6 research outputs found

    Randomised Prior Feedback Modulates Neural Signals of Outcome Monitoring

    Get PDF
    Substantial evidence indicates that decision outcomes are typically evaluated relative to expectations learned from relatively long sequences of previous outcomes. This mechanism is thought to play a key role in general learning and adaptation processes but relatively little is known about the determinants of outcome evaluation when the capacity to learn from series of prior events is difficult or impossible. To investigate this issue, we examined how the feedback-related negativity (FRN) is modulated by information briefly presented before outcome evaluation. The FRN is a brain potential time-locked to the delivery of decision feedback and it is widely thought to be sensitive to prior expectations. We conducted a multi-trial gambling task in which outcomes at each trial were fully randomised to minimise the capacity to learn from long sequences of prior outcomes. Event-related potentials for outcomes (Win/Loss) in the current trial (Outcomet) were separated according to the type of outcomes that occurred in the preceding two trials (Outcomet-1 and Outcomet-2). We found that FRN voltage was more positive during the processing of win feedback when it was preceded by wins at Outcomet-1 compared to win feedback preceded by losses at Outcomet-1. However, no influence of preceding outcomes was found on FRN activity relative to the processing of loss feedback. We also found no effects of Outcomet-2 on FRN amplitude relative to current feedback. Additional analyses indicated that this effect was largest for trials in which participants selected a decision different to the gamble chosen in the previous trial. These findings are inconsistent with models that solely relate the FRN to prediction error computation. Instead, our results suggest that if stable predictions about future events are weak or non-existent, then outcome processing can be determined by affective systems. More specifically, our results indicate that the FRN is likely to reflect the activity of positive affective systems in these contexts. Importantly, our findings indicate that a multifactorial explanation of the nature of the FRN is necessary and such an account must incorporate affective and motivational factors in outcome processing

    Goal impact influences the evaluative component of performance monitoring : evidence from ERPs

    Get PDF
    Successful performance monitoring (PM) requires continuous assessment of context and action outcomes. Electrophysiological studies have reliably identified event-related potential (ERP) markers for evaluative feedback processing during PM: the Feedback-Related Negativity (FRN) and P3 components. The functional significance of FRN remains debated in the literature, with recent research suggesting that feedback's goal relevance can account for FRN (amplitude) modulation, apart from its valence or expectedness alone. Extending this account, the present study assessed whether graded differentiations in feedback's relevance or importance to one's goal (referred to as goal impact) would influence PM at the FRN (and P3) level. To this end, we ran a within-subject crossover design experiment in which 40 participants completed two standard cognitive control tasks (Go/No Go and Simon), while 64-channel electroencephalography was recorded. Critically, both tasks entailed similar reward processing but systematically varied in goal impact assignment (high vs. low), manipulated through their supposed diagnosticity for daily life functioning and activation of social comparison. ERP results showed that goal impact reliably modulated FRN in a general manner. Irrespective of feedback valence, it was overall less negative in the high compared to the low impact condition, suggesting a general decrease in feedback monitoring in the former compared to the latter condition. These findings lend support to the idea that PM is best conceived operating not solely based on motor cues, but is shaped by motivational demands

    Neural signals of selective attention are modulated by subjective preferences and buying decisions in a virtual shopping task

    Get PDF
    We investigated whether well-known neural markers of selective attention to motivationally-relevant stimuli were modulated by variations in subjective preference towards consumer goods in a virtual shopping task. Specifically, participants viewed and rated pictures of various goods on the extent to which they wanted each item. Afterwards, participants had the opportunity to virtually purchase each item. Using the event-related potentials (ERP) method, we found that variations in subjective preferences for consumer goods strongly modulated positive slow waves (PSW) from 800 to 3000 milliseconds after stimulus onset. We also found that subjective preferences modulated the N200 and the late positive potential (LPP). In addition, we found that both PSW and LPP were modulated by subsequent buying decisions. Overall, these findings show that well-known brain event-related potentials reflecting selective attention processes can reliably index preferences to consumer goods in a shopping environment. Based on a large body of previous research, we suggest that early ERPs (e.g. the N200) to consumer goods could be indicative of preferences driven by unconditional and automatic processes, whereas later ERPs such as the LPP and the PSW could reflect preferences built upon more elaborative and conscious cognitive processes

    Event-related potentials in relation to risk-taking: a systematic review

    Get PDF
    Event-related potentials (ERPs) have been used to investigate neural mechanisms underlying risk-related decisions over the last 16 years. We aimed to systematically evaluate associations between risk-taking and ERP components elicited during decisions and following feedback. A total of 79 articles identified from PsychINFO and PubMed databases met the inclusion criteria. Selected articles assessed early ERP components (feedback-related negativity/FRN, error-related negativity/ERN, and medial frontal negativity/MFN) and the mid-latency P3 component, all using gambling paradigms that involved selecting between choices of varying risk (e.g., Iowa Gambling Task, Balloon Analogue Risk Task, and two-choice gambling tasks). The P3 component was consistently enhanced to the selection of risky options and when positive feedback (as compared to negative feedback) was provided. Also consistently, the early negative components were found to be larger following feedback indicating monetary losses as compared to gains. In the majority of studies reviewed here, risk was conceptualized in the context of simple economical decisions in gambling tasks. As such, this narrow concept of risk might not capture the diversity of risky decisions made in other areas of everyday experience, for example, social, health, and recreational risk-related decisions. It therefore remains to be seen whether the risk-sensitivity of the ERP components reviewed here generalizes to other domains of life.Dilushi Chandrakumar, Daniel Feuerriegel, Stefan Bode, Megan Grech and Hannah A. D. Keag
    corecore