6 research outputs found

    Neural Model-Based Advanced Control of Chylla-Haase Reactor

    Get PDF
    The objective of this thesis is to develop advanced control method and to design advanced control system for the polymerization reactor (Chylla-Haase) to maintain the high accurate reactor temperature. The first stage of this research start with the development of mathematical model of the process. The sub-models for monomer concentration, polymerization rate, reactor temperature and jacket outlet/inlet temperature are developed and implemented in Matlab/Simulink. Four conventional control methods were applied to the reactor: a Proportional โ€“Integral-Derivative (PID), Cascade control (CCs), Linear-Quadratic-Regulator (LQR), and Linear model predictive control (LMPC). The simulation results show that the PID controller is unable to perform satisfactorily due to the change of physical properties unless constant re-tuning takes place. Also, Cascade Control the most common control method used in such processes cannot guarantee a robust performance under varying disturbance and system uncertainty. In addition, LQR and linear MPC methods lead to better results compared with the previous two methods. But it is still under an assumption of the linearized plant. Three advanced neural network based control schemes are also proposed in this thesis: radial basis function RBF neural network inverse model based feedforward-feedback control scheme, RBF based model predictive control and multi-layer perception (MLP) based model predictive control. The major objective of these control schemes is to maintain the reactor temperature within its tolerance range under disturbances and system uncertainty. Satisfactory control performance in terms of effective regulation and robustness to disturbance have been achieved. In the feedforward-feedback control scheme, a neural network model is used to predict reactor temperature. Then, a neural network inverse model is used to estimate the valve position of the reactor, the manipulated variable. This method can identify the controlled system with the RBF neural network identifier. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance. These advanced methods achieved the much improved control performance compared with conventional control schemes. The main contribution of this research lies in the following aspects. The MPC theory is realised to control Chylla-Haase polymerization reactor. Two adaptive reactor models including the RBF network model and MLP model are developed to predict the multiple-step-ahead values of the reactor output. Their modelling ability is compared with that of the models with fixed parameters and proven to be better. The RBF neural network and the MLP is trained by the recursive Least Squares (RLS) algorithm and is used to model parameter uncertainty in nonlinear dynamics of the Chylla-Haase reactor. The predictive control strategy based on the RBF neural network is applied to achieve set-point tracking of the reactor output against disturbances. The result shows that the RBF based model predictive control gives reliable result in the presence of some disturbances and keeps the reactor temperature within a tight tolerance range around the specified reaction temperature. Moreover, RBF neural network based model predictive control strategy has also been used to reduce the batch time in order to shorten the reaction period. RBF neural network is considered as a prediction model for control purpose which is based to minimize a cost function in order to determine an optimal sequence of control moves. The result shows that the RBF based model predictive control gives reliable result in the presence of variation of monomer and presence of some disturbances for keeping the reactor temperature within a tight tolerance range around the specified reaction temperature without harming the quality of the temperature control

    Optimisation of flow chemistry: tools and algorithms

    Get PDF
    The coupling of flow chemistry with automated laboratory equipment has become increasingly common and used to support the efficient manufacturing of chemicals. A variety of reactors and analytical techniques have been used in such configurations for investigating and optimising the processing conditions of different reactions. However, the integrated reactors used thus far have been constrained to single phase mixing, greatly limiting the scope of reactions for such studies. This thesis presents the development and integration of a millilitre-scale CSTR, the fReactor, that is able to process multiphase flows, thus broadening the range of reactions susceptible of being investigated in this way. Following a thorough review of the literature covering the uses of flow chemistry and lab-scale reactor technology, insights on the design of a temperature-controlled version of the fReactor with an accuracy of ยฑ0.3 ยบC capable of cutting waiting times 44% when compared to the previous reactor are given. A demonstration of its use is provided for which the product of a multiphasic reaction is analysed automatically under different reaction conditions according to a sampling plan. Metamodeling and cross-validation techniques are applied to these results, where single and multi-objective optimisations are carried out over the response surface models of different metrics to illustrate different trade-offs between them. The use of such techniques allowed reducing the error incurred by the common least squares polynomial fitting by over 12%. Additionally, a demonstration of the fReactor as a tool for synchrotron X-Ray Diffraction is also carried out by means of successfully assessing the change in polymorph caused by solvent switching, this being the first synchrotron experiment using this sort of device. The remainder of the thesis focuses on applying the same metamodeling and cross-validation techniques used previously, in the optimisation of the design of a miniaturised continuous oscillatory baffled reactor. However, rather than using these techniques with physical experimentation, they are used in conjunction with computational fluid dynamics. This reactor shows a better residence time distribution than its CSTR counterparts. Notably, the effect of the introduction of baffle offsetting in a plate design of the reactor is identified as a key parameter in giving a narrow residence time distribution and good mixing. Under this configuration it is possible to reduce the RTD variance by 45% and increase the mixing efficiency by 60% when compared to the best performing opposing baffles geometry

    Discretization approach

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€(์—๋„ˆ์ง€ํ™˜๊ฒฝ ํ™”ํ•™์œตํ•ฉ๊ธฐ์ˆ ์ „๊ณต),2019. 8. ์ด์›๋ณด.In recent years, many researchers in chemical engineering have made great efforts to develop mathematical models on the theoretical side that are consistent with experimental results. Despite these efforts, however, establishing models for a system with complex phenomena such as multiphase flow or stirred reactors is still considered to be a challenge. In the meantime, an increase in computational efficiency and stability in various numerical methods has allowed us to correctly solve and analyze the system based on the fundamental equations. This leads to the need for a mathematical model to accurately predict the behavior of systems in which there is interdependence among the internal elements. A methodology for building a model based on equations that represent fundamental phenomena can lower technical barriers in system analysis. In this thesis, we propose three mathematical models validated from laboratory or pilot-scale experiments. First, an apparatus for vaporizing liquid natural gas is surrounded with a frost layer formed on the surface during operation, and performance of the apparatus is gradually deteriorated due to the adiabatic effect. Because the system uses ambient air as a heat sink, it is necessary to consider the phase transition and mass transfer of water vapor, and natural gas in the air in order to understand the fluctuation of system characteristics. The model predicts the experimental data of a pilot-scale vaporizer within a mean absolute error of 5.5 %. In addition, we suggest the robust design methodology and optimal design which is able to maintain the efficiency under the weather conditions for a year. Two or more data analysis techniques including discrete waveform transformation and k-means clustering are used to extract features that can represent time series data. Under the settings, the performance in the optimized desgin is improved by 22.92 percentage points compared to that in the conventional system. In the second system, the continuous tubular crystallization reactor has advantages in terms of production capacity and scale-up compared with the conventional batch reactor. However, the tubular system requires a well-designed control system to maintain its stability and durability, and thus; there is a great deal of demand for the mathematical model of this system. We were able to estimate crystal size distribution by considering the population balance model simultaneously with several heat exchanger models. The model constructed based on the first principle reaction scheme successfully predicted the results from the full-factorial experiment. The experiments were conducted with LAM (L-asparagine monohydrate) solution. In the prediction, the average crystal length and standard deviation were within 20% of the results of an experiment where the crystals were not iteratively dissolved in the liquid but maintained a low-level supersaturation. Furthermore, to confirm the controllability of the crystal size distribution in the system, we replaced the LAM solution with HEWL (Hen-egg white lysozyme) solution. Finally, we propose a multi-compartment model to predict the behavior of a high-pressure autoclave reactor for polymer production. In order to simulate a complex polymer synthesis mechanism, the rotation effect of impellers in the reactor on polymerization and the influence caused by polymerization heat were sequentially evaluated. As a result, This model turned out to be able to predict the physical properties of the polymers produced in an industrial-scale reactor within 7% accuracy. In this thesis, all three systems are distributed parameter systems which can be expressed as partial differential equations for time and space. To construct a high order model, the system was interpreted based on discretization approach under minimal assumptions. This methodology can be applied not only to the systems suggested in this thesis but also to those consisting of interpdependent variables. I hope that this thesis provides guidance for further researches of chemical engineering in nearby future.์ตœ๊ทผ์— ๋ช‡ ๋…„์— ๊ฑธ์ณ์„œ ๋งŽ์€ ์—ฐ๊ตฌ์ž๋“ค์ด ์ด๋ก ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹คํ—˜ ๊ฒฐ๊ณผ์™€ ์ผ์น˜ํ•˜๋Š” ์ˆ˜ํ•™ ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜๊ณ ์ž ๋งŽ์€ ๋…ธ๋ ฅ์„ ๊ธฐ์šธ์—ฌ ์™”๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Ÿฐ ๋…ธ๋ ฅ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋‹ค์ƒ ํ๋ฆ„ ํ˜น์€ ๊ต๋ฐ˜ ๋ฐ˜์‘๊ธฐ์™€ ๊ฐ™์€ ๋ณต์žกํ•œ ํ˜„์ƒ์„ ๋‚ดํฌํ•œ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ๋ชจ๋ธ์„ ์ˆ˜๋ฆฝํ•˜๋Š” ๊ฒƒ์€ ์—ฌ์ „ํžˆ ํ™”ํ•™ ๊ณตํ•™ ๋ถ„์•ผ์—์„œ ์‰ฝ์ง€ ์•Š์€ ์ผ๋กœ ์—ฌ๊ฒจ์ง„๋‹ค. ์ด ์™€์ค‘์— ๋‹ค์–‘ํ•œ ์ˆ˜์น˜์  ๋ฐฉ๋ฒ•์—์„œ์˜ ๊ณ„์‚ฐ ํšจ์œจ์˜ ์ฆ๊ฐ€์™€ ์•ˆ์ •์„ฑ์˜ ํ–ฅ์ƒ์€ ๊ธฐ๋ณธ๋ฐฉ์ •์‹์— ๊ธฐ์ดˆํ•œ ์‹œ์Šคํ…œ์„ ์ •ํ™•ํ•˜๊ฒŒ ํ•ด๊ฒฐํ•˜๊ณ  ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ฃผ์—ˆ๋‹ค. ์ด๋กœ ์ธํ•˜์—ฌ ๋‚ด๋ถ€ ์š”์†Œ๋“ค ๊ฐ„์˜ ์ƒํ˜ธ ์˜์กด์„ฑ์ด ์กด์žฌํ•˜๋Š” ์‹œ์Šคํ…œ์˜ ๊ฑฐ๋™์„ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•œ ์ˆ˜ํ•™์  ๋ชจ๋ธ์˜ ํ•„์š”์„ฑ์ด ๋ถ€๊ฐ๋˜์—ˆ๋‹ค. ๊ธฐ๋ณธ ํ˜„์ƒ๋“ค์„ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ์ •์‹๋“ค์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋ก ์€ ์‹œ์Šคํ…œ ํ•ด์„์— ์žˆ์–ด์„œ ๊ธฐ์ˆ ์  ์žฅ๋ฒฝ์„ ๋‚ฎ์ถœ ์ˆ˜ ์žˆ๋‹ค. ์ด ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ ์šฐ๋ฆฌ๋Š” ์‹คํ—˜์‹ค ๋˜๋Š” ํŒŒ์ผ๋Ÿฟ ๊ทœ๋ชจ์˜ ์‹คํ—˜์œผ๋กœ๋ถ€ํ„ฐ ์ž…์ฆ๋œ ์„ธ ๊ฐ€์ง€ ์ˆ˜ํ•™์  ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๊ณต๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์•ก์ƒ์˜ ์ฒœ์—ฐ๊ฐ€์Šค๋ฅผ ๊ธฐํ™”์‹œํ‚ค๋Š” ์žฅ์น˜๋Š” ์šด์ „ ๋„์ค‘์— ๊ธฐํ™”๊ธฐ ํ‘œ๋ฉด์— ์„œ๋ฆฌ ์ธต์ด ํ˜•์„ฑ๋˜๊ณ  ๊ทธ๋กœ ์ธํ•œ ๋‹จ์—ด ํšจ๊ณผ๋กœ ์žฅ๋น„์˜ ์„ฑ๋Šฅ์ด ์„œ์„œํžˆ ์ €ํ•˜๋œ๋‹ค. ์‹œ์Šคํ…œ์€ ์ฃผ๋ณ€ ๊ณต๊ธฐ๋ฅผ ์—ด ํก์ˆ˜์›์œผ๋กœ ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์‹œ์Šคํ…œ ํŠน์„ฑ์˜ ๋ณ€๋™์„ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ณต๊ธฐ ์ค‘ ์ˆ˜์ฆ๊ธฐ ๋ฐ ์ฒœ์—ฐ ๊ฐ€์Šค์˜ ์ƒ์ „์ด ๋ฐ ์ „๋‹ฌ ํ˜„์ƒ์„ ๋™์‹œ์— ๊ณ ๋ คํ•˜์—ฌ์•ผ ํ•œ๋‹ค. ์ œ์‹œ๋œ ์ˆ˜ํ•™์  ๋ชจ๋ธ์— ์˜ํ•ด ์˜ˆ์ธกํ•œ ๊ฒฐ๊ณผ๋Š” ํŒŒ์ผ๋Ÿฟ ๊ทœ๋ชจ ๊ธฐํ™”๊ธฐ๋กœ๋ถ€ํ„ฐ ์–ป์€ ์‹คํ—˜ ๋ฐ์ดํ„ฐ์™€ 5.5% ํ‰๊ท  ์ ˆ๋Œ€ ์˜ค์ฐจ๋ฅผ ๋ณด์˜€๋‹ค. ์ด์— ๋”ํ•˜์—ฌ, ์•ž์—์„œ ์ œ์‹œํ•œ ๊ธฐํ™”๊ธฐ ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ 1๋…„ ๋™์•ˆ์˜ ๊ธฐ์ƒ ์กฐ๊ฑด์—์„œ ์šด์ „ ํšจ์œจ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ์ง€์† ์šด์ „์ด ๊ฐ€๋Šฅํ•œ ๊ธฐํ™”๊ธฐ์˜ ์„ค๊ณ„ ๋ฐฉ๋ฒ•๊ณผ ๊ฒฐ๊ณผ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด์‚ฐ ํŒŒํ˜• ๋ณ€ํ™˜๊ณผ k-ํ‰๊ท  ๊ตฐ์ง‘ํ™”๋ฅผ ํฌํ•จํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ์ด์ƒ์˜ ๋ฐ์ดํ„ฐ ๋ถ„์„ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ฅผ ๋Œ€ํ‘œํ•  ์ˆ˜ ์žˆ๋Š” ํŠน์ง•์„ ์ถ”์ถœํ•œ๋‹ค. ์ถ”์ถœ๋œ ํŠน์ง• ์•„๋ž˜์—์„œ ์ตœ์ ํ™”๋œ ๋””์ž์ธ์€ ๊ธฐ์กด ์ œ์‹œ๋œ ์•ˆ์— ๋น„ํ•ด 22.92% ๋งŒํผ ํ–ฅ์ƒ๋œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ์‹œ์Šคํ…œ์€ ์‹  ์ œ์•ฝ ๊ธฐ์ˆ  ๊ณต์ •์ธ ์—ฐ์† ๊ด€ํ˜• ๊ฒฐ์ •ํ™” ๋ฐ˜์‘๊ธฐ๋Š” ๊ธฐ์กด์— ๋„๋ฆฌ ์“ฐ์ด๋˜ ํšŒ๋ถ„์‹ ๋ฐ˜์‘๊ธฐ์— ๋น„ํ•˜์—ฌ ์ƒ์‚ฐ ์†๋„ ๋ฐ ์Šค์ผ€์ผ ์—… ์ธก๋ฉด์—์„œ ์žฅ์ ์ด ๋งŽ๋‹ค. ํ•˜์ง€๋งŒ ์ œ์–ด๊ธฐ์ˆ ์ด ๊ธฐ๋ฐ˜์ด ๋˜์–ด์•ผํ•œ๋‹ค๋Š” ์ ์— ์žˆ์–ด์„œ ๊ทธ ๋„์ž…์ด ๋Šฆ์–ด์กŒ๊ณ  ์ด์— ๋”ฐ๋ผ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๊ฐœ๋ฐœ๋œ ๋ชจ๋ธ ๋˜ํ•œ ์ „๋ฌดํ•˜๋‹ค. ์šฐ๋ฆฌ๋Š” ์ด ์žฅ์น˜์—์„œ ๊ฒฐ์ • ํฌ๊ธฐ ๋ถ„ํฌ๋ฅผ ์ถ”์‚ฐํ•˜๊ธฐ ์œ„ํ•œ ์ธ๊ตฌ ๊ท ํ˜• ๋ชจ๋ธ์„ ์—ด ๊ตํ™˜ ๋ชจ๋ธ๊ณผ ๋™์‹œ์— ๊ณ ๋ คํ•˜์—ฌ ๊ฒฐ์ • ํฌ๊ธฐ ๋ถ„ํฌ๋ฅผ ์ถ”์‚ฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ œ 1์›๋ฆฌ ๊ฒฐ์ • ๋ฐ˜์‘์‹์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ตฌ์ถ•๋œ ๋ชจ๋ธ์€ ์™„์ „ ์š”์ธ ๋ฐฐ์น˜๋ฒ•์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹คํ—˜๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ์˜ˆ์ธกํ•˜์˜€๋‹ค. ๊ฒฐ์ •์ด ์•ก์ƒ์— ์šฉํ•ด๋˜์ง€ ์•Š์œผ๋ฉด์„œ ๋‚ฎ์€ ์ˆ˜์ค€์˜ ๊ณผํฌํ™” ์ƒํƒœ๋ฅผ ์œ ์ง€ํ•œ ์‹คํ—˜์— ๋Œ€ํ•ด์„œ๋Š” ํ‰๊ท  ๊ฒฐ์ • ๊ธธ์ด์™€ ํ‘œ์ค€ํŽธ์ฐจ๊ฐ€ ์‹คํ—˜ ๊ฒฐ๊ณผ์™€ 20% ์ด๋‚ด์˜ ์˜ค์ฐจ๋ฅผ ๋ณด์˜€๋‹ค. ์•ž์—์„œ ๋ชจ๋ธ์˜ ๊ฒ€์ฆ์— ์‚ฌ์šฉ๋œ ๋ฐ์ดํ„ฐ๊ฐ€ LAM (L-์•„์ŠคํŒŒ๋ผ๊ธด ์ผ ์ˆ˜ํ™”๋ฌผ)์šฉ์•ก์œผ๋กœ๋ถ€ํ„ฐ ์–ป์–ด์ง„ ๊ฒƒ์ด์—ˆ๋‹ค๋ฉด ์ดํ›„์—๋Š” HEWL (๋‹ฌ๊ฑ€ ํฐ์ž ๋ฆฌ์†Œ์ž์ž„)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ œํ’ˆ์˜ ๊ฒฐ์ • ํฌ๊ธฐ ๋ถ„ํฌ์˜ ์กฐ์ ˆ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ํด๋ฆฌ๋จธ ์ƒ์‚ฐ์„ ์œ„ํ•œ ๊ณ ์•• ์˜คํ† ํด๋ ˆ์ด๋ธŒ ๋ฐ˜์‘๊ธฐ์˜ ๊ฑฐ๋™์„ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์ค‘ ๊ตฌํš ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ณต์žกํ•œ ๊ณ ๋ถ„์ž ํ•ฉ์„ฑ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋ชจ์‚ฌํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋ฐ˜์‘๊ธฐ ๋‚ด ์ž„ํŽ ๋Ÿฌ์˜ ํšŒ์ „์ด ์ค‘ํ•ฉ์— ๋ฏธ์น˜๋Š” ํšจ๊ณผ์™€ ์ค‘ํ•ฉ ์—ด๋กœ ์ธํ•œ ์˜ํ–ฅ๋ ฅ์„ ์ˆœ์ฐจ์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๋ชจ๋ธ์€ 3D ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง„ ์‚ฐ์—…ํ™”๋œ ๋ฐ˜์‘๊ธฐ์—์„œ ์ƒ์‚ฐ๋œ ๋‘ ๊ฐ€์ง€ ๊ณ ๋ถ„์ž์˜ ๋ฌผ์„ฑ์„ 7%์ด๋‚ด ์ •ํ™•๋„๋กœ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋‹ค๋ฃจ๋Š” ์‹œ์Šคํ…œ์€ ๋ชจ๋‘ ๋ถ„ํฌ ์ •์ˆ˜๊ณ„ ์‹œ์Šคํ…œ์œผ๋กœ ์‹œ๊ฐ„๊ณผ ๊ณต๊ฐ„์— ๋Œ€ํ•˜์—ฌ ํŽธ๋ฏธ๋ถ„๋ฐฉ์ •์‹์œผ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ณ ์ฐจ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•ด ์ด์‚ฐํ™” ์ ‘๊ทผ๋ฒ•์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ตœ์†Œํ•œ์˜ ๊ฐ€์ • ํ•˜์— ์‹œ์Šคํ…œ์„ ํ•ด์„ํ•˜์˜€๋‹ค. ์ด๋Š” ๋…ผ๋ฌธ์— ์ œ์‹œํ•œ ์‹œ์Šคํ…œ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์‹œ๊ณต๊ฐ„์—์„œ ์˜ˆ์ธก ์–ด๋ ค์šด ๋ถ„ํฌ๋ฅผ ๊ฐ€์ง€๋Š” ๋ณ€์ˆ˜๋ฅผ ๊ฐ€์ง„ ๋ชจ๋“  ์‹œ์Šคํ…œ์— ๋Œ€ํ•˜์—ฌ ์ ์šฉ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์ด ๋…ผ๋ฌธ์ด ์•ž์œผ๋กœ ํ™”ํ•™ ๊ณตํ•™ ๋ถ„์•ผ์˜ ์‹œ์Šคํ…œ์„ ํ•ด์„ํ•˜๋Š” ๋ฐ ์žˆ์–ด์„œ ๋” ๋ฐœ์ „๋œ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•œ ์ง€์นจ์„œ๊ฐ€ ๋˜๊ธฐ๋ฅผ ํฌ๋งํ•œ๋‹ค.Abstract i Contents iv List of Figures viii List of Tables xii Chapter 1 1 Introduction 1 1.1 Research motivation 1 1.2 Research objective 3 1.3 Outline of the thesis 4 1.4 Associated publications 9 Chapter 2 10 Distributed parameter system 10 2.1 Introduction 10 2.2 Modeling methods 11 2.3 Conclusion 16 Chapter 3 17 Modeling and design of pilot-scale ambient air vaporizer 17 3.1 Introduction 17 3.2 Modeling and analysis of frost growth in pilot-scale ambient air vaporizer 24 3.2.1 Ambient air vaporizer 24 3.2.2 Experimental measurement 27 3.2.3 Numerical model of the vaporizer 31 3.2.4 Result and discussion 43 3.3 Robust design of ambient air vaporizer based on time-series clustering 58 3.3.1 Background 58 3.3.2 Trend of time-series weather conditions 61 3.3.3 Optimization of AAV structures under time-series weather conditions 63 3.3.4 Results and discussion 76 3.4 Conclusion 93 3.4.1 Modeling and analysis of AAV system 93 3.4.2 Robust design of AAV system 95 Chapter 4 97 Tunable protein crystal size distribution via continuous crystallization 97 4.1 Introduction 97 4.2 Mathematical modeling and experimental verification of fully automated continuous slug-flow crystallizer 101 4.2.1 Experimental methods and equipment setup 101 4.2.2 Mathematical model of crystallizer 109 4.2.3 Results and discussion 118 4.3 Continuous crystallization of a protein: hen egg white lysozyme (HEWL) 132 4.3.1 Introduction 132 4.3.2 Experimental method 135 4.3.3 Results and discussion 145 4.4 Conclusion 164 4.4.1 Mathematical model of continuous crystallizer 164 4.4.2 Tunable continuous protein crystallization process 165 Chapter 5 167 Multi-compartment model of high-pressure autoclave reactor for polymer production: combined CFD mixing model and kinetics of polymerization 167 5.1 Introduction 167 5.2 Method 170 5.2.1 EVA autoclave reactor 170 5.2.2 Multi-compartment model of the autoclave reactor 173 5.2.3 CFD simulation of mixing effects in the autoclave reactor 175 5.2.4 Region-based dividing algorithm 178 5.2.5 Polymerization kinetic model 182 5.3 Results and discussion 191 5.4 Conclusion 203 5.5 Appendix 205 Chapter 6 210 Concluding Remarks 210 6.1 Summary of contributions 210 6.2 Future work 211 Appendix 214 Acknowledgment and collaboration declaration 214 Supplementary materials 217 Reference 227 Abstract in Korean (๊ตญ๋ฌธ์ดˆ๋ก) 249Docto

    Multi-Rate Observers for Model-Based Process Monitoring

    Get PDF
    Very often, critical quantities related to safety, product quality and economic performance of a chemical process cannot be measured on line. In an attempt to overcome the challenges caused by inadequate on-line measurements, state estimation provides an alternative approach to reconstruct the unmeasured state variables by utilizing available on-line measurements and a process model. Chemical processes usually possess strong nonlinearities, and involve different types of measurements. It remains a challenging task to incorporate multiple measurements with different sampling rates and different measurement delays into a unified estimation algorithmic framework. This dissertation seeks to present developments in the field of state estimation by providing the theoretical advances in multi-rate multi-delay observer design. A delay-free multi-rate observer is first designed in linear systems under asynchronous sampling. Sufficient and explicit conditions in terms of maximum sampling period are derived to guarantee exponential stability of the observer, using Lyapunovโ€™s second method. A dead time compensation approach is developed to compensate for the effect of measurement delay. Based on the multi-rate formulation, optimal multi-rate observer design is studied in two classes of linear systems where optimal gain selection is performed by formulating and solving an optimization problem. Then a multi-rate observer is developed in nonlinear systems with asynchronous sampling. The input-to-output stability is established for the estimation errors with respect to measurement errors using the Karafyllis-Jiang vector small-gain theorem. Measurement delay is also accounted for in the observer design using dead time compensation. Both the multi-rate designs in linear and nonlinear systems provide robustness with respect to perturbations in the sampling schedule. Multi-rate multi-delay observer is shown to be effective for process monitoring in polymerization reactors. A series of three polycondensation reactors and an industrial gas-phase polyethylene reactor are used to evaluate the observer performance. Reliable on-line estimates are obtained from the multi-rate multi-delay observer through simulation

    Mathematical model of interactions immune system with Micobacterium tuberculosis

    Get PDF
    Tuberculosis (TB) remains a public health problem in the world, because of the increasing prevalence and treatment outcomes are less satisfactory. About 3 million people die each year and an estimated one third of the world's population infected with Mycobacterium Tuberculosis (M.tb) is latent. This is apparently related to incomplete understanding of the immune system in infection M.tb. When this has been known that immune responses that play a role in controlling the development of M.tb is Macrophages, T Lymphocytes and Cytokines as mediators. However, how the interaction between the two populations and a variety of cytokines in suppressing the growth of Mycobacterium tuberculosis germ is still unclear. To be able to better understand the dynamics of infection with M tuberculosis host immune response is required of a model.One interesting study on the interaction of the immune system with M.tb mulalui mathematical model approach. Mathematical model is a good tool in understanding the dynamic behavior of a system. With the mediation of mathematical models are expected to know what variables are most responsible for suppressing the growth of Mycobacterium tuberculosis germ that can be a more appropriate approach to treatment and prevention target is to develop a vaccine. This research aims to create dynamic models of interaction between macrophages (Macrophages resting, macrophages activated and macrophages infected), T lymphocytes (CD4 + T cells and T cells CD8 +) and cytokine (IL-2, IL-4, IL-10,IL-12,IFN-dan TNF-) on TB infection in the lung. To see the changes in each variable used parameter values derived from experimental literature. With the understanding that the variable most responsible for defense against Mycobacterium tuberculosis germs, it can be used as the basis for the development of a vaccine or drug delivery targeted so hopefully will improve the management of patients with tuberculosis. Mathematical models used in building Ordinary Differential Equations (ODE) in the form of differential equation systems Non-linear first order, the equation contains the functions used in biological systems such as the Hill function, Monod function, Menten- Kinetic Function. To validate the system used 4th order Runge Kutta method with the help of software in making the program Matlab or Maple to view the behavior and the quantity of cells of each population
    corecore