1,573 research outputs found

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    A Powerful Optimization Tool for Analog Integrated Circuits Design

    Get PDF
    This paper presents a new optimization tool for analog circuit design. Proposed tool is based on the robust version of the differential evolution optimization method. Corners of technology, temperature, voltage and current supplies are taken into account during the optimization. That ensures robust resulting circuits. Those circuits usually do not need any schematic change and are ready for the layout.. The newly developed tool is implemented directly to the Cadence design environment to achieve very short setup time of the optimization task. The design automation procedure was enhanced by optimization watchdog feature. It was created to control optimization progress and moreover to reduce the search space to produce better design in shorter time. The optimization algorithm presented in this paper was successfully tested on several design examples

    Micro-Switch Design and Its Optimization Using Pattern Search Algorithm for Application in Reconfigurable Antenna

    Get PDF
    This chapter reports the design and optimization algorithm of metal-contact RF microswitch. Various important evolutionary optimization techniques that can be used to optimize non-linear and even non-differentiable types of radio frequency (RF) circuit’s problems are also reviewed. The transient response of the proposed switch shows displacement time (i.e., squeezed-film damping effect) of 5.0 μs and pull-in voltage varying from 9.0 to 9.25 V. Primarily, the switch exhibits insertion loss of 0.15 to 0.51 dB in on-position and isolation of 75.96 to 35.83 dB in off-position at 0.1–10 GHz. Also, the proposed RF switch equivalent circuit and layout are validated in ADS software which was earlier simulated in HFSS. A pattern search (PS) algorithm is used to optimize RF characteristics of the proposed switch after a brief review of the different optimization techniques. After optimization, the switch shows decrement in insertion loss and increment in isolation at 0.1–10 GHz. Further, two such optimized switches are introduced on the defected ground structure (DGS) antenna to make it reconfigurable in terms of frequency. Reconfigurable antenna (RA) is simulated using HFSS software and simulation results are verified by showing the mark of agreement with the fabrication results. The novelty in the proposed design is due to dual-band behavior and better resonance performance than antennas available in the literature. Attractions of proposed RA are its miniaturization and its utility in IEEE US S-(2.0–4.0 GHz) and C-(4.0–8.0 GHz) band

    Wireless interrogation of an optically modulated resonant tunnelling diode oscillator

    Get PDF
    n this work, a resonant tunnelling diode-photo-detector based microwave oscillator is amplitude modulated using an optical signal. The modulated free running oscillator is coupled to an antenna and phase locked by a wireless carrier that allows remote extraction of the information contained in the modulation. An off-the-shelf demodulator has been used to recover the envelope of the baseband data originally contained in the optical signal. Data were successfully transmitted at a rate of 1 MSym/s with a bit error rate below 10−6

    Optimization Design Flow of Integrated Circuits based on Machine Learning Approaches

    Get PDF
    Nowadays, the increased complexity of analog/digital circuits and the extremelly wide range of specifications tend to change how an integrated-circuit designer addresses circuit optimization. A traditional analog engineer likes to use some intuition when designing circuits, as a second step following paper-pencil analysis. However, the numerous parameters that influence the circuit IV in modern transistors do not provide good guesses. Moreover, an optimization based on multiple parameter sweep helps only when the design space is reduced, which is not the case in modern designs. The present thesis, developed at INTEL (in Munich site, Germany), addresses new paradigms of circuit optimization. The proposed work relies on the use of machine learning techniques applied to the design of complex CMOS systems

    A Multi-objective Simulation Based Tool: Application to the Design of High Performance LC-VCOs

    Get PDF
    Part 16: Optimization Techniques in EnergyInternational audienceThe continuing size reduction of electronic devices imposes design challenges to optimize the performances of modern electronic systems, such as: wireless services, telecom and mobile computing. Fortunately, those design challenges can be overcome thanks to the development of Electronic Design Automation (EDA) tools. In the analog, mixed signal and radio-frequency (AMS/RF) domains, circuit optimization tools have demonstrated their usefulness in addressing design problems taking into account downscaling technological aspects. Recent advances in EDA have shown that the simulation-based sizing technique is a very interesting solution to the ‘complex’ modelling task in the circuit design optimization problem. In this paper we propose a multi-objective simulation-based optimization tool. A CMOS LC-VCO circuit is presented to show the viability of this tool. The tool is used to generate the Pareto front linking two conflicting objectives, namely the VCO Phase Noise and Power Consumption. The accuracy of the results is checked against HSPICE/RF simulations

    Ant colony optimisation-based radiation pattern manipulation algorithm for electronically steerable array radiator antennas

    Get PDF
    A new algorithm for manipulating the radiation pattern of Electronically Steerable Array Radiator Antennas is proposed. A continuous implementation of the Ant Colony Optimisation (ACO) technique calculates the optimal impedance values of reactances loading different parasitic radiators placed in a circle around a centre antenna. By proposing a method to obtain a suitable sampling frequency of the radiation pattern for use in the optimisation algorithm and by transforming the reactance search space into the search space of associated phases, special care was taken to create a fast and reliable implementation, resulting in an approach that is suitable for real-time implementation. The authors compare their approach to analytical techniques and optimisation algorithms for calculating these reactances. Results show that the method is able to calculate near-optimal solutions for gain optimisation and side lobe reduction

    Analysis of the impact of metal thickness and geometric parameters on the quality factor-Q in integrated spiral inductors by means of artificial bee colony technique

    Get PDF
    The goal of this present paper is to design, analysis the influence of the inductor geometrical parameters and the effect of the metal thickness on the quality factor-Q in integrated square spiral inductor using an efficient application of the artificial bee colony (ABC) algorithm. The inductors were optimized at 2.4 GHz to determinate their major geometrical dimensions (sp, w, din…) and their number of turns, for uses in radio-frequency integrated circuits (RFICs). The optimization results are validated by the simulation using an electromagnetic simulator (ADS-Momentum). Using matlab software, the study on the impact of the effect of geometrical parameters and the effect of metal thickness, on the factor of quality-Q of spiral inductors, is shown. We first reported that it is possible to improve Q-factors further by increasing the metal thickness, and in the design of inductor; a compromise must be reached between the value of w, n, sp and din to achieve the desired quality factor-Q and other electrical parameters

    Design of the Square Loop Frequency Selective Surfaces with Particle Swarm Optimization via the Equivalent Circuit Model

    Get PDF
    In this study, Particle Swarm Optimization is applied for the design of Square Loop Frequency Selective Surfaces (the conventional Square Loop, Gridded Square Loop, and Double Square Loop) via their equivalent circuits. For this purpose, first the derivation of the equivalent circuit formulation is revisited. Then an objective function, which is based on the transmission coefficients at various frequencies at the pass/stop-bands, is defined. By means of an ANSI C++ implementation, a platform independent console application (which depends on the Equivalent Circuit Models and continuous form of Particle Swarm Optimization) is developed. The obtained results are compared to those in the literature. It is observed that the Particle Swarm Optimization is perfectly suitable for this sort of problems, and the solution accuracy is limited to and dominated by that of the Equivalent Circuit Model
    corecore