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circuits on RT Duroid 5880, with er 5 2.2, and dielectric thick-

ness of 1.57 mm.

The measured responses of S11 and S21 of the 1:2:4 filter are

shown in Figure 9. Also shown are the simulated responses as

well as the calculated performance. Similar responses are given

for the 1:2:3 filter in Figure 10.

7. CONCLUSION

For both the simulated and measured responses, the performance

deteriorates at the high frequency end of the filter; as this is to

be applied as a pseudo-lowpass filter, it is not of any concern. It

is caused by the increased loss in the substrate material, as well

as incresed dispersion from the microsrtip lines, especially in

view of the extremities of impedance in the structure.

Tradeoffs exist between lower passband return loss, lower

passband bandwidth, stopband attenuation level, and rate of cut-

off. Of the multitude of possible solutions, two have been pre-

sented that could be considered to be typical.

A comparison with the Cauer filter prototypes shows

responses that perform extremely well at bandwidths of the

order of 150%, where very few alternative planar designs with

similar performance are available.
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ABSTRACT: In this work, a resonant tunnelling diode-photo-detector
based microwave oscillator is amplitude modulated using an optical sig-
nal. The modulated free running oscillator is coupled to an antenna and

phase locked by a wireless carrier that allows remote extraction of the

information contained in the modulation. An off-the-shelf demodulator
has been used to recover the envelope of the baseband data originally

contained in the optical signal. Data were successfully transmitted at
a rate of 1 MSym/s with a bit error rate below 1026. VC 2013 Wiley

Periodicals, Inc. Microwave Opt Technol Lett 55:1728–1730, 2013; View

this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27734
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1. INTRODUCTION

Amplitude shift-keying (ASK) is a modulation technique popu-

lar in fiber optic communication systems due to its ease of

implementation [1]. In this article, a two-level ASK (2-ASK)

scheme is reported to optically modulate a resonant tunnelling

diode (RTD)-based microwave oscillator which can be interro-

gated wirelessly for remote data extraction. RTDs are the fastest

electronic devices known to date [2] and can be exploited also

as photo-detectors [3] with potential applications in optical com-

munication systems. In this study, a single RTD-based oscillator

device is used to photo-detect a 2-ASK optical signal, phase-

lock to a wireless interrogator, and finally to transmit the binary

data contained in the modulation. The principle of operation

investigated here should be fully scalable to millimetre wave-

photonics applications where data rates would be primarily lim-

ited by the bandwidth capacity of the RTD photo-detector.

2. SYSTEM DESCRIPTION

The RTD device used in this study has been previously

described in [3]. Its current–voltage characteristic and epitaxial

structure are shown in Figure 1. It consists of an AlAs/InGaAs/

AlAs double-barrier quantum-well (DBQW) structure grown on

a semiconducting InP substrate. The device is mounted on a

hybrid circuit and biased into the negative differential resistance

region to produce a fundamental microwave oscillation. As

described in [3], the RTD DBQW region embedded in a 1 lm

thick InGaAlAs photoconductive layer can be illuminated with

light, which has the effect of altering the impedance across its

electrodes. Thus, the oscillator can be directly modulated in

order to produce amplitude shift-keyed wireless data.

A schematic diagram of the wireless system is shown in Fig-

ure 2. An optical fiber containing the modulated data illuminates

the RTD oscillator in Figure 2(a), which has its RF output

coupled to an antenna. An auxiliary antenna in Figure 2(b) is

used to monitor the modulation of the free space propagated sig-

nal. The interrogator in Figure 2(c) has two functions: it sends a

Figure 1 RTD physical characteristics. (a) Current-voltage characteris-

tic (b) Epitaxial layer structure
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master locking carrier within the locking range of the RTD os-

cillator and also extracts the baseband information from the

received wireless signal, once the RTD is phase locked.

3. EXPERIMENTAL SETUP

The RTD is illuminated with an optical lensed fiber from the

top and at an angle as illustrated in Figure 3. The wavelength of

the light used is 1550 nm and the average fiber optical power is

0.2 mW. The 2-ASK signal is obtained from the optical output

of a communications laser diode (LD) identical to the one previ-

ously described in [3]. The LD is switched on and off by means

of an arbitrary waveform generator (AWG Agilent 33250a) pro-

grammed to produce a nonreturn to zero (NRZ) pseudo-random

bit sequence (PRBS). The pattern used in the experiments was

100 bits long with a clock frequency of 1 MHz.

The connectorized RTD oscillator RF output/input is directly

attached to an omnidirectional 0 dB gain antenna used to propagate

the signal in free space. The power of the fundamental oscillation

from the RTD circuit is 210 dBm at a frequency of 892 MHz. The

signal generator in Figure 2(c) is tuned to that frequency and pro-

duces a power of 28 dBm that serves to injection lock the free run-

ning RTD oscillator shown in Figure 2(a). The path loss (including

the effect of free space loss and antenna gain) from the output of

the signal generator to the RTD device has been estimated to be 25

dB (x 5 30 cm). The signal frequency locking range was monitored

with the auxiliary monopole antenna in Figure 2(b). A frequency

locking range of 1 MHz was observed between the RTD oscillator

and the signal generator. The locking gain of the propagated signal

was 10 dB measured from the monitoring antenna.

The received locked signal is coupled to a demodulator

board using a microwave circulator as shown in Figure 2(c).

The demodulator is a connectorized printed circuit board assem-

bly based on the off-the-shelf chip AD8347. The output from

the signal generator in Figure 2(c) is split between the antenna

and the local oscillator (LO) port of the AD8347 demodulator.

The power reaching the LO port is 211 dBm.

4. MEASUREMENTS AND RESULTS

The spectrum of the phase locked signal as seen from the auxil-

iary antenna in Figure 2(b) is shown in Figure 4(a). The effect

of the PRBS pattern contained in the optical modulation is seen

to produce spectral components 35 dB below the peak power of

the propagated locked RTD oscillator signal. The frequency

span of the measurement was 10 MHz.

The propagated locked signal reaches the demodulator in

Figure 2(c), which recovers the baseband information through

the in-phase output port connected to an oscilloscope

(MSO6104A). The instrument is synchronized with the PRBS

pattern using the trigger reference (1 MHz) of the AWG. A

number of waveforms (104) of the 100 bit long PRBS were

stored for latter comparison with the original NRZ data stream.

A computer software routine was used to compare the meas-

ured waveform from the demodulator in-phase output port to the

waveform used at the input of the switched LD shown in Figure

2(a). The calculated bit error rate (BER) showed that there were

no errors transmitted in a sample of 106 bits. This result was

obtained after discrete integration of each symbol at the sam-

pling rate of the oscilloscope and after normalizing each

received symbol power to the reference signal power.

Figure 2 Diagram of wireless interrogation system elements (x � 30

cm). (a) Optically modulated RTD-based oscillator attached to antenna.

(b) Auxiliary antenna used for wireless monitoring of signal locking. (c)

Locking signal transmitter and wireless received signal demodulator

Figure 3 Schematic illustration of RTD optical modulation technique

using lensed fiber (d � 300 lm)

Figure 4 Measurements of optically modulated transmitted signal. (a)

Spectrum of phase locked RTD oscillator wireless signal (892 MHz). (b)

Eye diagram of the retrieved PRBS data
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Figure 4(b) shows the measured eye diagram of the transmitted

bits through the system in Figure 2. The diagram was obtained after

superposition of the time period of 100 bits in a single waveform.

The signal-to-noise ratio (SNR) of 40 dB observed in Figure

4(a) can be used to estimate the system maximum achievable

BER after considerations of the required baseband filter band-

width or Nyquist limit (2 MHz), the noise figure of the demodu-

lator circuit (11 dB), and after the assumption is made that the

system noise follows a Gaussian distribution. Under these condi-

tions, a propagated SNR of 40 dB for 2-ASK modulation should

theoretically be able to achieve BER values below 1029. These

considerations, however, do not take into account the negative

impact on BER of undesired effects such as multipath propaga-

tion and interchannel interference, which are more difficult to

estimate without specific practical considerations.

5. CONCLUSION

Wireless interrogation of an optically modulated RTD-based os-

cillator has been reported in this article. No errors were found

after transmission of 106 bits at a data rate of 1 Msym/s. The

measurement took place after phase locking of the modulated

RTD oscillator and demodulation of the received wireless signal

using a commercial circuit. The system RTD technology should

be fully scalable to millimetre wave frequency operation where

multigigabit data rates can be achieved.
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ABSTRACT: This article presents the design of a simple and inexpen-

sive X-band bidirectional amplifier based on two microstrip quadrature
hybrid rings and two low cost microwave monolithic integrated circuit

monolithic amplifiers. Each subsystem of the amplifier was designed and
optimized, by means of an optimization methodology to obtain the best
performances. In particular, the design problem was recast as an optimi-

zation one by defining suitable cost functions that are then minimized
with an evolutionary optimization technique, namely the particle swarm

optimizer. An experimental prototype has been designed, developed, and
measured. The obtained results demonstrate the capabilities of the pro-

posed broadband bidirectional amplifier and envisage future and possi-
ble advances in the application of such devices for the development of
advanced telecommunications systems. VC 2013 Wiley Periodicals, Inc.

Microwave Opt Technol Lett 55:1730–1735, 2013; View this article

online at wileyonlinelibrary.com. DOI 10.1002/mop.27712

Key words: bidirectional amplifier; optimization techniques; evolution-

ary algorithms

1. INTRODUCTION

The design of new microwave circuits and systems is needed

in several important areas for civil and military telecommuni-

cation systems, industrial and medical equipments. Standard

microwave synthesis techniques are quite effective for the

design of basic microwave filters [1,2], combiners [3], and

broadband couplers [4,5]. Miniaturization, cost reduction, and

quick time to market are the challenging issues of nowadays

and future research trends in a variety of practical applications

ranging from UWB systems [6] to large arrays working at me-

dium and high frequencies, both in civil and military applica-

tions. In particular, the design of complex microwave devices

such as bidirectional amplifiers [7] is a key issue. Usually,

these devices require complex design techniques, high level of

expertise and a final tuning phase that dramatically increase

the costs and the time to market of the device. In this situation,

microwave computer-aided design (CAD) tools [8–10] offer a

possible solution to reduce the time to market. In fact, these

tools can analyze, design, and modify microwave devices in an

unsupervised manner and they necessarily do not request an

experienced microwave engineer to operate. In this work, we

propose the design of a new inexpensive broadband bidirec-

tional amplifier based on standard microstrip components. In

particular, two quadrature hybrid rings, filters, and matching

transformers were considered and optimized with an unsuper-

vised methodology based on a powerful evolutionary tech-

nique, namely the particle swarm optimizer (PSO) [11–14].

This optimizer has the advantage of escaping local minima,

and it is jointly used with a circuital and electromagnetic simu-

lator to maximize the performances of the amplifier.

2. SCHEMATIC OF THE BIDIRECTIONAL AMPLIFIER

The proposed bidirectional amplifier is shown in Figure 1. It

includes two microstrip hybrid rings, two amplifiers, a couple

of filters, and matching transformers. As it can be noticed

from the schematic of Figure 1, in the forward direction the

incident signal at port 1 is splitted by the first hybrid ring.

Half of the signal power travels on the upper side of the circuit

and it is amplified by the forward amplifier. Then the signal

reaches the second hybrid ring and half of power reaches port

2, the other half is dissolved by the matching load R2. While

the other half power splitted by the first hybrid is reflected

down by the output of the second amplifier and further splitted

by the first hybrid, only a quarter of the incident power is

reflected down at port 1. The behavior in the reverse direction

with the signal that impinges on port 2 is similar. The two

passband filters are mandatory to avoid instability when the

signal is present in both directions at the same time. As far as

the general structure of the considered system is concerned,

eight different subsystems have been used. However, consider-

ing the symmetry of the structure, the simplicity of the match-

ing transformer and the fact that the off-the-shelf commercial
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