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Abstract

A major goal of current robotics research is to enable robots to become co-workers
that learn from and collaborate with humans efficiently. This is of particular in-
terest for small and medium-sized enterprises where small batch sizes and frequent
changes in production needs demand a high flexibility in the manufacturing pro-
cesses. A commonly adopted approach to accomplish this goal is the utilization of
recently developed lightweight, compliant and kinematically redundant robot plat-
forms in combination with state-of-the-art human-robot interfaces.

However, the increased complexity of these robots is not well reflected in most
interfaces as the work at hand points out. Plain kinesthetic teaching, a typical
attempt to enable lay users programming a robot by physically guiding it through
a motion demonstration, not only imposes high cognitive load on the tutor, par-
ticularly in the presence of strong environmental constraints. It also neglects the
possible reuse of (task-independent) constraints on the redundancy resolution as
these have to be demonstrated repeatedly or are modeled explicitly reducing the
efficiency of these methods when targeted at non-expert users.

In contrast, this thesis promotes a different view investigating human-robot in-
teraction schemes not only from the learner’s but also from the tutor’s perspective.
A two-staged interaction structure is proposed that enables lay users to transfer
their implicit knowledge about task and environmental constraints incrementally
and independently of each other to the robot, and to reuse this knowledge by
means of assisted programming controllers. In addition, a path planning approach
is derived by properly exploiting the knowledge transfer enabling autonomous nav-
igation in a possibly confined workspace without any cameras or other external
sensors. All derived concept are implemented and evaluated thoroughly on a sys-
tem prototype utilizing the 7-DoF KUKA Lightweight Robot IV. Results of a
large user study conducted in the context of this thesis attest the staged interac-
tion to reduce the complexity of teaching redundant robots and show that teaching
redundancy resolutions is feasible also for non-expert users.

Utilizing properly tailored machine learning algorithms the proposed approach
is completely data-driven. Hence, despite a required forward kinematic mapping
of the manipulator the entire approach is model-free allowing to implement the
derived concepts on a variety of currently available robot platforms.
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Chapter 1

Introduction

“The KEY characteristic of robots is versatility; they can be applied
to a large variety of tasks without significant redesign. This versatility
derives from the generality of the robot’s physical structure and control,
but it can be exploited only if the robot can be programmed easily. In
some cases, the lack of adequate programming tools can make some
tasks impossible to perform. In other cases, the cost of programming
may be a significant fraction of the total cost of an application. For
these reasons, robot programming systems play a crucial role in robot
development.” [1]

1.1 Motivation: Flexible Production in Industry 4.0

With the introduction of the first industrial robot, namely the Unimation Uni-
mate, to automation and industrial manufacturing in the early 1960s a new era
in automated production began. As part of the third industrial revolution, robots
increasingly started to take over simple manufacturing tasks that they could per-
form faster, better or for a longer period of time as well as tasks that were harmful,
physically strenuous or dull for humans. Such tasks include welding, varnishing, or
grinding of workpieces, simple automated assembly processes as well as automated
placement and transportation. As a result of this developments, some branches
in today’s industry such as the automotive industry are highly automated with
production lines equipped with hundreds of robots and only few humans to main-
taining and supervising them. Once engineered, installed and programmed for a
specific task these automated production lines run 24/7 for several months if mar-
ket conditions demand and supply of resources permits. By this means producers
currently reach automation rate of up to 95 percent in some subsections of the
production line.

While being highly efficient and cost-minimal when running for a long time,
this concept of highly specialized production processes becomes infeasible in chang-
ing markets and for small and medium-sized enterprises, where small batch sizes
and frequent changes in production needs demand a high flexibility in the man-
ufacturing processes. This flexibility is an important aspect from the economics
point of view reducing inventory costs and minimizing the implementation time for
new products. Various types and definitions of flexibility are intensively discussed
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2 Introduction

since more than 30 years [2]. Machine flexibility and material handling flexibility
are regarded as key types of flexibility referring to the various types of operations
that a robot can perform and its ability to move different part types efficiently
for proper positioning and processing without a prohibitive effort for switching
between different operations. Both directly relate to the robotic component sys-
tems of a manufacturing system. Hence, the idea of flexibility in manufacturing
is by far not a new concept and multi-purpose, multi-axis robots with automatic
tool changers and easy programming interfaces are envisioned as means to meet
these requirements since then. Still, the topic of flexible production systems is an
ongoing topic also in contemporary academic, political and economical efforts as
part of the so-called fourth industrial revolution or Industrie 4.0 1 in which mod-
ular systems that can be adapted to changing requirements by means of intuitive
human-machine interfaces are considered as a core design concept [3, 4].

Fig. 1.1: Close physical interaction be-
tween human and the force-controlled
KUKA Lightweight Robot IV.

Fortunately, various recent develop-
ments in robotics hardware allow a new
kind of collaborative robots to made
their way to industry. In contrast to tra-
ditional robots being big, strong and ro-
bust, they are compact and lightweight
while allowing dexterous motions and
physical interaction with humans. Ad-
vanced force-torque sensing integrated
into compact actuation units [5, 6] with
variable stiffness [7] has led to the de-
velopment of compliant force-controlled
robot manipulators such as the KUKA
Lightweight Robot IV [8] shown in
Fig. 1.1. Also new developments in the
design and production of passively com-
pliant robots such as Festo’s Bionic Han-
dling Assistant [9] allow for safe direct
physical human robot interaction. The
importance of these advanced sensing
and interaction capabilities is two-fold.
On the one hand, they serve as safety fea-
tures allowing robots to be implemented
flexibly alongside and in close collaboration with humans without any need for
safety fences, guards or mutually exclusive safety regions. On the other hand,
they offer an intuitive interaction interface for humans to program and adapt
robots to frequently changing tasks or environments which has been the rationale

1 Although the initiative “Industrie 4.0” is not well-known outside of German-speaking areas,
similar concepts such as “Industrial Internet”, “Advanced Manufacturing” or “Smart Industry”
can be identified in other areas [3].
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of teach-in procedures for traditional robots since long. The process of a human
tutor physically guiding a robot manipulator through a motion is termed kines-
thetic teaching [10] and is considered as a key concept for intuitive programming-
by-demonstration approaches [11]. Complementary, there is a tendency to increase
the number of degrees of freedom (DoF) towards kinematically redundant manip-
ulators [12], i.e. robots with more joints than actually needed to solve a specific
task. “It is not difficult to discover that a six-degree-of-freedom geometry can
no longer be considered a general purpose manipulator.”[13]. These systems with
seven DoF or even more provide a great degree of flexibility for the realization of
a variety of tasks and complex applications. Hence, in order to utilize robots as
general-purpose tools rather than as engineered for a specific task, redundancy is
a key ingredient for flexibility as already shown industrial scenarios [14] but also
concerning service robotics [15, 16]. As a result many collaborative robots (Uni-
versal Robots UR5) with 7-DoF kinematics (KUKA LWR iiwa, Rethink Robotics
Sawyer), multi-arm solutions (ABB YuMi, Rethink Robotics Baxter) or even mo-
bile platforms (Bosch APAS, Kawada Industries NEXTAGE) are ready-made prod-
ucts for application in manufacturing industry [17].

While each of the aforementioned improvements undoubtedly increase the ma-
chine flexibility as discussed above, in practice some of them seem contradictory.
A machine flexibility enthusiast would say, the more degrees of freedom a robot
employs the better. But in the context of today’s manufacturing systems also
higher-level flexibility requirements play an important role, which relate to the va-
riety of products that a system can produce without major setups and the ease to
add new products [2]. Setting up the system according to new tasks or constraints
must not involve inordinate amounts of time and cost. However, the gained dex-
terity of redundant robots requires additional modeling steps, i.e. the definition
of explicit criteria for redundancy resolution e.g. for obstacle avoidance in clut-
tered environments or confined workspaces. These criteria are typically not easily
accessible to process experts and even less to naive users.2 Hence, programming
experts or roboticists are required for adaptation to new tasks resulting in high
costs and long setup times limiting the wide-spread application of these systems.
As a result, facilitating efficient (re-)configuration of advanced robot systems to-
wards (new) tasks or environments is still regarded as a major challenge of current
robotics research [18]. Exploitation of their gained flexibility in industrial and ser-
vice applications also for small and medium-sized enterprises calls for improved,
intuitive programming methods feasible also for non-experts.

2 Throughout this thesis the terms “naive” or “lay” users and “non-experts” are used inter-
changeably and relate to users that might be domain or process experts but - in contrast to
programming experts or roboticists - typically have no background in modeling and programming
complex robot motions.



4 Introduction

1.2 Problem Statement: Teaching of Redundant Robots
is Difficult

Consider a realistic scenario for instance in production and assistance at manual
workplaces, where non-dynamic task space constraints will typically be present
in the form of fixed obstacles in the workspace, in form of a wall, a ceiling or
a restrictions not to reach into forbidden regions. And these constraints may
change from time-to-time and workplace to workplace which requires to repro-
gram new tasks, redundancy resolutions and even path planning of an assistive
robot. As stated above, the usual way of addressing this problem is to exploit the
compliance features of the robot manipulators to facilitate close physical Human-
Robot Interaction [19, 10] (pHRI). Utilizing this interaction interface and apply-
ing basic programming-by-demonstration methods, non-experts are encouraged to
kinesthetically teach-in new tasks. The underlying assumption is that they implic-
itly model the required criteria according to environmental constraints during the
teach-in of a task space trajectory. However, these approaches to kinesthetic teach-
ing do not reflect the standard technical approaches to redundancy control, which
typically separate task-space planning and constraint resolution in configuration
space. As I will discuss systematically in Chap. 2 most of these programming-by-
demonstration approaches rely on trajectory-based teaching, either in the high-
dimensional configuration space (joint space) of the robot or in the task-space
only but then taking redundancy resolution for granted.

The problem addressed in this thesis is that, while standard control for re-
dundant robots clearly distinguishes task and configuration space for redundancy
resolution, when utilizing kinesthetic teaching users typically have to deal with
the complexity of simultaneously considering the redundancy resolution in con-
figuration space and the specification of trajectories in task space. Furthermore,
dedicated interaction support for kinesthetic teaching of constraints in confined
spaces has not yet been considered. Kaber and Riley demonstrated in [20] for a
teleoperation task “that operator performance and workload are significantly af-
fected by whether joint or world mode (i.e. end-effector position) control is required
[. . . and that] for example, world mode can reduce task completion times, but may
also increase the number of contact errors when working in confined spaces” [21]. I
hypothesize that, analogously to teleoperation, kinesthetic teaching of a redundant
robot arm in joint control mode, i.e. the robot is freely movable in all joints, is
a difficult task, particularly for non-expert users. The lack of separation of task-
space programming and redundancy resolution causes a high complexity, unsuited
for utilizing simple programming-by-demonstration approaches such as kinesthet-
ically teaching joint space trajectories. In addition the implicit encoding of the
redundancy resolution has to be taught repetitively in every demonstration as it
is not separated from the task.
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1.2.1 FlexIRob@Harting: Kinesthetic Teaching in Confined Spaces
is Difficult

In order to further support this hypothesis, in the following I briefly report results
of a kinesthetic teaching experiment conducted as part of a large user study on
physical human-robot interaction [22, 23] in the context of this thesis.

The experiment was conducted with 24 workers from a medium-sized manu-
facturing company – HARTING KGaA [24] – in Germany. Most of them had no
practical experience with robots. They were asked to perform an adapted version of
the wire loop game3, a classical teach-in, together with a redundant robot, namely
the 7-DoF KUKA Lightweight Robot IV, in a confined workspace. The setup con-
sists of two styrofoam objects placed in the robot’s workspace (see Fig. 1.2): One
object represents fixed physical obstacles in the robot’s workspace such as walls or
racks that permanently constrain its movements. The other object constitutes a
styrofoam parcours representing the target trajectory that is to be taught to the
robot by the user. The participants were asked to guide the end-effector along the
parcours but without getting the robot into contact with the environmental obsta-
cles. The interaction controller used for this experiment is gravity compensation
which is similar to the original gravity compensation controller provided by the
robot [25], and which was re-implemented for technical reasons (cf. Chap. A for
details). That is, during the interaction the users physically manipulate the robot
in joint control mode, i.e. particularly no inverse kinematics controller or redun-
dancy resolution to control the end-effector is provided. For a detailed description
of the experiment and the data acquisition please confer to Chap. B.

The experimental results reveal the systematic deficit of the participants to
successfully teach the robot system the desired trajectory in the constrained envi-
ronment. Most of the them were not able to accurately follow (and therefore teach)
the styrofoam parcours, which is indicated by a high task-space error of 0.12±0.11
meters averaged over all participants. Fig. 1.3 shows exemplary trajectories of four
participants indicating very different teach-in experiences and success. Whereas
few users achieved a high task-space accuracy, e.g. user04 with a maximum devi-
ation to the target of approx. 0.05 meters, most of them failed to simultaneously
find a valid joint configuration in the confined workspace and move the end-effector
accurately along the desired trajectory. As a result, they deviated from the target
movement up to 0.52 meters (see user01 or user02). Furthermore, two partici-
pants aborted the wire loop game due to the difficulty, e.g. user03. Concerning
the avoidance of environmental obstacles, only two users did not cause collisions
between the robot arm and the obstacle. That means that independent from the
task-space accuracy 22 of 24 participants failed to kinesthetically teach the robot
a target trajectory without colliding with its environment. Finally, the results re-
veal an average teaching time of 93.4±44.5 seconds. Rather than the pure average

3 The original wire-loop game consists of a metal loop and a serpentine length. The loop has
to be guided along the wire without touching it.
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Fig. 1.2: Snapshots of the participants’ teaching experience during the kinesthetic
teaching experiment.

user01
user02

user03
user04

 

 

target

Fig. 1.3: Exemplary teach-in trajectories of four participants of the kinesthetic
teaching experiment.



Contribution and Goal of Thesis 7

value, here the high variance across the participants is interesting. Whereas the
fastest user managed to complete the task in 27 seconds, the longest teach-in took
about more than 3 minutes.

The experiment demonstrates that, although it is possible (and the results
showed that few of the participants managed) to solve the described kinesthetic
teaching task in joint control mode, most users failed to maneuver the redundant
robot in the confined workspace along a target trajectory. In [21] the authors hy-
pothesize that “the operator may have good global situational awareness on the
end goal for the manipulator, but may suffer from poor local situational awareness
on the position of each manipulator joint”, which is clearly illustrated in Fig. 1.2
(bottom right). The complexity of the teaching task may be caused by higher de-
mands on the attentional system to switch the focus between task and environment
(e.g. see Fig. 1.2 top left, top right) and/or even in increased physically exhaus-
tive handling (e.g. see Fig. 1.2, bottom center). I conclude from this experiment
that kinesthetic teaching of a redundant robot is difficult if non-trivial redundancy
resolution is required.

1.3 Contribution and Goal of Thesis

The problems discussed above indicate that intuitive human-robot interaction con-
trollers are needed that exceed plain kinesthetic teach-in at the kinematic level and
reduce the complexity of teaching redundant robots. Therefore,

the overarching goal of this thesis is to develop concepts for an intuitive
human-robot interaction to efficiently bootstrap and exploit redundancy
resolutions in order to simplify teaching of redundant robots in changing
environments.

For the purpose of applicability to a variety of scenarios, these concepts should
rely neither on external vision sensors nor on geometric models of the robot and
the environment nor on other explicit criteria, since those often are not available
in realistic applications. An important aspect of this work is therefore rather to
develop methods enabling a human tutor to transfer his or her implicit knowledge
about environmental constraints or personal preferences to the robot by providing
demonstrations. Inspired by previous work on learning inverse kinematics [26,
27, 28, 29], a key concept is therefore to efficiently learn and encode redundancy
resolutions from user demonstrations only relying on the robot’s proprioceptive
data gathered through the physical human-robot interaction. Based upon that, a
staged interaction scheme is developed that allows users to incrementally provide
such demonstrations and to benefit from them subsequently in order to simplify
the teaching procedure.

Throughout this thesis, the required machine learning algorithms, interaction
designs and interaction controllers are introduced, implemented and thoroughly
evaluated. Aiming at a user-centered interaction concept, this work contributes
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an in-depth analysis of the derived concepts from the users’ point of view evaluating
the tutors’ teaching experience and success with state-of-the-art metrics for human-
robot interaction systems [21].

1.4 Outline

The remainder of this work is structured as follows. As preliminaries for the
derivation of the proposed concepts, in Chap. 2 I first discuss and analyze meth-
ods concerning inverse kinematics for redundant manipulators and programming-
by-demonstration approaches, both with respect to flexibility and from the user’s
viewpoint. Subsequently, in Sect. 2.3 I present the proposed approach consisting in
a dedicated set of high-level interaction controllers, a structured interaction work-
flow separated into CONFIGURATION and PROGRAMMING stages to incre-
mentally teach and exploit redundancy resolutions, as well as the required learning
methodology.

Throughout this thesis, these concepts are implemented and evaluated on our
system prototype FlexIRob [30] utilizing the compliant 7-DoF-KUKA Lightweight
Robot IV. The hardware setup and software abstractions utilized for this imple-
mentation are given in Chap. A. As already done in Sect. 1.2.1, in the further course
of this work I will report results from the user study FlexIRob@Harting [22]. How-
ever, for the sake of readability the detailed study design, such as questionnaire
design and course of demo for the participants, is put to Chap. B

In the following this work proceeds with Chap. 3 that analyzes the proposed
method from a machine learning viewpoint: Neural-network-based learning ap-
proaches are discussed and proposed, in order to evaluate them with respect to
their applicability and generalization abilities in this context. In contrast, Chap. 4
and Chap. 5 investigate the proposed concepts from a user-centered perspective.
They specifically address their feasibility for non-experts and shed light on the
implicit knowledge that is transferred to the robot controllers by means of the
introduced interaction concept. Based on these findings an adopted variant of
the CONFIGURATION stage is presented in Chap. 6 that improves on the issues
learned from the user study by introducing haptic feedback to the tutor into the
interaction loop. A further development that aims at increasing the robot system’s
autonomy, and thereby decreasing interaction effort required by the user, is devel-
oped in Chap. 7. It presents a method for model-free, autonomous path planning
in the relevant, explored areas of the workspace, and is therefore interesting from
an application-point-of-view. Chap. 8 finally presents a short, artificial scenario
with a simulated 9-DoF manipulator. It is designed to test the proposed concepts
in terms of scalability to other, more complex, but also less intuitive robot plat-
forms. Finally, Chap. 9 summarizes and concludes the results obtained in this
thesis.



Chapter 2

Kinesthetic Teaching of
Redundant Robots in Confined

Spaces

This chapter introduces the general approach proposed in this thesis to enable lay
users intuitive teaching of redundant robots in confined spaces. The method con-
sists of a coherent set of kinesthetic-teaching-based interaction controllers, machine
learning tools to learn and encode user-taught redundancy resolutions, and hierar-
chical inverse kinematics controllers to embed the learned redundancy resolutions.
Therefore, this chapter first briefly reviews standard robot control techniques for
redundant manipulators, to then propose null-space projection methods to be
utilized throughout this thesis. Second, related programming-by-demonstration
(PbD) approaches are systematically discussed with respect to their interaction
strategies regarding the user’s viewpoint, and redundancy control. Finally, the
approach of this thesis is derived as a combination of a hierarchical robot con-
troller, methods for learning redundancy resolutions from demonstrations, and a
structured human-robot interaction design.

2.1 Inverse Kinematics for Redundant Robots

The kinematics control problem of robotic manipulators can be formulated as
finding proper joint space configurations q(t),q ∈ RN of a robotic manipulator that
realize a given desired task space trajectory x(t),x ∈ RM . Redundancy generally
refers to the property of a manipulator to inhibit infinite solutions to the posed
control problem and can be expressed in terms of the dimensions of the robot’s
task and configuration space. A robot is said to be redundant w.r.t. a given task,
if M < N [12, 13]. Assuming the general task of how to position a robot’s end-
effector in a 6-dimensional translational-rotational space, a device with more than
six degrees of freedom, i.e. N > 6, is called kinematically redundant [12]. While the
former definition is more general and describes redundancy as a relation between
robot and task, the latter can be utilized even if a specific task is not (yet) known
and is therefore the reference definition used throughout this thesis. The task
space used in this work will typically relate to the position x ∈ R3 of the robot’s

9
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end-effector or will include the rotational components x ∈ R3 × SO(3), where
SO(3) refers to the group of all rotations in R3 (special orthogonal group). Hence,
in this thesis M = 3 or M = 6.

Of special interest in this context are the forward kinematic mapping

x = Kfwd(q) (2.1)

and the differential forward kinematics

ẋ = J(q)q̇ (2.2)

of a robot where the Jacobian J ≡ J(q) = ∂Kfwd
∂q is a configuration dependent

(M × N)-matrix. Concerning typical rigid body industrial manipulators these
mappings are well defined and known. For non-redundant robots they typically
form the basis to directly calculate a (mostly) closed-form solution of the inverse
kinematics mapping

q = Kinv(x) with x = Kfwd(Kinv(x)). (2.3)

However, redundant robots form a special challenge in solving this coordination
problem. Since M < N an infinite number of solutions exists and therefore criteria
to select one of these are necessary. In the following I briefly discuss traditional
approaches to the inverse kinematics problem for redundant robots and motivate
null-space projection methods for further utilization in this work. For a more
detailed and exhaustive overview the reader may refer to [13, 31].

While there exist methods to construct direct inverse kinematics functions such
as Eq. (2.3) also for redundant manipulators [32], these rely on the construction
of feasible invertible workspaces [13] and an analytical definition of a differential
inverse function, requiring an in-depth mathematical knowledge of the specific task
and the robot’s kinematics. Hence, from a user-centric point of view they are not
suitable in the context of this thesis.

One traditional approach of solving the redundancy is to explicitly augment the
task xa = (xT,xT

c )T with additional P = N −M constraints on the joint variables
such that the resulting augmented task space spans the full N dimensions. From
these constraints extended or augmented Jacobians Ja ∈ RN×N [31] are built that
are typically non-singular and can be used to derive a joint space trajectory q(t)
by inverting an adapted version of the mapping in Eq. (2.2)

ẋa = Ja(q)q̇ (2.4)

and integrating the obtained values over time. However, these methods rely on
either defining explicit additional tasks xc(t),xc ∈ RP or at least an additional
explicit constraint function c(q) : RN 7→ R on the joint variables exhibiting con-
straints to resolve the redundancy. With this additional goals the possibility of
algorithmic singularities raises. These are situations where the augmented kine-
matics problem is singular while the problem of solely tracking the desired task
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space trajectory x(t) is not and typically relate to contradicting tasks for the con-
straints and the end-effector [31]. Considering arbitrary tasks space trajectories “it
is quite difficult to select an ad hoc constraint task to be satisfied together with the
original task, unless one has enough insight into the specific problem” [13], which
generally renders these methods unsuitable for non-expert users in the context of
this thesis.

Other methods to redundancy resolution utilize optimization techniques ex-
ploiting the additional degrees of freedom for minimizing a given cost function
H(q) : RN 7→ R≥0 along the desired task x(t). From a practical viewpoint in
the context of this thesis optimization methods can be classified in either offline
or online methods. Offline methods such as global optimization approaches or
methods derived from optimal control theory (e.g. [33, 34]) require heavy compu-
tations and a pre-defined task space trajectory [13]. Although they provide global
optimal solutions they are impractical for application in human-robot interaction
scenarios. In contrast, online or instantaneous methods can be applied in real-time
and without an a priori definition of a task only locally optimizing a performance
criteria during a desired motion. Hence, throughout this work I only focus on these
latter methods. Such criteria are for instance avoidance of singularities, minimal
joint velocity or minimum energy consumption, and can be implemented based on
simple Jacobian-based techniques. These rely on inverting the mapping Eq. (2.2)

q̇ = K(q)ẋ, (2.5)

where a typical choice for the generalized inverse K is based on the pseudo-inverse

of the Jacobian J† = JT
(
JJT

)−1
. For instance, having K = J† results in the

minimum 2-norm solution that generates minimum norm joint velocity solutions.
Other work in that direction proposes to use different norms such as the weighted-
norm solution K = W−1JT

(
JW−1JT

)
to distribute joint velocities differently

e.g. to locally minimize kinetic energy [35] or damped least-squares solutions K =

JT
(
JJT + µ2I

)−1
for robust singularity avoidance where µ(q) is a measure for

singularity [13]. While these methods are simple to implement and provide general
applicability to redundancy resolution they lack the flexibility required to embed
user preferences of how the redundancy should be resolved.

In order to overcome this lack in flexibility the null-space projection approach
can be utilized. It formulates a more general solution to Eq. (2.2)

q̇ = J†ẋ +
(
I− J†J

)
q̇c, (2.6)

where additional constraints q̇c ∈ RN on the joint velocities are projected in the
null-space of the Jacobian J , hence shaping the robot’s motion q(t) while not
affecting the produced task trajectories x(t). This separation of concerns is ad-
vantageous because it allows to flexibly plug in any desired constraints on the
robot’s motion without disturbing its reliability in task space. In contrast to the
task augmentation methods discussed above, a strict prioritization prevents the
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Fig. 2.1: Sketch of traditional approaches to redundancy resolution such as task
augmentation and null-space projection methods. Besides an explicit definition
of a task, explicit analytical criteria are required to resolve the manipulator’s
redundancy.

joint constraints (secondary task) from disturbing the accuracy of the task space
trajectory (primary task). This advantage has led to the development of a large
number of approaches using gradient projection. Again by means of a properly
modeled scalar cost function H(q), redundancy resolution can be implemented by
calculating q̇c = ∂H

∂q . By this means, a manipulator’s redundancy can be used for
join-limit avoidance, maximizing manipulability or maneuverability [13], real-time
obstacle avoidance [36, 37, 38, 39] or maximizing kinematic fault-tolerance [40].
Another approach utilizes Eq. (2.6) to include hard constraints in the joint space
that must be satisfied to fit a manipulator’s physical limits such as joint ranges
and maximal velocity or acceleration [41]. Still, with all methods listed above the
redundancy is resolved based on an explicit criterion that has to be modeled as an
analytical expression in terms of the joint variables q as sketched in Fig. 2.1. How-
ever, the null-space projection approach Eq. (2.6) offers great flexibility to include
user-specified redundancy resolutions in terms of “customized” joint velocities q̇c
as I will show in Sect. 2.3. In addition, it is very simple to implement for any
rigid-body manipulator and thus serves as basis for the work in this thesis.

It is worth mentioning that based upon this method or derived from other
approaches such as higher-order differential kinematics, also more advanced tech-
niques have been developed e.g. using task priority controllers allowing to define
multiple tasks [31] and even to switch their priority smoothly during execution
[42]. But in the context of this thesis they do not provide more flexibility or al-
low more intuitive programming for non-expert users. They rather impose higher
requirements in terms of computational costs.

In contrast to analytic approaches, an important area of work is concerned
with learning inverse kinematics of redundant robots [43]. This is typically con-
ducted in cases where the derivation of analytical models is difficult or rather
impossible such as non-rigid robots [44] or very difficult as for humanoid robots
[26, 27]. However, only a limited number of these consider the introduction of
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additional constraints for redundancy resolution. An exemplary approach in this
category is constrained supervised learning [45] which explicitly models configura-
tional and temporal constraints for solving inverse kinematics problems. A more
recent approach allows for dynamic redundancy resolution [46] by learning the
forward model and the respective projectors required for additional redundancy
constraints. However, the main goal of these methods is to bootstrap an inverse
model for control rather than learning different redundancy resolutions by means
and for the sake of human-robot interaction.

2.2 Kinesthetic Teaching as an Intuitive Programming
Interface

To overcome the necessity of explicit criteria, programming by demonstration (PbD)
has become an inevitable method as it “offers an implicit means of training a
machine, such that explicit and tedious programming of a task by a human user
can be minimized or eliminated” [10]. A central concept in this research field is
a human teacher providing demonstrations in a human-robot interaction scenario
from which a problem-specific control policy for the robot is derived. Therefore,
the different PbD approaches can be categorized according design choices regarding
problem space representation, policy design and learning algorithm as well as the
demonstration method [47]. Since a key question of this thesis is an intuitive
interaction and teaching of redundancy resolutions from the user’s viewpoint, the
focus in this section lies on the latter, i.e. the different interaction strategies for
the human teacher to provide demonstrations.

According to [47] the strategies in question can be divided into imitation and
demonstration strategies. Imitation approaches record data by observing the hu-
man teacher with cameras or other sensors that allow to measure the human
demonstrations. The robot manipulator is not involved during the execution of
these demonstrations. One crucial disadvantage of this strategy is the correspon-
dence problem, which is described as a possible mismatch between the sensorimo-
tor spaces of the learner and the teacher [48]. To overcome the correspondence
problem typically a mapping has to be specified to allow the robot learning from
external observations which is a non-trivial problem.

In contrast, during demonstration strategies the states and actions to learn
from are recorded from the robot itself. This often is referred to as self-imitation
or self-supervised learning. Prominent examples are teleoperation and kinesthetic
teaching. While teleoperation approaches have been applied successfully in a huge
variety of applications [47] ranging from simple manipulation tasks to surgical
robotics applications [49], direct and physical manipulation of a robot, i.e. kines-
thetic teaching, provides a more user-friendly interface [10]. Concerning non-expert
users, recent studies indicate such a direct physical human-robot interaction to be
favorable [50]. By kinesthetic teaching the teacher provides state sequences in the
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robot’s sensorimotor space which can be used directly for learning. No additional
mapping is required. Regarding industrial manufacturing, a recent field study
with non-expert users revealed that kinesthetic teaching serves as a suitable input
device for demonstrating manual assembly tasks which can be learned quite fast
by human demonstrators [51]. The work in [52] motivates kinesthetic teaching as
input device also from a social interaction perspective. It presents studies with
social animals that use the concept of moulding or putting through, i.e. the process
of putting the learner through a set of teacher-defined actions and states which are
available to the learner, to speed up the learning process. Following this argumen-
tation, kinesthetic teaching seems to be a natural and intuitive way for humans to
teach robots [53].

2.2.1 Demonstrating in Configuration Space

From a user perspective existing PbD approaches can be categorized into two
classes. The first class covers all methods where the human teacher physically
operates the robot in configuration space. That is, in order to guide the robot
through a desired motion demonstration the user has to take into account all
joints of the robot as sketched in Fig. 2.2(a). Technically, physical guidance can be
accomplished by using back-drivable motors, passively compliant robots or active
compliance using force-torque sensors integrated into the robot’s actuators [54, 5,
6]. From a low-level control point of view, the interaction forces fint applied by the
user to the robot’s links and joints are transformed to a new desired joint position
qdes by means of a control policy πq. For rigid-body manipulators this is typically
realized by means of proper admittance or impedance controllers [55, 25, 56]. For
passively compliant robots πq is a combination of low-level controllers and the
inherent compliance of the robot structure e.g. as in [57]. Mostly, these approaches
realize some form of gravity compensation controller where the robot compensates
its own gravity forces but does not counteract externally applied forces/torques
allowing the user to move it freely.

In the literature, this approach is often utilized in the context of humanoid
robotics as it is also seen as a social interaction device [53]. By kinesthetic demon-
stration in joint space humanoid robots have been taught to imitate human ges-
tures [58], move chess pieces [59] and perform simple manipulation [60] as well as
household tasks such as pouring or spooning sugar [61]. Other applications refer to
humanoids learning drumming and ball throwing [62] as well as reproducing and
sequencing even bi-manual skills [63]. But also single robotic arms have been used
in this context. In [64] a 7-DoF manipulator is taught ironing tasks and opening
doors which consists of positional and force skills. Also more recent work [65]
uses kinesthetic teaching for instructing the industrial 7-DoF KUKA Lightweight
Robot IV with basic real-world manipulation tasks.

However, these approaches suffer from high complexity imposed on the user.
As discussed in Sect. 1.1, the configuration space of robots in the context of this
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(b) Demonstrating in task space: The interaction be-
tween user and robot reduces to task space (typically
end-effector space). The user-applied force fint is used
by the specific interaction controller πx to calculate
only a desired task space position xdes. Therefore, ex-
plicit criteria are needed to account for the manipula-
tor’s redundancy.

Fig. 2.2: Schematic view on programming-by-demonstration approaches with dif-
ferent demonstration strategies.

thesis is typically high-dimensional, with seven or more DoF the teacher has to
operate simultaneously. As the case study of kinesthetic teaching in confined
spaces in Sect. 1.2.1 shows, this interaction often is too complex and imposes high
mental load. The work in [66] investigates kinesthetic teaching of a humanoid
robot to stand up, walk and even to perform a head stand. While it shows that,
in combination with optimization techniques, teaching these tasks is possible, it
reports that a single teaching procedure can take up to 15 minutes. As most of
the discussed approaches rely on trajectory-based teaching, the users even have
to plan in this high-dimensional space which renders the teaching task even more
complex. According to [64], kinesthetic teaching in configuration space might also
not be suitable for all kinds of robots since it tends to decorrelate the movement:
“The main reason is that it is easier for the user to move the motors one by
one during demonstration than executing a natural coordinated movement.” [64].
Also Calinon et al. already stated in their pioneering work [59] that “[. . . ] it
remains difficult to generalize the whole body motion because it is not possible
to control simultaneously more DOFs (e.g. moving the two arms and two legs
of the robot simultaneously).” Furthermore, from a practical point of view it
is worth mentioning that due to the lack of separation both task definition and
environmental constraints have to be re-taught when either of them is changed.
Reusing either of them is therefore not straightforward if possible at all.
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2.2.2 Demonstrating in Task Space

In contrast, in the second class the teaching process is restricted to task space,
meaning that the user only interacts with the robot by positioning its end-effector
instead of manipulating the entire robot structure, see Fig. 2.2(b). The forces
fint applied by the human operator to the robot’s end-effector are measured or
estimated and used by the specific low-level controller πx (cf. e.g. [67, 68, 69] or
[70] for an overview) to calculate a desired Cartesian position xdes of the end-
effector. Technically this is typically realized by mounting force/torque sensors at
specific joints or the end-effector of a robot and was a typical way to realize some
kind of teach-in procedures in early industrial programming-by-demonstration ap-
proaches [71]. These include spot or arc welding, loading and unloading numerical
control machine tools or basic assembly operations. An interesting overview about
very early work in that direction is given in [72]. But also very recent work uti-
lizes this approach for teaching industrial tasks such as manual assembly [51, 73]
or screw tightening [74] as well as wheel mounting to a car body [69]. In [75]
this interaction strategy was employed to teach a humanoid robot surface cleaning
motions, while it balances its lower body. the

On the one hand these techniques reduce the teaching complexity from a possi-
bly high-dimensional joint space to a typically three- or six-dimensional task space
as sketched in Fig. 2.2(b). On the other hand, regarding the problem of redun-
dancy resolution they face the same issues as traditional approaches discussed in
Sect. 2.1. Either the demonstrations are recorded in free, non-confined spaces
where additional constraints on the redundancy can be neglected or they explic-
itly have to model criteria for redundancy resolution beforehand or during task
execution.

2.3 Proposed Method: Incremental Kinesthetic Teach-
ing in Task and Configuration Space

As outlined in Sect. 1.3, the main goal of this thesis is to enable non-experts fast
and intuitive programming of redundant robots. In order to circumvent explicit
modeling, I propose a set of learning and control approaches that allow users to
define environmental constraints and specific task space trajectories solely based
on kinesthetic teaching. I meet the fact that trajectory-based kinesthetic teaching
of redundant robots in confined spaces results in a high cognitive load for the user
- as demonstrated in Sect. 1.2.1 and discussed in Sect. 2.2.1 - by systematically
reducing the complexity. The key idea is to separate teaching of (task-independent)
constraints from the actual task the robot should execute in end-effector space
allowing an incremental, simplified procedure that improves the user’s teaching
experience.

Fig. 2.3 provides a high-level view on the proposed approach. As discussed
above, typical programming-by-demonstration methods either neglect the prob-
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Fig. 2.3: Schematic view on the proposed incremental kinesthetic teaching pro-
cedure. Teaching of redundancy resolution is separated from demonstrating the
actual task. In a dedicated CONFIGURATION stage the teacher records demon-
stration data that is utilized to infer a customized fixed redundancy resolution.
For the subsequent PROGRAMMING phase this is embedded in the robot’s con-
trol architecture to allow recording of a kinesthetic demonstration in task space.
Finally, the resulting task definition and redundancy resolution are used to execute
the desired motion while satisfying the taught constraints.

lem of redundancy resolution or apply explicit criteria during the execution or
reproduction of a task [64], i.e. after teaching. In contrast, in this procedure the
redundancy resolution needs to be defined first. In the CONFIGURATION stage
the user provides demonstrations of valid or preferred redundancy resolutions in
selected parts of the robot’s workspace. By means of machine learning techniques
these demonstrations are properly encoded and generalized to infer a fixed redun-
dancy resolution over the entire workspace which subsequently can be embedded
into a hierarchical control architecture. Hence, the redundant manipulator can be
controlled arbitrarily in task space while resolving the redundancy online according
to the taught constraints. In particular, an assisted interaction controller is derived
that allows an assisted programming in the next stage, i.e. the PROGRAMMING
phase. The kinesthetic interaction between human and robot reduces to task space
because the redundancy is resolved online according to the taught constraints. By
this means a task definition is provided. Finally, the task can be reproduced au-
tonomously by the robot using an hierarchical control approach incorporating the
environmental constraints defined by the user.

In the following, I introduce and discuss the required concepts for the proposed
approach. These consist in machine learning algorithms to learn and encode user-
specific redundancy resolutions, a hierarchical control concept using null-space
projection methods as discussed in Sect. 2.1 and dedicated interaction controllers
for kinesthetic teaching in task and configuration space.

2.3.1 Kinesthetic Teaching of Redundancy Resolutions

The main goal of the CONFIGURATION stage is to enable the human teacher to
transfer its implicit knowledge about environmental constraints to the robot in an
efficient and intuitive manner.
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Intuitiv transfer of this knowledge is accomplished by a programming-by-de-
monstration approach that infers the redundancy resolution from demonstration
data D = (xl,ql)l=1,...,L gathered through kinesthetic teaching. It particularly uti-
lizes the compliance features of the used robot platform in a demonstration-in-
configuration-space strategy as discussed in Sect. 2.2.1. However, in contrast to
those methods, teaching in this stage is not trajectory-based. I rather follow the
idea that the constraints imposed on the robot are caused by geometric relations
between the manipulator and its environment. They can relate to physical ob-
stacles in the robot’s workspace (e.g. cluttered workspaces, walls), areas not to
be covered by its links (e.g. for safety regions in close human-robot collaboration)
or user-preferred redundancy resolutions (e.g. changing from left-handed to right-
handed in hand-over tasks [76]). Hence, they can be encoded location-based by
means of a mapping

qc : RM 7→ RN with qc ≡ qc(xdes), (2.7)

that maps desired task space positions x to a corresponding preferred joint con-
figuration qc.

This is advantageous also in terms of efficiency. The idea of selecting a single,
fixed solution to the inverse kinematics problem rather than taking all solutions
into account before choosing the “optimal” one simplifies both the teaching proce-
dure, as only one solution needs to be shown, and the learning process, as learning
and encoding of multi-valued inverse function still is an ongoing research ques-
tion [77]. This is also the rational behind past and current work on efficient boot-
strapping of an inverse kinematics function for complex, e.g. high-dimensional [26]
or non-rigid [44] robot structures. Another prerequisite for an efficient teaching
procedure is to avoid exhaustive sampling of the entire workspace or along con-
straints therein. For this purpose, the interaction is structured such that the
human tutor needs to provide data only in few relevant areas of the workspace.
The recorded data can be regarded as key-postures in the robot’s workspace that
need to be generalized over the entire workspace similar to the concept of key-
frames that are used to encode trajectories [60]. Then, proper machine learning
approaches are required in order to learn and generalize a global redundancy res-
olution function qc(·) from only these few demonstrations D = (xl,ql)l=1,...,L.
The introduction, analysis and discussion of such approaches is the main goal of
Chap. 3. Subsequently, the learned redundancy resolution can be embedded into
the robot’s control architecture using hierarchical controllers as discussed in the
following and sketched in Fig. 2.6.

The Non-Convex-Solution-Sets Problem

Learning redundancy resolutions from the provided demonstration data D from
a machine learning view-point is loosely connected to learning an inverse model
from which a mathematical problem arises. Given a redundant and non-linear
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Fig. 2.4: Proposed interaction controller for compliant recording of training data
D in the CONFIGURATION phase. Given a desired fixed posture qfixed the
controller πrec allows physical deflection of the robot’s end-effector by means of
the forces fint while trying to keep the robot configuration as close as possible to
qfixed.

forward model of a robot manipulator as considered in this thesis, the inverse
kinematics problem exhibits multiple, non-linear solution sets [77, 78]. This pro-
hibits learning from arbitrary data D = (xl,ql)l=1,...,L that include demonstrations
xdes = Kfwd(qi) = Kfwd(qj) with qi 6= qj as averaging these examples can lead to
undesired actions q̂ with Kfwd(q̂) 6= xdes [79].

Different strategies have been developed to circumvent this issue. Typical ap-
proaches recover invertibility of the problem by strong biases of the inverse model
or incorporating temporal context [77]. Another approach is to restrict inverse
learning to data incorporating only a single solution. In [78] a bootstrapping
paradigm is developed that selects data to be incorporated into the training set
based on a reasonable weighting scheme accounting for efficiency and intention
direction. In [26] the authors transform the problem to a convex one in the tem-
poral domain by considering the inverse problem only locally in the vicinity of a
particular q.

The method to solve this issue proposed in this thesis is motivated by the
latter two approaches. By a structured user interaction and dedicated interaction
controller shown in Fig. 2.4 the tutor is forced to record training data (xl,ql)l=1,...,L

only locally around a desired, fixed joint configuration qfixed. The interaction
model to achieve this goal is described in the following.

Interaction Model

The interaction model designed for the CONFIGURATION stage consists of the
two-staged interaction workflow as shown in Fig. 2.5, the respective interaction
controllers gravity compensation πq and compliant recording πrec as shown in
Fig. 2.2(a) and Fig. 2.4, respectively, as well as interaction triggers on affected

and on converged to switch between the two sub-stages APPROACHING and
RECORDING .

First, the robot is switched to gravity compensation πq, triggered by the tutor
through touching the robot and thus applying external forces to it (on affected).
This mode enables the tutor during the APPROACHING phase to move all joints
easily while maneuvering the robot to a desired training area according to con-
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Fig. 2.5: Proposed interaction workflow for kinesthetic teaching of redundancy
resolutions during CONFIGURATION . Transitions between the individual sub-
stages are realized based on the triggers on affected and on converged.

straints in the environment, e.g. to avoid collisions with fixed physical obstacles by
selecting a certain elbow configuration. Second, when the system recognizes that
the robot is no longer moved by the user for a short period of time and thus has

reached its desired joint configuration q
(k)
fixed, it is switched to the compliant record-

ing controller πrec (on converged). Third, in order to start the actual RECORD-
ING the user again applies external forces to physically deflect the robot from qfixed

(on affected) and record training data D(k) = (x
(k)
l ,q

(k)
l )l=1,...,L(k) . Last, once

released for a short period of time, the system stops recording (on converged).
As for the feedback about the current system state, the transitions based on the
interaction trigger on affected can be naturally perceived by the tutor through
the physical interaction. In contrast, transitions based on on converged cannot
be felt through touch as the user holds the robot in a still position or even releases
it. Therefore, these are acknowledged by the robot by means of a short acoustic
signal to provide an alternate minimal feedback. The described procedure can be
repeated for as many training areas K the human tutor finds relevant. At the end
of the CONFIGURATION stage the data {D(k)}k=1,...,K is passed to a machine
learning algorithm according to Chap. 3 for data-driven learning of the taught
constraints resulting in the learned redundancy resolutions qc(·) generalized over
the entire workspace.

2.3.2 Hierarchical Control

In order to realize the proposed approach, a control concept is required for the
PROGRAMMING and EXECUTION stages that is able to fuse taught redun-
dancy resolution qc(·) and desired task space trajectories. In this thesis, I follow
the idea of hierarchical control concepts that are regarded as crucial to flexibly
compose complex motions from individual control aspects [80], e.g. to synthesize
motions of humanoid robots [81]. The particular solution used in this thesis is
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Fig. 2.6: Hierarchical control concept utilized in this thesis. The user-taught
environmental constraints are embedded in the control architecture in form of a
learned function qc(·) that maps task space positions xdes to constrains qc in joint
space. A null-space projection controller then fuses desired task space motions xdes

with desired redundancy resolution qc to a qcmd = q + q̇ according to Eq. (2.11).

the control basis framework (CBF) of Grupen et al. [82, 83] that provides online-
capable methods to combine planning and closed-loop feedback controllers. It real-
izes multi-objective control by combining control primitives in a prioritized manner
by projecting lower-prioritized actions in the null-space of the higher-prioritized
ones.

Throughout this thesis, the desired task space motion is regarded as prioritized
over the taught redundancy constraints for two reasons. First, in the context of
industrial robotics it is regarded as the main task that the robot should perform
as accurate as possible - independent of the taught environmental constraints or
user preferences. This is of particular interest during the PROGRAMMING phase,
where the user interacts with the robot’s end-effector in task space. Requesting a
desired end-effector motion which is not accurately executed by the utilized con-
troller might result in jerky motions that disturb a natural interaction experience.
Second, from a practical viewpoint the to-be-executed task space trajectories are
expected to not contradict with the taught constraints as the former are defined
by kinesthetic teaching while the latter already are embedded in the control archi-
tecture.

Hence, the proposed controller relies on the null-space projection method in
Eq. (2.6). The primitive control aspects utilized in this thesis are simple square
potentials ∇φ with

φx(x) = κx(xdes − x)T(xdes − x), (2.8)

φq(q) = κq(qc − q)T(qc − q), (2.9)

that allow quadratic tracking of the desired task space position xdes and the user
taught redundancy resolution qc ≡ qc(xdes), respectively [83]. The resulting con-
trol law can be written as

q̇ = J†∇φx +
(
I− J†J

)
∇φq (2.10)

= κxJ
†(xdes − x) + κq

(
I− J†J

)
(qc(xdes)− q), (2.11)
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Fig. 2.7: Proposed assisted gravity compensation controller for the PROGRAM-
MING stage following the demonstration-in-task-space strategy as discussed in
Sect. 2.2.2. Utilizing the low-level controller πx it allows free interaction with the
robot’s end-effector while controlling the redundancy resolution according to the
learned function qc(·).

where κx > 0 and κq > 0 are the coefficients of the respective potentials. The
desired joint space motion is then obtained by integrating the calculated q̇ over
time. This embeds the learned redundancy resolution into the control architecture
as sketched in Fig. 2.6 allowing arbitrary task space movements while respecting
the taught null-space constraints and an assisted interaction controller as intro-
duced in the following.

2.3.3 Assisted Programming in Task Space

The idea of the PROGRAMMING phase is to provide assistance to the teacher dur-
ing the kinesthetic demonstration of the task. Utilizing the previously learned re-
dundancy resolution qc(·) embedded into the hierarchical control concept described
above, the human-robot interaction can be simplified following the demonstration-
in-task-space paradigm as discussed in Sect. 2.2.2. Exploiting the robot’s com-
pliance features by means of the interaction forces and the low-level controller
πx, the user generates a desired change in the position of the end-effector. The
redundancy is resolved online during that interaction using the hierarchical con-
troller and the embedded mapping qc = qc(·) as shown in Fig. 2.7. This allows
free movements in the task-space while simultaneously controlling the joint-space
according to the constrained environment. During the kinesthetic teaching of the
actual task, the user can concentrate on providing proper, trajectory-based task
space demonstrations because the robot assists in resolving the redundancy.

Interaction Model

An exemplary interaction model for the PROGRAMMING phase to test the de-
rived concepts is implemented as shown in Fig. 2.8. Like the preceding stage
it consists of two sub-stages APPROACHING and TEACH-IN that are engaged
and altered by the user using the triggers on affected and on converged but with
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Fig. 2.8: Proposed interaction workflow for assisted PROGRAMMING using the
trained neural network embedded into the hierarchical controller. Transition be-
tween the individual sub-stages APPROACHING and TEACH-IN is again realized
based on the triggers on affected and on converged.

the difference that both sub-stages utilize the derived assisted gravity compensation
sketched in Fig. 2.7.

Touching the robot (on affected) triggers the system to switch to APPROACH-
ING , during which the user can guide the robot to a desired starting position
xstart. Once this position is reached by halting the robot for a short period of time
(on converged), the tutor can enter the TEACH-IN (on affected) and start
recording a task space trajectory x(t), t = 1, . . . , T that reflects desired temporal
and positional aspects of the task the robot should perform. Recording is stopped
by using the trigger on converged once more. Again, the transitions based on
on converged are acknowledged by the system by means of a short acoustic sig-
nal. The described procedure can be repeated for as many demonstrations as
required. The recorded data can then be employed for arbitrary state-of-the-art
policy learning or reinforcement learning approach [10, 84, 85, 86, 87] to learn and
improve on the specific task.

2.3.4 Implementation

In order to test and evaluate the proposed approach all the described concepts
above are implemented and tested throughout this thesis by means of the robotic
system prototype FlexIRob [30] which is based on the KUKA Lightweight Robot IV
shown in Fig. 1.1. The LWR IV is a redundant manipulator with seven degrees
of freedom and an impedance-based control scheme [25]. The latter enables active
compliance of the manipulator as basis for the proposed interaction controllers
utilized for the desired physical human-robot interaction. Besides entering and
leaving the CONFIGURATION and PROGRAMMING phases the entire work-
flow is based on the physical interaction triggers on affected and on converged

which are realized by measuring externally applied torques and the rate of mo-
tion over time, respectively. The mentioned exceptions are start configuration,
finished configuration, start programming, finished programming and are
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realized with a simple graphical user interface. Despite the haptic and acoustic
feedback about the current system state, a visualization displays robot, recorded
training data and the current state.

In order to present the analysis and evaluation of the derived interaction con-
cepts in a coherent way both from the machine learning viewpoint and the human
perspective, their implementations are put to the respective following chapters.
As efficiency of the presented teaching procedure plays a central role, Chap. 3
presents, discusses and evaluates proper neural-network-based learning algorithms
with respect to their feasibility regarding the recorded training data and general-
ization abilities. In order to shed light on the teaching experience and success from
the tutoring perspective, the CONFIGURATION and PROGRAMMING stages
are evaluated in dedicated chapters 4 and 5, respectively, where also the implemen-
tation of the proposed controllers is briefly shown. A detailed description of the
FlexIRob system setup is given in Chap. A including the hardware setup, the used
middle-ware and employed software abstractions for learning-from-demonstration
scenarios.

2.4 Discussion and Related Work

This chapter proposed an incremental procedure to reduce the complexity of kines-
thetic teaching of redundant robots. It relies on the idea of splitting the entire
teaching procedure into teaching constraints for the manipulator’s null-space and
a dedicated teaching procedure of the task. This separation of concerns regard-
ing task and null-space motion is not new and was proposed to be utilized in
physical human-robot interaction since the emergence of dexterous and compliant
robots [88, 89]. However, on the one hand, learning and generalization of mo-
tions was not regarded in that work. On the other hand, those early approaches
neglected the human perspective concerning efficiency and intuitivity of pHRI.

The approach presented in this chapter aims at systematically reducing the
teaching complexity for the user with an incremental approach allowing to sep-
arately teach task and environmental constraints. Such incremental approaches
have been studied also in other work either to simplify the teaching procedure or
to incrementally refine motions online.

In [90] the authors propose an interesting incremental design for simplifying
learning by demonstration on a humanoid robot. It relies on a first stage, where
observational learning or imitation learning results in a first hypothesis of a motion,
and a second stage, during which the learned motion is refined using kinesthetic
teaching. Hence, the process is simplified for the teacher by using its own embod-
iment in the first stage neglecting complex physical guidance of the robot. While
this approach has been shown to work on a high-dimensional humanoid robot,
additional technical means are required to observe the human’s motion, and a
mapping is needed to solve the correspondence problem as briefly discussed in
Sect. 2.2.
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An alternative scheme [91] to allow user-defined redundancy resolution real-
izes bio-mimetic models using Bayesian modeling techniques to build an inverse
kinematics solver based on null-space projections preferring human-like joint con-
figurations for redundancy resolution of humanoid robot arms. While this idea is
similar to the presented concept of learning redundancy resolutions, it still relies on
observational imitation learning which is not feasible in the context of this thesis.

Another interesting approach contributing to the field of incremental robot
programming in physical interaction is introduced in [64]. Here, teaching of force
and positional skills is separated into two dedicated demonstration phases. First,
only the positional part of the skill is taught via kinesthetic teaching on a 7-DoF
manipulator. Second, this skill is augmented with force terms being taught on
a separate input device while already executing the positional skill on the robot.
While that work is conceptually very similar to the approach in this thesis, it looks
differently on the advantages and problems of redundancy. The authors explicitly
separate kinesthetic teaching for the task from the advantage of exploiting redun-
dancy for task execution only: “This advantage does not relate to or affect the
teaching, but matters only during the reproduction of the task.” As discussed in
Sect. 1.2 and demonstrated in Sect. 1.2.1 this does not hold for teaching in confined
spaces.

The work in [92] approaches the complexity of teaching by incrementally refin-
ing an initially taught motion online by means of physical interaction. Therefore,
an interaction model is derived that based on the interaction forces dynamically
changes task priorities enabling users to correct robot motions in end-effector space
or null-space during execution. However, the initial motion demonstration is still
trajectory-based using the demonstration-in-configuration strategy discussed in
Sect. 2.2.1 and therefore does not help to reduce the complexity of kinesthetic
teaching in confined spaces.

Other work addresses the complexity of kinesthetic teaching by a key-frame-
based approach such as provided by the commercially available KUKA Lightweight
Robot IV [8] and a similar approach on the humanoid robot Simon [15]. Using the
demonstration-in-configuration-space strategy they allow to configure constraints
for movement generation and program tasks simultaneously but in a simplified
way removing the complexity of trajectory-based teaching methods. While they
have shown to improve the interaction experience [15], the implicit encoding of the
redundancy resolution has to be taught repetitively in every demonstration as it
is not separated from the task.

In contrast, the approach presented in this chapter allows to incrementally
define null-space constraints for the robot which then can be reused for different
tasks. As I will show in the following the entire teaching procedure requires only
a few minutes even for non-experts, and the separation of task and environmental
constraints allows to re-program only either of both if demanded. The interaction
is designed to provide as natural interaction interfaces as possible mostly relying
on haptic and acoustic feedback about the current system state.
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Chapter 3

Learning, Encoding and
Generalizing Redundancy

Resolutions

A central idea of the proposed approach to allow intuitive and efficient teaching
of redundant robots is to enable users to provide demonstrations of the perceived
environmental constraints, rather than explicitly modeling or programming them.
While the user’s perspective during that CONFIGURATION phase is investigated
in Chap. 4, the focus of this chapter lies on the learning point of view. With the
interaction model presented in Sect. 2.3 several challenges are imposed on the
learning system. Demonstration data is provided in only few training areas of the
robot’s workspace to reduce teaching time and avoid exhaustive sampling. These
areas might be spread far apart or close together depending on the environmental
constraints and user preferences. In addition, training data within these areas
might vary structurally from user to user, e.g. in exploration volume and amount
of samples. Hence, an important aspect in this context is the ability to generalize
the constraints conveyed in the data to unknown parts of the workspace such as
between training areas and beyond. Hence, the goal of this chapter is to analyze
learning approaches with different generalization abilities according to these needs
to answer the question, how machine learning can be utilized to efficiently and
robustly learn, encode and generalize the environmental constraints from the user
demonstrations. The hypothesis is that

machine learning approaches based on neural networks are a feasible
tool to efficiently learn and generalize environmental constraints from
only few demonstrations.

In order proof this hypothesis, in the following neural network based approaches
are introduced and discussed in Sect. 3.2. As the structured user interaction offers
prior knowledge about the to be learned model, an adopted version of the local
linear map (LLM) is proposed in Sect. 3.2.2. The considered learning algorithms
then are evaluated thoroughly with respect to their generalization capabilities in
Sect. 3.3. A final discussion of the presented results then closes this chapter. We
begin these considerations with a brief description of the implementation of the
interaction model from the machine learning view-point.

27
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3.1 Interaction Model

Implementing the interaction model of the CONFIGURATION stage as described
in Sect. 2.3.1 from the machine learning viewpoint relates to formalizing the learn-
ing problem and embedding the learned function into the hierarchical controller.

The recorded demonstration data D gathered through the human-robot inter-
action consists of the task space positions x ∈ RM and corresponding joint con-
figurations q ∈ RN of the robot. The structure of the CONFIGURATION stage
enables the tutor to demonstrate redundancy resolutions in several k = 1, . . . ,K

areas of the workspace each with L(k) data pairs (x
(k)
l ,q

(k)
l )l=1,...,L(k) . Hence,

D = {D(k)}k=1,...,K = (x
(k)
l ,q

(k)
l )k=1,...,K

l=1,...,L(k) (3.1)

or, if the distinction between different training areas is not important,

D = (xl,ql)l=1,...,L, (3.2)

where L then refers to the total number of training samples in all recorded training
areas.

As stated and motivated in Sect. 2.3.1, redundancy resolution in this thesis is
encoded location-based, hence as a mapping qc : RM 7→ RN with qc ≡ qc(xdes)
providing preferred joint configurations qc for given task space position xdes. In
order to simplify the notation in the following and emphasize the utilized learn-
ing algorithms as parameterized input-output mappings, I change the notation
throughout this chapter: inputs (task space position) will remain denoted by x
but outputs (joint configurations) will be denoted as y. With this notation the
learning problem refers to the question how to infer a function ŷ(·) from the pro-
vided training data as an approximation of y(·) which can be used to predict
outputs y, i.e. valid joint angles, for new inputs x, i.e. task space positions. As
will be discussed in Sect. 3.2, artificial neural networks ŷ(·) ≡ ŷ(·, ω) are used as
parameterized models in this thesis where ω refers to the set of adjustable param-
eters of a particular class of neural networks characterized by learning algorithm
and architecture.

The learning problem can be formalized as minimizing the mean squared error

E(ω) =
1

Ltr

Ltr∑
l=1

‖ŷ(xl, ω)− y(xl)‖2 =
1

Ltr

Ltr∑
l=1

‖ŷ(xl, ω)− yl‖2 (3.3)

between a parameterized model ŷ(·, ω) and the unknown function y(·). The latter
is accessible and evaluable only by means of the training data (xl,yl), l = 1, . . . , Ltr

which are gathered through the structured human-robot interaction. Minimization
is done with respect to the parameters ω of the model. Learning is organized in
epochs, as one-shot batch learning, or a mixture of both depending on the specific
learning algorithm used.
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Fig. 3.1: Implementation of the hierarchical control concept with the learned neural
network embedded into the control architecture.

Once suitable parameters ω have been found, the neural network can be em-
bedded in the proposed hierarchical control structure as sketched in Fig. 3.1 ex-
emplarily with an extreme learning machine (ELM, cf. Sect. 3.2.1). The robot
platform used for evaluation in this thesis is the KUKA Lightweight Robot IV [5]
integrated into our system prototype FlexIRob [30]. For system integration rea-
sons (avoid control mode switching on the low-level controller) we utilize the joint
impedance controller [25] provided by the robot. The hierarchical controller is
realized as a closed-loop controller, incorporating feedback about the current joint
position qfdb. Embedded into this control architecture, the learned redundancy
resolution allows to execute arbitrary task space movements while simultaneously
complying to the user-taught constraints.

3.2 Learning Redundancy Resolutions with Neural Net-
works

Learning redundancy resolutions from demonstrations is inspired by research on
inverse kinematics learning of humanoid robots. Due to the high number of DoFs
of such robots, research in this direction typically needs to tackle the problems of
redundancy resolution and computational efficiency. In [26] the authors use a local
learning approach called Locally Weighted Projection Regression (LWPR), which
approximates a global, non-linear function by means of piecewise linear models,
and which has been used on a wide variety of learning tasks such as learning in-
verse dynamics of robot manipulators [93] or generating movement primitives for a
soccer-playing robot dog [94]. From a neural learning perspective, this algorithm
can be seen as an abstraction of local linear maps (LLM) [95] and Kohonen’s
self-organizing maps [96] where individual neurons are responsible for only a local
subset of the network’s input space. Although the LLM approach was also suc-
cessfully utilized in [97] for bootstrapping inverse kinematics of a high-DoF robot
arm, the authors in [27] argue that “[b]y definition, these schemes are local and can
not extrapolate to untrained regions”. In contrast, that work proposes a global
learning scheme employing a fully recurrent neural network based on the idea
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of reservoir computing [98, 99] constituting a clever combination of random pro-
jections in high-dimensional, spatial-temporal representations and efficient, linear
read-out learning. By this means the authors could demonstrate that learning of
whole body control [27] and pose-constraint movements [100] of humanoid robots
is feasible with high accuracy and generalizes even to completely untrained inputs.

However, the domain of this theses strongly differs from the experiments re-
ported in the aforementioned contributions. Here, we deal with learning redun-
dancy resolutions and not specifically inverse kinematics. Hence, high accuracy of
the learned inverse kinematics mapping is not mandatory and is not even feasible
in this context. Per design, the proposed, intuitive human-robot interaction needs
to be efficient and can not be exhaustive like e.g. grid-based sampling. The user
typically visits only few relevant parts of the entire task space, but does not even
try to sample all regions systematically. Hence, the learner should rather general-
ize from few demonstrations to the entire obstructed workspace. This is different
to the work mentioned above where either a “motor babbling” approach [26] gen-
erates enough training data, or generalization is tested only in small, obstacle-free
regions in front of the upper part of the humanoid body [27].

Therefore, both learning paradigms (local vs. global) are analyzed in several
experiments. These experiments will investigate the generalization abilities of the
approaches concerning interpolation and extrapolation as well as how they perform
with inconsistent and very few training data.

3.2.1 Global Learning with Random Projections

In the last decade machine learning techniques based on random projections have
been proposed and have attracted a lot of attention. Reasons for that were lim-
itations of the present state-of-the-art methods in learning with neural networks.
Those methods such as the well-established multi-layer-perceptron (MLP) [101]
typically rely on building a stack of multiple, consecutive, internal representations
and the application of gradient descent allowing to adapt all parameters of the
network according to a given supervised error signal. However, they are subject
to fundamental computational limitations. Gradient descent and tedious error-
backpropagation through multiple hidden layers suffer from high computational
complexity, vanishing gradients and the problem of getting stuck in local optima
or plateaus of the given error function [101].

In contrast, machine learning with random projections is typically based on
a single layer of fixed, randomly generated features, i.e these features are not
adapted during learning. As opposed to random projections for dimensionality
reduction, which have been considered much earlier [102, 103], it is characteristic
for such new approaches to use high-dimensional projections. Learning in these
approaches is restricted to a linear read-out of the hidden representations and
is typically solved with regression methods. This procedure is easy-to-use and
computationally highly efficient, allowing for very efficient processing of large and
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Fig. 3.2: Schematic view on machine learning with random projections. By means
of a fixed, random feature generator the input x is transformed into a high-
dimensional hidden-state representation which then is read-out linearly with a
projection matrix Wout. Supervised learning affects only the parameters Wout.

high-dimensional data sets [104]. Two main principles have been developed in this
context: extreme learning machines (ELMs) [105] and the reservoir computing
(RC) paradigm [106] such as the backpropagation-decorrelation model [98] briefly
described below. The main difference between both frameworks lies in the recur-
rence of the underlying neural network. Whereas reservoir networks are recurrent
and comprise a so-called “reservoir” of randomly interconnected neurons, ELMs
are single hidden layer feed-forward networks. Still, both approaches randomly
initialize the free parameters of the feature generating part of their processing
model and restrict learning to linear methods of the output function as sketched
in Fig. 3.2. In [107, 108] we investigated the relations between recurrent networks
and their corresponding feed-forward “alter egos”. It is worth mentioning, that -
despite often stated differently in the literature - model selection is also an issue for
this approaches, i.e. generalization capabilities differ with varying hyper parame-
ters such as the number of hidden units. However, we also found synergies between
the recurrence in reservoir networks and the IP-learning rule as introduced in the
following to remedy this situation.

Backpropagation-Decorrelation (BPDC)

Inspired by the work [27] of Rolf et al., a first implementation of the approach
proposed in this thesis was done in [109] using a backpropagation-decorrelation
network (BPDC) [98]. It consists of a recurrent neural network (RNN) architec-
ture (cf. Fig. 3.3) combined with efficient supervised read-out learning and local
unsupervised adaption of the neurons’ excitability. Besides the input and output
layer x ∈ RM , y ∈ RN , the network architecture comprises a fixed hidden recur-
rent neural network layer h ∈ RR, the reservoir. In order to derive the network’s
update equations, the holistic network state at time step k is denoted by

z(k)=(x(k)T , h(k)T , y(k)T )T ,
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Fig. 3.3: The reservoir network architecture with respective input x, hidden h,
and output y layer. Learning affects only the output weights Wout.

and the matrix Wnet ∈ R(R+N)×(M+R+N) capturing all connection strength sub-
matrices between neurons in the RNN is defined by

Wnet =

(
Win Wrec Wfdb

0 Wout 0

)
.

The network’s dynamics are then governed by the following update equations

s(k+1) = (1−∆t) s(k) + ∆tWnetz(k) (3.4)

z(k) = f(s(k)), (3.5)

where for small ∆t continuous time dynamics are approximated, and ∆t = 1 results
in the standard discrete dynamics which is used in this thesis. The states z are
obtained by applying activation functions zi=fi(si) component-wise to the neural
activations si. For the reservoir neurons parametrized logistic activation functions
fi(x)=(1 + exp (−aix− bi))−1 are used while the output neurons have the identity
as activation function, i.e. are linear neurons. During the learning process, only the
output connections Wout ∈ RN×R projecting to the output neurons are trained by
error correction as illustrated in Fig. 3.3, i.e. the adjustable parameters according
to the supervised learning are ω = Wout for this approach. All other weights are
initialized randomly according to a uniform distribution with small weights and
remain fixed. Hence, the random-feature-generating part in this approach consists
of a combination of a random projection of the inputs to the hidden states via the
randomly initialized input matrix Win and the subsequent use of the non-linear
activation functions f .

Given the training data, supervised learning of the read-out weights Wout is
done by the backpropagation-decorrelation learning rule, an efficient supervised
online training scheme introduced in [98], which for this network configuration
simplifies to

∆wij(k) =
η

‖h(k−1)‖2
hj(k−1) (yi(k)− ŷi(k)), (3.6)
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where yi(k) is the desired target value of output neuron i at time step k. Addition-
ally to the supervised synaptic learning, an unsupervised learning method called
intrinsic plasticity (IP) is used. IP was first introduced in [110] in the context of
feed-forward networks. The biologically inspired learning rule changes the neu-
rons’ gains ai and biases bi of the logistic activation functions in order to optimize
information transmission within the network. That is, neurons should be active
only sparsely according to an approximately exponential distribution. In the fol-
lowing the online gradient rule with learning rate ηIP and desired mean activity µ
is shown:

∆bi(k) = ηIP

(
1−

(
2 +

1

µ

)
hi(k) +

1

µ
hi(k)2

)
, (3.7)

∆ai(k) = ηIP
1

ai(k)
+ si(k)∆bi(k). (3.8)

It is worth mentioning, that although this self-adaptation rule adapts the random-
feature generating part of the network, this learning process is unsupervised, i.e.
depends only on the network’s inputs and not on the supervised error signal.
Therefore, no tedious error-backpropagation is involved here. It is local in time
and space, thus efficient to compute, and therefore does not contradict with the
argumentation about random projection based approaches in the last section. In
[111] IP has been applied to reservoir networks and was shown to tune the reser-
voir’s neurons to an optimized working regime while improving robustness of the
networks’ performance. In addition, the work in [107] investigates the role of IP in
static reservoir networks and reveals synergy effects with the recurrence of these
networks improving the robustness of model selection parameters.

Learning with the BPDC network starts after all training data has been recorded
by the human tutor during the CONFIGURATION stage and is organized in
epochs. Each epoch constitutes a sweep through the training data set while adapt-
ing the network according to Eq. (3.6) and Eq. (3.7) and a subsequent sweep for
online evaluation of that epoch. The learning stage stops if a certain stopping cri-
terion such as a maximum number of epochs NE or a reasonable measured output
error E(ω) is achieved.

Results for learning of redundancy resolutions with backpropagation-decorre-
lation networks will be presented in Sect. 3.3.1.

Extreme Learning Machine (ELM)

In 2004, Huang et al. introduced the extreme learning machine (ELM) [105, 112].
As depicted in Fig. 3.4, it consists of a three-layered feed-forward neural network
with a high-dimensional hidden layer providing a random projection of the input
through fixed randomly initialized input weights Win. Learning is reduced to com-
puting a simple generalized inverse by linear regression. ELMs thus train much
faster than traditionally trained backpropagation networks, and even performed
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Fig. 3.4: The ELM learning scheme consisting of a single hidden layered feed-
forward neural network with. Again learning affects only the output weights Wout.

better on most of the tasks reported in [105]. It has also been shown in [105]
that a randomly created ELM with hidden layer size R is able to perform any
mapping consisting of R observations. ELMs are thus in theory universal func-
tion approximators, like e.g. MLPs, if permitting an arbitrary number of training
samples and any hidden-layer size. The activations of the ELM input, hidden and
output neurons are again denoted by x, h and y, respectively, and the connection
strengths are collected in the matrices Win and Wout denoting the input and read-
out weights. Like in the backpropagation-decorrelation approach, parameterized
activation functions fi(x) =(1 + exp (−aix− bi))−1 transform the synaptic sum
of the hidden-layer neurons component-wise to a high-dimensional hidden state
representation

h(k) = f(Winx(k)), (3.9)

and the network’s output is given by the linear read-out function

ŷ(k) = Wout h(k). (3.10)

Again, the input weights and the activation function parameters ai, bi are initialized
randomly, typically according to a uniform distribution, and stay fixed during
learning.

Given the set of training examples (x1,y1), . . . , (xLtr ,yLtr) the ELM is trained
by minimizing the mean squared error in Eq. (3.3) between the target outputs and
the actual network outputs by means of linear regression on the output weights, i.e.
as with the BPDC approach all learning parameters are ω = Wout. The network’s
states hl as well as the desired output targets yl are collected in a state matrix
H = (h1, . . . ,hLtr) and a target matrix Y = (y1, . . . ,yLtr) for all l = 1, . . . , Ltr,
respectively. The minimizer of Eq. (3.3) is the least squares solution

Wout = YH†, (3.11)

where H† is the pseudo-inverse of the matrix H. However, as with other neural
network approaches and as intensively discussed in [107] model selection is an
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issue also for ELMs. The networks tend to overfit the data, particularly if the task
does not comprise many training samples. In order to circumvent this issue, an
output regularization technique, which is based on Tikhonov regularization [113]
and well known under the terms ridge regression or weight decay, can be applied.
It introduces a regularization parameter ε in the error function

E(Wout) =
1

Ltr

Ltr∑
l=1

‖ŷ(xl,W
out)− yl‖2 + ε‖Wout‖2, (3.12)

which penalizes large weights Wout. The regularized minimizer then becomes

Wout = YHT
(
HHT + εI

)−1
, (3.13)

where I ∈ RR×R refers to the identity matrix. By this means, strong oscillations
of the network’s output function are avoided and the risk of over-fitting is reduced
[107]. As a side effect, this solution is also numerically more stable because of the
better conditioned matrix inverse. A suitable regularization parameter ε needs to
be chosen carefully since too strong regularization results in poor performance,
and on the other hand, a too small value of ε does not avoid over-fitting [107].
The influence of this parameter in the context of this thesis will be elaborated in
Sect. 3.3.3.

3.2.2 Local Learning with Local Linear Maps (LLM)

In contrast to global learning schemes such as the ELM or BPDC approach, when
learning motor-coordination with local linear maps [114], adapting to new training
samples x, y only has local influence on the to-be-learned function ŷ(·, ω). Locality
hereby refers to a distance metric dX(·, ·) in input space i.e. task space. Learning in
one area of the task space does not affect the learned mapping ŷ in the rest of the
workspace, which can be beneficial e.g. for re-learning the redundancy mapping in
one part of the workspace without changing the already learned mapping anywhere
else.

The LLM approach used in this thesis is motivated by the approach in [97] and
consists of a set of linear functions h(k)(x), which are centered around prototype
vectors c(k) in task space and active only in their close vicinity. This is achieved by
defining a distance parameter d and employing Gaussian responsibility functions
g(x) around their centers c(k). The output of the final function ŷ is calculated as
a linear combination of the local linear functions h(k) weighted by their respective
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responsibility and normalized with a soft-max normalization term n(x):

ŷ(x) =
1

n(x)

K∑
k=1

g

(
x− c(k)

d

)
h(k)

(
x− c(k)

d

)
(3.14)

n(x) =

K∑
k=1

g

(
x− c(k)

d

)
(3.15)

g(x) = e−‖x‖
2

(3.16)

h(k)(x) = W(k)x + b(k) (3.17)

The centers c(k), the number K of models and the distance parameter d are
hereby determined by the structured user interaction described in Sect. 3.1: In
contrast to [97] where d is fixed a priori and new models as well as their centers
c(k) are created online and automatically depending on the data distribution in
task space, in this thesis the models are created on demand by the user during
the interaction before the learning phase. Each time the human tutor guides the
robot to a new training area (APPROACHING) and starts recording training
data (RECORDING) with an initial position (xinit,yinit), a new model is created
at center c(K+1) = xinit and initialized with b(K+1) = yinit as well as W(K+1) =
0N×M . After all training data in all training areas has been recorded by the user,
a suitable distance parameter d is calculated from the centers c(1), . . . , c(K) by

d = max
i,j=1,...,K

{
dx(c(i), c(j)) | ∀k 6= i, j : (c(i) − c(k))T(c(j) − c(k)) ≥ 0

}
. (3.18)

As illustrated in Fig. 3.5, d refers to the diameter of the largest of all Thales circles
around two centers c(i), c(j) that do not comprise any other centers c(k). This
choice accurately relates d to the distribution of training areas in task space which
is unkown beforehand. A fixed, too small value of d is inappropriate when the
human tutor provides only few training areas which are far apart from each other
because it results in a winner-takes-all approach with probably abrupt changes
at the borders of the Voronoi regions. Contrarily, in the case of many training
areas, which are close to each other, a fixed, too high value of d deteriorates the
locality of the approach, since the influence of the local models h(k) is scaled by
the responsibility functions g(x) to a larger area of the workspace.

Hence, the free parameters left for supervised online learning of this model
are the weights and the bias of each linear model k, i.e. ω = {W(k),b(k)}k=1,...,K .
Learning is organised in epochs as discussed in Sect. 3.2.1, and the parameters
W(k) as well as b(k) are updated in each time step according to a gradient descent
approach on the quadratic error function E(ω):

∆W(k) = −η∂E(ω)

∂W(k)
and ∆b(k) = −η∂E(ω)

∂b(k)
(3.19)
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Fig. 3.5: Two-dimensional illustration of how the distance parameter d is obtained.
The Thales circles of (c(1), c(2)), (c(2), c(3)), (c(3), c(4)) and (c(4), c(5)) are the only
ones fulfilling the right-hand side of Eq. (3.18). The value of d is given as the
diameter of the largest among those.

3.3 Generalization Capabilities

In the following, I report several experiments that are conducted to assess the gen-
eralization abilities of the proposed learning approaches from the machine learning
point of view. An interesting issue, particularly with respect to the human-robot
interaction, is the number and quality of the provided training data. On the one
hand, the interaction should be as intuitive and efficient as possible. Explicit
requirements like a specific form, structure or number of training data are un-
desirable as well as exhaustive sampling of the robot’s workspace. On the other
hand, the provided training data should exhibit enough characteristics about the
user-defined null-space constraints to enable the learning approaches to infer a
generalized model of these. By design of the CONFIGURATION , the robot’s
workspace will be partitioned into areas where training data has been provided.
The generalization abilities - of the entire robotic system itself and of the different
learning approaches compared to each other - will be evaluated within the training
areas (reproduction), in between these areas (interpolation) and beyond (extrapo-
lation). For that purpose, the following generalization measurements will be used
throughout his section:

Task space accuracy Etask: To what extend is the task performance of the
whole system in Cartesian space affected by the null-space constraint taught
by the user? Given a set of points in task space x1, . . . ,xL being set as
targets and fed to the controller architecture described in Sect. 3.1 to be
realized by the robot as actual measurable end-effector positions x̂1, . . . , x̂L,
the task space accuracy can be measured as the mean Euclidean distance
‖ · ‖ between the corresponding points:

Etask(x1, . . . ,xL) =
1

L

L∑
l=1

‖xl − x̂l‖ (3.20)
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The hypothesis of this thesis is that - independent of the particular learning
algorithm - the task-space performance is not affected since the hierarchical
controller prioritizes the Cartesian task over the joint-space task.

Monitoring collisions Ecoll: This measurement is used to evaluate how well the
user-demonstrated null-space constraints are learned and generalized to un-
known areas of the workspace. A direct calculation of the “deviation from
trained user-constraints” in joint-space is not suitable because (a) the desired
constraints would have to be expressed formally in joint-space, (b) a corre-
sponding meaningful distance measurement would have to be defined, and
(c) ground truth data for that kind of evaluation is not available in untrained
areas. Instead, intending that the taught null-space constraints convey in-
formation about how to avoid the obstacles in the robot’s workspace, by
monitoring the number of collisions between the robot manipulator and its
environment during a desired end-effector trajectory a more tangible mea-
surement is used. Collisions are detected automatically by the simulator
described in Chap. A - either purely in simulation or while the actual robot
performs the desired motion. Hence, evaluations with this measurement
again are on the whole-system level.

3.3.1 Task Space Accuracy vs. Null-space Constraints

The first evaluation focuses on the generalization ability on the whole-system level
and was conducted in [109]. The adressed questions are: (i) Does the system
respect the taught null-space constraints and (ii) to what extend is the task per-
formance in Cartesian space affected by those constraints, i.e. what is the task
performance?

For the experiment, a various set of workspace configurations is defined as de-
picted in Fig. 3.6. Each of them comprises a left and a right training area (above the
blue boxes, respectively), which are placed at both ends of the robot’s evaluation
workspace. Hence, each scenario contains an untrained area in between (interpo-
lation area) where the system has to generalize the taught constraints to unseen
data points. Four different scenarios (A-D) are defined that comprise reasonable
obstacle setups that might occur in real world applications: In setup A, depicted
in Fig. 3.6(a), the robot has to reach over an obstacle in its entire workspace. In
setup B, cf. Fig. 3.6(b), the robot has to reach around an obstacle in the left
training area and in the rest of the workspace the elbow movement is constrained
in height. Setup C, cf. Fig. 3.6(c), constrains the height of the elbow movement
on the left side and forces an “elbow up” configuration on the right side to avoid
collisions with the wall. The robot has to perform a change of its elbow configu-
ration while moving through the interpolation area. Setup D, cf. Fig. 3.6(d), is
the most difficult of the four depicted due to its narrow obstacle setup. The robot
has to reach around obstacles in both training areas and has to move the elbow
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(a) Setup A (b) Setup B (c) Setup C (d) Setup D

Fig. 3.6: Different workspace configurations used for evaluation. During CONFIG-
URATION desired elbow configurations are taught to the robot through kines-
thetic teaching to avoid collisions with obstacles.

Tab. 3.1: Hyper-parameters for BPDC network construction and learning.

Reservoir Size 300

Connection sparseness init. Range

Input-Reservoir 0.2 0.1
Reservoir-Reservoir 0.02 0.02
Reservoir-Output 0.2 0.1

Learning η

IP 0.00015
BPDC 0.015

to a large extend from “elbow left” to “elbow right” configuration while moving
through the untrained interpolation area.

Teaching the null-space constraints for these setups is done as described in
Sect. 3.1 on the real robot system, while monitoring collisions in simulation: During
the CONFIGURATION stage each of the training areas is explored in a 3D helix-
like trajectory, that consists of 150 up to 300 points. The recorded training data
reflects the respective desired elbow configurations (e.g. “elbow down” or “elbow
left”) determined by the obstacles in the robot’s workspace. In particular, any
collisions during kinesthetic teaching in all our setups is avoided.

The neural network approach utilized in this experiment is the backpropaga-
tion-decorrelation approach. After recording, the data is used to train the BPDC
network as described in Sect. 3.2.1 with the parameters given in Table 3.1. Learning
is organized in epochs and conducted until the MSE of the network output drops
below a threshold of 0.2 but limited to a maximum number of NE = 1000 epochs.
The threshold was obtained manually from previous experiments and seems to con-
stitute a reasonable lower bound. The hyper-parameters of the BPDC approach
are based on a proposal by [27] and [100] for controlling a humanoid robot respect-
ing specific constraints. After learning, the network is embedded into the system’s
control architecture as described in Sect. 3.1.

For a systematic evaluation of the addressed questions (i) and (ii) the robot’s
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Fig. 3.7: Illustration of training data and evaluation trajectories of setup A in left
and right training area as well as interpolation area.

workspace is partitioned into three areas as illustrated in Fig. 3.7. The left and
right training areas are defined by axis-aligned bounding boxes around each of
the two training data trajectories. The interpolation area is defined by the area
between those boxes. In each of the setups (A-D), we generate straight 3D trajec-
tories between 100 random points, 25 per training area and 50 for the interpolation
area, and evaluate the task-space accuracy Etask as well as the number of collisions
Ecoll in the respective area. Note, that the evaluation is done on the real robot
with the above mentioned simulation visualizing the internal model of the robot
and checking for collisions with obstacles.

The results are summarized in Tab. 3.2. Concerning the task space accuracy, it
is worth mentioning that the average error Etask of the entire system is about 2 mm.
As hypothesized, these values are measured independent of the evaluated area and
even of the evaluated setup, and hence independently of the taught constraints.
The hybrid control scheme consisting of the learned mapping ŷ(·, ω) combined with
the analytical, hierarchical controller ensures a reasonable and reliable task-space
performance. Concerning the ability to learn the null-space resolution, the results
show that the taught elbow configurations are learned and securely retrievable
from the BPDC network. While performing robot movements in the training
areas no collisions were detected in all four evaluation setups A-D. Furthermore,
in the setups A, B and C the redundancy resolution, and hence the taught elbow
configurations, is generalized by the learned network also to the interpolation area
well enough, so that no collision was recorded either. The robot’s behavior in that
area is represented by the center robot arm in each of the setup visualizations in
the Fig. 3.6. Interestingly, in setup D the robot collided during 16 of the performed
50 trajectories in the interpolation area.

In order to discuss these results, we have to distinguish the task difficulties of
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Tab. 3.2: Experimental results of the evaluation of task space accuracy Etask and
number of collisions Ecoll in the obstacle setups A-D.

Setup Training Evaluation
task space error Etask [mm] collisions Ecoll

points epochs MSE left right interp. left right interp.
A 177 + 195 202 < 0.2 2.0± 0.6 1.6± 0.8 1.9± 0.5 0 0 0
B 250 + 232 237 < 0.2 1.8± 0.6 2.0± 0.7 1.9± 0.5 0 0 0
C 125 + 155 275 < 0.2 2.0± 0.6 1.6± 0.7 1.7± 0.6 0 0 0
D 159 + 163 1000 0.2017 1.9± 0.6 1.6± 0.7 1.6± 0.5 0 0 16

the designed workspace setups. The design of both setups A and B determines the
desired elbow configurations in left and right training area to be very similar, and
therefore generalization in between those areas is fairly easy. Setup C constitutes a
problem, where the robot has to switch between two different elbow configurations,
from “elbow down” to “elbow up” and the other way around while moving through
the untrained area. The results related to this setup greatly show the generalization
abilities of the learner embedded into the system’s control architecture. The BPDC
takes the “right guess” for a good, i.e. collision-free, redundancy resolution in
between the two training areas even though there was no data provided. In setup D,
the task difficulty is further increased due to stronger constraints induced by the
narrow obstacle setup. The robot has to change its elbow configuration from
“elbow left” and “elbow right” within the interpolation area. As a result, during 16
of the 50 performed trajectories collisions with the environment occurred. However,
it is worth mentioning that still the BPDC network takes the “right guess” for
resolving the manipulator’s redundancy as can be observed from the visualized
robot arm in the interpolation area of Fig. 3.6(d) but is only not very accurate in
generalizing them. We point out that the distance between the two training areas
is quite large with approx. 0.74 m and therefore expecting high accuracy in the
redundancy resolution according to this very narrow obstacle setup is unrealistic.
Learning in our approach is model-free and thus purely data-driven. Strong null-
space constraints with the need for high accuracy in a workspace area have to be
present in the training data. As a proof of concept to that argument we repeated
training and evaluation of setup D, but now using three training areas: a left, right
and an additional third one in the former interpolation area where the collisions
occurred. The results of this setup D∗ show that the BPDC network benefits from
the additional training area, as the number of collisions in the interpolation area
was reduced from formerly 16 to 3, still by teaching the constraints within less
than 5 minutes.

3.3.2 Number of Training Areas and the Reachable Workspace

The results presented above indicate that the selected redundancy resolution of the
system can be improved in terms of collision avoidance by providing more training
areas by the user. Naturally the question arises how the system’s generalization
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abilities develop with the number of training areas. It is one major goal of the
CONFIGURATION stage to enable the robot to move in the predefined, confined
workspace. The trained system shall reach at best all targets that are theoretically
accessible without colliding with the environment. How many training areas are
needed to enable the system to move collision-free in the workspace? In the follow-
ing an experiment is conducted to answer this question. For that purpose a more
valuable measurement is devised, namely the reachable workspace of the robot
as described in detail below. The following results have been published partly in
[115].

Two obstacle setups are used for this experiment which are similar to those in
the last section as shown in Fig. 3.8. Setup I consists of a prolate box measuring
0.2× 0.2× 0.8 m placed beside the robot arm and a board mounted in the height
of z = 0.55 m partly constraining the height of the workspace. Setup II consisting
of two boxes as the one in setup I which are placed side by side with the robot
arm defining a very narrow gap left for the robot to move. Given one of these
experimental setups, a human tutor conducts the kinesthetic teaching process ac-
cording to the CONFIGURATION stage as described in Sect. 3.1. He provides
training data in several areas of interest in the workspace. Again, after training
the recorded data is used for training the neural network to learn the redundancy
resolution. Here, the ELM approach is used as described in Sect. 3.2.1 with ε = 1,
which was found to work reasonably but will be evaluated more systematically
in Sect. 3.3.3. After learning, the evaluation phase starts for which the ELM is
integrated into the control system of the robot and resolves its redundancy with a
single unique solution, thereby implementing the inverse kinematic mapping from
3-D task-space to 7-D joint-space. For each obstacle setup (I or II), this process
is conducted in several trials, each trial with a different number of training areas.
For instance, Fig. 3.8 (left) shows setup I for which the teacher this time provided
training data in only a single area of the workspace, whereas Fig. 3.8 (right) shows
setup II for which data in 4 different training areas was recorded.

For an objective evaluation, we define a fixed set T ⊆ RM of target points in
task-space. This set is created by sampling a grid G = [−0.9; 0] × [−0.55; 0.55] ×
[0.05; 0.8] equidistantly and removing all targets outside the workspace W ⊆ RM
of the LWR IV, i.e. T = G ∩W . These points4, shown in Fig. 3.9 serve as basis
of the evaluation of the learned redundancy resolution. In order to account for
the obstacles in the setups I and II we need to remove all points from T that are
not reachable for the robot. This obviously includes all targets located within the
objects. For setup I this also includes points located above the board part of the
obstacle as these are not accessible for the robot due to joint limits. This way,
we create obstacle-dependent targets TI and TII for setup I and II, respectively.
The generalization ability of the system is analyzed on the basis of these points by
combining the measurements of task space accuracy Etask and collision monitoring

4 Note that, as illustrated in Fig. 3.9 the origin of the world coordinate system is the mounting
point of the robot’s root.
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Fig. 3.8: Experimental setups. Left: scenario
I with exemplary training data recorded in a
single training area. Right: setup II with exem-
plary data recorded in 4 different areas of the
workspace.

Fig. 3.9: Visualization of
the obstacle-independent de-
fined workspace T .

Ecoll. During the evaluation phase the robot is commanded to reach for each of
the targets with the learned ELM included in the inverse kinematics control of the
robot. The reachable workspace analysis now evaluates the number of goals that
were reached by the trained LWR IV with a precision of at least 0.01 m without
colliding with the environmental obstacles. For suitability reasons, the evaluation
phase is done in simulation only.

Tab. 3.3 shows the results of this analysis, displaying the number of training
areas the teacher provided during the kinesthetic teaching process, how much of
the defined reachable workspace TI or TII is already explored by that training data,
and how much of the defined reachable workspace TI or TII is reachable for the
trained robot system. As for setup I, it can be seen that already one training area
provided by the human tutor as in Fig. 3.8 (left) makes 51.3% of the targets TI

accessible for the robot although the training data itself covers only ca. 5% of that
space. In the left column of Fig. 3.10 the accessible workspace for that scenario is
visualized. In that trial, where the tutor provided two training areas, the resulting
workspace accessibility is not higher although more workspace is covered by the
training data. The reason for that is, that the two areas selected by the teacher do
not provide more implicit knowledge about the environmental scene than the single
area in the trial before. This could be due to an inappropriate selection of training
areas or simply that one or two training areas are not enough to cover more than
approx. 50% of the workspace in that environmental scene. Having trained the
system with data recorded in 4 selected areas enabled the robot to move accurately
and collision-free in almost 90% of the accessible workspace while the training data
covered only 23.7%. This result is also visualized in the center column of Fig. 3.10
showing that not only the free space in front of the robot is made accessible but
also many targets behind the box part of obstacle and below the board part where
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Tab. 3.3: Results of the reachable workspace analysis.

setup training training data reachable
setup training workspace reachable

areas exploration workspace

I

1 4.9 % 51.3 %
2 9.2 % 47.3 %
4 23.7 % 89.7 %
6 31 % 93 %
12 36.5 % 97.1%

II

1 7.1 % 51.6 %
2 9.7 % 64.8 %
4 19.1 % 73.5 %
6 31.6 % 80.8 %
21 56.5 % 94.1 %

the LWR IV has to reach around the box or entirely fold itself below the board,
respectively. This performance can be improved by providing training data in
more than just 4 areas. By training in 6 different areas covering only 31% of
the workspace the teacher enabled the robot to access 93% of the targets, and
providing data in 12 selected areas made more than 97% of the targets in setup I
reachable (see Fig. 3.10 right). The evaluation in setup II reveals a similar relation
between the number of provided training data, the explored workspace by the
training data and the resulting accessible workspace as indicated in Tab. 3.3 and
Fig. 3.11. Providing training data in only 1 area enables the system to access
more than 60% of the workspace. Even in this narrow scenario, 6 training areas
are enough to make more than 80% of the workspace accessibility for the robot.
Inaccessible were only those parts of the workspace where the manipulator has to
move around the box obstacles and reach behind them. In order to access also
this areas safely, more precise constraints need to be taught since all parts of the
robot are very close to the obstacle. The last evaluation of setup II shows that this
is possible by providing more training data (21 areas). As a result, the reachable
workspace can be almost entirely covered (> 94%).

The results of this experiment reveal the approach’s capability to infer a valid,
i.e. collision-free, redundancy resolution for a large part of the robot’s workspace
from only few training data. Hence, the taught null-space constraints are general-
ized well beyond the trained areas. In addition, the results reflect the scalability of
the approach. With more training data the user systematically and effectively en-
hances the reachability of the system but no exhaustive sampling of the workspace
is needed. However, even in the case that high accuracy is demanded for the
manipulator’s redundancy resolution to maximize the reachability, the results for
12 and 21 training areas in setup I and II, respectively, show that the proposed
kinesthetic approach enables users to teach the respective constraints. Then, all
relevant and sufficient areas of the workspace need to be seen for training to allow
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Fig. 3.10: The reachable workspace
(green dots) after kinesthetic teaching
of obstacle setup I. From left to right,
the tutor provided training data only in
1, in 4 or in 12 areas of the workspace,
respectively.

Fig. 3.11: The reachable workspace
(green dots) after kinesthetic teaching
of obstacle setup II. From left to right,
the tutor provided training data only in
1, in 4 or in 21 areas of the workspace,
respectively.

for generalization of the learned redundancy resolution to the full workspace. Still,
it is worth noting that teaching this high amount of training data is manageable
in less than 10 minutes.

3.3.3 Model Selection and the Number of Training Samples

As mentioned above and intensively discussed in [107, 108] machine learning al-
gorithms suffer from the problem of model selection. This refers to the fact, that
each algorithm relies on a set of hyper parameters that strongly influence the per-
formance of the learned mapping. Qualitatively different results can be expected
for different choices of these parameters, in particular with respect to the amount
of training samples available.

Consider for instance the ELM approach. Here these parameters refer to the
random distributions chosen for initializing the activation function parameters
ai, bi and the input weights Win, the dimensionality R of the hidden layer h, as well
as the regularization parameter ε. All have to be chosen properly to obtain good
learning results. In [107] we analyzed this problem for the ELM approach and
showed, that a key factor to effectively tailor the model complexity of the learned
mapping is the regularization parameter ε which can prevent over-fitting of the
training data but most be chosen carefully to avoid limiting the expressiveness of
the mapping to much.

As for the proposed, specifically tailored variant of the LLM approach, only
the learning rate η remains an hyper parameter to be tuned. The number K of
models and the position c(k) of the corresponding centers are determined by the
user-defined number K of training areas and the initially chosen Cartesian position

x
(k)
fixed of the robot during APPROACHING .
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In the following both approaches are compared to each other with respect to
these parameters (ε for ELM, η for LLM) and a varying number of training samples
per area. This experiment is designed to answer the following questions:

1. To what extend do the utilized approaches depend on the selection of their
hyper parameter, in particular with respect to a varying number of training
samples?

2. How well do both algorithms generalize the demonstrated constraints be-
tween training areas and even beyond, particularly compared to each other?

Note, that the BPDC algorithm is not longer considered in this section, since
recurrent neural networks are best suited for temporal tasks such as time series
prediction, not for static mappings such as considered in this thesis. The imple-
mentation and experiment presented in Sect. 3.3.1 therefore served as a proof-of-
concept.

Experimental Setup

In order to answer the posed questions, both approaches are evaluated in two
different setups, one with only very few training data and the other with more
exhaustive sampling of the workspace. For each setup, a target trajectory was
recorded on the real robot that serves as the basis for the evaluation. The first setup
consists in the obstacle scenario I, which is the same scenario already investigated
in the previous sections, with training data collected in only four different areas as
shown in Fig. 3.12(a) together with the target trajectory. In contrast, the second
scenario - obstacle setup II - represents a situation where the tutor demonstrated
25 training areas, see Fig. 3.12(b). Although the latter scenario typically relates
to undesirable teaching effort, it is included in the analysis in order to investigate
the generalization capabilities of both learning approaches also in such situations.

For both algorithms training in this scenario is conducted with varying number
of training samples per training area, and with varying value of their respective
learning parameter. The ELM approach is evaluated with ε = 1, ε = 0.01 and
ε = 0.0001, and the LLM algorithm with η = 1, η = 0.1 and η = 0.01. The
amount of training data per area is reduced successively by means of sub-sampling
the originally recorded training data with a sampling rate of s = 1, s = 5 and
s = 80. By this means, the effective number of training samples is reduced from
all data over an intermediate amount of samples to only very few training samples
(< 5) per training area (cf. Tab. 3.4). Hence, for each setup and each learning al-
gorithm we obtain an 3×3 experiment design. In order to account for the random
initialization of the ELM networks and the random presentation of the training
samples during the learning epochs for the LLM approach, each evaluation is aver-
aged over 10 network initializations. Throughout this analysis, the measurements
Etask and Ecoll will be used to investigate the generalization capabilities of the
trained networks.
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(a) Setup I with training data in four areas and target trajectory.

(b) Setup II with training data in 25 areas and target trajectory.

Fig. 3.12: Experimental setups used in this section with recorded training data
(left) and the target trajectory that is used for evaluation (right).
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setup I (4 areas) setup II (25 areas)
sub-sampling s 1 5 80 1 5 80

avg. #data per area 226.5 45.5 3.2 210.3 42.5 3.1

ELM
ε = 1 7.0 0 2.0 0 2.5 2.5
ε = 0.01 4.9 4.5 8.7 0 0 0
ε = 0.0001 4.6 4.8 15.2 3.3 0 6

LLM
η = 1 0 0 0 4.6 4.7 2.6
η = 0.1 0 0 0 0 0 0
η = 0.01 0 0 0 1.7 1.6 1.6

Tab. 3.4: Evaluated number of collisions Ecoll, each value averaged over 10 different
network initializations.

Results Concerning Collision Avoidance

The first measurement investigated in this analysis is the number of collisions that
might occurred during execution of the target trajectory. Tab. 3.4 displays the
respective results.

Consider first the results for setup I. A very remarkable result is, that the
proposed LLM algorithm resulted in completely collision-free movements along the
target trajectory. That is, during the evaluation of none of the 90 tested networks
collisions occurred. This is particularly interesting as the trajectory moves along
the entire workspace even far beyond the training data, which is recorded only in
the front of the robot. However, even in situations where the target trajectory
moves behind the box obstacle, the robot could follow it without causing collisions
with the environment. In contrast, most of the tested ELM networks had few
collisions. Still, the number of collisions is remarkably low, and I report from
visual inspection that these are caused only be slightly touching the obstacle. In
order to get a more visual insight, Fig. 3.13 displays the utilized training data
(green), the target trajectory (black dotted) and that positions xcurr of the robot,
that caused the collisions (red). Hence, not the collision point between robot
and obstacle themselves are plotted, but rather the position of the end-effector
during that collision. As can be seen from this plot, also the ELM exhibits good
performance in terms of collisions. In fact, for ε = 1 and ε = 0.01, the only end-
effector positions that caused collisions are far away from the training data behind
the box obstacles. This holds for all ELM networks with ε = 1 and ε = 0.01. Only
training the networks with too less regularization ε = 0.001 and only few training
data results in collisions when moving in the vicinity of the data. Surprisingly, both
algorithms perform very good even with only rare training data per area. Note,
that for instance when sub-sampling the original data with s = 80, each training
area does not comprise more than 4 data points; the total amount of samples is
only 12. This requires strong regularization abilities, as the result of the ELM for
ε = 0.001 shows.
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s = 1 s = 5 s = 80

ε = 1

ε = 0.1

ε = 0.0001

Fig. 3.13: Illustration of the encountered collisions during evaluation of the ELM
networks in setup I, depending on regularization parameter ε and sub-sampling s
of the training data. It plots the training data (green), the target trajectory (black
dotted), and the robot positions xcurr which caused collisions (red).

Concerning the evaluation in setup II, the low values in Tab. 3.4 again indicate
good generalization abilities in terms of collision avoidance. Setting ε = 0.01
and η = 0.1 results in collision-free execution of the target trajectory for all of
the tested networks in both learning paradigms. In the other settings, only few
collisions occurred. Fig. 3.14 displays these for the LLM networks, again in relation
to the training data. However, again all encountered collisions relate to situations
in which the robot only slightly touches the obstacle.

Results Concerning Task Space Accuracy

For the sake of brevity, I report the task space accuracy Etask only for the setup I,
see Tab. 3.5. The results for setup II revealed qualitatively similar characteristics.
Both network approaches show tracking errors higher than 5 cm, which is surprising
at first glance. For static targets, the analysis in Sect. 3.3.2 attested an accuracy
of < 1 cm for most parts of the workspace. Hence, the tracking errors seem to
be caused by the dynamics of the recorded trajectories. In fact, I argue that
this might be due to a combination of conservative joint velocity limits and high
dynamic target trajectories. These have been recorded on the real robot using the
gravity compensation controller, which allows the user to move all joints freely. As
a result, in some areas of the workspace the trajectory might have been performed
with a different redundancy resolution than encoded in the training data and with
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s = 1 s = 5 s = 80

η = 1

η = 0.01

Fig. 3.14: Illustration of the encountered collisions during evaluation of the LLM
networks in setup II for varying η and sub-sampling s of the training data.

setup I (4 areas)
sub-sampling s 1 5 80

ELM
ε = 1 0.08± 0.013 0.08± 0.014 0.07± 0.013
ε = 0.01 0.07± 0.012 0.07± 0.012 0.11± 0.02
ε = 0.0001 0.11± 0.018 0.09± 0.015 0.21± 0.2

LLM
η = 1 0.14± 0.014 0.09± 0.014 0.09± 0.014
η = 0.1 0.09± 0.014 0.09± 0.014 0.09± 0.015
η = 0.01 0.08± 0.014 0.08± 0.014 0.08± 0.013

Tab. 3.5: Task space accuracy in [m] during tracking of the target trajectory in
setup I. Each value is averaged over 10 different network initializations.

higher joint velocities. The trained and embedded networks then generate joint
angle trajectories that would allow to realize the desired Cartesian position only
by violating the velocity limits, which is not permitted in the FlexIRob control
architecture. Hence, the tracking errors are due to fast changes in the redundancy
resolution which is necessary for complying to the environmental constraints. This
is recognizable in Fig. 3.15, which shows the target trajectory in black and the
executed trajectory by the robot in blue. Most of the time the robot follows the
target motion accurately. Strong deviations can be observed only for z-values
around 0.4 where the robot has to switch between the gripper- pointing-down and
the gripper-pointing-up solution as encoded in the training data (cf. Fig. 3.12(a)).

However, despite the settings s = 80, ε = 0.0001 for the ELM and s = 1, η = 1
for the LLM, both approaches perform reliably and are able to track the target
trajectory, although not with a high accuracy. Again, this is worth mentioning
particularly with respect to the low number of training data that is provided in
the s = 80 condition.
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Fig. 3.15: Exemplary execution of a target trajectory with an embedded LLM
(η = 1, s = 5) in setup I.

3.4 Discussion of Results

This chapter presented and discussed neural-network-based machine learning algo-
rithms to efficiently learn, encode and generalize demonstrated redundancy reso-
lutions. As discussed Sect. 3.2, this approach is motivated by research on learning
inverse kinematics for humanoid robots. A first prototype is published in [29] but
lacks a decent evaluation of the embedded, learned redundancy mapping. Hence,
a major goal was to analyze different available learning methods.

The presented methods are purely data-driven and therefore do not require
any model of the robot or environmental constraints. I mainly chose the presented
ELM and the specifically tailored LLM approach since they alone span a broad
range of learning characteristics. While the ELM approach is a fast and efficient
regression learner which needs to process each training sample only once (even in
an online-fashion [116] as shown in Chap. 6), the LLM algorithm is online capable
but relies on the gradient descent technique. Hence, learning must be conducted in
epochs, where training samples are presented randomly and repeatedly in order to
follow the gradient. This might require high computational effort, and additionally
a criterion when to stop learning. However, in contrast to the ELM, the LLM
networks offer the appealing advantages of local learning methods. Hence, adapting
the learned mapping has only local influence in one area or the surrounding, and
does not change or deteriorate already trained constraints all over the workspace.
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As a result, it allows to remove or change the learned mapping locally, e.g. to
correct already demonstrated constraints or adapt the redundancy mapping to
a changed environment. As for the ELM method this is not (straightforward)
possible. Once trained with a particular training set, changing the learned mapping
only locally or with respect to only few samples requires reprocessing of the entire
data set.

Nevertheless, both approaches have been shown in this chapter to provide
good generalization of the taught constraints. The learned mappings efficiently
encode the learned redundancy resolutions and generalize the taught constraints
even beyond the training data. As revealed in Sect. 3.3.1, the proposed approach
permits to adapt a robot’s redundancy resolution to a variety of different confined
workspaces with only two or three training areas. Embedded into the robot’s mo-
tion controller, the learned constraints are even generalized between training areas
(interpolation). The analysis in Sect. 3.3.2 demonstrated that already very few
training areas are sufficient to make large portions of the workspace accessible to
the robot. And even though the CONFIGURATION as proposed in this thesis is
rather designed for efficient teaching in only relevant areas of the workspace, it still
allows to exhaustively sample the environmental constraints in few minutes. Sim-
ilarly, the last section showed that generalization of the demonstrated constraints
goes also beyond the training areas (extrapolation). Furthermore, it revealed the
robustness of both approaches against parameter selection and the variety of pre-
sented training data. Properly chosen parameters (ε = 0.01 for ELM, η = 0.1
for LLM) allow learning of the demonstrated constraints even from less than 15
training samples in total.

Therefore, I conclude with respect to the posed hypothesis, that both ELM
and LLM approach are valuable methods for the proposed interaction scheme.



Chapter 4

Teaching Redundancy
Resolutions

As motivated in Chap. 1 one of the major goals of the work presented in this
thesis is to enable non-expert users to program redundant robots in presence of
environmental constraints. The approach presented in Sect. 2.3 derived a dedicated
CONFIGURATION stage throughout which users demonstrate these constraints
solely by means of kinesthetic teaching. The hypothesis is that

the users intuitively perceive the constraints and provide them implicitly
to the robot by means of the recorded demonstrations.

While the previous chapter focused on the associated machine learning problem,
in this chapter I will elaborate on the hypothesis concerning the user’s perspec-
tive. What kind of knowledge actually is conveyed in the demonstration data
and transfered to the robot system? How is the user experience during the pro-
posed structured user interaction? And does it enable non-experts to teach such
environmental constraints successfully?

In order to answer these questions, in the first section the proposed interaction
model concerning the CONFIGURATION phase is implemented on our interac-
tive robot prototype FlexIRob [30] employing the KUKA Lightweight Robot IV as
redundant, compliant manipulator for the physical human-robot interaction. Sub-
sequently, I will shed light on the question what kind of knowledge is comprised in
the training data and thus transferred to the robot system in the second section.
It presents a visualization scheme of the taught, implicit constraints both in task
and configuration space aiming to relate them to the physically present constraints
in the robot’s workspace. The third section presents results from the user study
FlexIRob@Harting [22] in order to evaluate both teaching experience and teaching
success of non-expert users utilizing the proposed interaction model during the
CONFIGURATION stage. A decent analysis of the participants’ training data
will then investigate structural differences between the data provided by success-
ful and not successful participants. Finally, the presented results are summarized
and discussed.

53
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4.1 Interaction Model

The implementation of the interaction model follows the workflow outlined in
Sect. 2.3.1 (Fig. 2.5) using the described interaction triggers on affected and
on converged to physically guide the robot to relevant areas of the workspace
(APPROACHING) and then record training data for the learner (RECORDING).

The required gravity compensation controller πq is implemented based on the
low-level joint impedance controller of the LWR IV as illustrated in Fig. 4.1. The
external forces fint applied by the human operator to the LWR IV are measured
by its torque sensors in each joint and generate motor torques according to an
impedance based control scheme [25]. For constant qcmd this inner control loop
acts like a spring-damper system with customized spring and damping constants
k and d for each joint allowing the user to physically deflect the manipulator
from the commanded joint configuration qcmd. In the proposed implementation,
this deflection is measured by a changed position qcurr in configuration space and
fed to an additional damping term to prevent the robot from continued drifting
after being moved. This interaction controller behaves similar to the originally
provided gravity compensation controller provided by the LWR IV [25], but has
the advantages (from a system integration point of view) of avoiding mode switches
of the low-level control on the LWR IV. These typically require several seconds of a
constant joint configuration and zero external torques to be permitted which is not
desired for a seamless handling experience of the user. Furthermore, this allowed us
to control stiffness, damping and maximal velocity to our needs regarding safety
requirements. The resulting gravity compensation controller πx allows users to
freely move all joints of the robot according to the demonstrating-in-configuration-
space strategy in order to guide the robot during the APPROACHING phase to
relevant areas of the workspace with a desired initial joint configuration qfixed.

The utilized controller for RECORDING is the low-level impedance controller
of the LWR IV. Hence, the required compliant recording πrec is “implemented”
by simply exploiting the active compliance of the LWR IV controlled in the joint
impedance mode as shown in Fig. 4.2. This allows the user to record demonstration

data D(k) = (x
(k)
l ,q

(k)
l )l=1,...,L(k) of the desired redundancy resolution in a relevant

training area by physically deflecting the robot from the commanded configuration

qcmd ≡ q
(k)
fixed. Since the impedance control acts like a spring-damper system [25],

the recorded joint configurations vary only locally around the selected initial pos-

ture q
(k)
fixed. Examples of such training data are shown in Fig. 4.3 in K = 6 training

areas.

Since the proposed implementation of the assisted gravity compensation con-
troller utilizes the intrinsic active compliance of the LWR IV, the ease of moving
is determined by the stiffness and damping values k and d of the underlying joint
impedance controller. For the prototype FlexIRob and the following evaluations
these were carefully chosen as detailed in Chap. A to allow smooth interaction.
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Fig. 4.1: Implementation of
the required gravity compensa-
tion controller πq according to
Sect. 2.3.1. It utilizes the low-
level joint impedance controller
of the LWR IV and an additional
damping term.
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Fig. 4.2: Illustration of the proposed com-
pliant recording controller πrec. It refers to
the LWR IV’s joint impedance controller
and allows physical deflection only locally
for recording consistent training data as
proposed in Sect. 2.3.1.

4.2 Teaching Implicit Constraints

The approach presented in this thesis is designed to enable intuitive interactive con-
figuration of redundant robots by lay users. But instead of programming explicit
constraints, I argue that this goal can be rephrased as the problem to transfer the
user’s implicit knowledge and understanding of an environmental scene through
interaction into the robotic system. When teaching, the user knows where the
workspace is confined, he or she can not move the robot into the static obstacles
physically and has to care that neither part of the robot arm collides anywhere.
These constraints are intuitively clear to the users who choose their training data
accordingly. This section deals with the question what kind of knowledge actually
is transferred from the human tutor to the robot system during the CONFIGU-
RATION . While this question is rather difficult to answer in general, I will shed
light on two aspects of it in the following. Sect. 4.2.1 gives an exemplary view
on the implicit constraints that are imposed by the user demonstrations in the
manipulator’s joint space. However, since a general analysis of these constraints in
joint-space is neither intuitive for interpretation nor simply to visualize, I displace
this analysis to the Cartesian space in Sect. 4.2.2. A visualization of the implicitly
modeled scene gives rise to constraints modeled in the robot’s task space.

For both sections the data of the reachable workspace analysis from Sect. 3.3.2
is recycled and analyzed now from a different viewpoint. That is, this analysis
utilizes again the obstacle setups I and II and is based on the set of target points TI

and TII which per definition constitute the reachable workspace of the respective
setup. After the human tutor has conducted the kinesthetic teaching process
according to the CONFIGURATION stage, the robot is commanded to reach for
each of the targets in TI or TII with the learned neural network included in the
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inverse kinematics controller of the robot. Again, the ELM approach is utilized
here as described in Sect. 3.2.1. As an illustration, Fig. 4.3 shows setup I for which
the user recorded training data in six different areas of the workspace.

4.2.1 Constraints Modeling in Joint Space

Fig. 4.3: Exemplary training data
recorded in six areas of setup I.

During the kinesthetic teaching process as
described in Sect. 2.3.1, the human tu-
tor provides different redundancy resolu-
tions of the inverse kinematics in different
areas of the robot’s workspace. By this
means, implicit constraints are imposed on
the robot’s joint-space by means of the
training data. The goal of this section is
to give an exemplary insight in these con-
straints.

Given the training data shown in
Fig. 4.3, the trained robot is commanded
to reach for each of the 635 targets in TI

and the resulting joint values q as well as
task space positions x are recored. By vi-
sualizing the resulting distributions of joint
values of the manipulator’s joints, implicit
constraints that are induced by the train-
ing data can be revealed. For instance, the very left scatter plot in Fig. 4.4 shows
the distribution of the joint values of q2 both during the evaluation (black) and
during the training phase (grey). It clearly reveals, that the user by means of the
training data imposed a strong constraint on that joint, namely that the values
should not exceed a small neighborhood around q2 = π

2 . Taking a look at the
obstacle setup I (cf. Fig. 4.3), this constraint is quite obvious. A value of q2 = 0
refers to an upright position while q2 = π

2 results in a position parallel to the
table surface. Hence, values of q2 >>

π
2 would result in collisions with the table

surface while movements with q2 <<
π
2 would cause collisions with the upper part

of the obstacle. The choice of q2 = π
2 therefore minimizes the risk of collisions

or, in other words, maximizes the distance between the robot’s links and the en-
vironmental obstacles. The second plot in Fig. 4.4 visualizes another constraint
related to that ceiling part of the obstacle. The values of q5 are plotted against
the height of the resulting end-effector positions. In order to reach at or higher
than z ≈ 0.4 m without collisions, the robot needs to change its gripping pose from
“grip from above” to “grip from underneath”. Here the user has chosen joint q5

to comply to this environmental constraint on the end-effectors’s orientation, so
that low positions z < 0.4 are realized with q5 ≥ 0 and high positions z > 0.4 with
q5 ≤ 0. This behavior is reflected in the example data provided by the user in the
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Fig. 4.4: Visualization of the implicitly taught joint space constraints for setup I
by means of selected scatter plots. The system was trained with six training areas
as visualized in Fig. 4.3 and then evaluated on the set of target points TI.

training areas and is generalized by the system well to the rest of the obstacle-
dependent workspace TI. While these two plots are examples for rather tangible
constraints imposed by the obstacles in the manipulator’s workspace, the third
and fourth scatter plot in Fig. 4.4 show more implicitly taught relations between
different joints, that are more difficult to analyze and understand. These might
even not be crucial for the collision avoidance, as for example since they relate to
the very last joint q7 which only rotates the the gripper around the gripping axis,
but nevertheless have been selected by the user for the redundancy resolution and
can be generalized well beyond the training areas.

A similar exemplary visualization for the system being trained in obstacle setup
II is provided in Fig. 4.5. Again, a user recorded training data in six different
training areas, and the system, i.e. the learned redundancy resolution, is evaluated
on the set of target points TII. The first scatter plot visualizes a very obvious
environmental constraint on joint q1. Since two pillars are placed besides the robot
constraining the workspace for the link mounted on this joint, only a very narrow
gap around q1 ≈ 0 is left for the robot to move collision-free. The second plot
demonstrates how the user taught the robot to reach for targets left and right (y-
axis) in the workspace while avoiding the two obstacles. The training data indicates
that for end-effector positions with y < 0 joint values q3 > 0 should be used and
vice versa. The third and the fourth plot again visualize constraints purely in
the joint space. The training data provided by the user reveal a clear, almost
functional relation from joint q3 on q2 which can be approximated by f(x) = |x|
on [−π

2 ,
π
2 ] and which is again well generalized by the trained system to the rest of

the workspace TII. Concerning the joints q4 and q6, the data exhibit no relation
between those but rather strong constraints in its distribution. The values of both
joints are constricted to a corridor around q4 ≈ −π

2 and q6 ≈ π
2 .

The presented examples illustrate the joint space constraints that are modeled
by the human tutor during the kinesthetic teaching process. By means of the train-
ing data the user is enabled to introduce obstacle dependent restrictions on and
relations between the robot’s joints to resolve the redundancy. It is worth noting,
that the joint values of q = ±π

2 and q = 0 seem to play an important role in the
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Fig. 4.5: Visualization of the implicitly taught joint space constraints for setup II
by means of selected scatter plots. The system was trained with six training areas
and then evaluated on the set of target points TII.

description of the constraints exemplified above, particularly when regarding the
provided training data. This is due to the geometry of the investigated obstacles,
which are placed axis aligned to the robot’s coordinate frame and consist of rectan-
gular elements, as well as the kinematics of the LWR IV. Using these joint values
seems to be a “natural” or straight-forward way for a safe, collision-free redundancy
resolution. A robot expert configuring and programming the robot system accord-
ing to explicit reward or cost functions like minimum distance between robot and
obstacles probably would come up with a similar solution. However, the devised
interaction and learning scheme proposed in this thesis enables non-expert users to
program those constraints implicitly and in an intuitive way without having such
a reward function explicitly in mind.

4.2.2 Implicit Scene Model in Task Space

While the former section focused on a visualization of the constraints in the joint
space, this section visualizes the taught constraints in task space. The idea behind
this is, that with the training data an implicit model of the task space obstacles
is conveyed from the tutor to the robot system. When teaching, the user knows
where the workspace is confined, he or she can not move the robot into the static
obstacles physically and has to care that neither part of the robot arm collides
anywhere. Instead of considering where the robot arm physically is when driven
by a particular redundancy resolution, the following analysis rather asks where
the robot is not. It checks which parts of the workspace are never used by the
robot’s links, joints or any other parts of its body when generalizing the learned
solutions and moving to the relevant parts of the task space. This is in contrast to
Sect. 3.3.2 where I answered the question to what extend the workspace was made
accessible without colliding with the environment. This section rather provides a
“dual” view on the data gathered by that evaluation.

The evaluation is conducted similar to the reachable workspace analysis from
Sect. 3.3.2. That is, it utilizes again the obstacle setups I and II and is based on
the set of target points TII and TII which per definition constitute the reachable
workspace of the respective setup. Again, the human tutor conducts the kinesthetic
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Fig. 4.6: Obstacle setup I and implicitly modeled scenes for varying number of
training areas.

teaching process according to the CONFIGURATION stage. For each obstacle
setup he repeats this procedure with a different number of training areas. As an
illustration Fig. 4.3 shows setup I for which the user recorded training data in
six different areas of the workspace. The neural network utilized to generlize the
taught constraints from that data is the ELM approach as described in Sect. 3.2.1.
During evaluation the robot is commanded to reach for each of the targets in TI

or TII with the learned ELM included in the inverse kinematics control of the
robot (cf. Sect. 4.1). For each target the resulting posture, i.e. the positions
of all links and joints of the LWR IV, is stored. By this means, the targets
together with the corresponding postures define a subspace of the Cartesian space
which is termed the maneuvering space M⊆ R3, enclosing all points of the space
where the robot was. By “inverting” this viewpoint, we visualize that parts of
the workspace which are never used by the arm. From the set T of the defined
obstacle-independent workspace of the LWR IV we subtract all points that are in
or close to the maneuvering space:

S := {x ∈ T : d(x,M) > 0.1}. (4.1)

These parts comprise a kind of implicit scene model, which is encoded in the
particular learned redundancy resolution. In particular, if the system was trained
appropriately by the human tutor, these parts should enclose the static obstacles
of the environmental scene.

The results for setup I are shown in Fig. 4.6 which visualizes the actual obsta-
cle and the implicitly modeled scenes S obtained for different numbers of taught
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training areas. As for the trial with only one training area, already a large part of
the workspace does not lie in the maneuvering space of the robot. The visualized
model, that already covers parts of the actual obstacle (the lower part of the box
part of the obstacle) has been avoided by the robot system during the evaluation
on the targets TI. By providing training data in only one area of the workspace,
the user conveyed the information to avoid that visualized parts of the workspace.
However, since other parts of the actual obstacle still lie in the maneuvering space
of the trained system, this result indicates that the provided training data does
not comprise enough knowledge about the environmental scene to cover all ob-
stacles. Given more training data, the implicit model S covers more and more of
the environmental scene and models the obstacles more accurately. For instance,
given four training areas which the user found to be relevant the board part of
the obstacle is already entirely covered by the implicit scene. Only the middle of
the box part of the obstacle is not covered. Hence, the training data resulting in
this trained system comprised a better implicit model of the environmental scene.
Finally, the results for the trial with 12 training areas show that the implicit scene
model almost entirely envelopes the physical obstacle.

As for setup II similar results are obtained, see Fig. 4.7. Again, the first picture
shows the obstacle in the simulated environment, whereas the second shows the
implicit scene S after the tutor provided data in only one training area. With
the given training data the user conveyed information about which parts of the
workspace should be avoided. Since in this trial only training data with “elbow up”
solutions was provided, only the lower parts of both box obstacles are covered by
the implicit scene indicating that the upper parts are being touched when driving
the robot with the learned redundancy resolution. In the next trial, the user taught
the system in six different training areas which transferred enough information to
already model one of the box obstacles precisely as the resulting implicit scene S
reveals. However, as argued already in Sect. 3.3.2 these obstacles constitutes a
challenging scenario requiring a precise inverse kinematics solution to reach for all
of the targets TII. Hence, more training data is needed for a precise model of the
obstacles. Fig. 4.7 (right) shows the implicit scene after the teacher has recorded
data in 21 areas of the workspace he found to be relevant, revealing an accurate
model of both boxes. Whereas the left box is entirely covered by the implicit scene,
only a small area on the right box still lies in the maneuvering space of the trained
system.

The presented analysis shows what kind of implicit knowledge about the envi-
ronmental scene in task space is transfered to the robot by means of the training
data. By visualizing those areas of the workspace that are not used by the ma-
nipulator, a model of those parts in the scene to be avoided is revealed, which
is implicitly conveyed with the training data. Providing only few or meaningless
training data results in an inaccurate implicit scene model, whereas training in
interesting areas shapes the implicit model such that more parts of the obstacle
are covered. Two things are worth noting here. First, the presented interactive



FlexIRob@Harting: Teaching Redundancy Resolutions 61

1 training area 6 training areas 21 training areas

Fig. 4.7: Obstacle in simulated setup II and implicitly modeled scene for one, six
and 21 trained areas (from left to right).

teaching procedure is designed for fast and intuitive (re-)configuration of a robot’s
redundancy resolution according to environmental constraints rather than precisely
learning and modeling physical obstacles. The obstacles of setup II define a chal-
lenging scenario where the robot arm has only a very narrow gap of ca. 5 cm on
each side for navigating the “elbow joint” q3. However, the results of this analysis
show that the approach effectively is capable of also carrying out that. By means
of appropriate training data the teacher is able to provide a very accurate model of
the environmental scene in both setups entirely enclosing the static objects in the
workspace. Second, although the number of 21 training areas sounds a lot on first
sight, the entire teaching procedure still requires less than ten minutes by a skilled
person, with the term “skilled” refering to being properly instructed rather than
a robot expert or an engineer. The kinesthetic teaching process as described in
this thesis enables users to adapt the redundancy resolution without any explicitly
modeling or writing any line of code.

4.3 FlexIRob@Harting: Teaching Redundancy Reso-
lutions

While in the last sections, the presented results were obtained with an expert
providing the training data, in the following I present results from the user study
FlexIRob@Harting, a larger study about physical human-robot interaction with
redundant manipulators in the context of industrial scenarios [22]. Hence, parts of
the results presented in this section have been published in [22]. Throughout this
study, 49 factory floor workers from the German company Harting [24], most of
whom never had worked with robots before, were asked to teach the robot system
redundancy resolutions in two training areas of a confined workspace similar to
setup I from the previous sections as shown in Fig. 4.8. The study design and the
experiment course for each participant is summarized in Chap. B. After the first
subsection reports on the individual user experience during the interaction with
the robot system, subsequently the success of that teaching procedure is evaluated
and the users’ provided training data is analyzed with respect to that success.
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Fig. 4.8: Participant of the FlexIRob@Harting study during the CONFIGURA-
TION phase teaching the LWR IV redundancy redundancy resolutions in the
second training area of the confined workspace.

4.3.1 General User Experience

The interaction experience of each individual user during the user study was re-
trieved by means of a questionnaire he or she filled after finishing the entire exper-
iment (cf. Chap. B). The questionnaire asked for the users’ experience concerning
the physical handling of the robot manipulator, the cognitive load they encoun-
tered, properties they attributed to the system such as reliability and intelligence,
as well as the pleasantness of the interaction scheme.The results for this general
experience with the robot during the experiment are shown in Fig. 4.9. A rating
of 1 indicates yes/very much and 5 indicates no/not at all.

A very important result is that participants rated the robot as non-threatening,
although, depending on which department of Harting they work in, they get safety
instructions and are warned against the dangers of industrial robots. One reason
for that might be that they rated the system as reliable and perceived the robot’s
intelligence to be high. Concerning the handling of the robot, the users rated it to
be very easy and also self-explanatory. Here, the proposed interaction and teaching
prototype takes advantage of the direct physical interaction between robot and hu-
man. Touching and manually guiding a robot is much less difficult than operating
it by means of remote devices. These results also indicate that the structure of the
teaching procedure was chosen appropriately, which otherwise would contradict
with the rating of a self-explanatory system. Another very distinct and important
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Fig. 4.9: Average ratings of the general user experience with the FlexIRob system.

rating is that the participants felt the acoustic and visual feedback given by our
system was helpful to complete the task. This indicates that not only the struc-
ture of the teaching procedure was chosen appropriate for an intuitive interaction
but that also the feedback about the current state of the system (APPROACH-
ING or RECORDING) was appreciated by the users. Interestingly, concerning
the cognitive load and the physical effort the users had to bring up during the
interaction the results are not quite clear. Both ratings exhibit a mean value of
≈ 3.5, which means “more or less”, and a high standard deviation across all users.
As for the physical effort, the reason might be stiffness and damping values of
the impedance control mode (cf. Chap. A for the specific values) that might be
inappropriate for some (maybe less strong) users such that manipulating the joints
was physically more exhausting for them as for others. As for the cognitive load, I
hypothesize that even though the users had a short warm-up phase to familiarize
with the handling of the robot before the experiment, that phase might have been
not decent enough for them to get used to the robot’s kinematic abilities (such
as redundancy) and limitations (such joint limits). Therefore, finding appropriate
training postures in both training areas might be difficult for some users. In order
to investigate these effects, in the following different user behaviors or teaching
experiences are illustrated exemplarily.

4.3.2 Illustration of Training Data for Different User Experiences

Throughout the user study the participants revealed a high variety of how they
attempted to solve the task of teaching the redundancy resolutions in both training
areas. In the following I illustrate this variety mainly by means of the recorded
training data, the chosen postures of the robot arm in the two training areas and
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the interaction forces induced by the users during the teaching process. Indicated
by the high standard deviations in Fig. 4.9, the hypothesis is that these differences
mostly are based on the cognitive load imposed on the participants during the task
and the physical effort during the interaction.

Regarding physical effort, these differences are well reflected in the recorded sys-
tem data. As described in Sect. 4.1, during the RECORDING phase the LWR IV
was controlled in compliant recording . For recording training data in a certain area
of the workspace, the participants were encouraged to move the robot’s end-effector
in circular trajectories. Since the robot is commanded to stay in the user-defined
posture, the participants had to exert force on it in order to perform these move-
ments. These external forces, measured as estimated external torque in each joint,
were recorded during the study and deliver an insight into the different user ex-
periences. Whereas some participants did not hesitate to strongly push the robot
from its commanded position and therefore induced torques up to 18 Nm in some
joints, other participants only slightly touched the end-effector and induced only
about 2 Nm as maximum joint torque. These different behaviors are also revealed
by the task-space coordinates of the recorded training data. In Fig. 4.10 (left), the
recorded system data of three participants during the CONFIGURATION phase
are shown. As illustrated in these figures, the cubic expansion of the recorded
training data (solid green and red lines) varies from data with almost no variance
in Fig. 4.10(a) to data consisting of several circular movements with a diameter of
up to 32 cm as in Fig. 4.10(b).

Regarding the cognitive load, the hypothesis is that the inter-subject differences
mainly relate to the problem of handling the redundant robot arm. Whereas some
participants had no problem manipulating the KUKA LWR IV’s joints in order to
guide it to a certain end-effector position without colliding with obstacles in the
environment, others seemed to think a lot and play around with the robot until
they found a solution to the task. An example to that gives Fig. 4.10 (right), where
video snapshots show the participants guiding the robot arm from the first training
area to the second. In Fig. 4.10(b), the participant tries several ways of guiding the
robot from the first area to the second, thereby rotating the end-effector in several
ways while experiencing the joint limits of the robot. In contrast, Fig. 4.10(c)
shows a participant which seems to have no problem with the redundancy of the
robot and quickly moves it to the second training area. These differences are
also revealed by the participants’ system data visualized in Fig. 4.10 (left), where
the red and green dashed lines show how the participants moved the robot’s end-
effector while trying to find a good training posture in the corresponding training
area. In order to quantify these differences between the participants, we measured
the time needed to guide the robot to a certain training area. For the first training
area, these times varied from a minimum of ca. 8 s up to a maximum time of 104 s;
for the second training area, the minimum and maximum amount of time were 6 s
and 45 s, respectively.

In particular, these results show that a too small variance in the training data
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(a) Test person recording training data with only a low variance and guiding the robot arm
through a kinematic singularity. As a result, the accuracy of the performed test trajectory
(should be a straight line in-between the two areas of the workspace) is poor.
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(b) Test person recording training data with a high variance but having problems guiding the
robot arm from one area of the workspace to the other. Nevertheless, the performed test trajectory
is more or less a straight line in between the two areas of the workspace.
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(c) Test person providing good training data with an appropriate variance and a valid combination
of postures in both areas of the workspace. As a result, the robot is able to perform the test
trajectory between the training areas with a high degree of accuracy.

Fig. 4.10: Examples of different user behaviors during CONFIGURATION .
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and badly chosen postures can lead to poor generalization performance in terms of
bad task space accuracy or encountered collisions. In contrast, these illustrations
also signal that some users intuitively provide suitable data after some instructions
and the quick familiarization phase such that an accurate and collision-free test
movement is performed by the trained robot system. In order to present a more
detailed numerical analysis of this user experiment, the development of the user’s
training success over several trials is systematically investigated in the following.

4.3.3 Analysis of the Participants Teaching Success

As a result of the participants’ varying behaviors and experiences as described
above, the training success also varied strongly, which will be analyzed in the
following. As outlined in Chap. B, each participant was asked to conduct the
CONFIGURATION in three trials. In order to evaluate the teaching success after
each trial, the trained system was commanded to move along a straight line in the
work-space as a reference movement. The following metrics are then utilized to
analyze the success of that trial.

Defining Metrics for Evaluation

According to [21], where the authors proposed coherent means for evaluating the
success of human-robot interaction methods, I utilize measurements to access the
system effectiveness and the system efficiency of the proposed approach. The
effectiveness measures how well a predefined task is accomplished. The goal of
the CONFIGURATION phase is to teach the robot arm certain inverse kinematic
solutions in different areas of its workspace in order to enable it to move in a
predefined part of the workspace while avoiding obstacles in the environment. The
predefined part thereby was introduced to the users as the area consisting of both
training areas and the space in between them. Thus, I identify two measures of
task effectiveness: (a) accuracy of the performed test trajectory, which ideally
consists of a straight trajectory between the training areas, and (b) the number of
unintended contacts or collisions of the robot arm with its environment. Note, that
these metrics directly relate to the measurements Etask and Ecoll from Sect. 3.3 that
have been utilized to evaluate the generalization abilities of the learning approaches
and the entire system. Efficiency measures the time that is needed to complete a
task. Here, I distinguish between the time that is spent on the kinesthetic teaching
and the time needed for calculation of the estimated inverse kinematic model, i.e.
time that is solely consumed by the learning algorithm.

General Teaching Success

Based on how well the trained system executed this reference trajectory, the results
obtained after the third configuration trial with regard to effectiveness can be
categorized as shown in Fig. 4.11:
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• 3 participants were unable to teach the system to produce no collisions and
additionally only managed to achieve low accuracy of the test trajectory.

• 18 participants achieved high accuracy of the test trajectory but with colli-
sions.

• 17 participants managed to train the system to produce no collisions but
with low accuracy of the test trajectory. For an example, see Fig. 4.10(a).

• 9 participants were able to teach the system such that high accuracy was
achieved and no collisions occurred (see e.g. Fig. 4.10(c)).

In this analysis, the threshold of an appropriate task-space accuracy was set
to 1 cm.

 

 
collisions & low accuracy
collisions & high accuracy
no collisions & low accuracy
no collisions & high accuracy

Fig. 4.11: General success of the con-
figuration after the third trial.

These results show that non-expert
users are indeed able to train the robot
according to environmental constraints as
26 participants successfully taught the
robot to avoid the environmental obsta-
cles. However, the results also raise the
impression that most of the participants
were able to do the configuration either
accurately or collision-free. Concerning
a statistical analysis, this effect is well
reflected in the data by a correlation of
r = −0.58, p < 0.01 between the task
space accuracy of the performed test tra-
jectory and the number of collisions that
occurred. The reasons for that will be an-
alyzed in Sect. 4.3.4. As a result, only nine
participants trained the system such that
both accuracy and collision avoidance of
the trained system was acceptable.

Concerning the efficiency of the human-robot interaction, the time needed for
a single configuration procedure splits into time that is spend on the interaction
phases APPROACHING and RECORDING on the one hand, and the computa-
tion time required by the learning algorithm on the other hand. We report an
average time of 54.1 ± 24.8 s for the former and 5.3 ± 1.0 s for the latter, which
results in an average time requirement for a single entire configuration procedure
of approximately one minute.

Development over Trials

In order to investigate the participants’ teaching success over several trials and to
find out how much instructions they need to successfully perform the teaching (in
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Fig. 4.12: Development of the participants’ performance over three trials of the
configuration task.

the sense of providing reasonable training data in both regions of the workspace),
the CONFIGURATION was repeated in three trials with increasingly informative
instructions, which were the same for all participants. The instructions were chosen
in a way that a) with ongoing trials the possibilities for moving the robot from the
first working area to the other were more and more restricted, and thus should help
the participants to find proper redundancy resolutions, and b) the participants’
thoughtfulness concerning the trained robot’s ability to move in a straight line
from the left to the right working area should be raised (cf. Chap. B).

Figure 4.12(a) shows the development of the trained system’s task space error
Etask while performing the reference trajectory of each individual user over the
three trials. The corresponding box-plots indicate the distribution of errors at
each trial. Interestingly, most of the users neither improved nor got worse from
the first to the second trial, yielding a median Euclidean error of approximately
5 cm. However, in the third trial many users improved their performance signif-
icantly, such that the median user performance is below 1 cm. Concerning the
participants’ ability to train the system to avoid the environmental obstacles, we
could not measure any significant difference between the first and the second trial
(see Fig. 4.12(b)). But differences between the second and third trial indicate that
the improvement in terms of task space accuracy comes at the cost of a slight gain
in the number of participants with collisions. Again, this raises the hypothesis of
a negative correlation between the ability to train the system accurately and to
avoid collisions. As for the users’ time needed for kinesthetic teaching, only a slight
improvement was measurable from the first to the second trial (see Fig. 4.12(c)).
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4.3.4 Quality of the Provided Training Data

The results in the previous sections showed that it was not possible for all partic-
ipants of the study to teach the robot such that a reference trajectory could be
performed accurately and without collisions. While the particular reasons remain
unclear so far, they rather reveal a tendency for most of the trained systems to
perform either with high accuracy or without collisions. With the following anal-
ysis I address this issue through a decent analysis of users’ the training data that
was provided by the participants during the CONFIGURATION .

Inconsistent Combinations of Redundancy Resolutions

Fig. 4.13: Example for inappropriate
combination of redundancy resolutions in
left and right training areas.

The first hypothesis - and a reason for
a possible failure of teaching the robot
system appropriate redundancy resolu-
tions - is, that users might chose redun-
dancy resolutions or postures for the
two training areas that are not com-
patible with each other with respect to
the environmental or task constraints.
Each chosen posture might be suitable
for the respective training area and
respect the environmental constraints
there, but performing a movement be-
tween the areas would only be possible
by not respecting the task constraints
(straight line between areas) or the en-
vironmental constraints (avoid collisions with obstacles). An example for this
situation is given in Fig. 4.13 where “elbow-right” and “elbow-left”-solutions have
been selected by the participant for the left and right training area, respectively. A
similar example was already shown in Fig. 4.10(a). However, while both solutions
allow collision-free movements in or in the vicinity of the respective training area,
no solution exists to the problem of moving the robot arm from the first to the
second posture with the end-effector performing a straight line between them. In
that sense, both redundancy solutions are incompatible with each other and as a
result also the trained system violates the task constraint or the environmental
constraints while performing the reference trajectory.

In order to support the hypothesis, that the participants’ teaching success re-
lates to the combination of selected redundancy resolutions, the users’ training
data from the third CONFIGURATION trial have been clustered into different
classes of redundancy resolutions. For each of the two training areas a separate
cluster analysis is done based on the respective robot postures provided by the
users in terms of the initial joint angles qfixed recorded during the RECORDING
stage. The method utilized for this analysis is the k-means algorithm [117] with
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(a) Visualization of cluster centers L2 (green)
and L3 (blue) in left training area.

(b) Visualization of cluster centers R1 (red),
R2 (green), R6 (magenta) and R7 (black) in
right training area.

Fig. 4.14: Exemplary results of the clustering of the participants’ training postures
qfixed done separately in left and right training area. For the sake of clarity only
selected cluster centers are displayed in the simulated environment.

a predefined k and initialized with cluster center candidates in each training area,
respectively. Both the number k of clusters and the initial cluster centers were
chosen after a visual inspection of the data and by incorporating expert knowledge
about the kinematics of the KUKA Lightweight Robot IV. For detailed informa-
tions about the clustering procedure confer to Sect. B.4. The results of this analysis
reveal that the training postures chosen by the participants in the left training area
clearly can be clustered into three different classes which will be termed L1, L2

and L3 in the following. Hence, the redundancy resolution selected by each of the
participants in the left training area can be assigned to one of these clusters. As
a result, 23 users are assigned to L1, two participants refer to L2 and L3 consists
of the remaining 22 users. The different clusters can be characterized as all re-
alizing approximately the same end-effector position since, during the study, the
designated training area was clear to the users (indicated by the space above some
blue boxes, cf. Fig. 4.8). They may even look very similar to each other on first
sight but constitute completely different redundancy resolutions as visualized in
Fig. 4.14(a) which shows the cluster centers L2 (green robot) and L3 (blue robot)
in the simulated environment. Although the visual impression is very similar, the
displayed postures differ strongly in q3, q4, q5 and q6. The training data of the right
training area is distributed over more clusters. In total, seven clusters R1, . . . ,R7

have been identified with cluster members ranging from only one user up to 16
participants. Fig. 4.14(b) visualizes the cluster centers of selected classes. Again,
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the color-coding of the shown robots relates to the particular clusters R1 (red), R2

(green), R6 (magenta) and R7 (black), respectively. For more detailed informa-
tions about the identified clusters as well as for a visual inspection of the clusters’
data distributions in 2-D using multi-dimensional scaling [118] please confer to
Sect. B.4.

Having the users’ training data clustered into dedicated classes, their teaching
success can be analyzed with respect to what combination Li-Rj of redundancy
resolutions in left and right training area they had chosen. Fig. 4.15 shows the
participants’ teaching success in terms of the task space accuracy Etask of the
reference trajectory depending on the chosen combinations of redundancy reso-
lutions. For instance, users whose training data can be assigned to the combi-
nation L3-R1 all missed to teach the system a high accuracy along the reference
trajectory. From the corresponding boxplot a median task space error of ap-
proximately Etask ≈ 0.055 m can be deduced. In that sense, this combination
of redundancy resolutions seems to be inappropriate. With the same argumen-
tation, the redundancy resolutions of the combinations L1-R3, L3-R7, L2-R2 and
L3-R3 seems to be incompatible with each other, since none of these participants
achieved high accuracy of the trained system. An example for the last combi-
nation L3-R3 was already shown in Fig. 4.13. In contrast, all the users who
selected their training data according to L1-R1 achieved a high accuracy of be-
low 1 cm of the trained system. As for the combinations L1-R6 and L3-R4 some
users achieved good results but some also missed to enable the robot accurately
following the reference trajectory. The same effect is observable concerning the
relation between combination of redundancy resolutions and the number of colli-
sions Ecoll that occurred during the reference trajectory after teaching. Fig. 4.16
shows the respective results. Here, teaching success refers to a value of zero col-
lisions. Again, some combinations, namely L1-R7, L3-R7, L1-R1 and L3-R3, can

# users consistent

L1-R1 7 -
L1-R3 3 -
L1-R6 12 X
L1-R7 1 -
L2-R2 1 -
L2-R5 1 X
L3-R1 4 -
L3-R3 1 -
L3-R4 16 X
L3-R7 1 -

Tab. 4.1: Identified (in-)consistent com-
binations of trained redundancy resolu-
tions in left and right training area.

be recognized as inappropriate since
none of the respective users achieved
a teaching success of zero collisions.
As for the other combinations of re-
dundancy resolutions in left and right
training area at least some users man-
aged to teach the system successfully
in terms of collision avoidance. Hence,
these combinations in principle are
compatible with each other.

Combining the results for both
measurements, this analysis reveals
that the teaching success of the partic-
ipants clearly depends on which redun-
dancy resolutions they combine in the
left and right training area. Only the
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Fig. 4.15: Teaching success in terms of the average error depending on which cluster
the participants’ training data can be assigned to in each workspace. E.g. L1-R6

displays a boxplot of Etask for those users whose data can be assigned to cluster
L1 in the left training area and to R6 in the right training area.
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Fig. 4.16: Teaching success in terms of number of collisions depending on which
cluster the participants’ training data can be assigned to in each workspace.
E.g. L1-R6 displays a boxplot of Ecoll for those users whose data can be assigned
to cluster L1 in the left training area and to R6 in the right training area.
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combinations L1-R6, L3-R4 and L2-R5 allowed users a successful teaching concern-
ing both measurements, and the 9 participants that managed to do so obviously
belong to one of these combinations. An example for such a consistent combi-
nation from L3-R4 is displayed in Fig. 4.17. Users, whose training data can be
categorized into one of the other combinations, selected inconsistent training data.
Inconsistency here refers to the effect that the robot’s kinematics do not allow a
movement from one posture to the other while respecting the task and the envi-
ronmental constraints. Although the users who selected inconsistent redundancy
combinations are in the minority as shown in Tab. 4.1, the reasons why users pro-
vided this training data and how to account for this behavior need to be discussed
further, which is done at the end of this chapter and in Chap. 6.

Joint Limits of the LWR IV

Fig. 4.17: Example for a consistent
combination of redundancy resolutions
(L3-R4) in left and right training area
but with data very close to the LWR IV’s
joint limits.

The fact that a majority of 29 study
participants selected consistent combi-
nations (cf. Tab. 4.1) but only 9 users
actually managed to successfully teach
the system in terms of both measure-
ments indicates that finding the consis-
tent combinations of redundancy res-
olutions does not guarantee teaching
success. Therefore, a qualitative dif-
ference between the users’ data even
within the consistent redundancy com-
binations is hypothesized. From a vi-
sual inspection of the data the hypoth-
esis arises that during the teaching the
users are not aware of the robot’s joint
limits. As a result some users provided
training data very close to these lim-
its in both training areas and some recorded data even slightly beyond the limits
manifested in the system’s software layers5. Fig. 4.17 shows an example of a partic-
ipant’s recorded training postures that are consistent with each other (combination
L3-R4) but comprise joint values of qfixed

6 ≈ 119◦ for the left and qfixed
6 ≈ 113◦ for

the right training area, respectively, while the limits for this joint are specified
as ±115◦. However, the learning methods analyzed in this thesis are completely
data-driven and model-free which is desired for the reasons discussed in Sect. 2.3.
Therefore, the learned mapping will generalize also slightly beyond the LWR IV’s

5 This was possible due to the compliance of the LWR IV. As described in Chap. A the joint
limits defined within our control architecture are slightly more conservative than the LWR IV’s
actual hardware limits. Although our low-level software layer rejects any joint commands exceed-
ing these limits, it does not prevent the users to go beyond them during the physical human-robot
interaction and record data that slightly exceed these limits
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joint limits when provided with such data, but the control architecture rejects such
joint commands exceeding the limits. The resulting joint commands sent to the
robot then exhibit inaccuracies, i.e. the task space error Etask increases. This effect
is statistically significant as a correlation analysis between the error Etask and the
distance d(qfixed

6 , qlimit
6 ) of the users’ recorded joint values to the respective joint

limit reveals. For the left training area this correlation is represented by r = −0.71
and for the right area by r = −0.69, both being highly significant with p < 0.005.

Distribution of Data per Training Area

While the previous analysis focused on the initial postures qfixed the participants
selected for the left and right training area, respectively, a third hypothesis relates
to the distribution of the training data within each area. However, during a cor-
relation analysis none of these parameters showed up to be statistically relevant
for neither the task space error Etask nor the number of collisions Ecoll. Therefore,
this hypothesis is regarded as rejected. This is in line with the results obtained in
Sect. 3.3.3, revealing that the utilized ELM (ε = 1) approach is robust against the
choice of number of training data per area.

4.4 Discussion and Related Work

The purpose of this chapter was to investigate the proposed interaction scheme
from the user point of view. One purpose of the user study was to validate the
design of the structured interaction and the developed interaction controllers.

Concerning the general user experience with the robot system, the results show
that the system was generally appreciated by the study participants as the han-
dling of the robot was rated to be easy and self-explanatory and the feedback to
be helpful. The ratings concerning threat and reliability of the system also serve
as good indicators for the general acceptance of such collaborative systems in fu-
ture manufacturing systems. However, some users rated the cognitive load they
had during the interaction to be high. Regarding this result in the context of
the analysis of the user’s teaching success in the previous section, I conclude that
finding appropriate postures in left and right training area might be difficult for
some users. Still, the majority of the participants had no problem in selecting con-
sistent training postures, more than half of the users managed to teach the system
to avoid collisions with the obstacles and nine participants configured the system
successfully in all regards. Furthermore it is noteworthy, that the results of the
study must be regarded with the background that most of the user had no or only
very few experiences with robots and only had an introductory warm-up phase of
approximately 2 to 5 minutes. Thus, the results clearly show that the proposed in-
teraction approach enables non-expert users teach null-space constraints to resolve
the robot’s redundancy. The constraints are modeled implicitly in the robot’s joint
space but also convey information about an implicit scene model in tasks space as
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the experiments in Sect. 4.2 revealed. Hence, by means of the training data the
human tutor transfers his or her knowledge about the environmental constraints to
the system’s motion controller, while the accuracy of the conveyed implicit model
can be shaped by the number of training areas shown to the system.

The findings of the analysis in section Sect. 4.3.4 can be utilized to devise
concrete improvements for the interaction scheme and the system prototype. As
the system’s feedback during the interaction already was rated helpful by the
participants, I propose to enhance it with online information about the current
state of the system. This includes online feedback about the quality of training
data and the current learning state of the system such as force feedback about
the training areas and the selected training postures. This proposed variant of the
interaction model for the CONFIGURATION stage is developed in Chap. 6. Also
raising the users’ awareness of the robot’s joint limits would help to improve the
teaching success as well as the interaction experience.

To the best of my knowledge, only few work addressed the feasibility of pro-
gramming-by-demonstration methods from a user-centered point of view. In [15]
and [50] the authors investigate kinesthetic teaching from the user’s perspective,
by comparing standard trajectory-based kinesthetic teaching to their key-frame-
based approach. Key-frames are recorded as sparse points in the state space of
the robot. They found, that each of both demonstration paradigms has its advan-
tages, which is slightly different to the results obtained in our studies presented
in Sect. 1.2.1 and Chap. 5. The results even reveal, that recording key-frames
took longer than providing trajectories. Furthermore, relying only on key-frames
neglects the information about the timing of a task. In addition, the approach is
based only on the demonstrating-in-configuration-space paradigm as discussed in
Sect. 2.2.1.
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Chapter 5

Assisted Programming in Task
Space

The goal of this chapter is to evaluate the proposed interaction scheme on the
next level, i.e. during the PROGRAMMING phase which contributes to the idea
of reducing the teaching complexity for non-expert users. After having configured
the robot in the previous CONFIGURATION stage, the learned redundancy reso-
lution can be included into the robot’s control architecture in order to support the
human teacher during the interaction. This idea allows the user to freely interact
with the manipulator’s end-effector in the demonstrating-in-task-space strategy (cf.
Sect. 2.2.2) while the joints are controlled by the robot to resolve the redundancy.
As a result, the tutor can focus on teaching the temporal and positional aspects
of the actual task by neglecting the task-independent constraints. Fig. 5.1 shows
a shop-floor worker from the Harting company [24] during that interaction stage
teaching a specific task trajectory to the 7-DoF KUKA Lightweight Robot IV. The
hypothesis of this chapter is therefore that

the proposed interactive assisted programming reduces the complexity of
kinesthetic teaching of redundant robots.

In order to test this hypothesis, in the following the implementation of the proposed
interaction model for the PROGRAMMING stage is introduced. The subsequent
evaluation is based on the results obtained in the user study FlexIRob@Harting [22]
and analyzes the interaction scheme both from the human perspective and the
viewpoint of teaching success.

5.1 Interaction Model

The implementation of the interaction model follows the workflow outlined in
Sect. 2.3.3 (Fig. 2.8) using the described interaction triggers on affected and
on converged to physically guide the robot to the starting position of a trajectory
demonstration as well as starting and stopping the recording.

The assisted gravity compensation controller is implemented based on the low-
level joint impedance controller [25] provided by the KUKA Lightweight Robot IV
as illustrated in Fig. 5.2. As already described in Sect. 4.1, external forces fint
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Fig. 5.1: A shop-floor worker from Harting [24] interacting with the FlexIRob
system during the PROGRAMMING stage. He teaches a 3-D trajectory in a
confined workspace while already being assisted by the robot’s control system to
avoid the static obstacles in the scene [22].

applied by a human operator are measured by the torque sensors and generate
motor torques according to the impedance-based control scheme in [25]. This inner
control loop acts like a spring-damper system allowing the user to physically deflect
the manipulator from the commanded joint configuration qcmd. In the proposed
implementation this deflection is measured by a changed position xcurr in task
space and fed to an additional damping term to prevent the robot from continued
drifting after being moved. Hence, the low-level task space controller πx allowing
interaction according to the demonstrating-in-task-space paradigm as discussed in
Sect. 2.2.2 is a combination of the LWR IV’s joint impedance controller and the
added damping term in Cartesian space. In the outer control loop, the resulting
desired task space position x is then set as target for the hierarchical controller
employing the learned redundancy resolution qc = qc(xdes) to calculate a joint
configuration qcmd. The latter simultaneously realizes the desired end-effector
position xdes and a self-motion in the manipulator’s null-space to comply to the
user-taught environmental constraints. The hierarchical controller is realized as a
closed-loop controller, incorporating feedback about the current joint position qfdb.

Again, the main motion characteristics of the physical interaction, e.g. the
ease of moving, are determined by the stiffness and damping values k and d of the
underlying joint impedance controller. For the system prototype FlexIRob and the
evaluation in the next section these were carefully chosen as detailed in Chap. A
to allow smooth interaction.

It is worth noting that the specific implementation of the assisted gravity
compensation controller is not uniquely determined by the utilized robot plat-
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Fig. 5.2: Implementation of the proposed assisted gravity compensation controller
concept from Sect. 2.3.3. The task space interaction controller πx is imple-
mented based on the low-level joint impedance controller of the KUKA Lightweight
Robot IV and an additional damping term.

form. Depending on the platform-specific compliance features, sensors and avail-
able low-level interfaces, different solutions might exist to implement the required
task space controller πx. To demonstrate that, Fig. 5.3 shows an alternate im-
plementation of πx required to allow interaction according to the demonstrating-
in-task-space strategy. Here, the LWR IV only uses its low-level joint position
controller instead of the impedance controller. The external interaction forces fint

pHRI
LWR IV

Joint
Position

Controller xcurr

Cartesian
Admittance
Controller

fint

xdes

fint
^

Fig. 5.3: Alternate implementa-
tion of πx employing an external
admittance controller.

are sensed by the torque sensors and based
on a precise dynamics model of the manipula-
tor transformed to estimated external forces
f̂int at the end-effector. This functionality
is provided by Kuka’s fast research inter-
face (FRI) [119]. A simple external Carte-
sian admittance controller is added calcu-
lating the desired end-effector position xdes.
However, although this latter implementation
was shown to work in a short proof-of-concept
scenario, it was not yet evaluated in a decent
user study and is therefore not further consid-
ered in this chapter.

On the one hand this demonstrates the feasibility of the proposed generic ap-
proach. Making no assumption on the low-level interfaces of the specific robot
platform used, the approach can be applied to a variety of different manipulators.
On the other hand, it points out that the haptic experience (admittance, jerk,
stiffness) of the physical interaction is mainly determined by the interfaces and
low-level controllers which are available to implement the interaction controller πx.
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5.2 FlexIRob@Harting: Assisted Programming Eases
Teaching in Confined Spaces

In the following, the proposed assisted gravity compensation controller as imple-
mented in the previous section is evaluated both from the teacher’s perspective
and in terms of teaching success. As the goal of this thesis is to enable lay users
to intuitive teaching of redundant robots in confined spaces, the central research
question regarded in this section is:

Does the derived assisted gravity compensation controller enable non-
expert users trajectory-based kinesthetic teaching of redundant robots in
presence of environmental constraints?

In order to answer this question, in the following I present results from the
user study FlexIRob@Harting [22]. The 49 participants most of whom never had
worked with robots before were asked to teach a particular task trajectory to the
7-Dof KUKA Lightweight Robot IV. As already described in Sect. 1.2.1, they were
asked to perform an adapted version of the wire loop game, namely guiding the
end-effector along a styrofoam parcours but without getting the robot into contact
with styrofoam obstacles that are placed in the robot’s workspace as shown in
Fig. 5.1. This teach-in scenario is motivated by typical industrial tasks such as
gluing or welding often requiring that a robot arm is able to follow a demonstrated
trajectory. Hence, the interaction model throughout this experiment is restricted
to record only one demonstration which is regarded as a simple teach-in of a task
trajectory.

To test the hypothesis that the assisted gravity compensation mode reduces the
teaching complexity, the study participants have been divided into two groups:

Group A These particicpants were interacting with the robot supported by the
assisted gravity compensation mode with a pre-trained redundancy resolution
(ELM, cf. Sect. 3.2.1 and Chap. B) embedded to the hierarchical control
architecture. Hence, the physical interaction followed the demonstrating-in-
task-space paradigm; they only needed to guide the end-effector.

Group N As a control group, the other participants were using the gravity com-
pensation mode as described Sect. 4.1. Thus, they were interacting with the
LWR IV using to the demonstrating-in-configuration-space strategy through-
out which they needed to take care of all joints and the end-effector simulta-
neously in order to avoid collisions with the obstacles while also performing
the task programming.

In the following, the teaching success and user experience of the participants is
evaluated. For the detailed study design and the experiment course for each par-
ticipant please refer to Chap. B.
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Fig. 5.4: Average rating of simplicity of
handling the LWR IV during the wire
loop game.

Fig. 5.5: Average rating of how reason-
able the interaction with the LWR IV
was during the wire loop game.

5.2.1 Analysis of the Teaching Experience

As described in Chap. B, after the experiment each participant was asked to answer
a questionnaire concerning the interaction experience with the FlexIRob prototype
during the wire loop game. These questions asked the participant to rate the
simplicity and pleasantness of handling the robot as well as the reasonableness
of the interaction mode. As the main purpose of the derived assisted gravity
compensation controller is to simplify the teaching procedure, the hypothesize is
that participants of group A, being assisted by the robot, would find the task
programming easier and more pleasant and would rate the interaction mode more
reasonable than those of group N, i.e. without assistance.

In order test these hypotheses, in [22] an analysis of variance (ANOVA) was
computed with condition (group A vs. group N) as the independent variable and
the variables concerning the simplicity and pleasantness of the handling and the
reasonableness of the interaction mode as dependent variables. I briefly summarize
the important aspects here. For the sake of readability, only means and standard
deviations are described in the text. For other relevant values see Tab. 5.1. As
expected, the ANOVA revealed a highly significant effect on the simplicity of han-
dling. Participants using the assisted gravity compensation controller found the
handling significantly easier (M = 1.70, SD = 0.71) than did participants of the
control group N (M = 2.52, SD = 1.12), see Fig. 5.4. A marginally significant effect
was also found for the interaction mode. Participants in group A rated it signifi-
cantly more reasonable (M = 1.78, SD = 0.74) than those in group N (M = 2.22,
SD = 0.85), see Fig. 5.5. Thereby, low values indicate yes/very much, and high
values indicate no/not at all.

The ANOVA was again computed with covariates that could have influenced
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Tab. 5.1: Main effects regarding the condition (group A vs. group N).

F df p η2

effect on simplicity of handling (without covariates) 8.59 1.42 < 0.01 0.17
effect on easonableness of interaction (without covariates) 3.34 1.42 < 0.10 0.07
effect on simplicity of handling (with covariates) 3.17 1.37 < 0.10 0.08
effect on instinctiveness of handling (without covariates) 2.83 1.42 < 0.10 0.06

the effects. Covariates were identified correlating all control variables with the de-
pendent variables. Covariates included in the analysis were the length of time the
participants had worked at the company, their experience with computers, their
spatial vision, and their spatial imagination, as these variables significantly corre-
lated with one or several of the dependent variables. Including these covariates,
the results showed a marginally significant effect for the simplicity of handling.
Again, participants using the assisted gravity compensation controller rated the
handling significantly less difficult than those of the control group N.

In [22], we reported also another very interesting effect. As we were also in-
terested in any differences concerning the general experience with our robot, an
ANOVA was conducted with condition (group A vs. group N) as the independent
variable and all variables rating the general experience with the robot as depen-
dent variables. The general experience here relates to the ratings that we assessed
from the participants not specifically for the wire loop game but for the general
experience throughout their interaction with the FlexIRob system (cf. Chap. B
for details). A marginally significant effect on the instinctiveness of handling could
be found, indicating that the non-assisted group (M = 2.71, SD = 1.01) rated the
handling less instinctive than did the assisted group (M = 2.17, SD = 1.11). This
effect is very interesting as participants were instructed to rate the wire-loop game
separately. It indicates that the positive effect of the interaction mode during the
wire loop game was strong enough to influence the whole experience with the robot
also during the other parts of the study. However, this effect vanished when com-
puting the ANOVA a second time with covariates that could have influenced the
effects. These included gender, computer experience, spatial vision, spatial imagi-
nation, prior experience with robots, number of robots known and the department
at HARTING the participants worked at.

5.2.2 Analysis of the Teaching Success

Like for the analysis of the CONFIGURATION in Sect. 4.3.3, the quantitative suc-
cess of the teach-in is accessed with three measurements, evaluating effectiveness
and efficiency of the physical human-robot interaction [21]:

Task space accuracy As the teaching task relates to a specific desired end-
effector trajectory, effectiveness can be assessed by means of the task space
accuracy of the recorded demonstration.
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Monitoring collisions Effectiveness also relates to the abidance of environmen-
tal constraints and is accessed by counting unintended contacts, i.e. collisions
Ecoll, of the manipulator with the obstacles. This is done automatically in
the utilized simulation software of the FlexIRob prototype. For details on
the used software please refer to Chap. A

Efficiency is measured by the time needed for the teach-in.

Fig. 5.6 shows the teach-in trajectories that have been recorded by the par-
ticipants of both groups. It clearly reveals that the trajectories of group A (see
Fig. 5.6(a)) are smooth, very similar to each other and close to the target, that was
represented by the styrofoam parcours during the study and is plotted in Fig. 5.6
as black line. In contrast, participants of group N (see Fig. 5.6(b)) recorded tra-
jectories that are jerky, deviate a lot amongst each other and in some cases exhibit
strong error to the target trajectory. I explain the observed high errors as fol-
lows: Due to the fact that this group was not assisted in finding a valid joint
configurations, some users started the wire loop game game with a very unsuitable
posture (e.g. “elbow right”). At the beginning of the parcours, this posture is not
problematic and results in a correct end-effector position. However, in the further
course of the parcours the environmental constraints (confined workspace) require
a different redundancy resolution (e.g. “elbow left”). Now, these users have to
change the robot’s joint configuration (e.g. from “elbow right” to “elbow left”)
while performing the wire-loop game which, for some users, produces the observed
high task space deviations.

In order to evaluate the difference between the two conditions in terms of task-
space accuracy systematically with reasonable measures, two metrics are used.
First, the maximum Cartesian deviation of a user’s trajectory from the target
trajectory is measured. The results are shown in Fig. 5.7(a). They unveil that
assisted participants stay significant closer to the target trajectory than the non-
assisted and do not deviate a lot amongst each other, namely 4.9±1.4 compared to
12.2± 11.1 centimeters on average. Second, the geometrical shape of the teach-in
trajectory is compared with the target by means of a Procrustes analysis [120].
Since the users were not explicitly encouraged to perform a specific timing dur-
ing the teach-in, the trajectories are normalized in time, i.e. the velocity profile
is removed by re-sampling the data with constant velocity and equal number of
points. For comparison, the user trajectory and target trajectory are optimally
superimposed by means of translation and rotation (I omit scaling in this analysis).
Finally, the Procrustes difference is calculated as the average Euclidean distance
between the points of both trajectories. The results in Fig. 5.7(b) show the sig-
nificant higher geometrical matching with the target trajectory for assisted users.
The average Procrustes distance for group N measures 15.9± 1.3 cm, which means
that even after optimal translation and rotation the geometrical shapes of teach-in
trajectory and target trajectory on average differ by 16 centimeters per point. In
contrast, the Procrustes difference for group A measures only 1.8± 0.7 cm.
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Fig. 5.6: Recorded demonstrations of the participants during the wire loop game.
The target trajectory relating to the the styrofoam parcours is plotted as black line.
Group A used the proposed assisted gravity compensation controller and partici-
pants in group B the gravity compensation from Sect. 4.1 without any assistance
for redundancy resolution.
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Fig. 5.7: Evaluated metrics for accessing the participants’ teaching success dur-
ing the wire loop game relating to system effectiveness (a-c), efficiency (d) and
additional metrics (e).
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As for collisions with environmental obstacles6, 22 of 24 non-assisted partici-
pants induced collisions during the teach-in. In contrast, only one of 24 partic-
ipants in group A induced unintended contacts between the robot arm and the
environment (see Fig. 5.7(c)).

System efficiency is measured by the time needed by the participants for the
teach-in task. The results are displayed in Fig. 5.7(d). Again, the data reveal
a significant advantage of the assisted users. Whereas participants of group N
needed 93.4±44.5 seconds on average, participants of group A required 44.9±13.9
seconds, i.e. only half the time for the same task. As a side effect of the improved
system effectiveness and efficiency, the trajectories recorded by participants of
group A are much smoother in terms of jerk calculated as the second derivative of
the trajectories’ velocity profile with respect to time, see Fig. 5.7(e).

All of the presented differences between participants of group A and group N
have been reported to be statistically significant [22, 23].

5.3 Discussion of Results

The purpose of this chapter was to implement the proposed assisted gravity com-
pensation on a real robotic system and evaluate it with non-expert users in an
industrial-like setting both from the user point of view and the teaching success.

According to the implementation, I point out that the proposed concepts do
not rely on any specific requirements regarding the compliance features, low-level
controllers or interfaces of the utilized robot platform. In contrast it only uses
them to implement the outer control loop as discussed above according to the
specific available sensors and controllers. Hence, the presented concept of assisted
kinesthetic teaching can be applied to a variety of currently available industrial,
humanoid or other redundant, compliant robots such as [17]. However, the feasi-
bility of the resulting approach must always be evaluated with respect to a specific
platform.

As for this evaluation, I presented results from a large user study with non-
expert users where the proposed assisted gravity compensation was implemented on
a KUKA Lightweight Robot IV. During the study users with no robotic expertise
performed a practically relevant teach-in procedure. The results reveal not only
a high system effectiveness and efficiency of the human-robot interaction in terms
of task space accuracy measurements, collision avoidance and time to completion,
which all were significantly improved using the assisted gravity compensation com-
pared to a control group. Collisions with the environment were almost completely
eliminated7. They also attest a positive effect on the teaching experience from the

6 Collisions are automatically detected in our simulation software where the robot and the
environmental obstacle are accurately modeled.

7 The single remaining collision can be attributed to an interaction failure but is not related
to the assisted gravity compensation concept as a visual inspection of the participants teach-in
procedure shows.
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user’s point of view. During the study we found significant effects indicating a
perceived simplification of the teach-in procedure and an increased reasonableness
of the physical human-robot interaction. While these results completely confirmed
the expectations, no significant effect (positive or negative) could be found for the
assisted gravity compensation on the pleasantness of handling. However, I report
that on average all users rated the pleasantness to be good (M = 2.02, SD = 1.0).
This can be interpreted such that already the used demonstrating-in-configuration-
space controller gravity compensation, as implemented in Sect. 4.1 and completely
relying on the low-level compliance properties of the LWR IV, is very pleasant
for physical guidance of the robot. Hence, adding the outer control loop with the
hierarchical controller does not disturb the pleasantness of handling.

Summarized, the proposed assisted gravity compensation controller helped to
simplify teaching of the redundant LWR IV in a confined workspace which was a
major goal of the derived concepts in this thesis.
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Chapter 6

Assistance Blending for
Teaching Redundancy

Resolutions

The previous chapters demonstrate that the process of teaching and learning re-
dundancy resolutions is a valuable approach to efficiently transfer, encode and
generalize the human’s implicit knowledge about environmental constraints. The
proposed assisted gravity compensation control scheme even allows to efficiently ex-
ploit this knowledge already in the subsequent human-robot interaction for assisted
programming of tasks. However, as indicated by the analysis of the users’ pro-
vided demonstrations in Sect. 4.3.4, treating the programming-by-demonstration
paradigm as a one way channel during the CONFIGURATION stage reduces the
desired effect of intuitive and efficient teaching. The tutor might not be aware of
the robot system’s current capabilities (learned redundancy resolution) and limi-
tations (e.g. joint limits). As a result, in the FlexIRob@Harting study some users
failed to successfully configure the robot according to the constraints imposed by
the environment.

The goal of this chapter is therefore to derive a new interaction model for
the CONFIGURATION stage that allows the tutor to “experience” the robot’s
current state of knowledge via a shared assistance blending control mode. It is
inspired by research on policy-blending for shared human-robot control in teleop-
eration scenarios [121] and intended to close the interaction loop between tutor and
learner [122, 123] by providing feedback about the robot’s current state of knowl-
edge. The idea is to (a) use the robot’s gravity compensation πq controller where
no information about demonstrated constraints is available, (b) the assisted gravity
compensation controller when moving in the vicinity of already taught constraints,
and (c) continuously blend between both control schemes. This shared, physical
human-robot interaction provides haptic feedback about where in the workspace
the robot already has been trained, and how. The underliyng assumption is that

feedback about the system’s current state of knowledge helps the user to
provide more suitable demonstrations and further reduces the interac-
tion complexity.

Within this chapter, the adapted interaction workflow during the CONFIGU-
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Fig. 6.1: Illustration of the proposed adoptions to the interaction workflow for
kinesthetic teaching of redundancy resolutions during the CONFIGURATION
stage. During APPROACHING the proposed assistance blending controller is
utilized, embedding the online trained neural network and a confidence model in
the control architecture.

RATION stage is described and the necessary concepts to implement the proposed
assistance blending interaction controller are presented. These include algorithms
for learning redundancy resolutions online, and estimating a confidence signal from
the training data for blending between controllers. Please note, that the proposed
concept is not yet validated in a user study. Therefore, a decent evaluation is
missing in this chapter. However, the derived concepts have been implemented
and tested to be working in our system prototype FlexIRob. The chapter closes
with a short discussion of the proposed concepts relating them to findings from
research with socially guided human-robot interaction.

6.1 Interaction Model

The changed interaction workflow of the CONFIGURATION stage is depicted
in Fig. 6.1. As usual, the user guides the robot to relevant workspaces (grav-
ity compensation) and records demonstration data (compliant recording). Again,
the interaction triggers used to switch between these stages are on affected and
on converged.

The difference to the interaction model introduced in Sect. 2.3.1 is that during
compliant recording online learning algorithms are utilized to directly infer a re-
dundancy mapping qc(·) from the demonstration data. An adapted variant of the
ELM (cf. Sect. 3.2.1) is used in this chapter as briefly reviewed in the following
section. This can be exploited in subsequent APPROACHING phases to assist
the user in redundancy resolution according to the ideas discussed in Chap. 5.
However, generalization abilities of the learned redundancy mapping qc(·) during
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Fig. 6.2: Proposed assistance blending controller.

the CONFIGURATION stage will be limited, since it is based only on the so far
provided demonstrations. A confidence model C is required for the robot to infer
when to rely on the learned mapping and when not [121]. In this work, a confidence
model is a mapping

C : RM 7→ [0, 1], α = C(x) (6.1)

based on the position data xcurr of the robot during the interaction and results
in a confidence value α ∈ [0, 1], where higher values relate to higher confidence.
Methods to learn such a confidence model are proposed in Sect. 6.3.

Both confidence model C(·) and learned redundancy mapping qc(·) are then
embedded in subsequent APPROACHING stages by means of the assistance blend-
ing control scheme shown in Fig. 6.2. It is implemented on the LWR IV’s joint
impedance mode [5] as already explained in Sect. 4.1. By physically deflecting the
manipulator from the commanded joint configuration qcmd, the user generates a
desired change in both the robot’s configuration qdes and xdes. The damping again
is added to prevent the robot from continued drifting after being moved. Based on
the task space position xdes the control system calculates a proposed redundancy
resolution qc by means of the embedded neural network, and retrieves a confidence
value α = C(xdes) from the learned confidence model. A blending component then
mediates between the user intended qdes and the learned null-space constraint qc:

qblend = αqc + (1− α) qdes. (6.2)

The proposed control scheme therefore dynamically blends between the de-
monstrating-in-configuration-space and the demonstrating-in-task-space strategy
depending on the robot’s confidence model. Consider for instance the extreme
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case of the first APPROACHING stage (k = 1) when no training area was demon-
strated by the user yet. The confidence of the robot should be C ≡ 0 for all
positions in the workspace. As a result, the null-space constraint passed to the
hierarchical controller qblend = qdes relates to the damped current position qcurr

of the robot. Hence, effectively the gravity compensation controller as described
in Sect. 4.1 is used during the interaction. The other extreme case describes the
(undesired) situation where the user demonstrated redundancy resolutions exhaus-
tively throughout the workspace such that the robot’s confidence is C u 1. As a
result, effectively the assisted gravity compensation control scheme is used all over
the workspace as described in Sect. 5.1, reducing the interaction effort for the user.
For all intermediate situations, the proposed assistance blending controller medi-
ates between gravity compensation and assisted gravity compensation based on the
robot’s confidence model, allowing the robot to assist the user in workspace areas
with high confidence and the user to freely interact with all joints in low-confidence
areas.

6.2 Online Sequential Extreme Learning Machine

In order to implement the proposed interaction scheme, a learning algorithm is

required that allows to process the data D(k) = (x
(k)
l ,q

(k)
l )l=1,...,L(k) online during

the RECORDING stage to allow the exploitation of the learned mapping directly
in the subsequent APPROACHING phase.

In [116] the authors propose an online sequential learning algorithm for single-
hidden-layer feedforward networks, such as the ELM discussed in Sect. 3.2.1. In
fact, the algorithm uses the ideas of ELM [112] and adapts them to an online-
capable variant of it (OS-ELM). In the following, the necessary adaptions are
briefly revised, as the OS-ELM algorithm is used in the remainder of this chapter.

We consider the same, three-layered feed-forward network architecture as de-
picted in Fig. 3.4 with fixed, randomly initialized input weights Win, an input,
hidden and output layer x ∈ RM , h ∈ RR, y ∈ RN , respectively, as well as param-
eterized activation functions fi(x)=(1+exp (−aix− bi))−1 with fixed, randomized
parameters ai, bi drawn from a uniform distribution. During execution of inputs
x, the network’s state is governed by the update equation

ŷ(x) = Wout h(x) with h(x) = f(Win x). (6.3)

Like in the ELM approach, the only learning parameters adapted during training
are the output weights Wout. However, in this section they are adapted online [116].
For a given training sample (xk+1,yk+1) the output weights Wout are adapted
according to

Wout
k+1 = Wout

k + (yk+1 −Wout
k hk+1) hT

k+1 Pk+1, (6.4)

Pk+1 = Pk −
Pk hk+1 hT

k+1 Pk

1 + hk+1 Pk hT
k+1

(6.5)
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where hk+1 = f(Win xk+1). These recursive formulas are derived from matrix
algebra and are similar to the well known recursive least squares algorithm [101].

This approach combines the advantages of the ELM approach concerning effi-
cient computation with online learning capabilities. However, as already mentioned
in Sect. 3.2.1 and intensively analyzed in [107], model selection is an issue also for
ELM approaches. Therefore, again a regularization parameter ε is introduced that
prevents large values for Wout (cf. Eq. (3.12)) and thus over-fitting. This is re-
flected in the the initialization of P and Wout, which I propose to choose according
to Wout

0 = 0N×R and P0 = (ε IR×R)−1, where I refers to the identity and 0 to
a zero matrix, respectively. Note that this implementation allows online learning
with the first data sample, which is different to the work in [116], where an initial
batch learning phase is required.

6.3 Learning a Confidence Model from Training Data

The confidence model C(·) proposed in this chapter relies on the distribution of the
provided demonstration data in task space. The idea is to generate high confidence
α ≈ 1 when close to the provided training data and low confidence α ≈ 0 far away
from any training data.

The implementation proposed in this section utilizes a set of K gaussian-like
responsibility functions

g(k)(x) = e−
1
2

(x−µk)TΣ−1
k (x−µk), (6.6)

one for each training area. The corresponding mean µk and covariance matrix Σk

are estimated from the training data (x
(k)
l )l=1,...,L(k) provided by the user during

RECORDING in the k-th area:

µk :=
1

L(k)

L(k)∑
l=1

x
(k)
l (6.7)

Σk :=
d

L(k) − 1

L(k)∑
l=1

(x
(k)
l − µk)(x

(k)
l − µk)

T. (6.8)

Once these parameters are estimated, g(k) is added to C and a confidence value
can be retrieved by querying all of these responsibility functions and returning the
maximum value, i.e according to:

C(x) = max
k=1,...,K

g(k)(x). (6.9)

As described in Sect. 6.1, during the APPROACHING stage the current task space
position xcurr of the robot during the interaction with the user is used to query the
confidence. As each of the functions g(k) implements a mapping from task space
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Fig. 6.3: Exemplary demonstration

data (x
(k)
l )l=1,...,L(k) recorded during

RECORDING in K = 6 training ar-
eas for the construction of the confi-
dence model C.
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Fig. 6.4: Estimated confidence model C
in the robot’s workspace visualized for a
fixed z-value and different parameters d.

to [0, 1], it also holds that α = C(xcurr) ∈ [0, 1] for any task space position xcurr of
the robot during the interaction with the user.

Note, that the proposed confidence model C introduces a new parameter d
to account for the fact that estimating gaussian distributions from non-gaussian
data yields undesirable results. This effect is illustrated in Fig. 6.4, where the
confidence model is shown based on the recorded data in Fig. 6.3. Setting the
parameter to d = 1 relates to the sample-covariance estimator, which results in
poor confidence even very close to the training data. In contrast, the parameter
must not be set too high, as e.g. d = 50 generates high confidence even in areas
far away from the training data. This might prohibit the user to intervene with
corrective demonstrations in areas where the so-far learned redundancy mapping
qc(·) yields bad results yet.

For accurate estimation of data distributions typically more advanced methods
are used [124]. However, as these typically require high computational effort, such
methods can be disregarded in the context of this thesis. Instead, the parameter
d is utilized. In short tests with the system prototype FlexIRob, good results are
obtained for any value of 10 ≤ d ≤ 25, as e.g. shown in Fig. 6.5 for d = 15. De-
pending on the variance of the demonstrations, the confidence model C generates
high confidence values within the demonstration data, but also in between training
areas (z = 0.1, z = 0.3) and even extrapolates slightly beyond them (z = 0.9).
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Fig. 6.5: Illustration of the learned confidence model C from the training data
shown in Fig. 6.3. C is visualized in different heights z = (0.1, 0.3, 0.6, 0.9) of the
robot’s workspace for the parameter d = 15.

6.4 Discussion and Related Work

This chapter presents an adapted interaction model for the CONFIGURATION
stage, that accounts for the results obtained in the FlexIRob@Harting study as
reported in Sect. 4.3.4. The proposed assistance blending controller dynamically
and smoothly switches between the demonstrating-in-configuration strategy, which
is the only strategy available when lacking knowledge about environmental con-
straints, and the demonstrating-in-task-space paradigm, which has been proven
to reduce the interaction complexity on the user’s side (cf. Sect. 5.2). For that
purpose, a confidence model for the robot is constructed incrementally during the
physical human-robot interaction that - in combination with online learning of
redundancy resolutions - allows it to assist the user already during subsequent
APPROACHING phases.

This strategy strongly relates to shared human-robot control approaches typ-
ically employed for teleoperation of mobile and/or dexterous manipulators [121,
125] e.g. for medical surgery [49, 126] or remote controlled humanoid robots, even
in space [127]. The typical problem addressed in that line of research is the physi-
cal separation of robot and human operator, sometimes across very long distances.
Aiming at an increased autonomy to not rely only on the human control input,
these systems typically estimate the human intent and then used to arbitrate the
humans (missing) input appropriately. In [121] the authors provide an interest-
ing and exhaustive overview about existing methods for such policy blending in
teleoperation.

In contrast, the approach presented in this chapter is employed in direct phys-
ical human-robot interaction. Arbitration of the users control inputs qdes in order
to comply to already demonstrated constraints gives kinesthetic feedback about
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where the robot already was instructed, and how. On the one hand, this reduces
teaching complexity which is a major goal of the work in this thesis, since the user
does not need to remember where the robot already was trained or to infer that
from a two-dimensional projection on a computer screen. On the other hand, the
feedback provides information about the current state of knowledge concerning
the learned constraints. Since the confidence model allows the robot to evaluate
the learned redundancy mapping also between and beyond the demonstrated ar-
eas, the user can test generalization already within the interaction, allowing to
evaluate where demonstrations still are needed and where not.

I hypothesize, that this effectively shapes the teaching process according to
ideas from research on socially guided demonstration learning. In contrast to tra-
ditional programming-by-demonstration paradigms, where interaction has been
regarded as a one way channel (e.g. as such in [128]), the authors in [122] and [123]
clearly state that both teaching and learning are intimately coupled. The instructor
has to maintain a good mental model of the learner’s internal state to provide ap-
propriate scaffolding, i.e. structuring the learning process and guiding the learner’s
exploration accordingly. “[T]ransparency of the internal state of the machine could
greatly improve the learning experience. By revealing what is known and what
is unclear, the machine can guide the teaching process. To be most effective, the
machine should use cues that will be intuitive for the human partner [. . . ]” [122].
The work in [123] elaborates on this topic with a study about movement imitation
learning on a humanoid robot showing that feedback about the robot’s learning
progress shapes the human’s tutoring behavior. In the human-robot interaction
scenario regarded in this thesis the communication between learner and teacher is
based mainly on the direct physical interaction between the robot and the human
tutor. Therefore, providing force feedback about the currently learned redundancy
resolutions seems a natural and intuitive way to make the learning process trans-
parent to the teacher.

However, decent evaluations of this hypothesis remain for future work and can
not be tackled in the context of this thesis. Still, it is worth to be noted that the
proposed approach is implemented and tested to be working on the real system
prototype FlexIRob employing the KUKA Lightweight Robot IV.



Chapter 7

Autonomous Path Planning in
Confined Spaces

One key aspect of the work presented in this thesis is to enable humans to transfer
their implicit knowledge about environmental constraints to the robot’s motion
control system. The motivation behind that approach is to incrementally increase
the robot’s autonomy in order to reduce the interaction effort on the user’s side.
As analyzed in Sect. 4.2, this knowledge is conveyed in the demonstration data pro-
vided during the CONFIGURATION stage in form of constraints in the robot’s
configuration space, but also relates to present restrictions in the workspace. The
experiment in Sect. 3.3.2 revealed, that it contains information about the obstacle-
free task space encoded in the neural learner which generalizes it beyond the train-
ing areas. Embedded into the motion control architecture, it permits to decreases
the interaction complexity for the user during the PROGRAMMING phase by pro-
viding assistance in avoiding the environmental constraints as shown in Sect. 5.2.
Following this idea one step further, one might ask the question whether the pro-
vided data can be used to further increase the robot’s autonomy, from an assistant
teaching device to a semi-autonomously moving system. The hypothesis investi-
gated in this chapter is that

the demonstration data of the CONFIGURATION stage already con-
veys sufficient information for the robot to autonomously plan and ex-
ecute safe paths between the relevant working areas avoiding environ-
mental constraints.

In the following, a path planning approach is presented to address this hypothesis.
Notably, despite the investigation of the posed question, this approach is very

interesting from an application-point-of-view. In typical industrial manufacturing
or human-robot collaboration scenarios there will also be tasks like picking and
placing objects where the specific task space trajectory between start and goal
might not be important as long as it complies to the environmental constraints.
For such applications it is desirable that the robot can move autonomously from
start to goal. However, in the context of this thesis, state-of-the art planning
methods where one can “take geometric descriptions of the robot and its static or
dynamic environment for granted” [129] can not be applied. Since the proposed,
purely data-driven approach presented in this thesis enables lay users to provide
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such kind of “descriptions”, it might be particularly interesting in applications
where no information about constraints in the robot’s workspace is given. This
includes for instances frequently changed cluttered workspaces or scenarios where
visual servoing of the robot and the constraints is not feasible.

This approach comprises several challenges since data gathered during the
CONFIGURATION stage is typically sparse and is presented incrementally and
correlated along the demonstrated trajectories. It must be processed online and
in real-time to obtain an any-time planning capability. Furthermore, the manipu-
lator’s redundancy needs to be taken into account to avoid unintended switching
of redundancy resolutions that can result in collisions with obstacles. To meet
these requirements the instantaneous topological map (ITM,[130]) is utilized, the
only state-of-the-art algorithm that can incrementally map correlated data. On
that algorithmic basis, novel elements are introduced to cope with the sparse user
data on the one hand and to account for the manipulator’s redundancy on the
other hand. Bootstrapping heuristics will improve the connectivity of the result-
ing navigation graph and a so-called joint space criterion will prevent unintended
redundancy switches. For navigation in that graph standard algorithms to find the
shortest path between start and goal position are utilized. The presented approach
was introduced in [131] and published in [132].

The remainder of this chapter is organized as follows. First the resulting adap-
tations of the interaction model are described. Subsequently, the ITM as algorith-
mic basis for the construction of the navigation graph is briefly introduced and
discussed, followed by the development of the necessary bootstrapping heuristics
for an improved connectivity and the joint space criterion. Based upon that imple-
mentation, results of the proposed path planning method are presented for different
workspaces. Finally the chapter closes with a short discussion of the results and
related work.

7.1 Interaction Model

As illustrated in Fig. 7.1, the interaction model utilized in this chapter employs
the CONFIGURATION stage as introduced in Sect. 2.3 utilizing the same inter-
action workflow (cf. Fig. 2.5) and the same interaction triggers on affected and
on converged. Hence, with respect to the the user’s viewpoint the interaction
during the CONFIGURATION phase remains unchanged.

Concerning the subsequent course of interaction, the previous chapters relied
on learning a task representation from demonstrations during the PROGRAM-
MING stage, which is logical in the tradition of classical kinesthetic teaching or
programming-by-demonstration approaches. However, in this chapter a dedicated
PROGRAMMING phase is not longer regarded to be necessary as the task is con-
sidered to be only goal-oriented and not manner-oriented [123]. Instead the user
simply defines goal positions in task-space, e.g. by providing Cartesian coordinates
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Fig. 7.1: Schematic view on the changed high-level interaction course (cf. Fig. 2.3
for comparison). The demonstration data gathered during the CONFIGURATION
stage is exploited for both inference of a redundancy mapping and constructing a
navigation graph in task space. After definition of a goal in task space, the latter
is utilized for planning a safe task space trajectory, and the latter to execute this
according to the demonstrated environmental constraints.

or by means of other, more suitable interfaces 8.

These are passed to the path planner for generating safe task space trajectories
through the free workspace. During EXECUTION a path is executed by mapping
the planned task space positions to configuration space by means of the learned
redundancy resolution qc(·) embedded in the hierarchical controller as described
in Sect. 2.3.2.

As for the system’s perspective on the CONFIGURATION stage, the inter-
action data is not only used to infer a generalized redundancy mapping qc(·) for
the hierarchical control architecture. It is also exploited to construct a topologi-
cal roadmap G estimating the reachable workspace for the robot. In fact, as the
data is gathered through the physical human-robot-interaction, the corresponding
Cartesian positions xcurr “experienced” by the robot represent free areas of the
workspace. Note, that the terms free or save here not only refer to obstacle-free
areas but generally to areas that intended or desired by the user for the robot to
be used. As usual in path planning, the roadmap is implemented as a respective
navigation graph G with nodes representing free locations, and the edges specify-
ing allowed movements between them [133]. In this work G is an undirected graph.
However, in contrast to standard methods such as rapidly-exploring random trees
(RRT, [134]) or probabilistic roadmaps [135], in this work the nodes of the graph
are not located in the robot’s configuration space but rather in task space. In-
formation about the corresponding topology in configuration space are encoded in
the learned redundancy mapping qc(·) but also in the connectivity of G.

8 As the proposed approach is not evaluated in a larger user study, the implementation of proper
interfaces for goal definition is not considered here. However, depending on the application at hand
goal definition can be implemented straight forward using basic monoscopic vision algorithms
e.g. by tracking simple markers placed by the user. Other possibilities include programming,
memorizing and labeling goals by means of the assisted gravity compensation controller utilized
in the PROGRAMMING stage which already serves as an intuitive interaction controller as
evaluated in Sect. 5.2.
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Concerning the input data to the algorithm, in contrast to learning the redun-
dancy mapping q̂c(·) all position data (xcurr,qcurr) of the robot during the CON-

FIGURATION stage is employed, not only the chunks D(k) = (x
(k)
l ,q

(k)
l )l=1,...,L(k)

of the RECORDING phase (cf. Sect. 3.1). This allows the proposed algorithm to
infer safe transitions between the demonstrated relevant areas. Construction of the
navigation graph G is conducted online during the interaction as described in the
further course of this chapter and is designed to serve life-long learning capabili-
ties. That is, learning is not required to stop e.g. to avoid over-fitting or topological
defects [136], and the resulting graph can be exploited for path planning any time.

7.2 Review: Instantaneous Topological Maps (ITM)

With respect to the interaction model used to gather input data during the CON-
FIGURATION stage, a number of requirements have to be met for constructing
the navigation graph G. The data to be processed is unknown a priori, presented
to the learner incrementally as a continuous data stream with no specific end of
training, and contains highly correlated samples. With respect to applicability,
randomizing or shuffling of the data is not desired as this prevents real-time capa-
bility and exploitation of the so-far learned graph for path planning at any time.
Furthermore, the algorithm has to be able to adapt to arbitrary topologies since
prior knowledge about the environmental constraints is not accessible. This topol-
ogy has to be estimated from relatively sparse input data as the user guides the
robot only to relevant parts of the workspace, but does not even try to sample all
regions systematically. Therefore, data is clustered in some regions and distributed
very inhomogeneously within these (cf. Fig. 7.2 and Fig. 7.3).

To the best of my knowledge, the only algorithm that meets these require-
ments to incrementally learn arbitrary topologies from correlated stimuli is the
instantaneous topological map (ITM, [130]), which was proposed to model data
typically produced by exploratory movements in robotics. As for the proposed
path planning approach it serves as algorithmic basis which is augmented towards
the requirements in this chapter. The ITM shares with the Growing Neural Gas
algorithm (GNG) [137] the ability to learn practically any topology due to its
adaptive and incrementally generated number of nodes and edges, but it can -
unlike the GNG - deal with correlated input stimuli [130]. By construction, it is a
local and online learning algorithm and does not require repeated presentation of
input data in order to iteratively converge to a correct representation of the input
data. Though its instantaneous mapping capability, it produces reliable results as
soon as data is provided.

The ITM algorithm works on a set of nodes i, represented by corresponding
weight vectors (or prototypes) ωi ∈ RM in input space, and processes input stimuli
ξ ∈ RM . Throughout this chapter I use M = 3 for the Cartesian task space or
M = 6 when including position and orientation. The nodes are connected by a set
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Algorithm 7.1 ITM algorithm

Require: ξ ∈ R3, η ≥ 0, emax > 0

1) Matching
n← arg miniDξ(ξ, ωi)
s← arg mini,i 6=nDξ(ξ, ωi)

2) Adapt winner node
ωn ← ωn + η · (ξ − ωn)

3) Creation/Deletion of edges
if n and s not connected then

create new edge (n, s)
end if
for all c ∈ N (n) do

if (ωn − ωs) · (ωc − ωs) < 0 then
remove edge (n, c)

end if
end for
delete unconnected nodes

4) Creation/Deletion of nodes
if (ωn − ξ) · (ωs − ξ) > 0 and Dξ(ξ, ωn) > emax then

create new node r with stimulus ωr = ξ
create new edge (r, n)

end if
if Dξ(ωn, ωs) <

1
2emax then

remove s
end if

of undirected edges, which define a local neighborhood N (i) for each node i. The
algorithm starts with two connected nodes, for example the first two input stimuli.
After that, for each stimulus ξ ∈ RM a set of four rules is applied as detailed in
Alg. 7.1:

1. Matching of ξ to the nearest and second-nearest nodes n and s according to
some distance metric Dξ(·, ·).

2. Adaptation of the winner node towards ξ.

3. Creation and deletion of edges using a Thales sphere criterion.

4. Creation of nodes in unoccupied areas and deletion of dispensable ones.

The algorithm is based on two parameters, namely the adaptation rate η and
the maximum quantization error emax, and a distance metric Dξ in input space,
which need to be specified. In this contribution, the Euclidean metric is used.
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η = 0 η = 0.03 η = 0.1

(a) Illustration for different η values.

emax = 0.01 emax = 0.1 emax = 0.2

(b) Illustration for different emax values.

Fig. 7.2: Illustration of the influence of the ITM’s learning parameters on the
constructed navigation graph G for exemplary provided training data shown left.
Note, that the topological defects [136] are only due that fact that the three-
dimensional data is projected to two-dimensional space

The adaptation rate η is the ITM’s equivalent to the learning rate of other
topological networks, but here rather acts as smoothing parameter that slowly
arranges the nodes to have approximately uniform distances [130]. In this work
it is set to η = 0 for two reasons. First, the clear goal of the ITM learning is to
use the constructed map for navigation, i.e. nodes and edges shall represent free
task space. The adaptation would cause distortion of the nodes such that (for
large η) or long learning it is no longer guaranteed that they are free. Second, as
shown in Fig. 7.2(a) the nature of the input data gathered during RECORDING
is typically circular and locally centered around the initially chosen xfixed due
to the utilized compliant recording controller πrec (cf. Sect. 2.3.1 and Sect. 4.1).
Adapting the nodes’ position during processing of that data, would cause them to
be attracted to the center xfixed of a training area, thereby reducing the overall
coverage of area by the learned graph significantly. Fig. 7.2(a) illustrates this effect
by showing generated graphs for different η values on the right from the training
data displayed on the left.

The second parameter, the maximum quantization error emax, determines the
resolution or the density of the resulting topological map. Fig. 7.2(b) demonstrates
the influence of this parameter. The resulting graph for emax=0.01 is constructed
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along the trajectory of input stimuli with very few connections between the circular
lines. This can be described as over-fitting. In contrast, emax = 0.2 is too large to
create enough nodes to sufficiently learn the input area and therefore results in an
under-fitting behavior.

7.3 Hybrid ITM with Connectivity Bootstrapping

In the following a number of enhancements and modifications are proposed to tailor
the ITM towards practical use in the described human-robot interaction scenario.

7.3.1 Validation of Edges using a Joint Space Criterion

The ITM creates a navigation graph G in the input space (here task space) which
can be used for navigation purposes. This is sufficient in cases where the robot
performs only simple movements in unconstrained free space. But in context of
redundant robots, planning in task space inherently is connected to the joint space.
The manipulator’s redundancy enables the robot to move in confined workspaces,
i.e. grab around obstacles and navigate through narrow spaces. During the CON-
FIGURATION stage the user can fully exploit this feature, e.g. approaching the
same workspace area in different configurations. As a result, pairs of task-space
positions may occur during a teaching session, which the ITM considers as near-
est neighbors, but which correspond to large distances in joint space. Fig. 7.3
illustrates this situation with a training session (training data on the left9) where
the robot was moved twice or more to same areas but with different redundancy
resolutions, e.g. behind the box obstacle on the right. The center figure shows two
task-space positions referring to a close distance in task space but a large change
in the robot’s joint configuration. The plain ITM algorithm would connect these
positions adding an edge to the navigation graph. But moving along these edges
would cause the robot to change the redundancy resolution such that it collides
with the obstacle.

This hybrid nature of the path planning problem is adressed by enhancing
the ITM structure to a hybrid representation comprising both task space and
joint space. Each node i of the hybrid ITM is represented by a corresponding
weight vector ωi ∈ RM in task space and a corresponding vector qi ∈ RN in
joint space. Validation of potential connections (edges) between these nodes can
now be enhanced by means of an additional distance metric Dθ evaluating task-
space edge candidates (n, s) in joint space using the corresponding joint values qn,
qs used by the robot (and the user) when approached n and s. In this work a
simple threshold of Dθ(qn,qs) < dθmax is used limiting the maximum distance in
joint space for valid edges. Again, for Dθ the Euclidean metric is used. Finding
a proper value for the threshold dθmax obviously depends on the specific robot

9 The robot is positioned directly between the two box obstacles but is not visualized to prevent
obscuring the data.
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Fig. 7.3: Left: Recorded data from a training session during which the robot has
been moved twice or more to same areas but with different redundancy resolu-
tions. Center: Marked edge candidates between such areas that the standard ITM
algorithm would connect but that can be detected as invalid using the joint space
criterion. Right: The ITM learned from the training data with the joint space
criterion included in the learning.

platform used (e.g. number of degrees of freedom, kinematic structure). During
experiments suitable values were found between dθmax = 2.5 and dθmax = 3.0
for the KUKA Lightweight Robot IV. However, further experiments with other
obstacles showed that the choice of dθmax seems to be rather scenario independent
[131]. The necessary changes to the ITM algorithm are reflected in Alg. 7.2.

As shown in Fig. 7.3 (center), using the joint space criterion, edge candidates
can be detected as invalid and are not added to the topological map. Fig. 7.3
(right) shows the learned graph from the training data shown on the left, which
does not comprise any invalid connections.

7.3.2 Bootstrapping Data for Improved Connectivity

For the reasons discussed in Sect. 2.3.1, the data gathered through the CONFIGU-
RATION phase per design is typically sparse in task space as depicted in Fig. 7.3
and Fig. 7.5. Learning a topological map of the free task space solely from this data
results in a very sparse navigation graph G which is not suited well for navigation.
The generated paths may be unnecessary long and detoured in many cases due to
holes in the map and less connections between training areas. In graph theory,
hole detection is a well known problem and several approaches such as [138] solve
this problem. Detected holes can then be closed by creating edges between the
corresponding nodes. However, these approaches are computationally expensive,
require global processing and thus violate the prerequisite of an online-training
capable method as discussed at the beginning of Sect. 7.2.

Therefore, the bootstrapping paradigm is utilized in the following to create
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additional data samples from the set of acquired input data to be processed by the
ITM algorithm. This allows to increase the connectivity in the learned topological
map while preserving the natural structure of the ITM, in contrast to altering the
graph structure a posteriori. The data pool is increased by two heuristics presented
in the following.

Local Bootstrapping

The target of the local bootstrapping is to close small holes in the graph and
increase local connectivity. During the ITM learning, for each newly created node
r the local neighborhood

Nδ(r) = {node c | ∃ path(c→ r) of length ≤ δ}, (7.1)

is utilized containing all nodes connected to node r through at most δ edges. For
each c ∈ Nδ(r), additional training samples are generated according to

ξc := ωc +
1

2
· (ωr − ωc), (7.2)

and the ITM is trained with them (omitting the bootstrapping steps). Fig. 7.4
illustrates this heuristic, showing the newly created node r and the local boot-
strapping method for δ = 3 creating new training samples to be processed by the
ITM depicted as orange marks.

x
x

x
x

x

x

new samplesx

x
x

x

1< <3

x x

r

Fig. 7.4: Illustration of local boot-
strapping heuristic.

This introduces a new parameter δ of
neighborhood depth. Note, that only val-
ues of δ > 1 will make sense for this heuris-
tic. The theoretical maximum value is de-
fined by the longest path possible in the
network. However, since computation time
increases exponentially as a function of δ
(assuming an approximately uniform va-
lence for all nodes) a practical range of δ
values is rather small. Furthermore, higher
δ values will cause the topological map to
converge to its convex hull and produce
nodes far away from explored areas, which
may be harmful in most scenarios. Since
this heuristic is intended to enhance the
data pool only locally, sample creation ξc far away from actual training data is
prevented. The maximum distance for nodes c ∈ Nδ(r) generating new sample
stimuli ξc is limited to Dξ(r, c) < 3 · emax, which proved to be a suitable value, as
this provides a span of exactly emax for new nodes to be created.

Tab. 7.1 shows statistics about the results for a training session depicted in
Fig. 7.5 (a) where the ITM was trained with emax=0.10. It shows the number of
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(a) (b) (c)

Fig. 7.5: (a) Training data recorded for evaluation of the local bootstrapping
heuristic. (b,c) Generated navigation graphs G by ITM algorithm without and
with local boostrapping (δ = 4).

δ Nodes Edges max ν ∅ ν max ε ∅ ε

0 175 330 10 3.76 n.a. n.a.
2 177 388 13 4.37 0.026 0.0208
3 191 509 14 5.32 0.053 0.0266
4 203 596 14 5.86 0.111 0.0399
5 211 653 15 6.18 0.128 0.0445

Tab. 7.1: Graph statistics of training with different δ values.

nodes and edges, the maximum and average valence ν of the constructed graph’s
nodes and an approximation of the error ε in meters caused by the heuristic. To
measure this error, the minimum distance to any sample of the training data is
calculated for each node created during the bootstrapping. From those values
the maximum and average distances are calculated. Choosing δ=2 has practically
no effect on node generation since bootstrapped samples are too close to existing
nodes. However, there is a noticeable increase in the number of edges improving
the local connectivity of the graph. For δ=3 the number of nodes increases by
9%, and the number of edges increases by 78%, improving the local connectiv-
ity significantly whilst the maximum and average estimated error induced by the
heuristic stays acceptably small. I argue, that moving the robot in close vicinity
of the obstacles of approx. 2 cm to 5 cm in human-robot interaction during the
configuration is not desired and intuitively avoided by the teacher. Increasing δ
results in further improved connectivity, as visualized in Fig. 7.5 (c) and (d), but
comes with the cost of an increased maximum error of up to 13 cm which might
be undesirable in some narrow setups. However, in the tested scenarios none of
the chosen values for δ caused collisions between the robot and the environment.
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Global Bootstrapping

This heuristic tackles the problem of weakly connected clusters, where the term
clusters here loosely refers to the training areas chosen by the user during the
kinesthetic teaching and covered by the constructed navigation graph G. Even
if the distance between clusters is small, they are only connected if the robot
has been moved between them during training. Sometimes this forces the path
planner to traverse along other clusters to reach an adjacent one, even though a
direct movement should be possible. This heuristic searches for potential cluster
pairs and tries to connect them. In contrast to the local bootstrapping method
which utilizes the local neighborhood Nδ(r) of a node r as discussed above, for
finding global connections the mere task-space distance between them is the main
criterion to find possible connections.

During ITM learning, for each newly created node r a nearest neighbor search
in task space selects all nodes

NdC max
(r) := {node c |Dξ(r, c) < dC max} (7.3)

within a sphere with the radius dC max around r. From this, all nodes of the δ-
neighborhoodNδ(r) are removed, since this heuristic tries to find global connections
and not possible shortcuts in the local neighborhood. Finally - and for the same
reasons discussed in Sect. 7.3.1 - the edge candidates between r and the remaining
nodes NdC max

(r) \ Nδ(r) are validated using the introduced joint space criterion,
i.e. for all valid nodes

c ∈ NdC max
(r) \ Nδ(r) with Dθ(qn,qs) < dθmax (7.4)

additional training samples according to Eq. (7.2) are generated.
An illustration of this heuristic is given in Fig. 7.6 where the ITM was trained

again with the same data as shown in Fig. 7.5. The left figure shows the heuristic
according to Eq. (7.4) used as a posteriori analysis marking a number of node pairs
as valid to create new data samples at places where otherwise a larger movement
along the graph is required. For example the training area at the very bottom
is connected to the rest of the graph only by a single connection. The right
figure shows the result when the heuristic is included during training. For each
connection marked on the left a sample is generated and processed by the ITM
to create new connections. Concerning the example of the bottom training, this
adds the possibility to directly move to the training areas on either side. This
experiment was done using a distance threshold of dC max = 0.25 which was found
by means of a short analysis of different user’s training data in [131]. As discussed
there, this parameter is scenario specific relating to the constraints in the robot’s
workspace. For environments with few large obstacles a larger value can be used
whereas for scenarios with small or thin obstacles a lower value is preferred.

The final algorithm of the ITM learning enhanced with the joint space criterion
developed in Sect. 7.3.1 and the bootstrapping heuristics described in Sect. 7.3.2
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Fig. 7.6: Results of the global bootstrapping for dC max = 0.25 and dθmax =
2.5. Left: A posteriori application of the global bootstrapping to a graph learned
with the plain ITM marks compatible node pairs in orange. Right: Result of the
topological map learning with the bootstrapping integrated in the learning.

is presented in Alg. 7.2. For the reasons discussed in Sect. 7.2 the adaption of the
winner node (step 2) in Alg. 7.1) is omitted here. Also, removing of edges and
nodes is omitted since these steps only have effect if adaption of the winner node
is used.

7.4 Results

Given the current position of the robot xcurr and a goal xgoal, the graphG generated
by the enhanced ITM learning is used for path planning in task space. In this work
the well known A* algorithm [139] is used, a state-of-the-art extension of the very
popular Dijkstra algorithm [140] using a heuristic search while guaranteeing to still
find the shortest path from the start to goal if it exists. However, in principle any
algorithm capable of planning shortest paths in undirected graphs can be used.
The result of the path planning algorithm is a sequence of nodes ni with their
task-space representations ωni , which function as way-points in this work for a
subsequently conducted spline interpolation. The generated, smooth task space
trajectory is then executed by means of the hierarchical control concept utilizing
the embedded learned redundancy mapping qc(·) as described in Sect. 2.3.2.

The presented method has been implemented and tested in simulation and
on the real LWR IV using the software abstractions described in Chap. A. The
presented topological map learning fulfills the real-time requirement without any
problems: Using an Intel R© Xeon R© E5530 Quadcore CPU with 2.40GHz computa-
tion times below 1 ms on average for processing a single input sample are achieved
in graphs of 300 nodes and more using δ = 4.
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Algorithm 7.2 Hybrid ITM with connectivity bootstrapping

Require: ξ ∈ RM , qξ ∈ RN , emax > 0, δ > 1, dθmax > 0

1) Matching
n← arg miniDξ(ξ, ωi)
s← arg mini,i 6=nDξ(ξ, ωi)

2) Creation of new edge
if n and s not connected and Dθ(qn,qs) < dθmax then

create new edge (n, s)
end if

if (ωn − ξ) · (ωs − ξ) > 0 and Dξ(ξ, ωn) > emax then

3) and 4) Creation of new node and edge
create new node r with stimulus ωr = ξ and qr = qξ
create new edge (r, n)

5) Local Bootstrapping
for all c ∈ Nδ(r) do

if Dξ(r, c) < 3 · emax then
repeat 1) - 4) for ξ = ωc + 1

2 · (ωr − ωc) and qξ = qr
end if

end for

6) Global Bootstrapping
for all c ∈ NdC max

(r) \ Nδ(r) do
if Dθ(qr,qc) < dθmax then

repeat 1) - 4) for ξ = ωc + 1
2 · (ωr − ωc) and qξ = qr

end if
end for

end if

Fig. 7.7 shows the result of the hybrid ITM algorithm trained with the inter-
action data during the CONFIGURATION stage as shown in Fig. 7.5. The visu-
alized resulting navigation graph G demonstrates that the heuristics presented in
this contribution greatly enhance the connectivity within the graph compared to
the results of the plain ITM algorithm learning shown in Fig. 7.5. The local boot-
strapping mainly enhances the connectivity within the training clusters whereas
the global bootstrapping creates shortcuts between them drastically reducing the
lengths of the resulting paths. Due to the introduced joint space criterion still all
bootstrapped connections remain valid in terms of collision-freeness of the gener-
ated paths. The figure also displays examples of these planned and interpolated
paths to random goal positions xgoal within that graph. Utilizing the embedded,
learned redundancy mapping qc(·) the system transforms the resulting collision-
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Fig. 7.7: The navigation graph G generated from the interaction data during the
CONFIGURATION stage as shown in Fig. 7.5, and exemplary planned paths
executed by means of the hierarchical control architecture embedding the learned
redundancy mapping qc(·).
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Fig. 7.8: Another illustrative result of the generated graph G and exemplary
planned paths in a different obstacle setup.

free trajectory in task space into a collision-free joint space trajectory performed
by the robot as indicated in Fig. 7.7. The combination of G and qc(·) enables the
robot to autonomously navigate in the estimated free task-space without inducing
any collisions with the static environment.

The example in Fig. 7.8 shows a different confined workspace. The training
data was provided by a user in 10 different training areas within a few minutes. As
can be seen, the generated graph already approximates the accessible workspace of
the robot very well without introducing any explicit geometric description of the
robot or its environmental constraints to the motion generation system. Again, the
generated paths and corresponding joint-space motions are completely collision-
free.

Extension to R6

Please note, that due to brevity and comprehensibility task-space planning in this
work so far was reduced to R3. However, the proposed method also scales to the
full six-dimensional task space and extending the presented ideas to incorporate
also the rotational component of the task space is straightforward. Inputs to the
hybrid ITM algorithm then relate to ξ = (ξT , ξO), where the orientation ξO is
represented with quaternions and ξT refers to translational coordinates. A new
distance metric

Dξ(ξ, ξ̃) = (1− α) DT (ξT , ξ̃T ) + α DO(ξO, ξ̃O) (7.5)

with a rotational component

DO(ξO, ξ̃O) = cos−1(2 · 〈ξO, ξ̃O〉2 − 1) (7.6)



112 Autonomous Path Planning in Confined Spaces

(1)
(2)

(3)

(4)

(5) (6)
(7)

(a) Recorded training data and correspond-
ing robot configuration in seven reelveant ar-
eas of the combined translational-rotational
task space.

(b) Constructed navigation graph G and ex-
emplary planned path from position (1) to
same Cartesian position but with different
end-effector orientation.

Fig. 7.9: Illustration of the hybrid ITM approach and path planning in combined
translational-rotational task space R6.

computing the angle between two quaternions is utilized that mediates between
translational and rotational space. DT is the metric used in translational space
and remains the Euclidean distance. In the experiments conducted in [131] a value
of α = 0.1 turned out to mediate well between both spaces while preserving the
structural properties such as average edge length of the learned graph as in the
translation-only case. Fig. 7.9 shows the result of the planning approach through
safe regions in combined translational-orientational space in a proof-of-concept
scenario. Seven relevant areas (1)-(7) have been selected to be demonstrated by
the user during the CONFIGURATION stage, indicated by the recorded training
data (red) and the corresponding configurations. The constructed navigation graph
G represents the learned topology of the data. In order to test that topology, an
exemplary path from the pose (ξT , ξO) referring to the training data in area (1)
is planned to the same translational position ξT but with the orientation pointing
downwards. Since from the training data a safe transition to the goal pose is only
guaranteed by also changing the position, the path first proceeds to the left-hand
side, where a safe transition between the orientations is guaranteed, and then back,
instead of directly changing the orientation. This experiment indicates, that the
implicit constraints provided by the user in task space are well reflected in the
topology of the learned navigation graph.
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7.5 Discussion and Related Work

This chapter presents a model-free path planning approach for redundant robots in
confined spaces. It is purely data-driven based only on the robot’s proprioceptive
data gathered during the physical human-robot interaction in the CONFIGURA-
TION stage. As this data is typically very sparse, specifically tailored heuristics
are presented that bootstrap additional training data to increase connectivity of
the resulting navigation graph. By this means, a topological map of the free, reach-
able workspace is constructed incrementally already during the interaction, that
can be used at any-time to move autonomously within and between the relevant
areas of the workspace. The idea behind that approach is taken from traditional
planning and control for mobile robots that incrementally build up a world model
when moving and interacting in the real world [141]. Similar to those approaches
- and in contrast to traditional planning algorithms for rigid manipulators - plan-
ning is reduced to task space in this work and hence not subject to the curse of
dimensionality when dealing with redundant robots since the number of degrees
of freedom is irrelevant. This is possible by exploiting the learned redundancy
mapping and by the presented dual internal representation of the topological map.

Please note, that for the sake of brevity the experiments conducted in this
chapter rather serve as a proof of concept than a systematic evaluation of the
proposed approach across different sets of learning parameters or different appli-
cation scenarios. As for the former, I refer to a more decent evaluation in [131]
that further elaborates on the introduced parameters e.g. with respect to aver-
age path length and curvature. Concerning applicability to other manipulators or
more complicated scenarios, I refer to the experiments of chapter Chap. 8 where
the developed path planning algorithm is used for a 9-Dof simulated manipulator
in a more complicated scenario.

The proposed approach is hybrid in a sense that it connects research fields of
learning from demonstrations, motion planning for redundant robots, and efficient
path planning in task space. Other hybrid approaches such as the RRT-based
planner proposed in [142] uses demonstrations to reproduce a path satisfying sta-
tistical constraints imposed by a human teacher while avoiding environmental ob-
stacles. The same principles have been the basis for a framework called DGMP
(demonstration-guided motion planning) using a clever combination of advanced
techniques for probabilistic road maps and RRTs to reduce computation time as
well as incorporating user demonstrations gathered from kinesthetic teaching [61].
However, both approaches plan in configuration space and therefore still suffer
from high computational complexity. The method developed in [143] is based on
dynamic wave expansion in task space and combines demonstrated trajectories
with a full model of the environment. The method is easy to implement but plans
only in task space for a mobile point robot, is not easily extendible to redundant
manipulators and uses a model that is not available in our scenario. Further hybrid
approaches such as the BiSpace planning method [144] combine planning in con-
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figuration and task space by simultaneously exploring two RRTs, one in workspace
and one in configuration space and thereby improving the planning performance
for complex high-dimensional spaces. Behnisch et al. [145] reduce computation ef-
forts by shifting the planning problem to a high-level representation in task space.
The approach is divided into two steps: global planning using RRTs in task space
and local, distance-based obstacle avoidance utilizing potential functions in con-
figuration space. Still, all of the approaches require a model of the robot and
the environment in order plan a collision-free path which are not available in the
scenario discussed in this thesis.

In contrast, the proposed approach is completely model-free and allows the user
to transfer his/her implicit knowledge about environmental constraints to the robot
rather than programming them explicitly. They are encoded in both the learned
redundancy mapping and the topology of the constructed navigation graph as the
experiment in Fig. 7.9 particularly demonstrated. Since for this purpose the same
data is utilized, that is already gathered through the CONFIGURATION stage, no
additional effort for the tutor or change to the already validated interaction scheme
is necessary. The added functionality is transparent to the user. In addition, the
proposed approach supports online and life-long learning. It is already included
during the CONFIGURATION and can serve as feedback to the user which areas
are already covered by the graph and which remain to be taught. As long as
the environmental constraints do not change, the map of the free task space is
valid and can be extended as well as exploited any time for planning collision-free,
autonomous motions for the robot.

Therefore, the presented method contributes to the overarching goal of the
thesis and proves the hypothesis raised at the beginning of this chapter. By means
of intuitive interaction interfaces the robot is instructed incrementally according
to the user’s knowledge and needs, in order to increase it’s degree of autonomy
from purely human-operated to a more self-reliant system reducing the interaction
effort on the user’s side. Only by learning from the demonstration data provided in
the CONFIGURATION phase the robot is able to safely and autonomously move
between relevant areas of its workspace in presence of environmental constraints.



Chapter 8

Incremental Teaching of a
Simulated 9-DoF manipulator

Throughout this thesis, the derived concepts and structured user interaction for
incremental teaching and efficient exploitation of implicit constraints have been
implemented and tested decently on the 7-DoF KUKA Lightweight Robot IV.
Although the presented implementation was rather straightforward utilizing the
LWR IV’s compliance features, I hypothesize that the former does not depend
on the latter. As already briefly discussed in Sect. 5.1, the required interaction
controllers πq, πrec and πx can be implemented according to the offered sensors,
interfaces and low-level controllers of the used robot platform and not impose
specific requirements on these. Therefore, I hypothesize that

the proposed concepts of incremental teaching and learning of environ-
mental constraints scale to both manipulators with more than seven
DoF and across different implementations of the interaction model.

As a result, the approach in this work can be applied to a variety of robots and
applications.

However, a thorough evaluation of this hypothesis would require to system-
atically implement the required interaction structure and controllers on several,
structurally different robot platforms each tested in user studies with non-experts.
This is out of the scope of this thesis. In contrast, I approach this question in a
proof-of-concept paradigm with an overly exaggerated example.

The experiment conducted in this chapter is therefore based on a simulated
manipulator with nine degrees of freedom that is taught by a user in a compli-
cated, confined workspace only by tele-operation via a remote control keyboard and
a computer screen. This tests the scalability of the proposed approach in three
important aspects. First, as discussed in Sect. 2.2 the interaction with a simulated
robot via tele-operation from the human perspective constitutes a completely dif-
ferent interaction interface rendering the human-robot interaction less direct and
less intuitive. Therefore, the required interaction controllers for the incremen-
tal teaching procedure must be implementable on a plain keyboard-based remote
controller. Second, as the dimensionality of the configuration space increases but
the task space is kept to be three dimensional the overall redundancy of the ma-
nipulator significantly increases to comprise a six dimensional null-space. Hence,
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the scenario requires enhanced generalization capabilities of the utilized learning
algorithm to still learn a valid redundancy mapping from on only few demonstra-
tions. Particularly with regard to the complicated interaction interface, the num-
ber of required training areas should not increase drastically to not deteriorate
the efficiency of the CONFIGURATION . Last, teaching redundancy resolutions
is conducted in a challenging workspace comprising narrow gaps and other strong
environmental constraints imposing higher demands in terms of accuracy on the
learned redundancy resolution and the path planner.

In the following, I describe the implementation of the interaction model for
the simulated arm according to Sect. 2.3 and briefly outline the experimental
setup. Subsequently, the results of this experiment are presented, ensued by a
short discussion of these.

8.1 Interaction Model

The implementation of the interaction model for this simulated robot arm again
follows the workflow of the CONFIGURATION as outlined in Sect. 2.3.1 (Fig. 2.5).

However, a central difference between the chapter at hand and the previous ones
is that the user cannot physically interact with the robot. The robot is simulated
by a simple visualization on a computer screen as shown in Fig. 8.2(b). Interaction
between the user and simulation is realized by simple key bindings on a remote
control keyboard. Moving the robot’s joints and/or the end-effector is implemented
by means of (+/-)-buttons for each dimension respectively. The commanded joint
values qcmd are smoothed by the simulation by means of a second order filter
clamping maximal velocity and acceleration, and checked for not exceeding the
joint limits of the manipulator. Despite that, no other low-level control or interface
is implemented.

In fact, throughout the entire experiment the keyboard is the only input inter-
face for the user, including guiding the robot to relevant workspace, recording train-
ing data for the learner, and for configuring the redundancy resolutions. Hence,
also the previously described interaction triggers on affected and on converged

(Sect. 2.3) to switch between the APPROACHING and the RECORDING stage
are realized by simple key bindings.

Obviously, operating the nine degrees of freedom purely with this very basic
interface, where each desired change of the robot’s configuration would require
to use the respective buttons either simultaneously or one after another, is not
suitable. Therefore, already the required interaction controllers πq and πrec for
the CONFIGURATION are implemented by means of a null-space controller as
described in the following. They are designed to mimic the interaction with a real
robot where users typically mostly move the robot’s end-effector and adapt the
joint configuration only temporally in presence of environmental constraints.

The required gravity compensation controller πq is implemented based on the
null-space controller as shown in Fig. 8.1(a). Via the remote control keyboard the
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Fig. 8.1: Implementation of the required interaction controllers for the simu-
lated, tele-operated 9-DoF arm according to the concepts described in Sect. 2.3.
Human-robot interaction is realized by means of a remote control keyboard (tele-
operation).
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user requests desired changes ∆xdes in the robot’s end-effector position or adapts
the currently selected redundancy resolution by ∆qdes. The resulting commands
in task space xdes and for the redundancy resolution qc are then fused by the
null-space controller to generate a desired joint configuration qdes which is set
as command for the simulated robot. This interaction scheme allows the user
during the APPROACHING stage to control the robot’s end-effector and adapt
the selected redundancy resolution on demand in order to guide it to relevant areas
of the workspace with a desired initial joint configuration qfixed while complying
to constraints in the robot’s workspace.

For the RECORDING stage, the required compliant recording controller πrec

is implemented similarly, but with the difference that the fixed joint configuration

q
(k)
fixed is set as temporally fixed null-space constraint to the hierarchical controller,

see Fig. 8.1(b). Training data D(k) = (x
(k)
l ,q

(k)
l )l=1,...,L(k) with x ∈ R3 and q ∈ R9

is recorded by the user through moving the robot’s end-effector in that local area
via the remote control keyboard. This control scheme can be interpreted as setting
a temporal home posture for the simulated manipulator. Examples of such training
data are shown in Fig. 8.3 in K = 8 training areas.

Learning the redundancy mapping qc(·) ≡ ŷ(·, ω) from the demonstration data
is conducted online with the OS-ELM algorithm [116] as discussed in Sect. 6.2.
This allows to embed and test the so-far learned redundancy resolution qc(·) by
means of the assisted gravity compensation controller already during the CON-
FIGURATION stage directly after each RECORDING phase, similar to the in-
teraction model in Chap. 6. Note, that despite increasing the dimensionality of
the learners output layer to y ∈ R9 no other changes in the implementation of the
learning component is required. In particular, the utilized hyper parameters such
as ε or R are exactly the same as for the setup discussed in the previous chapters.
The same holds for the graph learning component described in Chap. 7

As for the assisted gravity compensation controller, the implementation is il-
lustrated in Fig. 8.1(c). The user operates the robot’s end-effector through com-
manding desired Cartesian displacements ∆xdes of the current positions xcurr by
the remote control keyboard. Hence, the required task-space controller πx (cf.
Sect. 2.3.3) is implemented via the keyboard-based tele-operation.

8.2 Experimental Setup

Throughout this experiment an augmented simulation model of the LWR IV is
used as shown in Fig. 8.2(a). It is created by simply duplicating q3 and q4 of
the LWR IV’s original simulation model together with the associated links and
inserting them between the joints q4 and q5. As a result, the simulated manipulator
comprises nine degrees of freedom.

The confined workspace used in this experiment is shown in Fig. 8.2(b) com-
prising three relevant working areas indicated as blue faces and the manipulator
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(a)

A1

A2

A3

(b)

Fig. 8.2: Experimental setup used in this chapter: (a) Illustration of the simulated
9-DoF manipulator in comparison to the simulation model of the original KUKA
Lightweight Robot IV. The duplicated links and joints are indicated. (b) Simu-
lation environment and confined workspace consisting of different obstacles and
three relevant working areas A1, A2 and A3 with the robot being mounted at the
center of the plane.

mounted in the center. For this study, the latter is supposed to work within these
areas and navigate between them autonomously. The large area displayed in the
front (A1) is freely accessible. Since no constraining obstacles are placed beyond,
many different redundancy resolutions are suitable to work in this area. For reach-
ing a second area on top of the obstacle (A2) the robot must enfold itself very
much, requiring the user to teach a very specific redundancy resolution. The third
area (A3) is challenging in two concerns. First, only a very narrow space can be
used to navigate from other areas to this one requiring the robot to fold itself in
order to fit through the passage. Second, within this working area the lower part
of the robot’s body must stay in a certain narrow region to not collide with the
obstacles, while the end-effector is required to move freely from left to right in that
area behind the obstacles.

During the experiment, the implemented interaction controllers from the pre-
vious section are used to demonstrate redundancy resolutions in selected parts of
the workspace according the proposed CONFIGURATION procedure. Accord-
ing to the implemented interaction model, after each training area the currently
learned redundancy resolution is tested manually in interaction by means of the
assisted gravity compensation controller and additional training areas are selected
on demand. Learning the navigation graph is conducted throughout the entire
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Fig. 8.3: Illustration of the redundancy resolutions for some of the K = 8 training
areas recorded during the CONFIGURATION stage for the simulated 9-DoF ma-

nipulator. The recorded task space positions x
(k)
l are plotted as green dots and the

selected initial joint configurations q
(k)
fixed are visualized with a transparent robot,

respectively.

CONFIGURATION stage.

After enough training areas are demonstrated, the CONFIGURATION phase
is quit and the resulting hierarchical control mode embedding the final redundancy
resolution is evaluated together with the constructed navigation graph G.

8.3 Results

In the following, I present the results of this single experiment. During the CON-
FIGURATION stage training data has been recorded in K = 8 areas as illustrated
in Fig. 8.3. For the sake of brevity not all 8 selected redundancy resolutions are
displayed. They have been selected to either enable the robot to work in a specific
area or to show how to move between areas. In order to make area A1 accessible
two training areas are demonstrated, as well as two more for area A3 and only
one needed for A2. These training data has been demonstrated to make the en-
tire respective working area accessible to the robot. The remaining three training
areas are selected to demonstrate intermediate solutions that show the robot how
to move in between the working areas, e.g. how to fold through the passage under
area A2 in order to get to area A3. During the CONFIGURATION stage no
self-collisions or collisions between simulated robot and obstacles occurred. The
entire CONFIGURATION took around 30 minutes, which sounds a lot at first
glance. However, one has to account for the increased complexity of the indirect
interaction.

The feasibility is indicated by the results shown in Fig. 8.4 and Fig. 8.5 which
displays the resulting navigation graph, exemplary planned paths between ran-
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Fig. 8.4: Resulting navigation graph and exemplary planned paths after teaching
the simulated 9-DoF arm.
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Fig. 8.5: More examples of planned paths after teaching the simulated 9-DoF arm.

dom positions and robot configurations along these paths. As indicated by the
plots, all working areas are accessible for the robot as the navigation graph covers
these. The provided demonstration data of the CONFIGURATION stage now
enables the robot to navigate within but also between the different working areas
completely autonomously. The demonstrated redundancy resolutions are general-
ized by the learner over the entire (relevant) workspace in order to comply to the
strong constrains imposed by the confined scenario. As a result, the planned paths
are completely collision-free as are the generalized redundancy resolutions along
the paths. Noteably, the navigation graph is constructed not solely based on the
training data shown in Fig. 8.3. As outlined in Sect. 8.1 the redundancy resolution
is learned online during RECORDING phase and then, during APPROACHING ,
temporally and locally tested using the assisted gravity compensation controller.
While during this latter stage no training data for the neural learner is recorded,
the hybrid ITM still processes position data x and q of the robot as inputs to
construct the navigation graph.
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In order to support this visual inspection with a short numerical evaluation, 100
nodes are selected randomly from the navigation graph and set as goal positions
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Fig. 8.6: Accuracy Etask at
end points of planned paths.

xgoal for the path planner. The calculated task-
space paths are then executed in the simulation by
means of the hierarchical controller. During execu-
tion, the simulation software checks for collisions.
Once a path is executed with a final position xend,
it is checked whether the desired goal position xgoal

actually is reached. The threshold for an acceptable
accuracy is set to Etask = ‖xgoal − xend‖ < 1 cm.

The result of this analysis is that all 100 paths
could be executed collision-free. Hence, both path
planning and redundancy resolution successfully
worked together to avoid getting into contact with
the simulated obstacles. While the former gener-
ates a collision-free task-space trajectory through
the obstacle-free workspace from start to goal, the
latter transforms this to a collision-free trajectory
in joint space by means of the taught and general-
ized redundancy mapping qc(·). Concerning accu-
racy at the end-point xgoal, I report that only one of
the 100 targeted goal positions could not be reached
with the desired accuracy. While all other targets
are reached with an accuracy far below 1 mm (cf.
Fig. 8.6), the error for that single case constitutes
1.2 cm. Manual inspection of that single exception
reveals that the redundancy resolution for that tar-
get point was generalized slightly beyond the joint
limits of the simulated manipulator. Thus, for the same reasons as discussed in
Sect. 4.3.4 task space accuracy decreases as the implemented control architecture
rejects joint commands exceeding the limits.

8.4 Discussion

The presented results confirm the hypothesis of this chapter that the proposed
concepts for incremental teaching of redundancy resolutions generalize in certain
dimensions.

The implemented interaction model relies only on pure keyboard-based tele-
operation of a simulated robot. Clearly, even for tele-operation of simulated robots
there exists much more suitable input interfaces than tested in this experiment,
such as 3-D input devices (“space mouse”) typically used for CAD modeling.
In [146] the authors used a touch screen displaying the simulated robot for adapting
its posture according to taps on that screen, which can be regarded as an interme-
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diate solution between physical interaction and pure tele-operation with joystick-
like devices. As another example, the authors in [50] report about experiments
for teleoperation of a humanoid robot’s arm showing that their keyframe-based
approach enhances task-accuracy. However, the goal of this chapter was rather to
demonstrate that the proposed concepts of this thesis do not depend on a specific
form of advanced compliance features e.g. high-frequent, precise force-/torque sen-
sors. Exaggerating this hypothesis, the concepts could be implemented even for
the present simulated robot model without any interface for physical human-robot
interaction.

As a result, it is not surprising that teaching redundancy resolutions becomes
much more complicated and longish in the presented analysis. The required inter-
action includes moving the robot’s end-effector step-by-step, changing the redun-
dancy resolution on demand, switching between APPROACHING and RECORD-
ING as well as changing the camera position in the simulation environment. Keep-
ing that in mind, a teaching time of 30 minutes for the entire CONFIGURATION
stage is an acceptable value, particularly as in the subsequent stages interaction
complexity reduces. Instead of controlling nine joints and three task dimensions,
the assisted gravity compensation controller simplifies interaction drastically to
three dimensions. In addition, the knowledge conveyed to the robot during the
CONFIGURATION stage about accessible, obstacle-free regions reduces the ne-
cessity of interaction even further. The utilized graph learning algorithm enables
the system to act semi-autonomously by means of simple goal-directed commands,
if the application at hand permits.

Although the presented analysis lacks a decent statistical evaluation, the results
also indicate the robustness of the utilized machine learning algorithms. Without
changing anything but adapting the implemented learners according to the in-
creased dimensionality, both the hybrid ITM and the online sequential ELM were
able to efficiently generalize the taught constraints. No tuning of hyper parame-
ter such as ε, R or emax, dθmax was required demonstrating the scalability of the
approach concerning higher-dimensional configuration spaces.

In fact, despite also adapting the null-space controller component according
to the two additional DoF, literally no other changes to the implemented control
architecture were needed. This demonstrates the robustness of utilized software
abstractions to implement the proposed interaction concepts in the FlexIRob pro-
totype also from a system integrator’s perspective. However, as proper software
engineering in the context of this thesis is regarded rather as a required tool than
subject to investigation, this direction is not further evaluated. Again, interested
readers may therefore refer to Chap. A for further details about the system inte-
gration of the utilized hardware and software components.

I conclude this chapter with a short disclaiming note. As the presented exper-
iment followed rather the paradigm of a proof-of-concept, no decent study with
non-expert users was conducted. Instead, I taught the system by myself in a
single-experiment design. In order to get used to the increased dimensionality of
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the manipulator and complexity of the interaction during the CONFIGURATION
stage, the experiment was repeated three times. While the first trial consisted in
simply testing the interaction in the confined workspace, the second trial also in-
cluded a shorter evaluation of the trained system with 50 randomly selected goal
positions for the path planner. In that trial, only two of the 50 planned and ex-
ecuted motions entailed collisions. The results presented in here are obtained in
the third trial. Therefore, of course the proposed implementation of the inter-
action model does not work “out-of-the-box” for every user. On the opposite, I
emphasize that the experiment was not conducted several dozens of times, in the
end reporting only a single successful run. I argue, that the first two trials can be
regarded as a warm-up stage, similar to those we utilized in the FlexIRob@Harting
study (cf. Chap. B) to get the participants used to the interaction and kinematics
of the robot. After that warm-up, I was able to conduct the CONFIGURATION
repeatedly successfully.
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Chapter 9

Conclusion

In this thesis, I proposed an incremental kinesthetic teaching procedure that aims
at enabling non-expert users intuitive teaching of redundant manipulators. As ar-
gued and demonstrated throughout this work, the typical problem, users have to
face when interacting with such high-dimensional robots, is the simultaneous con-
sideration of task constraints and (task-independent) environmental constraints.
Interaction strategies solely based on the demonstrating-in-configuration-space
paradigm are not feasible for an efficient and durable transfer of the tutor’s implicit
knowledge of these constraints. On the other hand, demonstrating-in-task-space
strategies are easier to use, but mostly rely on the definition of explicit constraints
e.g. for redundancy resolution. Concerning contemporary demands in industrial
manufacturing, particularly with respect to small and medium-sized enterprises, I
argue that the lack of intuitive and flexible human-robot interfaces could limit the
applicability of modern compliant and dexterous robot platforms.

I addressed this issue in Sect. 2.3 with an approach that combines the ad-
vantages from both paradigms. A human-robot interaction model is designed to
successively reduce the teaching complexity by shifting interaction effort from the
user’s side to the robot. However, this is not achieved by introducing explicit crite-
ria or world knowledge in terms of geometric models, but rather by incrementally
transferring the user’s knowledge about environmental constraints to the robot
system. As a key concept for this, I introduced the idea of efficient teaching and
exploitation of redundancy resolutions. By means of a dedicated, task-independent
CONFIGURATION stage the user is enabled to provide demonstrations for these
constraints in the robot’s workspace. Subsequently, the robot can exploit the con-
veyed information during a PROGRAMMING phase where the proposed assisted
gravity compensation controller reduces the tutor’s interaction effort by assisting
in the selection of valid redundancy resolution.

As for learning these constraints, I proposed to rely on a pragmatic viewpoint
on the problem of redundancy selection. In typical application scenarios, it is of-
ten sufficient to learn only a feasible solution instead of searching for the optimal
one. Therefore, the interaction model for the CONFIGURATION is designed to
teach and learn only a fixed, valid redundancy resolution across the workspace
by providing only few demonstrations. As this might impose challenges from
a machine learning viewpoint, Chap. 3 systematically evaluates neural-network-
based approaches with respect to their applicability in this context. Mainly two
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approaches, the standard ELM network [112] and a specifically tailored LLM vari-
ant (cf. Sect. 3.2.2), are analyzed thoroughly with respect to their generalization
abilities and robustness against varying model selection parameters and varying
training data distributions. Both reveal good results in generalizing the taught
constraints even beyond the selected training areas. Despite the comparison, the
chapter shows the practicability of the approach. In confined workspaces only few
training areas are required to make large portions of the workspace accessible to
the robot. Please note, that also other learning algorithms such LWPR, GMR,
GPR, RBFN (cf. [147] for an interesting, very recent overview) can be employed.
However, since they rely on the same underlying principles as the evaluated meth-
ods [147], I do not expect qualitatively different results.

In the next step, I analyzed the CONFIGURATION stage from the user’s view-
point in Chap. 4. As this interaction stage is designed to transfer implicit knowl-
edge from the user to the robot, I investigated the implicitly, taught constraints and
related them to explicit constraints in the robot’s workspace (physical obstacles).
However, this relation is not always given, e.g. when a user adapts the robot only
according to personal needs but not related to physical constraints. Subsequently,
I analyzed the interaction scheme with results obtained in the FlexIRob@Harting
study. They reveal, that teaching redundancy resolutions is feasible even for non-
experts, and that the general interaction experience with the FlexIRob system
(including interaction controllers, feedback, interaction triggers) is pleasant and
self-explanatory. However, some participants failed to successfully teach valid
null-space constraints to the system. An analysis of their selected redundancy
resolution indicates, that users might not be aware of the current system’s capa-
bilities and limitations, which could result in selecting inappropriate redundancy
resolutions.

Motivated by these findings, I proposed an adapted variant of the interaction
model in Chap. 6. It utilizes online learning of null-space constraints and building
of a confidence model for the robot, in order to successively reduce the interaction
effort required by the user, already during the CONFIGURATION stage. The
robot’s confidence model shapes the interaction by means of the derived assis-
tance blending providing haptic feedback about already learned constraints and
demonstration areas. I argue, that by this means the interaction complexity is
decreasing continuously, thereby simplifying the entire teaching process which is
a major goal of this work. However, a decent evaluation of this approach remains
for future work.

In the further course of my work, I again presented results from the user study
FlexIRob@Harting, this time to analyze the effectiveness of the separation into
CONFIGURATION and PROGRAMMING stage in Chap. 5. Concerning the
proposed assisted gravity compensation controller to reduce the teaching complex-
ity compared to standard kinesthetic teaching methods, all expectations are con-
firmed. Participants utilizing the assisted mode were significantly faster, more
accurate and encountered an improved interaction experience. Thus, learning and
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embedding environmental constraints into the system’s control architecture in-
creases the system’s autonomy and reduces the interaction effort on the user’s
side.

While in the tradition of the programming-by-demonstration paradigm it is
logical to rely on kinesthetic teaching also for the programming of tasks, in some
situations the actual executed trajectory is not important. Applications such as
pick-and-place tasks in manufacturing are rather goal-directed than require a spe-
cific manner. In such situations, this simplified definition of a task should also
be reflected in a more autonomous robot system, and hence in a further simpli-
fied interaction model. Consequently, Chap. 7 presents a path planning method
that is purely data-driven by the interaction data gathered through the CON-
FIGURATION stage. In combination with the learned redundancy resolution, an
estimated topological map of the reachable workspace enables the robot to navi-
gate autonomously in its workspace while still avoiding the constraints encoded in
the demonstration data.

Chap. 8 finally presents an artificial but yet informing example, of how the
proposed methods would scale also to other robot platforms. I argue that all
proposed concepts do not depend on specific properties of the underlying low-
level controllers. In principle, the proposed concepts can be employed on any
robot platform with proper compliance features. Future work will address this
hypothesis, e.g. by implementing them on robot platforms with more DoF such as
the Kuka OmniRob or passively compliant arms such as Festo’s Bionic Handling
Assistance [9].
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Appendix A

FlexIRob: A Flexible
Interactive Robot Prototype

A.1 System Overview

An overview of the FlexIRob system prototype, which was used to implement all
discussed concepts in this work, is given in Fig. A.1. It consists of the KUKA
Lightweight Robot IV, which is the robot platform used for all real-world experi-
ments in this thesis, and three PCs.

A similar setup has been used to conduct the user study FlexIRob@Harting.

A.2 The KUKA Lightweight Robot IV

The first PC is used for real-time communication with and control of the LWR IV
via the KUKA fast research interface (FRI, [119]). The latter gives direct low-level
real-time access to the KUKA robot controller at high rates of up to 1 kHz. In
our setup, a rate of 10 kHz is used. By means of this protocol, we send joint angle
commands qcmd to the robot and receive a thorough status report of the robot
including joint positions qcurr, Cartesian positions xcurr of the end-effector, torque
measurements as well as estimated external forces fint and torques τint.

A.3 Implementation of Interaction Model

Throughout this thesis, all interaction controllers are implemented using the in-
ternal joint impedance controller of the LWR IV [5], which allows to physically
deflect the robot from its current commanded position qcmd. The compliance is
determined by the stiffness and damping parameters utilized in the low-level con-
trol. They can be set separately for each joint but are set equally,in the current
prototype setup. The parameters vary between the different interaction stages, i.e.
with the different interaction controllers and are given in Tab. A.1

According to Sect. 2.3, six interaction triggers are used to switch between the
respective control modes and interaction stages, of which the following two are
the most used and are based on physically interacting or not interacting with the
robot:
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LWR IV
Joint

Impedance
Controller

RSB

State Machine
GUI

OpenRave Visualization
Acoustic Feedback

Path Planner
ITM

CBF Controller
ELM

FRI

Real-time Control 
(10ms)

Fig. A.1: Illustration of the FlexIRob system including the KUKA Lightweight
Robot IV, two PCs and a tablet PC for a graphical user interface.

Tab. A.1: Stiffness and damping values chosen for the different interaction control
modes.

Mode stiffness damping inertia

gravity compensation 20.0 Nm
rad 0.7 Nm∗s

rad 0.1 Sect. 4.1

compliant recording 80.0 Nm
rad 0.7 Nm∗s

rad – Sect. 4.1

hierarchical control 300.0 Nm
rad 0.95 Nm∗s

rad – Sect. 3.1

assisted gravity compensation 50.0 Nm
rad 0.7 Nm∗s

rad 0.5 Sect. 5.1

assistance blending 50.0 Nm
rad 0.7 Nm∗s

rad 0.1 Sect. 6.1
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on affected is based on the estimated external torques τint. Requiring that the
robot is not moving, on affected is triggered when max(τint) > 1.5 Nm. As
external torques relate to interaction forces applied by the user, this trigger
is used to switch to interaction stages where the robot is moved to e.g.
APPROACHING the next training area or to start RECORDING data.

on converged is triggered when the robot once was in interaction with the user,
i.e. on affected was triggered before, and then is left without moving for
more than 2 seconds. As the user typically removes his or her hands of the
robot to accomplish this trigger, it acknowledges it with a short acoustic
signal.

The remaining four triggers start configuration, finished configuration,
start programming and finished programming are based on pressing a button
on a graphical user interface, which is placed besides the robot’s working place.
This procedure has proven to work well during frequent demonstrations of the
system prototype.

Note, that these latter four triggers have not been used in the FlexIRob@Harting
study. Instead, switching between CONFIGURATION and PROGRAMMING
was done manually by the experimenters.

A.4 Software Abstractions for Learning From Demon-
strations

The KUKA Lightweight Robot IV and it’s respective control aspects such as sens-
ing and actuation capabilities are modeled in the Robot Control Interface (RCI)
library [148]. RCI provides a set of domain-specific abstractions to represent com-
mon features of compliant robotics systems.

On top of that, all introduced components and the control flow of the FlexIRob
system are implemented within the Compliant Control Architecture (CCA) [148],
an event-based, middleware-agnostic component architecture for robotics research,
focusing on (real-time) control of compliant platforms.

Such an example is the utilized hierarchical controller as discussed in Sect. 2.3.2.
It is motivated by the ideas of [82] to incrementally build complex robot behavior
from a simple control basis. The main idea of the control basis framework (CBF)
is to assume, that null-space motions are generated by lower order controller,
so-called subordinate controllers, which recursively project into the null-space of
higher order controllers. The implementation in this thesis utilizes the CBF C++
library available in [149] and accordingly implements a CCA interface to embed
the controller into the data-flow control architecture [148]. As for the FlexIRob
prototype, we use a primary controller for task space motions and a subordinate
controller that is informed by the learned redundancy mapping.
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In order to simulate robot motions and check for collisions, the Open Robotics
Automation Virtual Environment (OpenRAVE) software is utilized in FlexIRob [150].
Regarding the user study FlexIRob@Harting, all system data has been recorded
by means of our middleware tools and - in a post-processing procedure - passed to
the OpenRave simulator for checking collisions in the simulated environment.

A.5 Middleware

As shown in Fig. A.1, the FlexIRob prototype uses the Robotics Service Bus
(RSB) [151] as its central interprocess communication framework. RSB is a message-
oriented, event-driven middleware and implemented as flexible, lightweight toolkit,
providing programming-language-independent concepts and communication inter-
faces.
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FlexIRob@Harting:
A User Study on Physical
Human-Robot Interaction

The user study FlexIRob@Harting was designed to assess the feasibility of kines-
thetic teaching methods for redundant robotic manipulators in the context of in-
dustrial scenarios such as teaching of welding or gluing trajectories. It was con-
ducted in April 2012 with 49 industrial workers from HARTING [24], a medium-
sized manufacturing company, at their production site. According to the current
state of knowledge this was one of the first large field studies on kinesthetic teach-
ing of a robotic manipulator in industrial scenarios carried out with industrial,
robotics-inexperienced workers.

The design, structure and main results of the study have been published in
[22]. For the sake of completeness, the study design and course of action during
the study are briefly reported here as well.

B.1 Study Design and Interaction Model

The study was designed along the proposed decomposition of the overall teaching
procedure into a task-independent CONFIGURATION stage and a task-dependent
PROGRAMMING phase as discussed in Sect. 2.3. The high-level objective of the
study was to evaluate this interaction scheme with industrial workers, but also
to validate whether kinesthetic teaching and learning methods are usable for in-
experienced users. Therefore, the following three questions have been the main
guideline for the design of the study:

• What is the general experience with our FlexIRob system?

• How feasible is the task-independent configuration for naive users?

• How helpful is the proposed decomposition of the interaction into CONFIG-
URATION and PROGRAMMING stage by means of the assisted gravity
compensation control mode?
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Fig. B.1: Illustration of the interaction workflow during the FlexIRob@Harting
study, exemplarily for the assisted group (group A). After a short warm-up phase,
the CONFIGURATION stage is repeated three times for each participant, each
followed by a testing stage. The teach-in of the PROGRAMMING phase is done
once and then replayed as feedback about teaching success to the user.

As the latter was a central research question in the study, it was reflected in the
conditions of the experiment design. In the one condition, the participant performs
a teach-in task assisted by the robot by means of the assisted gravity compensation
controller (group A). In the other condition, the task needs to be solved without
assistance, i.e. participants used the gravity compensation controller (group N).
The course of action for each participant is illustrated in Fig. B.1 and is separated
in three main stages, a warm-up phase, a repeated CONFIGURATION stage, and
finally the PROGRAMMING phase where the two conditions (group A vs. group
N) played the central role. Throughout all stages, a computer screen showed a
simulated model of the LWR IV exactly mirroring the motions of the real robot,
and acoustic feedback about the interaction trigger on converged was given to the
participants as described Sect. 2.3.1.

B.1.1 Warm-up phase

The warm-up was designed for the participants to familiarize themselves with the
KUKA Lightweight Robot IV and the interaction with it. It started by first show-
ing an instructional video10 to the participants about how all seven joints could be
moved and how the LWR IV could be moved into different positions. They were
informed about the two main operational modes, the gravity compensation and the
compliant recording (cf. Sect. 4.1) and about the interaction triggers on converged

and on affected for switching between them. The participants were also told that
they could not damage anything and could safely touch the robot’s gripper. After-
wards, the participants were instructed to familiarize themselves with the robot in
physical human-robot interaction. They were asked to test the interaction modes

10 http://www.cor-lab.de/system/files/Instruktion.mp4

http://www.cor-lab.de/system/files/Instruktion.mp4
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and triggers, e.g. to reproduce what they saw in the video. Depending on what
each participant tried, the warm-up stage took two to five minutes.

B.1.2 Configuration Phase

After participants had finished the warm-up, the CONFIGURATION stage started,
where they were asked to teach the robot redundancy resolutions according to the
presented confined workspace (cf. Fig. 4.8). The workspace was separated into
K = 2 training areas (left and right) indicated by blue boxes. First, they had to
move the robot to the left working area (APPROACHING) and were instructed
to perform circular movements for training this area (RECORDING). Then, they
had to move the arm to the right working area (APPROACHING) and to re-
peat recording training there (RECORDING). With the recorded data, the neural
network (ELM, cf. Sect. 3.2.1) was trained and embedded into the hierarchical
control mode. Subsequently, a test trajectory in form of a straight line between
left and right training area was performed by the system serving as feedback to
the participants regarding their teaching success. Good demonstrations resulted in
collision-free movements from left to right whereas other demonstrations resulted
in collisions with the styrofoam obstacle.

In order to investigate the particpants learning effects over several trials and
how much instruction participants needed, this procedure was repeated in three
trials with increasingly informative instructions. These hints were the same for
all participants, and were chosen such that with ongoing trials the possibilities for
moving the robot from left to right working area were more and more restricted,
and thus should help the participants to find valid redundancy resolutions:

1. trial:
The robot works in two work spaces [show spaces] and moves between them. Please

consider this during the teaching.

2. trial:
This is the working space [show space] ; the robot should not leave this space

with the gripper. Please consider this during the teaching.

(The difference from the first instruction is that the whole model work-space was
shown, not only the two boxes on the left and on the right.)

3. trial:
The gripper is always supposed to point down and should make a straight line

between both work spaces. Please consider this during the teaching.

B.1.3 Wire-loop game

The last part of the study was the wire loop game which simulated a teach-in of a
concrete task to the robot. During this task the experimental manipulation took
place (group A vs. group N). Participants were randomly assigned to group N or
to group A. In order to get reproducible results, all assisted participants utilized
the same reference neural network (ELM), trained by an expert in advance and
embedded into the assisted gravity compensation controller. After the teach-in,
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participants were told to step back to watch a replay of their demonstrated teach-
in.

B.1.4 Subjective Assessment of Interaction

Finally, the participants were given the questionnaire (cf. Sect. B.2). They were
instructed how to fill in the questionnaire and were given a short overview of the
different topics. They were instructed to ask if there were any questions they
did not understand. After the completion of the questionnaire participants were
debriefed. To keep the conditions and instructions stable through the whole ex-
periment each conductor of the study adhered to a set of guidelines11 during the
experiment.

B.2 Questionnaire Design

The questionnaire was adapted to the tasks and to the specific demographic back-
ground of the participants. Characteristics of the sample included educational
background and the fact that some employees were not native German speak-
ers. The questions were derived from expert-discussions and pre-tested with four
students from Bielefeld University. Due to the characteristics of the sample, all
questions were also discussed with a member of the staff of HARTING. The re-
sulting questionnaire contained 36 questions structured into seven topics:

• general experience with the robot during the interaction

• subjective experience of the wire-loop game

• whether or not participants could imagine the robot supporting them during various
tasks

• demographic variables

• other control variables (e.g. stereoscopic vision)

• previous experience with robots

• suggestions/ ideas for improvement

The items concerning general experience covered important characteristics of the
robot like threat, reliability, and intelligence, and characteristics of the handling
like ease, pleasantness, and cognitive load during handling. All items concerning
the robot and the task were rated on a five-point Likert scale ranging from 1
(yes/very much) to 5 (no/not at all). All items covering previous experience,
support by the robot and control variables were rated on a three-point Likert scale

11 Full instructions available at: http://www.cor-lab.de/system/files/instructions.pdf

http://www.cor-lab.de/system/files/instructions.pdf
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ranging from 1 (yes/very much) to 3 (no/not at all). This reduction of dimensions
was used to facilitate the completion of the questionnaire12.

B.3 Data Assessment and Analysis

Despite the questionnaire, all relevant system data was recorded for each partic-
ipant. This included the recorded training data and resulting trained networks,
the demonstrated teach-in trajectories, the performed test movements, and other
system data of the LWR IV such as joint torques and interaction forces. To allow
exact quantification of the collisions that occurred during the study, we replayed
and processed all relevant movements in a simulated environment (cf. Chap. A),
where the simulated obstacles were modeled exactly to fit the physical ones in the
study setup. By this means, we could, for instance, exactly count the number of
collisions with the environment without manual annotation of the recorded video
data.

B.4 Clustering of the Participants’ Selected Redun-
dancy Resolutions

For the analysis presented in Sect. 4.3.4, the training data of the participants
recorded in the third trial of the CONFIGURATION stage have been clustered.
The clustering is based on the initial configuration qLfixed,q

R
fixed selected by the

users in the left and right area and is done separately for each of the two training
areas. As a result, the procedure described in the following will yield to a set of
clusters {Li} for the left area and another set {Rj} for the right area. Hence, after
clustering, the participants’ chosen joint configurations qLfixed can be assigned to
one of {Li}, and qRfixed to one of {Rj}.

In the following, I describe the procedure only for the left training area; clus-
tering in the right area proceeds analogously. First of all, the analysis is based
not on all joint values of the robot but only on the first six joints. The last
joint q7 only corresponds to a rotation of the mounted tool (gripper) and, hence,
does not affect either collision avoidance or task space accuracy in this context.
The data base for clustering consists in the 49 initially chosen joint configurations
(qLfixed)p, p = 1, . . . , 49. The utilized clustering algorithm is the k-means algo-
rithm [117], with a predefined k and initialized with cluster center candidates.13

The number k is chosen after a visual inspection of the selected initial joint config-
urations for all participants by means of projecting the six-dimensional joint val-

12 Available at: http://www.cor-lab.de/system/files/FragebogenHartingstudy.pdf
13 Please note, that the variable k here indicates the number of clusters or classes, as typical

for clustering algorithms, but is not to be confused with the number K of training areas in the
context of this thesis. In this section the number of training areas is K = 2, but k will differ
according to the analysis of the participants’ selected configurations qL

fixed and qR
fixed.

http://www.cor-lab.de/system/files/FragebogenHartingstudy.pdf
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cluster initialization
name (q1, . . . , q6)T in [rad]

L1 0 π
2 −π

2 −π
2

π
2

π
2

L2 0 π
2 −π

2 −π
2 −π

2 −π
2

L3 0 π
2

π
2

π
2 −π

2
π
2

R1 0 π
2

π
2 −π

2 −π
2

π
2

R2 0 π
2 −π

2
π
2 −π

2 −π
2

R3 0 π
2 −π

2
π
2

π
2

π
2

R4
π
2

π
2

π
2

π
2 −π

2
π
2

R5
π
2

π
2 −π

2 −π
2 −π

2 −π
2

R6
π
2

π
2 −π

2 −π
2

π
2

π
2

R7
π
4

π
2

π
4 0 −π

4
π
2

Tab. B.1: Initialization of the k-means algorithm for the cluster analysis in left
and right training area.

ues to two-dimensional space using the method of multi-dimensional scaling [118].
Fig. B.2(a) shows this projection. Note, that the color-coding already indicates
the clusters, but the projection was not informed about that. Hence, the distri-
bution of the projected data already reveals three inherent clusters in the training
data, i.e. k = 3. Before starting the k-means algorithm clustering, the cluster
centers must be initialized.14 This is done with the values shown in Tab. B.1,
which relate to discrete solutions of the LWR IV’s inverse kinematics to realize a
task space position in the left training area, but with a bias towards right angles
in the posture. Hence, they represent “prototypical postures” for the manipulator
to reach around the obstacle to the left area. With this initialization, the k-means
algorithm proved to reliably and deterministically identify the three clusters L1,L2

and L3, to one of which each participant can be assigned to as shown in Tab. B.2.
The same procedure was conducted for the right training area with k = 7,

the two-dimensional, projected visualization shown in Fig. B.2(b) and the cluster
center initializations given in Tab. B.1.

Exemplarily visualizations for some of the cluster centers’ resulting postures
are shown in Fig. 4.14(a) and Fig. 4.14(b).

14 Running the k-means algorithm with randomly initialized cluster centers did not reveal any
reliable results in the presented analysis.
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L
1

L
2

L
3

(a) Two-dimensional visualization of the clus-
tered initial postures qL

fixed in left training area.

R
1

R
2

R
3

R
4

R
5

R
6

R
7

(b) Two-dimensional visualization of the clus-
tered initial postures qR

fixed in right training
area.

Fig. B.2: Visualization of the participants’ training data distribution in left and
right training area using multi-dimensional scaling [118]. The color-coding indi-
cates the clustering. The corresponding cluster centers are displayed as large,
non-filled markers.

clusters # users
name center (q1, . . . , q6)T in [rad]

L1 −0.09 1.43 −1.45 −1.24 1.33 1.54 23
L2 −0.10 1.45 −1.52 −1.29 −1.72 −1.48 2
L3 −0.10 1.54 1.45 1.21 −1.54 1.68 22

R1 0.14 1.44 1.49 −1.25 −1.45 1.58 11
R2 0.12 1.64 −1.24 1.27 −1.76 −1.79 1
R3 0.09 1.49 −1.53 1.35 1.61 1.63 4
R4 1.26 1.52 1.51 1.20 −1.59 1.70 16
R5 1.38 1.44 −1.59 −1.31 −1.78 −1.62 1
R6 1.22 1.45 −1.31 −1.07 1.31 1.63 12
R7 0.61 1.45 0.47 −0.16 −0.39 1.77 2

Tab. B.2: Results of the cluster analysis of the participants’ selected redundancy
resolutions qfixed in left and right training area.
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Appendix C

Related References by the
Author

[22] Sebastian Wrede, Christian Emmerich, Ricarda Grünberg, Arne
Nordmann, Agnes Swadzba, and Jochen J. Steil. A User Study
on Kinesthetic Teaching of Redundant Robots in Task and Config-
uration Space. Journal of Human-Robot Interaction, 2(1):56–81,
2013

The contribution of this work is the FlexIRob@Harting study, a large study
on physical human-robot interaction with 49 participants. The study was
designed along the proposed separation of the teaching procedure into CON-
FIGURATION and PROGRAMMING stage. The author contributed to
the research design, implemented large parts of the desired concepts on the
FlexIRob system prototype, was strongly involved in the conduction of the
study, and conducted the data analysis concerning the relevant system data.
The ideas reported in that work serve as basis for the derivation of the
separated teaching scheme proposed in Sect. 2.3. Results of this study are
reported in Sect. 4.3 and Sect. 5.2.

[23] Christian Emmerich, Arne Nordmann, Agnes Swadzba, Jochen J.
Steil, and Sebastian Wrede. Assisted Gravity Compensation to
cope with the complexity of kinesthetic teaching on redundant
robots. In 2013 IEEE International Conference on Robotics and
Automation, pages 4322–4328. Ieee, May 2013

This work formally derives the assisted gravity compensation controller as a
general control scheme, applicable also to other robot platforms to reduce
the complexity of kinesthetic teaching methods. The author contributed to
research design and further analyzed the system data to obtain the motiva-
tional results reported in Sect. 1.2.1.

[109] Arne Nordmann, Christian Emmerich, Stefan Rüther, Andre Lemme,
Sebastian Wrede, and Jochen J. Steil. Teaching Nullspace Con-
straints in Physical Human-Robot Interaction using Reservoir Com-
puting. In International Conference on Robotics and Automation
(ICRA), pages 1868–1875, 2012

143
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The paper presents the idea of teaching and learning redundancy resolutions
in close physical human-robot interaction and presents a first evaluation in
four different setups. Hence, the concepts presented in Sect. 2.3.1 are derived
from that ideas. The results of the evaluation are reported in Sect. 3.3.1. The
author contributed to the research design and also to the implementation and
data analysis of the reported evaluations.

[107] Klaus Neumann, Christian Emmerich, and Jochen J. Steil. Regu-
larization by Intrinsic Plasticity and Its Synergies with Recurrence
for Random Projection Methods. Journal of Intelligent Learning
Systems and Applications, 04(03):230–246, 2012

The paper investigates the role of intrinsic plasticity as a feature regulariza-
tion scheme and recurrence as a technique to produce a non-linear mixture
of sigmoid features for random projections. Although none of the work re-
ported there is reused in this thesis, the obtained results served as knowledge
base to derive the concepts and to conduct the evaluations of Chap. 3

[115] Jochen J. Steil, Christian Emmerich, Agnes Swadzba, Ricarda Grünberg,
Arne Nordmann, and Sebastian Wrede. Kinesthetic Teaching Us-
ing Assisted Gravity Compensation for Model-Free Trajectory Gen-
eration in Confined Spaces. In Florian Röhrbein, Germano Veiga,
and Ciro Natale, editors, Gearing Up and Accelerating Cross-fertilization
between Academic and Industrial Robotics Research in Europe:,
number April in Springer Tracts in Advanced Robotics, pages 107–
127. Springer International Publishing, 2014

The book chapter summarizes the obtained results obtained within the ECHORD
experiment “MoFTaG - Model-free trajectory generation” concerning ex-
perimentation with kinesthetic teaching methods on the FlexIRob proto-
type. This includes the extensive evaluation during the FlexIRob@Harting
study [22]. It also presents results concerning the idea of implicitly modeled
scenes and a reachable workspace analysis of learned redundancy resolutions.
This was the contribution of the author in is therefore - in a more extensive
evaluation - reported in Sect. 3.3.2 and Sect. 4.2.2.

[132] Daniel Seidel, Christian Emmerich, and Jochen J. Steil. Model-
free Path Planning for Redundant Robots using Sparse Data from
Kinesthetic Teaching. In International Conference on Intelligent
Robots and Systems (IROS), pages 4381–4388, 2014

This work introduces model-free path planning for redundant robot in con-
fined spaces. The main development of the method was conducted by Daniel
Seidel in his master’s thesis [131], supervised by the author, and then adopted
by the author for publication. The published derivation and evaluation of



145

this approach are reported in Chap. 7. The author contributed to the re-
search design and to the publication in [132].

[108] Christian Emmerich, R. Felix Reinhart, and Jochen J. Steil. Re-
currence enhances the spatial encoding of static inputs in reservoir
networks. In International Conference on Artificial Neural Net-
works (ICANN), number ii in Lecture Notes in Computer Science,
pages 148–153. Springer Berlin Heidelberg, 2010

The paper sheds light on certain key ingredients for generalization robust-
ness of random-projection methods such as discussed in Sect. 3.2.1. Similar
to [107], none of that work is reproduced here. However, the insights gained
in that evaluations helped to design and conduct the evaluations in Chap. 3.
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