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Abstract: A new algorithm for manipulating the radiation pattern of Electronically Steerable Array Radiator
Antennas is proposed. A continuous implementation of the Ant Colony Optimisation (ACO) technique
calculates the optimal impedance values of reactances loading different parasitic radiators placed in a circle
around a centre antenna. By proposing a method to obtain a suitable sampling frequency of the radiation
pattern for use in the optimisation algorithm and by transforming the reactance search space into the search
space of associated phases, special care was taken to create a fast and reliable implementation, resulting in
an approach that is suitable for real-time implementation. The authors compare their approach to analytical
techniques and optimisation algorithms for calculating these reactances. Results show that the method is able
to calculate near-optimal solutions for gain optimisation and side lobe reduction.

1 Introduction

Since the advent of mobile communications, there has been an
ever growing demand for more users and higher data rates. As
it is infeasible to reserve larger parts of the already crowded
electromagnetic spectrum for use in mobile communication
systems, there is a growing interest in other techniques for
maintaining or increasing the channel capacity between the
user device and the base station within the limited available
bandwidth. One of those techniques is the use of adaptive
antenna systems. These systems use the combination of
direction of arrival (DOA) estimation with adaptive
beamforming techniques to create a truly ‘intelligent’ antenna
system. New technologies, such as fourth generation of
mobile communications (4G) or the 802.11n (WLAN)

standard, will rely heavily on intelligent antenna systems.

Conventional steerable antenna arrays require amplitude and
phase control circuitry together with an RE receiver at each
antenna element, thereby resulting in a very complex and

high-cost system, which is not suited for mass-produced
consumer products or for integration into user terminals. In
an Electronically Steerable Array Radiator Antenna (ESPAR)
[1], a single RF receiver path is applied for the centre
element only, and beamsteering results from electronically
controlling the reactances that load the equally spaced
parasitic radiators surrounding the active antenna element.
The benefits in terms of reduced hardware complexity and
cost come at the price of a more complex steering algorithm,
since the loads of the parasitic elements influence the
radiation pattern of the array through mutual coupling.
Finding the correct reactances to achieve a desirable radiation
pattern is a highly non-linear problem and an optimisation
method, in a deterministic or stochastic way, is required to
find the correct reactances. In [2] the authors circumvene
difficulties by introducing an analytical approach to ESPAR
beamsteering. However, this approach is restricted to control
only the direction and magnitude of the main beam’s
radiation vector magnitude. For side lobe suppression,
controlling the beamwidth or optimising directivity, which is
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a much more useful antenna property, more complex
optimisation ~ methods  are  required. = Deterministic
optimisation methods to find the appropriate reactances [3]
are mainly based on the steepest gradient or oversimplification
through performing the multivariate optimisation as
successive univariate optimisation processes [4]. They often
require perfect knowledge of the objective function and its
derivatives and they are computationally complex, especially
for multi-dimensional optimisation. Although they converge
fast to a solution, they are very likely to converge to a local
optimum and therefore these algorithms are sub-optimal.
There exist other techniques, for example, random restarts,
that introduce stochastic behaviour to these deterministic
optimisation techniques. It can be argued that doing this
transforms the deterministic algorithm into another ad Aoc
metaheuristic algorithm. A metaheuristic algorithm adapted
to a specific application, for example, an Ant Colony
Optimisation (ACO) [5] algorithm with application-specific
pheromone operators or an Evolution Strategy (ES) [6] or
Genetic Algorithm [7, 8] with recombination operators
tailored to a specific application will obviously perform better.
Knowledge of the application, and the search space, allows
the designer of these application-specific metaheuristic
algorithms to take steps against convergence to local optima.
In this versatility lies the advantage of metaheuristic
algorithms, such as the proposed ACO, over other methods
when used in optimisation problems that are prohibitively
complicated to solve analytically. The lack of a tailored
optimisation algorithm for the beam pattern of ESPARs
limits the number of parasitic antenna elements that can be
steered, and hence the beamforming capabilities of the
ESPAR. In this paper, a versatile radiation pattern
manipulation strategy is followed. We rely on the continuous
implementation of the ACO technique that calculates the
optimal impedance values of the reactances loading the
different parasitic radiators placed in a circle around a center
antenna. By specially adapting the ACO scheme to the
problem at hand, through phase domain steering (Section
4.1.1) and suitable sampling of the radiation pattern (Section
4.1.2), a fast and reliable beamforming technique is obtained,
avoiding problems with convergence and resulting in an
approach that is suitable for real-time implementation.

The paper is organised in the following way: In Section 2,
we provide an overview of the mathematical model of an
ESPAR, a uniform circular array (UCA) system driven by
variable loads. This model is used in the optimisation
algorithm, which is explained in Section 3. In Section 4, we
demonstrate the algorithm on several optimisation problems.
We use these examples to illustrate several implementation
issues relevant to the ESPAR beamforming problem.

2 Electromagnetic model of
ESPAR

Consider an antenna array, consisting of N quarter-
wavelength monopole antennas uniformly distributed over a
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circle with radius R. Although in this paper we
demonstrate the proposed beamforming approach using an
UCA of monopole antennas, more complex array elements
or array geometries are just as easily processable in the
presented beamforming approach. In the centre of this
UCA, a monopole element (antenna 0) with a standalone
antenna impedance Zy is excited by an RF signal source
with internal voltage ¥, and output impedance Z; (Fig. 1).
Each antenna of the UCA is loaded with an adjustible
reactive load jx, =1/(jwC)n=1, ..., N). It is our aim
to determine the exact value of the reactive loads that
satisfy the beamforming requirements, by means of an
optimisation strategy based on the ACO technique.

The only driven antenna in the system of Fig. 1 is the
centre one. Hence, the radiation pattern of the system will
heavily depend on mutual coupling effects between this
antenna and the parasitic radiators of the UCA. So, in
order to use this configuration for beamforming, one needs
to fully characterise the mutual coupling effects in the array
so as to calculate the effect of the parasitic radiators on the
radiation pattern of the array. The excited centre antenna
element introduces currents 7,(n=1, ..., N) in the
antennas of the UCA through mutual coupling. Mutual
coupling in the antenna array is described by the mutual
coupling matrix Z. The elements Z,, describe the coupling
between antenna 7 and antenna 4A(n, =0, ..., N). This
effect will alter the antenna impedance, potentially
jeopardising matching requirements, this topic is covered in
Section 4.2. For the centre element, the induced current i
is described by

N
Vo= (Z,+ Zy)ip + Z Zoiy 1)
o

whereas for the parasitic elements (1 < #» < V) the induced
currents i, are described by

N
k=0,k#n

It is clear that in this description all antennas in the ESPAR
couple with each other. It is possible to rearrange (1) and (2)
resulting in

I=(Z+;X)'V (3)

where I = [4y, 44, 1y, ..., iN]T is a current vector containing
the currents flowing through the antenna
terminals, ¥ = [V, 0,0, ..., 0]T is the excitation vector of
dimension N+ 1, which only has one non-zero component
for the driven centre antenna. Z is the impedance matrix
containing the output impedance Z; of the element
injecting the RF signal, as well as the antenna impedances
Z,, on the main diagonal, which, together with the off-
diagonal elements, characterise mutual coupling in the
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Figure 1 Uniform circular antenna array with an excited centre element

antenna system

mutual coupling, as described by the impedance matrix, has
a large impact on the radiation pattern, which is exactly

Zo+Z, Zy Zy Zon what we are trying to exploit.
Zy Zy Zy Zin
Z= : : : (4)
Zvs Zni Zao Zaw 3 Radiation pattern optimisation —

X is a diagonal matrix containing the applied reactances

X = diag[0, x4, x5, ..., xy] (5)
Splitting the effect of the centre element from that of the
UCA elements, the radiation pattern of the ESPAR is

expressed in terms of the currents obtained in (3)

N
F (6, ) = igFo(6, §) + Y _ i, F,(6, $) 6)
n=1

C 2
=P, 9+ i (06 -G 03) )

where F,(6, ¢) is the radiation pattern of the individual
antenna element z with the other antenna terminals being
open-circuited. As neighbouring elements might affect the
radiation pattern, F,(60, ¢) may differ from the pattern of
the stand-alone antenna element. These are obtained
through simulation or can be calculated directly from
experimental data. In (7) we made use of the circular

symmetry of the ESPAR. From (3) and (6), it is clear that

ACO

ACO is a probabilistic optimisation strategy, based on the
natural behaviour of large groups of ants. Optimisation
algorithms relying on natural principles, such as ACO and
Particle Swarm Optimisation [9], are powerful methods
that can be implemented in electromagnetic applications.
Whereas the behaviour of individual ants is subject to a few
the exhibits  highly
intelligent and organised properties [10]. This is evident in
the food foraging behaviour of real-life ant colonies. Real-

basic rules, collective  behaviour

life ants use pheromones to attract other ants to paths
along which they have a high chance of finding the food.
In the process, the attracted ants dispense their own
pheromones, which attracts more ants. This is a positive
feedback process that quickly leads to the entire colony
finding an optimal path to and from the food source.

In an ACO algorithm, virtual agents called ants each create
a possible solution for an optimisation problem in every
iteration [5]. These are then evaluated in terms of a cost
function. The best solutions are retained, or at least
reinforced by applying pheromones, which are used during
the next iterations to influence the solution construction
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step by the ants. Hence, better solution components are more
likely to be included in the construction step by the ants in
the next iteration. This mechanism exhibits a similar
positive feedback process as visible in real-life foraging ants.
As a result, the algorithm quickly converges to an optimal
solution. As the original ACO was developed for
combinatorial problems, it operates on a set of discrete
parameters. However, as already mentioned in [5], ACO
is a versatile approach, that is, it lends itself well for
extension to the optimisation of continuous parameters,
such as phase or impedance. Continuous search space

ACO is covered in [11].

In this work, we implement a continuous ACO algorithm
for ESPAR beamforming purposes. Beamforming is
performed by carefully tuning adjustable reactive loads
(21, %y, ..., xy), which terminate the UCA elements. The
currents (41, &y, ..., iy) induced in the antenna elements are
described by (3) and depend on the reactive loads and mutual
coupling in the array configuration. From (6) it is possible to
determine the beampattern F, (6, ¢), which is non-linearly
dependent on the reactive loads. This beampattern has to
fulfil some demands. In order to compute how well a
beampattern fulfils the required demands, a quality of
solution is calculated by means of a cost function (8).

K-1
cost(X) = exp [Zmax (I(k)G(Ok, i X), T(HG oy (6, ¢>/€))j|

=0

(8)

where G(6, ¢, X) = 27| F, (6, (,D)|2/ZCPt is the established
antenna power gain in the direction (6, ¢) for a given X, K
is the total number of optimisation constraints and I(%) is
an indicator function, which is 1 for a goal to be
minimised and —1 for a goal to be maximised. Z. is the
free space impedance and P, is the total available power at
the antenna terminals. Since (3) relates the voltage and
the currents through the antenna terminals for a given set
of reactances X, this power can easily be calculated for
every evaluation of the cost function. In this work we
view the optimisation as consisting of one antenna gain
goal Ggoal(GO’ ¢,) = oo that is to be optimised under the
constraints Gyo, (60, ¢)i.0- These constraints signify a
maximisation or a minimisation, depending on the sign
I(k). As long as the constraint goal Ggoal(ﬁk, b pso 1S
met, the max(-, ) operator shuts down the
maximisation, respectively minimisation, of the constraint
in question by saturating the value to the constraint goal
value. The proposed cost function gives a lot of flexibility
for achieving the main goal G,,,(6;, ¢) and allows for a
nearly infinite combination of different optimisation
scenarios.

An arbitrary set of reactances result in a beampattern where
the quality of solution cost(X) > costyy.,. So the problem
boils down to the optimisation of X in order that the cost
function is minimised. As in classic ACO algorithms, ants
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construct new solutions incrementally. We define a solution
as a specific realisation of the IV reactances X. In each
timestep #, each ant creates one realisation of X. For each
solution component x, ,, this is the reactance x, at timestep
t, they make use of the pheromone levels f™(x) to
probabilistically influence their choice. The corresponding
probability mass function for choosing the parameter x,, at
construction step 7 during timestep # is

fn,t(x)

PP =S

)

where the summation is performed over all possible values of
x,. This pheromone concept works fine for combinatorial
problems such as travelling salesman problem, but an
extension is needed for continuous search spaces, such as
for reactances or phases. In [11] a Gaussian mixture model
is proposed to model the probability density function (pdf)
P (x) (Fig. 24), replacing P™(x) (Fig. 24) in the case of
continuous search spaces. The probability density function
for choosing x, is now given by

fn,t (x)

= W (10)

Pn,t (x)

where the integration is performed over the interval of
allowable x, values. By means of the pdfs, M ants will
construct M realisations of X  resulting in
(T % s ¥y Nm=1, ..., M).

Once the constructed solutions are evaluated using the cost
function (8), the pheromone pdfs are updated for the next
iteration step £+ 1

fn,t+1(x) — (1 — p)f”’[(x) + Af”,t(x) (11)

where p is a parameter that describes the evaporation of the
pheromone trail. The change in pheromone concentration
between time steps is given by

M
1 (N2 0,2
A n,t(x) — Q — e (x xn,t> /209, (12)
4 mZ; cost(X}') V27ra,,

This means the pheromone concentration is changed by
adding a normal distribution with a standard deviation
o,, around solution component «,,. This use of normal
distributions in continuous ACO was first proposed in
[11] and can be considered an application of the principle
of maximum entropy. The scaling factor Q/cost(X7") of
the normal distribution depends on the cost of the
solution. Good solutions will get a higher weight factor,
meaning they will represent a greater probability density
in (10), which will introduce the desired positive feedback
good Notice that the normal
distribution in the continuous implementation reduces to
a delta function in a discrete implementation. The

towards solutions.

rg
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Figure 2 Comparison between search spaces

a Four-choice discrete search space
b Corresponding continuous search space

standard deviation o, , adds an extra degree of freedom to
the continuous implementation of the algorithm, which
we will call the pheromone width from now onwards. It
is easy to see how the value of o, , influences the solution
construction step. A large pheromone width results in
drastic changes in solution component, whereas a small
pheromone width results in small changes, that is,
solution components that differ very little from already
explored ones [10]. This behaviour is analogue to the
temperature parameter in simulated annealing class
algorithms. We therefore propose a similar usage of the
pheromone width parameter. As the algorithm converges
to an optimum, we let the pheromone width cool down,
that is, decrease with some cooling rate factor. As in [11],
we opt for the cool-down formula (13)

max (¥}’ ;) — min (¥}’ ;)
(Tn)t — max PERRSS ﬁ PERRSS , 6 (13)

with € a pheromone width threshold. Note that, apart from
cooling down with a constant factor 1/+/%, o, , depends on
the distance between the choices «x,, made by the M ants,
which adds to robustness against local optima. Similar
parameters are one of the defining characteristics of ES
algorithms [6]. In ES, evolvable parameters, called
‘endogenous’, are used. These are crucial in the self-
adaptive mutation paradigm of ES. In a similar way, but
without altering the defining characteristics of an ACO
algorithm, the proposed technique introduces this self-
adaptiveness into to continuous ACO framework. ES
algorithms use recombination and mutation, in a broader
sense than genetic optimisation, whereas the proposed
ACO algorithm uses the inter-agent communcation
through pheromones as a sort of informed ‘recombination’
operator.

25

05} / Moy / \

4 Experiments and results

The proposed algorithm was implemented by combining
superposition, (3) and (6), with the ACO technique. The
technique was optimised for speed and predictability, to
provide fast convergence. We now demonstrate the
algorithm and highlight some important aspects.

4.1
In this section, we apply the algorithm to a UCA with radius

A consisting of 16 quarter-wavelength monopole antennas

operating at 2.45 GHz.

Implementation issues

4.1.1 Discrete demands: We start off with a discrete
optimisation demand, maximal antenna gain in the
direction of azimuth angle ¢ = 0°. Our first experiment
aims to determine whether a direct optimisation of the
involved impedances X 1is the best This
optimisation was performed using variable reactances
consisting of a fixed inductance of 5 nH in series with a
variable capacitance between 0.1 and 10 pF. The
algorithm was implemented using 10 ants, a scaling
quality factor Q =1, pheromone trail evaporation factor
p=0.125 and pheromone width threshold
€ = (max (x;”t’M) — min (x;':'t_‘yM))/2048. We view the
optimisation problem as the search for optimal phase
steering of a phased array antenna. This point of view is
possible through the consideration of the impedances X
as phase shifting devices. We can describe the array
elements from Fig. 1 by the circuit model in Fig. 3,
where we have used superposition to combine the mutual
coupling-induced voltages into a single voltage V”. The
point of interest then becomes the influence of the
added reactance jx, on the current 7, flowing through
the antenna terminals.

option.
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The relative phase shift f, with regard to 7" (Fig. 3),
introduced by a chosen reactance x,, is easily found (where

X
£ = _arcm(m>
R,, (14)

:cE[x

X min’ xmax]

n
This is a highly non-linear characteristic. This non-linearity
has an undesirable effect on the search space. The
sensitivity to changes in the optimisation parameter f, is
highly dependent on the value of x,. This conflicts with
the notion of pheromone width: for a fixed o,,, the
expected change in current i, by adapting the phase £, is
greater for small values of x,, than for a large value of «,,.
The problem here is that the idea behind pheromone width
is to capture the allowed change in optimisation result, that
is, the sensitivity, during the next construction step. To
solve this problem, we propose a new approach for the
optimisation problem. Instead of performing optimisation
in reactance values, as in (14), we will operate in a multi-
dimensional phase space and calculate the corresponding
capacitance afterwards

Xin T X, Xnax + &,
— E _ t min nn _ t max nn
fo=c [ arctan (71{ ) , —arctan <7R ) i|

(15)
Both approaches were compared in Fig. 4. Here, a A/4

radius, six-element UCA with centre element, operating at
2.484 GHz, was optimised for maximal main beam gain.
The reactive loads were allowed to vary between 0.75 and
2pF. The algorithm used 10 ants, a scaling quality factor
Q =1, pheromone trail evaporation factor p = 0.125 and
pheromone width threshold €= (max (xY[M) — min
(x;’:i_’M))/2048. The dotted line represents convergence of
the algorithm that optimises reactances (14). The full line
represents the convergence of the algorithm that optimises
phases directly, chosing values within the limits defined in
(15). The achieved solution is much better for the phase
optimisation, which suggests that the reactance optimising
algorithm converges to a local optimum. The parameter
7, the pheromone width (Section 3), which smoothes the

www.ietdl.org

0 20 40 60 80 100
percentage of the total iteration number

Figure 4 Convergence of the optimisation algorithm:
optimising the reactances (dotted line), optimising the
phases (full line)

The mean best solution is shown. Also shown are bars depicting

the interquartile range (IQR) of the best attained solutions at 20
40, 60, 80 of the total iteration number

search space, should have prevented this. This is explained
through the highly non-linear influence of the reactance on
the cost function. The same o, , results in very different
sensitivity of the cost function to the resulting changes in
reactance, depending on the value of the reactance, that is,
the position of the pheromone distribution in the search
space. The effect of o, , therefore varies greatly within the
search space. Performing optimisation on the phases
directly (15), linearises the search space somewhat, thereby
reducing the influence of the absolute position of the
pheromone distribution in the search space on the
sensitivity of the cost function to o, ,. With this alteration,
the pheromone width o, , works as it should, smoothing
the search space in order to avoid premature convergence to
local optima. This is evidenced by the superior solution
indicated by the full line in Fig. 4.

4.1.2 Continuous demands: Beamforming
requirements are very often provided as a set of continuous
demands on the radiation pattern. As digital signal
processing inevitably implies a discretisation of the
radiation pattern, one also has to decide which sampling
frequency to use for the continuous demands. This is
important because there is a linear relationship between the
execution time and the sampling frequency. In [12], it is
proven that the radiation pattern is a band limited signal
for the azimuth angle ¢. In [13] this has been used to
propose a proportional relationship between the minimum
required sampling frequency f; and the electrical size 4R of
a uniform circular array

kR

L= (16)

kyR/r is equivalent to the Nyquist rate. Simply using the
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Figure 5 Evolution of the normalised quantisation error

variance as the radiation pattern sampling frequency increases

Nyquist rate to discretise a continuous demand on the
radiation pattern is not sufficient. This will still result in
overshoot: According to the Fourier theorem, any periodic
function (such as the antenna gain pattern) can be
expressed as a series of sines. Since the bandwidth is
limited, there will be a sine of highest frequency, this one
will be sampled with the least (relative to the sines of lower
frequency). If there are any problems regarding the
sampling of the antenna gain pattern, it will be with this
sine. A continuous sine always reaches its maximum in
between sample points. Monte Carlo simulations show that
there is a clear relationship between the sampling rate and
the expected overshoot. This is shown in Fig. 5. The figure
shows the evolution of the variance between the largest
sample point value and the maximum of the continuous
sine. The variance of the quantisation error on the cost
function has already dropped 35 dB if we use five times the
Nyquist frequency. A comparison between optimisation
with discretisation using the Nyquist frequency and
discretisation using five times the Nyquist frequency is
shown in Figs. 6 and 7 where, in addition to creating a
main beam along 0°, the algorithm has attempted to
suppress the side lobe level by 20 dB for azimuth angles
between ¢ = 90° and 135°.

This optimisation was performed for the 16-element quarter-
wavelength monopole UCA with array radius A fed by

o
T

Antenna gain, dBi
& o

“A80 135 90 45 35
a

Figure 6 Gain of the optimised ESPAR
a Comparison between optimisation using the Nyquist rate

phase-controlled ideal voltage sources at 2.45 GHz. Again,
the algorithm was implemented using 10 ants, a scaling
quality factor Q =1, pheromone trail evaporation factor
p=0.125 and pheromone width threshold €=

,,,,,,,,,,

is A, so the Nyquist frequency is equal to 2 samples/radian.

4.2 Matching requirements

For the optimisation of the 16-element quarter-wavelength
monopole UCA with array radius A fed by phase-controlled
ideal voltage sources at 2.45 GHz, we allowed reactance to
vary between 70.47 and —572.64. This is roughly
equivalent with a fixed series inductance of 5nH with
capacitances varying between 0.1 and 10pF. The
optimisation is discussed in Section 4.4. In this search space,
antenna impedance varies between 68.00-j26.17 and
102.27-j103.46 Q2. This means mismatch factors vary
between 0.6035 and 0.9309 and standing wave ratio (SWR)
between 4.4 and 1.7 when matching to a source impedance
of 50 . It is clear that the proposed method of steering an
ESPAR influences the impedance matrix in a very real way.
The antenna input impedance will drift while steering,
resulting in a change of the mismatch factor and SWR. The
impedance matrix for one configuration of reactances is
constantly calculated in the proposed framework. Through
this, transmitted power, mismatch factor and SWR are
calculated for every ant in every cycle. It is therefore possible
to include matching requirements in the cost function to
exclude solutions that are not sufficiently matched.

4.3 Performance

4.3.1 Execution speed: The combination of an
electromagnetic description of the ESPAR in full detail
and the ACO technique is optimised for speed and
predictability, to provide fast convergence. It has been
compared to the free software 4NEC2’s [14] genetic

S

Antenna gain, dBi
(I‘n o

"800 135 90 45

o Qor

b Comparison between optimisation using five times the Nyquist rate
The 20 dB suppression limit is denoted by the dotted line
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Antenna gain difference, dB

90 135

Figure 7 Cropout from Fig. 6

The gain of the optimised ESPAR in the interval ¢ € [90°, 135°]
a Comparison between optimisation using the Nyquist rate
b Comparison between optimisation using five times the Nyquist

algorithm optimiser for solution quality as a function of the
number of iterations. The genetic algorithm had a
population size of 30, crossover probability of 70% and
mutation probability of 5% the proposed ACO algorithm
had a 10 ants, a scaling quality factor Q = 1, pheromone
trail evaporation factor p =0.125 and pheromone width
threshold € = (max (x’l”M) — min (x’l” 1))/2048. The
optimisation problem was the same as in Section 4.1.1.
The convergence characteristics are shown in Fig. 8. Both
algorithms converge in a remarkably similar number of
iterations, although the population of the proposed
algorithm was much smaller. This is an indication for the
potential of the proposed method. There is, however, a
huge difference in execution time between the genetic
optimisation and the proposed method. Whereas the
genetic optimiser uses the NEC full-wave solver for
evaluating each gene during every iteration, which causes
that optimisation process to take several hours, the
proposed algorithm uses the superposition technique
explained in Section 2, which takes only fractions of a
second (98 ms on a 2.1 GHz AthlonXP processor). In that
sense the proposed algorithm could be implemented for
real-time purposes. This comparison proves a clear
advantage when using the superposition technique from
Section 2 instead of when evaluating a full-wave solver for
every ant/gene in every generation.

4.3.2 Comparison to other techniques: In [2], an
analytical approach was adopted for the same optimisation
problem. In this example, a six-element UCA was used
with radiators located at radius A/4 around the centre
element. The added capacities in [2] were allowed to vary

rate
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within the range of 0.1-10 pF, the operating frequency is
2.484 GHz. This analytical approach optimises the electric
field. The electric field, however, is a less suitable quality
measure than the antenna gain for an antenna system, as
the comparison with the proposed method in Fig. 9 shows.
The directivity is far worse in the case of electric field
maximisation compared to maximisation of the antenna
gain. The aim of the experiment was to maximise the main
beam antenna directivity in the direction of ¢ = 0°. For
the ACO algorithm, we used the same parameters as in the
previous experiments.

Antenna gain, dBi

L L L L

20 40 60 80 100
percentage of the total iteration number

Figure 8 Convergence comparison between the proposed
ACO (full line) and a genetic algorithm (dotted line), the
bars depict the IQR
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Figure 9 Comparison between electric field maximisation,
the analytical approach from [2] (dotted line) and
antenna gain maximisation, our proposed technique (full
line)

4.4 Antenna design experiment
We now apply the algorithm again to the 16-element UCA of

monopole elements. Fig. 10 shows the result of the antenna
gain maximisation problem in the direction of ¢ = 0° (in the
direction of a UCA element) as well as for a main beam
steered along ¢ = 11.25° (direction in between two UCA
elements). This optimisation was performed using variable
reactances consisting of a fixed inductance of 5 nH in series
with a variable capacitance between 0.1 and 10 pF. Again, the
algorithm was implemented using 10 ants, a scaling quality

Antenna gain difference, dB

Figure 11 Result of the gain maximisation/side lobe
suppression for the 16-element UCA

beam directivity, two large side lobes come into view. These
are suppressed by only 4.5 dB with respect to the main beam.
Using the technique sketched in 4.1.2, an attempt was made
to suppress these side lobes by 10 dB. The best attainable side
lobe suppression, without significantly comprimising the
main beam gain and/or causing other side lobes, is found to
be 6.5 dB (see Fig. 11). The optimised impedance values are
shown in Table 1.

Table 1 List of impedance values at the 16-element UCA for
the optimised problem of Section 4.4

Antenna gain, dBi

factor Q=1, pherorno'ne trail evaporation factor 0'=nOt.125 Antenna Azimuth (deg) | Impedance value (+5 nH) (pF)
and pheromone width threshold €= (max(x}” ,,)
— min (xlt 1))/2048. The difference in the main lobe gain 0 1
in the two situations is 0.3 dB. Aside from the obvious main 225 08
45 0.2
67.5 13
90 0.3
1125 9.8
135 9.3
157.5 13
180 0.8
202.5 1.5
225 9.0
247.5 9.3
270 0.3
292.5 13
Figure 10 Result from gain maximisation for the 16- 315 0.2
element ESPAR, main beam direction ¢ = 0° (dotted line) 3375 0.8
and main beam direction ¢ = 11.25° (full line) ; :
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5 Conclusion

In this paper, it has been demonstrated that ACO is a viable
technique for use in antenna optimisation problems. It
withstands a direct comparison with genetic algorithms. It
was also demonstrated that the necessary calculations for
variable reactance beamforming are possible, in real-time, and
for a very large number of different radiation pattern and
matching restrictions. The number of different optimisation
scenarios can be nearly infinite, which is very important when
comparing with other methods (optimisation and/or other
means), which would have to be used off-line and have their

results stored in a ROM of limited capacity.
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