycle starts with a call for participation in which
an evaluation task and data is announced; (2) groups that participate receive
the data and possibly some ground truth training data; (3) groups receive the
test data (for instance queries) perform the test and send their results to the
workshop organizers; (4) the organizers merge the results of all participants
into one big pool create new ground truth data for those results; (5) the par-
ticipants meet to discuss the evaluation results; (6) participants publish the
results as workshop proceedings. Often, an important side-effect of the eval-
uation workshop is the creation of a test collection that can be used later on
without the need to create new ground truth data or relevance judgments.

For black-box evaluations, people are involved in the process of deciding
whether a multimedia object is relevant for a certain query. The results of
this process are the so-called relevance judgments or relevance assessments.
The people involved in this process are usually called assessors. For glass-box
evaluations, for instance an evaluation of a shot boundary detection algorithm,
the process of deciding whether a sequence of frames contains a shot boundary
involves people as well (for instance, for TRECVID 2004 almost 5000 shot
transitions in the test data were identified and classified by a single student
that worked at the US National Institute of Standards and Technology [17]).
The results of this process are the so-called ground truth data or reference
data.

In the following subsections, we briefly review a number of test collections
that are publicly available, most of which are developed in evaluation work-
shops. The sections are meant to be illustrative. Workshops change their tasks
regularly, workshops might stop their activities after a number of years and
new workshops might emerge depending on trends in research.
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13.2.1 The Corel Set
The Corel test collection is a set of stock photographs, which is divided into
subsets of images each relating to a specific theme (e.g., Arabian horses, sun-
sets, or English pub signs, see Figure 13.1). The collection is used to evaluate
the effectiveness of content-based image retrieval systems in a large number
of publications [3, 4, 5, 9, 16, 18, 30] and has become a de-facto standard in
the field. Usually, Corel is used as follows: (1) from the test collection, take
out one image and use it as a query-by-example; (2) relevant images for the
query are those that come from the same theme; and (3) compute precision
and recall for a number of queries.

Theme: Arabic Horses

Fig. 13.1. Example images from the Corel database.

A problem with evaluation using Corel is that a single “Corel set” does not
exist. The data is sold commercially on separate thematic CDs, and different
publications use different CDs and different selections of themes. Müller et
al. [20] showed that evaluations using Corel are highly sensitive to the sub-
sets and evaluation measures used. Another problem is that the data can be
qualified as “easy” because of the clear distinctions between themes and the
high similarity within a theme because they usually come from one source
(e.g., one professional photographer). Westerveld and De Vries [32] showed
that good results on Corel do not guarantee good results in a more realistic
setting, such as the TRECVID collection described below.

13.2.2 The MIREX Workshops
The Music Information Retrieval Evaluation eXchange (MIREX) was orga-
nized for the first time in 2005 as a direct descendant of the Audio Description
Contest organized in 2004 as part of the International Symposium on Music
Information Retrieval (ISMIR). The MIREX test collections consist of data
from record labels that allow to publish tracks from their artists’ releases, for
instance from Internet record labels like Epitonic [10] and Magnatune [19]
that feature music by independent artists.

MIREX uses a glass box approach to the evaluation of music information
retrieval by identifying various subtasks an musing retrieval system would
have to perform and allow the participants to build components that per-
form those tasks. In 2005, the workshop identified the following tasks: Artist
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Composer: Anonymous
Title: Roslin Castle
Signature: 000.109.446

Fig. 13.2. Example symbolic music from the MIREX RISM A/II database.

identification, Drum detection, Genre classification, Melody extraction, On-
set detection, Tempo extraction, Key finding, Symbolic genre classification,
Symbolic melodic similarity. The tasks are performed on CD-quality audio
except for the last two tasks which operate on symbolic music as shown in
Figure 13.2 [8].

13.2.3 TRECVID: The TREC Video Retrieval Workshops
An important evaluation workshop for this chapter is TRECVID: the TREC
Video evaluation workshop. Section 13.5 discusses this one in detail. The work-
shop emerged as a special task of the Text Retrieval Conference (TREC) in
2001 and was later continued as an independent workshop collocated with
TREC. The workshop has focused mostly on news videos, from US, Chi-
nese and Arabic sources, such as CNN Headline News, and ABC World News
Tonight. Figure 13.3 shows some TRECVID example data.

<VideoSegment id="shot88-16">
<MediaTime>
<MediaTimePoint>T00:02:48:16051F30000</MediaTimePoint>
<MediaDuration>PT9S18288N30000F</MediaDuration>

</MediaTime>
<TextAnnotation confidence="0.581549">
<FreeTextAnnotation>KNOW HOW I’LL A FAMILIAR SONG AND

DANCE SAY TO THE RUSSIAN PRESIDENT</FreeTextAnnotation>
</TextAnnotation>

</VideoSegment>

Fig. 13.3. Example data from TRECVID with an MPEG-7 annotation.

TRECVID provides several black box evaluation tasks such as: Shot boundary
detection, Story segmentation, and High-level feature extraction. The work-
shop series also provides a black-box evaluation framework: a Search task that
may include the complete interactive session of a user with the system. We
will describe the TRECVID tasks in depth in Section 13.5.

13.2.4 The Multimedia Tasks of the CLEF Workshops
CLEF stands for Cross-Language Evaluation Forum, a workshop series mainly
focusing on multilingual retrieval, i.e., retrieving data from a collection of doc-
uments in many languages, and cross-language retrieval, i.e., querying data
using one natural language and retrieving documents in another language.
Like TRECVID, CLEF started as a cross-language retrieval task in TREC
in 1997. It became independent from TREC in 2000 and is currently run in
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Europe. Within CLEF, several image search tasks were organized starting
in 2003. The goal of ImageCLEF is to investigate the effectiveness of combin-
ing text and image for retrieval [7]. Interestingly, a cross-language image search
task is easier evaluated than a cross-language text search task: Whatever the
language skills of the user, the relevance of an image is easily determined in-
dependently of the language of the caption or the language of the surrounding
text.

There is a CLEF image databases consisting of historic photographs from
the library at St. Andrews University [7], for which all images are accompanied
by a caption consisting of several distinct fields, see Figure 13.4 for an example.

Short title: Rev William Swan.
Location: Fife, Scotland
Description: Seated, 3/4 face studio portrait of a man.
Photographer: Thomas Rodger
Categories: [ ministers ][ identified male ] [dress - clerical ]
Notes: ALB6-85-2 jf/ pcBIOG: Rev William Swan () ADD: Former own-
ers of album: A Govan then J J? Lowson. Individuals and other subjects
indicative of St Andrews provenance. By T. R. as identified by Karen A.
Johnstone “Thomas Rodger 1832-1883. A biography and catalog of se-
lected works”.

Fig. 13.4. An example image from the CLEF St. Andrews database.

CLEF also provides an evaluation task for a medical image collection con-
sisting of medical photographs, X-rays, CT-scans, MRIs, etc. provided by the
Geneva University Hospital in the Casimage project. Casimage is the fusion
of the words “case” and “image”. The goal of the project is to help the de-
velopment of databases for teaching purposes. A database is a collection of
cases, for instance diseases. Each case contains several images with textual
descriptions [24]; Figure 13.5 shows an example. CLEF provides black-box
evaluations for these databases in the form of a several search tasks.

Chapter: Pathologie cardiaque
Diagnosis: Insuffisance mitrale
Clinical Presentation: Dyspné d’effort. Souf-
fle systolique au foyer mitral
Description: Dilatation de l’oreillette gauche
qui reste inscrite dans l’oreillette droite. Dilata-
tion du ventricule gauche (arc inf́rieur gauche).
Arc moyen gauche à double bosse: auricule
gauche et tronc de l’artère pulmonaire dilatés
Commentary: L’insuffisance mitrale entrane
une surcharge en volume de l’oreillette et du
ventricule gauches responsable d’une dilata-
tion de ces deux cavités. Le retentissement
en amont explique la dilatation secondairedes
cavités droites.

Fig. 13.5. An example case from the CLEF Casimage database.
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13.2.5 The Multimedia Tasks of the INEX Workshops
The Initiative for the Evaluation of XML Retrieval (INEX) aims at evaluating
the retrieval performance of XML retrieval systems. The INEX multimedia
track differs from other approaches in multimedia information retrieval, in the
sense that it focuses on using the structure of the document to extract, relate
and combine the relevance scores of different multimedia fragments.

<article> <name id="797481">Beurs van Berlage</name>
<figure>

<image ...href=".../Amsterdam Stock Exchange.JPG">
Amsterdam Stock Exchange.JPG</image>
<caption>Beurs van Berlage</caption>

</figure><p>
The <emph3>Beurs van Berlage</emph3> is a building
on the Damrak, in the center of Amsterdam.
It was designed as a commodity exchange by

<collectionlink ... xlink:href="775874.xml">
Hendrik Petrus Berlage
</collectionlink>

and constructed between 1896 and 1903.
...
</article>

Fig. 13.6. Example data from the INEX Wikipedia database.

INEX 2006 had a modest multimedia task that involved data from the
Wikipedia. A search query might for instance search for images by combining
information from its caption text, its links, and from the article that con-
tains the image; see Figure 13.6. Queries might also include example images
to specify the search for similar images [34].

13.3 Evaluation Measures
The effectiveness of a system or component is often measured by the combina-
tion of precision and recall. Precision is defined by the fraction of the retrieved
or detected objects that is actually relevant. Recall is defined by the fraction
of the relevant objects that is actually retrieved:

precision =
r

n
r : number of relevant documents retrieved

n : number of documents retrieved
recall =

r

R
R : total number of relevant documents.

Precision and recall are defined on sets of objects, not on ordered lists of
objects. If the system ranks the objects in decreasing order of some score
value, then the precision and recall measures should somehow be averaged over
the number of objects retrieved. Several average precision and average recall
measures have been suggested that model the behavior of a user walking down
a ranked list of objects. The idea is to give a number of evaluation measures for
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different types of users. At one end of the spectrum is the user that is satisfied
with any relevant object, for instance a user that searches a Web page on last
night’s football results. At the other end of the spectrum is the user that is
only satisfied with most or all of the relevant objects, for instance a lawyer
searching for jurisprudence. We present four different evaluation measures
that combine precision and recall in this section: precision at fixed levels of
recall, precision at fixed points in the ranked list, the average precision over
the ranks of relevant documents, and the F measure [14].

13.3.1 Precision at Fixed Recall Levels
For this evaluation a number of fixed recall levels are chosen, for instance
10 levels: {0.1, 0.2, · · · , 1.0}. The levels correspond to users that are satisfied
if they find respectively 10%, 20%,· · · , 100% of the relevant documents. For
each of these levels the corresponding precision is determined by averaging
the precision on that level over the tests that are performed, for instance over
a set of test queries. The resulting precision points are often visualized in a
recall–precision graph. Figure 13.7 shows an example. The graph shows the
typical behavior of information retrieval systems. Increasing the recall of a
search implies decreasing the precision of the search. Or, by walking down a
ranked list in search for more relevant documents, the chance to encounter
irrelevant documents will grow faster than the chance to encounter relevant
documents.
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Fig. 13.7. Example recall–precision graph.

In practice, the levels of recall might not correspond with natural recall levels.
For instance, if the total number of relevant documents R is 3, then the natural
recall levels are 0.33, 0.67 and 1.0. Other recall levels are determined by using
interpolation. A simple but often used interpolation method determines the
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precision at recall level l by the maximum precision at all points larger than l.
For example, if the three relevant documents were retrieved at rank 4, 9 and
20, then the precision at recall points 0.0, · · · , 0.3 is 0.25, at recall points 0.4,
0.5 and 0.6 the precision is 0.22 and at 0.7, · · · , 1.0 the precision is 0.15 [14].
Interpolation might also be used to determine the precision at recall 0.0,
resulting in a total of 11 recall levels. Sometimes one average measure, the
so-called 11 points interpolated average precision, is calculated by averaging
the average precision values over the 11 recall points.

13.3.2 Precision at Fixed Points in the Ranked List
Recall is not necessarily a good measure of user equivalence. For instance if one
query has 20 relevant documents while another has 200. A recall of 50% would
be a reasonable goal in the first case, but unmanageable for most users in the
second case [15]. A more user oriented method would simply choose a number
of fixed points in the ranked list, for instance nine points at: 5, 10, 15, 20, 30,
100, 200, 500 and 1000 documents retrieved. These points correspond with
users that are willing to read 5, 10, 15, etc. documents of a search. For each
of these points in the ranked list, the precision is determined by averaging the
precision on that level over the queries. Similarly, the average recall might be
computed for each of the points in the ranked list. A potential problem with
these measures however is that, although precision and recall theoretically
range between 0 and 1, they are often restricted to a small fraction of the
range for many cut-off points. For instance, if the total number of relevant
documents R = 3, then the precision at 10 will be 0.3 at maximum. One
point of special interest from this perspective is the precision at R documents
retrieved. At this point the average precision and average recall do range
between 0 and 1. Furthermore, precision and recall are by definition equal at
this point. The R-precision value is the precision at each (different) R averaged
over the queries [14].

13.3.3 Mean Average Precision
The average precision measure is a single value that is determined for each
request and then averaged over the requests. The measure corresponds with
a user that walks down a ranked list of documents that will only stop after
he/she has found a certain number of relevant documents. The measure is
the average of the precision calculated at the rank of each relevant document
retrieved. Relevant documents that are not retrieved are assigned a precision
value of zero. For the example above where the three relevant documents are
retrieved at ranks 4, 9 and 20, the average precision would be computed as
(0.25 + 0.22 + 0.15)/3 = 0.21. This measure has the advantages that it does
not need the interpolation method and that it uses the full range between 0
and 1 [14].



356 Djoerd Hiemstra and Wessel Kraaij

13.3.4 Combining Precision and Recall: The F -Measure
For many glass box evaluations, there is no ranked list that needs to be
considered. For instance, a tool that detects video shot boundaries (see Sec-
tion 13.5.1) does not really rank anything: It either detects a shot boundary
or not. In such cases, we need to choose between two systems based on the raw
precision and recall measures. Suppose that on a shot boundary detection task
one system achieves a precision of 0.8 and a recall of 0.95, and another system
achieves a precision of 0.99, but a recall of only 0.7. What system would we
prefer? Obviously that depends on our preferences: do we want a system that
detects shot boundaries accurately or thoroughly? If we are equally interested
in precision and recall, we might use the following measure:

F =
2 · precision · recall
precision + recall

. (13.1)

The F -measure combines precision and recall with an equal weight. In the
example above, the first system achieves F = 0.87, whereas the second system
achieves F = 0.82. So, we better choose the first system if we are equally
interested in precision and recall.

13.3.5 Problems with Measuring Recall
The computation of recall is a well-known problem in retrieval system eval-
uation, because it involves the manual assessment or estimation of the total
number of relevant items in the database for each query. Assessment of each
document is too costly for large collections and estimation by assessing a sam-
ple with sufficient reliability would still require large samples [28]. A common
way to get around this problem is to use the pooling method which is applied
in TREC. This method computes relative recall values instead of absolute re-
call. It is assumed that if we have a “pool” of diverse retrieval systems, the
probability that a relevant document will be retrieved by one of the systems
is high. So a merged list of document rankings is assumed to contain most
relevant documents. The pool assumption is actually a bit more precise: we
assume that most relevant documents are contained in a pool consisting of the
merged top D documents of several different high quality retrieval systems.
Here D is the pool depth, i.e., the number of retrieved items taken from the
top of a retrieval run. At TREC usually a pool depth of 100 documents has
been applied. So, for each query, the top 100 documents from the submissions
that contribute to the pool are merged in a set of which a list of unique doc-
ument identifiers is extracted. These documents are subjected to a (manual)
relevance assessment procedure.

In the previous sections we already mentioned that systems are often eval-
uated on existing test collections. There are two potential problems with “re-
using” a test collection: (i) it takes more discipline to perform a really blind
experiment and extra care not to tune on the data; (ii) post–hoc runs are un-
judged runs by definition. An unjudged run is a run that did not contribute
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to the pool. For judged runs we know that at least the top 100 (the most
common pool depth) is judged. For unjudged runs, this will not be the case.
The percentage of judged documents (the judged fraction) will be lower. How-
ever, presenting results of unjudged runs is very common. Even at TREC not
every run is judged. Participants can submit runs and because of the lim-
ited capacity and budget, the pool is based on a selection of the submitted
runs, usually one run per participating site. For judged runs, the number of
judged documents in the top 100 is exactly 100, for unjudged runs this num-
ber is lower. That means that the calculated performance measures are more
reliable for judged runs. The difference in reliability between judged and un-
judged runs has been studied by Zobel [33] as follows: recompute the average
precision of every run that contributed to the pool based on a pool without
the judged documents that were uniquely contributed by the very same run.
Finally, compute the averages of the average differences or improvements in
performance over the runs. He reported an average improvement of 0.5% over
61 runs with a maximum of 3.5% for the TREC-5 collection. The fact whether
a run is judged or not thus seems to play a minor role in the TREC-5 dataset.

13.4 Significance Tests
Simply citing percentage improvements of one method over another is helpful,
but it does not tell if the improvements were in fact due to differences of the
two methods. Instead, differences between two methods might simply be due
to random variation in the performance, that is, the difference might occur
by chance even if the two methods perform equally well. To make significance
testing of the differences applicable, a reasonable amount of queries is needed.
When evaluation measures are averaged over a number of queries, one can
obtain an estimate of the error associated with the measure [15].

Often, a technique called cross-validation is used to further prevent biased
evaluation results. The data and ground truth data is split in two disjoint
sets: the training set and the test set . The training set is used for development
and tuning of the system and, if applicable, to train learning algorithms like
classifiers. Then, the test set is used to measure the effectiveness of the system.
These three steps (dividing the data, training and testing) might be repeated
for different sizes of the sets and different random selections of training set
and test set for each size.

13.4.1 Assumptions of Significance Tests
Significance tests are designed to disprove the null hypothesis H0. For retrieval
experiments, the null hypothesis will be that there is no difference between
method A and method B. The idea is to show that, given the data, the null
hypothesis is indefensible, because it leads to an implausibly low probability.
Rejecting H0 implies accepting the alternative hypothesis H1. The alterna-
tive hypothesis for the retrieval experiments will be that either method A
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consistently outperforms method B, or method B consistently outperforms
method A.

A test statistic is a function of the data. It should have the following
two properties. Firstly, it should behave differently under H0 than under H1.
Secondly, it should be possible to calculate its probability distribution under
H0. For information retrieval, there is usually much more variation in the
performance per query than in the performance per system. Therefore, the
test statistics used are paired tests which are based on the performance dif-
ferences between two systems for each query. The methods assume that the
performance differences consist of a mean difference μ and an error εi for
each query i, where the errors are independent. The null hypothesis is that
μ = 0. The following three paired tests have been used in the Smart retrieval
experiments [25, page 171]:

• The paired t-test assumes that errors are normally distributed. Under
H0, the distribution is Student’s t with #queries− 1 degrees of freedom.

• The paired Wilcoxon signed ranks test is a non-parametric test that
assumes that errors come from a continuous distribution that is symmetric
around 0. The statistic uses the ranks of the absolute differences instead
of the differences themselves.

• The paired sign test is a non-parametric test that only uses the sign of
the differences between method A and B for each query. The test statistic
is the number of times that the least frequent sign occurs. It assumes equal
probability of positive and negative errors. Under H0, the distribution is
binomial.

So, in order to use the t-test the errors must be normally distributed, and
in order to use Wilcoxon’s test the errors have to be continuous. However,
precision and recall are discrete and bounded and therefore neither normally
distributed nor continuous. Still, the average of a reasonable number of dis-
crete measures, like the average precision measure presented in Section 13.3.3,
might behave similar to continuous measures and approximate the normal
distribution quite well. Before the tests can be applied, the researcher has to
make a qualitative judgment of the data, to check if indeed the normality as-
sumption is reasonable [15]. If not, the sign test can be used as an alternative.
Some researchers, for instance Van Rijsbergen [29], argue that only the sign
test can be considered valid for information retrieval experiments.

13.4.2 Example: Performing a Significance Test
As an example consider the following experiment. We compare the effective-
ness of two content-based image retrieval systems A and B that, given an
example query image, return a ranked lists of images from a standard bench-
mark test collection. For each system, we run 50 queries from the benchmark.
Using the benchmark’s relevance judgments, we compute the average preci-
sion for each query on both systems. Suppose the mean average precision is
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0.208 for system A and 0.241 for system B. Are these differences significant?
To test this, we might use a two-tailed pair-wise sign test and only report
differences at a 1% level as significant, that is, the probability that differences
are contributed to chance should be less than 1%.

To apply the test, we determine for each query the sign of the difference
between the average precision of both systems: −1 if system A outperforms
system B on the query, and 1 if system B outperforms system A. Assume
that it turns out that for 16 queries system A produced the highest average
precision, and for 34 queries system B produced the highest average precision.
Under H0, the probability of observing these numbers can be computed by
the binomial distribution. However, it would be incorrect to only calculate the
probability of getting exactly 16 successes for system A. Instead, we should
calculate the probability of getting a deviation from the null hypothesis as
large as, or larger than, the observed result. The probability of getting k or
less successes in n trials with probability p is given by the cumulative binomial
distribution function F :

F (k;n, p) =
k∑

j=1

n!
j!(n − j)!

pj(1 − p)n−j . (13.2)

In this case, F (16; 50, 0.5) = 0.00767. So, the probability of observing 16 or
less successes for system A is 0.00767, which is less than 1%. But we are not
done yet! The above calculation gives the total probability of getting 16 or
less successes for system A. However, the alternative hypothesis H1 states
that the probability of success for system A is not equal to the probability of
success of system B. If there had been 34 successes for system A, then that
would have been an equally extreme deviation from the expected number of
successes under the null hypothesis. To account for both tails of the probability
distribution – hence the name two-tailed test – the probability has to be
multiplied by 2, resulting in a probability of 0.0153. Therefore, we cannot
reject the null hypothesis. Despite the substantial difference between the mean
average precision of both systems, this might still be contributed to chance.
The two-tailed pair-wise sign test was unable to detect a significant difference
at the 1% level.

13.5 A Case Study: TRECVID
In 2004, there were four main tasks in TRECVID: shot boundary detection;
story segmentation; high-level feature extraction; and search. We will describe
each of these four tasks below.

13.5.1 Shot Boundary Detection
When you see a film in the theater or on television, you see moving images,
but actually the film consists of still pictures, called frames. If enough different
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frames are projected within each second, typically 25 or 30 per second, the hu-
man brain smears them together and we get the illusion of motion or change.
Because there are many nearly identical frames each second, it does not make
much sense to index each single frame when building a video search system.
The system would typically index video at some higher granularity, for in-
stance by grouping frames together into shots. Traditionally, a shot marks the
complete sequence of frames starting from the moment that the camera was
switched on, and stopping when it was switched off again, or a subsequence
of that selected by the movie editor. Shot detection is a crucial step in many
video search systems. Shot retrieval is for instance useful in a scenario where
a user has the desire to re-use video material, or in a scenario where a user
wants very precise points into the video stream.

A shot detector is a tool that inputs digital video and outputs the shot
boundaries, i.e., the positions in the video stream that contain the transitions
from one shot to the next shot. Usually, at least two types of shot transitions
are distinguished: hard cuts and soft cuts. A hard cut is an abrupt change from
one shot to the next shot: One frame belongs to the first shot, and the next
frame to the second shot. Hard cuts are relatively easy to detect because there
is usually a relatively large difference between the two frames. A soft cut, or
gradual transition, uses several frames to establish the cut, that is, there is a
sequence of frames that belongs to both the first shot and the second shot.
These are much harder to detect, because there are no obvious points in the
video with a big difference between consecutive frames that mark the shot
boundary. Gradual transitions are sometimes further classified as dissolves,
fades and wipes.

The TRECVID shot boundary task is defined as follows: identify the shot
boundaries with their location and type (hard or soft) in the given video
clips. The performance of a system is measured by precision and recall of
detected shot boundaries, where the detection criteria require only a single
frame overlap between the submitted transitions and the reference transition.
This is done to make the detection independent of the accuracy of the detected
boundaries. For the purposes of detection, a hard cut transition is treated as if
it includes both the frame before the cut and after the cut, making the length
of a hard cut effectively two frames instead of zero frames.

The TRECVID 2004 test data consists of 618,409 frames in total con-
taining 4806 shot transitions of which about 58% are hard cuts and 42% are
soft cuts, mostly dissolves. The best performing systems perform very well on
hard cuts: around 95% precision and 95% recall, but considerably worse on
soft cuts, which perform around 80% precision and 80% recall [17].

13.5.2 Story Segmentation
A digital video retrieval system with shots as the basic retrieval unit might
not be desirable in situations in which users are searching an archive of video
assets that consist of a compilation of different topics, such as news shows and
news magazines. In such a case, retrieval of a complete topical unit is usually
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preferred over retrieval of shots. However, reverse-engineering the structure of,
e.g., a television news show in a general fashion is not always straightforward,
since news shows have widely differing formats. The segmentation of a news
show into its constituting news items has been studied under the names of
story boundary detection and story segmentation. Story segmentation of mul-
timedia data can potentially exploit visual, audio and textual cues present in
the data. Story boundaries often but not always occur at shot boundaries,
since an anchor person can conclude a story and introduce the subsequent
story in a single shot. A news item often spans multiple shots, starting with
an anchor person, switching, e.g., to a reporter on-site or a split screen inter-
view.

Story segmentation of digital video was evaluated at TRECVID in 2003
and 2004 based on a collection of ABC/CNN news shows. These news shows
consist of a series of news items interspersed with publicity items. The story
segmentation task was defined as follows: given the story boundary test col-
lection, identify the story boundaries with their location (time) in the given
video clip(s). The definition of the story segmentation task was based on man-
ual story boundary annotations made by Linguistic Data Consortium (LDC)
for the Topic Detection and Tracking (TDT) project [11] and thus LDC’s def-
inition of a story was used in the task. A news story was defined as a segment
of a news broadcast with a coherent news focus which contains at least two
independent, declarative clauses. Other coherent non-news segments were la-
beled as miscellaneous, merged together when adjacent, and annotated as one
single story. These non-news stories cover a mixture of footage: commercials,
lead-ins and reporter chit-chat.

With the TRECVID 2003 and 2004 story segmentation task, the goal was
to show how video information can enhance or completely replace existing
story segmentation algorithms based on text, in this case Automatic Speech
Recognition (ASR) transcripts and/or Closed Captions (CC). In order to con-
centrate on this goal there were several required experiments (called runs in
TRECVID) for participants in this task:

• Video + Audio (no ASR/CC);
• Video + Audio + ASR/CC;
• ASR/CC (no Video + Audio).

Additional optional runs using other ASR and/or CC-based transcripts were
also allowed to be submitted. Since story boundaries are rather abrupt changes
of focus, story boundary evaluation was modeled on the evaluation of shot
boundaries (the hard cuts, not the gradual boundaries). A story boundary
was expressed as a time offset with respect to the start of the video file in sec-
onds, accurate to nearest hundredth of a second. Each reference boundary was
expanded with a fuzziness factor of five seconds in each direction, resulting in
an evaluation interval of 10 seconds. A reference boundary was detected when
one or more computed story boundaries lay within its evaluation interval.
If a computed boundary did not fall in the evaluation interval of a reference
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boundary, it was considered a false alarm. In addition, the F -measure (see Sec-
tion 13.3.4) was used to compare performance across conditions and across
systems.

13.5.3 High-level Feature Extraction
One way to bridge the semantic gap between video content and textual repre-
sentations is to annotate video footage with high-level features. The assump-
tion is (and evidence is accumulating [1, 27]) that features describing generic
concepts such as indoor/outdoor or people could help search and navi-
gation. It is easy to understand the plausibility of this assumption, when a
collection of video assets is annotated (at the shot level) with a lexicon of
(high-level) features, these features can be used to constrain the search space
by conditioning the result set to include or exclude a certain feature. High-level
features can thus complement search in speech recognition transcripts/closed
captions. A sufficiently rich and structured feature lexicon could strongly en-
hance the possibilities for faceted navigation, i.e., navigation where a user
interactively selects features from different concept classes.

In TRECVID, the high-level feature detection task is modeled as a ranking
task. Systems have to assign to each shot (taken from a standard collection)
the probability that a certain feature is present. The top 2000 shots for each
feature are submitted for manual evaluation, based on the pooling principle
described in Section 13.3.5. This approach has the advantage that the number
of manual judgments that has to be done is limited. The presence/absence of
a feature is taken to be a binary property, if a feature holds for just one
frame in a shot, it is assumed the feature is present for the whole shot. For
each feature, the average precision is computed as described in Section 13.3.3
using the standard TREC evaluation package [6]. Since the test features in
TRECVID cannot be thought of as a random draw from the space of possible
features (the features represent fixed rather than random factors), average
precision is reported per feature and no mean average precision is calculated.

13.5.4 Video Search
The shot detection, story segmentation and high-level feature extraction tasks
discussed up till now are glass box evaluations. The purpose of the video
search task however, is to evaluate the system as a whole, i.e., to do a black-
box evaluation of the system. The task is as follows: Given the search test
collection and a multimedia statement of a user’s information need (called
topic in TRECVID), return a ranked list of at most 1000 shots from the test
collection that best satisfy the need. A topic consists of a textual description
of the user’s need, for instance: “Find shots of one or more buildings with flood
waters around it/them.” and possibly one or more example frames or images.
Researchers might use the topics to automatically generate queries from, for
instance the textual description might be used to generate a text query which
is run on automatic speech recognition transcripts and each example frame
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might be used directly as a query-by-example, i.e., it might be used to retrieve
shots that contain frames that are in some sense similar to the examples.
However, the topics are intended to be used by human searchers who either
manually formulate their queries, or interactively use the system to formulate
and reformulate the queries. These two search tasks are shown in Figure 13.8
which was taken from the TRECVID guidelines [22].

TOPIC RESULTQUERY SYSTEMHUMAN

Human formalates query based on
 topic and query interface, 

not on knowledge of 
collection or search results

System takes query as input
and produces result without
further human intervention

MANUAL 

TOPIC RESULTQUERY SYSTEMHUMAN

Human (re)formalates query based on
 topic and query, and/ or results

System takes query as input
and produces result without
further human intervention

on this invocation

INTERACTIVE

Fig. 13.8. Two video search tasks: manual and interactive.

The searcher should have no experience of the topics beyond the general world
knowledge of an educated adult. The maximum total elapsed time limit for
each topic (from the time the searcher sees the topic until the time the final
result set for that topic is returned) in an interactive search run is 15 minutes.
For manual runs the manual effort (topic to query translation) for any given
topic is limited to 15 minutes as well. To make the search results of different
systems better comparable, all systems use exactly the same shot boundaries
provided by TRECVID, the so-called common shot boundary reference. This
way, the shots act as pre-defined units of retrieval just as in ordinary (text)
document retrieval. Retrieval methods are evaluated by comparing their mean
average precision or by comparing the precision at several recall points.

13.6 Summary
Evaluation is a crucial element of multimedia retrieval research, since it is
important to validate whether a certain idea or theoretical model is effec-
tive (and efficient) in practice. Test collections play an important role for
the advancement of the field as a whole because they provide common refer-
ence points for measuring progress. Several rigorous evaluation methods exist
for the performance measurement of fully automatic systems. Evaluation of
systems that include user interaction is much more complicated, efficient eval-
uation methodology schemas are still under development for this area.



364 Djoerd Hiemstra and Wessel Kraaij

13.7 Further Reading
Retrieval system evaluation methodology is described is many books on infor-
mation retrieval. For instance, Keith van Rijsbergen [29] extensively discusses
evaluation methodology. More up-to-date is the book by Ricardo Baeza-Yates
and Berthier Ribeiro-Neto [2]. David Hull [15] wrote a well-cited paper on sig-
nificance testing, discussing amongst others interactive search scenarios that
include relevance feedback. Stephen Robertson [23] wrote an excellent eval-
uation tutorial for the European Summer School on Information Retrieval,
ESSIR. John Smith [26] as well as Henning Müller et al. [21] wrote interesting
notes on the specific issues for image and video retrieval.
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Θ, 194
θ, 183
φ, 185
κ, 193
λ, 192

AAM, see active appearance model
acoustic

adaptation, 219
modeling, 202

active appearance model (AAM), 172
active shape model (ASM), 172
activity recognition

automatic, 54
AdaBoost, 67
ADC, analog-to-digital conversion, 4
amplitude–time sequence, 9
analog-to-digital conversion (ADC), 4
analysis

multimodal, 236
annotation, 8, 53

assigned terms, 98
ASM, see active shape model
assigned terms, see annotation
autocorrelation

analysis, 274
function, 274

average energy, 9

background model, 191
backward selection, see feature
bag-of-words, 186
Baum–Welch algorithm, 263
Bayes’ classifier, 59

Bayesian
averaging, 66
bagging, 66
dynamic Baysesian network (DBN),

278
dynamic network (DBN), 277
network (BN), 277

binarization, 286
black box, 348
BN, see Bayesian network
Boolean model, 100
boosting, 66

catalog, 98
classification

discriminative model, 178
generative model, 179
iterative style, 239
multimodal, 236
pixel, 137, 150
speaker, 199

classifier, 54, 60
Bayes’, 59
support vector, 63

CLEF, 351
clustering

hierarchical, 76
soft, 189

co-occurrence matrix, 142
codebook, 260
collection model, 191
color histogram, 9
common shot boundary reference, 363
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complete link clustering, 76
concept hierarchy, 54
content

access, 338
acquisition, 335
adaptation, 317
container, 324, 337
decryptor, 325
management, 327
packager, 327
transfer, 340

convolution, 139
deconvolution, 128

Corel set, 350
cross-correlation, 164
cross-validation, 357

K-fold, 61

DAC, digital-to-analog conversion, 4
damping factor, 118
data fitting, 135
DBN, see Bayesian network
DC, Dublin Core, 27
DCT, see discrete cosine transform
DDL, Description Definition Language,

43
decision boundary, 60
declarative knowledge, 135
dendrogram, 77
derived terms, 98
Description Definition Language (DDL),

43
descriptor, 43
df, see frequency
dictionary

pronunciation, 205
digital rights management (DRM), 321
digital-to-analog conversion (DAC), 4
dimension reduction, 82
discrete cosine transform, 181
discriminant methods, 62
displacement, 6
divide and conquer, 82
document

model, 192
document expansion, 215
document frequency, see frequency
DRM, see digital rights management

client, 325

legal framework, 322
preventive, 321
reactive, 321

Dublin Core (DC), 27

edge
detector, 148
element, 136, 148, 151

eigen-, 86, 147, 157, 165
EM, see expectation maximization
embedded method, see feature
emission probability, 71
energy, average, 9
error

measurement error, 59
term error rate, 214
test error, 61
training error, 60
word error rate, 214

evaluation
black box, 348
glass box, 348

expectation maximization (EM), 72, 80,
188

extended Boolean model, 110

F -measure, 356
F0, see fundamental frequency
faceted navigation, 362
feature

continuous feature space, 181
discrete feature space, 181
extraction, 56, 83
extraction (indexing), 11
low-level, 255
low-level and high-level, 9
point feature, 136, 139, 144
selection, 56, 83, 89
selection: backward selection, 91
selection: embedded method, 91
selection: filter method, 89
selection: forward selection, 91
selection: heuristic search, 90
selection: nested method, 91
selection: wrapper method, 90
variables, 60

features
model features, 134

feedback
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(parallel) blind relevance feedback,
215

FilmFinder, 299
filter, see feature

Gabor, 143
filtering

collaborative, 310
content-based, 308
social-based, 310

Fisher’s linear discriminant (FLD), 88
FLD, see Fisher’s linear discriminant
foreground model, 192
forensic tracking, 321
forward selection, see feature
frequency

document frequency (df), 116
fundamental (F0), 274
inverse document frequency (idf), 120
term frequency (tf), 116

fundamental frequency (F0), 274
fuzzy c-means algorithm, 80
fuzzy querying, 298

G2P, see grapheme-to-phoneme
converter

Gabor, see filter
Gaussian, 62, 135, 140, 145, 146, 181

kernel, 66
mixture model, 183
mixture model visualization, 183

generative probabilistic models
image models, 180
language, 184

glass box, 348
Google, 117
grapheme-to-phoneme converter (G2P),

205
graphical model, 180
ground truth data, 347, 357

Harris corner detector, 144
heuristic search, 90
hidden Markov model (HMM), 68, 70,

203, 247, 251–268
continuous, 71
discrete, 71

hierarchical clustering, 76
HMM, see hidden Markov model
homogeneity test, 150

Hough transform, 152

idf, see frequency
image

acqquisition, 126
analysis, 130
compression, 130
enhancement, 129
filtering, 139
hierarchy, 136
model-based image processing

framework, 134
neighborhood filtering, 139
reconstruction, 128
registration, 129
restoration, 128
storage, 130
transmission, 130

incremental maintenance, 12
independence, 107, 179
indexing (feature extraction), 11
INEX, 353
initial state distribution, 71
interest, see point
inverse document frequency, see

frequecy

k-means
algorithm, 261
clustering, 77

kernel trick, 63
keyword spotting, 212

language model, 115, 203
for video, 193
interpolated, 193
n-gram model, 185
topic-based, 218
unigram model, 185

large vocabulary speech recognition
(LVCSR), 212

Latent Semantic Indexing (LSI), 87
LDA, see Linear Discriminant Analysis
learning, 57, 72

reinforcement, 56
semi-supervised, 56
unsupervised, 56

lexicon
concept, 228
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license, 321–343
acquisition, 335
management, 327, 334
separation, 324
server, 328

likelihood, 70, 71
line element, 136, 146, 151
Linear Discriminant Analysis (LDA), 87
LSI, see Latent Semantic Indexing
Luhn’s similarity criterion, 104
LVCSR, see large vocabulary speech

recognition

MAP, see maximum a posteriori, see
mean average precision

margin optimization, 63
Markov

Andrei Markov, 115
first order property, 277
hidden Markov model, 68, 203, 247,

251–268, 272, 278, 292
model, 261
property, 69

masking, 4
matching, 99

exact, 99, 100, 116
inexact, 99, 100
quantitative matching criterion, 135

maximum a posteriori (MAP), 222
maximum likelihood estimate, 188
maximum likelihood linear regression

(MLLR), 221
mean average precision (MAP), 355
measurement error, 59
media mining, 200
merge-and-split, see segmentation
metadata, 8, 23

content-dependent, 27
content-descriptive, 27
content-independent, 27
metadata classification, 27

MI, see mutual information
MIREX, 350
mixture density, see mixture model
mixture model, 180, 182

direct application, 182
indirect application, 182

MLLR, see maximum likelihood linear
regression

modality
for user input, 302

model
background, 191
berry-picking, 295
collection, 191
extended Boolean, 110
Gaussian mixture, 181
generative image model, 180
generative probabilistic model, 178
memoryless, 179
n-gram, 203
p-norm, 110
probabilistic, 106
statistical shape model, 168

model selector, 135
bottom-up, 135
top-down, 135

modeling, 57, 68
moment, 154–157
MPEG-21, 43
MPEG-7, 42

header, 45
root element, 45
segment elements, 47

multinomial, 185
mutual information (MI), 90

n-gram, 185, 203
nearest neighbor method, 61
nested method, see feature
NFD, see normalized Fourier descriptors
no-free-lunch theorem, 59
noise, 59
normal distribution, see Gaussian
normalized Fourier descriptors (NFD),

159
normalized vector, 104
nuisance parameters, 137

ontology, 298
OOV, see out-of-vocabulary
out-of-vocabulary (OOV), 211
overfitting, 59

p-norm model, 110
PageRank, 118
parallel corpus, 215
parameter estimation, 116, 188
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partitioning relocation, 77
pathfinder, 228
pattern

classification, 55
clustering, 56
recognition, 55
representation, 56

PCA, see principal component analysis,
see principal component analysis

PD, see pixel difference
PDF, see probability density function
PED, see personal entertainment

domain
personal entertainment domain (PED),

322
personalization, 305
phone lattice scanning (PLS), 212
pitch, 274
pixel difference (PD), 6, 289
pixel features, 139
Platt conversion method, 231
PLS, see phone lattice scanning
point

interest point, 144
pooling, 356
precision, 353

at fixed points, 355
at fixed recall levels, 354
F -measure, 356

prediction function, 55, 60
principal component analysis (PCA),

83, 166
prior assumptions, 59
prior probability, 71
probabilistic model, 106
probability

corresponding measure, 116
density function (PDF), 203
emission, 71
joint, 186, 194
transition, 71

procedural knowledge, 135
procrustes analysis, 168
proximity searching, 101

quantization, 4
query

concept-based, 297
content-based, 297

expansion, 215

radiometric, 141
calibration, 127
property, 153

RAG, see region adjacency graph
random surfer model, 119
RDF

collection, 41
container, 41
reification, 42
Resource Description Framework, 30
Schema, 36, 37
Schema Class, 36
Schema language (RDFS), 30
Schema property, 37
statement, 31
vocabulary, 37

RDFS, RDF schema language, 30
recall, 353

F -measure, 356
recall–precision graph, 354
relative, 356

recognition, 125–174
face, 125
object, 125, 162, 165

recursive feature elimination (RFE), 92
reference collection, 193
reference data, 349
region, 136, 139, 148

adjacency graph (RAG), 161
moment, 155, 156

regional
description, 137, 153
relation, 153

reification, see RDF
relation

directional, 256
topological, 256

relevance
computation, 109
feedback, 16, 99

probabilistic model, 106
feedback Rocchio, 104
probability of, 106
weight, 116

residual, see uncertainty
Resource Description Framework, see

RDF



372 Index

retrieval, 97
boolean model, 100
controlled retrieval experiment, 347
probabilistic model, 106
ranked, 103

RFE, see recursive feature elimination
rights expression, 328, 338
Rocchio, see relevance
run

judged, 357
unjudged, 356

sample likelihood, 187
sampling, 4
scale

invariant feature transform (SIFT),
146

parameter, 140
space, 140

SDR, see spoken document retrieval
segmentation

area-based, 149, 150
edge-based, 149, 151
merge-and-split, 150

short time energy (STE), 273
shot boundary detection, 359
SIFT, see scale invariant feature

transform
significance test, 357
silence ratio, 9
similarity, 15

Luhn’s criterion, 104
single link clustering, 76
slack variable, 64
smoothing, 191

idf role, 192
interpolation, 191
Jelinek–Mercer, see interpolation

spatial redundancy, 6
spatio-temporal approach, 256
speech sequence detection, 275
spoken document retrieval (SDR), 200,

209
starfield display, 315
statement, see RDF
statistical shape model, 168
STE, see short time energy
stemming, 98
stop word removal, 98
story segmentation, 360

streaming, 17
support vector machine (SVM), 63, 231
SVM, see support vector machine

template matching, 163
temporal redundancy, 6
term

frequency, see frequency
weighting, 100, 119

tf.idf weighting, 116
test

collection, 347, 356
error, 61
set, 357

texture, 141
tf, see term frequency
tf.idf, see term weighting
thumbnail, 17
training error, 60
training set, 357
transition probability, 71
TRECVID, 351
tree

lexical, 205
treemap, 313
Trellis diagram, 71
turtle syntax, 31

ugly duckling theorem, 82
uncertainty

residual, 58
underfitting, 59
urn model metaphor, 115
user profile, 14, 306, 318

variable ranking, 89
vector quantization, 260
Viterbi algorithm, 72, 73
vocabulary, see RDF

forced, 298
vocal tract, 221

watermarking, 322
wildcard, 102
wrapper method, see feature

ZCR, zero crossing rate, 9
zero crossing rate (ZCR), 9
zero-frequency problem, 191
zero-one loss penalty function, 59
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