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Zusammenfassung

Knowledge Discovery in Databases (KDD) ist der Prozess, nicht-triviale Muster aus großen Da-

tenbanken zu extrahieren, mit dem Ziel, dass diese bisher unbekannt, potentiell nützlich, sta-

tistisch fundiert und verständlich sind. Der Prozess umfasst mehrere Schritte wie die Selektion,

Vorverarbeitung, Evaluierung und den Analyseschritt, der als Data-Mining bekannt ist. Eine

der zentralen Aufgabenstellungen im Data-Mining ist die Ausreißererkennung, das Identi�zie-

ren von Beobachtungen, die ungewöhnlich sind und mit der Mehrzahl der Daten inkonsistent

erscheinen. Solche seltene Beobachtungen können verschiedene Ursachen haben: Messfehler,

ungewöhnlich starke (aber dennoch genuine) Abweichungen, beschädigte oder auch manipu-

lierte Daten. In den letzten Jahren wurden zahlreiche Verfahren zur Erkennung von Ausreißern

vorgeschlagen, die sich oft nur geringfügig zu unterscheiden scheinen, aber in den Publikatio-

nen experimental als “klar besser” dargestellt sind. Ein Schwerpunkt dieser Arbeit ist es, die

unterschiedlichen Verfahren zusammenzuführen und in einem gemeinsamen Formalismus zu

modularisieren. Damit wird einerseits die Analyse der Unterschiede vereinfacht, andererseits

aber die Flexibilität der Verfahren erhöht, indem man Module hinzufügen oder ersetzen und

damit die Methode an geänderte Anforderungen und Datentypen anpassen kann.

Um die Vorteile der modularisierten Struktur zu zeigen, werden

i) zahlreiche bestehende Algorithmen in dem Schema formalisiert,

ii) neue Module hinzugefügt, um die Robustheit, E�zienz, statistische Aussagekraft und

Nutzbarkeit der Bewertungsfunktionen zu verbessern, mit denen die existierenden Me-

thoden kombiniert werden können,

iii) Module modi�ziert, um bestehende und neue Algorithmen auf andere, oft komplexere,

Datentypen anzuwenden wie geographisch annotierte Daten, Zeitreihen und hochdimen-

sionale Räume,

iv) mehrere Methoden in ein Verfahren kombiniert, um bessere Ergebnisse zu erzielen,

v) die Skalierbarkeit auf große Datenmengen durch approximative oder exakte Indizierung

verbessert.

Ausgangspunkt der Arbeit ist der Algorithmus Local Outlier Factor (LOF). Er wird zunächst mit

kleinen Erweiterungen modi�ziert, um die Robustheit und die Nutzbarkeit der Bewertung zu

verbessern. Diese Methoden werden anschließend in einem gemeinsamen Rahmen zur Erken-

nung lokaler Ausreißer formalisiert, um die entsprechenden Vorteile auch in anderen Algorith-

men nutzen zu können. Durch Abstraktion von einem einzelnen Vektorraum zu allgemeinen
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Datentypen können auch räumliche und zeitliche Beziehungen analysiert werden. Die Ver-

wendung von Unterraum- und Korrelations-basierten Nachbarschaften ermöglicht dann, einen

neue Arten von Ausreißern in beliebig orientierten Projektionen zu erkennen. Verbesserungen

bei den Bewertungsfunktionen erlauben es, die Bewertung mit der statistischen Intuition ei-

ner Wahrscheinlichkeit zu interpretieren und nicht nur eine Ausreißer-Rangfolge zu erstellen

wie zuvor. Verbesserte Modelle generieren auch Erklärungen, warum ein Objekt als Ausreißer

bewertet wurde.

Anschließend werden für verschiedene Module Verbesserungen eingeführt, die unter anderem

ermöglichen, die Algorithmen auf wesentlich größere Datensätze anzuwenden – in annähernd

linearer statt in quadratischer Zeit –, indem man approximative Nachbarschaften bei geringem

Verlust an Präzision und E�ektivität erlaubt. Des weiteren wird gezeigt, wie mehrere solcher

Algorithmen mit unterschiedlichen Intuitionen gleichzeitig benutzt und die Ergebnisse in ei-

ner Methode kombiniert werden können, die dadurch unterschiedliche Arten von Ausreißern

erkennen kann.

Schließlich werden für reale Datensätze neue Ausreißeralgorithmen konstruiert, die auf das

spezi�sche Problem angepasst sind. Diese neuen Methoden erlauben es, so aufschlussreiche

Ergebnisse zu erhalten, die mit den bestehenden Methoden nicht erreicht werden konnten. Da

sie aus den Bausteinen der modularen Struktur entwickelt wurden, ist ein direkter Bezug zu den

früheren Ansätzen gegeben. Durch Verwendung der Indexstrukturen können die Algorithmen

selbst auf großen Datensätzen e�zient ausgeführt werden.



Abstract

Knowledge Discovery in Databases (KDD) is the process of extracting non-trivial patterns in

large data bases, with the focus of extracting novel, potentially useful, statistically valid and un-

derstandable patterns. The process involves multiple phases including selection, preprocessing,

evaluation and the analysis step which is known as Data Mining. One of the key techniques

of Data Mining is outlier detection, that is the identi�cation of observations that are unusual

and seemingly inconsistent with the majority of the data set. Such rare observations can have

various reasons: they can be measurement errors, unusually extreme (but valid) measurements,

data corruption or even manipulated data. Over the previous years, various outlier detection

algorithms have been proposed that often appear to be only slightly di�erent than previous but

“clearly outperform” the others in the experiments. A key focus of this thesis is to unify and

modularize the various approaches into a common formalism to make the analysis of the actual

di�erences easier, but at the same time increase the �exibility of the approaches by allowing

the addition and replacement of modules to adapt the methods to di�erent requirements and

data types.

To show the bene�ts of the modularized structure,

i) several existing algorithms are formalized within the new framework

ii) new modules are added that improve the robustness, e�ciency, statistical validity and

score usability and that can be combined with existing methods

iii) modules are modi�ed to allow existing and new algorithms to run on other, often more

complex data types including spatial, temporal and high-dimensional data spaces

iv) the combination of multiple algorithm instances into an ensemble method is discussed

v) the scalability to large data sets is improved using approximate as well as exact indexing.

The starting point is the Local Outlier Factor (LOF) algorithm, which is extended with slight

modi�cations to increase robustness and the usability of the produced scores. In order to get

the same bene�ts for other methods, these methods are abstracted to a general framework for

local outlier detection. By abstracting from a single vector space, other data types that involve

spatial and temporal relationships can be analyzed. The use of subspace and correlation neigh-

borhoods allows the algorithms to detect new kinds of outliers in arbitrarily oriented subspaces.

Improvements in the score normalization bring back a statistic intuition of probabilities to the

outlier scores that previously were only useful for ranking objects, while improved models also

o�er explanations of why an object was considered to be an outlier.
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Subsequently, for di�erent modules found in the framework improved modules are presented

that for example allow to run the same algorithms on signi�cantly larger data sets – in ap-

proximately linear complexity instead of quadratic complexity – by accepting approximated

neighborhoods at little loss in precision and e�ectiveness. Additionally, multiple algorithms

with di�erent intuitions can be run at the same time, and the results combined into an ensem-

ble method that is able to detect outliers of di�erent types.

Finally, new outlier detection methods are constructed; customized for the speci�c problems

of these real data sets. The new methods allow to obtain insightful results that could not be

obtained with the existing methods. Since being constructed from the same building blocks,

there however exists a strong and explicit connection to the previous approaches, and by using

the indexing strategies introduced earlier, the algorithms can be executed e�ciently even on

large data sets.
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Preface

This thesis is the culmination of my research and learning over a period of 5 years (2008–

2013) in the domain of outlier detection. The plan, of course, was to be �nished much earlier,

but there were – and still are – too many interesting questions open for further research and

improvements. You only write a dissertation once, so it is hard to let go.

My research in this domain was motivated from my earlier diploma thesis on robust correlation

clustering [Kri+08], an approach which was a�ected by outliers and thus raised my interest in

scalable and robust multivariate statistics; but I have also always been interested in e�ciency

and scalability, which is why I prefer the data mining point of view. Mathematicians will proba-

bly �nd many of the approaches discussed in this thesis to be lacking with respect to their desire

to have mathematically proven models; yet, automatic �nding such models for large, real data

sets is not possible. And while some approaches such as Naïve Bayes may be mathematically

nonsense when there are dependencies amongst attributes, they can still be surprisingly e�ec-

tive in practice. Data mining can then be seen as the skill of bringing together just enough

statistics to make the results work, but also only so much statistics as to make it scale to the

real data at hand; even if this may mean making unrealistic assumptions and simpli�cations.

In this thesis, I will look at outlier detection in data mining, where the majority of methods

are driven by the need to compute them e�ectively, not by the desire to �nd a mathematical

model of the data. I will, however, not just try to propose yet another new method. Instead,

the focus is on reviewing and rethinking existing methods, understanding how – and why –

they work as well as their limitations. We then can try to bridge the gap between the concrete

algorithms and the mathematical models a little, and make them use more statistics, to make

them hopefully more robust and also a little bit more respectable from the often harsh point of

view of mathematics.

“
We should stop acting as if our goal is to author extremely elegant theories, and

instead embrace complexity and make use of the best ally we have: the unreason-

able e�ectiveness of data. — Peter Norvig [HNP09]

”The �rst ideas in the direction of increasing the robustness of outlier detection were published

as the method “Local Outlier Probabilities” [Kri+09a]; and while the method performs well in

experiments and has received a good amount of citations and independent validation (for ex-

ample in acoustic emission monitoring [Mej12] and system performance monitoring [Ehl12]),

I have never been entirely content with this method as-is. Similarly, “Subspace Outlier De-

gree” [Kri+09b] and “Interpreting and Unifying Outlier Scores” [Kri+11] have received good

attention, but are not the “perfect” approaches that I would like them to be. None of these
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methods is fundamentally �awed or not sound; they all live up to the scienti�c standards of

early research published in well-respected and peer-reviewed conferences. They do not need

to be changed, yet they can be improved with a better theoretical background.

When it then came to summarizing the early research, I could not faithfully discuss the original

versions without commenting on their limitations and updating them to the best of my current

knowledge. In the end, when trying to explain both the published algorithms and my current,

deeper understanding, it all took much more time than expected; but it also improves the re-

search. As such, the majority of the work on this thesis was not just summarizing my earlier

research, but revisiting all of it with scrutiny; more often than not redesigning the methods

using a deeper theory and improved statistics. This can best be seen in Chapter 5 (Improving

Local Outlier Detection), which not only explains the method LoOP, but also raises the ques-

tion why LoOP works and whether it actually improves robustness and lives up to the goal of

a “probabilistic” outlier score.

Other parts of the thesis such as Chapter 8 (Scalability) have been present as un�nished work

for some time. They could easily have been left out of the thesis, but for practical use they play

an important role and display the breadth of my activity, which not only includes the design of

outlier detection algorithms, but also implementation and their comparative evaluation in the

data mining toolkit ELKI. By publicly providing open-source implementations of the majority

of my work (with the ultimate goal of making everything available and easy-to-use), I hope to

both foster the reproducibility of research results, and to make it easier for other researchers to

experiment with both my own algorithms, and the algorithms of others that I managed to repro-

duce. As of writing this, ELKI likely has the largest collection of outlier detection algorithms;

and more often than not the fastest and most �exible versions, too.

While I have been in open-source software development before my studies, I consider the pub-

lishing not only of theory, but also of source code to be an important part of science. Published

source code, with the right to modify and redistribute modi�ed versions on the same terms, is

bene�cial to the goals of science. While it may lead to my own developments to be superseded

sooner, this is not of shame to a scientist (or developer); in particular if the successor may be

built upon the own work. If so, we have succeeded at enabling others to perform research.

“
Wissenschaftlich aber überholt zu werden, ist – es sei wiederholt – nicht nur

unser aller Schicksal, sondern unser aller Zweck. Wir können nicht arbeiten, ohne

zu ho�en, daß andere weiter kommen als wir.

(Being overtaken in our scienti�c work is not only our common fate . . . but our

common mission. We cannot work without hoping that others will surpass us.)

— Max Weber [Web85], English translation: [Deu97]

”The majority of this work was in collaboration with my advisor, Hans-Peter Kriegel, and my se-

nior colleagues Arthur Zimek and Peer Kröger, but also others inside and outside of the research

group, such as Mike Houle in Tokyo.
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1 Introduction

1.1 Outlier Definitions

“
The intuitive de�nition of an outlier would be “an observation which deviates so

much from other observations as to arouse suspicions that it was generated by a

di�erent mechanism”. — Douglas M. Hawkins [Haw80]

”
“

An outlying observation, or “outlier,” is one that appears to deviate markedly

from other members of the sample in which it occurs. — Frank E. Grubbs [Gru69]

”
“

An observation (or subset of observations) which appears to be inconsistent with

the remainder of that set of data — Vic Barnett and Toby Lewis [BL94]

”
“

A few unusual observations that do not seem to belong to the pattern of vari-

ability produced by the other observations

— Richard A. Johnson and Dean W. Wichern [JW92]

”While these quotes re�ect the common understanding of outliers, there is no universally used

formal de�nition. However, there are some recurring aspects of outlierness. Outliers are:

• rare – single observations or small subsets.

• “di�erent” or “inconsistent” . . .

• . . . compared to the patterns of the “other” observations

• . . . probably produced by a di�erent “mechanism”.

The closest tool we have to a theoretical foundation of outliers probably is that of statistical

hypothesis testing: given a statistical model of our data set, we can perform a test using the null

hypothesis H0: “the object is generated by the data set model” versus the alternative H1: “the

object is not generated by the model”. Objects for which we have to reject the null hypothesis

then are our outliers. In practice, as we will see, we will however rarely be able to construct a

complete model of our data set that allows for this kind of reasoning. Yet, part of this thesis will

be an attempt to embrace both existing algorithms for e�cient outlier detection and statistical

reasoning inspired by hypothesis testing and connect these two worlds with each other. We

should however, bear in mind that there can also be what is sometimes called the “Type III

error”: using the wrong hypothesis – i.e. incorrectly modeling our data.
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Outliers are not restricted to data or measurements.

Figure 1.1: Book cover:

Liars & Outliers [Sch12]

The book “Liars & Outliers” [Sch12] looks at the role

of trust and rules in society, and how we are forced ev-

eryday to decide whether to obey the laws – or break

them, such as lying on the taxes, speeding, or even

stealing the neighbors car instead of buying one one-

self. Some such behavior may be common (“liar”), other

behavior is rare (“outliers”) and the e�ect on society is

di�erent. In the following, however, we will be focus-

ing on outliers in data that we can more easily analyze

in a computer than predicting human behavior.

There can be very di�erent reasons for “outlier” obser-

vations in a data set.

Common explanations for the presence of outliers in a

data set are

• Measurement errors

• Unusually extreme deviations (but nevertheless real)

• Data input, processing and transmission errors

• Attacks, manipulation and fraud

In the �rst and third situation, the a�ected values will usually be removed for data cleaning,

in the second case removing the data may sometimes improve the result, but it may not be

necessary or desired. In the last situation, the outlying observations are of key interest, while

normal data will not be further analyzed. The �rst three may appear to be quite similar in their

manifestation, but they di�er in the source of the errors. In the �rst setting, it is an error of

the measurement process, in the second the measurement process may have been perfect, but

the observed process has some extreme observations (which is actually common in physical

processes), while in the third both may be good, but the data “corruption” occurs at a later

stage of the data processing.

Real world data is not as clean and perfect as digital technology pretends. A minute may occa-

sionally have 61 seconds, a day will usually have 24 hours, but in some regions one day a year

has 23 and one has 25 hours. In many calculations, a computer will not use the exact value of

1/3, but a value that is incorrect by an error on the order ofO(10−16) – the best approximation

of 1/3 using a IEEE754 double precision �oating point number. Physical measurement errors

and extreme deviations have been extensively studied in history. The most surprising result

with respect to measurement errors probably is the Heisenberg principle of uncertainty, which

essentially shows that there is a physical limit to the quality of a measurement that we can

perform. Since we cannot get rid of measurement errors, we need processes and statistics that

can handle data with errors. Even at the macroscopic level we will always have some mea-

surement errors that we need to be able to deal with. They may arise not only from limited
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Figure 1.2: Image corruption caused by 1 out of 28466 bytes missing from the �le.

This “outlier” can easily be detected by checksums and �le format inspection.

precision in the measurement devices, but also in data storage and processing (such as �oating

point precision errors and rounding errors) or they may be a property of the natural process.

Geyser erruption cycles for example do not occur with the precision of an atomic clock, and

the full geophysical process is a system with a complexity beyond what we can model easy. No

data cleaning process will make these observations perfect, yet it can help our mathematical

methods in predicting the next eruption with higher precision; investigating the unusual ob-

servations can help understanding the complex geologic process better. Many of such physical

processes – both within the measurement processes and the natural processes observed – are

modeled using normal distributions. The normal distribution, also known as Gaussian distri-

bution, has been shown both empirically and mathematically (in the form of the central limit

theorem) to be a reasonably good approximation for many complex systems. Roughly speak-

ing, the observed error is the combination of probably hundreds of di�erent smaller errors of

similar magnitude and distribution and will in total then appear to be normal distributed. With

digital technology, in particular data compression, we see a di�erently natured error. Instead

of being normally distributed, the observed errors are often much more extreme. Figure 1.2

visualizes the e�ect of 1 byte missing from a 28466 byte image �le. Instead of producing the

expected .003% error, the visual image corruption a�ects almost half of the image and creates

both a color shift and moves large parts of the image by roughly 10% of the image width. This

exempli�es how even small errors in digital processes can produce major errors. However,

such errors may or may not be of interest to outlier detection: �le integrity can be veri�ed by

checksums and transmission errors can be reduced by using error correcting codes. CD discs

for example have three layers of error correcting codes, and store 2048 bytes of payload data

using 2352 raw bytes on the disc to reduce the likelihood of an uncorrectable error. Yet this

shows that we need to be able to handle di�erent kinds of errors: errors coming from physical

processes that often follow a low-magnitude normal distribution, but also errors coming from

any kind of data corruption, that in particular for digital data can be of extreme magnitudes.
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Figure 1.3: Probability densitiy function of the standard normal distribution N (µ = 0;σ = 1).

Percentage numbers indicate the relative area of the curve segment.

1.2 Outliers in Gaussian Distributions

As mentioned in the previous section, Gaussian distributions (also known as normal distribu-

tions) occur frequently in physical processes and are mathematically supported by the central

limit theorem. Normal distributions are literally omnipresent: while it may as well be only a

textbook example, the foot sizes of a larger population are commonly given as an example for

normal distributed data.
1

The normal distribution is a good starting point for understanding outliers in statistics (while

the uniform distribution is even simpler, it does not have what one would commonly consider

“outliers”, since all elements within the value range have the same probability). Figure 1.3

shows the probability density function (PDF) of the standard normal distribution (centered at

µ = 0 and scaled to standard deviation σ = 1). The majority of the objects are expected to be

in the center – 68.2% in the dark blue area, 95.4% in the joint blue area. Yet also some rare

observations are expected to be further apart: 0.0063% are expected to be either left of the−4σ
or right of the 4σ mark. Traditionally in statistics these objects would rarely be seen: 1 in 15787

observations is expected to fall within this range. However in a data set of 1 million objects,

the estimated number of such extreme observations already is 63. In statistics, in analyzing a

normal distribution, objects outside of a certain range are called outliers. The exact range (or

threshold), however, varies.

Formally, the outlier decision can then be formalized as

|x− µ|
σ

≥ τ

for a threshold τ , where µ is the mean and σ is the standard deviation. These two parameters

serve the purpose of rescaling the distribution to the standard normal distributionN (0, 1). This

1
Apparently this has indeed been veri�ed by the Canadian Forces in an attempt to improve combat boot �t.
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Figure 1.4: Cumulative density function of the standard normal distribution N (µ = 0;σ = 1).
Percentages indicate well quantiles of the cdf at −2 . . . 2.

standardization is popular, and the formula is also known as the z-score:

z(x) :=
x− µ
σ

(1.1)

which allows us to rewrite the threshold inequality to

|z(x)| ≥ τ

The additional absolute value function serves the purpose to combining two symmetric one-

sided tests into a two-sided test .

Three common versions of choosing the threshold are:

• Three-sigma-rule: τ = 3 (which can be written as |x− µ| ≥ 3σ)

• Chauvenet’s criterion [Cha08]: τ = −probit( 1
2n

)

• Grubbs’ test: τ = n−1√
n

√
t2
α/(2n),n−2

n−2+t2
α/(2n),n−2

The statistical intuition behind this test can best be understood by looking at Chauvenet’s cri-

terion and the function probit used there – which is also known as percent point function or

inverse cumulative density function cd�nv – as well as its inverse, the cumulative density func-
tion cdf (also known as quantile function quantile). The probit function computes the value τ ,

at which the area below the pdf curve surpasses the given threshold, while cdf(x) computes

the area below the pdf curve left of the given position x. Figure 1.4 visualizes the cdf func-

tion of the standard normal distribution. In Figure 1.3, half of the area is left of 0; therefore

cdf(0) = .50. Conversely, probit(2.27%) ≈ −2, i.e. approximately 2.27% of the area of the pdf
curve are left of x = −2 in Figure 1.4

If we now apply the inverse to Chauvenet’s criterion

|z(x)| ≥ −probit(α) ( = τ )

cdf (−|z(x)|) ≥ α
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and use cdf(−a) = 1− cdf(a), we obtain the following two inequalities from this:

cdf (z(x)) ≥ α and

cdf (z(x)) ≤ 1− α.

This is a two sided test, that is failed by the smallest α objects and symmetrically by the largest
α objects, intuitively the 2α most extreme observations. For the purpose of testing, instead

of computing the cdf of every single observation, it is of course much easier to compute the

threshold τ , at which the desired probability level of α is surpassed. This threshold τ e�ectively

partitions the area into three parts: a lower tail ] −∞;−τ ] with an area of cdf(−τ) = α, an

upper tail ]τ ; +∞[ with an area of 1− cdf(τ) = cdf(−τ) = α and the central area ]− τ ; τ ] of

size 1−2α. Objects in the central area are accepted; objects in the tails rejected by the test. The

size of the acceptance area – i.e. 1− 2α – can be expressed in terms of the cdf or the Gaussian

error function erf:

cdf(τ)− cdf(−τ) ≡ 2 · cdf(τ)− 1 ≡ 1− 2 · cdf(−τ) =: erf
(
τ/
√

2
)

(1.2)

There are some well-known values of this area, known as the “68–95–99.7 rule”:

τ cdf(τ) cdf(τ)− cdf(−τ)
0 .500000000 .000000000
1 .841344746 .682689492
2 .977249868 .954499736
3 .998650102 .997300204

So given a normal distribution, 68% of the objects are expected to be within one standard

deviation of the mean, 95% within two standard deviations and 99.7% within three standard

deviations. Accordingly, the “three sigma rule” refers to the central 99.7% quantile.

Chauvenet’s criterion can in turn be interpreted in the context of a normal distribution. In

general, the cumulative density function can be seen as the transformation from the source

distribution to the uniform distribution on the interval [0, 1]; and we can intuitively expect the

smallest or largest to be at approximately 1/2n from the borders 0 and 1.

Grubbs’ test uses a signi�cance level α and is based on the student’s t distribution instead of

the normal distribution. This takes into account that the mean and standard deviation have

to be estimated from the data as well. With increasing n, the di�erence between the t dis-

tribution and the normal distribution disappears, so that Grubbs’ for α = 1 becomes similar

to Chauvenet’s criterion. A simpli�ed version of Grubbs’ (or a generalization of Chauvenet’s

to di�erent thresholds α) can be formalized as τ = −probit( α
2n

). At n = 106
instances, the

resulting threshold τ deviates by less than 10−4
from Grubbs’.

Note that in this situation, all objects actually are generated by the same normal distributions.

What is considered an “outlier” in this scenario merely are objects in a less dense area of the

distribution and can be considered “rare” observations.
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Figure 1.5: Di�erent variants of box- and whisker plots.

1.3 Whisker Plots

The probability density function (PDF) visualized in Figure 1.3 can be approximated for empir-

ical data by using a histogram. However, a PDF or histogram cannot visualize the position of

outliers very well, since they do not come in large enough quantities to produce bars – in above

�gure, the outlier areas outside of 3σ can barely be seen or quanti�ed. The classic intuition for

outliers in a normal distribution is however based on quantiles. So instead of plotting the PDF,

we can just indicate the quantile positions on the value axis. In Figure 1.3 we did this implicitly:

the mean was at 0 and the multiples of σ obviously indicated quantiles according to the “68–

95–99.7 rule”. A more explicit and popular formalism for this are box plots and whisker plots.

These exist in several variations, the simplest being a box from minimum to maximum (i.e.

visualizing the 0% and 100% quantiles), the box-and-whiskers plot with the �ve-number sum-

mary (plotting the minimum, lower quartile, median, upper quartile and maximum) while in

the more sophisticated versions extreme observations are drawn as outliers, while the whiskers

indicate standard deviations. Figure 1.5 shows a few variations of this technique. An interest-

ing property of the advanced versions is that they summarize the majority of the data into just

5 numbers, while the outliers are explicitly given. However, for data mining, this technique

cannot be simply adapted. First of all, it assumes that we only have a few single outliers. In

a large data set, there may be hundreds. Secondly, this is a single-dimensional technique, and

in data mining we are particularly interested in multidimensional data, and outliers that only

become apparent when we are looking at multiple dimensions at the same time.
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1.4 Dealing with Outliers

“
Are they outliers because the data points are bad or because the mathematical

form of the equation (i.e., the theory) is wrong? If a data point is suspected of

being an outlier, can an experimental reason (i.e., an experimental error) be found

to justify eliminating the particular data point? — Michael L. Johnson [Joh00]

”
“

We must emphasize that not all outliers are wrong numbers. They may, justi�-

ably, be part of the group and may lead to a better understanding of the phenomena

being studied. — Richard A. Johnson and Dean W. Wichern [JW92]

”
“

The phrase “appears to be inconsistent” is crucial. It is a matter of subjective

judgement on the part of the observer whether or not some observation (or subset

of observations) is picked out for scrutiny. — Vic Barnett and Toby Lewis [BL94]

”
“

In science, one man’s noise is another man’s signal.

— Edward W. Ng [Bla90] based on

Lucretius (1st century BC): “What is food to one, is to others bitter poison.”

”As indicated by the quotes above, there is a lot of subjectivity in what constitutes an outlier, and

how an outlier should be treated. In some situations it may be appropriate to remove the outlier

for data cleaning purposes to obtain a better trend estimation. They might stem from outright

measurement errors indicating data that actually should be discarded. In another context, the

presence of outliers may indicate that our modeling assumptions are incorrect, and we should

in fact discard the model and restart with improved assumptions. In yet another context, the

individual observations that are outlying are of key interest, such as in fraud detection where

the outliers are candidates for detailed inspection.

In the quote above, Edward W. Ng referred not particularly to outlier detection, but to the value

of data deemed to be incorrect: ozone readings captured during U.S. space �ights in the 1970’s

were at that time discarded and considered to be erroneous. Fortunately, however, the data was

not deleted but the tapes were kept in an archive. In the 1980’s, when the thinning of the ozone

layer was suggested, these measurements could be used to con�rm this trend – and show that

the data was actually correct, but our assumptions on the data were wrong.

As such, when doing outlier detection, we should try to not think of it as “incorrect” data, but

instead of data that is interesting, because it deviates from what we would expect. A good

method will not just recommend which data to discard, but which observations to analyze.

Ideally, it will even give a hint of how the data deviates from the expectations to help with this

analysis.



2 Preliminaries

In this section, some basic mathematical concepts are summarized that will be used later. In

order to improve outlier detection results, we will be experimenting with alternate averages

than the arithmetic average, use the close relationship of means and distance functions and

also use kernel density estimation.

2.1 Averages and Generalized Means

“
Then there is the man who drowned crossing a stream

with an average depth of six inches. — W.I.E. Gates

”“Average” is a term with very di�erent meanings. In everyday language, it can be seen as the

very opposite of an outlier: anything that is typical, common, normal, middle, central or in

some other way usual or representative is called “average”. When dealing with numbers, most

people will think of the arithmetic mean where the term “average” is used. For example the

SQL idiom AVG() refers to the arithmetic mean.

2.1.1 Pythagorean Means

The most well known mean is the arithmetic mean, de�ned for a set X := {x1, . . . , xn}:

arithmetic-mean(X) :=
1

|X|

n∑
i=1

xi (2.1)

As this is the most popular choice, we will be denoting this simply asmean(X). However, there

are a number of other alternatives in use, where each is more appropriate in one situation or

another. The arithmetic mean is the linear additive average, while for example the geometric

mean is the corresponding multiplicative average, and the harmonic mean is averaging the

reciprocals. These three are known as the Pythagorean means. The fourth that �ts nicely to

this set is the quadratic mean, also known as root-mean-square. For two values a and b, these

means can be geometrically constructed as visualized in Figure 2.1.
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Figure 2.1: Geometric construction of Pythagorean means

Formally, they are de�ned as:

geometric-mean(X) := n

√√√√ n∏
i=1

xi (2.2)

harmonic-mean(X) :=|X|/
n∑
i=1

1

xi
(2.3)

quadratic-mean(X) :=

√√√√ 1

|X|

n∑
i=1

x2
i (2.4)

2.1.2 Generalized Means

These means can be generalized to what is known as the generalized mean, power mean, or

Hölder mean.

generalized-meanp(X) :≡Mp(X) := p

√√√√ 1

|X|

n∑
i=1

xpi =

(
1

|X|

n∑
i=1

xpi

) 1
p

(2.5)

This de�nition can be extended to consistently also cover p ∈ {0,−∞,+∞}. The previously

discussed Pythagorean means then all show up as special cases of this de�nition:

M−∞(X) := min {X} = lim
p→−∞

Mp(X)

M−1(X) =harmonic-mean(X)

M0(X) :=geometric-mean(X) = lim
p→0

Mp(X)

M1(X) =mean(X)

M2(X) =quadratic-mean(X)

M+∞(X) := max {X} = lim
p→+∞

Mp(X)
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2.1.3 Median, Mode and Trimmed Means

Other more robust de�nitions of “average” include the median, the mode and trimmed means.

The median of a set is the most central element. Half of the observations are at least as big,

and half of the observations are at least as small as the median. In statistics, the median can be

de�ned by

P (x ≤ median(X)) ≥ 1

2
∧ P (x ≥ median(X)) ≥ 1

2
.

Themode is the most likely observation. Finally, the trimmedmean (or: truncated mean) tries

to combine the advantages of medians and means, by computing the mean only on a central

share of the fraction, for example only on the second and third quartile (interquartile mean).

Winsorization [Has+47] is similar, but replaces extreme values with less extreme data instead

of dropping them completely. Assuming that X is sorted and α ∈]0; 0.5[, we can de�ne it as

trimmed-meanp,α(X) :=Mp(xi, . . . , xj) with i = α|X|, j = (1− α)|X|.

2.1.4 Choosing the Appropriate Mean

The choice of the right mean depends on the context and purpose of the analysis. Since there

is no best mean, one needs to perform careful analysis of the task to choose the right formula.

This can best be seen in this classic riddle:

A car travels at a speed of 30 mph over a certain distance, and then returns over the

same distance at a speed of 20 mph. What is the average speed for the total trip?

The naïve answer, using the arithmetic mean, is (20 + 30)/2 = 25 mph. The correct answer

however is 24 mph – the harmonic mean. The reason is that the speed is not an additive value,

but we instead need to compute the average time traveled. In human perception (not taking

relativity into account), time is an additive quantity. The relationship of speed to time is v ∼ 1/t,
and substituting this into the arithmetic mean yields the harmonic mean.

Root-mean-square (RMS) – the quadratic mean – is a common best practice in error statis-

tics, as it is closely related to the method of least squares attributed to Carl Friedrich Gauss and

Adrien-Marie Legendre. The Gauss–Markov theorem proves that within certain preconditions,

the best linear unbiased estimator is the least squares estimator. And last but not least, if we

assume that a data set is normal distributed, the quadratic mean of the deviations yields the

maximum likelihood estimation of the standard deviation. But there are also many physical

e�ects where the squared values occur naturally: for example the surface of a sphere grows

with the squared radius. So if an asteroid continues to travel at the observed speed, the pos-

sible area grows with the square of the time since the last observation. Similarly, power of an

alternating current will usually have an arithmetic mean of 0. The power delivered however

is p(t) = v(t)2/r where r is the resistance, v the voltage and p the delivered power. In order

to estimate the power delivered by an alternating current, the quadratic mean is appropriate:



12 2. Preliminaries

Pavg = M2(v)2/r. Mains power supply in many countries is speci�ed as M2(v) = 230V (plus

some tolerance). Assuming that the power is provided as a perfect sine curve, the peak voltage

then actually is ±230V ·
√

2 = ±325V , since M2(sin) = 1/
√

2. The power delivered by this

AC power source is comparable to that of to a 230V DC power source; therefore the RMS value

is more important for applications that rely on average power instead of peak voltage.

2.2 Distance Functions, Metrics and Norms

Metrics, distance functions and Norms in mathematics are closely related concepts. Metric

and distance functions are usually de�ned as synonyms and are functions d : X × X → R;

while a norm has the simpler signature d : X → R which can be used to induce a metric

using d(x, y) := d(x − y). Intuitively, a norm measures the length of a vector, and distance

functions induced by norms are those where the distance is the length of the di�erence vector.

The majority of the popular distance functions on vector spaces are induced by a norm, but

outside of vector spaces – in particular when x − y is no longer de�ned – we can no longer

have norms, but we can still have distance functions.

Metrics and norms must satisfy similar properties, which we will summarize here:

Property Metric formulation Norm formulation

Non-Negative ∀x,yd(x, y) ≥ 0 ∀xd(x) ≥ 0
Identity of Indiscernibles ∀x,yd(x, y) = 0⇔ x = y ∀xd(x) = 0⇔ x = 0
Symmetry ∀x,yd(x, y) = d(y, x) d(x) = d(|x|)
Triangle Inequality ∀x,y,zd(x, y) ≤ d(x, z) + d(z, y) ∀x,yd(x+ y) ≤ d(x) + d(y)
Homogenity (usually not required) ∀α∈R,xd(α · x) = |α| · d(x)

Metrics induced by norms have some additional properties that are often useful in practice,

and that we tend to assume to hold in general. In particular, these distances are translation

invariant (∀x,y,zd(x + z, y + z) = d(x, y)), linear scalable (∀a∈R,x,yd(αx, αy) = |α|d(x, y)) and

can be related back to the norm by ∀xd(x) = d(x, 0).

There exist various relaxations of these properties, of which we will give some of the more

popular variations here. Note that these terms are not used consistently throughout literature.

In data mining, we usually want to use a relaxed version: in particular Identity of Indiscernibles

will generally not hold if we allow duplicate records in the database. So technically, we will

usually only have a pseudo-metric on our raw data. However, any pseudo metric induces a

metric on the equivalence classes, and this will usually be su�cient for our needs.

However, there exist numerous useful dissimilarity measures in data mining that do not satisfy

the triangle inequality, yet these are also commonly called “distance functions”. Metricness is

a desirable mathematical property, but will often not hold in practical use. Figure 2.2 shows

an example where the human perception of similarity will not satisfy the triangular inequality.

The �rst two images – labeled as images x and y are seemingly unrelated, as the �rst image

shows a boat on water, the second image buildings. However, when presented the context in
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(a) First image x (b) Second image y

[tb]

(c) Context image z, containing both x and y.

Figure 2.2: When the “middle” image z provides context, the triangle inequality may not hold

in perceived distances, resulting in d(x, z) + d(z, y) ≤ d(x, z).

Image licensed CC BY-SA 2.0 by Flickr user Ricardo Liberato

Table 2.1: Terminology of distance functions summarized.

Non-N
egativ

e

Id
entit

y
of In

disc
ern

ib
les

Sym
m

etry

Tria
ngle

In
equalit

y

Hom
ogenity

Dissimilarity function +
(Symmetric) Pre-metric + +
Semi-metric, Ultra-metric + + +
Pseudo-metric + + +
Metric + + + +
Norm, Homogenous metric + + + + +

form of an Image z, it becomes apparent that both are part of the same scene and thus actually

closely related to each other. This can be interepreted as a violation of the triangle inequality,

where image z provides a “shortcut” connection between images x and y. Similarly, noise

robust distances will typically violate the triangle inequality [VKG02]. Therefore, we will use

the following terminology (summarized in Table 2.1):

Distance Function: A distance function is a function d : X ×X → R that is non-negative

and symmetric as given above (i.e. a pre-metric).

(Pseudo-) Metric: A metric is a distance function d : X ×X → R that additionally satis�es

the triangle inequality as given above (many mathematical textbooks will refer to this as a

pseudo-metric).
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Norm: A norm is a function d : X → R that satis�es all of the above properties, and thus

induces a homogenous metric by d(x, y) = d(x − y), however often with relaxed identity of

indiscernibles.

2.2.1 Minkowski Lp-Norms

The Lp family of norms includes some of the most popular metrics, in particular the Euclidean

norm (L2, or “as the crow �ies”) and the Manhattan norm (L1, also known as taxi cab or city

block metric). These metrics are commonly given by the equation

Lp(x, y) =

(∑
i

|xi − yi|p
)1/p

,

such that in particular p = 2 and p = 1 yield the formulas:

L2(x, y) =

√∑
i

(xi − yi)2
(Euclidean distance)

L1(x, y) =
∑
i

|xi − yi|. (Manhattan distance)

However, as the name indicates, these metrics are induced by a norm as follows:

Lp(x, y) := Lp(x− y)

Lp(v) :=

(∑
i

|vi|p
)1/p

,

where intuitively the normLp(v) measures the length of the vector v. The relationship between

Lp-norms and the generalized means Mp is now hard to miss, as obviously Lp-norms and Mp

means di�er only by a dimensionality-dependent constant

Lp(v) =
1

d1/p
Mp(|v1|, . . . , |vd|).

In particular, Euclidean distance is closely related to the quadratic mean (root mean square),

while Manhattan distance relates to the arithmetic mean.

Note that Lp is only a norm (respective metric) for p ≥ 1. For p < 1, the function will no longer

satisfy the triangle inequality; they do however still yield a distance function as de�ned above

(i.e. a dissimilarity function in the common mathematical sense) [AHK01; FWV07].
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2.2.2 Distance Functions Induced by Means

Similar to the way a norm induces a metric, any non-negative symmetric function f (i.e. with

∀xf(x) > 0∧ f(x) = f(−x)) can be used to induce a distance function (dissimilarity function)

by using f(x, y) := f(x−y). If f additionally satis�es subadditivity ∀x,yf(x+y) ≤ f(x)+f(y),

then the induced distance function will be a metric (pseudo-metric).

This allows the canonical construction of additional distance functions. Means are a particu-

larly interesting source of such functions, for example we can construct a “trimmed Euclidean

distance” by using f = trimmed-mean2,α or a “median distance”. We will not be using these

in the context of this thesis, but the strong tie between Lp-norms and generalized means will

play a role.

2.2.3 Weighted Distance Functions

Distance functions such as the Minkowski family are based on the implicit assumption that all

dimensions have the same scale and magnitude. When the coordinates describe a physical po-

sition, or are measurements on the same scale, this assumption is a sensible choice. However, in

many situations, the dimensions may di�er fundamentally. For these reasons it is a best prac-

tice to rescale the data in preprocessing, for example to unit range or unit variance. Rescaling

the data with a factor of ωi on each dimension i is equivalent to weighting the dimensions with

ωpi in Minkowski norms:

Lp,Ω(x, y) =

(∑
i

(ωi|xi − yi|)p
)1/p

=

(∑
i

ωpi · |xi − yi|p
)1/p

.

However, when an axis is not linearly scaled, more complex transformations in preprocessing

are needed. An interesting and often e�ective – albeit heuristic – approach are locally weighted

distances such as Bray-Curtis, Kulczynski-1, Canberra and Clark distances:

Bray-Curtis(x, y) =

∑
i |xi − yi|∑
i xi + yi

Kulczynski-1(x, y) =

∑
i |xi − yi|∑

i min{xi, yi}

Canberra(x, y) =
∑
i

|xi − yi|
|xi|+ |yi|

Clark(x, y) =

√√√√ 1

n

∑
i

(
|xi − yi|
|xi|+ |yi|

)2

All three of these distances can be interpreted as weighted variations of the Manhattan metric.

Bray-Curtis (which is only sensible for non-negative data) rescales Manhattan distance by the
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inverse length of the input vectors. On normalized histograms with

∑
i xi = 1, Bray-Curtis

(closely related to the Sørensen–Dice coe�cient [Sør48; Dic45] and Hellinger distance [Hel09])

and Manhattan distance are equivalent except for a constant factor. Kulczynski similarity 1 can

also be interpreted as distance relative to the magnitude of the input vectors. It has links to

set theory, where

∑
minxi, yi ≡ |X ∩ Y |. The distance can thus be seen as normalized with

respect to the length of the intersection vector. Canberra distance weights each dimension

with the inverse of the absolute length of the input data. This yields the interesting property

that d(x, y) = d(2x, 2y), making the distance function less dependent on the local scale of the

data. Clark distance relates to Euclidean distance essentially the same way Canberra relates to

Manhattan distance: it is the M2 mean of the same one-dimensional di�erences that Canberra

is the sum of.

Many more distance measures can be found in the book “Dictionary of Distances” [DD06].

2.3 Kernel Density Estimation

Kernel density estimation (KDE) is a statistical technique for estimating the density of a data

set, given 1-dimensional data samples X = {x1, . . . xn}. It is commonly formalized as

f(x) =
1

n

n∑
i=1

K(x− xi) = mean {K(x− xi) | xi ∈ X} ,

where K is a kernel function with the property that

∫∞
−∞K(x)dx = 1 and ∀xK(x) ≥ 0.

In many situations, the kernel will be rescaled by a bandwidth h using Kh(x) = 1
h
K(x/h), and

we may want to allow kernels with di�erent bandwidth hi for each object xi to get an adaptive

kernel density estimation [TS92]:

f(x) =
1

n

n∑
i=1

1

hi
K

(
x− xi
hi

)
= mean

{
1

hi
K

(
x− xi
hi

)
| xi ∈ X

}

The bandwidth controls the smoothing: a larger bandwidth will produce a smoother density

estimation; a smaller bandwidth will have more detail. There are some heuristics for choosing

the bandwidth, such as Silverman’s rule [Sil86], but it remains a data set dependent parameter,

and “choosing a good value for the bandwidth, h, is the most di�cult task” [SS05]. Figure 2.3

visualizes the basic idea of kernel density estimation using Gaussian kernels of di�erent (but

constant) width and the in�uence on the result. A copy of the kernel function is centered at

each observation (black lines). The total density is then obtained by taking the average of the

individual densities (blue area). The problems of choosing the optimal kernel bandwidth h can

be seen here: Figure 2.3c is oversmoothed, the bandwidth has been chosen too large. But neither

Figure 2.3a nor Figure 2.3b is obviously superior to the other.
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Figure 2.3: Kernel density estimation with Gaussian kernel: the combined density estimate (blue

area) is obtained by taking the average of the individual kernel functions (black

lines). Di�erent kernel bandwidths h result in di�erent smoothing.
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Figure 2.4: Di�erent popular kernel functions. Kernels (a) to (g) have �nite support, while ker-

nel (h) has in�nite support. Each kernel is normalized to

∫∞
−∞K(x)dx = 1.
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2.3.1 Popular Kernel Functions

There are two major classes of kernels: kernels with in�nite support (such as the Gaussian

kernel) and kernels with �nite support (such as Epanechnikov kernel). From a mathematical

perspective, kernels with in�nite support are often cleaner, from a computational point of view

a �nite support allows for faster computation, as we can skip elements outside a distance of 1.

Figure 2.4 visualizes the most popular kernel functions.

2.3.2 Multidimensional Kernel Density Estimation

In density estimation, kernels are usually symmetric, in contrast to for example edge detection

kernels in image processing. For multivariate data, the common restriction is to use a radi-

ally symmetric kernel, which can be obtained by using the one-dimensional kernel functions

and substituting the deviation with the Euclidean distance, or in the more general case, using

Mahalanobis distance.

Given a positive de�nite symmetric bandwidth matrix H , multivariate kernel density is per-

formed using the equation

f(x) =
1

|H1/2|n

n∑
i=1

H−1/2K(x− xi).

In the simplest case, when the bandwidth in each dimension is h, i.e. H = h2 · I , then this

equation simpli�es to

f(x) =
1√
dhdn

n∑
i=1

K(
x− xi
h

).

The bandwidth suggested by Silverman’s rule [Sil86] is given by

hii =

(
4

d+ 2

) 1
d+4

n−
1
d+4σi,

where n is the data set size, d the dimensionality and σi the standard deviation in dimension i.
Outside of the diagonal, hij = 0 for i 6= j.

Scott and Sain [SS05] give a good overview of techniques to improve the performance of kernel

density estimation, for estimating full bandwidth matrices, and for the challenges associated

with kernel density estimation. In particular for high-dimensional data, the typical challenges

arise: the bandwidth matrix has d2
degrees of freedom, so a large data sample is needed to reli-

ably determine the bandwidth matrix. Scott and Sain [SS05] state they consider direct density

estimation feasible “in as many as six dimensions”. Beyond this, the results match observations

we will discuss in Chapter 4 in a broader context: while the quality of the actual estimated

density degrades in high dimensionality, the ranking obtained from the density estimates can

sometimes still be useful for discrimination.
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This section is in large parts based on related work summaries used in:

A. Zimek, E. Schubert, and H.-P. Kriegel. “A Survey on Unsupervised Outlier Detec-

tion in High-Dimensional Numerical Data”. In: Statistical Analysis and Data Mining
5.5 (2012), pp. 363–387. doi: 10.1002/sam.11161

A. Zimek, E. Schubert, and H.-P. Kriegel. Outlier Detection in High-Dimensional Data.

Tutorial at the 12th International Conference on Data Mining (ICDM), Brussels, Bel-

gium. 2012. doi: 10.1109/ICDM.2012.9

A. Zimek, E. Schubert, and H.-P. Kriegel. Outlier Detection in High-Dimensional Data.

Tutorial at the 17th Paci�c-Asia Conference on Knowledge Discovery and Data Min-

ing (PAKDD), Gold Coast, Australia. 2013

E. Schubert, A. Zimek, and H.-P. Kriegel. “Local Outlier Detection Reconsidered: a

Generalized View on Locality with Applications to Spatial, Video, and Network Out-

lier Detection”. In: Data Mining and Knowledge Discovery (2012). doi: 10.1007/

s10618-012-0300-z

3.1 Distance-Based Outlier Detection in Databases

The work on distance-based outliers (DB-Outlier) [KN97b; KN98; KNT00] is probably the �rst

database oriented outlier de�nition. It uses two parameters, a radius ε and a fraction π (plus

the implicit parameter of a distance function d). By the DB-Outlier de�nitions, an object p of

the database D is a DB-outlier if and only if

| {o ∈ D | d(o, p) < ε} |
/
|D| ≤ π.

This de�nition yields a binary decision of outlierness. However, the de�nition can be schön-

�nkeled (curried) in two ways to obtain an outlier score: either the threshold π, or the radius ε
at which this inequality becomes true, can be used as outlier score. Both versions can be seen

as generalizations of DB-Outlier that need one parameter less, and that produce scores instead

of a binary decision. The �rst version can also trivially be rewritten as a density estimation

using the uniform kernel:

ε-density(p) := | {o ∈ D | d(o, p) < ε} |
/
|D| = meano∈D {KUniform (d(o, p)/ε)} . (3.1)

http://dx.doi.org/10.1002/sam.11161
http://dx.doi.org/10.1002/sam.11161
http://dx.doi.org/10.1002/sam.11161
http://dx.doi.org/10.1109/ICDM.2012.9
http://dx.doi.org/10.1109/ICDM.2012.9
http://dx.doi.org/10.1007/s10618-012-0300-z
http://dx.doi.org/10.1007/s10618-012-0300-z
http://dx.doi.org/10.1007/s10618-012-0300-z
http://dx.doi.org/10.1007/s10618-012-0300-z
http://dx.doi.org/10.1007/s10618-012-0300-z
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On the other hand, we can compute the radius at which there are at least k neighbors:

k-dist(p) :=argminε| {o ∈ D | d(o, p) < ε} | ≥ k (3.2)

Neither is identical to kernel density estimation, but both are closely related. The reciprocal

value 1/k-dist(p) is a naïve estimate. This distance is also used in one of the common de�nitions

of the k nearest neighbors set (which may contain more than k elements if they have the same

distance):

kNNd(p) := {o ∈ D | d(o, p) ≤ k-dist(p)} (3.3)

In k nearest neighbor outlier detection (kNN-Outlier, [RRS00]), this k-dist is used as outlier

score. It is also seen as an intermediate result in LOF [Bre+00], while kNN-Weight [AP02]

modi�es this concept slightly to instead use the sum of these distances as outlier score:
1

kNN-Weight(p) :=
∑

o∈kNN′d(p)

d(o, p) (3.4)

Again, we can interpret k/k-weight(p) as a density estimation. Since this estimation takes not

only the kth, but all of the kNN into account, we can assume this value to be more stable.

Given the omnipresence of density estimation in outlier detection, it is obvious to try to use

more advanced density estimators from statistics, in particular kernel density estimation (KDE,

see Section 2.3). However, this yields additional challenges: kernel density estimation re-

quires choosing additional parameters such as an appropriate kernel function (e.g. Gaussian

or Epanechnikov) and the kernel bandwidth matrixes [SS05]. For simplicity, often only a diag-

onal matrix or a single bandwidth (a radially symmetric kernel) is used to simplify this process

that has been called “the most di�cult task” [SS05] in KDE. Kernels with in�nite support such

as the Gaussian kernel will increase the computation for exact computation to a quadratic run-

time, unless the kernel is truncated at some threshold. There exist kernel density estimation

methods that use the k-dist to choose the kernel bandwidth, often referred to as “sample point”

and “balloon” estimators [TS92]. Multivariate density estimation is a fundamental statistical

principle, and has as such received more attention in the domain of statistics than in the data

mining community; including locally adaptive kernel density estimation such as the balloon

estimator discussed before. For an overview of the statistics of density estimation, refer to e.g.

[Sim96; WJ94]. In data mining, kernel density estimation has recently [LLP07] started to re-

ceive interest to be used for local outlier detection, and will be detailed in the next Section 3.2,

Section 5.1.3 and Section 9.1.

1
Actually for this formula to behave as intended, we need to use a modi�ed neighborhood with |kNN′(p)| = k

for all p, which will be discussed and formalized in Chapter 6.
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A
B

C

D

(a) Reachability distance: C and B are in the

core ofA and thus have the same reachabil-

ity, while D is further away.

A

(b) LOF idea: by comparing the density of one

point to the densities of neighbor points, lo-

cal outliers can be detected.

Figure 3.1: Two core concepts of LOF: reachability distance and local reachability density.
2

3.2 Local Outlier Detection

The �rst method to discuss “locality” in outlier detection was LOF [Bre+00]. This method is

motivated by the observation that di�erent regions of a data set may exhibit a di�erent level of

density – and thus using a naïve global density estimation may not be adequate. Instead, we

need a score that adapts to the “local” properties and distribution of the data set.

LOF can be seen as a multi-step outlier detection method. While in kNN-Outlier(Equation 3.2,

[RRS00]) you can compute the outlier score of an object directly from the distances, LOF will

use also the neighbors of the neighbors. For performance reasons (to avoid recomputations),

it is desirable to compute the steps one after another and to cache the results as discussed in

Chapter 6.

The �rst step of LOF is again a density estimation. This estimation is based on ideas of clus-

tering, in particular the methods DBSCAN [Est+96] and OPTICS [Ank+99] and the notion of

a “core” in these methods. The size of the core of an object o is its k-dist(o). If the object p is

within the core of o, the direct distance is replaced with the k-dist(o). Figure 3.1a visualizes the

reachability distance for an object A. Objects B and C are core reachable, while D is outside

of the core. This modi�ed distance is called “reachability distance”:

reach-distk(p← o) = max{k-dist(o), d(o, p)} (3.5)

The e�ects of this distance will be analyzed in Chapter 5 in more detail. Since reachability is

asymmetric, we prefer a notion that emphasizes the asymmetry by using an arrow←: it is the

directed reachability of p from o.

Based on this distance, LOF de�nes the “local reachability density” as the inverse average reach-

ability distance of the object from its neighbors.

lrdk(p) = 1
/ (

meano∈kNN(p)reach-distk(p← o)
)

(3.6)

2
These images are original work, but were also contributed to the Wikipedia LOF article.
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Finally, the density of an object is compared to the average density of its neighbors to obtain a

“local” score. This idea, sketched in Figure 3.1b, is the main idea of LOF and inspired various

other outlier detection algorithms.

LOFk(o) = meano∈kNN(p)
lrdk(o)

lrdk(p)
≡

meano∈kNN(p)lrdk(o)

lrdk(p)
(3.7)

For inliers, a value around 1 (or below) is expected, while outliers will have higher values, based

on the intuition that outliers are less dense than their neighbors.

3.3 Basic LOF Variations

Over time, the LOF method inspired a number of variations: Chiu and Fu [CF03] de�ne the vari-

ants LOF’ which removes the reachability distance from LOF (this will be discussed in more

detail in Section 5.1.1), and LOF”, which allows a di�erent value of k to be speci�ed for the

comparison step. Local Outlier Correlation Integral (LOCI) [Pap+03] performs similar density

estimates and comparisons at multiple di�erent radii instead of using a single value of k. In-

�uenced Outlierness Factor (INFLO) [Jin+06] varies LOF by looking at the intersection of the

kNN and the reverse k nearest neighbors (for a formalization, see Chapter 6). Pei et al. [PZG06]

use approximated k nearest neighbors based on reference points. Local Density Factor (LDF)

[LLP07] computes LOF scores based on kernel density estimation. Local Distance-Based Outlier

Factor (LDOF) [ZHJ09] compares the kNN distances to the pairwise distances of the neighbors

instead. Local Outlier Probabilities (LoOP) [Kri+09a] tries to improve the robustness of LOF

with statistical measures (this will be discussed in more detail in Section 5.1.1) as well as nor-

malizing the scores to the range of [0, 1] (which will be discussed in Section 5.3.2).

3.4 Local Outlier Detection in High-Dimensional Data

Probably the �rst (although not local) approach for outlier detection in high-dimensional data

was the subspace oriented method by Aggarwal and Yu [AY01]. It is a grid-based approach that

uses an evolutionary search strategy to �nd unusually sparse subspaces. The data is �rst di-

vided into φ equi-depth ranges in each dimension so that each partition contains approximately

f = 1/φ of the total objects. By intersecting the one-dimensional grids in k dimensions, the

expected number of objects in such a hyper-cube then is N · fk with a standard deviation of√
N · fk · (1− fk). Any object in a hypercube that contains signi�cantly fewer objects than

expected is considered an outlier by this algorithm.

This method however has various problems, which will be discussed in more detail in Chap-

ter 4. First of all, the expected values themselves become tiny for high-dimensional data very

quickly, in particular when φ or k are not very small either, making detection with this statistic

impossible. Assuming just 10 grid cells and 6 dimensional subspaces, the expected number of
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objects is 1 out of 1 million, i.e. we need a data set containing several million objects to make

this approach feasible. Furthermore, scores for di�erent dimensionality k are not comparable,

so this approach only works for �nding outliers in a single subspace dimensionality k. The

proposed evolutionary search therefore focuses on preserving k, but since it does not have a

very good control function (in contrast to clusters, outliers will often not surface gradually),

the search for appropriate subspaces is not very e�ective but more or less just randomized. But

probably the worst problem of this method is that due to the equi-depth partitioning strategy

(which is required for the estimation of the number of objects in each cell), the method is very

likely to put outliers into the same grid cell as a nearby cluster. Last but not least, the presence

of clusters with di�erent sizes is not really taken into account in the statistical test, which in

fact assumes the data to be uniformly distributed except for the outlier grid cells.

An interesting approach for high-dimensional data is angle-based outlier detection (ABOD)

introduced in [KSZ08], because it does not pay explicit attention to the dimensionality. In

contrast to many other methods, it does not rely on a density estimation, but looks at the

variance of the angular spectrum instead. For performance reasons, it can optionally use only

the kNN as a comparison set, which makes FastABOD a local method. Recent improvements

on ABOD include a O(n log n) approximation [PP12].

HOS-Miner [Zha+04] tries to approach the subspace search from the other direction: for each

object, it tries to �nd the subspace where it appears to be most unusual. In order to perform

an Apriori-like search, they exploit that the knn weight (Equation 3.4) outlier scores increase

monotonically with increasing dimensionality. However, the authors neglect the fact that this

outlier score is not comparable across di�erent dimensionalities because of the very same mono-

tonicity (as also noted in [NGA11]): in particular, the monotonictiy implies that the maximum

score will always be found in the full dimensional space.

OutRank [Ass+07b; Mül+08; Mül+12] avoids the data snooping bias (see Chapter 4) elegantly

since the method searches for subspace clusters, instead of looking for outliers. These should be

much easier to �nd in high-dimensional data, as they are not rare objects and can be expected

to be recognizable even if the subspace is not yet optimal (of course, subspace clustering does

still pose a number of nontrivial challenges). Such clusters can be found for example using

DUSC (dimensionality unbiased subspace clustering, [Ass+07a]) or EDSC (e�cient density-

based subspace clustering, [Ass+08]). The outlierness of an object is then estimated by the

number of times the object is contained in such subspace clusters as well as the dimensionality

and size of the clusters. This method however relies on the subspace algorithms to produce a

highly redundant clustering (subspace clusters are commonly allowed to overlap). Furthermore,

outliers can only be found when the data set clusters well – on a data set where no clusters are

found, all objects will be considered outliers. But even a good density-based clustering result

will often already contain a large number of unclustered objects, so that the methods mostly

discover outliers that are the least often contained in clusters. On the other hand, clustering

algorithms are usually not designed to exclude outliers, but will often include outliers in a

nearby cluster. Furthermore, there is little insight or control over which types of outliers are

detected, as they are merely a statistical side product of multiple clusterings.



24 3. Related Work

Subspace Outlier Degree (SOD) [Kri+09b] is an outlier detection method for high-dimensional

data. Instead of using the kNN, it uses the more robust concept of shared nearest neighbors

(SNN, see Section 4.4), and it chooses a subspace to compute the similarities in. It will be

discussed in more detail in Section 5.2.1.

OutRES [MSS10] is a density-based subspace method. For every object, it locates the neighbors

in di�erent subspaces and compares their kernel densities. It tries to take the di�erent dimen-

sionalities into account by adjusting kernel size and distances depending on the dimensionality.

In order not to have to compute densities in all 2d−1 subspaces, an Apriori style search strategy

is employed, combined with a test against uniform distribution.

HiCS (High-contrast subspaces for density based outlier ranking, [KMB12]) can be seen as a

meta outlier detection method. It will �rst identify “high contrast” subspaces; then run an

outlier detection method such as LOF in these subspaces. This allows the use of LOF in high-

dimensional data it could normally not process. However, the scores are not normalized across

di�erent dimensionalities. Depending on the data set, HiCS may �nd an excessive amount of

subspace combinations and the subspace search dominates the total running time.

Correlation Outlier Probabilities (COP) [Zim08; Kri+12] – which will be covered in detail in

Section 5.2.2 – try to identify outliers nearby arbitrarily oriented correlation clusters by the

deviation from a local trend.

3.5 E�icient Approaches for Local Outlier Detection

ALOCI [Pap+03] is an e�cient approximation of LOCI using multiple quadtrees for e�cient

density estimation. The kNN are no longer used, so one may consider this method to be not as

local as before. Instead, quadtree density estimates at di�erent radii are compared. Since these

density estimates are best when an object is close to the center of a tree cell, additional alternate

quadtrees are produced by cyclic wrapping the data set, which may prevent the detection of

outliers on one side of the original space if there is a cluster on the opposite side.

The kNN-weight approach [AP02; AP05] includes an e�cient top-n algorithm HilOut using

Hilbert space �lling curves for Lp-norms only. Due to the curse of dimensionality (see Chap-

ter 4) it however does not scale well to high-dimensional data, as the pruning rules will not

work with the loss of contrast caused by the high dimensionality (the top-n element will only

have marginally higher scores than the next, so a large part of the data set will have to be

analyzed in each pass).

In [WPT11], the authors propose a locality sensitive hashing (LSH) based approach to rank

objects by their probability to be in a low-density region. These objects can then be explored

�rst, and will allow pruning dense objects earlier. However, this approach is only bene�tial

when searching the top-n outliers with respect to a global method such as kNN outlier only.

For local outlier detection, the hash tables cannot provide useful pruning information.
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Most kNN-based approaches can be accelerated by using an index structure that allows accel-

erated kNN queries, such as the R*-tree [Bec+90] or the k-d tree [Ben75]. Chapter 8 will discuss

both space �lling curve, LSH and R*-tree based acceleration of outlier detection.

3.6 Ensemble Methods for Outlier Detection

Feature Bagging for Outlier Detection [LK05] is the canonical adaptation of the original bag-

ging (bootstrap aggregating) technique [Bre96] developed in classi�cation and feature selec-

tion. Instead of performing outlier detection in the full dimensional space, a random subset of

dimensions (of [bd/2c; d− 1] dimensions) is chosen, and the resulting ranks or scores are com-

bined. The authors overlooked that the scores across di�erent dimensionality are not always

comparable. Using a �xed subspace dimensionality may turn out to work better in practice.

Feature Bagging for outlier detection [GT06] tries to improve ensembles by �tting the scores

to a sigmoid curve or using a mixture model. However, the method essentially tries to max-

imize the contrast, often turning the scores into a binary 0 or 1 decision, at which point the

ensemble degenerates to counting the number of times an object was classi�ed as outlier, or

into building the union of all found objects. Furthermore, the score optimization did not show

to be numerically stable in practice, and would often produce degenerated results.

The method HeDES [NAG10] improves the earlier feature bagging ensemble approach by also

including the results obtained on categorical attributes and by performing a simple score nor-

malization (to zero mean unit variance) before combining the resulting scores.

Later research [Kri+11] on the normalization of outlier scores showed that normalization plays

an important role for outlier detection ensembles. The normalization of scores will be discussed

in detail in Section 5.3. The role of diversity was further studied in [Sch+12], where random

ensembles were pruned while trying to maximize diversity. This will also be discussed in detail

in Chapter 7.

3.7 Community Outlier Detection

A di�erent notion of outliers exists in graph structured data. The notion of density does not

easily translate to e.g. social networks: it has been shown that the degrees of nodes are usually

Zip�an distributed. This means there will be a lot of nodes with few edges (which would be

intuitively of “low density”) and only very few nodes with a very high node degree (sometimes

referred to as “hubs” or “social stars”). One can further not assume that there is a gradual drop-

o�: such low-degree nodes will often be directly connected to these hubs. While the hub nodes

are interesting for many applications, they are also rather easy to �nd, because such graphs are

usually stored with adjacency lists, that allow trivial access to the node degree.
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What then can make a node in a graph anomalous? CODA [Gao+10] is an outlier detection al-

gorithm for communities that analyzes two di�erent graphs at the same time. Objects for which

the two graphs do not align well are considered outliers. For example, for a set of conferences,

one graph may resemble the topics at the conferences, and the other graph the authors. Usu-

ally, the authors and topics align very well. However, there exist some conferences that span

multiple communities, both with respect to authors and with respect to topics.

This notion of outliers can be detected with the generalized notion of local outliers as discussed

in Chapter 6, and detailed in Section 6.5.

3.8 Geographic Outlier Detection

In particular the recent years, with the widespread availability of cheap GPS in mobile phones,

but also due to large scale sensor deployment, we have seen an increasing amount of data that is

geo-referenced. For example many photos are now annotated with the spatio-temporal position

where the photo was taken.

Yet, the detection of outliers in such data sets reaches back way beyond data mining into the

domain of geostatistics [Mor50; Gea54]. Spatial autocorrelation measures such as LISA (Local

Indicators for Spatial Association, [Ans95]) are examples of such early approaches of measuring

spatial outlierness. A key result of it is the generalization of the global spatial association statis-

tics Moran’s I [Mor50] and Geary’s C [Gea54] to individual contributions denoted as the local

Moran Ii and local Geary Ci; then using a statistical test to identify strong contributions. Addi-

tionally the Moran scatterplot was introduced, which plots the locally z-standardized attribute

value against the globally z-standardized attribute. In this plot, objects close to the regression

line indicate consistency with the trend, whereas objects in the upper left and bottom right

areas appear di�erent on local and global scales. This concept of comparing local with global

scores can be found in many newer methods in slight variations; others however just use the

local scores proposed here directly or with only slight modi�cations. Spatial outlier detection

has since grown as a �eld of its own interest over several years [SLZ03; LCK03; KLC06; SC04;

CS06; LLC10; CLB10].

The key idea is to separate spatial attributes from other attributes, compute the neighborhood

w.r.t. the spatial attributes solely but compare the non-spatial attributes only to derive a notion

of outlierness. Most of these methods use a local neighborhood based on the spatial attributes

just in order to extract a score (the simplest type of model) for the object using the non-spatial

attributes only. Many methods can just process a single non-spatial attribute, and there are

rather few methods that use a model more complex than a preliminary score or a non-trivial

comparison step. However, we will highlight some examples in Chapter 6, when we generalize

the concept of outlier detection to such more general data domains. In Chapter 9 we will also

see two case studies detecting special kinds of outliers in geographic and geo-spatial data.



4 High-Dimensional Data and the
“Curse of Dimensionality”

“
Our brains have evolved to get us out of the rain, �nd where the berries are, and

keep us from getting killed. Our brains did not evolve to help us grasp really large

numbers or to look at things in a hundred thousand dimensions.

— Ronald L. Graham [Hof87]

”
“

In view of all that we have said in the foregoing sections, the many obstacles

we appear to have surmounted, what casts the pall over our victory celebration?

It is the curse of dimensionality, a malediction that has plagued the scientist from

earliest days. — Richard Bellman [Bel61]

”The term “curse of dimensionality” is often used as an umbrella term for all kinds of unexpected

e�ects happening at high dimensionality. While these e�ects likely have the same reason, they

can manifest in very di�erent ways, from a loss of contrast in distance computations to what

is called “combinatorial explosion”.

Much of our intuition, which is driven by the 3-dimensional world we perceive every day, does

no longer hold in complex data spaces. Yet, these spaces are very real when we use mathematics

to model not the physical world, but properties such as color and texture of images, or text.

Mathematically, a grayscale computer image of 10 by 10 pixels can trivially be represented by

a 100-dimensional vector. While this is not be the best representation of the meaning of the

image, we must acknowledge that there exists data beyond the 2 and 3 dimensions we use for

measuring physical location: in the world of information, there exist plenty of examples for

higher-dimensional data, such as images, audio, gene expression data or sensor networks.

In the wider sense of “big data” – commonly de�ned by “the 3 V’s” [Lan01]: volume, velocity

and variety – high-dimensional data can be seen as part of the variety challenge of big data.

The omnipresence of sensors not only increases the mere volume of data, but also the dimen-

sionality: a large set of low-dimensional sensors can be seen as a high-dimensional multivariate

time series. Redundant sensors and increased temporal precision further increase redundancy

in the data, which is currently often handled by preprocessing: averaging and downsampling

the data to a more manageable size and dimensionality. Yet, one of the key visions of “big data”

and “data driven science” is to have tools that can handle this kind of data natively. While there

has been a lot of progress the last years on processing larger volumes of data, and data coming

in at a high velocity, we have just begun to understand the challenges of high-dimensionality.
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4.1 Manifestations of the “Curse of Dimensionality”

The reasons for the failing of our intuition are numerous, and this section provides an overview

of the e�ects discussed in greater detail in the publications:

A. Zimek, E. Schubert, and H.-P. Kriegel. “A Survey on Unsupervised Outlier Detec-

tion in High-Dimensional Numerical Data”. In: Statistical Analysis and Data Mining
5.5 (2012), pp. 363–387. doi: 10.1002/sam.11161

A. Zimek, E. Schubert, and H.-P. Kriegel. Outlier Detection in High-Dimensional Data.

Tutorial at the 12th International Conference on Data Mining (ICDM), Brussels, Bel-

gium. 2012. doi: 10.1109/ICDM.2012.9

A. Zimek, E. Schubert, and H.-P. Kriegel. Outlier Detection in High-Dimensional Data.

Tutorial at the 17th Paci�c-Asia Conference on Knowledge Discovery and Data Min-

ing (PAKDD), Gold Coast, Australia. 2013

Combinatorial Explosion on Grids: In low-dimensional data, many problems can e�-

ciently be handled with grid-based approaches. The data set is divided into a multidimensional

grid of cells for analysis – either at a �xed distance, or quantile-based such that they contain

the desired amount of objects. In many situations, an algorithm will not need to process all

cells, but can either skip cells that contain very few or very many objects, or it may be possible

to process all objects in a cell as if they were the same.

If we divide each dimension into just 10 bins, we get 10 cells in one dimension, 100 cells in 2

dimensions and 1000 in 3 dimensions. These numbers of bins are well manageable for comput-

ers. However, if we have a 100-dimensional data set, we get 10100
cells – the famous number “a

googol” that inspired the name of the search engine Google. This number is way beyond what

we can grasp. The visible universe’s size is estimated to contain 1080
protons. So even if we had

a database storing information on all the protons of the universe, we would have to expect the

vast majority of our grid cells to be empty. However, to be able to draw statistically signi�cant
conclusions from this, we would need the grid cells to contain much much more objects than

just approximately one in each cell. Yet, this number occurs in practice: assuming we had 10

shades of grey, there are 10100
di�erent images of resolution 10× 10 pixels.

Combinatorial Explosion on Subspaces: Even when we consider not to look at all d di-

mensions at the same time, we can run into this complexity problem. A 2-dimensional data set

has 3 interesting projections (on “x”, “y” and the original “x, y” space) – but at higher dimen-

sions we get 2d − 1 possible projections. 2333
approximately is 10100

, so this does not get us

much further.

This e�ect can have surprising consequences. For example, when using the classic statistical

threshold of 3σ (see Section 1.2) in high-dimensional data one may run into what is called the

http://dx.doi.org/10.1002/sam.11161
http://dx.doi.org/10.1002/sam.11161
http://dx.doi.org/10.1002/sam.11161
http://dx.doi.org/10.1109/ICDM.2012.9
http://dx.doi.org/10.1109/ICDM.2012.9
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“data snooping bias”. Analyzing a single object in all dimensions, it will appear to be normal (by

the 3σ rule) in each single dimension with a likelihood of 99.73%. However, the likelihood of

the object to appear to be normal in every single dimension is 0.9973d (without even considering

other projections than single dimensions). For d = {10, 100, 1000} this drops surprisingly fast:

97.33%, 76.31%, 6.69%. So at 1000 dimensions, we have a 93.71% chance of being able to �nd

at least one dimension where the object is a 3σ signi�cant outlier. This supports the informal –

and misleading – claim that in high-dimensional data, “every point is an almost equally good

outlier” ([AY01], but likely referring to the distance concentration e�ect below). However, one

should make this claim more precise: “In high-dimensional data, every object has a high chance

of being a 3σ outlier in at least one of the dimensions”.

Concentration of Distances: The concentration of distances is a widely known e�ect of the

“curse of dimensionality” in distance-based data mining. It can be formalized as: [Bey+99]

If lim
d→∞

Var

(
‖Xd‖

E[‖Xd‖]

)
= 0, then

Dmax −Dmin

Dmin

→ 0, (4.1)

whereDmax andDmin are the maximal and minimal distances in the data set. This concentration
e�ect is also called the loss of contrast for distance functions. This e�ect can be observed in

practice, has been studied experimentally, and has even theoretically been proven for a number

of distance functions and data distributions [Bey+99; HAK00; AHK01]. Some distance functions

(such as fractional Lp-norms
1

[AHK01; FWV07] and cosine dissimilarity [RNI10b]) appear to

be slightly less susceptible, yet remain a�ected.

This loss of contrast makes certain algorithms such as the classic Knorr-Ng outliers [KN97a]

and kNN-Outlier[RRS00] essentially meaningless: the radius parameter ε of DB-Outlier will be

hard to choose precisely enough, and the k-distances will also no longer di�er substantially

across objects. This is probably the observation that caused Aggarwal and Yu [AY01] to claim

“every point is an almost equally good outlier” for motivating their subspace approach. Yet, it

again should be phrased more precisely: “In high-dimensional data, every object is an almost

equally good kNN-Outlier.”

So if the concentration of distances is proven, why would we still bother with high-dimensional

data? First of all, the proofs are for d → ∞, but in practice we will always deal with �nite-

dimensional data. Secondly, there is the notion of “intrinsic dimensionality” (see Section 4.3),

based on the observation that data represented with d-dimensional vectors often behaves as if

it only had d′ < d dimensions, and any d′-dimensional data can be in�ated to k · d′ dimensions

without signi�cantly a�ecting the results by duplicating dimensions or even simpler: by adding

dimensions which are 0 for all objects. Third, the proofs only cover certain distance functions,

and in particular second order distance functions such as the shared nearest neighbor distances

(see Section 4.4) seem to o�er some relief. And �nally, and most importantly, the proofs assume

1
Fractional Lp-norms (i.e. with 0 < p < 1) are not mathematical norms, since they do not satisfy the triangle

inequality. They however have the same formula as the proper Lp-norms with p ≥ 1. See also Section 2.2.



30 4. High-Dimensional Data and the “Curse of Dimensionality”

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  10  100  1000

N
o
rm

al
iz

ed
 v

ec
to

r 
le

n
g
th

Dimensionality

Mean +- stddev Actual min Actual max

(a) Uniform U [0; 1]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1  10  100  1000

N
o

rm
al

iz
ed

 v
ec

to
r 

le
n

g
th

Dimensionality

Mean +- stddev Actual min Actual max

(b) Gaussian N [0; 1]

Figure 4.1: Normalized Euclidean length of vectors with increasing dimensionality.

The x axis is logarithmically scaled.

that the data is i.i.d. – independent and identically distributed –, a scenario in which any analysis

would be a wasted e�ort anyway: In any scenario interesting for analysis we must assume that

there exist di�erent mechanisms such as clusters and outliers.

Hubness: A rather new and interesting observation is that if we look at the kNN of a large

quantity of objects, a few elements occur more often in the kNNs of others, while the majority

of objects occurs less often than one would expect [RNI09; RNI10a]. These rare objects – called

“Hubs” – are however not classic outliers, but objects that can be seen as “unusually usual”, ob-

jects that apparently are more “central” than others. Their exact behavior, nature and meaning

is subject to ongoing research, since they might be “Fact or Artifact” [Low+13].

Given these di�erent aspects of the curse, it remains an ongoing research question how to

analyze high dimensional data. We will now discuss a number of experiments to study these

theoretical e�ects in practice, how they a�ect the full-dimensional methods discussed earlier

in Section 3.2, as well as approaches to remedy the e�ects to some extend.

4.2 Empirical Observations on High-Dimensional Data

In this section, we analyze the behavior not only of distances (reproducing the earlier results

on distance concentration), but we also are interested to validate the e�ect on outlier scores.

To make the plots easier to read, we do not plot the Euclidean distance, but we normalize it by

the expected maximum length in the unit cube – the length of the diagonal, which is

√
d. This

is appropriate also for the normal distributed data set, since the expected values grow with this

factor as well. In the unit cube for example, the expected distance from the origin converges

from 0.5 in one dimension to

√
d/3 ≈ 0.5774

√
d. In the multivariate standard normal dis-

tribution, the expected length converges to

√
d. We sampled 10000 objects from an uniform

U [0; 1] distribution as well as a Gaussian N [0; 1] distribution in up to 1000 dimensions. The

dimensionality is drawn on the x axis, and we use a logarithmic scale to increase the visibility
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Figure 4.2: Normalized Euclidean pairwise distances with increasing dimensionality.
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Figure 4.3: Normalized Euclidean 50NN distances with increasing dimensionality.

of the observed e�ects (the di�erence between 999 and 1000 dimensions can be expected to be

marginal, and a logarithmic scale is visibly appropriate).

Independent and Identically Distributed Data (i.i.d.): Figure 4.1 shows the vector lengths

after normalization. In low dimensionality, the observed minimum remains close to 0, and the

maximum close to 1, while the mean converges to the predicted values (after normalization√
1/3 respectively 1) with decreasing variance. However, at higher dimensionality, even the

observed minimum and maximum distances begin to close in on the mean, with the normalized

standard deviation approaching 0. So both of the data sets clearly exhibit the “distance concen-

tration e�ect”. In outlier detection, we however do not judge objects by their distance from 0,

but by pairwise distances. In Figure 4.2 we can validate that this concentration still happens.

One of the earlier distance-based outlier detection methods is based on the k nearest neighbor

distance [RRS00]. Figure 4.3 plots this distance for k = 50. Here, the result may appear to be

surprisingly di�erent for uniform and Gaussian data at �rst. However, it is easy to see that

uniform data in low dimensions does not show signi�cant outliers, while as explained in the

paragraph on the combinatorial explosion of subspaces, we actually can expect the Gaussian

scores to converge against the one-dimensional maximum: as discussed there, almost every

object will appear to be an outlier in at least one dimension! The reason that the uniform data

converges for high dimensionality virtually the same way as the Gaussian distribution is the

classic example of the central limit theorem. In fact any �nite mean and variance i.i.d. data is ex-
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Figure 4.4: LOF k = 50 scores with increasing dimensionality.
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Figure 4.5: Normalized Euclidean pairwise distances – with true outlier.

pected to converge this way. Finally, in Figure 4.4 we perform the same analysis for LOF scores

(with k = 50). Unsurprisingly, due to the decreasing relative variance of the 50NN scores, the

LOF scores quickly tend to 1. However, note that so far the data set was generated i.i.d., there-

fore it does actually not contain true outliers. Even the extreme values in the one-dimensional

Gaussian distributions were generated by the same mechanism.

Di�erent Mechanisms: For the next experiments, we add a second mechanism to the data

set. By doing so, we remove one of the key assumptions for the proofs of the concentration of

distances: our data set is no longer “i.i.d.”! Since we are interested in outlier detection, we use

a very simple “outlier” mechanism: a single object placed at a �xed location. For the uniform

data set we place the outlier at the constant value of 0.9, for the Gaussian distributed data at

2σ = 2). Obviously, the outlier will be “normal” in every single dimension, and cannot be

detected in one-dimensional data.

Figure 4.5 visualizes the pairwise distances again, but now with two di�erent mechanisms.

We therefore split the statistics into two groups: one consisting of the distances to the outlier

object, and the other group containing the distances between two inlier objects. Since the

outlier is constantly away from the center of the data set, it becomes more and more visible. At

1000 dimensions, the largest distance between inliers is substantially smaller than the smallest
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Figure 4.6: Normalized Euclidean 50NN distances – with true outlier.
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Figure 4.7: LOF k = 50 scores with increasing dimensionality – with true outlier.

distance of any inlier to the outlier.
2

Similarly, if we look at the 50NN outlier scores in Figure 4.6

or the LOF scores in Figure 4.7, the outlier quickly becomes well visible, with an outlier score

deviating substantially even from the most extreme cluster element score.

Relevant and Irrelevant A�ributes: However, in reality, we cannot rely on either of above

situations to occur: neither will the data be i.i.d., nor will every single dimension increase the

ability to di�erentiate the outliers from the clusters. And if we have a number of dimensions

that are useful, and other dimensions that are i.i.d., then we need to investigate methods of

recognizing these cases, in order to remove the useless dimensions and improve our “signal

to noise” ratio. This is a primary motivation for investigating subspace methods: we need to

identify discriminative dimensions and remove “noisy” dimensions. We do not need to get it all

perfect: as long as we can keep most of the “good” dimensions and remove some of the “bad”

dimensions, we should see an improvement in the results. Figure 4.8 visualizes the results of

the experimental validation: we kept the number of dimensions �xed at d = 100, but varied

the number of dimensions in which the outlier is i.i.d. to the inlier objects and in which it is set

to the �xed position otherwise.

2
The e�ect may appear to happen much earlier for Gaussian data, but this is due to the fact that 2σ was a more

extreme choice than 0.9 for uniform data. We should have chosen ≈ 1.281551σ for better comparability.
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Figure 4.8: LOF k = 50 scores with increasing relevant dimensions – with true outlier.

Conclusions: As seen in the �rst series of experiments, the curse of dimensionality does ex-

ist, and the concentration of distances happens and a�ects results. However, the curse is not

that simple: If there is any systematic di�erence between mechanisms present in every single

dimension, then the analysis task can actually become easier with increasing dimensionality.

Whether or not the dimensionality is a problem can roughly be characterized as a “signal to

noise” ratio problem: in the second series of examples, we had two mechanisms where the aver-

age di�erence between the two mechanisms grew faster than the in-mechanism deviations. And

in fact this is not a surprising conclusion: if adding another dimension increases the separation

of the two mechanisms – why should adding additional dimensions introduce problems?

This may also explain why information retrieval for textual data – even when in a vector space

model – works. While the technical dimensionality are thousands of words, the majority of

the dimensions will likely be 0; and except for some very frequent words (e.g. “the” and “is”;

known as “stopwords”) many of these dimensions will contribute signal to the analysis. This

will, however, need future research.

4.3 Intrinsic Dimensionality

The term “intrinsic dimensionality” refers to the fact that the apparent data dimensionality

may be misleading. This is best explained with a very simple example. Assuming we had a two-

dimensional data set, where x1 = x2 for all objects. Technically, the data set is two-dimensional,

but obviously it can be reduced to a single dimension without any loss of information. If we

now consider distance computations on this data set, e.g. Euclidean distance, the distance will

in fact also depend only on one dimension:

d(a, b) :=
√
|a1 − b1|2 + |a2 − b2|2 =

√
2|a1 − b1|2 =

√
2 · |a1 − b1| =

√
2 · d(a1, b1) (4.2)

Redundancies do not need to be always that simple. It could be any complex relationship such

as x3 = x1 + x2
2, or there also could be noise in the relationship: x2 = x1 +N [0; 0.01]. In the
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most extreme case, the relationship might not be the same everywhere in the data set. This

makes anything but the simplest cases of intrinsic dimensionality hard to grasp analytically.

Roughly de�ned, the “intrinsic dimensionality” is the number of variables needed to repre-

sent the data. However, this de�nition is not usable in practice. Without putting additional

constraints on the mapping function, any data could be considered just one dimensional, as a

function of a unique object ID, or by mapping the data to its closest position on a space �lling

curve.
3

Furthermore, for any practical use, one will want to allow an application dependent

amount of error in this representation.

How to practically measure or use the intrinsic dimensionality remains an ongoing question.

There exist di�erent de�nitions and measures to estimate a global or local intrinsic dimen-

sionality, such as the expansion dimension [dCH10] and the generalized expansion dimen-

sion [HKN12]. Yet it has been noticed [HS05; dCH10; Hou+12] that many of the problems

ascribed to the curse of dimensionality can be handled with appropriate approaches when the

intrinsic dimensionality is low. As hinted upon by Equation 4.2, the concentration of distances

is expected to happen with the intrinsic dimensionality. The Johnson-Lindenstrauss [JL84]

error bounds of random projections [Ach01] can also be expected to depend on the intrinsic

dimensionality instead of the technical data set dimensionality. Other problems, such as the

combinatorial explosion for grid-based approaches or the bias problems of approaches testing

excessive combinations of subspaces however will remain since they do not exploit correlations

in the data set that may reduce the e�ective dimensionality.

4.4 Shared Nearest Neighbors (SNN)

The material discussed in this section is a condensed version of the following publications:

M. E. Houle, H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. “Can Shared-

Neighbor Distances Defeat the Curse of Dimensionality?” In: Proceedings of the 22nd
International Conference on Scienti�c and Statistical Database Management (SSDBM),
Heidelberg, Germany. 2010, pp. 482–500. doi: 10.1007/978-3-642-13818-8_34

T. Bernecker, M. E. Houle, H.-P. Kriegel, P. Kröger, M. Renz, E. Schubert, and A.

Zimek. “Quality of Similarity Rankings in Time Series”. In: Proceedings of the 12th
International Symposium on Spatial and Temporal Databases (SSTD), Minneapolis, MN.

2011, pp. 422–440. doi: 10.1007/978-3-642-22922-0_25

An interesting alternative to traditional similarity measurement is the de�nition of second or-

der distance measures based on the rankings induced by a primary similarity measure (such

as an Lp-norm, cosine similarity or also a domain speci�c distance). The simplest and most

common of these methods involves the use of shared nearest neighbor (SNN) information, in

3
Assuming �oating point precision, any point can actually be represented with a one-dimensional coordinate on

a space �lling curve – there are no irrational �oating point numbers.

http://dx.doi.org/10.1007/978-3-642-13818-8_34
http://dx.doi.org/10.1007/978-3-642-13818-8_34
http://dx.doi.org/10.1007/978-3-642-13818-8_34
http://dx.doi.org/10.1007/978-3-642-22922-0_25
http://dx.doi.org/10.1007/978-3-642-22922-0_25
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which the similarity value for an object pair (x, y) is a function of the number of data objects

in the common intersection of �xed sized neighborhoods centered at x and y, as determined

by the primary measure. The primary similarity measure can be any function that determines

a ranking of the data objects relative to the query; it is not necessary for the data objects to be

represented as vectors, but for example rankings obtained by a text search function can also be

used as primary similarity measure.

The most basic form of shared nearest neighbor similarity measure is that of the “overlap”.

Given a data set S consisting of n = |S| objects and s ∈ N+
, let kNNs(x) ⊆ S be the set of

s nearest neighbors of x ∈ S as determined using some speci�ed primary similarity measure.

The overlap between objects x and y is de�ned to be the intersection size

SNNs(x, y) = |kNNs(x) ∩ kNNs(y)|. (4.3)

Based on this de�nition of overlap, other shared-nearest-neighbor-based similarity measures

such as the cosine measure have been proposed:

simcoss(x, y) =
SNNs(x, y)

s
, (4.4)

so called since it is equivalent to the cosine of the angle between the zero-one set membership

vectors for kNNs(x) and kNNs(y). This was used in [ESK03; Hou03] as a local density measure

for clustering. An alternative similarity de�nition based on shared nearest neighbors is set
correlation, given as:

simcorrs(x, y) =
n

n− s

(
SNNs(x, y)

s
− s

n

)
, (4.5)

which results when the standard Pearson correlation formula

r =

∑n
i=1 xiyi − nx̄ȳ√

(
∑n

i=1 x
2
i − nx̄2)(

∑n
i=1 y

2
i − nȳ2)

is applied using the coordinates of the characteristic vectors of kNNs(x) and kNNs(y) as vari-

able pairs. Objects of S that appear in both kNNs(x) and kNNs(y), or neither of kNNs(x) and

kNNs(y), support the correlation of the two neighborhoods (and by extension the similarity of

x and y); those objects that appear in one neighborhood but not the other detract from the cor-

relation. Note that the set correlation value tends to the cosine measure when
s
n

tends to zero.

Set correlation was introduced in [Hou08] for the purpose of assessing the quality of cluster

candidates, as well as ranking the cluster objects according to their relevance (or centrality) to

the cluster.

A common variant of shared nearest neighbor similarity uses kNN sparsi�cation, where two

objects are required to be in each others kNN in order to be considered for similarity. This can
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be formalized as:

SNN′s(x, y) =

{
|kNNs(x) ∩ kNNs(y)| i� x ∈ kNNs(y) ∧ y ∈ kNNs(x)

0 otherwise

(4.6)

There are several common ways to convert a similarity measure into a dissimilarity measure.

For the SNN similarity simcos (Equation 4.4) with a given number of neighbors s considered,

we propose in [Hou+10] the possible distance measures

dinvs(x, y) = 1− simcoss(x, y)

dacoss(x, y) = arccos (simcoss(x, y))

dlns(x, y) = − ln simcoss(x, y).

For computing the nearest neighbors in high-dimensional data, SNN measures have been re-

ported to be e�ective in practice, and supposedly less prone to the curse of dimensionality than

conventional distance measures. SNN measures have found use in the design of merge criteria

of agglomerative clustering algorithms [ESK03; GRS98; JP73], in approaches for clustering high-

dimensional data sets [Hou03; Hou08], and in �nding outliers in subspaces of high-dimensional

data [Kri+09b]. However, in all of these studies, no systematic investigation has been made into

the advantages of SNN measures over conventional distance measures for high-dimensional

data.

While dinv, which we will be using throughout our experiments, is simply a linear inversion

of the values, dacos penalizes slightly suboptimal similarities more strongly, whereas dln is

more tolerant than dinv for a broad range of higher similarity values but approaches in�nity

for very low similarity values. In general, any function f that is monotonically decreasing on

the interval [0; 1] with f(1) = 0 can be used to transform the SNN similarity measure into

a dissimilarity measure. The functions only di�er in their contrast at di�erent ranges. All

of these functions are symmetric (since sincos is symmetric) and maintain the same ranking.

However, it should be noted that of the three, only dacos satis�es the triangle inequality. While

most retrieval results (based simply on rankings) remain una�ected by di�erent formulations

of these secondary distances, the e�ects on indexing and clustering may vary from formulation

to formulation. For example, the separation of clusters in terms of absolute distances depends

on the concrete choice of the distance measure and on the secondary distance measure.

4.5 Empirical Observations on SNN Similarity

In this section we want to study the behavior of shared nearest neighbor similarity, to under-

stand the bene�ts of using it, in particular with respect to high-dimensional data.

This section is an excerpt (focused on the aspects relevant for outlier detection) of the study

published as:
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M. E. Houle, H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. “Can Shared-

Neighbor Distances Defeat the Curse of Dimensionality?” In: Proceedings of the 22nd
International Conference on Scienti�c and Statistical Database Management (SSDBM),
Heidelberg, Germany. 2010, pp. 482–500. doi: 10.1007/978-3-642-13818-8_34

4.5.1 Data Sets

To study the e�ects of the curse of dimensionality, we require a series of data sets that scale in

dimensionality without introducing bias. After controlling for dimensionality, each of the sets

in the series must be constructed such that they share common characteristics to the greatest

degree possible. This is di�cult to achieve with real world data, since the di�erent attributes

often vary in their scales and expressivity. If generating low-dimensional examples from a

high-dimensional data set, it is not always clear how to select the projective dimensions fairly.

In addition, well-de�ned ground truth sets necessary for assessing the expressiveness of query

results are typically unavailable for large real data sets. The use of synthetic data allows us to

study individual e�ects separately, while real data sets usually prevent the isolation of di�erent

in�uences. For these reasons we construct several series of arti�cial data sets using pseudo-

random generators with largely �xed parameters, avoiding those parameter choices leading

to data sets with groupings that are either too di�cult or too easy to discriminate. Unless

stated otherwise, the synthetic data sets were constructed with the following characteristics:

n = 10, 000 points grouped into c = 100 clusters in up to Dmax = 640 dimensions. Cluster

sizes are randomized with a mean of
n
c

= 100 and standard deviation
n

10·c = 10, with the size of

the last generated cluster adjusted so that the total number of points is n. If generating data sets

for a series, those sets with dimensionality d < Dmax were generated so that their attributes

coincided with the �rst d attributes of all other data sets having dimensionality ≥ d.

For each object, attribute values were generated depending on whether the attribute is to be

considered ‘relevant’ or ‘irrelevant’ for the formation of the cluster to which the object belongs.

If the i-th attribute is deemed relevant to the j-th cluster, the value of this attribute for all

members of c are normally distributed with a standard deviation in the range σj,i ∈ [0.05; 0.8],
and a mean in the range µj,i ∈ [

σj,i
2

; 1− σj,i
2

]. These ranges were chosen to avoid overly compact

or overly wide distributions, as well as boundary e�ects, while still providing a wide variety of

distributions and overlaps. No additional clipping or normalization was applied. Any attributes

irrelevant to the cluster were assigned noise values uniformly distributed in the interval [0; 1].

For the experimentation, 6 synthetic data series were created, each consisting of 7 sets of dif-

fering dimensionality d = 10, 20, 40, 80, 160, 320, 640:

• All-Relevant: in this series, all attributes were generated so as to be relevant for all clus-

ters.

• 10-Relevant: in this series, the �rst 10 attributes are relevant for all clusters, the remaining

attributes are irrelevant.

http://dx.doi.org/10.1007/978-3-642-13818-8_34
http://dx.doi.org/10.1007/978-3-642-13818-8_34
http://dx.doi.org/10.1007/978-3-642-13818-8_34
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• Cyc-Relevant: in this series, the i-th attribute is relevant for the j-th cluster when imod c =
j; otherwise, the attribute is irrelevant. This series has n = 1, 000 and c = 10.

• Half-Relevant: in this series, for each cluster, an attribute was chosen to be relevant with

probability
1
2
, and irrelevant otherwise. The selection of attributes was consistent within

a cluster, and performed independently of the selection for other clusters.

• All-Dependent: this series is derived from All-Relevant introducing correlations among

attributes.

• 10-Dependent: this series is derived from 10-Relevant introducing correlations among at-

tributes.

For the correlated data sets All-Dependent and 10-Dependent, the i-th attribute value Xi was

generated by computing Xi = Yi for 1 ≤ i ≤ 10, and Xi = 1
2
(Xi−10 + Yi) for i > 10, where

Yi is the attribute of the corresponding uncorrelated data set All-Relevant or 10-Relevant. This

way of introducing correlations is inspired by Example 3 in [Bey+99].

These 6 series provide us with the means to study di�erent aspects of the curse of dimen-

sionality. Data series All-Relevant is the basic setting referred to as the “concentration of dis-

tances". However, the sets di�er from those considered in many earlier studies [Bey+99; HAK00;

AHK01], and conforms with Bennet et al. [BFG99] in that the data objects are partitioned into

clusters (as are all our data sets). Data sets 10-Relevant and Cyc-Relevant relate exclusively to

the “signal to noise” ratio in di�erent settings. The clusters are further distinguished in the

data set Cyc-Relevant, where every attribute is relevant for exactly one cluster. In the series

Half-Relevant, we give up control of the number and choice of relevant attributes. Half the at-

tributes are expected to be relevant to a given cluster, but the selection of relevant attributes

varies (independently) from cluster to cluster.

Our synthetic data sets do not satisfy the i.i.d. (independent and identically distributed) assump-

tions used in the proofs of Beyer et al. [Bey+99], since the sets are composed of multiple clusters

that overlap in some dimensions and are well-distinguished in others. However, the analysis

of François et al. [FWV07] applies when dimensional values are comparable in their extent and

exhibit the same properties as for normalized data.

As intended, our synthetic data sets show the typical behavior ascribed to the curse of dimen-

sionality, more precisely they exhibit the concentration of distances (see Equation 4.1). Fig-

ure 4.9 plots the numerator and denominator of the contrast formula
Dmax−Dmin

Dmin
for selected

data sets, to demonstrate that Dmin (the solid symbols) indeed grows much faster than the dif-

ference Dmax −Dmin (the hollow symbols). The plots indicate that Dmin grows exponentially

faster than Dmax −Dmin.

For the experiments with time series data, we chose a number of classic benchmark examples

such as Cylinder Bell Funnel (CBF), where a low magnitude noise is overlaid with a high mag-

nitude signal that either is constant (cylinder), increasing to a cut o� (bell) or decreasing after

an on-set (funnel). We will, however, only show summarized results in this section.

In addition to the synthetic data sets described above, we also considered real-world data sets

for our study. Real-world data sets suitable for this study are di�cult to obtain, since they
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Figure 4.9: Curse of dimensionality: Dmax −Dmin compared to Dmin

should have a reasonable size, number of classes, dimensionality, comparable dimensions and

of course a solid ground truth. Results for real data can be di�cult to interpret due to a lack

of knowledge of the underlying data distributions, even when ground-truth class knowledge

is available. Nevertheless, we report experimental results for 3 real data sets. The �rst real

data set we used is the Multiple Features data set [AN07]. It consists of 2000 instances from 10
classes (corresponding to the digits 0 to 9). There are two variants, one with 649 dimensions

(coming from multiple feature extraction algorithms and giving the data set its name), and

another with 240 dimensions (the pixel averages features, which is the largest subset of directly

comparable features). The second set considered is theOptical Recognition of Handwritten Digits
data set [AN07]. It consists of 5620 instances from 10 classes (also corresponding to the digits

0 to 9) in 64 dimensions, in the form of an 8 × 8 grid of integer values in the range of 0 to

16 obtained by downsampling from a larger 32 × 32 grid. The third real data set comes from

the Amsterdam Library of Object Images (ALOI) image database [GBS05], each image being

described by 641 dense features based on color and texture histograms (for a detailed description

of how the vectors were produced, see [Bou+01]). The full ALOI-IKONA data set consists of

110, 250 images of 1, 000 objects taken from di�erent orientations and in di�erent lighting

conditions, each object being treated as a class. We used only the �rst 22, 050 instances of
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the data set, covering the �rst 205 objects, with an average class size of approximately 107
objects.

4.5.2 Distance Measures

As primary distance measures we considered for our experimental evaluation a range of di�er-

entLp-distances, in particular the Manhattan (L1) and Euclidean (L2) distances, and the p = 0.6
and p = 0.8 fractional Lp-distances. In addition, we used also the cosine distance, here referred

to as invcos, as it is computed as the arc of the cosine similarity. All these distance measures

can be used as the primary distance for the computation of a secondary similarity simcoss, as

de�ned in Equation 4.4. For our experiments, we use the distance measure 1 − simcoss, and

compare the performance of this secondary distance measure with the corresponding primary

distance measure to assess whether the accuracy is improved. There are other possibilities for

constructing distance measures from similarity measures. The particular choice of method,

however, does not a�ect the ranking of query results, although it may in�uence the contrast.

For the experiments involving time-series data, the traditional simple distance functions (such

as cosine similarity and Lp-norms) did not perform very well. However, to cope with spatio-

temporal data, several specialized distance measures have been developed that attempt to deter-

mine the best matching of events along the time axis. Since SNN puts next to no requirements

on the primary distance function, it can also be used with these specialized distance functions.

One of the most prominent of these is the Dynamic Time Warping (DTW) distance [BC94], used

extensively in speech recognition. DTW supports asynchronous matching — matches with

shifts along the time dimension — by extending each sequence with repeated elements, and ap-

plying Lp-norms to the extended time series. The advantages of DTW are invariance to (local)

phase-delays, the acceleration or deceleration of signals along the time dimension, and the abil-

ity to support matches between series of di�ering lengths. Like the Lp-norms, DTW requires a

complete matching of both time series, in that each value from one time series must be matched

with at least one value from of the other time series. For this reason, DTW is sensitive to noise

and outliers within the time series.
4

In general, distance measures that are robust to extremely noisy data typically violate the tri-

angle inequality [VKG02], and thus are inapplicable for most indexing methods. Well-known

distance measures for sequence data that fall into this category are the Longest Common Subse-
quence (LCSS) distance [VKG02], the Edit Distance on Real sequence (EDR) [CÖO05] and the Edit
distance with Real Penalty (ERP) [CN04b]. In contrast with DTW, LCSS and EDR, the measure

ERP has the advantage of satisfying the triangle inequality and is therefore a distance metric.

The aforementioned measures are adaptations of the edit distance, a commonly-used distance

4
Note that we are not looking for these in-series outliers, but we are interested in complete series that are as a

whole anomalous with respect to the full data set. The in-series outliers are a di�erent kind of outlier, that can

better be detected with traditional one-dimensional statistical methods.
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measure for matching strings that can accommodate gaps in the matching. Unlike the Lp-
norms and DTW, these measures are able to ignore noise and outliers. As such, edit distance

variants are better at coping with di�erent sampling rates, di�erent time rates, and di�erent

series lengths; they can also be computed more e�ciently.

The high computational cost associated with distance measures for time-series data has led to

the development of many methods for dimensionality reduction, in which distance measures are

applied to subsets of features extracted from objects in the series [AFS93; YJF00; ANR74; CF99;

CN04a]. Distance measures based on dimensionality reduction can be regarded as specialized

similarity measures, in that they process the full set of spatio-temporal features to ultimately

produce similarity values for the original objects.

4.5.3 Evaluation Criteria

The purpose of a distance function is to facilitate the separation of data objects similar to the

query from those objects which are not similar. In our context of di�erent generating mech-

anisms, similar objects correspond to points that have been generated according to the same

mechanism as the query point, whereas irrelevant points have been generated by di�erent

mechanisms. The discriminative ability of a given distance function can best be evaluated by

computing a nearest neighbor ranking of all data points with respect to a given query point.

Ideally, at the top positions of the ranking, we would �nd all objects drawn from the same

natural cluster as the query object, followed by the objects from outside the cluster. Di�erent

dissimilarity functions have di�erent ranges of values. For example, the maximum Lp-distance

in the unit cube is
p
√
d; dacoss has a value range of [0; π

2
], and the value of 1 − simcoss lies

conveniently in the range [0; 1]. To evaluate the discriminative ability of dissimilarity functions

without referring to the actual values, we compute Receiver Operating Characteristic (ROC)

curves that compare the true positive rate with the false positive rate (see Section 5.4 for a

detailed discussion of ROC curves). For each query, the objects are ranked according to their

similarity to the query point. We can compute the matching ROC curve and the corresponding

area under the curve (AUC) for each ranking result. An AUC of 1.0 indicates perfect discrim-

ination – all relevant objects are ranked ahead of all other objects. An AUC of 0.5 indicates a

total lack of discriminative ability, since this value is what would be expected with a uniform

random permutation of the query result set. An AUC signi�cantly less than 0.5 indicates a re-

versed ordering. The ROC curve and its AUC value provide a summary for a single ordering of

points – that is, for a single query object. By generating a ROC curve and AUC value for each

data object, the mean AUC value and standard deviation could then be used to rate the quality

for a particular distance function. However, we expect points near the center of a cluster (the

mean of the generating distribution) to discriminate well for many distance functions. On the

other hand, for points near the border of a cluster or in the overlap of clusters, values of the

dissimilarity measure will most likely perform less well. Therefore, at data generation time,

we assign to each point a centrality rank, based on both its deviation from the mean and the

size of the cluster, so as to normalize across clusters of di�ering sizes. The point generated for
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cluster M that is closest to the mean of M is assigned a centrality of 1, and the point of M
that is farthest from the mean of M is assigned a centrality of 0. To obtain readable graphs, the

ROC AUC values then are aggregated into bins based on their centrality values. This allows us

to plot the degradation of the distance function with respect to the centrality of a point within

its distribution. For the plots shown in this Chapter, we will be using three bins for the central

20%, middle 60% and outer 20%.

4.5.4 Experimental Results

Experimental Results on Synthetic Data: At �rst glance, the fact that our synthetic data

sets exhibit the typical symptoms of the curse of dimensionality would seem to indicate that

these data series are not amenable to indexing or mining. However, such a conclusion would

be unnecessarily pessimistic. Especially for data sets with many relevant attributes (such as

the All-Relevant series), any given number of clusters should become distinguishable when the

number of relevant attributes becomes su�ciently large. This intuition is justi�ed by examples

such as the combination of kernels and support vector machines (SVM): the number of dimen-

sions is increased in order to be able to separate classes linearly by hyperplanes [BGV92]. In

fact, what is stated as a condition for the pairwise stability of clusters in [BFG99], we would

expect to hold for any two clusters where the number of discriminative attributes dominates.

This is not an essentially original contribution of our study but con�rms prior results.

One point that must be stressed is that while the curse of dimensionality tells us not to rely

on the absolute values of distances, it is still viable to use distance values to derive a ranking

of data objects. An ε-range query is dependent upon the choice of an appropriate value of ε,
and thus su�ers from the lack of contrast, whereas a k-nearest neighbor query will retrieve the

top k neighbors independently of their absolute distance values. Hence, the computation of

k-nearest neighbor queries and rankings has the potential to be viable in higher dimensions,

whereas that of ε-range queries likely does not. Furthermore, although the curse of dimen-

sionality contrast formula holds for all our data sets, the ranking results are not tied solely to

the data dimensionality, and can in certain situations improve signi�cantly with increasing di-

mensionality, as reported in [Bey+99]. The conclusion we draw is supported by the research

literature as well as by our experiments on our synthetic data sets:

Conclusion 4.5.1 (Relevant vs. Irrelevant Attributes): The quality of the ranking – and thus

the separability of the di�erent generating mechanisms – may not necessarily depend on the

data dimensionality, but instead on the number of relevant attributes in the data set.

More speci�cally, there are two contrary e�ects of an increase in dimensionality when the

number of relevant attributes is high: the relative contrast between points tends to decrease,

but the separation among di�erent generating mechanisms can increase. On the other hand, if

the data dimensionality is high and the number of relevant dimensions is rather low, the curse of

dimensionality fully applies, and hampers any analysis task. In retrospect, this is an important
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Figure 4.10: Ranking quality with di�erent SNN distances based on L2 at 640 dimensions.

yet unsurprising conclusion to draw. Nevertheless, it has not gained much recognition in the

research literature to date.

As a further original contribution of this study, we evaluate the behavior of SNN as a secondary

similarity measure. Motivated by the �ndings sketched above, an improved performance can be

expected for a rank-based similarity measure such as SNN, whenever the ranking provided by

the primary similarity measure is meaningful. Figure 4.10 compares results for the secondary

distance measure with di�erent SNN reference sizes s, based on Euclidean distance as the pri-

mary distance measure, for dimension d = 640. The performance of the corresponding primary

distance is given on the left side of each diagram as a reference. Results for lower dimensionali-

ties are comparable, and are shown in the following �gures. For easily separable data sets such

as All-Relevant, most choices of s yield excellent results. On Half-Relevant and Cyc-Relevant,
the best results are achieved for choices of s of the same order as the cluster size (100). This can

also be seen for All-Relevant on lower dimensionality, where the contrast between the results is

better. On the barely separable 10-Relevant data set, even larger values of s seem to be needed,

although the average ROC AUC score is not signi�cant, being below 0.6. Figure 4.11 shows

the same plots for di�erent dimensionalities of the All-Relevant data set. It can be seen that
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Figure 4.11: Ranking quality for the All-Relevant set with di�erent SNN distances based on L2.

by using an SNN distance, a considerable improvement can be achieved given that the data set

is su�ciently separable, and that the parameter s is chosen roughly in the range of the clus-

ter size. In particular, the secondary distance performs very well at high dimensionalities, and

is reasonably robust with respect to the choice of s. The observations on the correlated data

sets (given in the supplementary material) are quite similar. To summarize, we can draw the

following conclusion from our experiments:

Conclusion 4.5.2 (Ranking Quality Improvement): Our experiments suggest that the use of

an SNN similarity measure can signi�cantly boost the quality of a ranking compared to the use

of the primary distance measure alone, provided that the primary distance already provides

some degree of distinguishability of clusters.

The experimental results con�rm that although the discrimination of primary distances wors-

ens with increasing data dimensionality, the natural data groupings may still be separable and,

if so, the neighborhoods of query points would contain many points from the same grouping.

Clearly, for two points from a common data grouping, when increasing the value of s, the prob-

ability that their neighborhoods have signi�cant overlap increases as well. On the other hand,

if s is substantially larger than the size of the grouping, many objects from di�erent groups are

contained in the neighborhoods of the two points, and the performance of secondary distance

measures become less predictable.
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(d) ALOI-IKONA

Figure 4.12: Distributions of intra-class and inter-class distances (Euclidean distance).
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Figure 4.13: Distributions of intra- and inter-class (SNN-Euclidean distance).
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Figure 4.14: Ranking quality with di�erent SNN distances based on Euclidean distance

(straight lines: ranking quality with primary distance).

Experimental Results on Real Data: Experiments on arti�cial data allow more control over

parameters such as the data dimension, and are more amenable to studying e�ects on the per-

formance of distance measures in isolation. Real-world data, on the other hand, is considerably

more di�cult to control in this way. Nevertheless, in this section we o�er experimental results

for real-world data sets in order to validate and con�rm some of the e�ects observed for arti�-

cial data. As seen in Figure 4.12, on all the real data sets considered, the distance distributions

are approximately Gaussian (which is to be expected in high dimensionalities for the Lp-norms,

due to the central limit theorem). It is also apparent that these data sets will be reasonably sep-

arable, since the overlap of the distance distributions is not very large. The results for other

primary distances are comparable. Figure 4.13 shows the histogram results when using an SNN-

based distance. The data set groupings have become very well separable. The e�ects of s on the

results for real-data are as one would expect from the experiments on arti�cial data: Figure 4.14

displays the results for various sizes of s. Choosing s to match the class size gives reasonable

results; however, the best performances are achieved with even larger values of s. Only when

s approaches the full data set size does performance drop. The bene�ts of using SNN on the

ALOI-IKONA data set are minimal, as the groupings of that set are already very well separable

for primary distances.

Experimental Results on Time Series Data: We performed similar experiments on time

series data, as a prototype of high-dimensional data. Note that many time series usually have

a much lower intrinsic dimensionality, since the raw data dimensionality is determined by the

measurement process.

The results are very similar to what we have been seeing on the previous data sets: given a

primary distance that o�ers a reasonably good ranking, the shared nearest neighbor distances
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(a) Euclidean (b) DTW (c) DTW SNN100 (d) DTW SNN70

(e) LCSS (f) LCSS SNN100 (g) LCSS SNN70 (h) LCSS SNN50

Figure 4.15: Similarity matrices for CBF : All items are sorted according to their class label and

pairwise distances are plotted. Similarity values are shown in grey scale, where

black indicates high similarity and white indicates low similarity.

further improve the ranking, while o�ering a similarity function constrained to the easier to

use value range of [0; 1] with improved contrast. Figure 4.15 is an exemplary results from this

experiment, visualizing the improved contrast on the arti�cial Cylinder-Bell-Funnel (CBF) data

set, consisting of time series with low magnitude noise and three classes of high magnitude sig-

nals. The primary distance functions in Figures 4.15a, 4.15b and 4.15e have much worse visual

contrast than the SNN-based versions. Similar to the results before, setting the neighborhood

size to approximately the class size o�ered best results. In this plot, each class consisted of 100

samples. When decreasing the neighborhood size to 50, the result has become clearly worse in

contrast, and the retrieval performance degraded similarly. Also, the signal-to-noise ratio was

found to impact overall performance as expected from the curse of dimensionality.

For the full results of the study, see the original publications [Hou+10; Ber+11] and the addi-

tional plots published on the web page http://www.dbs.ifi.lmu.de/cms/Research/SNN.

http://www.dbs.ifi.lmu.de/cms/Research/SNN
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4.6 Visualization of High-Dimensional Data

The visualization method introduced in this section was published as:

E. Achtert, H.-P. Kriegel, E. Schubert, and A. Zimek. “Interactive Data Mining with

3D-Parallel-Coordinate-Trees”. In: Proceedings of the ACM International Conference
on Management of Data (SIGMOD), New York City, NY. 2013, pp. 1009–1012. doi:

10.1145/2463676.2463696

Automated data mining methods for high-dimensional data, such as subspace and projected

clustering [Agg+99; AY00; Böh+04b] or outlier detection [RRS00; AY01; Kri+09b], have found

much attention in database research. Yet all methods in these �elds are still immature and

all have de�ciencies and shortcomings (see the discussion in surveys on subspace clustering

[KKZ09; Sim+13; KKZ12] or outlier detection [ZSK12a]). Visual, interactive analysis and sup-

porting tools for the human eye are therefore an interesting alternative but are susceptible to

the “curse of dimensionality” themselves.

Even without considering interactive features, visualizing high-dimensional data is a non-trivial

challenge. Traditional scatter plots work �ne for 2D and 3D projections, but for high-dimensional

data, one has to resort to selecting a subset of features. Technically, a 3D scatter plot also is a 2D

visualization. In order to get a proper 3D impression, animation or stereo imaging is needed.

In Figure 4.16a, each pair of dimensions is visualized with a scatter plot. Figure 4.16b visualizes

3 dimensions using a scatter plot.

Parallel coordinates were popularized for data mining by Alfred Inselberg [ID90; Ins09]. By

representing each instance as a line path, we can actually visualize more than 2 dimensions on

a 2-dimensional plane. For this, axes are placed in parallel (or alternatively, in a star pattern

as in [FCI05]), and each object is represented by a line connecting the coordinates on each

axis. Figure 4.16c is the same data set as above, with the four dimensions parallel to each

other. Each colored line is one observation of the data set. Some patterns become very well

visible in this projection. For example one of the classes is clearly separable in attributes 3

and 4, and there seems to be an inverse relationship between axes 1-2 as well as 2-3: one of

the three Iris species has shorter, but at the same time wider sepal leaves. Of course in this

particular, low-dimensional data set, these observation can also be made on the 2D scatter plots

in Figure 4.16a.

4.6.1 Related Work

The use of parallel coordinates for visualization has been extensively studied [ID90; Ins09].

The challenging question here is how to arrange the coordinates, since patterns are visible

only between direct neighbors. Inselberg [Ins09] discusses that O(N
2

) permutations su�ce to

visualize all pairwise relationships, but does not discuss approaches to choose good permuta-

tions automatically. The complexity of the arrangement problem has been studied by Ankerst

http://dx.doi.org/10.1145/2463676.2463696
http://dx.doi.org/10.1145/2463676.2463696
http://dx.doi.org/10.1145/2463676.2463696
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Figure 4.16: Visualization examples for Iris data set.
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et al. [ABK98]. They discuss linear arrangements and matrix arrangements, but not tree-based

layouts. While they show that the linear arrangement problem is NP-hard – the traveling sales-

man problem – this does not hold for hierarchical layouts. Guo [Guo03] introduces a minimum-

spanning-tree-based heuristic, that actually is more closely related to single-linkage-clustering,

to �nd a linear arrangement. Yang et al. [Yan+03] discuss integrated dimension reduction for

parallel coordinates, which builds a bottom-up hierarchical clustering of dimensions, using a

simple counting and threshold-based similarity measure. The main focus is on the interactions

of hiding and expanding dimensions. Wegenkittl et al. [WLG97] discuss parallel coordinates

in 3D; however their use case is time series data and trajectories, where the axes have a nat-

ural order or even a known spatial position. As such, their parallel coordinates remain linear

ordered. A 3D visualization based on parallel coordinates [FCI05] uses the third dimension for

separating the lines by revolution around the x axis to obtain so called star glyphs. A true

3D version of parallel coordinates [Joh+06] does not solve or even discuss the issue of how to

obtain a good layout: one axis is placed in the center, the other axes are arranged in a circle

around it and connected to the center. Tatu et al. [Tat+12] discuss measures of interestingness

to support visual exploration of large sets of subspaces.

4.6.2 Arranging Dimensions

4.6.2.1 Similarity and Order of Axes

An important ingredient for a meaningful and intuitive arrangement of data axes is to learn

about their relationship, similarity, and correlation. In the 3DPC extension to ELKI [Ach+13],

we provide di�erent measures and building blocks to derive a meaningful order of the axes. A

straightforward basic approach is to compute the covariance between axes and to derive the

correlation coe�cient. Since strong positive correlation and strong negative correlation are

equally important and interesting for the visualization (and any data analysis on top of that),

only the absolute value of the correlation coe�cient is used to rank axis pairs. A second ap-

proach considers the amount of data objects that share a common slope between two axes.

This is another way of assessing a positive correlation between the two axes but for a sub-

set of points. The larger this subset is, the higher is the pair of axes ranked. Additionally to

these two baseline approaches, we adapted measures from the literature: As an entropy-based

approach, we employ MCE [Guo03]. It uses a nested-means discretisation in each dimension,

then evaluates the mutual information of the two dimensions based on this grid. As fourth al-

ternative, we use SURFING [Bau+04], an approach for selecting subspaces for clustering based

on the distribution of k nearest neighbor distances in the subspace. In subspaces with a very

uniform distribution of the kNN distances, the points themselves are expected to be uniformly

distributed. Subspaces in which the kNN distances di�er strongly from the mean are expected

to be more useful and informative. HiCS [KMB12] is a Monte Carlo approach that samples a

slice of the data set in one dimension, and compares the distribution of this slice to the distri-

bution of the full data set. This method was actually proposed for subspace outlier detection,

but we found it valuable for arranging subspaces, too. Finally, a recent approach speci�cally



52 4. High-Dimensional Data and the “Curse of Dimensionality”

designed to support visual exploration of high-dimensional data [Tat+11] is ordering dimen-

sions according to their concentration after performing the Hough transformation [Hou62] on

the 2D parallel coordinates plot.

4.6.2.2 Tree Visualization

Based on these approaches for assessing the similarity of axes, we compute a pairwise similarity

matrix of all dimensions. Then Prim’s algorithm is used to compute a minimum spanning tree

for this graph, and one of the most central nodes is chosen as root of the visualization tree. This

is a new visualization concept which we call 3D-parallel-coordinate-tree (3DPC-tree). Note that

both building the distance matrix and Prim’s algorithm run in O(n2) complexity, and yet the

ordering can be considered optimal. So in contrast to the 2D arrangement, which by Ankerst

et al. [ABK98] was shown to be NP-hard, this problem actually is easier in 3 dimensions due to

the extra degree of freedom. This approach is inspired by Guo [Guo03], except that we directly

use the minimum spanning tree, instead of extracting a linear arrangement from it. For the

layout of the axis positions, the root of the 3DPC-tree is placed in the center, then the subtrees

are layouted recursively, where each subtree gets an angular share relative to their count of leaf

nodes, and a distance relative to their depth. The count of leaf nodes is more relevant than the

total number of nodes: a chain of one node at each level obviously only needs a width of 1.

Figure 4.17 visualizes the layout result on the 2D base plane for an example data set containing

various car properties such as torque, chassis size, and engine properties. Some interesting rela-

tionships can already be derived from this plot alone, that the fuel capacity of a car is primarily

connected to the length of the car (longer cars in particular do have more space for a tank), or

the number of doors being related to the height of the car (sports cars tend to have fewer doors

and are shallow, while when you �t more people in a car, they need to sit more upright).

An alternate layout can be obtained by using metric learning methods on the similarity matrix,

such as multidimensional scaling. MDS computes an optimal 2-dimensional projection that

yields approximately the same distances as the input similarites. This however needs future

work, as it may place highly similar axes too close to each other.

4.6.2.3 Outlier- or Cluster-based Color Coding

An optional additional function for the visualization is to use color coding of the objects accord-

ing to a clustering or outlier detection result. Since our 3DPC-tree interactive visualization is

implemented using the ELKI framework [Ach+11; Ach+12], a wide variety of such algorithms

comes with it, such as specialized algorithms for high-dimensional data (e.g., SOD [Kri+09b],

COP [Kri+12], or subspace clustering algorithms [Agg+99; AY00; Böh+04b; Böh+04a; Ach+06a;

Ach+08]) but also many standard, not specialized, algorithms.

Using color-codes of some algorithm result in the visualization is useful for example to facilitate

a convenient analysis of the behavior of the algorithm.
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Figure 4.17: Axis layout for cars data set.

Figure 4.18: 3DPC-tree plot of Haralick features for 10692 images from ALOI, ordered by the

HiCS measure.
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Figure 4.19: Degenerate k-means result on Haralick vectors.

4.6.3 Visualization Examples

In this section, we demonstrate this novel visualization technique and its applicability to visu-

alizing high-dimensional data sets and data mining results. Within the software tool, the view

can be customized by selecting di�erent arrangement measures as discussed before, and can

be rotated and zoomed using the mouse. By using OpenGL accelerated graphics, we obtain a

reasonable visualization speed even for large data sets (for even larger data sets, sampling may

be necessary, but will also be expedient to get a usable visualization).

As an example data set analysis, Figure 4.18 visualizes Haralick [HSD73] texture features for

10692 images from the ALOI image collection [GBS05]. The color coding in this image cor-

responds to the object labels. Clearly there is some redundancy in these features, that can

be intuitively seen in this visualization. Dimensions in this image were aligned using the

HiCS [KMB12] measure. For a full 3D impression, rotation of course is required, which cannot

be reproduced in printed media.

Visualization is an important control technique. For example, naïvely running k-means [For65]

on this data set will yield a result that at �rst might seem to have worked. However, when

visualized as in Figure 4.19, it becomes visible that the result is strict in both the attributes

“Variance” and “SumAverage” – and in fact a one-dimensional partitioning of the data set. This

of course is caused by the di�erent scales of the axes. Yet, k-means itself does not o�er such a

control functionality.
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(a) Default linear arrangement

(b) 3DPC-tree plot

Figure 4.20: Sloan SDSS quasar data set.

Figure 4.20 visualizes the Sloan Digital Sky Survey quasar data set
5
. The �rst plot visualizes

the classic parallel coordinates view, the second plot displays the 3DPC-tree using covariance

similarity. Colors are obtained by running COP outlier detection [Kri+12] with expected outlier

rate 0.0001, and the colorization thresholds 90% (red) and 99% (yellow) outlier probability. The

3DPC-tree visualization both shows the important correlations in the data set centered around

the near-infrared J-band and X-ray attributes, and the complex overall structure of the data

set. The peaks visible in the traditional parallel plot come from many attributes in pairs of

magnitude and error. In the 3DPC-tree plot, the error attributes are on the margin and often

connected only to the corresponding band attribute. With a similarity threshold, they could be

pruned from the visualization altogether.

5http://astrostatistics.psu.edu/datasets/SDSS_quasar.html

http://astrostatistics.psu.edu/datasets/SDSS_quasar.html




5 Improving Local Outlier Detection

Various methods to improve local outlier detection have been proposed over time (an overview

of LOF variations is given in Section 3.3). Yet, these variations are largely algorithmically driven,

by proposing and evaluating yet another formula, but without �rst trying to get a deeper under-

standing of the underlying mechanisms. We will �rst analyze LOF and some basic variations;

then connect this to statistical kernel density estimation. Secondly, we inspect methods in-

spired by LOF for high-dimensional data. Then we will analyze the statistical meaning of the

resulting outlier scores and �nally derive a novel score-oriented evaluation method.

5.1 Improving the Robustness of the Local Outlier Factor

This section expands on ideas and concepts that were initially published as part of the outlier

detection algorithm LoOP in:

H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. “LoOP: Local Outlier Probabili-

ties”. In: Proceedings of the 18th ACM Conference on Information and Knowledge Man-
agement (CIKM), Hong Kong, China. 2009, pp. 1649–1652. doi: 10.1145/1645953.

1646195

LOF [Bre+00] is one of the most cited “density-based” outlier detection algorithms (for details,

see the introduction in Section 3.2). Yet it is also distance-based, since the density estimation in

LOF is based on the inverse of the distance. At the heart of LOF, the local reachability density

is estimated using Equation 3.6:

lrdk(p) = 1
/ (

meano∈Nk(p) reach-distk(p← o)
)
.

I.e. the local density is estimated as the inverse of the mean local reachability distance. An

occasionally overlooked detail (see [SZK12] and Chapter 6 for examples) of the formula is the

reachability distance function, which is a slight misnomer, because it mathematically is not a

distance function (as it is asymmetric) but a hybrid of the distance of the two objects o and p
and the “core size” of the neighbor object o.

From the local densities, the outlier factor is then obtained by computing the quotient of the

arithmetic mean density of the neighbors with the objects own density – or, intuitively, by

http://dx.doi.org/10.1145/1645953.1646195
http://dx.doi.org/10.1145/1645953.1646195
http://dx.doi.org/10.1145/1645953.1646195
http://dx.doi.org/10.1145/1645953.1646195
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comparing the expected to the actual density:

LOFk(o) = meano∈Nk(p)
lrdk(o)

lrdk(p)
≡

meano∈Nk(p) lrdk(o)

lrdk(p)
.

5.1.1 The Stabilization E�ect of the Reachability Distance

The reachability distance of LOF, which emphasizes the relationship of this method to the clus-

tering algorithms DBSCAN [Est+96] and OPTICS [Ank+99], is de�ned as

reach-distk(p← o) = max {k-dist(o), dist(o, p)}

which can be rewritten to a case distinction:

reach-distk(p← o) =

{
dist(o, p) dist(o, p) > k-dist(o)

k-dist(o) otherwise

This rewrite may seem pathetic at �rst, but it helps understanding the role of the reachability

distance function: each objects p within the k nearest neighbors (called “core of o” in DBSCAN

clustering) is treated the same way, while objects outside of the core – potential outliers – are

given their true distance.

The consequences of using the reachability distance instead of the regular distance do not show

up immediately: at �rst this function appears to (arti�cially) increase distances within the data

set. However, the main e�ect is to smoothen out the di�erence between nearby objects. For

example, if two objects p1 and p2 have many neighbors oi in common, and both are in the cores

of the oi, then lrdk(p1)/lrdk(p2) ≈ 1.

On a formal level, it can trivially be shown that if Nk(p1) = Nk(p2) =: N ′ and

∀o∈N ′ dist(o, p1) ≤ k-dist(o) ∧ dist(o, p2) ≤ k-dist(o)

then lrdk(p1) = lrdk(p2), even if we only have approximately the same distances dist(o, p1) ≈
dist(o, p2). For areas of approximately uniform density, the use of reach-dist yields more stable

LOF values closer to 1. Note that for an outlier p we will usually have dist(o, p) > k-dist(o)
for most neighbors o; and thus the lrd values will not change much. Only when other outliers

are used as reference objects the lrd will be a�ected.

For comparison, we replace the lrd function with the following simpli�cation to obtain an al-

gorithm denoted as Simpli�ed-LOF in [SZK12] and LOF′ in [CF03]:

simpli�ed-lrdk(p) = 1
/ (

meano∈Nk(p) dist(p, o)
)

Simpli�ed-LOFk(o) =
(
meano∈Nk(p) simpli�ed-lrdk(o)

) /
simpli�ed-lrdk(p)
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(a) LOF (using reachability distances) (b) Simpli�ed-LOF (using direct distances)
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Figure 5.1: Stabilization on pseudo uniform data produced by Halton sequences.

The stabilization e�ect is visualized in Figure 5.1a (for LOF) and Figure 5.1b (Simpli�ed-LOF)

along with a histogram of the resulting outlier scores in Figure 5.1d. The data set is generated

using Halton sequences [Hal64], low discrepancy pseudo-random sequences that appear to be

uniform although in fact they are too evenly distributed for true uniform data. It can be seen

that Simpli�ed-LOF scores in particular have higher variance on this data set. The reduced

variance of LOF on evenly distributed data is expected to make true outliers more pronounced,

and reduce the number of false positives due to �uctuations inside a cluster. In the following

sections, we will discuss two approaches for further stabilizing the results of LOF, by on one

hand varying the function used for averaging values, and on the other hand by choosing a

di�erent local density estimation.
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5.1.2 Stabilization with Di�erent Averages

Instead of using the arithmetic mean in the local reachability density, we can plug in a di�erent

statistic. In the following, we will be focusing on the method called Simpli�ed-LOF above.

The reason is that both the reachability distance and alternate averages have the same goal:

stabilizing the results.

The method LoOP [Kri+09a] is a LOF variation which uses a distance estimation motivated by

a normal distribution and titled “probabilistic set distance”. Its de�nition can be simpli�ed (the

parameter λ is redundant after computing the quotient, so we leave it out) to:

pdist(p) :=
√

meano∈Nk(p) dist(o, p)2
(5.1)

and is obviously the quadratic mean (see Section 2.1) distance. Root mean square (RMS) is a

statistic that has been used in various disciplines to measure the magnitude of an error and is

closely related to least squares estimation in statistics. Here, it can be interpreted as the distance

which contains the majority (but not necessary all) of the neighbors.
1

Putting this density

estimation into the de�nition of Simpli�ed-LOF (and subtracting 1) yields the raw scores of

LoOP, denoted as PLOF (for probabilistic LOF):

PLOFk(o) :=
meano∈Nk(p) pdistk(o)

pdistk(p)
− 1 (5.2)

In order to obtain the �nal LoOP score, an additional score normalization step is needed, which

we will discuss later in Section 5.3.2.2 (Equation 5.7). In the following, we will use the term

Simpli�ed-LOF with RMSD to refer to Simpli�ed-LOF using pdist (i.e. PLOF + 1).

The e�ect of using RMS distance estimation is best described as giving the nearby neighbors a

lower weight, while emphasizing far away neighbors. However, at least for uniform data such

as the Halton sequence data, this makes virtually no di�erence compared to Simpli�ed-LOF

(compare Figure 5.1c to Figure 5.1b). The reachability distance of the original LOF algorithm

clearly achieves the desired result better, but we will also see results on real data sets later.

In general, any kind of mean can be used – geometric, harmonic, trimmed mean, power means,

median – but one cannot expect a signi�cantly di�erent performance. After all, all means try

to estimate the same kind of value, a kind of “typical” distance. There are two things why a

more robust mean might (surprisingly) not improve outlier detection results: First of all, we

are particularly interested in the outliers. We do not want to remove them from the data set,

but to identify them. A robust mean that removes the in�uence of outliers can make the de-

tection harder. Secondly, we are not working with the data coordinates here, but with the

distances between data points. The distribution of distances if often much more complex than

the distribution of points. With increasing dimensionality – due to the “curse of dimensional-

ity” discussed in Chapter 4 – distances become more and more similar, and we might need to

rely on subtle di�erences that must not be smoothened out by statistics.

1
Compare to the “68–95–99.7 rule”, Section 1.2.



5.1 Improving the Robustness of the Local Outlier Factor 61

We can, however, also reinterpret the reachability distance of LOF di�erently. The local reach-

ability density (Equation 3.6) can trivially be rewritten to the harmonic mean:

lrdk(p) = |Nk(p)|
/ ∑

o∈Nk(p)

reach-distk(p← o)

= harmonic-meano∈Nk(p)1
/
reach-distk(p← o)

where 1/reach-distk(p ← o) is a density estimation. The harmonic mean was not an inten-

tional choice,
2

but it is a consequence of using the arithmetic mean distance as presented in

Equation 3.6 and [Bre+00]. This rewritten form o�ers an interesting insight into the behaviour

of LOF, in particular by connecting it to yet another well known concept: kernel density esti-

mation (see Section 2.3). Using this interpretation, we can abstract the formula to the general

pattern of kernel density estimation:

local-densityneighborhood(p) = some-meano∈neighborhood(p)some-densityo(p).

5.1.3 Local Outliers Using Kernel Density Estimation

Contents of this section have since been published in:

E. Schubert, A. Zimek, and H.-P. Kriegel. “Generalized Outlier Detection with Flexible

Kernel Density Estimates”. In: Proceedings of the 14th SIAM International Conference
on Data Mining (SDM), Philadelphia, PA. 2014

It is not very surprising that many of the methods discussed here are using some kind of density

estimation. This relationship has already been mentioned in Section 3.1. We will now try to

analyze the density estimations of LOF and Simpli�ed-LOF as a variant of kernel density esti-

mation (KDE). The �rst thing to note is that both use a di�erent mean than KDE: The harmonic

mean (whch is the power mean M−1) is said to emphasize small values (densities) and reduce

the in�uence of large values (densities). From the point of view of kernel density estimation,

the arithmetic mean would appear to be much more appropriate. However, it may indeed be a

desired property to lessen the in�uence of rare high densities, and to take low density in�uences

more into account.

Where LOF and Simpli�ed-LOF di�er more importantly are the kernel-like
3

function they use:

for Simpli�ed-LOF, the kernel-like function used is 1/dist(x, xi) while LOF uses 1/reach-dist(x←
xi). In Figure 5.2 we visualize these kernel functions for k-dist(xi) = 1. This �gure visualizes

why LOF produces more stable results than Simpli�ed-LOF: it does not allow close objects (as

in clusters) to have a strong e�ect on the density estimation by clipping the kernel at a certain

height. Local Outlier Probabilites (LoOP) [Kri+09a] when rewritten the same way yields the

M−2 power mean and the same kernel as Simpli�ed-LOF; which explains why it often performs

2
As discussed with one of the authors of LOF [Bre+00]

3
These functions are not proper kernel functions, because they do not have the property

∫∞
−∞K(x) dx = 1!
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more similar to Simpli�ed-LOF than LOF. The Local Density Factor (LDF) [LLP07] is motivated

from kernel density estimation, and thus uses the arithmetic mean, but to mimic LOF by using

a modi�ed Gaussian kernel which is clipped to the density value at the k-dist. This, however,

only indicates that the mechanisms of LOF were not well understood yet, by not having the

kernel interpretation introduced above.

In Figure 5.2 we visualize these kernel-like functions to explain our concerns. In Figure 5.2a we

plot the unclipped functions, i.e. Simpli�ed-LOF and the Gaussian kernel. Figure 5.2b visual-

izes the kernel-like functions after clipping them at a maximum height of K(1). For the LOF

function, the clipping is expected to be bene�cial, as it avoids the extreme values that would

occur close to 0. For LDF however – which uses a modi�ed Gaussian kernel – this argument

does not hold. Not only is the Gaussian kernel �nite, it also already has a �at top that does not

discriminate small distances much anyway. Figure 5.2c tries to compare the four kernels with

each other by adding a constant scaling factor that does not change relative densities. It can

be seen that in the range of [0.75; 1.5] the kernels are all very similar, whereas close to 0, the

Simpli�ed-LOF kernel is substantially di�erent, not necessarily for the better.

From the theoretical background of kernel density estimation, we should use a di�erent rescal-

ing: Kernel functions like the Gaussian kernel should have a unit integral of

∫∞
−∞K(x) dx = 1.

However, since the integrals of the LOF and Simpli�ed-LOF functions are in�nite,∫
1

|x|
dx = sgnx log x −→x→{−∞,−0,+0,+∞} ±∞

we need to truncate them arti�cially to obtain a �nite scaling factor. For Figure 5.2d, we assumed

a maximum distance of 10 and for Simpli�ed-LOF additionally a minimum distance of 1/10.

Intuitively, this means assuming the 1-nearest neighbor is at least 1/10 the distance of the k-

nearest neighbor, and the reverse k-nearest neighbor is at most 10 times the distance. For the

LDF kernel, we can actually restore the unit integral for a �xed k-dist. From Figure 5.2d we

can see that LOF puts the most emphasis on the long tail, Simpli�ed-LOF most weight on close

neighbors and LDF does not di�er substantially from using the real Gaussian kernel.

In Chapter 9 we will be experimenting with application speci�c outlier detectors that make

explicit use of kernel density estimation.
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Figure 5.2: Simpli�ed-LOF, LOF, and LDF kernel-like functions in comparison to the regular

Gaussian kernel.
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5.2 Local Outlier Detection in Higher Dimensions

The previously discussed methods do not work too well in high-dimensional data sets. Chap-

ter 4 gives an overview of the reasons why the approaches that work well in 2 to 10 dimensions

start falling apart in data sets of much higher (intrinsic) dimensionality.

In the following, we will discuss two methods that were developed speci�cally to address chal-

lenges of outlier detection in high-dimensional data. But as highlighted in [ZSK12a], this re-

mains an open research domain with numerous unsolved challenges.

5.2.1 Detecting Local Outliers in Axis Parallel Subspaces: SOD

The method outlined in this section was published as:

H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. “Outlier Detection in Axis-Parallel

Subspaces of High Dimensional Data”. In: Proceedings of the 13th Paci�c-Asia Confer-
ence on Knowledge Discovery and Data Mining (PAKDD), Bangkok, Thailand. 2009,

pp. 831–838. doi: 10.1007/978-3-642-01307-2_86

The method is based on an idea of locality inspired by LOF. Each object o is compared to its

local neighbors, but SOD does not employ a simple distance function for �nding neighbors, and

does not use a density-based score. Since distance functions lose contrast in high-dimensional

data, SOD uses the notion of shared-nearest neighbor similarity [JP73] which was shown to be

more robust in high-dimensional data (see Chapter 4 and [Hou+10]) to obtain a reference set

N(o) for each object.

This reference set N(o) of object o is then analyzed to compute a local subspace. Instead of

searching through all 2d possible subspaces, each attribute is independently compared to the

total variance. De�ne total variance and variance in attribute i as:

µN := meanp∈N p

Var(N) := meanp∈N

d∑
i=1

|pi − µNi|2

Vari(N) := meanp∈N |pi − µNi|2

Then attribute i is considered relevant for outlier detection, if it has a variance below a thresh-

old. Attributes are selected by constructing a weight vector ω by:

ωi :=

{
1 i� Vari(N(o)) < α 1

d
Var(N(o))

0 otherwise.

(5.3)

The threshold parameter α is relative to the expected variance
1
d
Var(N) if the total variance

were distributed equally on all dimensions.

http://dx.doi.org/10.1007/978-3-642-01307-2_86
http://dx.doi.org/10.1007/978-3-642-01307-2_86
http://dx.doi.org/10.1007/978-3-642-01307-2_86
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Figure 5.3: Outlier detection in local subspace projections via SOD. The outlier (red) becomes

more pronounced when projected to the relevant attribute only.

The basic idea of subspaces in SOD is visualized in Figure 5.3. Axes of high variance are likely

not useful for outlier detection (but represent the in-cluster position), while axes with a low

variance will cluster points when projected to this subspace. Within this subspace, the distances

are more useful to measure the deviation from the cluster.

While this threshold-based approach is a rather simple heuristic, the parameter α is not too

hard to choose (α = 1.1 appeared to work on a large variety of data sets). Nevertheless, there

is clearly room for improving this algorithm with more clever heuristics (some of which will

be discussed in Section 5.2.2). But as discussed in Chapter 4 we do actually not need to get

the subspace perfectly right, but we only need to improve the signal-to-noise ratio enough to

measure usable deviations.

The projected deviation of o from the mean µN(o) can then be computed by using the Euclidean

distance weighted with ω, and the �nal SOD score is then computed by division through the

number of dimensions retained (i.e. ωi = 1):
4

distSOD(o) :=

√√√√ d∑
i=0

ωi|oi, µN(o),i|2

SOD(o) :=
distSOD(o)

||ω||1

SOD does not only produce an outlier score, but the ωi values also indicate in which subspace

the object was found to be an outlier. This information can be valuable for analyzing the outliers

in detail.

4
In hindsight, a more appropriate normalization would have been ||ω||2, but in Section 5.3 much more advanced

normalizations will be discussed.
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5.2.2 Detecting Outliers in Arbitrarily Oriented Subspaces: COP

The method outlined in this section was published as:

H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. “Outlier Detection in Arbitrarily

Oriented Subspaces”. In: Proceedings of the 12th IEEE International Conference on Data
Mining (ICDM), Brussels, Belgium. 2012, pp. 379–388. doi: 10.1109/ICDM.2012.21

Real data will often have clusters that are not restricted to axis-parallel subspaces. A common

idea to detect such arbitrarily oriented clusters is to compute principal component analysis

(PCA) on a local subset of the data, as done for example by the methods ORCLUS [AY00],

4C [Böh+04b], HiCO [Ach+06c] and ERiC [Ach+07]. Achtert et al. [Ach+06b] discuss the ben-

e�ts of PCA for analyzing correlation clusters. A modi�ed variant of PCA is introduced in

[Kri+08] for use in correlation clustering that is less susceptible to outliers by reducing the

weight of far away points and trying di�erent k. See the survey by Kriegel et al. [KKZ09] for

an in-depth overview of correlation clustering methods.

In order to solve the same problems in outlier detection – for example detecting outliers close

to an arbitrarily oriented subspace cluster – a similar approach based on PCA can be em-

ployed. While this brings along the same bootstrapping problems that still plague many other

correlation-based methods – in order to �nd the proper neighborhood in high-dimensional

data, one needs to �nd the correlations, but in order to �nd the correlation one needs to already

have the proper neighborhood – there are good reasons to stick to the common best practice

of using the k nearest neighbors. Key bene�ts include that this initial neighborhood is usually

unbiased (due to symmetry of the query sphere), and using index structures it can often be

retrieved in reasonable computation time. Furthermore, the parameter k allows a good control

of computational cost.

The method COP does not rely on a prior cluster analysis (since in particular correlation clus-

tering itself is a rather computationally intensive task) but instead evaluates individual objects

one at a time. It also does not need the correlation models of the neighbors, but the score of

each object only depends on the neighbor set itself. It can therefore also be evaluated for single

candidate observations only, if these have been preselected by a di�erent algorithm.

The COP score is computed by �rst determining the neighbor set N(p), then performing prin-

cipal component analysis (PCA). For PCA, the covariance matrix Σ of the neighborhood N(p)
is computed and then decomposed into a rotational matrix V and a diagonal scaling matrix Λ
such that V ΛV −1 = Σ. Each column vi of the matrix V corresponds to an eigenvector and

entry λi of the diagonal matrix Λ to an eigenvalue of the matrix Σ. Intuitively, the eigenvec-

tors point into the principal directions of the data set, and the associated eigenvalues give the

variance on this axis. We build another diagonal matrix Ω with ωi := 1/
√
λi, which obviously

satis�es ΩΩ = Λ−1
. Using Ω = ΩT

and V −1 = V T
, we can decompose Σ−1

as follows:

Σ−1 =
(
V ΛV −1

)−1
= V Λ−1V −1 = V ΩΩTV T = (ΩV T )T (ΩV T )

http://dx.doi.org/10.1109/ICDM.2012.21
http://dx.doi.org/10.1109/ICDM.2012.21
http://dx.doi.org/10.1109/ICDM.2012.21
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By mapping x 7→ (ΩV T )(x− µ) we can transform the original data so that the dimensions are

pairwise uncorrelated and have zero mean and unit variance. Furthermore, the dimensions are

ordered by their original variance. By only retaining the last d′ dimensions of this space, we

can measure the deviations within the subspace orthogonal to the assumed cluster (modeled

by the �rst d − d′ dimensions). This is somewhat the opposite of the common approach for

(global) dimensionality reduction, where one would focus on the �rst eigenvectors. But for

outlier detection, we do not want to represent the structure of the (assumed) cluster, but instead

measure the deviation from the normal. Furthermore, when doing this on a global level, the user

can experimentally choose the dimensionality d′ for optimal results. However, in the context of

correlation clustering and correlation outliers, we must assume that di�erent parts of the data

set require di�erent dimensionality. Therefore, we need an automatic method for choosing the

dimensionality.

Heuristics for Choosing a Subspace Dimensionality: In the correlation clustering algo-

rithm ERiC [Ach+07], the authors suggest to use a relative variance threshold α ∈]0, 1[ and

compute d′ such that it satis�es the condition

d′percentage := min
δ

{
δ

∣∣∣∣∣
δ∑
i=1

λi ≥ α
d∑
i=1

λi

}
.

Intuitively, this states that the dimensionality should explain the relative share α of the total

variance. The authors reported good results with α = 85%.

While SOD [Kri+12] looked at the original data dimensions only, it essentially faced the same

problem of choosing a subspace dimensionality. The heuristic proposed in Equation 5.3 can

trivially be rewritten for use in correlation clustering and correlation outlier detection:

d′weak := max
δ

{
δ
∣∣λδ ≥ αweak meandi=1 λi

}
This heuristic is based on the assumption that the variances of all dimensions should be approx-

imately equal, and selects all dimensions that have αweak times the average variance. For SOD

a threshold of αweak = 1.1 worked well, but for correlation outlier detection much lower values

such as αweak = 0.95 performed much better. There is a simple reason for this: while SOD

used axis parallel subspaces – without changing the orientation – PCA will actively rotate the

data to maximize the variance in the �rst dimensions, and minimize it in the later dimensions.

This way, PCA actually maximizes the di�erences between the projected variances. For small

sample sizes, there exist natural di�erences in variance, and PCA will unfortunately emphasize

these e�ects. To show this e�ect, we generated uniform U [0; 1] data of 20 dimensions and up

to 10000 samples. We computed the standard deviations
5

before and after applying PCA. Fig-

ure 5.4 visualizes the mean standard deviation (which is not a�ected by PCA, and the expected

value for a uniform distribution is

√
1/12. ≈ 0.289), the minimum and maximum standard

5
Standard deviations are easier to read than variances, but obviously they are equivalent to variance.
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Figure 5.4: PCA emphasizes the di�erences in variance of the axes.

deviation and the standard deviation of the standard deviations before and after applying PCA

to this (uniform) data set. In Figure 5.4c we display the quotient of maximum and minimum

standard deviation. By design, PCA maximizes this di�erence. At around 1000 samples (for 20

dimensional data), the results stabilize, which aligns with the rule of thumb of needing 3 · d2

samples for PCA.

Furthermore, when for example the data set contains one strong correlation, it can easily hap-

pen that the �rst dimension already explains 85% of the variance, and both of these heuristics

would only choose this one, maybe even global, correlation. In order to take this into account,

instead of comparing each eigenvalue to the total mean, we can compare it to the remaining

dimensions only:

d′relative := max
δ

{
δ
∣∣λδ ≥ αrelative meandi=δ λi

}
This threshold needs to be chosen larger than 1: since the eigenvalues are ordered, the largest

can obviously not be smaller than the mean. In order to eliminate this parameter, we can also

curry this threshold and choose the dimension with the largest coe�cient, based on the idea

that when going from relevant to irrelevant dimensions, the relative drop should be maximal:

d′signi�cant := argmaxδ λδ/meandi=δ λi

This last heuristic, however, is again easily distracted by a strong global correlation (which

would cause the largest decrease to be at δ = 1). Instead of �xing a dimensionality, we can

also test all d dimensionalities and see when the result was best. This however meant we can

no longer use the same scoring measure that was used for example in SOD (see Section 5.2.1):

distances measured at di�erent dimensionalities are not comparable. Therefore, we need to

normalize the deviations in a way that makes the deviations comparable even when they have

di�erent dimensionality.

Distribution of Distances: In order to obtain a comparable value for di�erent dimension-

alities, we need to look at the expected deviations in di�erent dimensionalities. Let us ini-

tially assume a very basic case, in which the data is approximately standard normal distributed
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Xi ∼ N (0; 1) and i.i.d. in each dimension i. The Euclidean norm of d′ such random variables

is then

√∑d′

i=1 x
2
i . If we remove the square root and thus look at the squared Euclidean norm,

we immediately get the chi squared distribution with d′ degrees of freedom by de�nition:

d′∑
i=1

X2
i ∼ χ2(d′) if ∀iXi ∼ N (0; 1).

The actual Euclidean norms then of course are χ(d′) distributed, but we will continue to use the

squared norms instead. Chi squared distributions are well understood, since they are a special

case of the Gamma distribution: χ2(d′) ∼ Γ (d′/2, 2).

Assuming that our data were actually not normally distributed around the mean, we can try to

improve results by estimating them from the data instead of using the expected value d′. There

exists no known closed form solution for a maximum likelihood estimation of the parameters of

the Gamma distribution; however the function is numerically stable and the parameters can be

found for example via Newton’s method or the algorithm described by Choi and Wette [CW69]

which we implemented for our experiments. The results using estimated parameters were how-

ever not substantially di�erent from the naïve approach solely based on the dimensionalities.

We did not yet exploit the robust statistics based on the median average deviation (MAD) and

L-Moments (LMM) that we used in later experiments.

Assuming that the squared deviations from the mean were thus Γ(_, _) distributed, we can now

compute the cumulative density function (cdf), which yields the quantile at which the potential

outlier observation lies. A low percentile indicates that the observation is central, while a high

value indicates it has an unusually large deviation. But most importantly, these values now are

on a probabilistic scale and are comparable across di�erent dimensionalities.

This allows us to iterate over the di�erent dimensions and obtain the correlation outlier score

(COS) as the maximum quantile (using either χ2
or Γ distributions):

COS(o) := max
δ

cdfΓ(_,_)

(
dδ(x− µ)2

)
. (5.4)

In contrast to most earlier methods, this score has a strong probabilistic interpretation. How-

ever, since this does not align with the intuitive interpretation for end users, COP [Kri+12]

added an additional normalization to a scale that is easier to interpret. Details on this will

follow in the next Section 5.3 with Equation 5.9.
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5.3 Interpreting and Unifying Outlier Scores

This section discusses material based on the following publications in a more re�ned way:

H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. “Interpreting and Unifying Outlier

Scores”. In: Proceedings of the 11th SIAM International Conference on Data Mining
(SDM), Mesa, AZ. 2011, pp. 13–24

H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. “Outlier Detection in Arbitrarily

Oriented Subspaces”. In: Proceedings of the 12th IEEE International Conference on Data
Mining (ICDM), Brussels, Belgium. 2012, pp. 379–388. doi: 10.1109/ICDM.2012.21

An earlier attempt at producing an intuitively usable score can be found in:

H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. “LoOP: Local Outlier Probabili-

ties”. In: Proceedings of the 18th ACM Conference on Information and Knowledge Man-
agement (CIKM), Hong Kong, China. 2009, pp. 1649–1652. doi: 10.1145/1645953.

1646195

Since our intuition for normalizing outlier scores is motivated by probabilities, the desire for

calibrated outlier scores is self-evident, because the concept of calibration has been used to as-

sess the reliability of probability estimates or con�dence values in classi�cation. An optimally

calibrated prediction algorithm is expected to be correct in a portion x of all predictions that

are subject to a con�dence value of x [Bri50]. Obtaining more or less well calibrated probability

estimates has gained a lot of attention in the context of classi�cation (e.g. [Pla00; ZE01; ZE02;

Pie05]). Here, in the unsupervised context of outlier detection, we intend to use some form of

calibration to reconvert plain outlier scores into probability estimates to make them both easier

to understand and to improve algorithms that need to process the scores. In an unsupervised

setting, however, previous approaches cannot be pursued since one cannot learn or �t a map-

ping but has to assume certain properties for a certain outlier algorithm. However, we can try

to assess typical distributions of outlier scores and propose suitable scaling methods to convert

outlier scores into probability estimates though not optimized and thus not perfectly calibrated

for each data set. In general, the pure concept of calibration is questionable anyway as discussed

by [MW77; DF83; Win96]. For example, a weather forecaster A is optimally calibrated in the

long run if he announces every day the same chance of precipitation for an area, where that

is the historical relative frequency of precipitation. His poorly calibrated colleague B, whose

decisions are not strongly correlated with his announced “chance of rain” but e.g. overcon�dent

for higher probabilities, may actually be of better help for judging whether or not it will be rain-

ing tomorrow. Indeed, in the context of classi�cation, calibration has not always been regarded

as a value in itself. In [DP96], the authors explicate (regarding the naïve Bayesian classi�er),

that correct classi�cation is possible albeit based on largely erroneous probability estimates.

The di�erence between ranking and calibration of scores is also highlighted in [ZE02].

Here, however, our goal is not perfect calibration but we have two objectives that will show

to be somewhat con�icting: on one hand, we want to obtain scores that allow improved rea-

http://siam.omniBOOKsonline.com/data/papers/018.pdf
http://siam.omniBOOKsonline.com/data/papers/018.pdf
http://dx.doi.org/10.1109/ICDM.2012.21
http://dx.doi.org/10.1109/ICDM.2012.21
http://dx.doi.org/10.1109/ICDM.2012.21
http://dx.doi.org/10.1145/1645953.1646195
http://dx.doi.org/10.1145/1645953.1646195
http://dx.doi.org/10.1145/1645953.1646195
http://dx.doi.org/10.1145/1645953.1646195
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soning when processing multiple scores for example in an ensemble. On the other hand, we

also want improved interpretability of scores, for which an improved contrast between outlier

scores (i.e., high outlier probability) and inlier scores (i.e., low outlier probability) is desired. The

latter relates to the concept of re�nement or sharpness, i.e., the forecast probabilities should be

concentrated near 1 and near 0 (still being correlated with the actual occurrence of the forecast

event) [San67; DF83]. It should be noted, though, that there may be cases of intermediate out-

lier probabilities. If these are indeed borderline cases requiring closer inspection, to assign an

intermediate probability estimate to these data objects may be desirable. In the classi�cation

area, abstaining classi�ers are adequate in such cases (see e.g. [Pie05]). In the outlier detection

area, this problem has not found much attention in recent methods but is the genuine merit of

the original statistical approaches [BL94; Haw80].

5.3.1 Interpreting Outlier Scores

Outlier scores provided by di�erent outlier models di�er widely in their meaning, range, and

contrast between di�erent outlier models and, hence, are not easily comparable or interpretable.

Histograms of outlier scores for a toy data set and multiple algorithms can be seen in Figure 5.5.

The Gaussian model scores (Figure 5.5b) were at least somewhat interpretable, but the scores

computed by newer algorithms have an increasingly meaningless score: the output of the scor-

ing version of DB-Outlier ([KN98], see Equation 3.1) is naturally bounded to the domain [0; 1]
(representing the relative share of neighbors in the given ε radius), but will not use the whole

value range. Reference-based outlier [PZG06] includes a naïve rescaling to ensure the maximum

possible score is 1. kNN-Outlier [RRS00] no longer has an upper bound on the outlier score,

and the values are highly data set dependent. Approaches from the LOF family (Figure 5.5e)

are distributed around a mean value that is considered normal: for LOF [Bre+00] the expected

value for inliers is 1, for LDOF [ZHJ09] anything between 0.5 and 1 must be considered inlier,

while LOCI [Pap+03] scores again should be centered around 1, but usually will be higher than

this, since the maximum deviation is used. ABOD [KSZ08] uses an inverted score – large values

are the most central objects, while very small values are outliers.

This trend towards less meaningful outlier scores has reasons rooted in the way the algorithms

are both used and evaluated. Obviously, in using outlier detection, the focus is on the outlier

objects. Once we have found all outliers, the scores of the inliers are usually considered to be of

little interest. There exists a whole array of algorithms to only �nd the top-n outliers for di�er-

ent outlier scores. HilOut [AP05] uses Hilbert curves to compute weighted kNN-Outlier scores

(essentially the same approach can also be used for �nding the top-n kNN-Outlier results). Jin

et al. [JTH01] discuss a similar strategy for pruning LOF inliers based on micro-clusters in or-

der to �nd the top-n LOF outliers only. Similarly on the evaluation side: often outlier detection

methods are only evaluated with respect to their accuracy in �nding the top-n known outliers,

and also the very popular ROC AUC measure only considers the ranking, not the actual values

of the scores. See Section 5.4 for the discussion of evaluation methods and a novel evaluation

method that focuses on evaluating the scores.
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Figure 5.5: Outlier scores for several recent methods. For the data depicted in (a), the histograms

(b)–(f) show bins of similar outlier scores of di�erent algorithms along the x-axis and

the relative number of objects in each bin along the y-axis.

The motivation for normalizing outlier scores to a “meaningful” scale arises from several use

cases. First of all, in order to be able to combine the output of multiple methods, their scores

must be on the same scale for the combination to be meaningful (see Chapter 7 for ensembles

and the associated challenges). The existing methods for outlier ensembles mostly neglected

this fact (see Section 3.6). Secondly, and much simpler, is the visualization use case. For a

visualization such as seen in Figure 5.1a, a good visual contrast is needed. In this particular

�gure, we chose an empirical �xed scaling based on the observation that an outlier score of 1
or below for LOF does not need to be visually indicated (since they are detected as inliers):

scaled(x) :=


0 x < 1

x− 1 1 ≤ x ∧ x ≤ 2

1 x > 2

(5.5)

With a naïve linear scaling (mapping the minimum outlier score to 0 and the maximum to 1)

the result would be much harder to interpret, as can be seen in Figure 5.6a.

Yet, the scaling proposed in Equation 5.5 is also just another naïve heuristic, and the rescaled

scores are not much more “meaningful” than before. But when is a score better scaled than

another? We identi�ed the following desirable properties for a good outlier score:



5.3 Interpreting and Unifying Outlier Scores 73

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Halton2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Halton3

(a) LOF outlier scores, naïvely scaled (b) Figure 5.1a, repeated

Figure 5.6: Linear scaling compared to manually scaled outlier scores.

• Interpretable without context: the scores should have the same meaning independent of

the algorithm and its parameters or the data set dimensionality.

• Processable: the scores must be usable by computer programs for automatic analysis such

as visualization and combinations (e.g. ensembles, see Chapter 7).

• Intuitive: the scores should map to a human intuition of the numerical scale.

From these desired goals, we derive that it would be best to have scores that allow probabilistic

reasoning. A probabilistic score ranging [0; 1] that intuitively gives the likelihood that an object

is an outlier clearly should be interpretable without context, and should allow for example

reasoning with Bayesian statistics.

The desire of a probabilistic outlier score motivated the initial approaches for score normaliza-

tion in LoOP [Kri+09a] and the re�ned scaling heuristics proposed in [Kri+11]. The normal-

ization used in COP [Kri+12] is the most advanced variant of this idea, which will be detailed

after introducing the basic ideas �rst.

5.3.2 Unifying Outlier Scores

5.3.2.1 Unifying One-Dimensional Distributions

One-dimensional distributions are usually described using their probability density function

(PDF) or cumulative density function (CDF), where for continuous distributions the relationship

between these two simply is:

pdf(x) :=
d

dx
cdf(x) ⇔ cdf(x) =

∫ x

−∞
pdf(t)dt



74 5. Improving Local Outlier Detection

x
0.1
0.2
0.3

0.5
0.6
0.7
0.8
0.9
1

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

∫ x
t=−∞ pdf(t) = cdf(x)

(a) Normal distribution N [0, 1]

x0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.5 1 1.5 2 2.5 3 3.5 4
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Figure 5.7: Probability density function pdf (blue) and cumulative density function cdf (red).

The pdf and cdf for two typical distributions are shown in Figure 5.7. The probability densi-

ties are ensured to be only non-negative, but the pdf can assume maximum values above 1 for

distributions with a small variance, or have maximum values signi�cantly below 1 for distri-

butions with high variance. The cumulative density function behaves much nicer here: since

the pdf has a total area of 1 (by de�nition), the cumulative density will start at 0 for x→ −∞
and goes up to 1 for x → ∞. As such, the cumulative density function (which in contrast to

the pdf is also de�ned for non-continuous distributions) provides a much more uni�ed view

across di�erent distributions than the pdf . In particular, for any one-dimensional distribution,

we know that if cdf(x) = 0.01; then 1% of observations are expected to be smaller than x,

whereas if cdf(x) = 0.99, 1% of observations are expected to be larger or equal x. This is

already very close to the desired properties outlined in the previous subsection. It has the de-

sired value range, is well processable, and has a probabilistic interpretation, but it turns out that

this value is far from intuitive to use: the median of the distribution will by de�nition have a

score of 0.5: half of the observations are below and half of them are above. But intuitively, an

observation in the very center of the data should still have a value close to 0. For the normal

distribution, there exists a transformation of the cdf that has this property, which is known as

the (Gaussian) error function, and which can be de�ned as:

erf :=2 cdf
(
x
√

2
)
− 1 (5.6)

This transformation has the additional bene�t that the function can easily be clipped to only

the upper or lower half, or by using the absolute value to treat both extremes the same way. A

similar transformation could be applied to the Gamma distributions, but since this distribution

is not symmetric and the mean, median and mode no longer coincide it is not commonly used.

The Gaussian error function erf was a key inspiration for starting to investigate probabilistic

outlier scores. Even though it later turned out there are good reasons to actually not use erf , it

was proposed in the LOF variant LoOP [Kri+09a], and we will use this variant to introduce the

basic ideas.
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5.3.2.2 LoOP Probabilistic Score

The distribution of LOF scores observed in Figure 5.1d appears to the naïve user as “approxi-

mately normal distributed”. In fact there are many reasons why this does not hold: �rst of all, in

particular on real data, it becomes visibly positively skewed, whereas a true normal distribution

is supposed to be symmetric, and secondly there are no negative values – the score distribution

is bounded by 0. Nevertheless, for this early attempt we assumed that a normal distribution

would be a good enough approximation.

In LoOP [Kri+09a] the idea of using the erf (Equation 5.6) to map the fraction-based outlier score

to a “probabilistic score” was used the �rst time. The LOF-style outlier score PLOF (Equation 5.2)

was centered by assuming a �xed mean value of 1; then it was rescaled using 1/(λ · nPLOF)
where nPLOF is the observed standard deviation from 1, and λ is a user dependent scaling

factor with a suggested value of λ = 3. Formally,

nPLOF := λ

√
1

n

∑
oi∈D

PLOF(oi)2 = λM2 {PLOF(oi) | oi ∈ D}

This yields a distribution that can roughly be assumed normal distributed. Finally, values below

the mean are clipped to 0. The overall scaling function obtained this way is:

LoOP(o) := max

{
0, erf

(
PLOF(o)

nPLOF ·
√

2

)}
= max

{
0, 2 · cdf

(
PLOF(o)

λM2(PLOF(_))

)
− 1

}
(5.7)

which is an ad-hoc rescaling to get more desirable results, yet it was only an initial sketch of

the concept of a probabilistic outlier score. Since this method was published, we developed a

much deeper understanding of how scores are distributed, and how the scores can be made

comparable, which we will discuss in the next sections.

5.3.2.3 Outlier Score Unification

In “Interpreting and Unifying Outlier Scores” [Kri+11] we re�ned and extended the rescaling

approaches of LoOP to other score distributions and outlier detection models. The rescaling

function was split into two steps, the �rst step being the Regularization so that inlier scores

are close to 0, and outlier scores are � 0. The second step then is the actual Normalization
that maps the outlier scores to [0; 1]. For some algorithms, the �rst step is not needed, but

for example ABOD [KSZ08] has outlier scores where a value close to 0 indicates outlierness;

the histogram of ABOD scores in Figure 5.5f after appropriate rescaling becomes much more

regular, as can be seen in Figure 5.8a. We will, however, add a third step Interpretation to this,

as �rst used in [Kri+12], which maps the already probabilistic outlier scores to the �nal, user-

oriented score value. We also use a modi�ed statistical scaling approach here, which has a

stronger theoretical support and with improved statistical approaches.
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Along with discussing di�erent regularization and normalization functions, we will also check

whether they have the property of being ranking stable, which we de�ned as either of the

conditions below hold for a transformation TS of the outlier score S:

∀o1,o2 : S(o1) ≤ S(o2)⇒ TS(o1) ≤ TS(o2)

or alternatively: ∀o1,o2 : S(o1) ≤ S(o2)⇒ TS(o1) ≥ TS(o2)

Where the second version is for handling inverted scores. Mathematically, this is the non-strict

monotonicity criterion; we deliberately do not require strictness, since we do accept some loss

of contrast in information for inliers (where the ranking information is not interesting) if that

helps increasing the contrast for outliers.

5.3.2.4 Regularization Functions

Di�erent scores need di�erent transformations to become regular. In the following, we out-

line regularization procedures for di�erent classes of outlier scores. Note that most of these

regularization are no longer necessary when robust statistical scaling is later used. However,

logarithmic inversion for example will still improve results on ABOD substantially.

Baseline Regularization: The local outlier scores LOF, LDOF, and their variants are not yet

regular, since the expected value for non-outliers is not 0. In case of LOF and its variants, the

expected inlier value is baseLOF = 1. For LDOF the expected inlier score is baseLDOF = 1
2
.

The expected outlier score is� base in both cases. These scores can however be regularized

with a very simple transformation. Let baseS be the baseline (expected inlier value) of the

outlier score S. The idea for a regular transformation is to take the di�erence of the observed

value S(o) of an object o and the baseline value baseS . This transforms any interval [base,∞)
to the interval [0,∞). Since the considered scores may also produce scores that are smaller

than baseS indicating also inliers, we need some adjustment not to get negative scores after

transformation:

RegbaseSS (o) := max{0, S(o)− baseS}.

This regularization is ranking-stable:

S(o1) ≤ S(o2)⇔ S(o1)− baseS ≤ S(o2)− baseS

⇒ max{0, S(o1)− baseS} ≤ max{0, S(o2)− baseS}
⇔ RegbaseSS (o1) ≤ RegbaseSS (o2).

In other words, if o1 has a lower score than o2 which means o1 is less an outlier than o2 for LOF,

its variants and LDOF, then it cannot have a higher score after a baseline regularization. Note

that for S(o1) < S(o2) < baseS we lose information, since RegbaseSS (o1) = 0 = RegbaseSS (o2),

but this is intentional. It is also easy to see that this regularization does not enhance the contrast

between inlier and outlier scores.
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Figure 5.8: ABOD score regularization.

Linear Inversion In some outlier models, high scores are inliers. For example, if using the

density function of a Gaussian model, high density identi�es inliers, while a density close to

0 indicates outliers. To regularize such models, we need to invert them. For that purpose, we

simply take the di�erence between the observed score S(o) and the maximum possible or the

maximum observed score Smax.

ReglininvS (o) := Smax − S(o).

Since Smax ≥ S(o), this transformation is regular. Ranking-stability for inverted scores can

also easily be shown: S(o1) ≤ S(o2) ⇔ −S(o1) ≥ −S(o2) ⇔ ReglininvS (o1) ≥ ReglininvS (o2).

It is also easy to see that this regularization does not enhance the contrast between inlier and

outlier scoring.

Logarithmic Inversion A simple linear inversion as mentioned above is not appropriate for

algorithms with very low contrast such as ABOD. A more useful regularization for ABOD that

also addresses the enhancement of contrast between inliers and outliers uses the logarithm

function:

RegloginvS (o) := − log(S(o)/Smax).

Note that this regularization is de�ned only if S(o) > 0 for all objects o and Smax �nite. ABOD

is such a score that produces only positive values greater than zero; there is no upper bound

so we have to choose Smax from the observed scores or bound them to a baseline Sbase. Since

the logarithm is a monotone function, the logarithmic inversion is ranking-stable. As it can

be seen in Figure 5.8a, this regularization can signi�cantly increase the contrast (compare to

Figure 5.5f, repeated as Figure 5.8b).
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5.3.2.5 Normalization

Linear scaling: The simplest way of bringing outlier scores onto a normalized scale is to

apply a linear transformation such that the minimum (maximum) occurring score is mapped to

0 (1). A simple linear normalization can be obtained by

Normlinear
S (o) :=

S(o)− Smin
Smax − Smin

.

Note that, if S is a regular or regularized score, Smin = 0 can be used to simplify the formula.

Obviously, this normalization does not improve contrast or interpretability of the scores sig-

ni�cantly. Thus, we will next study possibilities to enhance the contrast between inliers and

outliers based on some exemplary statistical scaling methods, which will ultimately lead to

probabilistic interpretability of the uni�ed scores.

Statistical Scaling of Outlier Scores: Outlier scores usually are not equally distributed in

their value range but follow a much more complex distribution which is hard to grasp analyti-

cally. Even if we assume that our data is for example uniform or normal distributed, what is the

distribution of the distances, of the distance to the k nearest neighbor, the mean distance to all

kNN, and �nally of the quotient of these last two values? Then enhance this solution to more

than one mechanism, since we are interested in outliers generated by a di�erent mechanism

than the majority of the data set. In particular ratio distributions (and e.g. the ratio used in all

LOF variations will produce such a ratio distribution) are hard to work with analytically. In

many cases, the mean and other moments may no longer exist. For example in LOF, when we

have k duplicate points, the LOF of these points will become unde�ned (due to a division by 0),

cause other LOF values to become in�nite and thus the mean LOF may no longer exist.

Therefore, we have to resort to analyzing the resulting score distribution, without being able to

proof what the true distribution of the scores is supposed to be. On the up side, this also means

we do not have to make any assumptions on the input data for such a proof to hold. Note that

the linear scaling we discussed before can be interpreted as assuming a uniform distribution

of the outlier scores. In practice, the scores rarely will be uniform distributed, and the result-

ing normalization thus not be bene�cial either. Instead, we are interested in normalizations

based on other well-known statistical distributions, which better resemble the observed shape

of the score distribution, and whose parameters can be estimated from this data. In [Kri+11]

we discussed a number of such normalizations, albeit at a rather ad-hoc level. Therefore, we

want to elaborate and improve on this concept in this section, as well as provide a theoretical

background for reasoning with the normalized scores to further advance this contribution.

The previous work by Gao and Tan [GT06] can be seen as closely related. They used an

expectation-maximization (EM) style optimization to �t a mixture model or sigmoid function to

the data, whereas we try to �t di�erent classic distributions to the data. Since sigmoid functions

naturally occur as the cdf of some distributions such as the normal and logistic distributions,

one may argue that their work is a special case of our more general approach. However, there
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is a substantial di�erence in the goals when �tting the distributions: their aim was to rescale

scores to get a sharp contrast from 0 and 1 – producing an almost a binary decision – while we

aim at rescaling the scores to produce an almost uniform distribution. This di�erence results

from the semantics of the score that we want to achieve. Gao and Tan aimed immediately at

getting a clear binary decision of whether an object is an outlier or not, while we aim at getting

a score that allows reasoning also with intermediate values.

The key concept of this statistical normalization has been introduced at the beginning of this

section: the cumulative density function, cdf is the key ingredient to our approach. The cdf
is at the same time our target and our tool in this scaling. Ultimately, we want to estimate the
value of the cumulative density function of each object, so that the innermost objects have a value

of 0, objects at an average level have a value of .5 and objects that are extreme have a value of

1, just as the values of the cdf on a single-dimensional normal distribution would behave. Yet,

we are also going to use the cdf as our tool to achieve this, more precisely we will be using the

cdf of a distribution �tted to the outlier score distribution as best estimation of the true cdf .
By estimating the distributions of the outlier scores, we can then judge how usual or unusual

a particular score is. The resulting score is then not only a rescaled score, but it is in fact a cdf
estimate – a value that sits in the very heart of probability theory and allows the reuse of many

statistical arguments that were unavailable to be used with outlier scores before.

Since we cannot model the true distribution of the outlier scores analytically, we will instead

try to empirically �t a number of popular distributions to the observed data. However, since we

are in the context of outlier detection, we need to pay attention to the robustness of our �tting

methods. The early attempts we published in [Kri+11] did not yet take this into account, and

were much less successful in normalization than the approaches we will discuss here, both by

taking additional distributions into account as well as using more robust estimators.

Distributions that we used in our experiments include:

• Normal distribution N [µ;σ]
• Log-normal distribution LN [µ;σ] (with X ∼ LN [µ;σ]⇔ logX ∼ N [µ;σ])
• Shifted log-normal distribution LN [µ, σ] + λ
• Generalized normal distribution with an additional skew parameter (which also general-

izes the log-normal distribution) GNO[µ, σ, s]
• Gamma distribution Γ[k; θ] (which includes the χ2

distribution: χ2[ν] ∼ Γ[ν/2; 2])
• LogGamma again in a shifted variant X ∼ LΓ[k; θ;λ]⇔ log(X − λ) ∼ Γ[k; θ]
• Weibull distribution Weibull[λ, k]
• Gumbel distribution Gumbel[µ, β]
• Generalized Extreme Value (GEV) distribution, also known as Fisher–Tippett distribution,

which generalizes the Fréchet, Gumbel and reversed Weibull distributions GEV[µ, σ, ξ]
• Exponential distribution, including a shifted variant Exp[β, λ]
• Laplace or Double-Exponential distribution Laplace[µ, b]
• Exponentially modi�ed Gaussian distribution (a mixture of a Gaussian and an exponential

distribution): X = (Y + Z) ∼ ExG[µ, σ, λ]⇔ Y ∼ N [µ;σ] ∧ Z ∼ Exp[λ])
• Cauchy distribution Cauchy[x0, γ]
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• Logistic distribution L[µ, s]
• Generalized logistic distribution GLO[µ, α, k]
• log-Logistic distribution LL[α, β]
• Inverse Gaussian (Wald distribution) IG[µ, λ]
• Uniform distribution U [a, b]

Some distributions used elsewhere in this thesis were not used in this experiment because of

either having �nite support only – such as the beta distribution – or being discrete distributions

such as Poisson and Bernoulli. These distributions – as well as the many others we did not

experiment with – could however be included if desired, since our approach can be combined

with an arbitrary distribution where reasonably good parameter estimators are available.

For these distributions we evaluated a number of parameter estimation techniques, with special

attention to robust estimators. For example for the normal distribution, the usual maximum

likelihood estimation (MLE) via µ̂ = mean(X) and σ̂2 = meanx∈X(x − µ̂)2
is known to be

sensitive to values from outliers. Among the estimators we experimented with were:

• Method of moments (MOM) based estimators, including the common MLE estimates for

normal, Gamma and exponential distributions, the inverse Gaussian distribution and the

ExGaussian estimator by Olivier and Norberg [ON10].

• Estimators based on median and median average deviation (MAD) for normal [Ham74],

Gamma [CR86], Gumbel [Oli98], exponential [Oli98], Laplace [Oli98], Cauchy [Oli98],

logistic [Oli98], log-logistic [Oli98] and uniform distributions.

• Method of moment and MAD estimators in logspace, for estimating the log-normal, log-

Gamma and Weibull distributions.

• A slight variation of these estimators proposed in [Kri+11] using a �xed mean µ set to

the expected inlier value (e.g. µ = 1 for LOF), with MOM and MAD type of estimators.

• L-Moments (LMM, using probability weighted moments [HWW85; Hos91]) estimates

for normal [Hos91], log-normal [Hos91; Bil12], Gamma [Hos91], exponential [Hos91],

GEV [HWW85], logistic [Hos91], Generalized logistic [Hos91], Gumbel [Hos91], Laplace,

skewed generalized normal [Hos91], Weibull and uniform distributions.

• Choi and Wette [CW69] maximum-likelihood estimation for the Gamma and log-Gamma

distributions.

• Minimum and maximum observed value for the uniform distribution.

• Levenberg-Marquardt (LM) [Lev44; Mar63] numeric optimization for the normal and log-

normal distributions (a modi�cation of the Gauss-Newton gradient descent method, and

substantially more expensive than the other statistical parameter estimations).

To further improve the robustness, we experimented with trimming (removing the most ex-

treme observations) and Winsorization [Has+47] (replacing the most extreme values with less

extreme data points).
6

This yields a total of 370 distribution estimates computed for each data

6
Note that Winsorizing does not a�ect median and MAD based estimators, and also the combination of trimming

with MAD estimators is not expected to substantially improve results.
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set. However, not all estimators succeed on each data set: L-Moment estimates may bear in-

admissible sign, and the logarithm is not de�ned for x ≤ 0. When estimating the statistical

moments on large data sets, we need to pay attention to numerical stability. The naïve esti-

mation of the variance using E(X2) − E(X)2
– while widely used in textbooks and popular

algorithms such as BIRCH [ZRL96] – is prone to catastrophic cancellation. Instead, we imple-

mented the approaches discussed by Welford [Wel62], Terriberry [Ter08] and Pébay [Péb08],

which we will also extend to weighted covariance in Appendix 1 for other purposes. There

are other numerical problems involved. For example, since log(0) is not de�ned, some of the

parameter estimation methods will fail for methods such as kNN-Outlier and real data that

contains duplicates. One can de�ne log(0) := −∞, or use an extreme (but �nite) negative �oat

value. But again, these values will yield numerical instability, in particular when estimating

the parameters of shifted log-based distributions. However, doing the optimal estimation while

avoiding these numerical issues is beyond the scope of this thesis.

Further methods worth investigation include, but are not limited to: The Sn and Qn estimators

of scale by Rousseeuw and Croux [CR92; RC92; RC93], which have the same 50% breakdown

that makes MAD attractive, but have a higher Gaussian e�ciency. Cohen [Jr51] discusses pa-

rameter estimation for the three-parameter log normal distribution. Nelder and Mead [NM65]

published a general optimization method known as downhill simplex method, that can be used

for optimizing distribution parameters as an alternative to the Levenberg-Marquardt method

we evaluated on normal distributions. These approaches could also be used to re�ne the pa-

rameters of other distributions (however it should be noted that the robust estimators worked

better than the L-M optimized distributions). Additional distributions that could be of interest

include but are not limited to Snedecor’s F distribution, Erlang distribution, inverse generalized

exponential (IGE) distribution and Kappa distribution. 4- and 5-parameter distribution families

are expected to be able to model the data better, while still not being prone to over�tting due

to the low degrees of freedom. However, we cannot expect to have a perfect match on real data

with outliers.

Notice that there is an obvious choice that we deliberately left out:

we could also use the empirical cdf function, which can be de�ned as

empirical-cdfX(x) := rankX(x)/(n+ 1).

While this function will (except for ties) map the data to a perfect uniform distribution, it is

highly dependent on the data, and thus prone to over�tting. In particular, this function will

always map one object to the maximum cdf of 1, and not be able to abstain. Because we want

to avoid this kind of over�tting, we restrict ourselves to use scaling functions with few degrees

of freedom. The distributions we chose for our analysis had up to three degrees of freedom,

and will thus not be able to over�t.

In order to test the quality of these rescalings, we employed three data sets: two baseline data

sets consisting of 10000 samples from a 2-dimensional uniform respectively a 2-dimensional

standard normal distribution. The third data set is the ALOI image data set used in multiple ex-

periments throughout the thesis. For the normal distributed data set, we also include a “true cdf”
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method, which uses the cdf of the generating distribution and which we expect to be approxi-

mately uniform distributed. As test statistic we use the Kolmogorov-Smirnov-Lilliefors [Kol33;

Smi48; Lil67] test statistic, i.e. the maximum deviation from the desired uniform distribution

U [0; 1]. We do, however, not perform a full K-S-test (or Lilliefors test) – none of the tested dis-

tributions will �t well enough to satisfy a reasonable α signi�cance threshold. Instead, we want

to get a rough impression of how well the various parameter estimations and distributions �t

to the observed data and to choose a “best e�ort” rescaling. In the next section we will then

discuss more re�ned evaluation measures for the purpose of outlier detection, while the K-S-

statistic serves primarily as an unsupervised indication of which scaling can be expected to work

better than the other. Again, we could as well have used other test statistics such as Anderson-

Darling test [AD52], the Cramér-von Mises criterion or Shapiro-Wilk test [SW65]. While one

of the weakest tests, the K-S-statistic is also very general (it can be used with arbitrary distri-

butions) and e�cient to compute – and strong enough to actually reject all distributions tested:

as noted before, we cannot expect real data to exactly follow an ideal distribution.

Figure 5.9 shows Probability-Probabilty-plots (P-P-plots) for assessing the quality of �t for dif-

ferent distributions, as estimated using the methods discussed above. The x axis is the true

quantile of the observed data, while the y axis is the estimated quantile using the distribution.

On a perfect match, the two values will agree and produce a diagonal line. Intuitively, the K-

S-statistic is the maximum vertical deviation in this plot – a simple worst case estimate for the

quality of the �t. In Figure 5.9a we can see the quality for normal distributions. Obviously, the

common method-of-moments estimation (using the sample mean µ and sample standard devi-

ation σ) does not �t the data very well. The �xed-mean approaches we suggested in [Kri+11]

are not substantially better. The probably best �t is obtained using the robust MAD estimator,

but still does not �t the data well. Similar results can be observed for Gamma distributions in

Figure 5.9b: neither the native estimation nor the �xed mean �t the data well, and again the

MAD estimator is substantially better. However, if we widen up the search space to other dis-

tributions such as the three parameter log-normal distribution, and use robust estimations with

Winsorization and L-Moments, we can model the data substantially better. In Figure 5.9c, some

of the lines are visibily close to the diagonal line. For completeness, Figure 5.9d and Figure 5.9e

visualize the best �ts for exponential family and other distributions, while Figure 5.9f repeats

the best results across di�erent distribution families.

A di�erent view on the quality of �t can be obtained by plotting a histogram of the actual

data as opposed to the pdf of the �tted distribution. The results can be seen in Figure 5.10a.

Again, the naïve MOM estimation for the normal distribution can easily be recognized as a bad

model of the data, whereas the log-normal distribution is a reasonably close match. Figure 5.10b

then is the opposite transformation: this chart shows histograms of the transformed data using

the cdf function for each distribution. As discussed before, the optimal transformation would

yield a uniform distribution (indicated by the black line at density 1). Again the log-normal

distribution produces the best result. All curves �t best in the central area, with some error on

the low end, and a spike in the end. Since the data is real – and does contain outliers – the spike

at the very end probably is something that we will not be able to get rid of: after all, we assume

that there are some objects in the data set that do not belong to the same distributions. If the �t
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Figure 5.9: Probability-Probability-Plots of �t for di�erent distributions (LOF, ALOI).
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Figure 5.10: Quality of �t for di�erent distributions (LOF, ALOI).

were perfect, there would be a reason to doubt the existence of outliers. Yet, we must be aware

that it will likely overestimate the outlierness of objects.

For control, we also performed the same analysis on synthetic data, both using 2-dimensional

normal distributed data as well as uniform data. The results are summarized in Figure 5.11,

giving the best matching distributions, their pdf and the transformed data after applying the

cdf function. Interestingly, the results are not substantially di�erent from those obtained on

real data. While the generalized logistic distribution now provided the best �t, the log-normal

distribution was a close second best approximation. For the other quotient based distributions

the results are also similar; only kNN-Outlier scores were best modeled using the exponential

distribution instead. While the parameter estimation for the Rayleigh and GLO distributions

worked well for synthetic data, the results for the ALOI data set were not competitive with the

log-normal distributions.

Fortunately, the quality of the transformation can be empirically determined using the K-S-

statistic mentioned before. This statistic (which is used by the Kolmogorov–Smirnov [Kol33;

Smi48] and Lilliefors tests [Lil67]) is easy to compute and does not make assumptions on the

distribution function. Formally, it is given as the maximum deviation of the empirical and the

estimated cumulative density functions:

dKS := max
x
|empirical-cdfX(x)− estimated-cdf(x)|

In an unsupervised context such as outlier detection, the best we can do is to choose the dis-

tribution which most closely matches our observed data. By only allowing distributions with

few degrees of freedom, we can largely prevent over�tting in this step. If at the same time,

the dKS statistic is reasonably low, we can expect it to improve results later in the processing

pipeline; even when the hypothesis that the data is really distributed this way must be rejected

by reasonable signi�cance levels.
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Figure 5.11: Quality of �t for di�erent distributions (LOF, 2d Gaussian / Uniform).
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In Table 5.1 we summarize the maximum deviations obtained as K-S test statistics. In the last

column, we give the best estimation found along with the K-S statistic. Results within .001
of this best result are marked in bold. The �rst columns give the results for the naïve estima-

tions we used in the initial publication of this research. It can be seen that while the method of

moments based rescalings improved the error over the naïve uniform distribution, the newer

rescalings using the method of L-Moments (LMM) and advanced distributions such as gener-

alized normal and generalized logistic yield much smaller errors. The last row serves control

purposes: here we have a known normal distribution, and can compute the true cdf values. The

resulting scores are uniformly distributed by generation, and the K-S statistic of .006 does not

allow rejecting this hypothesis. We can roughly treat this value as a typical K-S error on this

data set size.
7

As we can see, the other best �tting distributions produce an error on a similar

magnitude of .01 on the K-S statistic, which indicates that we have found a reasonably good

standardization for our purposes.

5.3.2.6 Bayesian Scaling for Scores

In the previous section, we put a lot of e�ort into normalizing the outlier scores to be ap-

proximately uniformly distributed. Measuring the outlierness of an object with respect to the

objects cdf bears strong mathematical semantics: if an object has a normalized outlier score of

x = 1− p, this indicates that this amount of objects is to be considered more normal – i.e. if an

object has a score of x = .99, then it is considered more unusual than 99% of objects.

Statistically, this score is what is known as p-values; however, p-values are commonly misun-

derstood in various di�erent ways (twelve of which are listed e.g. in [Goo08]). In particular,

they are not the probability that the object is an outlier, but the probability that a normal ob-

servation is as extreme as this probability. Therefore, the user may have something di�erent

in mind when he is thinking of the “outlier probability” of an object. Intuitively, users may as-

sume that an object that is assigned a score of 50% should have a 50–50 chance of actually being

an outlier – but given uniform scores, 50% of the objects are expected to have a higher score

than 50%, but outliers obviously should be rare instances only. In COP [Kri+12] we proposed

an ad-hoc rescaling of these scores based on inspiration from statistical testing. What a user

may intuitively be thinking of is a statistical test, comparing the hypothesis “the observation

is caused by a di�erent mechanism” to the alternative “the observation is regular”. We cannot

perform a proper statistical test here, as it is not obvious how to de�ne the hypotheses math-

ematically. The approach proposed to be used with COP is a simple heuristic, that requires a

user parameter: the expected rate of outliers, ϕ. To obtain the intuition discussed above that

an object with a score of 50% should have a 50–50 chance, we want to have outliers where

1 − p = ϕ to be mapped to 0.5. This parameter ϕ can also be seen as a kind of signi�cance

7
Note that the ALOI data set is much larger than the arti�cial data sets used here.
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threshold as often used in statistical testing. An example heuristic that has this property is:

adjust(p, ϕ) :=
1

1 +
1− p
ϕ

=
ϕ

ϕ+ (1− p)
(5.8)

The result of this transformation when applied to the cdf of normal and Gamma distributions

can be seen in Figure 5.12a and Figure 5.12b. While the initial goal is achieved as desired – at

1 − p = ϕ, so when the observed extremeness matches the desired extremeness the adjusted

score is 0.5 – it is not yet fully satisfactory, since the values will never become 0, but are always

at least ϕ/(1 + ϕ) > 0 (the maximum is 1). This can be corrected with linear rescaling to fully

use the desired value range of [0; 1] as seen in Figure 5.12c and Figure 5.12d.

ϕ

(1− p) + ϕ
· (1 + ϕ)− ϕ =

ϕ+ ϕ2

(1− p) + ϕ
− ϕ− ϕ · p+ ϕ2

(1− p) + ϕ

=
ϕ · p

(1− p) + ϕ
=:normCOP(p, ϕ) (5.9)

This modi�ed formula no longer has the property that 1 − p = ϕ maps to 50%, but the result

(1 − ϕ)/2 will be close enough to 0.5 for reasonably small values of ϕ. The values 0 and 1
however are now mapped to 0 and 1. A di�erent visualization of this transformation can be

seen in Figure 5.14a for ϕ ∈ {50%, 10%, 1%, .1%} showing how the transformation increases

the contrast for large values. This is the score rescaling introduced in COP [Kri+12]; the initial

score computed, the Correlation Outlier Score COS (Equation 5.4), is a variant of the unmodi�ed

cdf we obtained by normalization in the previous section.

However, we must remember that the scaling introduced in COP is an heuristic approach.

The original values had an interpretation similar to p-values, and p-values are often misin-

terpreted [Goo08]. The semantics of this transformed score are thus weaker than that of the

approximately uniform distributed scores. An alternate approach is based on the Bayes’ factor,

which arises from Bayes’ rule for dichotomous problems in odds scale [KR95]:

Odds(A : ¬A) =
P (A)

P (¬A)
=

P (A)

1− P (A)
(5.10)

with the inverse transformation being

P (A) =
Odds(A)

1 + Odds(A)
(5.11)

By applying Bayes’ theorem to A and ¬A for evidence E

P (A|E) =
P (E|A) · P (A)

P (E|A) · P (A) + P (E|¬A) · P (¬A)
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(a) Normal cdf , without correction (Equation 5.8)
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(b) Gamma cdf , without correction (Equation 5.8)
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(c) Normal cdf , with correction (Equation 5.9)
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(d) Gamma cdf , with correction (Equation 5.9)
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(e) Normal cdf , with Bayes factor (Equation 5.15)
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(f) Gamma cdf , with Bayes factor (Equation 5.15)

Figure 5.12: Adjusting cdf density scores for di�erent values of ϕ.

we obtain the posteriori odds:

Odds(A : ¬A|E) =
P (A|E)

P (¬A|E)
=

P (E|A)

P (E|¬A)︸ ︷︷ ︸
Bayes Factor

· P (A)

P (¬A)︸ ︷︷ ︸
Prior Odds

. (5.12)

Assuming an outlier rate of ϕ, we have the prior probabilities of P (O) = ϕ and P (¬O) =
P (I) = 1−ϕ, and thus prior odds of ϕ/(1−ϕ). The Bayes factor is a likelihood ratio; in order

to compute it we need to specify the probability density for the given evidence (i.e. the observed

outlier score) for both the outlier and the inlier distribution. Since we estimated a distribution

of the inlier scores just before, we can use the pdf of this distribution for P (E|I) = pdf(E).

Choosing a distribution model for the outliers is harder. The trivial choice of a uniform distri-

bution (corresponding to the idea that outliers could be anywhere in the data) will also detect
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(a) Densities for two outlier types:

low and high values

(b) Densities for three outlier types:

low, central and high values

Figure 5.13: Beta distribution probability densities.

unusually low cdf values, i.e. unusually dense objects when using a density based score. There-

fore, we need to choose a di�erent model. Instead of treating all outliers the same, we can also

assume there are two/three kinds of outliers: unusually low values, unusually high values and

optionally unusual observations within the central area. Assuming these two/three classes exist

in a uniform U [0; 1] distribution, we can model this using a beta distribution: for the two-class

situation, the smallest of two observations is Beta(1, 2) distributed and the largest is Beta(2, 1)
distributed. The corresponding pdf functions are simply 2(1−x) and 2x, and visualized in Fig-

ure 5.13a. Assuming three-classes, the distributions are Beta(1, 3), Beta(2, 2) and Beta(3, 1),

with pdf functions 3(1 − x)2
, 6x(1 − x) and 3x2

as seen in Figure 5.13b. In the following, we

will be assuming we are only interested in the high outliers of the three type model, which

aligns with the notion of unusually sparse objects.

This yields a Bayes factor of

Bayes-Factor(O : I|p, ϕ) :=
3 cdf(x)2

pdf(x)
(5.13)

together with the prior odds this gives the posteriori odds

Odds(O : I|p, ϕ) =
3 cdf(x)2

pdf(x)
· ϕ

1− ϕ
(5.14)

which can be transformed to a probability using Equation 5.11

P (O|x, ϕ) =

(
3ϕ cdf(x)2

(1− ϕ) pdf(x)

)/(
1 +

3ϕ cdf(x)2

(1− ϕ) pdf(x)

)
=

3ϕ cdf(x)2

(1− ϕ) pdf(x) + 3ϕ cdf(x)2
(5.15)

In Figure 5.14b we visualize this rescaling function. Due to the lack of a ground truth pdf
function for this visualization, we use the average low and medium density: pdf(x) = 1

2
[3(1−

x)2 +6x(1−x)] = 3
2
(1−x2) for visualization purposes only. In contrast to this, for Figure 5.12e

and Figure 5.12f we have a true pdf . In these Figures we can see that for small values of ϕ there

is little di�erence between the three rescalings.
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(a) Rescaling with Equation 5.9,

as proposed in COP [Kri+12].
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(b) Rescaling with Equation 5.15,

assuming pdf(x) = 3
2(1− x2).

Figure 5.14: Visualization of rescaling functions.

An interesting test case arises from using the Halton low-discrepancy uniform data, which

does not contain true outliers by de�nition. The results of running LOF with k = 20 and

using COP scaling (Equation 5.9) with ϕ = 1% can be seen in Figure 5.15a. Using the Bayesian

scaling function Equation 5.15 with the same ϕ = 1% yields even less outliers in Figure 5.15b.

Compared to the naïve linear scaled outlier scores in Figure 5.6a the result has substantially

improved. Intuitively, on a data set with 1000 instances, ϕ = 1% should yield 10 false positives.

While both approaches produce much more than 10 non-zero scores in above Figures, note that

neither COP nor Bayesian scaling score any object higher than 0.5.

For numerical reasons, it would be bene�cial to compute the inlier probability instead of the

outlier probability: we want to have maximal numerical precision for the outliers, and do not

need high precision for inliers. Floating point arithmetic is more precise close to 0 (where

the theoretical precision is on the order of 10−324
; the precision at a more realistic 0.01 is on

the order of 10−16
) than it is near 1 (where double precision is roughly 10−16

). An alternate

approach to improve numerical precision is to work in logarithmic space, which also improves

numerical accuracy. It can be bene�cial to keep the Bayes-Factor value instead of transforming

it to a probability using Equation 5.15 immediately: the Bayes Factor uses the numerical range

of [0;∞], and the logarithm of it even the full numerical range [−∞;∞].

However, as our current codebase does not yet include logarithmic versions for all cdf and

pdf versions, we perform all our experiments with literal implementations using 1.0 as outlier

and 0.0 as inlier score. Future practitioners implementing these approaches may however be

advised to evaluate these implementation details in order to improve numerical precision.

In the remainder of this chapter, we will primarily use the cdf distributed scores. This value

has the strongest semantics (in particular, it does not have the parameter ϕ) and needs the least

assumptions.



92 5. Improving Local Outlier Detection

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Halton2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Halton3

(a) LOF k = 20 outlier scores, scaled using

Equation 5.9, ϕ = 1%
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(b) LOF k = 20 outlier scores, scaled using

Equation 5.15, ϕ = 1%

Figure 5.15: Statistical scaling of outlier scores on Halton uniform data.

5.4 Evaluation of Outlier Scores

In the previous section, we focused on transforming scores, largely motivated by an intuition of

what is an usable outlier score. However, we would also like to quantitatively measure whether

a transformed outlier score is more useful than the raw data. In this section we will discuss novel

evaluation methods. In Chapter 7 we will see that this advanced evaluation also allows more

advanced combination of methods in ensembles.

The evaluation methodology discussed next is an extension of the following publications:

H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. “Interpreting and Unifying Outlier

Scores”. In: Proceedings of the 11th SIAM International Conference on Data Mining
(SDM), Mesa, AZ. 2011, pp. 13–24

E. Schubert, R. Wojdanowski, A. Zimek, and H.-P. Kriegel. “On Evaluation of Outlier

Rankings and Outlier Scores”. In: Proceedings of the 12th SIAM International Confer-
ence on Data Mining (SDM), Anaheim, CA. 2012, pp. 1047–1058

5.4.1 Evaluation by Precision@k and ROC Curves

Traditional evaluation methods for outlier detection algorithms have one major limitation: all

the commonly used methods ignore the actual outlier scores. These methods are largely obvious

adaptations of existing evaluation methods from other domains such as information retrieval,

classi�cation and signal processing. This falls short of the aim of outlier detection for the fol-

lowing reasons:

http://siam.omniBOOKsonline.com/data/papers/018.pdf
http://siam.omniBOOKsonline.com/data/papers/018.pdf
http://siam.omnibooksonline.com/2012datamining/data/papers/107.pdf
http://siam.omnibooksonline.com/2012datamining/data/papers/107.pdf


5.4 Evaluation of Outlier Scores 93

• Some objects are obvious outliers, others are outlier candidates. The numeric outlier score

should re�ect this property of the objects.

• There might be no outliers at all, and an outlier detection method should be able to indi-

cate this by assigning low scores only.

• The “ground truth” labels usually indicate some kind of “interestingness”, not necessarily

“outlierness”. There might also be additional outliers within the majority classes.

• There might be multiple kinds of outliers in the same data set (not all of which are con-

sidered to be “interesting”).

• The “ground truth” labels are often incomplete, but only include known outliers.

Precision@k and Average Precision: The simplest evaluation is using the precision when

looking at the top k objects only, where k is usually set to the number of known outliers.

Formally, this number can be de�ned for a result R as

precision@k(R) :=|Top-k(R) ∩ positive|
/
k . (5.16)

This is an easy to understand, but also very crude measure. First of all, k is not very large, since

outliers are rare observations. Furthermore, if the elements at k and k+ 1 have the same score,

the result is not uniquely determined. Last but not least, the order within the top k elements is

ignored; in particular it does not make a di�erence whether errors occur at the beginning or at

the end of the top k elements.

The result for this last situation can be somewhat improved by instead of taking a single k,

one uses the average over all k := 1 . . . r (i.e. measuring the area under the precision@k curve,

usually one chooses r = |positive|), known as the average precision:

average-precisionr(R) := meanrk′:=1 precision@k′(R) (5.17)

When additionally averaging over many runs, this measure is also known as mean average

precision (MAP). This measure is popular in information retrieval, where for example the �rst

page of ten results of a search engine over a large set of queries is analyzed. Note that this

measure does not have dedicated handling for imbalanced data sets, which is by de�nition the

situation we face in outlier detection. Choosing k (or r) small enough is just a workaround.

Receiver Operating Characteristic (ROC): This method received its name from the use

in signal transmission to analyze the quality of a transmission channel by plotting successfully

vs. incorrectly transmitted signals such as the re�ection of radar signals by airplanes. It has

since been successfully adopted for machine learning [Spa89; PF97]. The ROC curve is ob-

tained by connecting the coordinates of (false positive rate, true positive rate) pairs obtained

when adding elements from the outlier ranking one after another. The curve begins at (0, 0)
(when no object was processed yet) and ends at (1, 1) (when all positive and negative instances

have been processed). Figure 5.16 shows an example ROC curve. The optimal ROC curve begins

at (0, 0) and goes straight up to (0, 1) before continuing to (1, 1) – �rst all positive instances



94 5. Improving Local Outlier Detection

T
r
u

e
P

o
s
i
t
i
v
e

R
a
t
e

False Positive Rate

A
re

a
Under Curv

e
(A

UC)

Perfect result

R
e
v
e
r
s
e

r
e
s
u

l
t

R
a
n
d
o
m

o
r
d
e
r
in

g

Figure 5.16: ROC curve example.

then all negative instances. The worst ROC curve however is not the one going through (1, 0):

this curve indicates a very good ranking, but exactly backwards. Instead, the worst curve re-

mains close to the diagonal, because the true positive and false positive rates are expected to

simultaneously increase on a random ordering.

Finally, in order to condense the ROC curve into a single score, the area under the curve (AUC)

is often computed. The perfect result will get a score of 1.0, while a random result will get

a score of approximately 0.5. The only di�cult part in interpreting this score is that results

signi�cantly below 0.5 indicate that the method has been used incorrectly, since it returns the

objects in reversed order. Technically, the AUC is an average: it is the arithmetic average true

positive rate, averaged over all inliers i ∈ I , which can be rewritten further:

ROCAUC := meani∈I
|#outliers before i|

rank(i)
= meani∈I,o∈O

{
1 i� rank(o) < rank(i)

0 otherwise

This last formula is an interesting probabilistic interpretation, which was shown in [HM82]:

Given a randomly chosen inlier i and a randomly chosen outlier o from the data set, the AUC

value is the likelihood of the objects being correctly ordered (i.e. o before i) in the ranking.

Furthermore, the same quantity is also estimated by the Wilcoxon statistic / Mann-Whitney U

statistic as shown in [Bam75]. With this interpretation it is easy to understand that 0.5 indicates

a random ordering, while values smaller indicate that the method returns inliers �rst.

Similar to precision@k and average-precisionr, the ROC curve does not use the actual outlier

scores, but only the ordering imposed on the data by the scores. In order to get deterministic

results, objects that are tied at the same score need to be processed at the same time when

constructing the curve, which leads to steps at a sloped angle in the plot. However, the evalu-

ation with ROC curves does not allow for scores or rankings on the reference set, but assumes

a dichotomous problem (i.e. two classes, correct and incorrect).
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Since ROC curves are based on the rates of true and false positives, this evaluation method is

naturally well suited for handling a highly imbalanced problem such as outlier detection. Since

the rate changes are relative to class sizes, an outlier will yield a larger step than a much more

frequent inlier. The ROC curve sketched in Figure 5.16 exhibits this property: on the y axis,

steps are 0.1 each, since the data set contains just 10 outliers. On the x axis, the step size is

0.01, corresponding to 100 inliers.

Smooth ROC Curves: Smooth ROC curves (smROC) [Kle+11] is an attempt to enhance ROC

curves, taking the scores into account. However, the method shows severe anomalies when the

midpoint is not at 0.5, due to a non-continuity in its inversion step as shown in [Sch+12]. This

makes this method inapplicable in our problem setting until this issue with the method has

been resolved.

Instead of trying to �x the problems of smROC algorithm, we do however propose to step back,

and take a more abstract view of the problem on two lines of thought: on one hand, we need

to revisit the objectives for our evaluation. Is it just the retrieval rate in the top k elements, as

measured by precision@k, the ranking quality as measured by ROC, or do we maybe want to be

able to measure arbitrary similarities of results, also across di�erent results? On the other hand,

can we really neglect the scores, and use only the ranking: in Section 5.3.2.6 we spent a lot of

e�ort of rescaling outlier scores to a domain that supposedly is more useful to the end user, but

we are so far lacking a way to measure these achievements. Therefore, in the next section, we

will look at the evaluation on a more abstract and thus more �exible way, in order to obtain

a quality measure that is both capable of comparing arbitrary results and evaluating scores.

Furthermore, we will be able to base it on the most fundamental concept in the measurement

of similarities: distance functions.

5.4.2 Calibration of Outlier Scores

Early attempts at “calibrating” outlier detection methods can be found for example in [GT06],

which utilized calibration approaches (sigmoid functions and mixture modeling) to �t outlier

scores provided by di�erent detectors into probability values. The combination of probability

estimates instead of mere ranks is demonstrated in [GT06] to slightly improve on the feature

bagging methods of [LK05]. Notably, although their method should theoretically be applicable

to combine di�erent outlier detection algorithms, their experiments demonstrate the combina-

tion of di�erent values for k of the kNN-distance as an outlier score only. Note that the sigmoid

learning and mixture model �tting approaches proposed for calibration in [GT06] are based on

the generalized EM algorithm and are rather unstable – there is no safeguard in place to prevent

degeneration of results. In addition, they favor extreme values (0 and 1, largely removing any

intermediate values from the data set), which is not favorable for combination, but cause the

actual ensemble to degenerate to boolean combinations and counting.
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An important di�erence between the probability estimation of outliers and of classes is the

inherently imbalanced nature of the outlier detection problem. Since the data are largely domi-

nated by the class of inliers and only a minimal number of data objects are truly outliers, assess-

ing the root mean squared error in reliability as deviation of the probability estimates vs. the

observed frequency (as e.g. in [MW77], for di�erent classical evaluation measures see [ME67])

is not directly applicable to the scenario of outlier probability estimates. Any outlier detection

procedure always estimating a zero (or a very small) outlier probability would already be almost

perfectly calibrated. “Optimal” calibration can be achieved by merely estimating the propor-

tion of outliers in a data set instead of assessing the outlierness of single data objects. In the

supervised context of classi�cation, much e�ort has been spent on methods of sanitizing imbal-

anced class prior probabilities for training as well as for evaluation of classi�ers [BPM04; JJ04;

RK04; Wei04]. Closely related to the problem of imbalanced classes are cost sensitive learning

[WMZ07; Cha+08] and boosting of classi�ers [JKA01]. Applying a cost-model to a prediction

task means that errors are di�erently penalized for di�erent classes during the learning proce-

dure. Di�erent costs for di�erent types of error are a quite realistic scenario. Considering the

example of weather forecasts, the costs for taking an umbrella when it will not rain and for not

taking an umbrella when it will rain are probably di�erent. This can be set-up as cost matrix:

S1 S2

O1 u1 c1

O2 c2 u2

where c1 is the cost of choosing option O1 when state S2 occurs and c2 is the cost of choosing

option O2 when state S1 occurs. For example, states S1 and S2 are “it rains” and “it does not

rain”, respectively, whereas options O1 and O2 are “take umbrella” and “take no umbrella”, re-

spectively. Hence, what truly counts is not the optimally calibrated probability estimation but

the minimized costs of a decision (in the decision-theoretic sense of [vM53], see also [Mur66]),

where the decision, of course, is based on the estimated probability. Instead of costs, the ex-

pected utility could also be modeled (setting u1 and u2 in the cost matrix to values other than 0),

or both, utility and costs. The same is usually the case in applications of outlier detection. Some-

times, the cost of false-alarms is higher, sometimes it may be more important not to miss any

potential outlier. Such requirements relate to di�erently weighting precision and recall. While

in supervised scenarios classi�ers can be optimized w.r.t. a certain cost model [Dom99; ZE01],

in the unsupervised scenario of outlier detection, the assumed cost-model cannot be used to �t

or train the algorithm but only to evaluate its results. It should be noted, though, that while cal-

ibration and purely calibration related scores in itself are not a su�cient evaluation measure, a

useful cost-model-based evaluation of decisions will also encourage calibration [Win96]. In the

context of imbalanced classes, it is customary to either sample the small class up, to sample the

large class down, or to alter the relative costs according to the class sizes. In [JS02], the latter

has been shown to be generally more e�ective than the alternatives. Hence we adopt this pro-

cedure here, though, since we tackle outlier detection as an unsupervised task, not for adapting

a training procedure to di�erently weighted misclassi�cation costs but merely to evaluate the

impact of a probabilistic scaling and regularization of outlier scores. Aside from a quantita-

tive improvement, the major motivation for such a probabilistic scaling is to revert the more
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Table 5.2: Summarized rank comparison measures

Simpli�ed Spearman’s ρ

Normalization: rank Weighting: none

Vector space: score vectors Measure: normalized squared Euclidean

Full Spearman’s ρ

Normalization: rank Weighting: none

Vector space: score vectors Measure: Pearson correlation

Kendall’s τ

Normalization: none Weighting: none

Vector space: order relation Measure: Pearson correlation

ROC AUC

Normalization: none Weighting: 1 i� in di�erent classes

Vector space: order relation Measure: Regression coe�cient

Uni�ed Outlier [Kri+11]

Normalization: various normalizations proposed Weighting: by class sizes

Vector space: score vectors Measure: weighted Manhattan distance

ClasSi [IWS11]

Normalization: rank Weighting: by class sizes

Vector space: order relation Measure: normalized Pearson

and more deteriorated interpretability of modern outlier detection methods into a statistically

interpretable context.

In summary, we want to be able to transfer the experiences with (i) probability estimates, (ii) im-

balanced classi�cation problems, and (iii) cost-sensitive learning reported in the context of su-

pervised learning to the context of unsupervised outlier detection. However, neither the evalu-

ation using Precision@k nor the evaluation using ROC curves is helpful for this aim, so we need

a more powerful evaluation method that takes scores into account, and that allows us to assess

the impact of our transformation methods for outlier scores w.r.t. the reduction of error-costs,

taking into account the di�erent cardinality of the class of inliers I and the class of outliersO.

5.4.3 Evaluation by Distance Measures in the Vector Space of Scores

The motivation in [Kri+11] was based on the idea that instead of assessing binary decisions we

can multiply the assigned probability estimates with the corresponding costs for erring. Since

the costs for the correct decisions are always 0, only errors account for the reported values. The

corresponding accuracy values would be symmetric since the assigned probability estimates

would just be the complementary probabilities of the ones accounting for error costs. Formally,

the reported costs are for each dichotomous problem consisting of classes I and O:

1

2

∑
x∈I

P (O|x) · 1

|I|
+

1

2

∑
x∈O

P (I|x) · 1

|O|
,
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based on probability estimates P (C|x) for an object x to belong to class C as provided by the

(uni�ed) outlier score. Note that we could also easily use quadratic costs in this formula instead

by using the squared probability estimates.

We can however also rewrite this formula using P (I|x) = 1 − P (O|x) and P (_) > 0 as

follows: ∑
x∈I

P (O|x) · 1

2|I|
+
∑
x∈O

P (I|x) · 1

2|O|

=
∑
x

{
P (O|x) · 1

2|I| if x ∈ I
1− P (O|x) · 1

2|O| if x ∈ O
=
∑
x

ωx |IO(x)− P (O|x)|

where IO(x) = 1 i� x ∈ O and ωx is a weight vector assigning the appropriate costs for

erring
1

2|O| and
1

2|I| to objects of O and I . The formula now, however, is nothing but a weighted

Manhattan distance function of the score vector P (O|x) to the target vector IO indicating the

desired true outliers. If we had used the squared costs, we would have obtained the weighted

Euclidean distance.

The vector space, in which we compute the distance function, has n dimensions, each corre-

sponding to one object of the data set. An alternate vector space outlined in [Sch+12] is the

order relation (a vector space of size O(n2)), where each dimension corresponds to a pair of

objects, indicating which should come before the other. ROC AUC and ClasSi [IWS11] can

be interpreted as using this order relation vector space, where the dimensions are weighted

depending on the classes of the objects represented by the dimension (usually 0, when the ob-

jects are in the same class). Table 5.2 summarizes how existing measures can be represented

as a data normalization, a transformation into such a vector space and then the application of

a distance function. The approach we proposed in [SZK12] for evaluating outlier scores is a

straightforward instantiation of this framework. For normalization, any of the methods dis-

cussed in Section 5.3 can be used (and in the end, we want to be able to evaluate empirically

which of these works best for particular algorithms). Since we want to evaluate the scores, the

score vector space is the most appropriate space, and due to the imbalanced nature of the prob-

lem we need to weight the di�erent classes appropriately. Finally, there is no clear indication

of which distance function to prefer. We will discuss a number of choices next.

In [Kri+11], we proposed the linear cost function above, which is a weighted Manhattan dis-

tance. This is a straightforward cost estimation, but it treats small and large errors equally.

In [Sch+12], we discussed alternate choices such as the weighted Euclidean distance, which

computes the root mean square (RMS, M2, see Section 2.1 for a discussion of di�erent means)

error. Obviously, any mean based norm can be used here in a weighted form – see Section 2.2

for the strong relationship of Lp-norms and generalized means. Another choice we proposed

in [Sch+12] is the use of a weighted Pearson correlation. Formulas for the computation of

weighted Pearson and weighted covariance (along with a numerically stable online computa-

tion method) can be found in Appendix 1. Pearson correlation is particularly useful when the

scores are not normalized well, because of the built-in standardization. When X and Y are
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standardized to unit variance (i.e. σX = σY = 1), then Pearson correlation trivially reduces to

covariance. When X and Y are furthermore centered (i.e. µX = µY = 0) then the resulting

distance function becomes a variant of squared Euclidean distance (see Appendix 1).

Putting all together, the proposed evaluation method for a normalized outlier score S can be

formalized as the seemingly trivial formula:

err(S) := distΩ(S, T ), (5.18)

where S is the score vector, Ω the weight vector, T the target vector (indicating which objects

should be considered outliers, e.g. T = IO, but we will discuss other choices for the target

vector below) and distΩ the chosen weighted distance function to measure the severity of the

error. Note that the target vector can also be modi�ed to allow for “maybe” outliers and di�erent

outlierness degrees. Similarly, the weight vector can be modi�ed to emphasize certain objects

(e.g. in an active learning context) beyond handling the class imbalancedness.

As with many of the choices before (such as the function to use for density estimation and the

score normalization method) there is no general winner. None of the solutions will work best

in every situation. In many situations, the di�erent measures will produce the same ranking.

The rule of thumb we observed is the following:

• If the scores are not well normalized, the built-in normalization of Pearson correlation

often produces more comparable results. The other measures may be measuring too much

the quality of the normalization.

• When the scores have been z-standardized, Pearson correlation distance actually reduces

to using squared Euclidean distance (see Appendix 1).

• If the score is to be used for a binary decision, the linear (L1, Manhattan) distance should

be most appropriate, resembling error probabilities.

• If larger errors have a much larger e�ect, quadratic (L2, Euclidean) distance may be more

appropriate (by using squared errors).

This vector-space-based evaluation method o�ers additional use cases beyond evaluation. For

example, the similarity of outlier detection results can be computed by using a second outlier

detection result instead of the “truth” as target vector:

sim(S1, S2) := distΩ(S1, S2), (5.19)

This similarity will be useful for building ensembles (see Chapter 7), since it can serve as a mea-

sure for diversity, which was shown to be an important factor for the quality of unsupervised

ensembles. It is, however, only an initial version for unsupervised quanti�cation of diversity

(see [Bro+05] for an overview of diversity in regression and supervised classi�cation), and it re-

mains to be seen whether we can also distinguish between “good” and “bad” diversity [BK10].

When we initially proposed this method of evaluation, we used the binary target vector T = IO,

which was a reasonable �rst attempt. However, in the previous chapter we discussed that a

good outlier score is in fact not binary, but uniformly distributed. This however implies that
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Figure 5.17: Naïve target vector and expectation target vector for ϕ = 0.1.

no such outlier score can ever score well on this measure. To explain this, consider an ideal

experiment: data generated from a Gaussian distribution, and the outermost ϕ ·N objects are

labeled as outliers. Then comparing the binary indicator vector to the ground truth (uniformly

distributed) score yields:

distΩ(IO, cdf) =
∑
x∈I

x · 1

2|I|
+
∑
x∈O

(1− x) · 1

2|O|

lim
|I|→∞

→ 1

2

∫ 1−ϕ

0

x dx+
1

2

∫ 1

1−ϕ
1− x dx

=
1

4
((1− ϕ)2 − 0) +

1

2

(
1− (1− ϕ)− 1

2
(1− (1− ϕ)2)

)
=

1

4

[
(1− ϕ)2 + 2ϕ− 1 + (1− ϕ)2

]
=

1

4

[
2(1− ϕ)2 + 2ϕ− 1

]
=

1

4

[
2− 4ϕ+ 2ϕ2 + 2ϕ− 1

]
=

1

4
[1− 2ϕ(1− ϕ)] −→ϕ→0

1

4

This means that given a binary ground truth, even the true cdf score will score only slightly

better than 1/4. The simple reason is that the average score of an inlier even on the true cdf
score is not 0, but just below 0.5. More precisely, the average value of an inlier is

1
2
− ϕ

2
, whereas

the average score of an outlier is 1− ϕ
2

. Therefore, instead of using the naïve binary indicator

vector above, we can instead construct a target vector using the expected scores using:

Tcdf : ti =

{
1
2
− ϕ

2
i� xi ∈ I

1− ϕ
2

i� xi ∈ O
−→ϕ→0

{
1
2

i� xi ∈ I
1 i� xi ∈ O
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Performing the same computation as before, we get

distΩ(Tcdf , cdf) =
1

2

1

|I|
∑
i
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8

[
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]
=

1

8

[
1− 2ϕ+ 2ϕ2
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1

8
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1
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This result is not surprising: we are trying to �nd the best approximation of the linear function

using two constant approximations. The di�erence between the two target vectors is visualized

in Figure 5.17a for ϕ = 0.1: the naïve target vector IO is binary, either 0 or 1, while the

improved target vector Tcdf is the piecewise average for inliers and outliers. The cdf of the true

distribution would be a diagonal line. There is no rescaling of a binary ground truth that will

be an exact match for the diagonal line; and it is known that the best constant approximation

of a line is the mean value; which is why we chose the means of the two segments each. Note

that the cost functions weights inliers with 50% of the distance and outliers with 50%, so an

error in the inliers is not the same as an error in the outlier area. Figure 5.17b shows the same

vector when the scores have been rescaled as suggested in Section 5.3.2.6 (rescaled with the

same ϕ = 0.1). It can be seen that when such a rescaling is used, the median value for inliers

decreases, while the median value for outlier decreases towards .5. Applying the rescaling to

the target vector yields the median value, not the mean value of each segment. This median

is the optimal choice for linear error costs (i.e. Manhattan distance), the mean would be the

optimum for quadratic deviations (i.e. using Euclidean distance).

Reducing a cost bias from approximately 1/4 to 1/8 itself is not much of a bene�t. However,

without this correction, scores that do not exploit the full value range will appear to have a bet-

ter performance, when in fact they are not substantially better, but are “over�tted” for a binary

target vector. Choosing the target vector Tcdf encourages methods to return intermediate val-

ues, and more closely resembles the idealized target vector, which has a uniform distribution.

Figure 5.18 visualizes the similarity of outlier detection results on the ALOI data set, as measured

with Manhattan distance, Euclidean distance and Pearson correlation. The algorithm scores

have been statistically scaled (using the scaling with the lowest K-S-score each, as per Table 5.1);

then the interpretability has been increased according to the rate of labeled outliers using COP

rescaling (Equation 5.9) with ϕ set to the true outlier rate.
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Figure 5.18: Outlier method similarities on ALOI data set.

Table 5.3: Outlier detection evaluation scores on ALOI data set (score and rank).

Method

R
O

C
A

U
C

P
r
e
c
i
s
i
o
n
@
k

A
v
e
r
a
g
e

P
@
k

L1,Ω L2,Ω ρΩ

LOF .7789 3 .0600 4 .0535 5 .2331 3 .2954 3 .5180 3

Simpli�ed-LOF

with RMSD

.8070 2 .0669 2 .0622 4 .2195 2 .2820 2 .4711 2

Simpli�ed-LOF .8106 1 .0753 1 .0650 3 .2177 1 .2811 1 .4667 1

LDF .7137 5 .0363 6 .0426 6 .2915 6 .3295 5 .6261 5

Simpli�ed-LOF

with Kernel Density

.7594 4 .0181 7 .0193 7 .2741 4 .3080 4 .6093 4

kNN Outlier .6289 7 .0488 5 .0751 2 .3066 7 .3849 7 .7801 7

kNN Weight Outlier .6635 6 .0656 3 .1035 1 .2890 5 .3680 6 .7237 6
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Figure 5.19: Di�erent evaluation measures still agree on the overall trends when varying the

algorithm parameter k (neighborhood size).

Left column: high values are better – right column: low distances are better.



104 5. Improving Local Outlier Detection

Figure 5.19 visualizes the performance of di�erent algorithms when varying the neighborhood

size parameter k. On the left, we �rst see the classic ROC AUC measure (Figure 5.19a), then

precision@o (where o is the number of true outliers, Figure 5.19c) and the average precision

for 1 . . . o (Figure 5.19e). The precision@o measure is less stable (having o + 1 discrete values

only), and the average precision is dominated by the precision in the �rst ranks. Neither of

these measures used the actual scores, but only the ranks and labels. On the right we see dis-

tance based measures. Note that for distances, low values are best. It can clearly be seen that

the distance measures produce a similar result to the ROC AUC measure, just upside down.

Weighted Pearson correlation (Figure 5.19b) is less sensitive to score rescaling, but Manhattan

and Euclidean measures (Figure 5.19d and Figure 5.19f) are expected to provide a more mean-

ingful result for use in ensemble methods (see Chapter 7) where the actual scores are used for

combination. In these two we observe an instability in the curve of the Simpli�ed LOF variant

with RMSD (which is essentially the LoOP method). This artifact, however, is neither caused

by the actual outlier detection method nor the evaluation method, but by the automatic score

distribution �tting process switching from a log-normal score model to a generalized extreme

value distribution model. By enforcing a log-normal model, this can trivially be resolved.

The di�erences between the di�erent similarity functions are not substantial: Manhattan visu-

ally has the lowest contrast, and Pearson correlation the highest, but there is no clear indication

to prefer one over the other. The linear and squared error of Manhattan respectively Euclidean

give these a theoretical bene�t, the built-in standardization of Pearson may on the other hand be

useful when the scores are not well normalized, and visually o�ers the better contrast. Also not

surprisingly, the weighted evaluation methods largely agree on the relative quality of the meth-

ods, as it can be seen in Table 5.3. Only the precision@k and average precision @k measures

divert substantially from the ranking of the methods on this data set. L1,Ω switches position 5
and 6 but with a score di�erence of just 0.0025.

However, a key bene�t of the new evaluation measures – as opposed to ROC AUC, and the

precision based measures – is that we can also compute the similarity of two di�erent results,

as previously seen in Figure 5.18, which not only computed the score, but also the pairwise

similarities. As seen there, LOF and Simpli�ed-LOF are highly similar, and so are the results of

kNN-Outlier and kNN-Weight. LDF is most similar to LOF: this is not surprising, as it uses a

capped kernel similar to LOF, and not an unbounded kernel, as the Simpli�ed LOF variations.

Figure 5.20 compares the similarities of methods across k = 2 . . . 20. In this plot, we can both

observe the high similarity between methods such as LOF and Simpli�ed-LOF, and the two kNN

methods. Surprisingly, LDOF is more similar to LOF in practice than the kernel density based

variation LDF.

We can also analyze the e�ect of di�erent distance functions on the results. In Figure 5.21 we

see the similarity of LOF results with k = 11 and di�erent distance functions. We start with

the Minkowski Lp family of norms. The results of these are highly similar, which comes at

little surprise (except for minimum distance, which did not work at all due to the sparsity of

the vectors – most vectors share at least one attribute that is 0 in both). For this particular

data set (with each vector having a sum of 1), some of the variants like histogram intersection
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Figure 5.20: Similarity of di�erent methods for di�erent values of k.

distance [SB91], Bray-Curtis distance [BC57] (closely related to the Sørensen–Dice coe�cient

[Sør48; Dic45] and Hellinger distance [Hel09]), Kulczynski-1 and Lorentzian distance return

next to identical results to Manhattan distance; this will however not hold for arbitrary data

sets. Minkowski distance with L0.8, sometimes called a “fractional” Lp-distance, is no longer

a metric, but it can be used with LOF nevertheless and on this data set works slightly better.

Cosine and covariance based metrics form another group that is highly similar; Pearson can

be seen as angle of the z-standardized vectors and is thus closely related. The next group con-

sists of di�erent divergence measures, which have a good theoretical foundation on histogram

data. Je�rey divergence and Jensen-Shannon divergence only di�er by a linear factor, and are

asymptotically equal to the χ2
measure [ES03]. Taking the square root of J-S-divergence will

yield a metric [ES03]. Canberra distance (which scored best in this experiment) is closely re-

lated Manhattan distance, but less scale sensitive (see Section 2.2) and Clark distance is a similar

modi�cation of Euclidean distance. Details on all distance functions can be found in literature

[DD06] and implementations are available in ELKI [Ach+13].
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Figure 5.21: Similarity of LOF results based on di�erent distance functions.

When desired, the similarity measure can also be split into two parts: one measuring the cost

on inliers only, and the other part measuring the cost on outliers. This may be bene�cial for

some use cases, but we have not yet investigated this in detail.

This capability of comparing di�erent results will be essential for Chapter 7 to improve outlier

detection ensembles by removing redundant results and improving ensemble diversity.



6 Generalization and Modularization

“
An idea is always a generalization, and generalization is a property of thinking.

To generalize means to think. — Georg Wilhelm Friedrich Hegel

”
“

Complexity that works is built up out of modules that work perfectly, layered

one over the other. — Kevin Kelly in [Flo95]

”
“

An abstraction is one thing that represents several real things equally well.

— Edsger W. Dijkstra [Cra07]

”
“

Everything should be as simple as possible but not simpler.

— Albert Einstein [Cra07]

”In the previous chapters, we have investigated a number of algorithms that are closely related,

and that try to solve the essentially same problem – detecting outliers – with di�erent, yet

similar, algorithms.

The di�erences between algorithms such as LOF, Simpli�ed-LOF and LoOP are hard to under-

stand, and the recent developments of adding a score normalization further add to this. In the

spirit of adding a normalization “module” to the existing algorithms, can we also represent them

in a modular structure that allows them to share such modules? It turns out that this indeed

works. We already used some of this modular structure in the previous chapters, for example

when we investigated the relationship of LOF to kernel density estimation in Section 5.1.3. In

this chapter we will introduce a formalism to describe an existing outlier algorithm as a series

of modules, and discuss how this modular structure allows the algorithms to be easily adopted

to di�erent data domains.

The di�cult challenge is �nding the right level of abstraction – as simple as possible but not

simpler – but still capable at representing the needs for outlier detection, and allowing it to

be easily applied to new domains. And yet: When we formalized this abstraction, it appeared

almost too simple and too general. To value the beauty of this result, we need to compare it to

the uncontrolled growth of outlier detection algorithms that have been published the previous

decade. It’s this abstraction that brings them together into variants of a general scheme, which

allows new recombinations and easy adaption to new problems.

“
Simplicity is a great virtue but it requires hard work to achieve it and education to

appreciate it. And to make matters worse: complexity sells better. The computing

industry is not the only one that has discovered that sore truth: so has the academic

world. — Edsger W. Dijkstra [Dij87]

”
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This chapter is based on the ideas of generalization published as:

E. Schubert, A. Zimek, and H.-P. Kriegel. “Local Outlier Detection Reconsidered: a

Generalized View on Locality with Applications to Spatial, Video, and Network Out-

lier Detection”. In: Data Mining and Knowledge Discovery (2012). doi: 10.1007/

s10618-012-0300-z

6.1 Di�erent Notions of Locality

In a rather general sense, the very nature of outlier detection requires the comparison of an

object with a set of other objects w.r.t. some property (e.g. the k nearest neighbor distance or a

density model). When comparing di�erent outlier detection methods, we �nd di�erent levels

of restriction of the set to compare with. Furthermore, the property to be compared is usually

also derived from the data set, taking into account, again, a set of other objects. Both sets, set

A from which to derive the property for an object, and set B to compare with, need not be

identical. We can name set A the context set for model building, and set B the reference set for

model comparison.

This decomposition has been implemented gradually (and probably only to a certain extent

intentionally) during the development of outlier detection methods as surveyed in Chapter 3.

Consider the fundamental statistical methods. They are modeling the complete data set by a

single distribution and judging an object basically by the probability of whether it could have

been generated by the corresponding model. In this case, both the model building set and the

reference set are the complete data set. The �rst approach to distance-based outlier detection

(DB-outlier) already considers the local neighborhood by means of a range-query but compares

the property thus derived with the complete data set. The same is true for k nearest neighbor-

related outlier models: the model building set are the k nearest neighbors while the derived

property is compared with the properties of the complete data set as a reference. Thus the

meaning of “locality” introduced in LOF [Bre+00] relates to the locality of the reference set as

well as the model building set. LOF uses the same neighborhood for both situations, but it could

easily be abstracted to use di�erent neighborhoods.

As opposed to the methods re�ecting k nearest neighbor distances, in truly local methods the

resulting outlier score is adaptive to �uctuations in the local density and, hence, intended to be

comparable over a data set with varying densities. The central contribution of LOF and related

methods is hence to enhance the comparability of outlier scores for a given data set.

Based on this fundamental distinction of (1) the context and (2) the method used for building

the model, (3) the context to use as reference and (4) the method used for comparison of models

of di�erent objects. Finally (5) a normalization step for the values (i.e., the outlier scores). Note

that we are only interested in unsupervised learning procedures, to highlight this restriction, we

name this also “building” or “computing” a model instead of “learning”, which usually indicates

a supervised approach.

http://dx.doi.org/10.1007/s10618-012-0300-z
http://dx.doi.org/10.1007/s10618-012-0300-z
http://dx.doi.org/10.1007/s10618-012-0300-z
http://dx.doi.org/10.1007/s10618-012-0300-z
http://dx.doi.org/10.1007/s10618-012-0300-z
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Figure 6.1: Work�ow.

Algorithm 1: Typical Algorithmic Schema of Local Outlier Detection.

Data: database O
foreach o ∈ O do /* STEP 1: model building */

select context(o) ; /* model building context (1) */

model(o) := buildModel(o, context(o)) ; /* model learning (2) */

end
foreach o ∈ O do /* STEP 2: model comparison */

select reference(o) ; /* comparison context (3) */

score(o) := compare(model(o), {model(r)}r∈reference(o)) ; /* comparison method (4) */

end
if normalization required then

foreach o ∈ O do /* STEP 3: normalization */

normalizedScore(o) := normalize(score(o)) ; /* normalization method (5) */

end
end

This general algorithmic scheme, as visualized in Figure 6.1, can accommodate many di�erent

outlier detection methods. Essentially, as the �gure suggests, we can group these �ve elements

in three algorithmically separable steps. First, the model building step assigns a model (or some
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simple property as, e.g., a distance or density value) to each object o ∈ O based on some set

context(o) ⊆ O. Second, the model comparison step compares the model of each object o ∈ O
with the models (built in the �rst step) of some set reference(o) ⊆ O. This step can be �gured

as omitted by simple methods just performing a ranking of the “models” (in this case usually

consisting of one-dimensional values like distances) retrieved in the �rst step – but the ranking

procedure can also be seen as comparison step with a global reference set. Finally, the score

retrieved in step 2 can be normalized (step 3). All these steps are performed on the given data

set in order to identify (possible) outliers in an unsupervised manner.

In order to describe the exact methodological approach which some outlier detection method

pursues, we therefore need to identify the procedures or de�nitions behind the method names

used in the framework (Algorithm 1): context, buildModel, reference, compare, and normalize.
Let us exemplify these methods considering the “local outlier factor” (LOF) [Bre+00], because

it is a well-known outlier detection algorithm and many variants have been based on this basic

approach. Also it uses most of these components. LOF uses the k nearest neighbors for both

context(o) and reference(o) of an object o. The density model used by LOF, “local reachability

density” was given in Equation 3.6, is based on this local context. The �nal score is then obtained

by comparing this density model to the neighbor density models as per Equation 3.7. The only

step not used in LOF is a global normalization. LoOP [Kri+09a], for example, is a LOF variation

that uses this additional step.

Some variants de�ne and use these building blocks in di�erent ways. INFLO [Jin+06] uses

more or less the same elements as LOF except for the reference set, which is de�ned as the

intersection of the k nearest neighbors and the k reverse nearest neighbors (i.e., the set of those

objects that list the query point among their k nearest neighbors). In the approach based on

reference points [PZG06], the model is computed in a similar way as in LOF but based on the

context of approximated k nearest neighbors (based on the neighbors of reference points) and

compared over the complete set of reference points. Also, they are implementing a normaliza-

tion. LOCI [Pap+03] is explicitly using two di�erent radii for the context and the reference set.

Approaches for outlier mining in high-dimensional data [e.g. AY01; Kri+09b; MSS10; Kri+12]

usually assess neighborhoods based on distances in subspaces.

Aside from choosing di�erent contexts and references for model building and model compari-

son, also the procedures of model building and model comparison can be quite diverse.

The model building step often is something as simple as using the object count in a particular

radius (as a simple estimation of density). However, there are also much more complex mod-

els possible. A statistical baseline approach is an EM-like �tting of a Gaussian (inliers) and

a uniform (outliers) distribution on the complete data set [described by TSK06]. Here, con-

text and reference set are global but the model de�nition is statistically re�ned. Opposed to

that, database-oriented approaches often try to simplify the model building for the sake of ef-

�ciency. ABOD [KSZ08], for example, computes the pairwise angles that local objects appear

under. This model is then condensed to a single feature, the variance of the angle spectrum.

LOF [Bre+00] assumes an OPTICS-like model [Ank+99] and estimates the density level at which

the point became a cluster member. LOCI [Pap+03] compares object counts for di�erent regions.
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LoOP [Kri+09a] models local Gaussian distributions and estimates density using the variance

of the resulting Gaussian distribution. LDOF [ZHJ09] computes the pairwise distances of local

neighbors, and reduces this to the mean value as single-valued feature. The de�nitions of out-

liers of [RRS00] and [AP02] (regardless of their algorithmic merits) di�er only marginally in

the model de�nition (distance to the kth nearest neighbor vs. aggregated distances for the �rst

k neighbors — this sum of distances provides a certain smoothing e�ect on the outlier scores

but essentially measures the same property).

While single-dimensional values such as distance or density can easily be used for ranking

directly, methods such as LOF [Bre+00] very successfully use more complex comparison meth-

ods. While the simple methods usually just take the maximum or minimum global value as the

most prominent outlier, the advanced methods usually use a “local” context again as reference.

LOF, for example, computes the quotient of the object’s reachability density and the average

reachability density of its neighbors. It thus no longer detects the globally least dense point as

outlier, but those that are signi�cantly less dense than their neighbors. This advanced model

comparison marks some of the so-called “local” methods as truly local. Examples for local meth-

ods, aside from LOF, are INFLO [Jin+06], reference point-based [PZG06], LOCI [Pap+03], and

LoOP [Kri+09a]. Let us note that LDOF [ZHJ09], though acclaimed to be local, is actually local

only in the context but global in the model comparison reference set. This example of a possible

misunderstanding of locality already demonstrates that a detailed scrutiny of the meaning of

“local” in outlier detection could be rather useful in order to better understand the scope and

contribution of di�erent methods. These di�erent notions – and complexities – of locality are

the core interest in the present study.

Table 6.1 gives an overview on some well-known outlier detection methods represented in this

framework. We list here only keywords or short terms reminding on the basic ideas of the listed

approaches which mostly have been already discussed in Chapter 3 and Chapter 5, to informally

identify the fundamental algorithmic building blocks of these methods for a �rst overview. We

will discuss the models behind these algorithmic building blocks in a more formal manner in the

subsequent section. Since the normalization step is not present in many of these examples, let

us note again that some methods to provide a normalization for those outlier detection models

have been proposed by [Kri+11]. Some methods (e.g., DB-Outlier) directly derive a label (outlier

vs. inlier) instead of performing some score normalization.

In summary, the identi�ed common algorithmic scheme for local outlier detection consists of

the following components:

1. Context: a “local” context of an object o for model building (context(o))

2. Model: the method used for building the model

3. Reference: a “reference” context of object o for model comparison (reference(o))

4. Comparison: the method used for model comparison

5. Normalization: a (global) normalization procedure

These are the common algorithmic building blocks of local outlier detection approaches and

they enable us at the same time to see global approaches as special cases of local approaches
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Table 6.1: Overview: local outlier methods.

Method

Context Model

Reference Comparison

Normalization

Outlier EM

[TSK06]

global EM-�tting of two models

(Gaussian vs. uniform)

global cond. prob.

DB-Outlier

[KNT00]

range object count

global threshold

kNN-Outlier

[RRS00]

kNN maximum distance

global descending

kNN-Weight

[AP02]

kNN sum of distances

global descending

LOF

[Bre+00]

kNN reachability density

kNN avg. quotient

INFLO

[Jin+06]

kNN reachability density

kNN ∩ rev.kNN avg. quotient

reference points

[PZG06]

k approx. NN density estimate

reference points descending

1− value
max{values}

LOCI

[Pap+03]

range r1 obj. count at any r < r1

range r2 quot. with avg.

LDOF

[ZHJ09]

kNN distances quotient

global descending

LoOP

[Kri+09a]

kNN 1/RMSD
kNN 1/RMSD

erf

LDF

[LLP07]

kNN Modi�ed KDE

kNN Scaled avg. quotient

ABOD

[KSZ08]

kNN angle variance

global ascending

High.-dim.

[AY01]

subspaces object count

global threshold

SOD [Kri+09b]

SNN-based kNN subspace model

global descending

subspace outlier

ranking

[MSS10]

adaptive range in subspace subspace density model

global, but subspace deviation from exp. density

dens.
dev.

if dev.> 1
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(and, as we will discuss in the following, spatial outlier detection and even outlier detection in

special data like video streams or network data can be seen as a specialization of this framework

as well). Though not every component is actually used or present in every instance of outlier

detection methods, many existing methods can be uni�ed using this algorithmic framework.

6.2 Formalized Analysis of Outlier Detection Models

Before we inspect specializations (Sections 6.3 to 6.5) of the algorithmic framework, we now

take a higher perspective and discuss a framework for formal analysis of outlier detection mod-

els (Section 6.2.1). We discuss common context functions, that are used to derive context sets

or reference sets (Section 6.2.2). Applying the framework, we then derive formal descriptions

of outlier detection algorithms, based on the successive execution of model functions (Sec-

tion 6.2.3). Based on this framework for formal analysis, we discuss in two case studies simi-

larities and di�erences among variants of LOF (Section 6.2.4) and improved understanding of a

complex method (Section 6.2.5). Finally, we show by means of dependency graphs in a formal

way the level of locality actually used in “local” outlier detection algorithms (Section 6.2.6).

6.2.1 Generalized Outlier Detection Model Framework

As we have seen in the analysis and generalization of existing work (Section 6.1), there are

reoccurring patterns in outlier detection. The most prominent pattern is the computation of

a model, based on a reference set of objects. Many established methods can be formulated

to apply this pattern twice, and the normalization step can also be formatted to follow this

pattern. As we will show here, this results in a general formal framework for analysis of outlier

detection models. Within the framework, we focus on the properties of outliers, not on the

actual computation of the scores. The formalization into multiple steps however allows the

construction of generic algorithms that usually are of the same (or lower) complexity than the

originally proposed algorithms.

In order to de�ne the general model, we �rst need to de�ne its basic components and building

blocks. Let O be the objects in the database uniquely identi�ed.

De�nition 6.2.1 (Context Function):
A context function ci is a function to the powerset P of O

ci : O → P(O)

that maps objects o to their context set ci(o) ⊆ O, usually objects that are considered to be

relevant for assessing the outlierness of o.

De�nition 6.2.2 (Intermediate Data):
For some value domain Vi, let Di(o) ∈ Vi with i = 0 . . . n be the intermediate data of step i
for object o, with D0(o) = o the initial data (identity map).
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De�nition 6.2.3 (Available Data):
Let the collected intermediate data Di(o) := {Dk(o)|k ≤ i} be the available data after step i.

De�nition 6.2.4 (Model Function):
A model function fi is a function

fi(o, ci(o),Di−1) =: Di(o),

where o is the current object, ci(o) is the context set of the object, Di−1(o) is the available data

before executing function fi, and Di(o) is the output (model) data for object o.

De�nition 6.2.5 (Algorithm step):
An algorithm step pi is the task of computing a model function for the whole database, and can

be formalized as:

pi : Di−1 7→ {D0, . . . , Di} = Di,

where the intermediate data Di is the output of fi for all objects:

Di := {o 7→ fi(o, ci(o),Di−1)}

Each step computes a new intermediate data set based on the existing intermediate maps and

the new data obtained by computing fi on all objects to obtain the new data set Di. When

executed in sequence, they transform the data as follows:

{D0}︸ ︷︷ ︸
=D0

7→p1 {D0, D1}︸ ︷︷ ︸
=D1

7→p2 {D0, D1, D2}︸ ︷︷ ︸
=D2

. . . 7→pi {D0, . . . , Di}︸ ︷︷ ︸
=Di

Executing the steps pi one after the other is called the canonical algorithm for computing the

outlier result.

De�nition 6.2.6 (Generalized Outlier Detection Model):
A generalized outlier detection model is a series of model functions and context functions

[(f0, c0), . . . , (fi, ci)] ,

such that Di : O → R is the map onto the objects’ outlier score.

Any outlier detection can trivially be captured in this model by using the outlier detection as an

arbitrarily complex function f0 with c0 = global being the full data set. In fact, the formalization

allows to use any computable function this way. However, in the following we will show that

we are able to model many well-known methods using much more primitive functions. Usually

functions of complexityO(1) orO(|ci(o)|), with a focus on analyzing the notion of locality used

in the analyzed methods.

De�nition 6.2.7 (Linear Generalized Outlier Detection Model):
A Generalized Outlier Detection Model is called linear, if and only if for each step pi = (fi, ci)
the complexity of fi is at most in O(|ci(o)|).
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The canonical algorithm implied by this formalization can then compute a linear generalized

outlier detection model in O(i · |O| · |ci(o)|) plus the time needed to compute the context

sets. This de�nition rules out using an existing complete, possibly complex, outlier detection

algorithm as algorithm step. Note that we do not impose a constraint on computing the ci, and

indeed many of the popular vector space methods will takeO(|O|2) time without index support

to compute all context sets and reference sets. However for graph data, the ci are part of the

input data, so it makes sense to treat the context set computation separately. To fully control

complexity, it may be desirable to put a limit on the context set size, for example by assuming

|ci| � |O|. However we will see a number of cases where it is more understandable to specify

the context set as global, even when the total computation is still linear in the number of objects

– for example when outlier scores are normalized. Therefore, this can only be used as a rough

estimation of the total complexity of the canonical algorithm, or this optimization of sharing a

computation among multiple observations as an optimization of the canonical algorithm. From

a mathematical point of view, in such a normalization step we do have a dependency of each

object to every other object. This captures the fact that a single object change in the data set

may change the normalization (for example by changing the minimum or maximum value). The

main motivation of the context set is to capture this dependency, not the algorithmic complexity.

Hence, we do not propose this formalization as a generalization of whatsoever outlier detection

models. Rather, the formalization allows to decompose many existing outlier detection models

in their simple steps and, by means of this decomposition, it allows to analyze many existing

methods and to state their similarities to each other or their essential di�erences and individual

merits. By extracting the simple building blocks, using the formalism also allows for simple

complexity analysis of the baseline algorithm given implicitly by executing the algorithm steps

one after the other.

Let us therefore emphasize that we are not actually proposing this general model as a new

method that is able to express everything, but as a means of analysis of existing (and future)
methods. Accordingly, in the following, we analyze existing methods by this formalization, in

order to survey important abstract outlier detection methods; then we relate this to special-

ized methods by demonstrating the applicability of the model to specialized notions of locality

(spatial data, video sequences, graph data) in Sections 6.3, 6.4, and 6.5reproducing the results

of state of the art methods in these quite diverse �elds with a straightforward baseline method

(built as composition in the formalized general outlier detection model).

In the following, we introduce a number of example functions that can be used to de�ne many

well-known outlier detection models in a uniform manner. The functions are summarized in

Table 6.2 (context functions) and Table 6.3 (model functions).

6.2.2 Fundamental Context Functions

The de�nition of the local context is essential for local outlier detection; however it is essentially

an input parameter to most outlier detection methods. Locality is commonly de�ned using

the k nearest neighbors for a given distance function d, a range query with a radius of ε, a
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Table 6.2: Common context de�nitions.

Context function De�nition

ranged,ε range query with distance function d and radius ε
kNNd,k k nearest neighbor query with distance function d
kNN′d,k k nearest neighbor query with d, excluding query object

k-distinctd,k k nearest distinct neighbors with distance function d
rkNNd,k reverse k nearest neighbor query with distance function d
SNNd,s,k k best with respect to the shared kNNd,s

global O (the complete database)

∅ the empty set

spatial spatial neighborhood (prede�ned)

prevk previous k objects (temporal)

Table 6.3: Common model functions.

Model function De�nition

count(o, c(o),D) |c(o)|
maxdisti,d(o, c(o),D) maxn∈c(o) d(Di(o), Di(n))
avgdisti,d(o, c(o),D) meann∈c(o) d(Di(o), Di(n))
pairdisti,d(o, c(o),D) 1

|c(o)|·(|c(o)|−1)

∑
n∈c(o)

∑
m∈c(o),m 6=n d(Di(n), Di(m))

lrdi,j,d(o, c(o),D) 1/meann∈c(o) max{Dj(n), d(Di(o), Di(n))}
meani(o, c(o),D) meann∈c(o) Di(n)
stddevi(o, c(o),D) stddevn∈c(o) Di(n)

fraci,j(o, c(o),D) Di(o)
Dj(n)

pdisti,d(o, c(o),D) λ
√

meann∈c(o) d(Di(o), Di(n))2

erf′i,λ(o, c(o),D) max

{
0, erf

(
1√
2

Di(o)

λ·
√

meann∈c(o)Di(n)2

)}
Utility function De�nition

meano∈O f(o) 1
|O|
∑

o∈O f(o) (arithmetic mean of f in O)

z(p, f, O) (f(p)−meano∈O f(o))/stddevo∈O f(o) (standard score)

spatial neighborhood based on graph adjacency or polygon adjacency, or a temporal context,

e.g. in terms of a sliding window. Sometimes, there are slight variations. For example the

k nearest neighbors may or may not include the query object itself, may consist of exactly

k neighbors (which might not be uniquely de�ned) or may include additional neighbors that

share the identical distance with the kth neighbor. We do not cover all of these variations here.

Some methods implicitly assume that there are no objects with a distance of 0, and may even

divide by 0 when there are more than k objects at distance 0.

Table 6.2 lists these contexts without a detailed formalization (which is trivial in these cases). For

completeness, we also include the complete database (denoted as global) or no objects (denoted

as ∅) as trivial contexts. This allows for an improved reuse of model functions and restricts the

number of required specializations.
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6.2.3 Fundamental Model Functions

The key building blocks of an outlier detection model are the model functions that compute

key properties. Many will output into the real number domain, although complex models such

as covariance matrices are possible. Here, we de�ne a number of commonly used functions.

Additional functions are summarized in Table 6.3. We loosely follow chronological order for

these methods, which largely re�ects their complexity as well. When these blocks are then

combined into outlier detection models, overlaps and similarities between models will become

visible.

The initial distance-based outlier (DB-outlier) de�nition by [KNT00] did not yet address “local”

outlier detection, but provided a binary decision based on a threshold on the relative number

of objects outside a given radius. By turning the density threshold at which a point would be-

come a DB-outlier into a score it becomes a ranking outlier detection method, as introduced by

[Kri+11].
1

While locality was not discussed explicitly, the dependence on the distance function

implies a certain degree of locality. When formalizing DB-outliers, the essential building block

is to count the number of objects within the query range (the context of the object), which will

be the �rst example for a model function:

De�nition 6.2.8 (Object Count Model Function):

count(o, c(o),D) := |c(o)|

De�nition 6.2.9 (Scoring DB-outlier):
Scoring DB-outlier [KNT00; Kri+11] is a linear generalized outlier detection model for distance

function d and range ε with

DB-Outlier(d, ε) =
[
(count, ranged,ε)

]
Instead of using the number of objects as a score, a di�erent way of turning DB-outliers into

a scoring method is to use the radius at which the number of neighbors would su�ce the DB-

outlier de�nition as score. For outliers, a much larger neighborhood would be required, for

inliers a smaller distance would be su�cient. [RRS00] formalized this notion of outliers, out of

which we extract the next model function, which computes the maximum distance to an object

of the context set:

De�nition 6.2.10 (Maximum Distance Model Function):

maxdisti,d(o, c(o),D) := max
n∈c(o)

d(Di(o), Di(n))

De�nition 6.2.11 (kNN-Outlier):
kNN-Outlier [RRS00] is a linear generalized outlier detection model for distance function d and

neighborhood size k with

kNN(d, k) = [(maxdist0,d, kNNd,k)]

1
This adaptation could also be considered “Schön�nkeling” (or, tastier, “Currying”) of the DB-outlier model.
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This work was then again generalized and extended by [AP02] to improve stability by taking

the average (or sum) instead of the maximum distance of the neighborhood:

De�nition 6.2.12 (Average Distance Model Function):

avgdisti,d(o, c(o),D) := meann∈c(o) d(Di(o), Di(n))

De�nition 6.2.13 (kNN-Weight):
kNN-Weight outlier [AP02] is a linear generalized outlier detection model for distance function

d and neighborhood size k with

AkNN(d, k) =
[
(avgdist0,d, kNNd,k)

]
Up to now, our framework was only able to represent the known two methods. The additional

combinations – computing the number of objects in the k-neighborhood and computing the

maximum distance within a �xed radius – were of little interest. This model function actually

allows us to consider an interesting new combination: Computing the average distance within

a �xed radius around an object could be a reasonable score, assuming that an outlier will likely

have less close and more distant neighbors. This method is however not very useful in prac-

tice, since the radius parameter is particularly hard to choose, and the value becomes unstable

when there are only few neighbors available. The combination by [AP02] with a �xed size

neighborhood is much more reasonable.

So far, the algorithms were essentially identical to the application of the model function onto

the context of an object. The �rst method known to use a more complex approach is the Local

Outlier Factor [LOF, Bre+00]. Instead of just computing a local score on the object itself, it

in fact computes a particular property – a density estimation – for each object; then again

compares these values within the local neighborhood. For modeling LOF we need a total of

four model functions, one of which we have seen before in De�nition 6.2.10: what is called k-

distance in LOF is essentially the maxdisti,d function that the kNN-Outlier method by [RRS00]

used. It serves a stabilizing role in LOF, and we will then discuss how it can be removed to

obtain a “simpli�ed LOF” method (which has actually been used – probably unintentionally –

in many approaches that allegedly were based on the original LOF idea, see the case study in

Section 6.2.4). The second model function of LOF computes a density model known as “local

reachability density” (c.f. Equation 3.6) and is the key component of LOF:

De�nition 6.2.14 (Local Reachability Density Model Function):

lrdi,j,d(o, c(o),D) := 1/meann∈c(o) max{Dj(n), d(Di(o), Di(n))},

where mean denotes the arithmetic mean operator and Dj is the maxdisti,d result obtained

before, while d is the distance function applied to the objects in Di.

The other two model functions required for the de�nition of LOF are very basic operations that

we will however see in many of the following methods, the computation of a mean value over

the neighborhood and a simple, context-free comparison step for simple numeric models by

computing the fraction:



6.2 Formalized Analysis of Outlier Detection Models 119

De�nition 6.2.15 (Mean Model Function):

meani(o, c(o),D) := meann∈c(o) Di(n)

De�nition 6.2.16 (Fraction Model Function):

fraci,j(o, _,D) :=
Di(o)

Dj(o)

These four model functions (De�nitions 6.2.10, 6.2.14, 6.2.15 and 6.2.16) can now be connected

together to form the LOF model:

De�nition 6.2.17 (Local Outlier Factor):
LOF [Bre+00] is a linear generalized outlier detection model for distance function d and neigh-

borhood size k with

LOF(d, k) =[(maxdist0,d, kNNd,k), (lrd0,1,d, kNNd,k), (mean2, kNNd,k), (frac3,2, ∅)]

Note the chaining of operations given by the indices on the operators: the maximum distance

is computed on the original data, the local reachability density uses the original data and this

maximum distance, the �nal step puts the density models only into relation with each other.

We will use this later to obtain a dependency graph representation of the models.

6.2.4 Case Study: Variants of LOF

For LOF, we have pointed out the often overlooked detail of the reachability distance. A vari-

ation commonly seen in LOF extensions is to drop the second model function of LOF and use

a much simpler density estimation instead, resulting in the following base model of a density-

quotient outlier model:

De�nition 6.2.18 (Simpli�ed Local Outlier Factor):
Simpli�ed-LOF is a linear generalized outlier detection model for distance function d and neigh-

borhood size k with

Simpli�ed-LOF(d, k) =[(1/maxdist0,d, kNNd,k), (mean1, kNNd,k), (frac2,1, ∅)].

In this baseline method, local density is estimated by the inverse of the k-distance, and the

combination of mean and frac forms the core of most algorithms that reference LOF.

Given that LOF is clearly distance-based and the article introducing the Local Distance-Based

Outlier Factor (LDOF) [ZHJ09] compares the algorithm to LOF, one would expect a strong over-

lap of these methods. Our representation shows that it actually is a variation of the Simpli�ed-

LOF: instead of taking the maximum distance, LDOF uses the avgdist model for estimating

the local density, and instead of the mean density it uses pairwise distances for estimating a

neighborhood density:
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De�nition 6.2.19 (Pairwise Distance Model Function):

pairdisti,d(o, c(o),D) :=
1

|c(o)| · (|c(o)| − 1)

∑
n,m∈c(o),m 6=n

d(Di(n), Di(m))

We can now combine these to form LDOF:

De�nition 6.2.20 (Local Distance-based Outlier Factor):
LDOF [ZHJ09] is a linear generalized outlier detection model:

LDOF(d, k) =
[
(avgdist0,d, kNN

′
d,k), (pairdist0,d, kNN

′
d,k), (frac1,2, ∅)

]
A di�erent kind of variation of Simpli�ed-LOF is In�uenced Outlierness (INFLO) [Jin+06],

which diverges from Simpli�ed-LOF by using a di�erent context set for its second model func-

tion:

De�nition 6.2.21 (In�uenced Outlierness):
INFLO [Jin+06] is a generalized outlier detection model for distance function d and neighbor-

hood size k with

INFLO(d, k) =[(1/maxdist0,d, kNNd,k), (mean1, kNNd,k ∩ rkNNd,k), (frac2,1, ∅)]

Another Simpli�ed-LOF variation that is more interesting for our framework since it introduces

a new kind of model function is the Local Outlier Probabilities model (LoOP) [Kri+09a], which

includes an additional normalization step based on the assumption that the quotient scores are

normally distributed (with a �xed mean). This step is interesting, because it involves the com-

plete data set as context for estimating the distribution parameter. Alternative normalization

functions that can directly replace this model function have been studied in detail in [Kri+11]

and are discussed in Section 5.3.

De�nition 6.2.22 (Error Function Normalization Model Function):

erf′i,λ(o, c(o),D) := max

{
0, erf

(
1√
2

Di(o)

λ ·
√

meann∈c(o) Di(n)2

)}

Additionally, LoOP uses a di�erent density estimation function, that assumes a half-Gaussian

distribution of the local distances:

De�nition 6.2.23 (Probability Density Model Function):

pdisti,d(o, c(o),D) := λ
√
meann∈c(o)(d(Di(o), Di(n)))2

De�nition 6.2.24 (Local Outlier Probabilities):
LoOP [Kri+09a] (see also Section 5.1.1) is a linear generalized outlier detection model:

LoOP(d, k, λ) =[(pdist0,d, kNNd,k), (mean1, kNNd,k), (frac1,2 − 1, ∅), (erf′2,λ, global)]
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Again, the second and third model functions are an easily recognizable pattern of Simpli�ed-

LOF. The �rst model function (the quadratic mean of the distance) and the fourth model func-

tion, which serves as global normalization step, are the key contributions of this method.

Another recent example for (unintentional?) use of Simpli�ed-LOF instead of the actual LOF

model is Projection-Indexed Nearest-Neighbors (PINN) [dCH10].

Thus, overall, this case study may demonstrate that a better understanding of the actually used

outlier model and the adopted notion of locality in some algorithm may help to reveal the

relationships, similarities, and di�erences between some approaches in the literature.

6.2.5 Case Study: Plot Models as Used by LOCI

A well known method that uses a more complex model – so far, all model functions in fact were

mappings onto the real numbers – is the Local Correlation Integral (LOCI) [Pap+03]. Where

LOF only used the maxdist function (De�nition 6.2.10) with a parameter k, LOCI uses a plot

consisting of radius/count pairs that give the number of neighbors within the given radius. We

represent these plots as a map with the signature r 7→ v, mapping a radius r to a value v. Again

we present a slight generalization of LOCI that instead of producing a binary result for a given

threshold (kσ in LOCI) produces a score representing the threshold value of kσ where the point

would become an outlier. Some �ne details such as the minimum radius rmin and minimum

neighborhood size n̂min were also omitted for brevity, as was the computation of interesting

values for r.

LOCI uses a – di�cult to grasp – interplay of two radii, r and αr. In general, the radius of αr
is used for density estimation, the radius of r is used as reference set. The �rst model function

for LOCI is the density estimation using the modi�ed radius. We deliberately assign it to the

radius of r to simplify the whole LOCI model, reducing the use of α to this single occurrence.

De�nition 6.2.25 (Density Plot Model Function):

denplot′d,α(o, c(o),D) := r 7→ |{n ∈ c(o) ∧ d(n, o) < αr}|

Similar to the mean function, these plots are averaged over their neighbor sets to obtain a type

of mean count integral, taking only those neighbors into account that are within the given

radius (the use of α now is hidden in Di).

De�nition 6.2.26 (Plot Mean Model Function):

plotmeani,d(o, c(o),D) := r 7→ meanp∈c(o)∧d(p,o)<rDi(p)(r)

The quantity denoted as σMDEF in LOCI is the corresponding standard deviation, normalized

additionally by the mean.
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De�nition 6.2.27 (MDEF Standard Deviation Model Function):

sigmdefi,j,d(o, c(o),D) := r 7→
stddevp∈c(o)∧d(p,o)<rDi(p)(r)

Dj(o)(r)

As we will be able to see below, the normalization is not needed, at which point we just have

the common standard deviation formula:

De�nition 6.2.28 (Plot Standard Deviation Model Function):

plotstddevi,d(o, c(o),D) := r 7→ stddevp∈c(o)∧d(p,o)<rDj(o)(r)

The comparison step is then another quotient function, resulting in the MDEF plot, by com-

puting the quotient of the object count to the mean object count, where lower values than 1
indicate outlierness.

De�nition 6.2.29 (MDEF Plot Model Function):

plotmdefi,j(o, _,D) :=r 7→ 1− Di(o)(r)

Dj(o)(r)

≡r 7→ Dj(o)(r)−Di(o)(r)

Dj(o)(r)

We carry out the equivalent simpli�cation as we did in De�nition 6.2.28:

De�nition 6.2.30 (Plot Delta Model Function):

plotdeltai,j(o, _,D) := r 7→ Dj(o)(r)−Di(o)(r)

The value is �nally normalized by taking the local MDEF standard deviation into account. Ap-

plying this function to the results of De�nitions 6.2.27 and 6.2.29 is equivalent to applying it to

the results of De�nitions 6.2.28 and 6.2.30:

De�nition 6.2.31 (Plot Fraction Model Function):

plotfraci,j(o, _,D) := r 7→ Di(o)(r)/Dj(o)(r)

LOCI considers points to be outliers based on their highest MDEF score, which can be turned

into a model function reducing the plot to a single score

De�nition 6.2.32 (Plot Maximum Model Function):

plotmaxi(o, _,D) := max
r
Di(o)(r)
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De�nition 6.2.33 (Local Correlation Integral):
LOCI [Pap+03] is a generalized outlier detection model:

LOCI(d, r, α) =[(denplot′d,α, ranged,αrmax
),

(plotmean1,d, ranged,rmax
), (sigmdef1,2,d, ranged,rmax

),

(plotmdef1,2, ∅), (plotfrac4,3, ∅), (plotmax5, ∅)]

An equivalent de�nition can be given using the simpli�ed formulas and standard functions:

De�nition 6.2.34 (Local Correlation Integral (equiv.)):
LOCI [Pap+03] is a generalized outlier detection model:

LOCI(d, r, α) ≡[(denplot′d,α, ranged,αrmax
),

(plotmean1,d, ranged,rmax
), (plotstddev1,d, ranged,rmax

),

(plotdelta1,2, ∅), (plotfrac4,3, ∅), (plotmax5, ∅)]

At this point, we do not only have a clear understanding what LOCI actually computes which

is much more di�cult from the formulas in the original publication. We can also see that it

does follow the common pattern of �rstly computing a local feature – here the mass of the

neighborhood for a radius αr, as per De�nition 6.2.25 – and secondly comparing the deviation

of this value from the value of its neighbors (this time with radius r) and normalizing it. Finally,

it does all this for a variety of radius values, using the maximum score obtained.

6.2.6 Dependency Graph and Order of Locality

Analyzing the outlier models we have seen so far in this uniform framework leads to the obvi-

ous question on how to make use of this structural knowledge. We have seen that the model

functions are shared among various algorithms, that we can do new recombinations such as

Simpli�ed-LOF, and that we can easily identify building blocks used in di�erent methods (which

is not always clear from the original publications). For example, kNN-Outlier detection is the

�rst model function of LOF, so when we are computing LOF we implicitly also compute the

kNN-Outlier score. Context sets such as the kNN context are used throughout the algorithms

and can sensibly be precomputed. In fact, all model functions (with the sole exception of LOCI)

that we have seen so far can then be computed in essentially linear time of the database size

(more precisely, most algorithms are in O(|O| · k) then), the expensive step in all of these

algorithms is the computation of the context set: computing the kNN of an object has the com-

plexity O(|O|2) when done naïvely and O(|O| log |O|) when an appropriate index structure is

available.

In the model functions as written in our de�nitions, we also implicitly denoted a dependency

graph that can help us analyzing the corresponding algorithms for e�cient implementation.
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Figure 6.2: Graphical dependency graphs for LOF variations. The relationship of LOF,

Simpli�ed-LOF and LoOP are easy to recognize, while LDOF di�ers much more.

The functions often have integer indexes that reference previous results, which directly encodes

the dependency graph. A dependency in this graph means that a model function fi uses the

intermediate data Dj produced by a model function j < i. In addition to the dependencies

between model functions, we also include dependency edges to the input data and context

functions. Figure 6.2 contains explicit dependency graphs of the methods LOF, LDOF, LoOP

and Simpli�ed-LOF. Model functions are represented as rounded boxes, while input dataD0 and

context functions are represented as ellipses. Let us de�ne the dependency graph formally.

De�nition 6.2.35 (Dependency Graph): Let G be the dependency graph of the algorithm de-

�ned by the relations:

(j ←− i) ∈ G⇔ fi depends on Dj

(j L99 cj) ∈ G⇔ fi depends on cj

Steps that do not depend on each other can trivially be computed in parallel (an example for

this situation can be found in Figure 6.2b for LDOF, where the avgdist and pairdist functions

can be computed in parallel).

From the dependency graphs depicted in Figure 6.2 it can be clearly seen that LoOP extends

Simpli�ed-LOF with the normalization step, while the similarity of LDOF to LOF is mostly in



6.2 Formalized Analysis of Outlier Detection Models 125

using the kNN and the frac function (as elaborated in Section 6.2.4). In Simpli�ed-LOF for

example, the frac function depends on the results of both the �rst and second model function

(which in turn depended on the �rst function). Since the fraction however has an empty set,

when implementing this method we can compute the second and third model function in a

single iteration over the data, without the need to store the intermediate result of the second

model function. We can unfortunately not apply the same trick to the �rst model function:

the second function needs its value for more than one object at a time. When we choose to

combine the two functions into one, we will have to invoke the �rst function much more often

(if the kNN contexts are precomputed, it is of course a�ordable to recompute the maximum

function). This analysis shows us two di�erent strategies for evaluating Simpli�ed-LOF (and

most similar methods): If we precompute the kNN contexts, we can essentially compute the

LOF outlier score in a single pass over the data set. If we cannot a�ord the precomputation due

to storage costs but are able to store the intermediate results of the model functions, we can still

avoid extensive kNN computations. Only when we have extremely little memory available, we

may need to compute the kNNs of kNN by evaluating the whole outlier model for each point

independently.

Another analysis that we can perform on this graph is to determine a notion of locality com-

plexity of an outlier detection model:

De�nition 6.2.36 (Order of Locality of a Path):
Given a Generalized Outlier Detection Model [(f0, c0), . . . , (fn, cn)] and its dependency graph

G = {(i← j)}. Then the order of locality of a path L(ak ← ak−1 ← . . . a1) with ai ∈ {1 . . . n}
is de�ned as:

L(aj) :=

{
0 i� caj ∈ {∅, global}
1 otherwise

L(ak ← ak−1 ← . . . a1) := L(ak) + L(ak−1 ← . . . a1)

De�nition 6.2.37 (Order of Locality of a Model):
Given a Generalized Outlier Detection Model [(f0, c0), . . . , (fn, cn)] and its dependency graph

G = {(i← j)}, the Order of Locality of the model is de�ned as the maximum order of locality

of all paths in the model.

Based on this, we can obtain the order of locality of the analyzed outlier models. We give some

examples here:

Proposition 6.2.1 (Order of Locality of kNN-Outlier):
The order of locality of the kNN-Outlier model [RRS00] is 1.

Proof. Prop. 6.2.1 follows directly from Def. 6.2.37 and Def. 6.2.11. ut

Proposition 6.2.2 (Order of Locality of LDOF):
The order of locality of the LDOF outlier model [ZHJ09] is 1.
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Proof. Prop. 6.2.2 follows directly from Def. 6.2.37 and Def. 6.2.20. ut

Proposition 6.2.3 (Order of Locality of Simpli�ed-LOF):
The order of locality of the Simpli�ed-LOF outlier model (Def. 6.2.18) is 2.

Proof. Prop. 6.2.3 follows directly from Def. 6.2.37 and Def. 6.2.18. ut

Proposition 6.2.4 (Order of Locality of LoOP):
The order of locality of the LoOP outlier model [Kri+09a] is 2.

Proof. Prop. 6.2.4 follows directly from Def. 6.2.37 and Def. 6.2.24. ut

Proposition 6.2.5 (Order of Locality of LOF):
The order of locality of the LOF outlier model [Bre+00] is 3.

Proof. Prop. 6.2.5 follows directly from Def. 6.2.37 and Def. 6.2.17. ut

These �ndings align with our intuition that LOF takes locality more into account than the other

models, and re�ects the simpli�cation of Simpli�ed-LOF. This bears repercussions for the order

of locality of all outlier models that pretend to be a variant of LOF but actually are based on

Simpli�ed-LOF (as discussed in Section 6.2.4).

Let us note that these �ndings do not state any superiority of LOF. We do not imply that “more”

locality is “better” in any way. But we state that methods of di�erent orders of locality model

outliers in truly di�erent ways. This should be recognized and taken into account when using

these models (be it for applications or as role models for adapted outlier detection models). In

the following, we show application scenarios, where the notion of locality is adapted to make

basic outlier models suitable for complex data.

6.3 Locality and Spatial Outliers

Spatial outlier detection has grown as a �eld of its own interest over several years [Ans95;

SLZ03; LCK03; KLC06; SC04; CS06; LLC10; CLB10]. A key result of [Ans95] is the general-

ization of the global spatial association statistics Moran’s I [Mor50] and Geary’s C [Gea54] to

individual contributions denoted as the local Moran Ii and local Geary Ci, then using a statis-

tical test to identify strong contributions. Additionally the Moran scatterplot was introduced,

which plots the locally standardized attribute value against the globally standardized attribute.

In this plot, objects close to the regression line indicate consistency with the trend, whereas

objects in the upper left and bottom right areas appear di�erent on local and global scales. This

concept of comparing local with global scores can be found in many newer methods in slight

variations, others however just use the local scores proposed here directly or with only slight

modi�cations.
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The idea is to separate spatial attributes from other attributes, compute the neighborhood w.r.t.

the spatial attributes solely but compare the non-spatial attributes only to derive a notion of

outlierness. Most of these methods use a local neighborhood based on the spatial attributes

solely in order to extract a score (the simplest type of model) for the object using the non-

spatial attributes only. Many methods can just process a single non-spatial attribute, and there

are rather few methods that use a model more complex than a preliminary score or a non-trivial

comparison step, but we will highlight some examples in this section.

With our framework, this notion of spatial outliers can be implemented quite easily and straight-

forward. Actually, even some methods that at �rst appear to follow an entirely di�erent ap-

proach can be rewritten to follow this schema, sometimes even signi�cantly improving both

the understanding and performance of the algorithm.

6.3.1 Data

For the experiments we used the US Census data
2
, which are available at various granularities.

For the population data, we used the Census County Subdivisions level, which often subdivides

counties in particular in densely populated areas resulting in 36, 351 objects. The partitioning

is based on administrative regions which occasionally do form a grid but also often follow

geographical boundaries such as rivers. We analyzed the ethnic group attributes consisting

of 5 dimensions representing ethnic groups in the population that approximately sum up to

1.0 (people may belong to multiple ethnic groups). There are many more attributes available,

but these may require specialized algorithms and extra normalization; 5-dimensional normal

vectors is a data type algorithms can be expected to work well with. Since some algorithms

are not performing that well and may only be able to analyze single attributes, we additionally

used a data set representing land use homogeneity at a county level containing 3, 109 records

derived from satellite imaging.
3

For the third data set we use unemployment rates in Germany
4

again at a county level. The data set has a single dimension, 412 records ranging from 2.2 (full

employment) to 18.3 with a median value of 7.0 and a skewed distribution.

6.3.2 Neighborhood in Spatial Outlier Detection

Most algorithms use the k nearest neighbors in the spatial attributes as neighborhood set, be-

cause of the uniform size. When polygon data are available, polygon intersection and shared

borders (also known as the “meets” relation, in line with Allen’s Interval Algebra) are obvious

choices, that may however result in objects such as islands not having any neighbors at all,

or just a single neighbor when e.g. a city is contained within a single county polygon. Rarely,

more complex notions of neighborhood are encountered such as Voronoi cells as proposed e.g.

2
Available at the U.S. Census Bureau, United States Department of Commerce. http://www.census.gov/

3
Available at the Arizona State University GeoDa Center, http://geodacenter.asu.edu/

4
Available at Statistisches Bundesamt Deutschland, http://www.destatis.de

http://www.census.gov/
http://geodacenter.asu.edu/
http://www.destatis.de
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Figure 6.3: Neighborhood Graph in Google Earth.

Background © 2011 Google.

by [LLC10]. In the latter two cases, it can be desirable to expand the neighborhood to the t-fold

transitive of the original relation to obtain a sensible neighborhood size. Figure 6.3 shows a

1-neighborhood graph for the high resolution census data set. Neighborhoods can for example

be de�ned using length-limited paths in this graph. Occasionally, measures obtained during

computation of the neighborhood (such as shared border length and distance) can be reused

for weighting in the model generation phase.

Often, the de�nition of the actual neighborhood is part of a proposed method. It is, however,

obvious that the choice of a concrete method for neighborhood computation will have a huge

impact on the results of any spatial data mining method and hence should be considered inde-

pendently from the algorithmic approach and the outlier model. In the following, we discuss

the properties of models and comparison methods as well as the impact of using a local or a

global context and reference irrespective of the de�nition of spatial neighborhood (we use the

same de�nition of spatial neighborhood for all methods in the evaluation). For the US census

data, neighbors are de�ned using polygon adjacency expanded to 5 steps for census county

subdivisions (which often are very �ne-grained) and 3 steps for county level. For the data set

on Germany, we also used 3 steps at a county level.

Neighborhood computations, all compared methods, and our generalized and adapted methods

are implemented in the ELKI framework [Ach+11; Ach+12].

6.3.3 Models in Spatial Outlier Detection

The common model used in spatial outlier detection is a deviation score, where the non-spatial

attribute value(s) of an object are compared to the attributes of the neighbors. For example,

[SLZ03; LCK03] propose various simple statistics such as the quotient of the attribute value
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and the neighbors’ attribute mean, the di�erence of the attribute value to this mean, and the

standardized deviation of the attribute value from the neighbors’ attribute median. [KLC06] ex-

tend the model to the di�erence from a weighted mean normalized as z-score and the weighted

mean di�erence (without normalization). However, the model is then (in some of the proposed

methods) iteratively re�ned by replacing attribute values with their expected value, making

the result of the algorithm much less predictable. As such, there is no formal de�nition of what

actually constitutes an outlier for these methods, except the given algorithm.

In other cases, the model is less obvious: POD [KLD07] is described as a graph-based method.

For each object, the k nearest neighbors are determined, which are used as edges of a graph.

The weight of each edge is based on the similarity of the non-spatial attribute. The edges

are managed in a global priority queue, and are successively removed until some objects be-

come isolated, which are returned as outliers. The complexity of the algorithm is given as

O(kn log(kn)) due to managing the priority queue of size kn.

However, this algorithm can be transformed into our framework easily. In essence, the edges

are processed by their length, longest �rst. An object becomes an outlier, when the last edge

is removed. The other edges essentially do not play any role, and do not need to be managed.

Therefore, we chose to model each object by its shortest edge – a very simple local score –

and obtain the same ranking. Instead of managing the complete priority queue, we can directly

compute the length at which an object becomes an outlier. By comparing these lengths globally

we obtain the identical ranking, and the topm results equal those of POD. The runtime however

is reduced toO(n log n), dominated by performing one kNN query for each object. Most of the

outlier detection algorithms have this complexity, since the model generation and comparison

steps usually are much faster than a kNN query.

These examples show how using the framework allows for a deeper understanding of the al-

gorithms’ actual results (including a more formal de�nition of what constitutes an outlier) as

well as a canonical way of computing the results that is usually cheaper than computing the

neighborhoods.

In Table 6.4, we give a summarized overview of the models used by various spatial outlier

detection methods proposed. We use a number of shorthand notions for brevity such as π(p)
for the non-spatial projection of an object, ωn for a weight assigned to a neighbor, EN (. . .) for

the expected value (usually the mean), and z-score, i.e., z(x) := x−µX
σX

, for the standard score

normalization that assumes a normal distribution.

It is fairly obvious that most methods compute a simple local statistic such as the mean devia-

tion, then try to normalize and compare these values on a global level out of necessity. However,

they often lack motivation for their choices, and the methods in total o�er little beyond the

classic work of [Ans95]. The similarities between the methods have not been properly studied

before and the users are essentially facing a variety of algorithms without indication of which

is the most appropriate for them. The evaluation which just lists a number of example outliers

detected is not very helpful here either, especially since many of these outliers may well be
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Table 6.4: Locality and Models in Spatial Outlier Detection.

method

context, model function,

notesreference comparison function,

normalization (optional)

Local Moran

[Ans95]

Matrix

∑
N ωnπ(p)π(n)

Spatial autocorrelationglobal with

∑
π(p)π(n)

z-score

Local Geary

[Ans95]

Matrix

∑
N ωn(π(p)− π(n))2

Spatial autocorrelationglobal with

∑
(π(p)− π(n))2

z-score

z-statistic

[SLZ03]

kNN π(p)− EN [π(n)]
global threshold

|z-score|
iterative r
[LCK03]

kNN π(p)/EN [π(n)] or inverse iteratively updated:

π(p) = E(π(n))global threshold

iterative z
[LCK03]

kNN π(p)− EN [π(n)]
iteratively updated:

π(p) = E(π(n))
global threshold

|z-score|

median

[LCK03]

kNN π(p)−medN [π(n)]
global abs. descending

|z-score|

weighted z
[KLC06]

kNN π(p)−
∑
N ωnπ(n)

global abs. descending

|z-score|
avg. di�

[KLC06]

kNN

∑
N ωn|π(p)− π(n)|

global descending

POD

[KLD07]

kNN minN{|π(p)− π(n)|}
ine�cient graph-based

alg.

global top-k
label

SLOM

[CS06]

spatial trimmed mean distance d̂ largest distance ignored

spatial
d̂

mean(d̂)+1
∗ β β oscillation measure

global descending
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(a) Z-statistic [Ans95; SLZ03]
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(b) Median [LCK03]

Figure 6.4: Moran scatterplots with outlier scores for US Census land use data (basic methods).

global outliers as well (such as Soldier Summit, Utah, which is a ghost town and thus obviously

has uncommon rent and population values already on a global level).

6.3.4 Experimental Comparison of Spatial Outlier Scores

In Figure 6.4, we visualize the results for z-statistic-based methods (comparing local and global

z-scores) of [Ans95; SLZ03; LCK03] in relation to the raw z-scores in a Moran scatterplot. The

x-axis is the global z-score, the y-axis the local z-score. Globally unusual objects are on the left

and right side, locally unusual objects (by their z-score) are on the top and bottom. The color is
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determined by the outlier score. The results of both methods are closely related and are essen-

tially the deviation from the diagonal. The imbalanced nature of the actual data distribution –

which apparently is not normal but skewed – seems to a�ect the algorithm performance. Fig-

ure 6.5 contains some of the more advanced methods, including SLOM [SC04; CS06] but also,

using our framework, the canonical adaptations of LOF [Bre+00] and LDOF [ZHJ09] to the spa-

tial domain. The results di�er much more from the z-score than the median-based method in

Figure 6.4b, which produced mostly the same results as the original z-score. SLOM results here

show noise in the range of low scores from 0 to 0.2, and no objects are assigned a particularly

high score. The adaptations of the traditional outlier detection methods o�er a much better

contrast and seem to �nd more interesting outliers, such as the objects around (0.4,−1) that

are slightly above the global mean, but around one standard deviation below their neighbors

mean. By de�nition, LOF and LDOF only detect outliers that are towards the bottom right area,

but can trivially be adapted to detecting the type of outliers in the upper left or both by using

the inverse ratio.

Figure 6.6 compares di�erent algorithms on this data set, assessing the correlation between

the resulting outlier scores. The relationship of LOF and LDOF is surprisingly linear, while z-

statistic and LOF diverge much more. SLOM interestingly seems to di�er mostly from z-statistic

for low scores. These probably are the points in the upper left area of the Moran scatterplots

that are not outliers by the LOF-style de�nition used.

In summary, we see here that the implementation of a spatial neighborhood does not make a

method local in the strict sense of using locality not only for model building but also for model

comparison. Making spatial outlier detection truly local remains as a possible improvement for

a broad range of existing methods.

In Figure 6.7, we show some example analysis of the unemployment rates for 2009 in Germany

on a county level. The classic z-statistic is not very convincing on this data set. It detects

only two strong (both of which are global outliers) and some less strong outliers that cannot be

easily explained. SLOM performs better and detects some additional outliers. However, as with

z-statistic, only two of them are signi�cant: the harbor city Bremerhafen next to Bremen, and

the small city of Pirmasens close to France, where the ongoing demise of the shoe producing

industries along with the closing down of a US military base have caused the unemployment

rates to skyrocket. The LOF adaptation in our framework performs very well, detecting much

more interesting additional outliers (and all of the outliers mentioned above). For example, it

detects the city of Munich as an outlier. While the unemployment rate for Munich was just 6%
– an excellent value for a big city, the median in this data set is 7% – this is twice as much as

that of the surrounding counties. This is a prime example of a local outlier, with a very normal

value on the global scale, but a strong divergence compared to the local neighbors. It is this

kind of outliers that we expected all the algorithms to discover.

Figure 6.8 gives a detail view of the outliers detected for Bavaria. Most city regions here show

up as outliers, which is correct since they usually have a signi�cantly higher unemployment

rate than the rural areas in Bavaria (largely because unemployed people tend to move to the

cities where much more new job opportunities are created, while people with safe jobs tend to
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buy houses in the rural areas outside of the cities). But there also is an interesting case in which

this rule of thumb does not hold: the city of Ingolstadt is with 4.8% rather close to the Bavarian

average of 4.5%, and indeed it does not achieve a high outlier score. The region of Eichstätt –

a much larger, rural area not far north of Ingolstadt – however has so called full employment

with just 2.2% unemployment rate (and as many open positions as unemployed people). The

reason for this excellent score however is located in Ingolstadt: the car manufacturer Audi is

doing very well and hiring many people, which can a�ord to move to nice homes outside of

the city in Eichstätt. So while this gives Ingolstadt a score typical for this area of Bavaria, it

brings Eichstätt to this unusually low score. Note that none of the other methods managed to

rank Eichstätt highly. The observed trend of cities showing up as outliers does not hold for

all of Germany. In eastern Germany, Dresden and Chemnitz for example are well-aligned with

the surrounding areas at around 12%. Hannover also is with 9.3% just slightly higher than the

surroundings at around 8.5%.

Overall, we see again that the concept of locality (that does not necessarily come along with

selecting spatial neighbors for model building) can considerably improve the results of outlier

detection.

6.3.5 SLOM as a Special Case of Local Outlier

To return to our formal analysis, we also show the dependency graph for the spatial LOF adap-

tation in Figure 6.9. Compared to Figure 6.2a the only di�erences are that we are using spatial

neighbors as reference set, and we added a normalization step from [Kri+11] using a Gamma

normalization. A similar normalization was also added to the comparison method for visualiza-

tion purposes. This adaptation of the classic LOF method to spatial data is leading to interesting

observations on outlier rates, while the raw numbers just depicted the well known di�erence

between Western and Eastern Germany and that the southern states are doing much better eco-

nomically. The other spatial outlier detection methods primarily produced the counties with

the highest unemployment rates, which are global outliers.

To study the impact of the use of locality in the reference set for model comparison, we design

two base-line methods: For a �rst, simple method, we measure the deviation from the mean

vector of the neighbors and compare this on a global level. For the advanced method, we add

the second type of locality and subtract the mean deviation of the neighbors. The setup is also

detailed in Table 6.5 and their dependency graphs are shown in Figure 6.10. As a reference, we

compare these two straightforward formulations of the general framework for spatial data with

SLOM [SC04; CS06], one of the more renowned approaches in this family which analyzes the

spatial neighborhood beyond a simple statistic by computing the so-called oscillating parameter

β, which grows when the local distance distribution is skewed and the mean is not central.

Figure 6.11 is the dependency graph visualization of this method. It consists of a trimmed-mean

average distance (the maximum distance is not included) denoted as d̂ and the aforementioned

stability parameter β. These functions are given as pseudo codes in the SLOM article, and for



134 6. Generalization and Modularization

Table 6.5: Spatial Outlier as Special Case of Local Outlier.

method

context model

reference comparison

normalization

SLOM

[CS06]

spatial trimmed mean distance d̂

spatial
d̂

mean(d̂)+1
∗ β

global descending

simple spatial

spatial dev. from mean vec.

global descending

erf

advanced spatial

spatial dev. from mean vec.

spatial dev. from mean dev.

erf

some of the terms in the formulas little reason is given, except, for example, to avoid division

by 0 by always adding +1 to the divisor.

We compare the results of these baseline methods and SLOM on the US Census ethnic groups

data (using 5 attributes), as visualized in Figure 6.12 using a Google Earth overlay. While the

strongest outliers are not a�ected much by using the locality in model comparison, it clearly

stabilizes the results in the Mississippi delta area and improves contrast in general. The contrast

of outlier scores in our method is also a lot better than in SLOM, where the highest achieved

score is just 0.91, and we had to boost the contrast manually for the visualization.

The main outliers detected by all three methods are comparable, and not very surprising. They

usually fall into one of three categories: Indian reservations, invalid or incomplete data (there

are records with no inhabitants), and small towns. Larger cities are usually not considered

outliers. Instead they are split into multiple Census subdivisions that in turn are similar. Only

occasionally, one of these subdivisions is recognized as being dissimilar, e.g., when there is a

large (and local) Asian community. While the Indian reservations can be seen as global outliers

and are recognized easily on a global level, outliers such as the “Space Center CCD” in Florida

are not atypical on a global scale. However it is a local spatial outlier, since it contains a wide

mixture of ethnic groups while it is located in a predominantly Caucasian area of Florida.

To summarize: we basically reproduce the results of SLOM with a rather simple and e�cient

setting (advanced method) in terms of the identi�ed outliers and we even improved the stability

and contrast of the actual outlier scores. However, the model constructed is a simple two-

stage “di�erence from mean” approach that is very straightforward and easily comprehensible

compared to the SLOM pseudo code. Regarding the order of locality, we also see the impact of

using second order locality where the advanced method produces much more stable and useful

results than the simple (�rst order) method. As well, we see the impact of third order of locality

(the spatial adaptation of LOF) over the second order of locality used in SLOM.
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6.3.6 Univariate vs. Multivariate Outlier Analysis

In comparison with recent non-spatial outlier detection algorithms, what is noticeable about

spatial outlier detection algorithms is that they are in most cases only able to perform a uni-

variate, not a multivariate statistical analysis of outliers. Most approaches focus on data that

consist, aside from the spatial coordinates, of a single non-spatial attribute. For many methods

it is obvious or conceded that they are only capable of performing a univariate analysis [e.g.

KLD07; SLZ03; LCK03; KLC06]. Furthermore, the univariate analysis used in most of these

methods is rather simple and is covered by classic statistics as discussed in Section 1.2. Only

some methods [SC04; CS06] are obviously applicable in the multivariate case though they do

not care to demonstrate or even to state that they are.

Let us �nally point out that the application of our general framework to the task of spatial

outlier detection allows to transfer all the achievements of multivariate outlier detection given

in traditional outlier detection research since it is easy to apply a traditional model to spatial

data as a special case (as we demonstrated) by means of an adapted notion of locality.

6.4 Locality in Video Streams

The multimedia community analyzing video sequences is interested in a lot of di�erent ques-

tions like, e.g., key-frame extraction and storyboard display [MA08; KK10], shot or scene change

detection [HNB03; Lee+04], or detection of continuity errors [PZ09]. In this application exam-

ple, we do not aim at covering such a wide range of goals but just to demonstrate the �exibility

and usability of the general outlier detection framework to adapt to highly specialized tasks.

To this end, we examine video sequences, de�ning for each video frame the previous 12 frames

(0.5 seconds) both as local context and as reference set as you would do in a streaming context.

Frame similarity is measured using color histograms in hue, saturation and brightness (HSB)

space with quadratic form distance to capture color similarity (texture and edge features are

not used for this experiment).

From the local context, the root mean square distance (RMSD) to the previous frames is com-

puted:

De�nition 6.4.1 (Root-Mean-Squared-Deviation Model Function):

RMSDi,d(o, c(o),D) :=
√

meann∈c(o) d(Di(o), Di(n))2

This model function is meant to capture “image instability” and is visualized in the �rst row of

Figure 6.13.

Our intended video outlier de�nition is based on a sudden increase of instability. This can now

be modeled using two simple additional model functions: the �rst computes the maximum
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over the context set, the second one the increase over this maximum. These two can trivially

be combined into one model function, we chose however to split them to show reusability of

components. Finally, we also add a normalization using erf .

De�nition 6.4.2 (Maximum Model Function):

maxi(o, c(o),D) := max
n∈c(o)

Di(n)

De�nition 6.4.3 (Increase Model Function):

inci,j(o, c(o),D) := max {0, Di(n)−Dj(n)}

De�nition 6.4.4 (Video Outlier Detection):
Video outlier detection is a generalized outlier detection model for distance function d and

neighborhood size k with

VideoOutlier(d, k) =[(RMSD0,d, prevk), (max1, prevk), (inc1,2, ∅), (erf3, global)].

The advanced method is adaptive to very di�erent situations. The results were not re�ned and

could further be improved by locating local maxima only. However, this naïve approach was

surprisingly e�ective, in particular since the only parameter is the size of the time window

used.

Figure 6.13 consists of three rows. The �rst row shows the local RMSD, the second row shows

the derived outlier scores. The third row contains human-made annotations to the video that

indicate single-frame events (crosses) and multi-frame transitions (boxes) with varying sever-

ity. The news clip is from a public television news summary, consisting of various short scenes.

Most of the annotated events capture switches between di�erent news items, sometimes with

transitions or the occasional fast camera pan. Let us discuss some of these events in detail. The

region marked as A is actually a still image (a black and white archive picture of the movie

director Bernd Eichinger who deceased January 24th 2011). When zoomed in closely, there is

a periodic signal to be seen here, which is caused by the keyframes of the video stream com-

pressions. Many of the non-annotated spikes for example at the locations marked with K can

be attributed to image quality changes due to keyframes. The �rst K is in a press conference

setting. At the last two marked locations, the keyframe event is clearly less signi�cant than the

true event shortly after. We marked some camera pans with a P . While they show a strong

variance in the upper plot, they are not recognized as outliers in the second plot. These cam-

era pans start slowly; therefore the increase in variance is only gradual. The three adjacent

boxes labeled asB form a complex three-part transition. First the heading is removed; then the

scene transition happens; then the new heading is added. Two frames of the main transition

are shown in Figure 6.14. C is a typical scene change within the news item, causing an abrupt

change with only a “ghost image” in the �rst frame, a typical example of the top outliers de-

tected. Two consecutive frames are shown in Figure 6.14. A fast camera pan event with light

changes can be seen atD. Additionally the high level of detail blurs with the video compression,
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and again keyframes show up as outliers within this high-activity region. The simpler variance

detection shows the high overall variance, the second row shows that the improved method

actually recognizes individual key frames. Two frames less than a second apart are shown in

Figure 6.14. A true outlier we only annotated in the second pass is found atE. We had �rst only

skipped through the clip to mark scene changes. But when investigating this outlier, there is a

clear reason to acknowledge it: the scene is a press conference, and the detected outlier frame

is caused by a photographers �ash. There is a clear color change, but it is still less severe than

in a scene change. Again, two consecutive frames are shown in Figure 6.14.

6.5 Locality in Network Outliers

As another application example, we refer to the ideas and modeling of community outliers as

presented by [Gao+10]. For their community outlier detection algorithm (CODA), they used EM

to both learn community assignments and outliers in the data set at the same time, whereas we

focus on detecting the outliers directly within their neighborhood context. In the data set based

on a selection of conferences and journals listed in DBLP
5

data, the goal is to identify outlying

conferences and authors.

For the selected conferences and journals, we extracted all publication titles, applied the to-

kenizer and word stemmer from the text search engine software Xapian
6

and produced term

frequency vectors. Orthogonally, we extracted all the participating authors, considering every

author a term directly. Since DBLP data are normalized, we do not have to take care of di�er-

ent spellings ourselves. We used the common TF-IDF normalization to weight down common

words and ubiquitous authors as well as cosine similarity to compute the similarities.

With the small data selection of 20 conferences (DBLP 20) as described by [Gao+10], we were

able to retrieve the same results as CODA: the conferences CVPR and CIKM were identi�ed as

the top outliers by a simple LOF-based approach. We use the same components as LOF, but this

time only modify the context functions (using r1 = titles, r2 = authors):

De�nition 6.5.1 (Bipartite Local Outlier Factor):
Bipartite local outlier factor is a generalized outlier detection model for distance function d and

neighborhood size k and two relations r1 and r2 with

BipartiteLOF =[(maxdist0,d, r1kNNd,k), (lrd0,1,d, r1kNNd,k), (mean2, r2kNNd,k), (frac3, 2, ∅)].

The same outliers were already analyzed by [Gao+10] as being community-outliers since both

conferences bring together di�erent research communities: CVPR draws on computer vision,

arti�cial intelligence, and machine learning, while CIKM attracts data mining, information re-

trieval, and database people. Unlike the other conferences, it is hard to pin them down to one

5
Digital Bibliography & Library Project, http://www.dblp.org/db/

6
Xapian search engine library, http://xapian.org/, GPL

http://www.dblp.org/db/
http://xapian.org/
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Table 6.6: Top 10 outliers in DBLP 50 data set.

Conference Score Notes

EXTREME 0.970 small XML conference

DAGSTUHL 0.968 multi-topic, multi-language

APWEB 0.965 Asia-Paci�c community

BTW 0.903 German-language database community

WIDM 0.902 web data mining

SSDBM 0.891 sub-community

JBCB 0.875 bioinformatics journal

TCBB 0.863 bioinformatics journal

SADM 0.843 data mining and statistics community

GEOINF. 0.818 geo-informatics

research community or the other. Figure 6.15 and Figure 6.16 give the similarity matrices on

authors and titles, respectively. The similarity matrices support the interpretation that CIKM

is connected to multiple communities both in titles and authors. CVPR is loosely connected on

the titles similarity, but is even a global outlier when it comes to the authors involved.

Interestingly, CODA is not a local approach but learns globally c classes (using EM-clustering),

where c is an important parameter. The e�ect of EM is that certain local structures are learned.

This may be the reason why the results of CODA can be also retrieved with an approach that

uses locality in the �rst place.

We also performed experiments on a broader data selection using 50 conferences and journals

from DBLP (DBLP 50). The corresponding similarity matrices are depicted in Figure 6.17 and

6.18. The di�erence between both ways to assess the similarity can be highlighted by BTW, a

German conference that attracts German database researchers (hence showing a certain simi-

larity level to international database conferences ICDE, SIGMOD, VLDB, EDBT in terms of com-

mon authors) but comprises many papers written in German (hence the low overall similarity

in terms of title words). The interesting aspect of community outliers as discussed by [Gao+10]

is that both similarities are not used in isolation but complementary. Correspondingly, with

our settings, BTW is not the utmost outlier although still a prominent one. The top-ten com-

munity outliers based on a generalized local outlier approach using building blocks from LoOP

[Kri+09a] (largely for the normalization bene�ts) are listed in Table 6.6. Interestingly, in this

larger data set, CIKM is not a prominent outlier any more. Including web-conferences and other

special topics like bioinformatics and geo-spatial as well as a broader selection of IR conferences

leads to more cross-community-links overall (as, e.g., the prominent outliers DAGSTUHL and

SADM).
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(c) LDOF [ZHJ09] adaptation

Figure 6.5: Moran scatterplots with outlier scores for US Census land use data (advanced meth-

ods).
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Figure 6.6: Comparing di�erent methods.
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(a) z-statistic

(b) SLOM

(c) LOF adaptation

Figure 6.7: Outlier scores in unemployment rates in Germany.

Background © 2012 Cnes/Spot Image, TerraMetrics, GeoContent, Google
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Figure 6.8: Bavaria detail for LOF adaptation.

Background © 2012 GEODIS Brno, GeoContent,

TerraMetrics, Geoimage Austria, Google
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Figure 6.9: Spatial adaptation of LOF, including normalization.
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(b) Second order deviation outlier

Figure 6.10: Dependency graphs for baseline spatial outlier detection methods.
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Figure 6.11: Dependency graph for SLOM.
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(a) SLOM [SC04; CS06]

(b) Simple method

(c) Advanced method

Figure 6.12: Spatial outliers on US Census data on 5-dimensional ethnic groups. Bright colors

indicate outliers, dark colors inliers.

Background © 2011 Google, Europa Technologies.
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Figure 6.13: Outlier scores in a news clip. The �rst plot uses the RMS distance directly, the

second plot uses the increase in RMS. In the third plot, crosses indicate interesting

events, while boxes indicate transitions of varying signi�cance.

B: Transition C: Scene cut D: Fast camera pan E: Photo �ash

Figure 6.14: Frames captured from the news video clip at outlier locations B, C , D, and E.

© 2011 ARD
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Figure 6.15: Author similarity matrices for DBLP 20 data set.

IC
D
E

ICDE

V
LD

B

VLDB

S
IG
M
O
D

SIGMOD

P
O
D
S

PODS

E
D
B
T

EDBT

K
D
D

KDD

PA
K
D
D

PAKDD

IC
D
M

ICDM

P
K
D
D

PKDD

S
D
M

SDM

C
IK
M

CIKM

W
W
W

WWW

W
S
D
M

WSDM

S
IG
IR

SIGIR

E
C
IR

ECIR

IJ
C
A
I

IJCAI

A
A
A
I

AAAI

IC
M
L

ICML

E
C
M
L

ECML

C
V
P
R

CVPR

Figure 6.16: Title similarity matrices for DBLP 20 data set.
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Figure 6.17: Title Similarity for DBLP 50 data set.
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Figure 6.18: Author Similarity for DBLP 50 data set.



7 Ensemble Methods

This section is an enhanced version of the approaches published in:

H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. “Interpreting and Unifying Outlier

Scores”. In: Proceedings of the 11th SIAM International Conference on Data Mining
(SDM), Mesa, AZ. 2011, pp. 13–24

E. Schubert, R. Wojdanowski, A. Zimek, and H.-P. Kriegel. “On Evaluation of Outlier

Rankings and Outlier Scores”. In: Proceedings of the 12th SIAM International Confer-
ence on Data Mining (SDM), Anaheim, CA. 2012, pp. 1047–1058

7.1 Background

In classi�cation, building ensembles of single classi�ers to gain an improved e�ectiveness has

a rich tradition and a sound theoretical background [Die00; VM02]. Also in clustering, building

ensemble clustering methods has found much interest over the years [GA11]. In the area of

outlier detection, though much e�ort has been invested in design and implementation of ad-

vanced outlier detection algorithms, only some attempts to design superior combinations can

be found in the literature [LK05; GT06; NAG10; Kri+11; Sch+12; Zim+13]. Since then, this do-

main was called an “emerging area” and “a fruitful research direction for improving the quality

of outlier detection algorithms” [Agg12]. Sometimes, ensemble methods are also referred to

as meta methods [Agg13], as they are usually built such that they process the output of other

methods, and are agnostic to the underlying methods.

Let us reconsider the fundamental lessons learned w.r.t. ensemble methods in classi�cation. The

two basic conditions for an ensemble to improve over the contained base-classi�ers are that the

base classi�ers themselves are (i) accurate (i.e., at least better than random) and (ii) diverse (i.e.,

making di�erent errors on new instances). These two conditions are necessary and su�cient.

If several individual classi�ers were not diverse, then all of them will be wrong whenever one

of them is wrong. This way, nothing is gained by combining them. On the other hand, if

the errors made by the classi�ers were uncorrelated, more individual classi�ers may be cor-

rect while some individual classi�ers are wrong. Therefore, a majority vote by an ensemble of

these classi�ers may be also correct. It is clear that each ensemble member should be at least

somehow meaningful in order to get meaningful results out of their combination. Hence, a

key for building good ensembles is to use ensemble members that make uncorrelated errors (if

http://siam.omniBOOKsonline.com/data/papers/018.pdf
http://siam.omniBOOKsonline.com/data/papers/018.pdf
http://siam.omnibooksonline.com/2012datamining/data/papers/107.pdf
http://siam.omnibooksonline.com/2012datamining/data/papers/107.pdf
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any). Feature bagging, a common procedure in ensemble classi�cation or ensemble clustering,

was used in [LK05] to induce diversity to ensembles, but the actually achieved decorrelation

of detectors has not been evaluated. Overall, this requirement has not yet found theoretical

attention in the few attempts to design outlier ensembles, and actually the means to do so have

not been around so far. Instead, the four approaches known so far concentrated on methods

for meaningfully combining the scores. They addressed the problem that scores delivered by

di�erent methods (or in di�erent subspaces, where the scores are usually based on distances)

usually vary strongly. For combination of such di�erent scores, [LK05] proposed, �rst, a nor-

malization by ranking (breadth-�rst traversal through the outlier rankings to combine), and,

second, the cumulative sum of the di�erent scores. The second decisively relies on the compa-

rability of the retrieved scores. To enhance this comparability was the aim of the subsequently

proposed approaches. Calibration approaches (sigmoid functions or mixture modeling) to �t

outlier scores provided by di�erent detectors into probability values have been used in [GT06].

They induce diversity by using di�erent values for k of the kNN-distance as an outlier score.

In [NAG10], the scores provided by a speci�c algorithm are centered around their mean and

scaled by their standard deviation. Thus, all scores are of roughly the same magnitude, even if

rather di�erent algorithms are used for combination. Nevertheless, to induce diversity among

di�erent detectors, [NAG10] primarily follow the feature bagging approach of [LK05]. Statis-

tical reasoning was used in [Kri+11] to translate scores of di�erent outlier detection methods

into sort of outlier probabilities. There, the possibility of enhancement by combining di�erent

methods has been demonstrated, yet no measure of actual diversity or correlation between the

used base algorithms has been applied. An improved version of this rescaling is introduced in

Section 5.3.

7.2 Components of an Ensemble Method

As discussed in [Agg12], some methods can be considered an ensemble approach in the wider

sense: LOF [Bre+00] for example suggested to try di�erent values of k and use the maximum

observed, and LOCI [Pap+03] suggested �agging outliers if the score reaches a threshold for any

radius tested. Last but not least, kNN-Weight [AP02; AP05] can be seen as ensemble of kNN-

Outlier detectors. However, this notion of ensembles may be a bit too broad. One may then as

well consider every distance-based algorithm to be an ensemble method, since the Manhattan

distance is an “ensemble” of one-dimensional absolute di�erences.

For a method to be titled “meta-algorithm” (as used e.g. in [Agg12; Agg13]), it should be agnostic

to the underlying input algorithm(s), and not just happen to use some kind of aggregation

of multiple values. We propose to only call those algorithms ensemble methods that (i) are

compatible with di�erent underlying algorithms and consider the normalization required to

make the output of di�erent input algorithms comparable, (ii) explicitely consider sources of

diversity. Advanced ensembles will also (iii) evaluate which ensemble members to keep and

which to discard.
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7.2.1 Score Normalization

When combining scores in an ensemble, it is essential to �rst make them comparable. As dis-

cussed in Section 5.3, in particular the scores of di�erent algorithms will follow di�erent distri-

butions and scales. And even within a single method, the scales may vary due to e.g. di�erent

distance functions and parameters.

In [LK05], the authors experimented with the naïve sum of outlier scores as well as using a

variant of the maximum rank (“breadth �rst”). The reason why the �rst approach worked

reasonably is due to LOF scores having roughly comparable results even in di�erent subspaces

(at least when these are normalized the same way, and all other parameters of LOF are also kept

�xed). The second approach, returning objects by their maximum rank, discardes the actual

scores and this way avoids the problem of score normalization. The probability normalization

proposed in [GT06] is actually too aggressive: the contrast of the results is maximized, such that

intermediate values in the range [0.1; 0.9] become rare or even nonexistant. On such scores,

the proposed multiplication of outlier probabilities then reduces to performing set intersection;

the alternate proposal of using the sum of the scores reduces to counting how often an object

was nominated. HeDES [NAG10] is the �rst to combine scores of di�erent algorithms (hence

the name “heterogeneous detector ensemble on random subspaces”) while paying attention to

the problem of scale. To reduce the e�ects of scale, they standardize each score to zero mean

and unit variance (which bears an implicit assumption of the scores being normal distributed,

which does not hold in practice, as seen in Section 5.3.1). Additionally, each detector is assigned

a weight based on supervised training for computing a weighted sum; in practice data sets will

likely be too di�erent for such a training approach to be reliable.

7.2.2 Score Combination

The two most common ways of combining two scores (not including score normalization and

transformation) are to use the maximum score (e.g. in LOF and LOCI the authors propose to

use the maximum of multiple scores, or denoted as “breadth-�rst” when using the maximum

ranks in [LK05]) or the average score (or, equivalently, the cumulative sum [LK05; NAG10],

kNN-Weight [AP02; AP05]). Often, no particular reason is given why one method is preferred

over another. We want to propose some additional variations and discuss their prerequisites

and theoretical background.

The �rst group of score combination (“voting”) methods are those based on di�erent averages

(see Section 2.1 for an overview). This includes the average, but also the minimum, median

and maximum are extreme types of means. Averages (including the minimum and maximum)

are more robust towards errors of low magnitude, whereas large deviations will have more

in�uence on the outcome.

The second group, on which we will go into more detail, are those motivated from probability

theory. Assuming that the scores S := {si} are the probabilities of the object being an outlier,
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and assuming independence of the individual methods, we can compute the joint probability

that the method is an outlier in at most / at least one of them (see [GT06], “parallel” and “serial”

con�gurations) as:

Product(S) :=
∏
i

si (7.1)

Inverse-Product(S) := 1−
∏
i

(1− si). (7.2)

Alternatively, we can also employ Bayesian odds (see Equation 5.12):

P (O|S)

P (I|S)︸ ︷︷ ︸
Posterior odds

=
P (S|O)

P (S|I)︸ ︷︷ ︸
Bayes Factor

· P (O)

P (I)︸ ︷︷ ︸
Prior odds

we can now combine individual Bayes factors obtained (as per Equation 5.13) to obtain a single

factor. If we assume independence, this is computed as:

P (S|O)

P (S|I)
=
∏
i

P (S|Oi)

P (S|Ii)
if our input data are not Bayes factors, but instead posterior outlier probabilities (as e.g. per

Equation 5.15), then we �rst need to scale them back into posterior odds scale using Equa-

tion 5.10 and then remove the (redundant) prior on each:

P (S|O)

P (S|I)
=
∏
i

(
pi

1− pi
1− ϕ
ϕ

)
resulting in:

Posterior-Odds(S) =

(∏
i

pi
1− pi

· 1− ϕ
ϕ

)
· ϕ

1− ϕ
. (7.3)

instead of assuming independence, we may also compute the multiplicative mean of the Bayes

Factors instead:

Posterior-Odds(S) =

(∏
i

pi
1− pi

· 1− ϕ
ϕ

)1/|I|

· ϕ

1− ϕ
=
∏
i

pi
1− pi

. (7.4)

where ϕ is the prior outlier probability. Both the Bayes factor and the posterior odds are not

probabilities, but likelihood ratios, which are sometimes considered to be more informative

than a p-value [KR95; Goo08]. Similar to the scaling we used in Section 5.3.2.6, we can now

map this back to a probability using Equation 5.11:

P (O|S) :=
Posterior-Odds(S)

1 + Posterior-Odds(S)
.
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Given the experience from Naïve Bayes classi�cation, it can be desired to clip the values of si
to a restricted range of e.g. [0.01; 0.99] to avoid single scores of 0 or 1 to determine the result

(which would yield a division by 0, if an object is scored 1). Obviously, using a probability-

based ensemble voting functions have high requirements on the normalization of the outlier

scores. Furthermore, we need to specify the parameter ϕ which not only in�uences the score

interpretation, but also the results. For increased numerical precision, it may furthermore be

desirable to perform all of these computations in logspace.

In Figure 7.1 we visualize the e�ect of combining two scores using average (Figure 7.1a) and

maximum (Figure 7.1b), product (Figure 7.1c) and inverse product (Figure 7.1d), and Bayesian

combinators with di�erent values of ϕ (ϕ = .5 in Figure 7.1e, ϕ = .1 in Figure 7.1f, and

ϕ = .01 in Figure 7.1g). We also include the approach using Bayesian multiplicative mean

scaling (Equation 7.4) in Figure 7.1h. Contour lines indicate .2, .4, .6 and .8 thresholds; red

color indicates scores close to 0 while green color indicates combined scores close to 1. For

small values of ϕ (e.g. Figure 7.1g), the Bayesian approach at �rst seems to work rather bad:

the majority of combinations will receive a high combined score. However, it assumes a non-

uniform distribution of the scores; the majority of scores are expected to be close to 0. With

this prior assumption of having only a few larger scores, it becomes important to retain this

contrast, and we actually expect it to work best if the majority of scores is close to 0. This

emphasizes that we need to take prior assumptions of the scores into account.

7.2.3 Diversity Sources

Diversity in an outlier detection ensemble can originate from a number of choices. An obvious –

but also the most challenging – choice is to choose di�erent base algorithms. Other sources for

diversity are parameterization (in particular parameters such as the number of neighbors and

the distance function), data preprocessing and projection (in particular, feature bagging [Bre96],

i.e. random selection of subspaces, also used in random forests [Bre01]) or the use of subsam-

pling of the data set [Zim+13].

7.2.3.1 Diversity from Algorithms

Building an ensemble from di�erent base algorithms appears to be the most appealing choice:

di�erent algorithms can use di�erent outlier models, and combining these results into a single

outlier detection result should be able to �nd multiple kinds of outliers.

It turns out that it is non-trivial to combine the results of di�erent algorithms, as already

discussed in the previous Section 7.2.1. The early score normalization approaches in [GT06;

NAG10] are based on weak heuristics such as z-standardization for combining di�erent results.

The �rst successful approach was published in [Sch+12], and the improved score rescaling dis-

cussed in Section 5.3 further improves these results.
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Figure 7.1: Visualization of score combination rules
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7.2.3.2 Diversity from Parameters

An alternate source of diversity is to vary the parameters of an algorithm. For some parameters,

such as k in kNN-based algorithms, one can expect that the score distributions remain similar,

and thus simple variance-based rescalings such as HeDES [NAG10] are su�cient. Often, they

do not improve much over the baseline results, in particular when the scores follow di�erent

distributions: HeDES rescaling can only make variance comparable, but not e.g. skewness.

Varying the distance function will provide some additional diversity; at least when distances

based on di�erent paradigms are chosen. Merging these results will require careful score nor-

malization, as the distances returned by di�erent measures will have di�erent distributions.

Furthermore (as seen before in Figure 5.21 and repeated in the experimental section in Fig-

ure 7.4), many distance functions belong to highly correlated families, and there often exists

a strong correlation even between di�erent families. Due to the limited number of distance

functions based on di�erent paradigms, we can construct only small ensembles with a high

diversity: in our experiments we found that 20 popular distance functions can empirically be

grouped into 4-5 families that are highly correlated (see Section 7.4.1.2 and the block structure

visible in Figure 7.4). Some approaches that could further increase diversity of distance func-

tions – such as using a randomized weighting – are equivalent to projecting the input data

di�erently. When using binary weights only, we obtain a standard technique to get diversity

for ensemble methods known as feature bagging, which we will discuss next.

7.2.3.3 Diversity from Feature Bagging

An easy to use and powerful source of diversity is feature bagging [Bre96]. The bene�ts of this

approach are twofold: leaving away part of the data for each ensemble member yields rather

uncorrelated ensemble members (unless the dimensions are highly correlated), but it also helps

with some of the problems with mining high-dimensional data (as discussed in Chapter 4): in

particular, the distance functions in the lower-dimensional space usually o�er better contrast,

and ensemble members have a chance of skipping irrelevant dimensions. While some ensemble

members may consist mostly of irrelevant attributes, they will likely also not �nd strong outliers

then, and will not �nd much agreement in the ensemble. Other ensemble members will however

consist of mostly relevant attributes and provide very clear results and be more likely to reach

consensus. The optimal parameters for feature bagging will obviously depend on the amount

of redundant and noisy dimensions in the data set.

It is an interesting observation that leaving away data is a good source for diversity in an en-

semble, because it contradicts the intuition for building individual methods. However, in an

ensemble context, we redundantly use the data multiple times, so usually, no data will remain

unused in the end: if we construct an ensemble of 25 detectors, each using ≈ 75% of the data,

all data are used 18.75 times on average.



156 7. Ensemble Methods

7.2.3.4 Diversity from Subsampling

If we performed “bagging” on the transposed matrix, instead of selecting some dimensions at

random, we select some instances of the data; a process known as subsampling and closely re-

lated to bootstrap aggregating [Bre96]. The use of subsampling for outlier detection ensemble

construction was proposed in [Zim+13] as a source of diversity. Our own experiments with

subsampling for outlier detection date back to 2011, and the corresponding code was included

in ELKI 0.5.0 [Ach+12] and used by [Zim+13]. However, we then did not use it in an ensemble

approach, but only used it as a baseline for evaluation approximate nearest neighbor search.

The important key contributions of [Zim+13] are the ensemble use case and an analysis of the

theoretical properties. The main concern that stopped us from further pursuing this direction

was the observation that this emphasizes parameterization problems. When analyzing the per-

formance of subsampling approaches, algorithm parameters that depend on the data set size

should be adjusted to prevent bias from the results coming from parameterization: as we have

seen before, most methods are rather sensitive to the choice of the neighborhood size k. But

when a method worked best with k = 5 on a data set, when subsampling it to s = 10%, what

would be the comparable value of k′ to use on the subsample? Choosing k′ = s · k = 0.5 is

obviously not possible. Using the same k on the subsampled data set, however, may yield a

result comparable to using k/s (i.e. k′ = 50 in the toy example) instead. In practice, for some

methods such as kNN Outlier, we found small values such as k = 1 to work best. Since such

parameters implicitly depend on the data set size, subsampling the data may have unpredictable

in�uence on the results, as seen in the experiments.

Similar problems can also arise in machine learning, which is why bootstrap aggregation does

not subsample the data set, but uses sampling with replacement to produce a data set of the same

size as the original data (and approximately the same class distribution). However, for outlier

detection this is not bene�cial, as we have highly unbalanced classes and need each single

object to be evaluated. For small classes, such as outliers, the errors introduced by bootstrap

aggregation will be much larger.

Some of the theoretical observations of [Zim+13] (based on earlier considerations on data bub-

bles in [Bre+01]) may only be useful for large values of k: For small values of k, the deviation

of the true kNN distance from the expected value may become too large. For the 1-dimensional

uniform distributionU [0; 1], the kth smallest value (also known as rank order statistic) is known

to be Beta distributed: U(k) ∼ Beta(k, n + 1 − k). The mean of this Beta distribution is

k
k+n+1−k = k

n+1
. For the d-dimensional case the mean thus is

(
k

n+1

)1/p
.
1

In [Zim+13] the authors investigate the expected relative error of the distance to the k-nearest

neighbor when subsampling. Let E[dk, n] be the expected distance to the kth nearest neighbor

1
The formula for the mean as given in [Bre+01; Zim+13] is incorrect, but for large n it makes little di�erence.
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in n objects. Then E[dk, sn]/E[dk, n] is the relative change when subsampling sn objects:
2

E[dk, sn]

E[dk, n]
=

(
k

sn+1

)1/d(
k

n+1

)1/d
=

(
n+ 1

sn+ 1

)1/d (
≈n→∞ s−1/d

)
. (7.5)

Roughly said, this proves that the k-distances are expected to grow by a factor of s−1/d
when

subsampling. Of larger interest, however, is the variance of this term, as the variance translates

into the diversity of the resulting ensemble. Rescaling the data set by a constant yields a similar

average change, but with 0 variance and thus does not introduce diversity at all.

For the 1-dimensional case, the variance of this Beta distribution is known to be

Var[Beta(k, sn+ 1− k)] =
k · (sn+ 1− k)

(k + sn+ 1− k)2(k + sn+ 1− k + 1)
=

k · (sn+ 1− k)

(sn+ 1)2(sn+ 2)
.

If we now compute the relative variance (which is a squared measure, therefore we need to

relate it to the squared estimate), we obtain (for 1-dimensional data)

Var[Beta(k, sn+ 1− k)]

E[dk, n]2
=

k · (sn+ 1− k)

(sn+ 1)2(sn+ 2)

/( k

n+ 1

)2

=
(sn+ 1− k)

(sn+ 1)2(sn+ 2)
· (n+ 1)2

k

≈n→∞
sn3

s3n3k
=

1

s2k
, (7.6)

which translates to a standard deviation of 1/s
√
k for large n and 1-dimensional data. Un-

fortunately, this equation does not as easily translate to multi-dimensional data as the mean.

Assuming a sampling rate of s = 0.1 and 1-dimensional data, the kNN distance is thus expected

to increase by a factor of 10. For n = 100, the expected standard deviation is approximately

2.90, for n = 1000 it is ≈ 4.30 with a limit for n→∞ of 10/
√
k ≈ 4.47. The high variance of

this distribution prevents the subsampling approach from working well when used in a single-

run approach, for small sample sizes s · n combined with small values of k. On the other hand,

however, this variance is also bene�cial to the ensemble use case discussed in [Zim+13]. The

errors introduced by di�erent subsamples will be largely independent; but a low variance would

yield highly similar results; a high variance is likely a prerequisite for obtaining diversity. This

may explain why sampling rates of 10% were more bene�cial in their experiments than higher

sampling rates: doubling the sampling rate halves the variance.

Note that Equation 7.6 is not for the multi-dimensional case; unfortunately we cannot provide

a closed formula for the d dimensional case. Experiments indicate that the formula will have a

power term _
1/d

similar to the mean, meaning that subsampling will be much less e�ective for

introducing diversity in high-dimensional data, due to the concentration of distances. Further-

more, the formal analysis assumes drawing new samples from the same uniform distribution

2
This is a simpler, but equivalent, formulation to Equation 6 in [Zim+13].
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(a) Dimensionality d = 5
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(b) Dimensionality d = 27

Figure 7.2: Relative error of 5-nearest-neighbor distance, n = 100, s = .05 . . . 1.0.

instead of actually sampling the existing data (this is the reason why the expected variance for

s = 1 and k = 1 is not 0). Also in practice, sampling will not a�ect every object with exactly

the factor s. Only on average, s · n of the original nearest neighbors will remain in the sam-

ple. For small k, this will also contribute to diversity. Nevertheless, these equations show the

general behaviour: diversity increases with lower sampling rates, but less so with high dimen-

sional data. Figure 7.2a visualizes the quotient Equation 7.5 for k = 5 when sampling from

n = 100 instances distributed uniformly in a 5-dimensional unit ball. We performed 1000 itera-

tions and visualize the mean, standard deviation, minimum and maximum using whisker plots

(compare to Figure 1 in [Zim+13]). On 27-dimensional data (we chose 27, because the data set

we will be using in the experimental section has 27 dimensions), the variance obtained this way

is substantially lower, as seen in Figure 7.2b.

In conclusion, there are multiple (overlapping and sometimes con�icting) e�ects happening

when using subsampling that make evaluation di�cult. On one hand, the performance will

(most obviously for kNN-Outlier) be more similar to that of k = k′/s, which can be bene�cial

or problematic. On one hand, it improves scalability for large data sets, but on the other hand,

for data sets where kNN-Outlier with k = 1 works best, subsampling will usually deteriorate.

In our experiments, LOF usually worked best with k ≈ 10, which explains why in [Zim+13]

they had best results with a very low value of k = 2. The other e�ect is that of variance, which

allows ensemble approaches to work.

7.2.4 Ensemble Construction and Pruning

Most published ensemble approaches do not consider pruning or weighting ensemble members.

HeDES proposes to assign each detector a weight based on supervised evaluation on training

data sets. However, we found that the performance of most algorithms varies too much with

parameterization and data characteristics to allow for estimating such weights in a reliable

manner from other data sets. Furthermore, the HeDES approach would still only weight or
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prune ensemble members (by assigning a weight of 0) on a global level, but it cannot make this

decision for each individual data set.

In [Sch+12] we suggested a greedy approach based on the similarity measure discussed for eval-

uation in Section 5.4. Using this similarity measure, however, requires some heuristic choices

with respect to the weights: outlier detection is an imbalanced problem, and as such requires

weighting. In the experiments, we obtained reasonable results with using the union of all top k
ranked objects as initial outlier set: even if we have some inliers in this set, these inliers will

likely be the borderline objects, and it is not immediately harmful if these objects are also given

extra weight by the similarity measure.

Experiments showed that unpruned ensembles based on a large number of detectors yield only

performance inbetween of the average and the best ensemble member. For this reason, we

should not use all outlier detectors, but we need to �nd a way to remove those algorithm results

that are too highly correlated with each other, and keep those that might introduce a di�erent

point of view (and thus may detect di�erent outliers and improve the result).

7.3 Greedy Ensemble Construction

The key idea of the greedy ensemble is to maximize diversity while keeping the ensemble small.

Starting from an initial estimation, ensemble members are processed by decreasing similarity

(i.e. diversity) to the already chosen methods; methods that appear to improve the result are

added to the ensemble, while methods that merely cause a loss of decisiveness of the ensemble

are dropped. A greedy approach (decisions are �nal, and will never be revised) will keep the

complexity low.
3

In practice, we found this approach to yield small ensembles that perform

reasonably well. We experimented with other heuristics to update the weight- and target vec-

tors, but the simple greedy approach worked best; but likely future research will yield better

ensemble construction approaches.

Based on similarity analysis of outlier score rankings, we propose an unsupervised greedy en-

semble construction approach, optimizing diversity: For a set I of individual outlier detectors,

n the data set size and the user-speci�ed parameter ϕ (the expected / desired outlier rate), select

the union K of the top k data points of each instance in I , resulting in ϕn ≤ |K| di�erent data

points. Under the preliminary assumption that these were the true outliers of the data set, we

build a target vector t that has a 1 when the object is in these K objects and 0 otherwise. We

also compute the weight vector ω for our distance measure based on this working assumption

using
1

2|K| and
1

2(n−|K|) as weights.

We initialize the ensembleE with the detector i ∈ I that has the highest similarity to the target

vector t. Then we sort all remaining detectors I \ i by the lowest similarity to the prediction

result of the current ensemble E, because we want to maximize diversity. For each candidate i

3
Usually, computing the individual algorithms will be much more expensive due to the cost of computing the

nearest neighbors, as seen in Chapter 8.
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Algorithm 2: Greedy Ensemble Construction Algorithm.

Data: I individual outlier detection results

Data: n data set size

Data: ϕ expected / desired outlier rate

/* Compute preliminary outlier set: */

K :=
⋃
i∈I top-k(i) with k minimal such that |K| ≥ ϕn;

/* Compute target and weight vectors: */

t := {tx := 1 i� x ∈ K};
ω := {ωx := 1

2|K| i� x ∈ K otherwise
1

2(n−|K|)};
/* Initial ensemble � choose most similar result: */

E := ∅;
for i ∈ I do

if distω(i, t) < distω(E, t) then E := {i} ;

end
I := I \ E;

/* Greedy ensemble construction: */

pE := current prediction of E;

sort I by decreasing diversity to p;

while I 6= ∅ do
i := remove �rst from I ;

pi := prediction of E ∪ {i};
if distω(pi, t) < distω(pE, t) then

E := E ∪ {i};
pE := pi;
/* Optional: update t, K */

sort I by decreasing diversity to p;

end
end
return E

in this list, we test if the ensemble improves when the new detector is added to it, i.e. whether

the similarity of the ensemble with the target vector increases. If so, we update our ensemble

with the additional method and reorder the list, otherwise we discard the candidate. At each

iteration, one method gets either included or discarded, and these decisions are not revised,

making this a greedy algorithm. In Algorithm 2 we give a pseudocode for the method.

The motivation is that we have two factors to decide by: diversity and increase of similarity to

the target vector (i.e., improved accuracy). An increase in similarity to the preliminary target

vector is the better hard factor – we do not want to include detectors that decrease accuracy –

while diversity is more useful as a preference criterion. Also note that this process is entirely

unsupervised (except for the initial choice of available detectors, obviously): The ensemble is

greedily built from unsupervised detectors by just estimating their performance. Though this
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is a simple approach to merely demonstrate the applicability of these similarity measures in

ensemble construction, the results are convincing and very competitive. Note that this greedy

strategy is not possible with a classic precision@k or ROC evaluation, that cannot compare two

methods for their diversity.

Clearly, using results with uncorrelated errors for combination can only be the second criterion

since a certain level of accuracy in the ensemble members is essential – and the better the

accuracy, the stronger the overall correlation. These two, however, are not as tightly connected

as in classi�cation or clustering, since we do not assess the correlation w.r.t. binary decisions

but w.r.t. the resulting rankings, where quite di�erent rankings can relate to equal performance

in binary decision. This is exactly the gap in information that is not considered when using

ROC analysis only. We demonstrate in the experiments how using this second criterion can

improve the overall performance of an ensemble considerably.

7.4 Experiments

In the experiments, we use a squared Euclidean weighted Pearson correlation distance as de-

�ned in Section 1 for assessment of the similarity of outlier scores. The reason for this is that

we do not normalize the combined predictions of the ensembles; and as noted in Section 5.4,

the weighted Pearson correlation measure works better when scores have not been normalized

back to [0; 1] range.

To numerically measure the gain in outlier detection performance of a combination (ensemble)

of outlier detectors as compared to their individual performance, we use the relative improve-

ment towards the target AUC score of 1 over the best of the detectors considered:

gain(M1,M2) :=1− 1− AUC(Combination of all Mi)

1−maxi (AUC(Mi))
(7.7)

A gain of 0 means that the method performs as good as the better of the input methods. An

improvement over this will yield a positive gain, with 1 meaning an improvement to the perfect

result. Note that the gain function is relative to the input methods and should merely be read

as an indicator of which combinations are bene�cial or detrimental. We will be using green

and red colors to indicate this trend. For obvious reasons, improving over an already good

result is harder than improving over an average outcome, and the largest gain does therefore

not necessarily indicate the best result.

7.4.1 Combinations of Di�erent Algorithms and Parameters

7.4.1.1 Varying the Neighborhood Size k

In Figure 7.3, we inspect the relationship between accuracy of the algorithms (Figure 7.3a),

similarity of their results (Figure 7.3b), and accuracy gain in combining two algorithms (Fig-
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Figure 7.3: ALOI: Similarity of methods and gain in combining pairs.

ure 7.3c), here on the ALOI data using L1 distance and varying k for all algorithms from 2 to

20 (Figure 7.3a: k = 2 . . . 50). We see essentially that combining correlated algorithms does

not yield a better result than either of them (black) or, depending of the individual perfor-
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Table 7.1: Ensemble performance with varying k (LOF, L1 metric)

Scaling Combination Pruning Reference ROC AUC Gain/naïve Gain/best

Mixture Model Parallel [GT06] (.2057) (unstable)

Mixture Model Serial [GT06] .4994 -1.509 -1.396

Average ensemble member .7718 -0.144 -0.092

Rank Max .7871 -0.067 -0.019

Identity Max [Bre+00] .7895 -0.055 -0.008

Best individual method (k = 9) .7911 -0.047 -

z-score Mean [NAG10] .7982 -0.012 +0.034

Sigmoid Parallel [GT06] .8003 -0.001 +0.044

Sigmoid Serial [GT06] .8005 0.000 +0.045

Identity Mean .8005 - +0.045

CDF+COP Mult. [Kri+12] .8058 +0.027 +0.070

CDF Bayes Greedy (new) .8121 +0.058 +0.101

mance, even deteriorate (red). The kNN-Outlier and kNN-Weight models perform well with

rather small k. In this region, combination with, e.g., LOF [Bre+00] shows good improvements

(green). While the accuracy of kNN-Outlier [RRS00] and kNN-Weight [AP02; AP05] is decreas-

ing with bigger values for k, also the combination with other methods does usually deteriorate

the ensemble performance (red). An interesting exception are LDOF [ZHJ09] and LDF [LLP07],

which apparently are di�erent enough from the kNN methods to yield an improvement. Here,

the combination of two not extremely well performing methods results in an intriguing gain of

performance (albeit at a low level).

The best combination results are obtained when one algorithm is given a small value of k, while

the other is given a large value, which indicates that a high diversity is bene�cial.

Table 7.1 gives the results for di�erent ensembles built using LOF, L1 metric and k = 2 . . . 30.

The mixture model �tting did not work well with LOF scores, and the results are not meaningful.

All other methods in this setting improved over the average ensemble member. Taking the

maximum LOF value, as suggested in the original LOF publication, performs almost as good

as choosing the optimal k = 9. However, the average LOF score resulted in even slightly

better results. Neither rescaling using sigmoids as suggested in [GT06] nor accounting for

variance by using the z-score as suggested in [NAG10] led to a substantial improvement. The

cdf based rescaling with COP score transformation improved the results, but not as much as the

new method which is also cdf based, but also uses Bayesian score combination and ensemble

pruning. The pruned ensemble consisted of 5 members: k = {10, 2, 4, 9, 18} (chosen in this

order). This again is a very good result. k = 9 and k = 10 are the two best individual results;

and as we have seen before it increases diversity if we combine this with substantially lower or

higher scores. In the low score range (k = 2 vs. k = 4) the results di�er somewhat, whereas

the results of k = 18 and even k = 30 do not di�er much anymore.



164 7. Ensemble Methods

Clark Distance

Canberra Distance

Sqrt Jensen-Shannon Divergence

Je�rey Divergence

χ2
Divergence

Pearson Correlation Distance

Squared Pearson Correlation

Arc-Cosine Distance

Cosine Distance

L0.8 Distance

Lorentzian Distance

Kulczynski-1 Distance

Bray-Curtis Distance

Histogram Intersection Distance

L1 Manhattan Metric

L2 Euclidean Metric

L2
2 Squared Euclidean Metric

L3 Metric

L∞ Maximum Metric

Ground Truth

C
l
a
r
k

D
i
s
t
a
n

c
e

C
a
n

b
e
r
r
a

D
i
s
t
a
n

c
e

S
q

r
t

J
e
n

s
e
n

-
S
h

a
n

n
o

n
D

i
v
e
r
g
e
n

c
e

J
e
�

r
e
y

D
i
v
e
r
g
e
n

c
e

χ
2

D
i
v
e
r
g
e
n

c
e

P
e
a
r
s
o

n
C

o
r
r
e
l
a
t
i
o

n
D

i
s
t
a
n

c
e

S
q

u
a
r
e
d

P
e
a
r
s
o

n
C

o
r
r
e
l
a
t
i
o

n

A
r
c
-
C

o
s
i
n

e
D

i
s
t
a
n

c
e

C
o

s
i
n

e
D

i
s
t
a
n

c
e

L
0
.8

D
i
s
t
a
n

c
e

L
o

r
e
n

t
z
i
a
n

D
i
s
t
a
n

c
e

K
u

l
c
z
y

n
s
k

i
-
1

D
i
s
t
a
n

c
e

B
r
a
y

-
C

u
r
t
i
s

D
i
s
t
a
n

c
e

H
i
s
t
o

g
r
a
m

I
n

t
e
r
s
e
c
t
i
o

n
D

i
s
t
a
n

c
e

L
1

M
a
n

h
a
t
t
a
n

M
e
t
r
i
c

L
2

E
u

c
l
i
d

e
a
n

M
e
t
r
i
c

L
2 2

S
q

u
a
r
e
d

E
u

c
l
i
d

e
a
n

M
e
t
r
i
c

L
3

M
e
t
r
i
c

L
∞

M
a
x
i
m

u
m

M
e
t
r
i
c

G
r
o

u
n

d
T

r
u

t
h

C
l
a
r
k

D
i
s
t
a
n

c
e

C
a
n

b
e
r
r
a

D
i
s
t
a
n

c
e

S
q

r
t

J
e
n

s
e
n

-
S
h

a
n

n
o

n
D

i
v
e
r
g
e
n

c
e

J
e
�

r
e
y

D
i
v
e
r
g
e
n

c
e

χ
2

D
i
v
e
r
g
e
n

c
e

P
e
a
r
s
o

n
C

o
r
r
e
l
a
t
i
o

n
D

i
s
t
a
n

c
e

S
q

u
a
r
e
d

P
e
a
r
s
o

n
C

o
r
r
e
l
a
t
i
o

n

A
r
c
-
C

o
s
i
n

e
D

i
s
t
a
n

c
e

C
o

s
i
n

e
D

i
s
t
a
n

c
e

L
0
.8

D
i
s
t
a
n

c
e

L
o

r
e
n

t
z
i
a
n

D
i
s
t
a
n

c
e

K
u

l
c
z
y

n
s
k

i
-
1

D
i
s
t
a
n

c
e

B
r
a
y

-
C

u
r
t
i
s

D
i
s
t
a
n

c
e

H
i
s
t
o

g
r
a
m

I
n

t
e
r
s
e
c
t
i
o

n
D

i
s
t
a
n

c
e

L
1

M
a
n

h
a
t
t
a
n

M
e
t
r
i
c

L
2

E
u

c
l
i
d

e
a
n

M
e
t
r
i
c

L
2 2

S
q

u
a
r
e
d

E
u

c
l
i
d

e
a
n

M
e
t
r
i
c

L
3

M
e
t
r
i
c

L
∞

M
a
x
i
m

u
m

M
e
t
r
i
c

Figure 7.4: Similarity and gain of LOF (k = 10) results based on di�erent distance functions.

Red arrows indicate ensemble members of Greedy ensemble.

7.4.1.2 Varying the Distance Function

In Figure 7.4 we compare results of running LOF with k = 10 and di�erent distance functions.

On the left you can see that many distance functions yield highly similar results. Unsurprisingly,

the majority of the combinations of two such results are not bene�cial (the red color indicates

the combination performs worse than the better individual method). However, the combination

of Canberra distance together with one of the divergence based measures yields a substantial

improvement; despite the two individual methods already performing rather well.

Nevertheless, the overall result is as expected: varying the distance function parameter does

not yield a diversity that is very useful for ensemble construction: the individual results are too

highly correlated.

Table 7.2 gives the results when constructing an ensemble based on di�erent distance functions.

Mixture model �tting [GT06] was too unstable to produce meaningful results. The sigmoid

based approach from the same publication worked much better and outperformed both the

Manhattan (L1) distance result (which would be a reasonable default on this histogram data set

due to the correspondence to histogram intersection distance) and the average ensemble mem-

ber performance. This performance was on the same level as taking the naïve mean (which is

capable of combining scores from a LOF-only ensemble), but not higher than that of taking the

maximum of multiple LOF runs (as suggested in LOF [Bre+00]). z-score based normalization
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Table 7.2: Ensemble performance with mixed distance functions (LOF, k = 10)

Scaling Combination Pruning Reference ROC AUC Gain/naïve Gain/best

Mixture Model Parallel [GT06] (.1618) (unstable)

Mixture Model Serial [GT06] .4988 -2.079 -3.149

L1 Metric (uninformed choice) .7895 -0.293 -0.743

Average ensemble member .7930 -0.271 -0.714

Sigmoid Parallel [GT06] .8345 -0.017 -0.370

Identity Mean .8372 - -0.348

Sigmoid Serial [GT06] .8391 +0.012 -0.332

Identity Max [Bre+00] .8397 +0.015 -0.327

CDF+COP Inv.-Mult. [Kri+12] .8459 +0.053 -0.276

z-score Mean [NAG10] .8467 +0.058 -0.269

Rank Max .8531 +0.098 -0.216

Best individual method (Canberra distance) .8792 +0.258 -

CDF Bayes Greedy (new) .8917 +0.335 +0.103

as used in HeDES [NAG10] and cdf normalization with COP [Kri+12] rescaling further im-

proved. However, and this is the downside, none of them were able to achieve the performance

of the best individual ensemble member, using Canberra distance. Combining the cdf scores

using the Bayesian rule and pruning the ensemble using the greedy strategy however, yields

a gain over the single method. The ensemble consists of 5 methods, indicated by red arrows

in Figure 7.4. Except for the maximum norm – which works not very well on this data set –

this is probably what a human would have chosen after seeing the performance on the ground

truth. The ensemble contains both the best performing method (using Canberra distance), the

method that seems to be best for combinations (Clack distance), one of the highly similar di-

vergence measures (χ2
divergence) and with L0.8 and L∞ the two most di�erent methods from

the Minkowski family.

7.4.1.3 Combining Di�erent Algorithms

Probably the most interesting and challenging combination is that of di�erent algorithms. For

this setup, we limited k to k ∈ {2, 10, 30}, use L1 distance, but include algorithms kNN-Outlier,

kNN-Weight, LOF, LDF, LDOF, Simpli�ed-LOF and LoOP, resulting in 21 combinations. We

deliberately chose a low, medium and high k as the di�erent algorithms have di�erent optimal

parameters (as seen in Figure 7.3a). Yet, we also want to keep the candidate set small for this

experiment.

The results are given in Table 7.3. This time, the mixture model approaches both failed, and

one of the sigmoid �tting approaches also. Unsurprisingly, without rescaling, the maximum

score yields rather bad results (dominated by the kNN-Weight results for large k). Using a

rank normalization – roughly what is called “breadth-�rst” in [LK05] – slighly improves over
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the average ensemble member. One of the sigmoid �tting [GT06] approaches worked, but was

slightly worse than just using the unscaled average outlier scores. The �rst method to give

a measureable improvement over the naïve ensemble is the HeDES-like approach [NAG10],

but it still performs worse than the best ensemble member (LoOP, with k = 10). The cdf based

approaches again work best, with the COP scaling being slightly worse than the approach based

on Bayesian score combination and ensemble pruning.

The greedily constructed ensemble consists of LoOP k = 30, kNN-Outlier k = 2, LOF k =
2, LOF k = 30 and LoOP k = 2. The approach clearly was able to recognize that the best

combinations involve a small and a large value of k, and that kNN-Outlier performance does

not improve when increasing k on this data set.

For the �rst experiment, we kept the number of candidates low (21 candidates). If we increase

the candidate set size using 7 algorithms, 8 di�erent values of k and 6 di�erent metrics yielding

a total of 7 · 8 · 6 = 336 instances, the bene�ts of ensemble pruning become more apparent.

Largely due to the more powerful distance functions, the overall results increased, as it can be

seen when comparing Table 7.4 to the previous setting, Table 7.3. This is most evident by the

best performing single method improving from .8255 to .8978. The heuristic approach using

z-standardization of the outlier scores (as used by HeDES [NAG10]) however continues to per-

form unexpectedly well, and improves substantially over the median and average performance.

The greedy ensemble (retaining a diverse subset of just 9 methods out of the 336 candidates)

however yields a new best result for this data set. As control, we also compute the average per-

formance of ensembles consisting of 9 randomly chosen methods. The ensemble constructed

using the greedy strategy is 1.259 standard deviations better than the average random ensem-

ble of the same size. The methods retained by the greedy ensemble are: LoOP k = 30 with

Manhattan distance; LOF k = 30, Simpli�ed-LOF k = 5 and LDF k = 25 with Jensen-Shannon

divergence; LOF k = 2, 5, 15, 25 and LDF k = 8 with Canberra metric. The ensemble shows

a good diversity, while at the same time preferring the more powerful distance functions Can-

berra and Jensen-Shannon.

7.4.2 Di�erent Ensemble Combination Rules

In Figure 7.6 we evaluate di�erent methods of normalizing and combining scores. The base-

line method of using the average (or sum; e.g. Weighted-kNN) can be found in Figure 7.5a,

and the popular alternative of using the maximum (e.g. LOF when using multiple values of

minPts) is in Figure 7.5b. Unsurprisingly, using the unscaled maximum only works when using

algorithms with approximately the same scale (e.g. LOF). The simplest normalization – linear

scaling to [0; 1] – does not work very well with either normalization: When combined using the

average (Figure 7.5a), most combinations yield 0 gain. For the maximum (Figure 7.5b), results

are even worse. Another popular method of normalizing data, known as z-score standardiza-

tion, was used for normalization in HeDES [NAG10], can be seen in Figure 7.5e. This approach

is already more robust for using di�erent methods: for example the combination of LDF with

a large k and LOF with a low k yields a gain for the �rst time. (For column naming, refer to
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Table 7.3: Ensemble performance with di�erent algorithms (L1 metric, k = {2, 10, 30})
Scaling Combination Pruning Reference ROC AUC Gain/naïve Gain/best

Mixture Model Serial [GT06] (.5000) (unstable)

Sigmoid Serial [GT06] (.5296) (unstable)

Mixture Model Parallel [GT06] (.5599) (unstable)

Identity Max [Bre+00] .6903 -0.555 -0.775

Average ensemble member .7192 -0.410 -0.609

Rank Max .7782 -0.113 -0.271

Sigmoid Parallel [GT06] .7988 -0.010 -0.153

Identity Mean .8008 - -0.142

z-score Mean [NAG10] .8209 +0.101 -0.026

Best individual method (LoOP, k = 10) .8255 +0.124 -

CDF+COP Mult. [Kri+12] .8313 +0.153 +0.033

CDF Bayes Greedy (new) .8400 +0.197 +0.083

Table 7.4: Large ensemble (336 methods):

Distances: Manhattan, Euclidean, Canberra and Clark distances [DD06], Cosine sim-

ilarity, Jensen-Shannon divergence [ES03]

Algorithms: LOF, Simpli�ed LOF, LoOP, LDOF, LDF, kNN-Outlier, kNN-Weight

k = {2, 5, 8, 10, 15, 20, 25, 30}
Scaling Combination Pruning Reference ROC AUC Gain/naïve Gain/best

Mixture Model Serial [GT06] (.5000) (unstable)

Mixture Model Parallel [GT06] (.5000) (unstable)

Sigmoid Serial [GT06] (.5001) (unstable)

Sigmoid Parallel [GT06] .5346 -1.741 -3.554

Identity Max [Bre+00] .7036 -0.746 -1.900

Median ensemble member .7430 -0.514 -1.515

Average ensemble member .7463 -0.494 -1.482

CDF+COP Inv. Mult. [Kri+12] .7805 -0.293 -1.148

Identity Mean .8302 - -0.661

CDF Bayes Random-9 (control) .8437 +0.080 -0.529

Rank Max .8513 +0.124 -0.455

z-score Mean [NAG10] .8925 +0.367 -0.052

Best individual (LoOP, k = 10, Jensen-Shannon) .8978 +0.398 -

CDF Bayes Greedy (new) .9229 +0.546 +0.246
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Figure 7.3. The most advanced method – using cdf normalization (Section 5.3.2.6) and Bayesian

scaling Equation 7.3 – is presented in Figure 7.5f. The improvements over the z-score are hard

to see in this representation, but usually are a more pronounced than before. This is probably

best to see in the LOF and LDOF combination (row 3 and column 6), but also numerically.

In [GT06], the authors proposed an approach based on a similar paradigm. However, in our ex-

periments it worked much worse. The two normalization approaches based on sigmoid �tting

and mixture modeling both turned out to be unstable, resulting in the artifacts visible in Fig-

ure 7.6a, Figure 7.6b, Figure 7.6c and Figure 7.6d. The sigmoid �tting in combination with using

the “parallel” con�guration (i.e. the multiplication of the outlier scores) worked for some cases,

but was unable to combine di�erent methods well enough for complex ensembles. There is an

interesting contrast to combining cdf scaling with the COP score normalization Equation 5.9:

here, the results were next to identical for both the multiplicative and the inverse multiplicative

con�guration.

7.4.3 Subsampling Ensembles

Subsampling ensembles are non-trivial to analyze, as discussed before, due to incomparable

parameterization. On the ALOI data set, as we have seen in Figure 7.3a, rather low values

of k are appropriate. We subsampled this data set with s = 0.2 such that we can expect a

good performance with a low k of about 2 (as seen in [Zim+13], extreme low values of k often

performed best).

Figure 7.7 visualizes the results for 30 samples (with s = .2) along with the result on the full data

set, and the performance of the ensemble using the mean of all samples. While the ensemble

clearly outperforms the individual members – con�rming the results of [Zim+13] that sampling

is amenable for ensemble construction on a di�erent data set – it performs worse than the

method using the complete ALOI data set. We have seen in the analysis that increasing k
reduces variance, and thus the ensemble becomes more similar to the individual results then.

Also, the greedy ensemble performance drops with increasing k, which can also be attributed

to the decreasing variance.

In this plot we can clearly see the aforementioned parameterization problem. LOF of the com-

plete data performs best with k = 9, while the samples perform best with k = 3 . . . 5. After-

wards, the performance drops rather quickly. The bene�t from using the ensemble is largest

with k = 2 because of the larger variance. Nevertheless, the results on the complete data clearly

outperform even the ensemble over all samples, except for k = 2. Both the naïve and the greedy

ensembles over k = 2 . . . 30 however yield better results (see also Table 7.1).

In Figure 7.8 we visualize the similarity of the full data results with k = 2 . . . 30 to (i) the

last ensemble member, for k = 1 . . . 30, and (ii) all ensemble members at k = 2. The highest

similarity to the full data results can be found for k = 30 on the full data set, and the sample

k ≈ 5; the similarity of the k = 2 ensembles is largest in the k = 5 . . . 15 range of the base

method.



7.4 Experiments 169

(a) Unscaled, mean
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(b) Unscaled, maximum

(c) Linear normalied, mean
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(d) Linear normalized, maximum

(e) z-score normalized, mean [NAG10]
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(f) cdf normalized, Bayesian combination

Figure 7.5: ALOI: Gain with di�erent combination functions.
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(a) Sigmoid scaling, multiplicative

LDF

LDOF

Simpli�ed LOF with RMSD

Simpli�ed LOF
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kNN Weight Outlier

kNN Outlier Score

(b) Sigmoid scaling, inverse-multiplicative

(c) Mixture model scaling, multiplicative

LDF

LDOF
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Simpli�ed LOF

LOF

kNN Weight Outlier

kNN Outlier Score

(d) Mixture model scaling, inverse-mult.

(e) COP scaling, multiplicative

LDF

LDOF

Simpli�ed LOF with RMSD

Simpli�ed LOF

LOF

kNN Weight Outlier

kNN Outlier Score

(f) COP scaling, inverse-multiplicative

Figure 7.6: ALOI: Gain with di�erent combination functions.
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Figure 7.9: Performance of LOF on full SAT-2 data set, s = 0.2

On the Satimage data set (as used in [Zim+13]), subsampling at �rst appears to work very good:

for k = 50, the performance both on the individual samples as well as the ensemble is much

better than the full data set. However, when performing an extensive analysis on the data

set, it shows that this observation is somewhat misleading. As seen in Figure 7.9, LOF on the

complete data set can perform very well, when k is chosen large enough. For k < 50, it does

not work very well, but for k > 150 its performance becomes close to perfect. This is likely

due to a high number of duplicates or near-duplicates in the data set. The individual ensemble

members show similar artifacts, but due to subsampling at k < 20. Thus, when comparing at

a �xed k = 50, the subsamples appear to work much better than LOF on the complete data

set. On this data set, ensembles over all k = [2; 200] did not work very well, likely due to the

near-random performance of a large number of k values. The greedy ensemble, which tries

to maximize diversity and prunes redundant ensemble members, su�ers from this much more

than the naïve ensemble.

The bene�ts of using subsampling may, therefore, be a bit di�erent than expected. From these

experiments, we conclude that:

• Subsampling is amenable to ensemble construction when the sampling rate s is low

enough to induce variance.

• Parameterization is not comparable to the complete data set. On the sample, a smaller

k′ ≈ s · k should be used for comparable results.

• Subsampling can improve runtime performance due to both (i) the sampled data sets

being smaller, and (ii) the parameter k′ being smaller.

• Subsampling works well with naïve ensembles. Since the scores of the individual samples

usually have comparable distributions, there is less need for scaling and greedy pruning

will often not yield further improvements.
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“
Although computer memory is no longer expensive, there’s always a �nite size

bu�er somewhere. When a big piece of news arrives, everybody sends a message

to everybody else, and the bu�er �lls. — Benoît Mandelbrot in [Bro04]

”In the previous chapters, we have investigated the mathematical background of outlier detec-

tion methods, improved their usability and result quality as well as their �exibility by making

them applicable to a much broader range of data. The remaining key step is acceleration: al-

though computers get faster and have more memory, our data sets grow even faster than our

processing power. The last few years, companies have been collecting vast amounts of data

and are now in the need of methods to analyze it. The challenges arising from this data and

the technologies developed to manage such data coined the term of “big data”. While there

are multiple aspects to this term, the most widely known is their volume: problems that scale

quadratic with the data set size will become too expensive to compute at some point.

At the same time, what is the value of the exact computation, when our data will always only

be an approximation of reality? With our data only being a sample, chances are that the exact

computation is not substantially closer to the truth than an approximation. In fact, on noisy

data, the rather crude statistic of the median (using only 1 or 2 exact values, and the others just

for sorting) has proven to be more reliable than the mean, which is in�uenced by all data. And

in outlier detection, we must accept that our data will be noisy and impure.

“
Data analysis must progress by approximate answers, at best, since its knowledge

of what the problem really is will at best be approximate. It would be a mistake not

to face up to this fact, for by denying it, we would deny ourselves the use of a

great body of approximate knowledge, as well as failing to maintain alertness to

the possible importance in each particular instance of particular ways in which our

knowledge is incomplete. — John W. Tukey [Tuk62]

”Mathematics is often said to be the only exact science. But this only holds as long as we do not

get real data and observations into the picture. While based on mathematics and trying to live

up to these standards, neither statistics nor data mining can ever be considered to be “exact”.

“
If all the angels united, they would still be able to produce only an approximation,

because in historical knowledge an approximation is the only certainty – but also

too little on which to build an eternal happiness.

— Søren A. Kierkegaard in

Concluding Unscienti�c Postscript to the Philosophical Fragments (1846)

”
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8.1 Runtime Cost of Outlier Detection

When aiming at accelerating outlier detection, the �rst question to answer is where the per-

formance bottlenecks of the algorithm are. While there are bottlenecks in theory, they may

be di�erent in practical use. A good example of this are HeapSort and QuickSort. In theory,

HeapSort is asymptotically optimal. However in practice, QuickSort is the most important

sorting algorithm, and most implementations will even fall back to InsertionSort for small ar-

rays. The reason why InsertionSort is best for small arrays is because of our hardware: linear

memory access is well optimized by CPUs, and when sorting happens in nearby memory (as

with insertion sorting small parts) the CPU can make best use of caching and parallel execution

of instructions. QuickSort, when implemented with good heuristics on the other hand exploits

the nature of data, which is often not totally random, but may already be sorted to a large ex-

tend. Where HeapSort will always �rst completely rearrange the data in a backwards heap,

then deconstruct this heap into a sorted array, QuickSort can largely just skip over already

sorted parts of the data.

So in the end, we will always need to look at both theoretical complexity analysis as well as

careful benchmarking, and code optimization. Over the development history of ELKI [AKZ08;

Ach+09; Ach+10; Ach+11; Ach+12; Ach+13] implementations of the same algorithm became 5

times faster, by optimizing implementation details, but not by changing the actual algorithm;

alternate implementations were sometimes found to be two orders of magnitude slower, while

indexes can yield substantial speed ups for large data sets.
1

So in the end, performance is a

matter of multiple factors: theoretical complexity, hardware reality, and implementation details.

With benchmarks we will never be able to rule out the last factor; and the second factor may

change with CPU generations. Yet, if we have a clear result on which parts to optimize, we

have a good chance to identify real bottlenecks.

The runtime bottleneck we identi�ed for outlier detection, fortunately, is supported both by

theory and practical benchmarking. Table 8.1 gives experimental results for running LOF on

the ALOI color histograms and DBpedia data sets, along with commonly given theoretical com-

plexity results. From this data it becomes clear that theoretical results can be far from the reality

due to the constant factors dropped during analysis. Performing all n2
distance computations

(with n = 75000) is by no means 75000 times slower than loading the data from disk, and bulk-

loading of an index is much faster than querying it for each object (although both have asymp-

totic complexity of O(n log n)). Nevertheless, also from a theoretical point of view, �nding the

kNN of each object in the database is the most expensive part of LOF and similar algorithms.

This not only involves distance computations, but also e.g. managing a priority queue for the

search process and for keeping track of the current top k neighbors. On the ALOI data set,

likely due to the dimensionality of 27 dimensions and the “high” value of k = 100,
2

the k-d tree

fails to accelerate the queries, and the R*-tree also only yields a small performance gain over

1
Benchmark details can be found at: http://elki.dbs.ifi.lmu.de/wiki/Benchmarking

2
Actually, we use k = 101, and then remove the query point from the result.

http://elki.dbs.ifi.lmu.de/wiki/Benchmarking
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Table 8.1: Runtime breakdown of LOF (with k = 100) in ELKI 0.6.0

Data set ALOI 75k 27d Theoretical

Index linear scan k-d tree R*-tree complexity

Load Ascii data 2238 ms 0.96% 2232 ms 0.50% 2231 ms 1.27% O(n)
Bulk-load index 0 624 ms 0.14% 996 ms 0.56% O(n log n)
kNN search 230030 ms 98.84% 446653 ms 99.28% 172791 ms 97.99% O(n2) resp. O(n log n)
LOF 468 ms 0.20% 372 ms 0.08% 321 ms 0.18% O(nk)

Data set DBpedia 475k, 2d Theoretical

Index linear scan k-d tree R*-tree complexity

Load Ascii data 990 ms 0.04% 1057 ms 4.82% 1035 ms 5.99% O(n)
Bulk-load index 0 829 ms 3.78% 768 ms 4.44% O(n log n)
kNN search 2672128 ms 99.74% 15740 ms 71.72% 11379 ms 65.85% O(n2) resp. O(n log n)
LOF 5879 ms 0.22% 4319 ms 19.68% 4099 ms 23.72% O(nk)

the linear scan. On the larger, but only 2-dimensional data set with latitude and longitude co-

ordinates from DBpedia – using Euclidean distance, not geodetic distance, as we are not using

the actual results; and the k-d tree in ELKI only supports Lp-norms – both the k-d tree and the

R*-tree o�er substantial acceleration.

Looking at this breakdown, it becomes obvious that the cost is dominated by the nearest neigh-

bor search, which is known to be a hard problem and has been subject to decades of research in

the database community. The k-d tree [Ben75] and R*-tree [Gut84; Bec+90] are two solutions

proposed for this, but which work best for low-dimensional data. On large data sets, �nding

the k nearest neighbors of each object is a fairly expensive operation, and responsible for the

major share of the runtime (over 99% for large data sets without indexing support). The actual

density estimation and outlier analysis then is only a minor operation.

In traditional database literature, exact nearest neighbor search has received the most attention.

This is unsurprising, because in the early use cases of databases, incomplete and incorrect an-

swers would have been unacceptable: accounting has been a key use case for early databases,

and how useful is “approximately correct” accounting data? In data mining however, and in

outlier detection in particular, we cannot assume our data to be complete or correct. Instead,

we are actually searching for data that might not be correct. Most of the data sets that we an-

alyze are only a snapshot and excerpt of reality, with various kinds of errors in it. Therefore,

approximate nearest neighbor search is a viable option, if it allows us analyzing data sets that

we could no longer process otherwise.

“
Each piece, or part, of the whole nature is always an approximation to the com-

plete truth, or the complete truth so far as we know it. In fact, everything we know

is only some kind of approximation, because we know that we do not know all the

laws as yet. — Richard P. Feynman in [FLS63]

”
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8.2 Approximate Nearest Neighbors in Dense
High-Dimensional Data

We will �rst discuss the most common techniques for approximate nearest neighbor search

in dense high-dimensional data, along with theoretical foundations and established methods.

Note that for sparse data, where most attribute values are 0, most of these approaches will not

work without modi�cations. And for very high dimensionalities, when distance functions no

longer o�er meaningful contrast, approximate indexes will also not o�er much relief [Kab11]

as they are still approximating the low-contrast distance function.

An important result for approximate nearest neighbor search is the Johnson–Lindenstrauss

lemma [JL84], which proved the existence and bounds of a projection of n objects into a lower

dimensional space of dimensionalityO(log n/ε2), such that the distances are preserved within

a factor of 1 + ε. Matoušek [Mat08] further improves these error bounds. The most interest-

ing and surprising property is that the reduced dimensionality depends only logarithmically

on the number of objects and on the error bound, but not on the original dimensionality d.

Di�erent ways of obtaining such a projection have been proposed for common norms such as

Manhattan and Euclidean distance. A popular choice are the “database-friendly” random pro-

jections [Ach01; Ach03], where 2/3 of the terms are 0 and the others ±1 (along with a global

scaling factor of

√
3), which can be computed more e�ciently than the previously used matri-

ces. Another popular choice are projections based on s-stable distributions [Dat+04], where the

Cauchy distribution is known to be 1-stable and the Gaussian distribution to be 2-stable [Zol86]

(i.e. they preserve L1 and L2 norms well). See [VW11] for an overview and empirical study on

di�erent variations of the Johnson-Lindenstrauss transform, indicating that a reduced dimen-

sionality of k = 2 · log n/ε2
will usually maintain the pairwise distances within the expected

quality.

8.2.1 Dimensionality Reduction by Feature Selection

The simplest way to reduce dimensionality is to skip some dimensions. When this is done con-

sciously, e.g. by measuring the discriminative power of features it is called “feature selection”.

For an overview of feature selection approaches, see e.g. [LM98]. When random features are

chosen, it is the base for the ensemble method known as “feature bagging” [Bre96], and was

used in Chapter 7 as diversity source. Randomized feature selection is trivial to compute and

clearly the fastest approach, but it neither gives strong guarantees on the quality of the ap-

proximation, nor does it give a high speedup. The reduced dimensionality may, however, make

traditional indexing methods more e�ective again.

For outlier detection, feature bagging was proposed in [LK05], who construct an ensemble

based on detectors who each use a random subset consisting of [bd/2c; d− 1] dimensions. For

indexing and fast nearest neighbor search, it is desireable to �x the number of dimensions to a

smaller value that aligns well with the page size of the on-disk representation.
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8.2.2 Dimensionality Reduction by Random Projections

Mathematically, dimensionality reduction by random projections is a matrix multiplication:

v′ = M · v

where the matrix M has the size d× d′ with d′ < d. The challenge is to construct a matrix M
such that the distances are optimally preserved. Learning an optimal projection matrix (e.g.

using multidimensional scaling or linear discriminant analysis [Fis36]) is rather expensive and

may not be able to accommodate changing data patterns over time, so the more common ap-

proaches construct such a matrix based on randomization. Some well known (with known error

bounds) approaches are:

• “Database-friendly” random projections [Ach01; Ach03]:

MAchlioptas-2 ij =

{
+1 with probability

1
2

−1 with probability
1
2

MAchlioptas-3 ij =
√

3


+1 with probability

1
6

0 with probability
2
3

−1 with probability
1
6

where in particular the second one is considered “database friendly” in the sense that the

resulting matrix is sparse and contains only {−1, 0,+1}, meaning it can be computed

using additions only (and a single multiplication).

• s-stable random projections [Dat+04]:

MCauchy ij ∼ Cauchy(0; 1)

MGaussian ij ∼ N (0; 1)

Note that in each of these cases, the individual cells are independently drawn from the same

distribution (i.i.d.). There exist variations which normalize projection vectors to unit length

(see [VW11] for further information).

The �rst family of projections are for example used in the method projection-indexed nearest-

neighbours (PINN) [dCH10; dCH12], while the second type is commonly used with locality

sensitive hashing (LSH) [IM98; GIM99; Dat+04].
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8.2.2.1 Indexing with Grid Hashing

Locality sensitive hashing (LSH) [IM98; GIM99; Dat+04] can (on dense vector data with Lp-
norms) be seen as a grid based indexing approach, combining multiple established strategies:

1. Dimensionality reduction by s-stable random projections to k dimensions.

2. Grid based data binning into Nd
bins of width w.

3. Reduction of grid size by hashing to a �nite number of bins.

4. Similarity search in the bin of the query point only.

5. Ensemble of l such projections.

Individual parts of this approach can be substituted to accommodate di�erent data types and

similarity functions. For example, instead of computing the hash code on a regular grid, it can

be based on the bit string of the raw data, or a bit string obtained by splitting the data space

using random hyperplanes. MinHash [Bro97] is a hashing scheme designed for subset similarity

search, which can be generalized to the winner-take-all (WTA) hashes for indexing multimedia

data [Yag+11], which have recently been used to speed up large-scale object detection and

recognition tasks [Dea+13]. LSH is an approximate nearest neighbor search algorithm both

due to the use of random projections (which only approximately preserve distances) but also

due to searching within the same bin as the query point only. The use of hash tables makes it

easy to parallelize and distribute on a cluster.

Probably the largest di�culty in using LSH is choosing the three parameters k, w and l. In

particular w is di�cult to use in the context of outlier detection. Intuitively, the cell width

w is the distance threshold when objects are likely to be in the same grid cell. For distances

larger than w, they are likely in di�erent grid cells. If this parameter is chosen too large, cells

will contain too many points – in the worst case, all objects are in the same grid cell. If the

parameter is chosen too small, in particular objects in sparse areas will have few true nearest

neighbors in their grid and instead have random false matches due to the hashing, or even fewer

neighbors than desired.

In [WPT11], the authors propose a LSH based outlier detection framework. However – in

contrast to what the authors state – it cannot be used for “any distance-based outlier detection

mechanism”, but it will only be useful for global methods such as kNN Outlier: the key idea

of this method is to use LSH to identify low-density regions, and re�ne the objects in these

regions �rst, as they are more likely to be in the top-n global outliers. For local outlier detection

methods, however, there may be iteresting outliers within a globally dense region; and the

pruning rules this method relies on will not be applicable.

8.2.2.2 Indexing with Projected Tree Indexes

Projection-indexed nearest-neighbours (PINN) [dCH10; dCH12] shares the idea of using a ran-

dom projection to reduce dimensionality. On the reduced dimensionality, a classic spatial in-

dexing scheme is then employed to �nd neighbor candidates:



8.2 Approximate Nearest Neighbors in Dense High-Dimensional Data 179

1. Dimensionality reduction using “database friendly” random projections to d′ dimensions.

2. Build a spatial index (R*-tree, k-d tree) on the projected data.

3. Retrieve the c · k nearest neighbors in the projection (c > 1).

4. Re�ne candidates to k nearest neighbors in original data space.

Due to the use of random projections this method may also not return the true k nearest neigh-

bors, but it has a high probability (see [dCH10; dCH12] for detailed error bounds) of retrieving

the correct neighbors. In contrast to LSH, it is also guaranteed to return the desired number

of neighbors and thus always provide enough data for density estimation and reference sets to

be used in outlier detection. When a true nearest neighbors is not found, the false positive will

still be spatially close to the query point, whereas with LSH they could be any data.

8.2.2.3 Limitations of Random Projections

The type of random projections discussed in this chapter are not a general purpose technique:

the Johnson–Lindenstrauss lemma only gives the existence of a random projection that pre-

serves the distances, but we may need to choose di�erent projections for di�erent distance

functions. The projections discussed here were for unweighted Lp-norm distances. Constant

weights can be accommodated by instead scaling the data with the inverse weights, but for

dynamic weights the results will degrade quickly. Furthermore, it should be noted, as pointed

out in [Kab11], that random projection methods are not suitable to defy the concentration of

distances (see Chapter 4 for a discussion of the problems of high-dimensional data) aspect of

the curse of dimensionality: since according to the the Johnson–Lindenstrauss lemma distances

are preserved approximately, these projections will also preserve the concentration e�ect.

8.2.3 Dimensionality Reduction by Space-Filling Curves

Space-�lling curves is a classic mathematical method for dimensionality reduction dating back

to 19th century [Pea90; Hil91]. In contrast to random projections as discussed in the previous

section, when using space-�lling curves the data is always reduced to a single dimension. In

fact, the earliest proposed space-�lling curves such as the Peano curve [Pea90] and Hilbert

curve [Hil91] were de�ned originally for the two dimensional plane, and have only later been

generalized to higher dimensionality. A space-�lling curve is a fractal line in a bounded d
dimensional space (usually [0; 1]d) with a Hausdor� dimensionality of d that will actually pass

through every point of the space. When drawn completely, the curve would therefore cover

the complete square and be in�nitely folded. For illustration purposes, it is common to draw

approximations of the curve instead; since these curves are usually de�ned recursively, the

simplest way of de�ning approximations is by limiting the recursion depth. Figure 8.1 visualizes

the Hilbert curve this way at di�erent levels. The self-similar and fractal nature of the curve

becomes apparent when comparing the curves of di�erent depth at di�erent scales. At each

level, the curve visually consists of four (rotated and scaled) copies of the previous level. Yet,
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(a) Depth 1 (b) Depth 2 (c) Depth 3

(d) Depth 4 (e) Depth 5 (f) Depth 6 (g) Depth 7

Figure 8.1: Hilbert curve approximations at di�erent recursion depth.

(a) Peano

[Pea90]

(b) Hilbert

[Hil91]

(c) Z-curve

[Mor66]

(d) Meandering

Peano

(e) Closed

Hilbert

(f) Rotated

Z-curve

Figure 8.2: Primitives and variants of di�erent popular space-�lling curves.

these four copies are actually connected to each other, forming a single line that never crosses

itself. Figure 8.2 shows the primitive constructs of the three most widely known space-�lling

curves, the Peano, Hilbert and Z-curves. For some curves there exists variants; for example

the “meandering” Peano curve (Figure 8.2d), the closed loop Hilbert curve (Figure 8.2e, which

actually uses the same primitive element as the Hilbert curve, only the �rst level arrangement

is di�erent) and the rotated Z-curve (Figure 8.2f).

The �rst curve used for databases was the Z-order used by Morton [Mor66] for indexing multi-

dimensional data for range searching. This curve is also known as Morton code and Lebesgue

curve. This curve can be obtained by interleaving the bits of two bit strings xi and yi into

a new bit string: x1y1x2y2x3y3x4y4 . . .. The �rst mathematically analyzed space-�lling curve

was the Peano curve [Pea90], closely followed by the Hilbert curve [Hil91] which is considered

to have the best mathematical properties. The Peano curve has not received much attention

from the data indexing community because it splits the data space into thirds, which makes the

computations rather complex. The Hilbert curve, while rather tricky in high-dimensional data

due to the di�erent rotations of the primitives, can be implemented e�ciently with bit oper-

ations [But71], and has for example been used for bulk-loading the R*-tree [KF94] and image

retrieval [Ngu+12].
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Figure 8.3: Visualization of Hilbert curve unfolding. Red edges are cut at curve iteration 3.

8.2.3.1 Indexing Data Using Space-Filling Curves

Indexing data with space-�lling curves as suggested by Morton [Mor66] is straightforward: the

data is �rst projected to the 1-dimensional coordinate, then indexed using a B-tree or similar

data structure. However, querying such data is the main challenge: while this kind of index can

answer exact matches well, and also rectangular window queries by computing the intersec-

tions of the query rectangle with the space �lling curve and then retrieving the corresponding

intervals from the index, �nding the exakt k nearest neighbors is nontrivial.

For outlier detection, however, we will need query windows of di�erent size in order to �nd

the k nearest neighbors. A basic version of this method was published in [SZM98], which used

a large number of “randomly rotated and shifted” curves for image retrieval. Essentially the

same approach was also published in [LLL01], but using multiple systematically shifted – not

rotated – copies of Hilbert curves and giving an error bound based on [Cha98]. For retrieving

the k-nearest neighbors, both methods look at the preceding and succeeding k objects in each

curve, and re�ne this set of candidates. Furthermore, the HilOut [AP02] algorithm uses the same

curve layout as [LLL01], but is the �rst to use this indexing for outlier detection. It di�ers from

the nearest-neighbor search algorithms in the way that it, after each scan of a curve, reduces

the set of candidates for the kNN-Weight outlier model, and re�nes only these candidates when

processing subsequent curves.

As the original motivation of space-�lling curves was to provide a complete ordering of (2-di-

mensional) vectors, space-�lling curves are an extreme dimensionality reduction technique:

they always reduce to a 1-dimensional space, a linear order of all points. Intuitively, they can

be interpreted as repeatedly cutting and opening the data space along some edge in the pro-

cess of linearization. With an increasing number of dimensions, the number of such cuts –

where neighborhoods are not preserved – increases. Figure 8.3 is a visualization of the 3rd

order Hilbert curve, with the actual curve in black. Red lines indicate neighborhoods that are

not preserved well: when the curve is unfolded, the red edges are no longer adjacent along the

curve. The second and third images visualize how the curve unfolds if one would pull both

ends of the curve apart. It can be seen that space �lling curves rely on an intricate (actually

in�nite and fractal) pattern of cutting the data space into fragments that are then ordered by

the position on the curve.
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8.2.3.2 Approximation Guarantees of Space-Filling Curves

In [Cha98], approximation guarantees are given for grid-based indexes based on shifting the

data diagonally by 1/(d + 1) times the data extend on each axis. Roughly summarized, the

proof shows that a data point must be at least 1/(2d+ 2) · 2−l away from the nearest border of

the surrounding cell of size 2−l in at least one of these curves due to the pigeonhole principle.

Within at least one grid cell, all neighborhoods within a radius of 1/(2d+2)·2−l therefore are in

the same grid cell, i.e. nearby on the same curve. By looking at the length of the shared bit string

pre�x, we can easily determine the l which we have fully explored, and then stop as desired.

Approximate k-nearest neighbor search on such curves – by looking at the k predecessors and

successors on each of the d+1 curves only – is shown in [LLL01] to return approximate k nearest

neighbors which are at most O(d1+1/p) farther than the exact k nearest neighbors, for any Lp-
norm. For the 1-nearest neighbor, the error factor is shown to be at most d1/p(4d+ 4) + 1.

HilOut [AP02] takes also the bit strings into account to compute minimum and maximum dis-

tances. For the simple kNN-Weight outlier model, it can this way identify true negatives, and

instead re�ne the remaining outlier candidates more precisely. The focus of HilOut is to �nd the

top-n outliers exactly, and skip over objects that cannot be in this set early. However, HilOut

cannot as easily be adapted to local outlier detection models such as LOF, where a pruning

would be needed that is based on local densities.

In our proposed approach, we divert from using the systematic diagonal shifting proposed for

which these error bounds are proven. Details of our randomized approach will be given in the

next section. It can be expected that the errors obtained by randomized projections are on a

similar scale on average, but we cannot guarantee such bounds for the worst case anymore. We

do however achieve better scalability due to the lower dimensionality of our projections, we

gain the ability to use other space �lling curves and are not restricted to using d + 1 curves.

Similar to how diversity improved outlier ensembles in Chapter 7, we can expect diverse ran-

dom subspaces to improve the detection result in practice, even when we can no longer give

precise theoretical error bounds.

8.2.3.3 Limitations of Space-Filling Curves

Space �lling curves are easy to use in low dimensional space, but will not trivially scale up to

high dimensionality due to the combinatorial explosion as discussed in Chapter 4 (just as any

other grid based approach). They work on recursive subdivisioning of the data space, into 2d

(3d for the Peano curve) cells, a number which grows exponentially with the dimensionality d.

In most cases, the ordering of points will then be determined by binary splits on the �rst few

dimensions only. HilOut su�ers both from this aspect of the curse of dimensionality, and from

the distance concentration which reduces its capability to prune outlier candidates: since all

distances are increasingly similar, the set of outlier candidates does not shrink much with each

iteration of HilOut. For this top-nmethod to perform well, it must quickly be able to shrink the

set of candidates to a minimum, so that it can analyze a wider window of neighbors for them.
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8.2.4 Fast Approximate kNNSearch with Space-Filling Curves

The proposed method to search for nearest neighbors is closely inspired by the methods dis-

cussed before, such as HilOut. However, it is designed with parallelism and distributed compu-

tation in mind: where HilOut uses a nested loops approach to re�ne the current top candidates

for a single outlier detection model, we focus on an easy to parallelize method to compute the

k nearest neighbors of all objects (often called as kNN-self-join), so that we can then use any
of the kNN based outlier detection methods discussed in this thesis.

The principle of the proposed method is:

1. Generate m space-�lling curves, but using

a) di�erent curve families (Hilbert, Peano, Z-curve),

b) di�erent random projections and/or subspaces,

c) di�erent shift o�sets to decorrelate discontinuities.

2. Project the data to each space-�lling-curve.

3. Sort data on each space-�lling-curve.

4. Using a sliding window of width w · k generate neighbor candidates for each point.

5. Merge the candidates across all curves and remove duplicates.

6. Compute the distance to each neighbor candidate, and keep the k nearest neighbors.

All of these steps can easily be parallelized in a distributed computation framework such as

Hadoop and MapReduce. The only step that needs additional coordination is the sorting step;

however sorting large data sets on Hadoop is a solved problem, for example by �rst gathering

quantile information, then rearranging the data into partitions and sorting these locally (see

the TeraSort benchmark [Ras+11] with the 2013 record being the sort of 1.4 TB in 1 minute).

Algorithm 3 gives the full outlier detection algorithm for the generalized model of Section 6.1,

but obviously one can also run other kNN, SNN and reverse-kNN based algorithms on the pre-

computed neighborhoods. The reverse-kNN are computed by simple list inversion to optimize

data communication: this makes it easy to transmit an objects density estimate to the neighbor

objects for comparison.

8.2.4.1 Bias in Approximation by Space-Filling Curves

There exists an interesting bias in the approximation using space-�lling curves (SFCs), which

makes them particularly useful for outlier detection. The error introduced by SFCs scales with

the density of the data: if the bit strings of two vectors agree on the �rst d · i bits, the vectors

are approximately
3

within a cube of edge length 2−i times the original data space. For query

points in a dense region of the data, the explored neighbors will be closely nearby, whereas for

objects in less dense areas – i.e. outliers – the error introduced this way will be much larger on

3
This does not exactly hold e.g. for the Z-curve which has discontinuities, and the Peano curve is not represented

using bit strings, but the intuition nevertheless remains valid; furthermore we will be using random projections.
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Algorithm 3: Parallel Approximate Outlier Detection

// Project data locally

on every node do
for each block do

for each curve do
project data block to curve

store projected data

send quantiles to coordination node

end
end

endon
// Estimate distribution for sorting

on coordination node do
for each curve do

Merge received quantiles

Estimate global data distribution

send global quantiles to every node

end
endon
// Rearrange data in cluster

on every node do
for each curve do

for each projected block do
split according to global quantiles

end
end

endon
shu�le to new blocks

// Process sliding windows

on every node do
for each curve do

for each projected, shu�ed block do
Sort block

for each object (using sliding windows)
do

emit (object, neighbors)

end
end

end
endon
shu�le to (object, neighbor list)

// compute kNN and build RkNN
on every node do

for each (object, neighbor list) do
Remove duplicates from neighbor list

Compute distances

store k nearest neighbors of object

emit (neighbor, object) for each neighbor

end
endon
shu�le to (object, kNN, RkNN)

// Compute models

on every node do
for each (object, kNN, RkNN) do

Compute model for object

emit (object, (object, model))

emit (reverse neighbor, (object, model))

end
endon
shu�le to (object, model list)

// Compare models

on every node do
for each (object, (neighbor, model)) do

Compare model to neighbor models

Store outlier score for model

Collect outlier score statistics

end
send statistics to coordination node

endon
// Normalize Outlier Scores

on coordination node do
Merge outlier score statistics

send statistics to every node

endon
on every node do

for each (object, score) do
Normalize Outlier Score

if score above threshold then
emit (outlier, normalized score)

end
end

endon
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average. Furthermore, for an object central to a cluster, “wrong” nearest neighbors tend to still

be members of the same cluster, and will just be slightly farther away. For an outlier however,

missing one of the true nearest neighbors – which may be another outlier with low density –

and instead taking an even farther object actually increases the chance that we end up using a

cluster member of a nearby cluster for comparison. So while the approximation will likely not

a�ect inlier scores much, we can expect it to emphasize outliers!

This e�ect is similar to an observation for subsampling ensembles in [Zim+13] and Section 7.2.3.4:

When subsampling a relative share of s objects from a uniform distributed sphere, it can be

shown that the kNN-distances are expected to increase by a relative factor of (1 − s1/d)/s1/d
.

Since for outliers this distance is expected to be higher, the expected increase will also be larger,

and thus the outlier will become more pronounced with respect to this measure.

8.2.5 Di�erent Kinds of Approximations

While all approaches discussed before can be used to �nd the approximate nearest neighbors

e�ciently, they are based on subtly di�erent foundations of approximation.

Random projections are designed to approximately preserve distances, while reducing dimen-

sionality. Using an exact index on the projected data, as done in PINN, will therefore �nd the k
nearest neighbors with respect to the approximate distance. The index based on locality sensi-

tive hashing (LSH) in contrary is lossy: it is designed to have a high chance of preserving regions
of a �xed size w, where the size w is a critical input parameter: the smaller the size that needs

to be preserved, the faster the index; when the parameter is chosen too high, all objects will be

hashed into the same bin, and the index will degenerate to a linear scan. Space-�lling curves on

the contrary neither aim at directly preserving distances, nor do they try to preserve regions

of a given radius. Instead, space-�lling curves try to preserve closeness: the nearest neighbors

of an object will often be nearby on the curve, while far neighbors will be far away. For the

purpose of density based outlier detection, this yields an important e�ect: the index based on

space-�lling curves is better at adapting to di�erent density in the data set than the other two

indexes, which makes it more appropriate for local density based outlier detection methods.

As a rule of thumb, the following can be used:

• If the exact distances are of importance, PINN is expected to work best.

• If neighborhoods for a known, small radius w are needed, LSH is expected to work best.

• If k-nearest neighborhoods are needed, SFC is expected to work best.

8.2.5.1 Indexing Using 1-Dimensional Random Projections

As an additional baseline method, we also evaluate the following method for approximate near-

est neighbor search: similar to PINN and our SFC method, the data is projected using a random
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projection; however we only use a 1-dimensional output space. Since the projected data is al-

ready 1-dimensional, it can then be sorted on this axis without the need of using a space-�lling

curve. The query process we use however is the same as proposed for SFC: the neighbors within

a sliding window of w ·k are added to the candidate set, and exact distances are only computed

on this candidate set. This baseline method can therefore be seen as an the extreme case of

combining the space-�lling curve approach with a 1-dimensional random projection.

8.2.6 Evaluation

The method proved to be e�ective for outlier detection. Each space-�lling curve will return

some of the true nearest neighbors, and by using enough curves and a su�ciently large window

size, a strong set of candidates can be found. At the same time, searching in the sorted space-

�lling curves is a linear process that does not involve distance computations. Intuitively, w
should be chosen greater than 1, but when using many curves, even low values such as 1/

√
m

can yield reasonable performance (but in the worst case, may yield less than k candidates).

Figure 8.5 visualizes the results for running the LOF algorithm on the 27-dimensional variant

of the ALOI data set with k = 20 on a single CPU core. To make the results readable – we

evaluated over 4000 di�erent index variations total – we visualize only the skyline results in

Figure 8.4a. The skyline are all objects where no other result is both faster and has a higher

score at the same time (upper skyline) or where no other result is both slower and scores less at

the same time (lower skyline). The upper skyline is primarily useful for judging the potential of

a method, when all parameters were chosen optimal, whereas the lower skyline indicates the

worst case. Figure 8.4a visualizes the skyline of outlier detection quality vs. runtime, whereas

Figure 8.4b is an evaluation of the actual index by measuring the recall of the true 20 nearest

neighbors. In both measures, the SFC based method has the best potential – it can even be better

than the exact indexes – while at the same time it is usually an order of magnitude faster than

PINN and two orders of magnitude faster than LSH (both at comparable quality). And even

when the parameters are chosen badly (which for SFC usually means using too few curves), the

results are still comparable to LSH and PINN.

However, there is a surprising di�erence between these two charts. They are using the same

indexes, but the LOF ROC AUC scores for the SFC index start improving quickly at a runtime

of 1000-2000 ms. The recall however, starts rising much slower, in the range of 1500-10000 ms.

When we choose an average performing combination for the SFC index: 8 curves of di�erent

families combined with a random subspace projection to 8 dimensions and a window width of

w = 1, the runtime is 4989 ms and the ROC AUC is .747, and the average recall of the true

nearest neighbors is .132, it is surprising to see such a good performance despite the low recall.

Figure 8.5a visualizes the relative error of the 20-nearest neighbor distance compared to the

recall. This chart is interesting, because it shows that the SFC curves, even when having a very

low recall of less than .20 often yield much smaller relative error than the other approaches.

This means that while the method does make more errors, the errors are less severe, i.e. the

incorrect nearest neighbors have a smaller distance than with the other methods.
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In Figure 8.4d we explore the e�ect of di�erent random projections. The skyline, marked as

“SFC”, does not use random projections at all. The curves titled “R SFC” are space �lling curves

on randomly selected features only (i.e. feature bagging), while “RP SFC” uses full Achlioptas

style random projections. Unsurprisingly, the approach not using projections is fastest due to

the lower computational cost. Randomly selected features has the highest potential gains (some

of which may be an artifact of this data set) and in general the largest variance. Achlioptas ran-

dom projections o�er a similar performance to the full-dimensional SFC, but come at the extra

price of having to project the data, which makes them usually slower. Figure 8.4e compares

di�erent space �lling curves for the full-dimensional SFC subset, with the approach of choos-

ing the curves at random usually giving the best performance: the added diversity improves

results at little cost. While Hilbert curves seem to come out worst, this may be an implemen-

tation artifact: where Z-curves and Peano curves were implemented using an e�cient divide

and conquer approach for sorting, the Hilbert curves were implemented by projecting the data

to their bitstring representation (using 27 · 31 = 837 bits) and then sorting this representa-

tion. For PINN, we also explore di�erent indexes for the projected data in Figure 8.4f. R*-trees

bulkloaded with the sort-tile-recursive (STR, [LEL97]) performed best, as R*-trees usually have

better pruning power than k-d trees in medium dimensionality.

In Figure 8.4c we give a sample of the full parameter space we explored. Obviously, all 4000 runs

will be an unreadable cloud of points, but instead we �lter the results to LSH and one variant

of SFC only (random curve families and random subspaces), which are about 700 runs. To

show the continuity of the explored parameter space, we connected similar parameterizations

with a line, more speci�cally for SFC indexes we connected those that di�er only in window

width (i.e. using w · k candidates) and for LSH we connect those that vary the number of hash

tables l. For the exact indexes, the di�erent results are for di�erent page sizes. Apart from

seeing that we systematically explored the parameter space, it is interesting to see that with

SFC we repeatedly were able to get higher outlier detection quality at a more than 10-fold

speedup over the exact indexes – only when using a single space-�lling curve, the results were

not substantially better.

Most of the parameters are expected to increase the number of candidates and thus the approx-

imation quality of the index, but also the overall runtime, which is why this kind of smooth

lines arise in visualization. For PINN we only include variants of the backing index in runtime

experiments, as they do not a�ect recall.

Figure 8.5b is the same sample as Figure 8.4c, but projected to LOF ROC AUC quality and recall.

One would naïvely expect that a low recall implies that the method cannot work well. While

algorithm performance and recall are correlated for locality sensitive hashing, the SFC approach

violates this intuition: even with very low recall, it already works surprisingly well; and some

of the best results have a recall of only around .25 – and outperform the exact solution. When

looking at the skylines of the complete data in Figure 8.5c, this even yields an upper skyline

that ends at a recall of 0.20 – no result with a higher recall performed better than this.
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Figure 8.4: Experiments on 27d ALOI data set
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Figure 8.5: Experiments on 27d ALOI data set
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8.3 Indexing Geodetic Data

The contents of this section are based upon:

E. Schubert, A. Zimek, and H.-P. Kriegel. “Geodetic Distance Queries on R-Trees for

Indexing Geographic Data”. In: Proceedings of the 13th International Symposium on
Spatial and Temporal Databases (SSTD), Munich, Germany. 2013, pp. 146–164. doi:

10.1007/978-3-642-40235-7_9

Maps have played an important role in human live for thousands of years. The oldest known

maps are over 8000 years old. One of the breakthrough achievements in mapping is due to

Ptolemaíos (around 100 A.D.), who essentially introduced the spherical coordinate systems we

still use today with latitude and longitude (although using a di�erent prime meridian).

While the spherical shape of the earth has been widely known since the ancient greek and was

the dominant belief in the middle ages,
4

we still mostly rely on �at maps. While a globe is a

good representation of the complete Earth; �at maps are more useful to us for local navigation

and orientation. Yet, when analyzing such data, we must not assume that Euclidean distance in

the coordinate system of latitude and longitude is a reasonable measure of distance. In the �at

coordinate system, Alaska is the easternmost (as well as the northernmost and westernmost)

state in the United States, since the Aleutian islands cross the 180◦ longitude line.

“
I wanna hang a map of the world in my house. Then I’m gonna put pins into all

the locations that I’ve traveled to. But �rst, I’m gonna have to travel to the top two

corners of the map so it won’t fall down. — Mitch Hedberg, according to [KW11]

”In order to avoid bias and error in our data analysis, we need to pay attention to using the

appropriate distance computations when handling such data. In this section, we will discuss

some of these e�ects and artifacts, and introduce a function to be able to query R*-tree indexes

for geographic data without introducing such errors. Since R*-trees work very well in low-

dimensional situations, this will yield substantial speedup for many data mining tasks when

processing geographic data. In particular, this method allows us to accelerate k-nearest neigh-

bor search, a query that is used heavily for outlier detection methods.

8.3.1 Introduction

Nowadays, we are much more used to seeing maps than using a globe. But if we look at �at

maps of the world, all map projections have some error: they cannot preserve the three com-

ponents of geographical information, distance, area, and angles, equally well. The projections

that we are most used to are the Mercator projection and the even simpler equi-rectangular

projection. Google Maps, for example, is based upon a modi�ed Mercator projection. Figure 8.6

4
It is a myth that until Columbus people believed in a �at Earth, with numerous counterexamples.

http://dx.doi.org/10.1007/978-3-642-40235-7_9
http://dx.doi.org/10.1007/978-3-642-40235-7_9
http://dx.doi.org/10.1007/978-3-642-40235-7_9
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(a) Mercator projection

(b) Goode homolosine projection

(c) Equirectangular projection

Figure 8.6: Three di�erent projections of the earth surface.

Images from Wikimedia Commons, by user “Strebe”.
5

shows three di�erent projections used for maps. Figure 8.6a is a variation of the usual Mer-

cator projection, which has a huge in�uence on our understanding of the world. Figure 8.6b

is an alternate projection developed 1923 by John Paul Goode, which is an equal-area projec-

tion. The di�erence in the ability to preserve area can in particular be seen for the Antarctica,

but also Greenland, Canada, Alaska and Russia show massive area distortions in the Merca-

tor projection. The Mercator projection is obtained by wrapping a cylinder around the earth

and projecting the earth surface onto this cylinder. This yields a good map where the cylinder

touches or intersects the earth, but along the axis of the cylinder the distortion is in�nite – the

north and south poles do not project to the cylinder at all. Therefore, Mercator maps are com-

monly truncated at the poles. Figure 8.6a for example is truncated to a latitude of ±82◦. While

the Mercator projection does not preserve area and distances, it preserves the shapes quite well

– but even more importantly, it preserves angles, which makes it useful for navigation and this

probably is the main reason for the popularity of this projection. The equirectangular projec-

tion (Figure 8.6c) is probably the simplest projection, where latitude and longitude translate

directly into y and x. In contrast to Mercator, it does not preserve angles. However, being able

to trivially translate latitude and longitude to pixels on this map projection makes it a popular

choice in GIS raster applications, and this is the default projection for placing custom texture

overlays on the earth surface, e.g. in Google Earth and NASA WorldWind.

5
For detailed copyright information on these images (CC-BY-SA 3.0), see

https://commons.wikimedia.org/wiki/Category:Images_of_map_projections.

https://commons.wikimedia.org/wiki/Category:Images_of_map_projections
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There are hundreds of geodetic datums,
6

some of which are historic, but many are still in use

for good reasons, e.g. for land survey. We tend to assume that any geographic position is well-

de�ned, but for example due to tectonic plate shift we have to accept the fact that even the

largest mountains move with respect to each other over time. One of the most popular ge-

ographic coordinate system is that of geographic latitude and longitude, with respect to the

World Geodetic System 1984 (WGS84) reference ellipsoid. Geographic position is then mea-

sured with three components, known as latitude, longitude, and elevation. Elevation is com-

monly given with respect to the reference ellipsoid’s (or the more complicated geoid’s) surface,

so that values of 0 are approximately at sea level. In the following, we will use λ to denote

latitude and φ to denote longitude. We will not be using elevation, because it usually is not

available in many data sets. Furthermore, in order to fully specify position, one would also

need to take the time of the measurement into account. For all these reasons, we have to live

with some error in geo positioning and, thus, distance computations. There exist several ref-

erence models of the earth. The simplest is that of a sphere with radius r = 6371 km, but

there exist more complex models such as the GRS80 (Geodetic Reference System 1980) and the

WGS84 ellipsoids, the latter is commonly used with the global positioning system GPS.

In many applications, Euclidean distance is commonly chosen to measure distances on such

data. If the variables stored are latitude and longitude, this equals measuring distances in the

plate carrée (equirectangular) projection – which preserves neither distances nor area nor an-

gles. The errors resulting from this are considerably larger than one might assume, even at

short distances: For example at 45◦N , the latitude of Minneapolis, Turin and Bordeaux, 1◦ of

longitude equals, in distance, approximately 0.707◦ of latitude (traveling 1◦ north is approx-

imately 111 km, traveling 1◦ east is just 78.7 km). Therefore, this naïve approach leads to a

non-negligible distortion for nearest neighbor and radius queries in large parts of Europe and

the U.S. Transforming the data to a di�erent local geodetic system can reduce this error signif-

icantly if we need a small part of the world only, but this approach does not work for global

data sets: local geodetic systems are often based on transversal Mercartor projections and do

not cover 360◦ of longitude.

A much more adequate choice for computing distances is the great-circle distance, also known

as orthodromic distance and called geodetic distance when using the Earth’s radius. This is the

shortest distance on the surface of a sphere (or ellipsoid). In the simpler case of a sphere of

radius r – not using an ellipsoid earth model – it can be computed using ∆λ := |λ1 − λ2| and

the spherical law of cosines:

dcosine(φ1, λ1, φ2, λ2) :=r arccos (sinφ1 sinφ2 + cosφ1 cosφ2 cos(∆λ))

Unfortunately, this formula has low numerical precision for small distances, so improved for-

mulas such as the haversine (from half versed sine, haversin(θ) = sin( θ
2
)2

) formula [Sin84]

6
A geodetic datum de�nes a speci�c geodetic system in terms of a coordinate system and reference points. The

correct plural is datums, not data.
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have been developed since:

dhaversine :=2r arcsin

√
(sin

φ2 − φ1

2
)2 + cosφ1 cosφ2(sin

∆λ

2
)2

≡2r arctan

√
(sin φ2−φ1

2
)2 + cosφ1 cosφ2(sin ∆λ

2
)2√

1−
(
(sin φ2−φ1

2
)2 + cosφ1 cosφ2(sin ∆λ

2
)2
)

The second form of the haversine formula has slight computational advantages over the �rst

by computing it using atan2(
√
a,
√

1− a).

Vincenty’s formula [Vin75] is an iterative method to compute the great circle distance in an

ellipsoidal earth model such as WGS84. For the – simpler – spherical model, this formula would

be as follows:

dvincenty :=r arctan

√
(cosφ2 sin ∆λ)2 + (cosφ1 sinφ2 − sinφ1 cosφ2 cos ∆λ)2

sinφ1 sinφ2 + cosφ1 cosφ2 cos ∆λ

Additionally to computing distances between points, one could also want to compute distances

between points and a desired track: the so called “cross-track distance” (XTD, also “cross track

error”) is the sideways deviation from a desired path of travel, for example due to wind a�ecting

an airplane. In the simpler, spherical, model, it can be computed as

dxtd := r arcsin
(

sin(dsp/r) · sin(θsp − θsd)
)
, (8.1)

where dsp is the distance from the starting point s to the current position p, θsp is the initial

bearing from the starting point s to the current position p, and θsd is the initial bearing from

the starting point s to the desired destination d.

The bearing (or forward azimuth) is the initial direction one needs to travel to the destination

on the great-circle path (i.e., on the shortest path). Note that, when traveling along this path,

the measured direction will actually change, so it does matter at which point we compute the

bearing. The spherical formula for the bearing from a to b is:

θab = arctan
sin(∆λ) cosφb

cosφa sinφb − sinφa cosφb cos(∆λ)
(8.2)

Cross-Track-Distance and its orthogonal component, the along-track-distance (which we will

actually not use in the index computations) are visualized in Figure 8.7 and Figure 8.8 for a track

from Munich to New York City. The left images (Figure 8.7a and 8.8a) are the equirectangular

projections and may appear distorted. But when the map is projected onto the sphere, as seen

in Figure 8.7b and 8.8b, it appears regular as expected. Red colors indicate a deviation to the

left (in Figure 8.7) or a position along the track before the starting point (in Figure 8.8), which

are often represented by negative numbers. Black lines indicate contours of 1/36 the earth

circumference.
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(a) Equirectangular projection (b) Google Earth projection

Figure 8.7: Cross-Track-Distance from the course Munich to New York.

(a) Equirectangular projection (b) Google Earth projection

Figure 8.8: Along-Track-Distance from the course Munich to New York.

8.3.2 Related Work

Considering the background, state-of-the-art, and open problems, we discuss three aspects:

�rst, data indexing methods proposed in scienti�c literature; second, the functionality com-

monly available in actual database engines; third, more speci�cally the problems of geodetic

data when combined with these indexes.

8.3.2.1 Data Indexing in Scientific Work

Among the simplest index structures for spatial data are quadtrees [FB74], that recursively split

an over�owing cell into four parts (by splitting in the middle of the x and y axes) until the cells

contain at most the desired number of objects. A similar idea is the base of k-d trees [Ben75],

which split into two parts similar to a B-tree, but rotate through the d axes at each level. By

splitting at the median (on an optimal tree) instead of the middle, a k-d tree can be a balanced

tree. However, it does not allow easy dynamical rebalancing. Repeated insertion may cause
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the tree to become unbalanced and require the index to be rebuilt to retain good performance.

Hierarchical Triangular Mesh [KST01] can be seen as an adoption of quadtrees to indexing

the surface of a sphere. The initial approximation is an octahedron, and each triangle is then

repeatedly decomposed into the four smaller triangles obtained by splitting each edge in half.

While quadtrees can be linearized and then stored e�ciently in a B+-tree (which e�ectively

turns the quadtree into a Z-curve [Mor66]), these indexes do not make native use of the block

structure of harddisks. The R-tree [Gut84] and its variants (such as the R*-tree [Bec+90]) are

very popular spatial index structures for the use in databases, since they o�er three main ben-

e�ts over k-d trees: �rst of all, they are designed with paged memory in mind, and thus can

easily be implemented as disk-based indexes. Secondly, they also consider non-singular objects

with a spatial extent of their own, such as polygons. But even more importantly, they allow for

dynamical rebalancing when inserting and deleting data.

In this respect, the R*-tree [Bec+90] is an important extension of the R-tree when handling

dynamic data, since its focus is on rebalancing and, this way, on optimizing the tree. The SS-

tree [WJ96] is similar to the R-tree, but uses bounding spheres instead of rectangles for its

bounding volume hierarchy. The M-tree [CPZ97] includes the distance to each child in the

parent page and uses the triangle inequality to prune search candidates. Both do not rely on

projections or coordinates, but index the data solely by their distances. On the other hand, this

requires the tree being built for the speci�c distance function to be used for querying. It can

not be used to answer queries with arbitrary other distance functions. While the query process

is quite straightforward, the construction and incremental update of these trees is much harder

than in the case of the coordinate-oriented R-trees. The SS+-tree [KJS97] uses k-means cluster-

ing to �nd a good split; however k-means only optimizes for (squared) Euclidean distance, and

does not search for a minimum cover, but minimizes in-cluster variances. A bulk-loading strat-

egy [CP98] for the M-tree is based on sampling and k-means style clustering to avoid having to

compute all pairwise distances. The Slim-Tree [Tra+00; Tra+02] suggests the use of the mini-

mum spanning tree to split nodes and uses R*-tree-inspired reorganization techniques to “slim

down” the tree. These di�culties of e�ciently computing a good split constitute the largest

drawback of the M-tree. There are also hybrid techniques, such as an R-tree which also stores

the center and radius of the page (SR-Tree [KS97]). Here, the split strategies of the R-tree can

be used, and the covering radius serves as an additional pruning heuristic. Again, this radius

can be only used for a speci�c distance function, chosen at index construction time.

8.3.2.2 Data Indexing in Practical Use

Not all of the techniques discussed above are used in practice. The most used techniques prob-

ably are Quadtrees (because of their simplicity and the ability to map them to existing B+-tree

indices for harddisk storage) and R*-trees. However, while many database engines (includ-

ing but not limited to Oracle, IBM Informix, Microsoft SQL Server, PostgreSQL, SQLite) list

these indices on their feature sheets, the actual support for using them in query evaluation

varies. The main functionality that seems to be widely supported is that of multidimensional
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range queries, which is for example useful when displaying parts of a map. Few seem to allow

index-accelerated distance-based queries, and it is even more unclear, if they do, which distance

functions are supported. Most database engines support only Euclidean distance queries.

Microsoft SQL Server uses a multi-level grid-based approach closely related to Quadtrees that

requires �lter re�nement that can (since SQL Server 2012) also accelerate nearest neighbor

queries [Mic; Fan+08] (at least for Euclidean distance). PostGIS/PostgreSQL have support for

R-trees and M-trees implemented on top of their GiST architecture. However, these indexes

can currently only be used with bounding box-based operators and not with queries that use

Euclidean ST_Distance [Pos], yet the spherical ST_Distance_Sphere. Built-in operators

of the database such as <#> and <-> also appear to support Euclidean distances only. IBM

Informix [IBM] uses a data partitioning scheme with a prede�ned set of Voronoi cells (see

also [Luk87]), based on the population density of the areas. Furthermore, it supports the R-tree

with custom strategy functions via an API. It is not clear from the documentation whether the

nearest neighbor search functions are provided for any of the prede�ned geodetic data types.

However, the algorithms presented in this Section can be implemented straightforwardly in

this API. Oracle Spatial supports quadtrees and R-trees. Only the latter can be used for geodetic

distance queries. An empirical evaluation at Oracle found R-trees to “consistently outperform

quadtrees by a factor of 3” [KRA02] for distance queries on the GIS data used in the study and

to o�er equivalent or better performance in almost all cases without parameter tuning. Ac-

cording to [HRA11], the approach used by Oracle is to project the data into a 3-dimensional,

“earth-centered-earth-�xed” (ECEF) coordinate system space and index the data there, but de-

tails on the exact method used do not seem to be available.

8.3.2.3 Handling Geodetic Data with Non-Geodetic Indexes

As we have seen, many popular index structures are either designed or implemented only with

Euclidean distance in mind. When geodetic data are naïvely stored in such an index, it will result

in errors in distance computations. In Section 8.3.1 we already noted that the error at 45◦N ,

the latitude of Minneapolis, Turin and Bordeaux, the same Euclidean distance going east is just

70.7% of that when going south instead. Therefore, we should not use Euclidean distance with

data in the non-Cartesian coordinate system of latitude and longitude. Many widely available

index structures will only support such distance functions.

In order to get a more reasonable precision using Euclidean distance, the data must be trans-

formed into a locally equidistant projection such as European Datum 1987 (ED87) or the Euro-

pean Terrestrial Reference System (ETRS) for data in Europe. Close to the fundamental point of

these coordinate systems, the Euclidean distance can be reasonably used without large distor-

tion. However, on a global data set there exists no optimal fundamental point, and distortions

will occur when using the Euclidean distance.
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8.3.2.4 Summary and Contributions

Indexing of spatial data is not a new domain. Many methods have been around for a long time.

A method that clearly has proved itself in the “test of time” is the R*-tree, which seems to be

used by every major database engine. Yet, when processing geodetic data, the index support

in common database engines is often surprisingly limited. The R*-tree is – in contrast to the

M-tree – actually distance agnostic and by no means limited to the Euclidean distance or Lp-
norms. The R*-tree implementations in ELKI [Ach+12] supports various distance functions,

including Canberra distance, Histogram intersection distance, and Cosine similarity as long as

the data does not contain the origin. In the following we will introduce two approaches to index

data with respect to the geodetic distance based on R-trees. Both approaches have strengths

and weaknesses, some of which we will look at in detail.

For the simpler approach (which likely is similar to what Oracle Spatial uses [HRA11; Hu+12]),

we can project the data into a 3-dimensional ECEF coordinate system and use an R-tree or M-

tree with Euclidean distance. The Euclidean distance then is a lower bound for the geodetic

distance, and we can therefore get a good approximation of the query set, which then can be

re�ned with geodetic distance. The main drawback of this approach is that the resulting tree is

less useful when querying map sections based on a latitude/longitude rectangle; it also needs

additional memory to index the data this way.

The second approach we introduce will work on the unmodi�ed data (i.e. latitude and longitude

coordinates) and an unmodi�ed R-tree. What is needed to enable this kind of queries is the

minimum distance from a query point to an index rectangle, which is a key contribution of this

Chapter. The main bene�ts of this approach are that the same index can be used to answer

typical map window queries that consist of latitude and longitude ranges, allowing for a dual-

use index. Furthermore, since the index is using the original, 2D data, it requires less memory

(and thus less I/O) than the other approach. The drawback is that, since it involves trigonometric

computations, it is more CPU intensive.

Both approaches can easily be implemented in any existing database that already supports the

R-tree: there are no changes needed to the index or index construction. In the �rst approach the

index only needs to be able to accelerate 3D Euclidean distance queries. In the second approach

it needs to allow for custom distance functions.

8.3.3 Indexing Geodetic Data

Some index structures such as the M-tree can be used immediately with any metric distance

function. Being the shortest path on the surface, the great-circle distance is a proper metric,

and can be used with the M-tree immediately. We will discuss two alternate approaches here.
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Figure 8.9: ECEF Cartesian index space.

8.3.3.1 Indexing Geodetic Data Using 3D Euclidean Coordinates

While the geographic latitude and longitude are probably the most popular datum for geo-

graphic positions, there exist other coordinate systems. One of these sticks out because it ac-

tually uses Cartesian coordinates – which is also the main drawback, because it is not at all

map oriented. Instead of giving coordinates on the earth surface, it uses three axes originating

from the Earth’s centre of mass. The x and y axes span the equatorial plane, with the x-axis

pointing to the prime meridian, the y-axis pointing to 90◦E, the z-axis pointing straight north,

i.e. it coincides with the average rotational axis of the Earth. Figure 8.9a visualizes the axes

with respect to the earth sphere. This coordinate system can be referred to as earth-centered

earth-�xed (ECEF) or simply “XYZ” coordinate system. The name originates from the coor-

dinate system being centered on the earth mass point and �xed to be invariant to the earths

rotation.

While Euclidean distances in this coordinate system do not follow the Earth’s surface, they have

an interesting property. As sketched in Figure 8.9b, the Euclidean distance is the chord length

in the great circle used by the geodetic distance. This yields two important properties:

• Euclidean distance in the ECEF coordinate system is a lower bound for the geodetic dis-

tance:

L2,ECEF(a, b) ≤ dgeodetic(a, b) (8.3)

• Euclidean distance in the ECEF coordinate system is strictly monotone to geodetic dis-

tances, i.e.

L2,ECEF(a, b) < L2,ECEF(x, y)⇔ dgeodetic(a, b) < dgeodetic(x, y) (8.4)

The �rst property guarantees that for a query radius r, all objects (although also some more)

are found that would be in the desired range for the geodetic distance. The second property
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gives an even stronger guarantee for retrieving the k nearest neighbors: here, no additional

objects should be included (notwithstanding numerical issues).

Therefore any index that can support Euclidean distance in 3 dimensions can be used to index

geodetic data, after transformation into ECEF Cartesian coordinates. This includes (but is not

limited to) grid�les, octrees, the M-tree, and the R-tree family. For our experiments, we will

focus on the M-tree and R-trees. This approach is probably not novel. In [HRA11; Hu+12] the

authors mention that Oracle Spatial uses a 3D R-tree to index geodetic data, but without giving

further details or properties – it might as well be a 3D R-tree on latitude, longitude and elevation.

IBM Informix documentation also mentions 3D bounding boxes for geodetic data, but only

mentions intersection queries. Therefore it is not clear if above properties have been realized

and are used yet. The PostgreSQL pgSphere project seems to include this transformation, but

does not appear to make use of it for indexing yet.

8.3.3.2 Indexing Geodetic Data Using 2D Geodetic Coordinates

The alternative approach we introduce here is designed with the R-tree in mind, although the

obtained equations could also prove useful with other indexes such as grid-�les, quadtrees,

and VA-File [WSB98] indexes. A key bene�t of this approach is that it can use a regular R-

tree [Gut84], R*-tree [Bec+90], or any of its many variants, as index without modi�cations to

the actual index structure. In particular, the index is built on the latitude and longitude coor-

dinates, and can therefore be used for window queries that frequently arise in map applica-

tions. Similarly, the search can trivially be bounded with such a window. In contrast to the

M-tree [CPZ97], which needs to be built for a speci�c distance function, the R-tree family of

indexes are unspeci�c, but index the coordinates using bounding boxes. Since the same tree

can be used with very di�erent distance functions, R-trees can be considered general purpose

spatial indexes, whereas M-trees are highly speci�c.

Each object as well as each index page in an R-tree is represented by a minimum bounding rect-

angle (MBR), which in this case means it is represented by a quadruple (λmin, φmin, λmax, φmax)
(plus other attributes, if present; in the following we will assume to only index latitude and lon-

gitude). In order to query the R-tree, we need to compute a lower bound for the distance of the

query point to an arbitrary – unknown – object within the given rectangle. For Lp-norms, this

distance computation is very e�cient, which makes the R-tree attractive to use. But also for

other – even some non-metric – distances, such a lower bound can be speci�ed. For Lp-norms,

the minimum distance can be computed using simple case distinctions in each dimension:

mindistLp(o,MBR) :=

∑
i


(min(MBR, i)− oi)p if oi < min(MBR, i)

(oi −max(MBR, i))p if oi > max(MBR, i)

0 otherwise


1/p

Unfortunately, in geodetic data, the formula will become more complicated. This is largely due

to the fact that an MBR in the equirectangular projection – which does not preserve distances
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Figure 8.10: Case distinctions for point-to-MBR distance in geodetic data.

– when projected to the surface of the earth yields a much more complex shape. However, to

compute the minimum distance, we will still need to distinguish the same 3 × 3 cases, just as

for the Lp-norms. The 3 × 3 case distinction in 2-dimensional Euclidean space is shown in

Figure 8.10a: if the query point is inside the rectangle – area 0 – the minimum distance will

be 0. In the areas N , E, S and W , the shortest path is along the normal vector to the closest

edge, while in the corner areas 1 . . . 4, the shortest path is to the nearest corner of the MBR. The

transfer of this model to geodetic data is shown in Figure 8.10b for an example on the northern

hemisphere. The north and south edges of the rectangle are parallels of the equator, while the

east and west edges are meridians. Note that the north and south poles in the equirectangular

projection are not a single point, but actually the complete northern and southern edges of the

projected map. At �rst, the situation appears to be highly asymmetric. However this largely is

an artifact of the geographic coordinate system and the equirectangular projection, in which

great-circle paths are only straight lines if they are meridians or the equator, and curves of the

type y = arctan360(a · sin(x − x0)) otherwise. While it is not evident from the 2D projection

of the case distinction (Figure 8.10b), the N and S areas are actually also triangular, since the

north and south edge of the projection represent a single point each. When mapped onto a

sphere, the regions look approximately similar, as visualized in Figure 8.10c. Note that the four

triangles (N , S vs. W , E) nevertheless do not have the same mathematical properties: only

the east and west edges of the MBR are on great-circles, while the north and south edges are

lines of constant latitude. So from the point of view of spherical geometry, the north and south

triangles have one bent edge each.

Fortunately, both the test and the distance computation for points in areas N and S remains as

simple as for Euclidean distance – the shortest great-circle path to the rectangle is a meridian.

In order to distinguish the other cases, we �rst need to test whether we are on the left or on the

right side by rotating the mean longitude of the rectangle by 180◦ – the meridian opposite of

the rectangle. The key to distinguishing the cases 1, W and 3 (and, identically, 2, E, 4) then is
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Figure 8.12: Case distinctions for point-to-MBR distance in geodetic data, detail.

the azimuth (north-based, also referred to as bearing) from the two corners towards the query

point. The azimuth plays roughly the role of the angle in Euclidean geometry. In order to test

whether a point is in area W in Euclidean space, we can compute the angle at the north-west

and south-west corners of the MBR. This idea is sketched in Figure 8.11: only if the angles at

the south-west α1 is larger than 90◦ and the angle at the north-west corner α2 is less than 90◦,
then the query point is in area W . By substituting the azimuth for the angle, we can perform

the same test in the spherical domain:

A shortest path to the west edge of the MBR must be a great circle path that arrives at an

azimuth of 90◦ to the edge. If and only if the azimuth at the south corner is larger than 90◦ and

the azimuth at the north corner is smaller than 90◦, then there exists a point on the meridian in

between where the course is exactly 90◦. The di�erence between Euclidean space and spherical

geometry shows when we travel a path that started at an initial bearing of 90◦: it will not be a

straight line in the equirectangular projection. This is visualized in Figure 8.12: with an initial

bearing of 270◦ (to north, 90◦ with respect to the south pole!) – indicated by the red lines – the

blue curves are obtained. Conversely, for points on the blue lines, an initial bearing of 270◦ is

obtained for one of the corners.

Algorithm 4 uses this idea to compute the minimum distance from the query point to an MBR

by using the azimuth for case distinction. Note that for practical use, this pseudocode should be

optimized by inlining the great-circle and cross-track distances in order to share all redundant

trigonometric computations. When implementing this in a database, the number of trigonomet-

ric computations must be kept low as they are rather expensive. However, we can further im-

prove this algorithm: we do not need the exact values of the azimuth, but we only need to know

whether it will be smaller or larger than 90◦. If we can compute the blue lines in Figure 8.12

directly, we can easily test whether a point is between the two blue lines. As noted before, each

great-circle (that is not a meridian) can be expressed as λ = arctan360(a · sin360(φ − φ0)). If
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Algorithm 4: Min. Dist. Point to MBR by Azimuth (non-optimized).

Data: c circumference of earth (spherical model)

Data: (φq, λq) query point

Data: (φl, λl, φh, λh) index MBR

if φl ≤ φq ≤ φl then
if λq ≤ λl then return c · (λl − λq)/360◦ ; /* South of MBR */

if λq ≥ λt then return c · (λq − λt)/360◦ ; /* North of MBR */

return 0; /* Inside MBR */

else if mod360(φl − φq) ≤ mod360(φq − φh) then /* West of MBR */

θh ← Azimuth(φl, λh, φq, λq);

if θh ≥ 270◦ then return Great-Circle-Distance(φl, λh, φq, λq) ; /* North-West */

θl ← Azimuth(φl, λl, φq, λq);

if θl ≤ 270◦ then return Great-Circle-Distance(φl, λl, φq, λq) ; /* South-West */

return |Cross-Track-Distance(φl, λl, φl, λh, φq, λq)| ; /* West */

else /* East of MBR */

θh ← Azimuth(φh, λh, φq, λq);

if θh ≤ 90◦ then return Great-Circle-Distance(φh, λh, φq, λq) ; /* North-East */

θl ← Azimuth(φh, λl, φq, λq);

if θl ≥ 90◦ then return Great-Circle-Distance(φh, λl, φq, λq) ; /* South-East */

return |Cross-Track-Distance(φh, λh, φh, λl, φq, λq)| ; /* East */

end

we know the parameters φ0 and a we can easily test whether a point is north or south of these

lines. φ0 is the longitude where the great-circle crosses the equator, and the maximum longi-

tude is achieved when φ − φ0 = 90◦, with λ = arctan360(a). Since we want the curves to be

orthogonal to the meridian, this is where they must have a maximum or minimum. Therefore,

we can choose φ0 = φr − 90 and a = tan360(λr) for a given reference point r. A point q is

south of the great-circle path that goes orthogonally to the meridian through (φr, λr) if

λq < arctan360(tan360(λr) · sin360(φq − φr + 90))

or, equivalently,

tan360(λq) < tan360(λr) · cos360(φr − φq),

in which we can reuse tan360(λr) for the second test and preserve numerical precision slightly

better. Since this test is faster to compute (since it involves fewer trigonometric functions), it

allows for a further optimized version of the algorithm, which is given in Algorithm 5. For

points close to the rectangle, we can just test whether they are above the great-circle through

the upper corner of the MBR, below the great-circle through the lower corner, or in between.

However, these two lines will intersect when crossing the equator at ∆φ = 90◦ from the MBRs

edge. Starting at this distance, we will instead look at the great-circle through the middle of the

MBR, and use this for distinguishing the remaining two cases: at this distance we know that

one of the two corners must be closest.
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(a) Equirectangular projection (b) Google Earth projection

Figure 8.13: Minimum distance from a bounding box around Bavaria.

Figure 8.13 visualizes the minimum distance from a bounding box around Bavaria. Again, in

the equirectangular projection in Figure 8.13a, it appears to be irregular, but projected onto the

sphere in Figure 8.13b the rectangles with increasingly rounded corners become visible.

8.3.3.3 Non-spherical Earth Models

The equations we presented were so far all for a spherical earth model for simplicity. For geo-

graphic data it is however a best practice to use for example a spheroid model such as WGS84.

For some of the equations, formulas for the spheroid model are readily available, for others

they are not. For our use case of �nding a lower bound of the point to MBR distance, the most

e�cient approach is to use the spherical model with a reduced earth radius of the polar radius b.
This usually has a negligible impact on the pruning power of the tree, and this way easily out-

weighs the more complex computations needed for the spherical model. The actual point to

point distances are then computed with Vincenty’s formula on the spheroid model.

8.3.4 Experiments

8.3.4.1 Data Sets

For our benchmarking experiments we use data from DBpedia 3.7, a parsed version of Wikipedia.

From this data set we obtained 442775 points of interest around the world, and for 109577 of

these we also obtained a region of interest which we use as query radius. The second data

set we use is road accidents data set from the UK government, spanning the years 2005 to 2011

containing data on 1.2 million road accidents in the UK (also used in Section 9.2). The third data

set consists of 6.3 million radiation measurements taken in Japan after the Fukushima nuclear

disaster (also used in Section 9.3).
7

7
The data sets are publicly available and can be downloaded from http://dbpedia.org/,

http://data.gov.uk/ and http://safecast.org/.

http://dbpedia.org/
http://data.gov.uk/
http://safecast.org/
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Algorithm 5: Optimized Minimum Distance Point to MBR

Data: c circumference of earth (spherical model)

Data: (φq, λq) query point

Data: (φl, λl, φh, λh) index MBR

if φl ≤ φq ≤ φl then
if λq ≤ λl then return c · (λl − λq)/360◦ ; /* South of MBR */

if λq ≥ λt then return c · (λq − λt)/360◦ ; /* North of MBR */

return 0; /* Inside MBR */

else if mod360(φl − φq) ≤ mod360(φq − φh) then /* West of MBR */

τ ← tan360(λq);

if mod360(φl − φq) ≥ 90◦ then /* Large ∆φ */

if τ ≤ tan360((λl + λh)/2) cos360(φl − φq) then
return Great-Circle-Distance(φl, λh, φq, λq) ; /* North-West */

else
return Great-Circle-Distance(φl, λl, φq, λq) ; /* South-West */

end
end
if τ ≥ tan360(λh) cos360(φl − φq) then

return Great-Circle-Distance(φl, λh, φq, λq) ; /* North-West */

if τ ≤ tan360(λl) cos360(φl − φq) then
return Great-Circle-Distance(φl, λl, φq, λq) ; /* South-West */

return |Cross-Track-Distance(φl, λl, φl, λh, φq, λq)| ; /* West */

else /* East of MBR */

τ ← tan360(λq) ;

if mod360(φq − φh) ≥ 90◦ then /* Large ∆φ */

if τ ≤ tan360((λl + λh)/2) cos360(φh − φq) then
return Great-Circle-Distance(φh, λh, φq, λq) ; /* North-East */

else
return Great-Circle-Distance(φh, λl, φq, λq) ; /* South-East */

end
end
if τ ≥ tan360(λh) cos360(φh − φq) then

return Great-Circle-Distance(φh, λh, φq, λq) ; /* North-East */

if τ ≤ tan360(λl) cos360(φh − φq) then
return Great-Circle-Distance(φh, λl, φq, λq) ; /* South-East */

return |Cross-Track-Distance(φh, λh, φh, λl, φq, λq)| ; /* East */

end
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8.3.4.2 E�iciency

To study the behavior of the 2D- and the 3D-model in existing index structures, we use the

R*-tree (both incrementally built and bulk loaded) and the M-tree (incrementally built only).

Since the M-tree supports any metric distance function – and the geodetic distance is metric –

it can be used with the geodetic distance. Figure 8.14 shows the results for 100 nearest neigh-

bor and range queries on the DBpedia data set. From a mere CPU perspective (Figure 8.14a

and Figure 8.14b), the 3-dimensional ECEF approach appears to be best, due to the rather costly

trigonometric functions needed for the direct indexing approach. However, this may be mis-

leading in an actual database context, since for larger data sets the input and output cost must

be taken into account. And with this, the reduced memory requirements of the direct indexing

approach pay o�, which allow storing about 40% more objects per page. Figure 8.14c and Fig-

ure 8.14d show the I/O cost (in number of page accesses times page size, to make values across

di�erent page sizes more comparable) for querying the trees. The stronger pruning power of

the 2D rectangles manifests itself in requiring fewer distance computations (Figure 8.14e and

Figure 8.14f). Figure 8.14g shows the time needed to build the index, while Figure 8.14h visu-

alizes the resulting index sizes. Note that the bulk loading actually has less work to do (fewer

sorting passes) with larger page sizes, while for the incremental M-tree construction, which re-

quires the computation of all pairwise distances, quickly becomes rather expensive as the page

size increases.

Except for the expensive index construction in particular of the M-tree implementation we used,

all indexes o�ered a signi�cant performance improvements over a linear scan which took 176.6

ms CPU time per 100NN query, 442775 distance computations and needs to read about 9 MB

of data. The bulk-loaded geodetic R*-tree took on average just 0.52 ms CPU per query, 779.5

distance computations and read 24 kB of data.

8.3.4.3 Accuracy and E�iciency

The UK tra�c accidents and the Safecast data sets are good examples for regionally constrained

data sets that can reasonably be handled with an appropriate local projection: for the tra�c

accidents we can use for example the UK Ordnance Survey 1936 (OSGB36) datum, which is a

transversal Mercator projection that is expected to have low error in the UK. For the Safecast

data set, UTM Zone 54S covers this part of Japan well. The projection library PROJ.4
8

we used

for transforming the data refused to project coordinates outside of their design range (i.e. would

not project the tra�c accidents data to UTM 54S or SafeCast data to OSGB36). For DBpedia,

neither could be used. We compare the nearest neighbors obtained by a linear scan over the

data using geodetic distance to the nearest neighbors found using di�erent settings: Euclidean

distance in (non-Cartesian) latitude and longitude coordinates, but also after the transformation

to the local coordinate system. Furthermore, we also used our index structures with geodetic

distance. For a sample of 100000 objects, we computed the 100 nearest neighbors each and

8
Available at http://trac.osgeo.org/proj/

http://trac.osgeo.org/proj/
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Figure 8.14: Results for 100NN and range queries on DBpedia data set.
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compute precision with respect to the ground truth from a linear scan. Table 8.2 gives the

average CPU time per query (not taking I/O time into account). Unsurprisingly, Euclidean

distance-based approaches were fastest, and index-based approaches were substantially faster

than using a linear scan. On the linear scan, the spheroid model using the WGS84 spheroid

and Vincenty formula was substantially slower – around 5 times – than the haversine formula

using a spherical model. This is of course due to the use of trigonometric functions. When using

an index, this di�erence is much smaller, since the point to rectangle minimum distance can

always be computed using the simpler spherical model. Furthermore, the index-based queries

scale much better with the data set size. Note that the 3D ECEF trees are faster than the R-tree

built on the raw coordinates (λ, φ). However, the resulting tree will need more I/O, because the

3D vectors needs more storage. For these indexes, the index is actually queried using Euclidean

distance; then the �nal result is again re�ned. Furthermore, while the 2D tree can be queried

with any of the given distance functions, the 3D projection is speci�c to one particular earth

model.

Table 8.3, Table 8.4, and Table 8.5 compare the results of the di�erent approaches on the three

data sets used. The given values are the average agreement of the 100NN results returned by

the indexes. The WGS84 model is the most accurate earth model used in this experiment. The

results of the cosine, haversine and spherical Vincenty formulas – which all use the same spher-

ical earth model – di�er only marginally due to numerical di�erences in particular at colocated

and antipodal points. Clearly the worst quality is obtained by using the naïve Euclidean ap-

proach on the coordinates. On the world-scale DBpedia data set, it has an average agreement

of just 90% to all other methods, on Great Britain only about 87% and on SafeCast around

96%. Since Great Britain is further north than Japan, the larger distortion is to be expected.

The transformation to a local datum – OSGB36 for Great Britain and UTM Zone 54S for Japan

– work reasonably well. In particular OSGB36 for Great Britain gives next to identical results

to the spheroid earth model. For the world wide DBpedia data set, however, no such projection

exists.

Furthermore, it can be seen that the two proposed R-tree indexes work as desired: they o�er

next to perfect agreement (sometimes slight numerical di�erences may arise, in particular on

SafeCast with lots of duplicate coordinates) with the result obtained by a linear scan.
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Table 8.2: CPU time of di�erent approaches to 100NN search per query.

Formula Index DBpedia Places Tra�c Accidents SafeCast

Data set size 475001 1209933 6303979

Bulk Load λ, φ R-Tree 4 s 14 s 168 s

Bulk Load ECEF 3D R-Tree 3 s 18 s 1330 s

Haversine linear scan 165 s 376 s 1768 s

Sph. Vincenty linear scan 231 s 516 s 2126 s

Cosine linear scan 323 s 1159 s 5356 s

WGS84 Vincenty linear scan 910 s 1738 s 8433 s

Euclidean λ, φ R-Tree 78 ms 80 ms 114 ms

Haversine λ, φ R-Tree 177 ms 174 ms 208 ms

Sph. Vincenty λ, φ R-Tree 198 ms 198 ms 235 ms

Cosine λ, φ R-Tree 328 ms 321 ms 383 ms

WGS84 Vincenty λ, φ R-Tree 459 ms 412 ms 479 ms

Haversine ECEF 3D R-Tree 128 ms 116 ms 163 ms

WGS84 Vincenty ECEF 3D R-Tree 263 ms 248 ms 289 ms

Euclidean UTM54S R-Tree n/a n/a 90 ms

Euclidean OSGB36 R-Tree n/a 76 ms n/a

8.3.5 Conclusions

We introduced two approaches for indexing geographic data with support for geodetic distance

queries (both nearest neighbor and radius queries). One approach is based on the well-known

ECEF transformation of the data set into a 3-dimensional coordinate system, exploiting that

the Euclidean distance is a monotone lower bound of the geodetic distance there. The other

approach is even more elegant: it uses an R*-tree built on the raw geographic data in longi-

tude, latitude coordinates that is also useful for example for window queries. However, the

use of trigonometric formulas instead of the much simpler Euclidean distance results in higher

CPU query cost. At the same time, the smaller index reduces the I/O cost due to the lower

dimensionality.

Both approaches perform excellent, scaling logarithmic with data set size as opposed to a linear

scan, yieding a more than 10000 fold speedup on the largest data set evaluated. Yet, validation

showed that the results agree with the linear scan except for slight di�erences that can be

attributed to numerical imprecision of �oating point arithmetic (and clearly within the accu-

racy limits our earth models can o�er). The ECEF-based index is computationally simpler, but

requires more I/O and a dedicated index, whereas the computationally more intensive direct

indexing approach allows the dual-use of the index structure for other queries (in particular,

for map window queries) and can be applied directly to existing R-trees.

The missing piece of this puzzle to using 2D R*-trees for geodetic distance was the accurate

lower-bound distance for point-to-rectangle distance computations introduced in this section.
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It was not obvious that the existing R*-trees could be as easily reused without further modi�-

cations even without taking the spheroid nature of the earth into account at index construction

time. This does, however, not rule out that a modi�ed tree may sometimes perform better. For

example when indexing data for the United States, a few objects in Alaska will be beyond the

180◦ boundary. Instead of inserting these objects in the far East – where they may end up

sharing data pages with objects from Maine on the east coast to ensure minimum page �ll – it

may for example be bene�cial to insert them in the far West. Similarly, there might exist an im-

proved split strategy that produces a more e�cient page structure. For bulk loading, it may be

desirable to put extra emphasis on the longitude. But the bene�ts of these modi�cations may

be highly application dependent and not be of general use, whereas the introduced distance

computation lays the foundation for querying the resulting indexes, no matter how they were

constructed.
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9 Customization Case Studies

In this chapter we want to study some of the new applications enabled by the generalization

and abstraction of outlier detection performed in Chapter 6. In particular, we want to study the

ability to detect non-standard types of outliers by customizing the general method accordingly

to suite the particular needs of these challenges.

“
Far better an approximate answer to the right question, which is often vague,

than an exact answer to the wrong question, which can always be made precise.

— John W. Tukey [Tuk62]

”While a lot of e�ort was put into mining the top-n outliers with respect to di�erent algorithms

such as kNN-Outlier and LOF, few scientists questioned whether the method is generally ap-

plicable for real problems. In Chapter 6 we abstracted from the exact methods to their gen-

eral scheme, in the following we will go the opposite direction: we start with the generalized

scheme, and adopt it to a particular problem at hand: we try to ask the right question. We will

accept some imprecision in the computation, if we then get faster results and the error remains

on the level that we have to expect from the data anyway.

“
As far as the laws of mathematics refer to reality, they are not certain; and as far

as they are certain, they do not refer to reality. — Albert Einstein [Ein23]

”Contents of this chapter have since been published in:

E. Schubert, A. Zimek, and H.-P. Kriegel. “Generalized Outlier Detection with Flexible

Kernel Density Estimates”. In: Proceedings of the 14th SIAM International Conference
on Data Mining (SDM), Philadelphia, PA. 2014

9.1 Case Study: Kernel Density Estimation Outlier
Detection (KDEOS)

In Section 5.1.3 we discussed the close relationship of local outlier detection to kernel density

estimation; but how none of the discussed method uses a proper kernel function. Our proposed

method does not divert substantially from the existing methods – we also perform density

estimation, then compare the densities within local neighborhoods. As such, it is also an in-

stantiation of the general pattern of local outlier detection [SZK12]. However, we propose to use
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classic kernel density estimation directly instead of experimenting with non-standard kernels

without giving a good reason for this.

As a side e�ect, it solves some of the numerical issues in the existing methods: for example the

LOF density estimation becomes unde�ned in the case of more than k duplicate points, as all

distances for these points become 0, yielding lrd = 1/0. The original LOF publication included

a workaround for this, by using the k-distinct nearest neighbor, i.e. the k nearest neighbor that

is actually di�erent.

9.1.1 Density Estimation Step

The kernel function to use with our method is best to be considered an input parameter to the

algorithm. We suggest to use either the radially symmetric Gaussian or Epanechnikov kernels

of bandwidth h and dimensionality d (visualized in Section 2.3):

Kgauss,h(u) :=
1

(2π)d/2hd
e−

1
2
u2

h2 , (9.1)

Kepanechnikov,h(u) :=
3

4hd

(
1− u2

h2

)
. (9.2)

The radially symmetric versions have the bene�t that we only have one bandwidth to estimate,

instead of having to estimate full bandwidth matrices for each object, which continues to be a

di�cult problem [SS05]. The balloon estimator and sample smoothing estimator [TS92] are:

KDEballoon,h(o) :=
1

n

∑
p

Kh(o) (o− p) , (9.3)

KDEsample,h(o) :=
1

n

∑
p

Kh(p) (o− p) . (9.4)

The di�erence between these two is whether the bandwidth estimate depends on the evalu-

ation point o or on the individual data samples p. In order to estimate the local kernel band-

width h(o) respectively h(p), a classic approach is to use the nearest-neighbor distances [LQ65],

i.e. h(o) = k-dist(o). The similarity of LOF to KDE has been discussed in Section 5.1.3. For our

method, we will use the balloon estimators, because research in kernel density estimation shows

both theoretical and experimental bene�ts in multivariate KDE [TS92]. Nevertheless, there are

concerns about the bias of this method on the long tail [SS05]. Sheather and Jones [SJ91] discuss

a data-driven method to estimate kernel bandwidths known as the “plug-in bandwidth estima-

tor”. For robustness, we use h(o) = min{meanp∈kNNd(p, o), ε} to avoid division by 0 and to be

more resistant to outliers in the kNN. But in general, any advanced kernel density estimation

method can be used for this step.

Essentially, for density estimation, we recommend to stick to the established and proven meth-

ods of density estimation, but additionally to consider runtime. For example, if you have
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database indexes available to accelerate range queries or k nearest neighbor queries, an approx-

imate density estimation exploiting these indexes is desirable. If the kernel function K(o− p)
bears next to no weight beyond the k-nearest neighbor, we do not need to use these for density

estimation. We can also drop constant scaling factors, which then yields:

n ·KDEkNN(o) :=
∑

p∈kNN(o)

Kh(o) (o− p) . (9.5)

Since the parameter k can be hard to choose, we propose to extend the method to cover a range

of k = kmin . . . kmax to produce a series of density estimates (one for each k). This approach is

similar to LOCI [Pap+03], yet it is computationally more e�cient and elegant, as the values of k
are well-de�ned steps, while the LOCI model needs to test arbitrary ε-radii. By this extension,

the method becomes an ensemble method [Agg12], typically yielding more stable and reliable

results. In the broader sense, this can be seen as an ensemble method as discussed in Chapter 7,

but we do not evaluate or optimize the individual ensemble members.

9.1.2 Density Comparison Step

The density comparison function used in LOF and its variants can be written as:

LOF(o) := mean
p∈kNN(o)

lrd(p)

lrd(o)
≡

meanp∈kNN(o)lrd(p)

lrd(o)
.

For an object that has an average density, this factor will be close to 1, while for objects with

neighborhoods of much higher density than that of the object, this value will be larger. How-

ever, there is little control over how large the values become, or when a value is to be considred

signi�cant.

For our approach, we use a slightly di�erent comparison method. We assume that not only the

local densities vary, but also the variability itself is sensitive to locality. Therefore, to standardize

the deviation from normal density, we apply the well-known z-score transformation: Let µX be

the mean of the set X and σX the standard deviation. The z-score of x then is z(x,X) := (x−
µX)/σX (if σX = 0, then use z(x,X) := 0). Alternatively, one could use more robust statistics

such as the median absolute deviation from median (MAD) [Ham74]. However, for small sample

sizes, the mean often works better than the median. Only for large values, the median and

MAD become more robust to outliers. Intuitively, a z-score of +3 indicates a deviation of three

standard deviations. When using multiple values of k, we use the average z-score:

s(o) := mean
kmin...kmax

z
(
KDE(o), {KDE(p)}p∈kNN(o)

)
(9.6)

9.1.3 Score Normalization Step

For normalization, we use the cdf based score normalization discussed in Section 5.3.2.6.
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Algorithm 6: Basic KDE Outlier Algorithm

s := array for output scores

S := two dimensional array, o× kmax

// Perform kernel density estimation (KDE):

foreach o in DB do
Nmax = compute kmax-nearest neighbors of o
foreach k in kmin . . . kmax do

h = compute kernel bandwidth from Nmax[1; k]
foreach n in Nmax[1; k] do

u = distance (o, n)
S[o][k] = S[o][k] +K(u, h)

end
end

end
// Compare densities:

foreach o in DB do
Nmax = compute/get kmax-nearest neighbors of o
foreach k in kmin . . . kmax do

µ := mean of S[Nmax][k]
σ := standard deviation of S[Nmax][k]
s[o] = s[o] + (µ− S[o][k])/σ

end
s[o] = s[o]/(kmax − kmin + 1)

end
// Return normalized scores:

return normalizeScores(s)

9.1.4 Algorithm and Complexity

Algorithm 6 gives the basic computation of the KDEOS scores for a range of k = kmin . . . kmax.

But note that we advocate to adapt this code to the particular problem at hand by integrating

domain knowledge and speci�c requirements (we will demonstrate this in the experimental

section). The overall code complexity is not high, if the evaluation framework can e�ciently

provide the neighbor sets. Also notice that the majority of this code is what is called “embar-

rassingly parallel”: if the neighbor sets are precomputed, the main loops can be executed by

many mappers in parallel. The aggregation of the S[o] and s[o] values then is the canonical

reduce step. The intermediate data produced is of size O(nk2), thus only linear in the input

data size. Therefore, except for the neighborhood computation step, this algorithm is easy to

implement in a distributed computation framework such as MapReduce.

The complexity of this method is comparable to LOF and many other outlier detection al-

gorithms. In practice, the runtime is dominated by the cost of computing the kNN, which

without index support requires O(n2) distance computations. Index structures such as the R*-

tree [Bec+90] for nearest neighbor search can reduce this runtime to O(n log n).

Excluding the cost of computing the kNN, the main analysis loop then requires O(n · k ·∆k)
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Figure 9.1: Performance over di�erent values of k.

Table 9.1: Best performance of di�erent algorithms.

Method LOF LoOP S-LOF LDF kNN kNN-W Single-KDEOS KDEOS

Best AUC .795 .815 .816 .772 .735 .735 .834 .855
Best k 5 6 10 8 2 2 kmin = kmax = 48 kmax = 100

operations (∆k = kmax−kmin+1), usually with k � n. While there is obviously a computational

overhead for the more complex kernel functions, it is small compared to the data management

and distance computation costs.

9.1.5 Experimental Results

The Amsterdam Library of Object Images (ALOI) [GBS05] is a collection of 110250 images of

1000 small objects, i.e. about 110 images of each object, from di�erent angles and with di�erent

light conditions. By downsampling some of these classes to become rare objects, we obtained a

data set retaining 75000 images, 717 of which are rare objects (known outliers, up to 4 from the

same class).For our experiments, we used the 27-dimensional RGB histogram representation.

Overall, this data set and task is a classic setting for density-based outlier detection: the rare

objects are expected to be in less dense areas than the members of the clustered images. This

data set is non-trivial: besides the labeled rare objects there are also outliers within the other

classes coming from rare light situations, and on the other hand, some objects are very similar,

and as such some downsampled objects may indeed have another full class that looks alike.
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Figure 9.1 visualizes the performance of various algorithms on this data set, using the well-

known ROC AUC measure. As competitors, we use LOF [Bre+00], LoOP [Kri+09a], Simpli�ed-

LOF [SZK12], LDF [LLP07], kNN outlier [RRS00], and kNN weight [AP02] (implementations

in ELKI [Ach+13]). For Single-KDEOS we set kmin = kmax, while for KDEOS we used kmin = 1.

We report the numbers for the Gaussian kernel, but results using Epanechnikov kernel were

almost identical. The best results and the k for the best result are given in Table 9.1. kNN
outlier works best with very small values of k. In ELKI k = 2 is the 1NN distance, as the query

point is part of the database. For LOF and most of its variants, there is a sweet spot in the

small ks. Interestingly, the Simpli�ed-LOF variants work much better than LOF on this data

set, probably due to the structure of micro-clusters in this particular data set. Our proposed

method produces much more stable results, in particular when choosing a large enough range

of ks. Besides o�ering the best performance of the evaluated algorithms, the parameter k is

also much easier to choose – it just needs to be large enough for the kernel density estimation

to yield meaningful results. This also is the main limitation: for low values of k, the density

estimates are not yet meaningful, and KDEOS thus does not (yet) yield good results, whereas

a method such as kNN outlier detection, using a very simple density estimate, can often yield

satisfying results with the 1-nearest neighbor distance.

9.2 Customization Case Study: Road Accidents Blackspots

9.2.1 Experimental Setup

To demonstrate the �exibility of our approach, we use a fairly large data set, the road accidents

data set from the UK government, spanning the years 2005 to 2011 containing data on 1.2 million

road accidents in the UK.
1

To be able to scale to a data set of this size, we employ the indexing

techniques discussed in Section 8.3. The results of traditional outlier detection methods such as

LOF are of little interest to the user: these outliers consist mostly of accidents on low use side

roads that only see a single accident every dozen years. Instead, areas of interest in this data

set are regions with a high concentration of car accidents, and again within these hotspots –

many crossroads and roundabouts will show up as hotspots mainly due to the high volume of

tra�c – we are interested in those that particularly stick out with respect to the usual hotspots

in their larger neighborhood.

The generalized method discussed in this thesis can be easily adapted to the particular needs

of this data set. First of all, we modify the density estimation to use a �xed size kernel instead

of a dynamic bandwidth. Since cars and roads have the same size across the country, we do not

need to adapt the kernel size to local data trends. Instead, we chose a radius of 50 meters along

with the Epanechnikov kernel (which drops to 0 beyond the maximal bandwidth). As distance

function we choose the great-circle distance and an adapted R
∗
-tree index to accelerate search

(using Section 8.3). In the comparison step, we use a much larger radius of 2 kilometers. Instead

1
UK government, data publicly available on http://data.gov.uk/

http://data.gov.uk/
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of looking for objects of unusually low density, we look for observations of an unusually high

accident rate. Observations with a variance of 0 – which only happens in remote areas – are

not reported as outliers. Last but not least, in order to �nd the top outliers, we do not need

to apply normalization beyond the z-score, which is a user-friendly measure of magnitude by

itself. Furthermore, in a post-processing step, we extract only the object of the largest density

within a radius of 50 meters as representative of the hotspot. Obviously, other accidents at the

same location will achieve nearly the same score, and reporting all of these to the user does not

yield any bene�t.

9.2.2 Results

Figure 9.2 shows an unusual hotspot in Coventry, UK visualized in Google Maps and Google

Earth. In Figure 9.2a the tra�c accident rate (i.e., our density estimation) is indicated using

a heat map. We can see multiple other hotspots in the area, but the detected outlier clearly

is an unusually high concentration (bright yellow indicates twice the concentration of bright

red). When removing the overlay and zooming in further for Figure 9.2b, we can see what may

be the cause for this particular hotspot: a three way merge with two lanes coming from the

roundabout, two lanes coming from the ringway, and a �fth lane coming from the short term

parking and car park at Coventry Station. This hotspot is found to have a 4 standard deviations

higher accident rate than other accident sites.

A very di�erent hotspot can be seen in Figure 9.3, near Sunderland in northern UK. A lookup

on the internet con�rmed Tunstall Hope Road to be a known “accident blackspot”, “deathtrap”,

and “one of the most dangerous in Sunderland”. Markings on the street now warn drivers to

drive slowly. Figure 9.3a indicates that there is a particularly dangerous spot on this road, with

11 accidents at this particular corner. With the overlay removed in Figure 9.3b, the place seems

to be very usual, but it is easy to imagine that this blind corner, combined with the lack of street

lighting and probably slippery foliage can indeed be dangerous.

Yet, only two single spots of the top 50 outliers detected are in Greater London. One of them

is seen in Figure 9.4, a huge roundabout with two multi-lane cut-throughs just north of the

M4 motorway and Heathrow airport. This place was a top 10 serious accident site in Greater

London, and has since been remodeled, removing one of the cut-throughs in an attempt to

reduce car accidents. The reason why so few outliers were detected in London probably lies

in the fact that in London there are so many high-accident junctions that none of them sticks

out as substantially more serious than the others. Of course, none of the analyzed outliers is a

new result. Tra�c accident blackspots are usually well known to local police, and can be better

analyzed. However, that this fairly general method can be easily adapted to this particular

problem shows the �exibility of the approach. At the same time, it shows the following need:

instead of looking for an o�-the-shelf and parameterless algorithm, a good algorithm is modular

and can this way easily be adapted to the domain knowledge for the desired use case.
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(a) Accident density overlay in Google Maps

(b) 23 accidents at the three-way merge with the entrance to and exit from station

square and the car parks there via Manor Road.

Figure 9.2: Tra�c accident hotspot in Coventry, UK.

Background imagery © 2013 Google, Infoterra Ltd & Bluesky
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(a) Accident density overlay in Google Maps

(b) Dangerous blind corner with 11 accidents. “Slow” markings were added to the

street to warn drivers of the dangers ahead

Figure 9.3: Tra�c accident hotspot in Sunderland, UK.

Background imagery © 2013 Google, Infoterra Ltd & Bluesky
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Figure 9.4: Tra�c accident hotspot north of Heathrow airport.

The east-west cut-through has since been blocked.

Background imagery © 2013 Google, Infoterra Ltd & Bluesky

9.3 Customization Case Study: Radiation Measurements

9.3.1 Experimental Setup

For the second case study, we use a data set of 6.8 million radiation measurements taken (mostly)

in Japan after the Fukushima nuclear disaster.
2

This is a spatio-temporal data set with very dif-

ferent data density due to di�erent sampling rates, automated measurements and a high amount

of noise due to di�erent sensors, mobile sensors and low sensor quality. Again, classic outlier

detection methods will be of little use, as they do not take spatial and temporal relationship into

account. Outliers detected by running LOF on such a data set will not bear useful semantics, as

LOF does not treat time, location, and radiation level attributes di�erently. Therefore, we again

need to customize our method for this problem to get meaningful results.

The main customization point here is the de�nition of neighbors since here the temporal aspect

is just as important as the spatial aspect. We de�ne a specialized distance function as follows:

d(x← y) :=

{
spatial(x,y)
100 meter

+ temporal(x,y)
1 day

if x before y

∞ otherwise

2
Publicly available for download on http://safecast.org/, average values can be explored on http://
map.safecast.org/

http://safecast.org/
http://map.safecast.org/
http://map.safecast.org/
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This distance function combines both spatial and temporal di�erences, but it also excludes

measurements that come later in time. The reason is that we only want to use a measurement

x to estimate the value of a measurement y if it is in the future, in order to detect unexpected

changes.

Using this combined (and asymmetric) distance function, we compute the kNN of each object.

But instead of estimating the density of observations, we want to estimate the radiation level.

For this we use the kernel density as weight for averaging the neighboring radiation levels. (An

improved method could also take radioactive decay into account.) Mathematically, the method

changes only marginally: each object now has a di�erent weight instead of a unit value. This

yields two di�erent values for each point: an estimated (or “predicted”) radiation level and an

actual measurement. However, the raw di�erence of these two is not very useful yet: in areas

where a lot of measurements were taken, we will be having much better predictions, and in

areas with higher radiation levels, the natural di�erences will be much higher. So in order

to be able to detect outliers in this data set, we need to put these measurements into a local

context. For this we can again use the concepts of local outlier detection as introduced by

LOF and discussed throughout this thesis. However, the SafeCast data are very noisy: there

are measurement errors, varying general radiation levels, and an highly imbalanced number of

measurements
3
. Therefore, we need to choose a rather large value of k as reference set, and

instead of using mean and variance, we will this time use the median absolute deviation (MAD)

between the predicted and the actual values to standardize the deviation. We can then again

pinpoint the most “unusually extreme” deviations to the user.

9.3.2 Results

Many of the detected outliers are probably due to measurement errors and badly calibrated

sensors. The data provided by SafeCast is in cpm, a unit that is considered to be highly sen-

sor model dependent. Nevertheless, the inspected values all indicate that the outlier detection

worked as desired: it was able to detect outliers of very di�erent magnitudes in di�erent areas

of the map.

Some of the most extreme outliers were found along National Route 6, the closest highway

to the Fukushima nuclear plants and closed since (in the bottom right of Figure 9.5). Here,

readings of 8000 cpm have been reported in September 2011 and October 2011, while values

of 3000 cpm (respectively 700) were predicted. On the online map by SafeCast, peak values

of 10000 cpm and averages of 6000 are listed, but these averages do not take temporal aspects

into account. On the other hand, there are also a number of outliers reported for Koriyama,

consisting of measurements around 200, where 90 are considered normal. A large amount of

outliers was detected in the area between Mount Hiyama and Mount Ryozen, an area that was

in wind direction when radioactive material was released at Fukushima. Other outliers seem

3
Some users contributed up to 50.000 automatic measurements mostly from their back yard, which are extremely

redundant.
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Figure 9.5: Outliers in radiation measurements, Fukushima prefecture, Japan, in Google Maps.

Background imagery © 2013 Google, ZENRIN

to correlate with highway restaurants: It is plausible that a driver stopping there, by bringing

in fresh air and dirt with his shoes into his car, can cause a measurable increase of the sensor

readings.

A lesson learned from this analysis is that �exible index structures can help a lot with the

computations. This is a fairly large data set. Yet, by using an R*-tree index with �exible distance

function support (as we have not been using a standard Euclidean distance) for acceleration we

were able to process it in reasonable time on a single host. Details on the indexing method used

for acceleration can be found in Section 8.3.
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At this point, we have learned the basic principles of local outlier detection (Chapter 5) and

the abstract structure of such algorithms (Chapter 6). Chapter 7 taught us how to combine the

strengths of multiple algorithm runs, and Chapter 8 exempli�ed how to use approximations

and indexing to scale them to larger data sets than before. Chapter 9 rounded up these results

by carefully designing outlier detection algorithms for particular use cases.

While this thesis may �rst appear to be an exhaustive coverage of the issues of local outlier

detection, it cannot be complete; any good research will lead to as many new questions as it

answered. Other researchers have performed recent research in parallel, and I cannot include

all of it. However, the thesis will hopefully be a good starting point for other researchers to

continue this research. In the following, I will discuss some of the loose ends of the thesis,

which are viable directions for future research.

Curse of Dimensionality: The performed study of the curse of dimensionality brought some

new insights: there are di�erent aspects to the curse, that may need di�erent treatment. Grid

based approaches do not scale well, however the combination of random projections with grids

may actually be feasible (although better suited for cluster detection than for outlier detection).

Instead of looking at the raw dimensionality, the intrinsic dimensionality and the signal-to-

noise ratio may be more important; improved measures of intrinsic dimensionality may yield

new way of detecting outliers in high-dimensional data. Shared nearest neighbors were shown

to improve distance measurements despite the concentration e�ect of the primary distance, but

are not a general cure for the problems of high-dimensional data. We may also be able to further

improve with new distance measures speci�cally designed for high-dimensional data. While the

approximate nearest neighbor search presented in Chapter 8 can handle medium dimensionality

by using random projections, it will not scale to really high dimensionality either; nor does it

support arbitrary distance measures.

High-dimensional Outlier Detection: The proposed methods SOD and COP are two early

drafts of local outlier detection in high dimensional data; but in particular SOD was an early,

simple approach. The ideas of COP could be fused into an improvement of SOD; and simi-

larly, COP could bene�t from the much more e�cient dimension selection in SOD: COP does

not scale too well to truly high-dimensional data. Last but not least, COP is designed with

Euclidean neighborhoods for the correlation estimate, as other neighborhoods may be biased
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towards certain directions (intuitively, to �nd the optimal rotation, the neighborhood should

be spherical!)

Density Estimation: We discussed the relationship of LOF to kernel density estimation, and

in the case studies (Chapter 9) mostly used KDE based methods. However, in practical use,

the classic LOF heuristic will often still work best. The data sets in the case studies were very

bene�cial to KDE, in particular the geographic data sets that have just 2-dimensional data, and

the kernel bandwidth actually related to a physical dimension. In abstract data spaces, KDE

itself is much more challenging; KDE is known to be itself prone to the curse of dimensionality.

In particular, choosing the right bandwidth becomes next to impossible then. In such situations,

the simple heuristic of LOF will work much better. Furthermore, kernel density estimation is

also implicitly tied to Euclidean and Mahalanobis distance (it will also behave well with geodetic

distances, obviously; but does KDE combine sensibly with e.g. Canberra distance?).

Choosing the Right Mean: LOF was shown to use the harmonic mean, and LoOP even the

M−2
mean when interpreted as kernel density estimation. Given the general pattern, it would

be an obvious choice to try the arithmeticM1
andM2

means instead. However, most likely, the

results will not be fundamentally di�erent (Chapter 9 actually used arithmetic means), as both

means try to produce the most typical output. It may well be possible to plug-in very di�erent

statistics instead: the MAD, L-Moments, rank-order statistics, . . . – but instead of trying out all

these one-by-one, we should step back, and �gure out a proper theory to prefer one over the

other. In this thesis, we assumed that the arithmetic mean, as used in kernel density estimation,

would be the proper choice. But on the other hand, other means may be more robust.

Rescaling of Outlier Scores: The proposed rescaling of outlier scores connect the scores

back to the statistical roots of probability distributions through cdf and pdf functions. The en-

semble use case showed how to use the scores for Bayesian reasoning. Yet, it remains unclear

if all of this lives up to the goal of giving the user a “user-friendly” outlier probability. No us-

ability studies have been performed (which, in an expert domain such as data mining, probably

is a lot harder than e.g. studying the usability of a mass-market physical device). Also the goal

of “calibration” is not entirely achieved. The process of �tting a distribution to the observed

outlier scores is an heuristic; in a perfect world we would know the true distribution of the

outlier scores and not need to �t the distribution (and even choose the right distribution to �t).

Replacing e.g. the quotient used in LOF for comparing models with a di�erent combination

function may yield a much more tractable score distribution. Maybe we can �nd an approach

that even yields a provable distribution to use for modeling the score distribution.

Abstaining Methods: While the option of abstaining was discussed in the section on score

normalization – detectors should be allowed to not �nd any outlier in the data set – this is

not entirely achieved by the score normalization. By �tting a distribution to the scores, this
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approach to some extent enforces that the detectors also use the whole score range. As seen

in Figure 5.15b, even on the overly uniform Halton sequence, the methods will detect some

variation (although not with an overly high score), and cannot “opt out” from �nding outliers.

Evaluation Measures: The newly proposed evaluation methods have the bene�t of being

able to measure also the similarity (and thus, diversity) of two results, not only compare the

output to a binary ground truth. The measures were motivated from a cost model, so there

exists some theory this is built upon. For supervised evaluation, they were shown to largely

agree with the results of ROC AUC evaluation, but not yet on a formal level; and neither of the

three weighted measures (Euclidean, Manhattan and Pearson based) has a clear advantage over

the others in the experiments. Manhattan corresponds to linear errors, Euclidean to squared

errors, so both are equally sound in their theory.

Ensembles: The greedy ensemble approach is a very basic heuristic that happens to work

well in our experiments; but it mostly serves as a proof-of-concept for score rescaling and for

measuring diversity. In particular, the weight and target vectors are crude heuristics, and could

be re�ned.

Scalability: The need for scalability is becoming more and more important. While Chapter 8

suggested two approaches to improve performance, these could be enhanced by an e�cient

candidate generation process; so that only likely outliers have to be analyzed in detail. The

approaches in Section 8.2 and Section 9.1 also show scalability to cluster computing, but the

viability has not been evaluated in practice. Scaling up these approaches to truly “big data” will

likely yield new challenges, such as parameterization problems of methods.

Other Data Types: Most of this thesis was built on data that can be represented as more-

or-less dense vectors.
1

This is most evident in Chapter 4 and Chapter 8; and while many of

the discussed outlier algorithms can work with any distance, the results may be much less

convincing on very sparse data such as text in practice. Chapter 6 showed for example how to

use the generalized method on graph data, but there remains a lot more work to be done.

Experiments and Data Sets: Most of the experiments reused the same data set over and

over again. While it would be desirable to widen up the experiments to more data sets, it is

surprisingly hard to �nd good data sets for evaluating anomaly detection; there is an ongoing

e�ort to build a public repository of data for this. A good evaluation data set must have well-

de�ned outliers, but these must actually be unusual; not just have a rare class label (a rare

class with low variance is still a dense cluster). Downsampling classes works sometimes, but

1
Technically, the color histograms are sparse vectors; but not comparable to e.g. sparse text vectors.



228 10. Conclusions and Outlook

it neglects the fact that there could be in-class outliers, too. A good data set must also be non-

trivial. Many data sets can be solved with an ROC AUC of 0.999 using the 1 nearest neighbor

distance with Euclidean metric. Some seem to be intractable with some parameters (e.g. the

Satimage-2 data set with k = 20), but with a large enough k they become too easy. How do

you compare two methods that both score near-perfect on such data?

Flexible Codebase: While the currently available source-code in ELKI is quite �exible and

covers a large number of methods, it does not re�ect the level of abstraction presented in this

thesis. Chapter 6 presents graphical representations of many algorithms, composed of prim-

itive modules, and discusses the virtues of sharing, reusing and exchanging these modules to

adapt an algorithm to a new problem. The ELKI source however re�ects modularity at a more

traditional Java level. While distance functions and indexes can easily be replaced, implement-

ing a more complex variation of the existing algorithms cannot be done simply by reconnecting

such modules or in a few lines of scripting code. And even then, the process cannot be trivially

scaled up to a cluster computing framework.

Despite of these various open ends for future research, the thesis gives a broad overview of

local outlier detection, and shares novel insights into how the methods work, their theoretical

background, and how they can be extended and improved. The resulting scores are no longer

“just a number”, but are now rooted on statistical reasoning; not based on the original data, but

on the distribution of scores.
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Appendix

1 Weighted Pearson Correlation Coe�icient

The Pearson product-moment correlation coe�cient [Pea01] (also denoted as PPMCC, PCC or

Pearson’s r) is a classic statistical measure of linear dependence (correlation). It has been applied

to various problems successfully [RN88], and is an interesting similarity measure for scores

which are not well calibrated yet, as it includes an implicit standardization (see Section 5.4 for

details on the use in this thesis). However, the original method is unweighted, and thus will

likely be dominated by the non-outliers. In order to apply it to an imbalanced problem such as

outlier detection, we need to employ a weighted covariance instead of the regular covariance,

which mostly just involves weighted averages.

Let each object oi be assigned a weight ωi, and denote the set of all weights by ω := {ωi}.

Weighted Pearson correlation can then canonically be de�ned by

ρω(X, Y ) :=
Covω(X, Y )

σω(X)σω(Y )
. (1)

In this formula,Covω(X, Y ) is the weighted covariance andσω(X) =
√
Varω(X) is the weighted

standard deviation. By substituting the unweighted functions, we can obtain the classic Pearson

product-moment correlation coe�cient.

Weighted Pearson correlation, just like regular Pearson correlation, is in the range of−1 . . .+1,

and can be used as a dissimilarity function either via 1 − ρω or via 1 − ρ2
ω. The key di�erence

between these two is that in the latter, a perfect negative correlation (ρ = −1) also yields a

distance of 0, which may be desirable in some situations.

Pearson correlation is not a metric distance. This is easy to see in particular as it obviously is not

de�ned when a vector has variance 0. However, when the vectors have been z standardized (i.e.

to zero mean and unit variance), it surprisingly turns out to be a variant of Euclidean distance.

Obviously, the formula simpli�es to ρ(X, Y ) = Cov(X, Y ). Euclidean distance on the other

hand can be rewritten as follows:√√√√ n∑
i=1

(xi − yi)2 =

√√√√ n∑
i=1

xi +
n∑
i1

yi − 2
n∑
i1

xi · yi =

√√√√2n− 2
n∑
i1

xi · yi

=
√

2n(1− ρ(X, Y )).
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1.1 Weighted Covariance

The weighted mean and the weighted population variance are de�ned (using Ω :=
∑

i ωi) as:

Eω(X) :=
1

Ω

∑
i

ωiXi Var(X) ≡ σ2
ω(X) :=

1

Ω

∑
i

ωi(Xi − Eω(X))2

Along this line, population covariance can be de�ned as:

Covω(X, Y ) :=
1

Ω

∑
i

ωi (Xi − Eω(X)) (Yi − Eω(Y )) (2)

In order to obtain an unbiased estimate when using a sample, we need to multiply both variance

and covariance with the same bias correction factor:

Ω2

Ω2 −
∑

i ω
2
i

(3)

It is easy to see that this de�nition satis�es the desired equality Var(X) = Cov(X,X) and

when ∀iωi = 1 and thus Ω = n it also yields the usual de�ntion of population variance.

1.2 Numerical Instabilities

For traditional variance and covariance, Steiner translation produces a formula known as “com-

putational formula for the variance”
2

(since it allows computing the variance with a single pass

over the data set):

Covω(X, Y ) = E[X · Y ]− E[X] · E[Y ]

Unfortunately (and ironically, given its nickname), this formula can su�er from catastrophic

cancellation when computed with �oating point numbers and E[X · Y ] ≈ E[X] · E[Y ] due to

the squared terms. In these cases, a two-pass computation using Equation 2 will yield much

higher accuracy. Other solutions to this problem have been proposed in the form of various on-

line algorithms that can compute variances in a numerical stable way by avoiding computing

the di�erence of two squared numbers. The most prominent result is the method by Welford

[Wel62], which was extended to weighted variances by West [Wes79], to skewness and kurtosis

by Terriberry [Ter08] and to arbitrary higher order moments by Pébay [Péb08].

Adapting these algorithms to weighted covariance turns out to be rather simple, because the

algorithms are already performing weighted updates of their estimates (weighting the previous

n observations with n and the new observation with 1). Note that depending on memory access

and arithmetic performance, the two-pass algorithm described by Equation 2 can sometimes be

faster and at least as accurate. However, the online algorithm can also be used to combine

results from multiple partitions, useful e.g. in distributed computation on a Hadoop cluster.

2
The Wikipedia article has since been renamed to “algebraic formula for the variance”
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1.3 A Numerically Stable On-line Algorithm

The following algorithm is the canonical adaptation of the method proposed by Welford [Wel62]

and its weighted variant by West [Wes79] to the problem of weighted covariance:

Input data:

xn x value of nth observation

yn y value of nth observation

ωn weight of nth observation

Variables:

x̂n current mean x
ŷn current mean y
Ωn current sum of weights

XXn current

∑n
i=1 ωi(xi − x̂n)(xi − x̂n)

XY n current

∑n
i=1 ωi(xi − x̂n)(yi − ŷn)

Y Y n current

∑n
i=1 ωi(yi − ŷn)(yi − ŷn)

Update step:

Ωn ←Ωn−1 + ωn

δx ←xn − x̂n−1

δy ← yn − ŷn−1

x̂n ← x̂n−1 + δx · ωn/Ωn

ŷn ← ŷn−1 + δy · ωn/Ωn

δxx ← (xn − x̂n) · (xn − x̂n−1)

δxy ← (xn − x̂n) · (yn − ŷn−1)

δyy ← (yn − ŷn) · (yn − ŷn−1)

XXn ←XXn−1 + δxx · ωn
XY n ←XY n−1 + δxy · ωn
Y Y n ←Y Y n−1 + δyy · ωn

It is correct to use once the current mean x̂n, and once the previous mean ŷn−1 [Wel62]. The

variances and standard deviations of X and Y can be computed similarly in the same pass.

Result scaling: The population covariances and variances can then be computed by:

Covω(X, Y ) :=XY n/Ωn

Varω(X) :=XXn/Ωn

Varω(Y ) :=Y Y n/Ωn

In order to obtain sample covariance, use the bias correction factor from Equation 3.
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2 Overview of Prior Published Parts

Several parts of this thesis have been previously published on appropriate conferences and

journals. The entries are given ordered by pulication time.

2009
1. H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. “Outlier Detection in Axis-Parallel

Subspaces of High Dimensional Data”. In: Proceedings of the 13th Paci�c-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD), Bangkok, Thailand. 2009, pp. 831–838.

doi: 10.1007/978-3-642-01307-2_86

Introduced the method SOD discussed in Section 5.2.1.

2. H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. “LoOP: Local Outlier Probabilities”.

In: Proceedings of the 18th ACM Conference on Information and Knowledge Management
(CIKM), Hong Kong, China. 2009, pp. 1649–1652. doi: 10.1145/1645953.1646195

Introduced the method LoOP analyzed in Section 5.1.2 and was the �rst publi-

cation to discuss “probabilistic” outlier scores (Section 5.3).

2010
3. M. E. Houle, H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. “Can Shared-Neighbor

Distances Defeat the Curse of Dimensionality?” In: Proceedings of the 22nd International
Conference on Scienti�c and Statistical Database Management (SSDBM), Heidelberg, Ger-
many. 2010, pp. 482–500. doi: 10.1007/978-3-642-13818-8_34

Is the original study on the curse of dimensionality and shared nearest neighbor

distances, discussed in Section 4.4.

2011
4. H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. “Interpreting and Unifying Outlier

Scores”. In: Proceedings of the 11th SIAM International Conference on Data Mining (SDM),
Mesa, AZ. 2011, pp. 13–24

Discusses statistical scaling of scores for arbitary methods, and an early version

of Section 5.3 as well as the �rst experiments with ensembles Chapter 7 (but not

yet greedy ensemble pruning).

5. E. Achtert, A. Hettab, H.-P. Kriegel, E. Schubert, and A. Zimek. “Spatial Outlier Detection:

Data, Algorithms, Visualizations”. In: Proceedings of the 12th International Symposium on
Spatial and Temporal Databases (SSTD), Minneapolis, MN. 2011, pp. 512–516. doi: 10.

1007/978-3-642-22922-0_41

Analyzing spatial outlier detection showed the need to generalize the local out-

lier pattern to other data types, and thus lays the foundations for Chapter 6.

http://dx.doi.org/10.1007/978-3-642-01307-2_86
http://dx.doi.org/10.1007/978-3-642-01307-2_86
http://dx.doi.org/10.1007/978-3-642-01307-2_86
http://dx.doi.org/10.1145/1645953.1646195
http://dx.doi.org/10.1145/1645953.1646195
http://dx.doi.org/10.1007/978-3-642-13818-8_34
http://dx.doi.org/10.1007/978-3-642-13818-8_34
http://dx.doi.org/10.1007/978-3-642-13818-8_34
http://siam.omniBOOKsonline.com/data/papers/018.pdf
http://siam.omniBOOKsonline.com/data/papers/018.pdf
http://dx.doi.org/10.1007/978-3-642-22922-0_41
http://dx.doi.org/10.1007/978-3-642-22922-0_41
http://dx.doi.org/10.1007/978-3-642-22922-0_41
http://dx.doi.org/10.1007/978-3-642-22922-0_41


2 Overview of Prior Published Parts 257

6. T. Bernecker, M. E. Houle, H.-P. Kriegel, P. Kröger, M. Renz, E. Schubert, and A. Zimek.

“Quality of Similarity Rankings in Time Series”. In: Proceedings of the 12th International
Symposium on Spatial and Temporal Databases (SSTD), Minneapolis, MN. 2011, pp. 422–

440. doi: 10.1007/978-3-642-22922-0_25

Extends the study of shared nearest neighbors (Section 4.4) to time series.

2012

7. E. Schubert, R. Wojdanowski, A. Zimek, and H.-P. Kriegel. “On Evaluation of Outlier

Rankings and Outlier Scores”. In: Proceedings of the 12th SIAM International Conference
on Data Mining (SDM), Anaheim, CA. 2012, pp. 1047–1058

Introduced the evaluation measure discussed in Section 5.4 as well as an early

version of greedy ensemble construction in Chapter 7.

8. A. Zimek, E. Schubert, and H.-P. Kriegel. “A Survey on Unsupervised Outlier Detection in

High-Dimensional Numerical Data”. In: Statistical Analysis and Data Mining 5.5 (2012),

pp. 363–387. doi: 10.1002/sam.11161

The survey of high-dimensional outlier detection contributed substantially to

the understanding of high-dimensional data in Chapter 4.

9. H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. “Outlier Detection in Arbitrarily

Oriented Subspaces”. In: Proceedings of the 12th IEEE International Conference on Data
Mining (ICDM), Brussels, Belgium. 2012, pp. 379–388. doi: 10.1109/ICDM.2012.21

The method COP introduced in Section 5.2.2 is an extension of the original COP

[Zim08, Chapter 18], but with major changes.

10. A. Zimek, E. Schubert, and H.-P. Kriegel. Outlier Detection in High-Dimensional Data.

Tutorial at the 12th International Conference on Data Mining (ICDM), Brussels, Belgium.

2012. doi: 10.1109/ICDM.2012.9

Overlaps with Chapter 4 and contains material from [ZSK12a].

11. E. Schubert, A. Zimek, and H.-P. Kriegel. “Local Outlier Detection Reconsidered: a Gen-

eralized View on Locality with Applications to Spatial, Video, and Network Outlier De-

tection”. In: Data Mining and Knowledge Discovery (2012). doi: 10.1007/s10618-012-

0300-z

This “online-�rst” publication has since been published in a printed issue, using

the same DOI but a di�erent date:

E. Schubert, A. Zimek, and H.-P. Kriegel. “Local Outlier Detection Reconsidered: a Gen-

eralized View on Locality with Applications to Spatial, Video, and Network Outlier De-

tection”. In: Data Mining and Knowledge Discovery 28.1 (2014), pp. 190–237. doi: 10.

1007/s10618-012-0300-z

Contains major portions of Chapter 6.

http://dx.doi.org/10.1007/978-3-642-22922-0_25
http://dx.doi.org/10.1007/978-3-642-22922-0_25
http://siam.omnibooksonline.com/2012datamining/data/papers/107.pdf
http://siam.omnibooksonline.com/2012datamining/data/papers/107.pdf
http://dx.doi.org/10.1002/sam.11161
http://dx.doi.org/10.1002/sam.11161
http://dx.doi.org/10.1002/sam.11161
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http://dx.doi.org/10.1007/s10618-012-0300-z
http://dx.doi.org/10.1007/s10618-012-0300-z
http://dx.doi.org/10.1007/s10618-012-0300-z
http://dx.doi.org/10.1007/s10618-012-0300-z
http://dx.doi.org/10.1007/s10618-012-0300-z
http://dx.doi.org/10.1007/s10618-012-0300-z
http://dx.doi.org/10.1007/s10618-012-0300-z
http://dx.doi.org/10.1007/s10618-012-0300-z
http://dx.doi.org/10.1007/s10618-012-0300-z
http://dx.doi.org/10.1007/s10618-012-0300-z
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2013
12. A. Zimek, E. Schubert, and H.-P. Kriegel. Outlier Detection in High-Dimensional Data.

Tutorial at the 17th Paci�c-Asia Conference on Knowledge Discovery and Data Mining

(PAKDD), Gold Coast, Australia. 2013

A later version of the previous tutorial [ZSK12b]; Chapter 4.

13. E. Achtert, H.-P. Kriegel, E. Schubert, and A. Zimek. “Interactive Data Mining with 3D-

Parallel-Coordinate-Trees”. In: Proceedings of the ACM International Conference on Man-
agement of Data (SIGMOD), New York City, NY. 2013, pp. 1009–1012. doi: 10 . 1145 /

2463676.2463696

The visualizations presented in Section 4.6.

14. E. Schubert, A. Zimek, and H.-P. Kriegel. “Geodetic Distance Queries on R-Trees for

Indexing Geographic Data”. In: Proceedings of the 13th International Symposium on Spatial
and Temporal Databases (SSTD), Munich, Germany. 2013, pp. 146–164. doi: 10.1007/978-

3-642-40235-7_9

The indexing approaches presented in Section 8.3.

2014
15. E. Schubert, A. Zimek, and H.-P. Kriegel. “Generalized Outlier Detection with Flexible

Kernel Density Estimates”. In: Proceedings of the 14th SIAM International Conference on
Data Mining (SDM), Philadelphia, PA. 2014

This publication is based on material from Section 5.1.3 and Chapter 9.

Other Publications, not Part of the Thesis

The following was also published as part of my university career, but have not found explicit

mentioning in the thesis since they focus on other topics such as XML and cluster analysis.

1. E. Schubert, S. Scha�ert, and F. Bry. “Structure-Preserving Di�erence Search for XML

Documents”. In: Proceedings of the Extreme Markup Languages 2005 Conference, Montreal,
Quebec, Canada. 2005

2. E. Achtert, T. Bernecker, H.-P. Kriegel, E. Schubert, and A. Zimek. “ELKI in Time: ELKI

0.2 for the Performance Evaluation of Distance Measures for Time Series”. In: Proceedings
of the 11th International Symposium on Spatial and Temporal Databases (SSTD), Aalborg,
Denmark. 2009, pp. 436–440. doi: 10.1007/978-3-642-02982-0_35

3. T. Bernecker, T. Emrich, F. Graf, H.-P. Kriegel, P. Kröger, M. Renz, E. Schubert, and A.

Zimek. “Subspace Similarity Search Using the Ideas of Ranking and Top-k Retrieval”. In:

Proceedings of the 26th International Conference on Data Engineering (ICDE) Workshop on
Ranking in Databases (DBRank), Long Beach, CA. 2010, pp. 4–9. doi: 10.1109/ICDEW.

2010.5452771

http://dx.doi.org/10.1145/2463676.2463696
http://dx.doi.org/10.1145/2463676.2463696
http://dx.doi.org/10.1145/2463676.2463696
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4. T. Bernecker, T. Emrich, F. Graf, H.-P. Kriegel, P. Kröger, M. Renz, E. Schubert, and A.

Zimek. “Subspace Similarity Search: E�cient k-NN Queries in Arbitrary Subspaces”.

In: Proceedings of the 22nd International Conference on Scienti�c and Statistical Database
Management (SSDBM), Heidelberg, Germany. 2010, pp. 555–564. doi: 10.1007/978-3-

642-13818-8_38

5. I. Färber, S. Günnemann, H.-P. Kriegel, P. Kröger, E. Müller, E. Schubert, T. Seidl, and

A. Zimek. “On Using Class-Labels in Evaluation of Clusterings”. In: MultiClust: 1st In-
ternational Workshop on Discovering, Summarizing and Using Multiple Clusterings Held in
Conjunction with KDD 2010, Washington, DC. 2010

6. E. Achtert, H.-P. Kriegel, L. Reichert, E. Schubert, R. Wojdanowski, and A. Zimek. “Visual

Evaluation of Outlier Detection Models”. In: Proceedings of the 15th International Con-
ference on Database Systems for Advanced Applications (DASFAA), Tsukuba, Japan. 2010,

pp. 396–399. doi: 10.1007/978-3-642-12098-5_34

7. H.-P. Kriegel, E. Schubert, and A. Zimek. “Evaluation of Multiple Clustering Solutions”.

In: 2nd MultiClust Workshop: Discovering, Summarizing and Using Multiple Clusterings
Held in Conjunction with ECML PKDD 2011, Athens, Greece. 2011, pp. 55–66

8. E. Achtert, S. Goldhofer, H.-P. Kriegel, E. Schubert, and A. Zimek. “Evaluation of Cluster-

ings – Metrics and Visual Support”. In: Proceedings of the 28th International Conference
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