1,469 research outputs found

    Multimodal Noncontact Tracking of Surgical Instruments

    Get PDF
    For many procedures, open surgery is being replaced with minimally invasive surgical (MIS) techniques. The advantages of MIS include reduced operative trauma and fewer complications leading to faster patient recovery, better cosmetic results and shorter hospital stays. As the demand for MIS procedures increases, effective surgical training tools must be developed to improve procedure efficiency and patient safety. Motion tracking of laparoscopic instruments can provide objective skills assessment for novices and experienced users. The most common approaches to noncontact motion capture are optical and electromagnetic (EM) tracking systems, though each approach has operational limitations. Optical trackers are prone to occlusion and the performance of EM trackers degrades in the presence of magnetic and ferromagnetic material. The cost of these systems also limits their availability for surgical training and clinical environments. This thesis describes the development and validation of a novel, noncontact laparoscopic tracking system as an inexpensive alternative to current technology. This system is based on the fusion of inertial, magnetic and distance sensing to generate real-time, 6-DOF pose data. Orientation is estimated using a Kalman-filtered attitude-heading reference system (AHRS) and restricted motion at the trocar provides a datum from which position information can be recovered. The Inertial and Range-Enhanced Surgical (IRES) Tracker was prototyped, then validated using a MIS training box and by comparison to an EM tracking system. Results of IRES tracker testing showed similar performance to an EM tracker with position error as low as 1.25 mm RMS and orientation error \u3c0.58 degrees RMS along each axis. The IRES tracker also displayed greater precision and superior magnetic interference rejection capabilities. At a fraction of the cost of current laparoscopic tracking methods, the IRES tracking system would provide an excellent alternative for use in surgical training and skills assessment

    Three-axis attitude determination via Kalman filtering of magnetometer data

    Get PDF
    A three-axis Magnetometer/Kalman Filter attitude determination system for a spacecraft in low-altitude Earth orbit is developed, analyzed, and simulation tested. The motivation for developing this system is to achieve light weight and low cost for an attitude determination system. The extended Kalman filter estimates the attitude, attitude rates, and constant disturbance torques. Accuracy near that of the International Geomagnetic Reference Field model is achieved. Covariance computation and simulation testing demonstrate the filter's accuracy. One test case, a gravity-gradient stabilized spacecraft with a pitch momentum wheel and a magnetically-anchored damper, is a real satellite on which this attitude determination system will be used. The application to a nadir pointing satellite and the estimation of disturbance torques represent the significant extensions contributed by this paper. Beyond its usefulness purely for attitude determination, this system could be used as part of a low-cost three-axis attitude stabilization system

    Kalman-Filter-Based Orientation Determination Using Inertial/Magnetic Sensors: Observability Analysis and Performance Evaluation

    Get PDF
    In this paper we present a quaternion-based Extended Kalman Filter (EKF) for estimating the three-dimensional orientation of a rigid body. The EKF exploits the measurements from an Inertial Measurement Unit (IMU) that is integrated with a tri-axial magnetic sensor. Magnetic disturbances and gyro bias errors are modeled and compensated by including them in the filter state vector. We employ the observability rank criterion based on Lie derivatives to verify the conditions under which the nonlinear system that describes the process of motion tracking by the IMU is observable, namely it may provide sufficient information for performing the estimation task with bounded estimation errors. The observability conditions are that the magnetic field, perturbed by first-order Gauss-Markov magnetic variations, and the gravity vector are not collinear and that the IMU is subject to some angular motions. Computer simulations and experimental testing are presented to evaluate the algorithm performance, including when the observability conditions are critical

    Tightly Integrating Optical and Inertial Sensors for Navigation Using the UKF

    Get PDF
    The motivation of this research is to address the benefits of tightly integrating optical and inertial sensors where GNSS signals are not available. The research begins with describing the navigation problem. Then, error and measurement models are presented. Given a set of features, a feature detection and projection algorithm is developed which utilizes inertial measurements to predict vectors in the feature space between images. The unscented Kalman filter is applied to the navigation system using the inertial measurements and feature matches to estimate the navigation trajectory. Finally, the image-aided navigation algorithm is tested using a simulation and an experiment. As a result, the optical measurements combined with the inertial sensors result in improved performance for non-GNSS based navigation

    Visual 3-D SLAM from UAVs

    Get PDF
    The aim of the paper is to present, test and discuss the implementation of Visual SLAM techniques to images taken from Unmanned Aerial Vehicles (UAVs) outdoors, in partially structured environments. Every issue of the whole process is discussed in order to obtain more accurate localization and mapping from UAVs flights. Firstly, the issues related to the visual features of objects in the scene, their distance to the UAV, and the related image acquisition system and their calibration are evaluated for improving the whole process. Other important, considered issues are related to the image processing techniques, such as interest point detection, the matching procedure and the scaling factor. The whole system has been tested using the COLIBRI mini UAV in partially structured environments. The results that have been obtained for localization, tested against the GPS information of the flights, show that Visual SLAM delivers reliable localization and mapping that makes it suitable for some outdoors applications when flying UAVs

    Quaternionic Attitude Estimation with Inertial Measuring Unit for Robotic and Human Body Motion Tracking using Sequential Monte Carlo Methods with Hyper-Dimensional Spherical Distributions

    Get PDF
    This dissertation examined the inertial tracking technology for robotics and human tracking applications. This is a multi-discipline research that builds on the embedded system engineering, Bayesian estimation theory, software engineering, directional statistics, and biomedical engineering. A discussion of the orientation tracking representations and fundamentals of attitude estimation are presented briefly to outline the some of the issues in each approach. In addition, a discussion regarding to inertial tracking sensors gives an insight to the basic science and limitations in each of the sensing components. An initial experiment was conducted with existing inertial tracker to study the feasibility of using this technology in human motion tracking. Several areas of improvement were made based on the results and analyses from the experiment. As the performance of the system relies on multiple factors from different disciplines, the only viable solution is to optimize the performance in each area. Hence, a top-down approach was used in developing this system. The implementations of the new generation of hardware system design and firmware structure are presented in this dissertation. The calibration of the system, which is one of the most important factors to minimize the estimation error to the system, is also discussed in details. A practical approach using sequential Monte Carlo method with hyper-dimensional statistical geometry is taken to develop the algorithm for recursive estimation with quaternions. An analysis conducted from a simulation study provides insights to the capability of the new algorithms. An extensive testing and experiments was conducted with robotic manipulator and free hand human motion to demonstrate the improvements with the new generation of inertial tracker and the accuracy and stability of the algorithm. In addition, the tracking unit is used to demonstrate the potential in multiple biomedical applications including kinematics tracking and diagnosis instrumentation. The inertial tracking technologies presented in this dissertation is aimed to use specifically for human motion tracking. The goal is to integrate this technology into the next generation of medical diagnostic system

    Analysis of the accuracy of ten algorithms for orientation estimation using inertial and magnetic sensing under optimal conditions: One size does not fit all

    Get PDF
    The orientation of a magneto and inertial measurement unit (MIMU) is estimated by means of sensor fusion algorithms (SFAs) thus enabling human motion tracking. However, despite several SFAs implementations proposed over the last decades, there is still a lack of consensus about the best performing SFAs and their accuracy. As suggested by recent literature, the filter parameters play a central role in determining the orientation errors. The aim of this work is to analyze the accuracy of ten SFAs while running under the best possible conditions (i.e., their parameter values are set using the orientation reference) in nine experimental scenarios including three rotation rates and three commercial products. The main finding is that parameter values must be specific for each SFA according to the experimental scenario to avoid errors comparable to those obtained when the de-fault parameter values are used. Overall, when optimally tuned, no statistically significant differ-ences are observed among the different SFAs in all tested experimental scenarios and the absolute errors are included between 3.8 deg and 7.1 deg. Increasing the rotation rate generally leads to a significant performance worsening. Errors are also influenced by the MIMU commercial model. SFA MATLAB implementations have been made available online

    Constructing a reference standard for sports science and clinical movement sets using IMU-based motion capture technology

    Get PDF
    Motion analysis has improved greatly over the years through the development of low-cost inertia sensors. Such sensors have shown promising accuracy for both sport and medical applications, facilitating the possibility of a new reference standard to be constructed. Current gold standards within motion capture, such as high-speed camera-based systems and image processing, are not suitable for many movement-sets within both sports science and clinical movement analysis due to restrictions introduced by the movement sets. These restrictions include cost, portability, local environment constraints (such as light level) and poor line of sight accessibility. This thesis focusses on developing a magnetometer-less IMU-based motion capturing system to detect and classify two challenging movement sets: Basic stances during a Shaolin Kung Fu dynamic form, and severity levels from the modified UPDRS (Unified Parkinson’s Disease Rating Scale) analysis tapping exercise. This project has contributed three datasets. The Shaolin Kung Fu dataset is comprised of 5 dynamic movements repeated over 350 times by 8 experienced practitioners. The dataset was labelled by a professional Shaolin Kung Fu master. Two modified UPDRS datasets were constructed, one for each of the two locations measured. The modified UPDRS datasets comprised of 5 severity levels each with 100 self-emulated movement samples. The modified UPDRS dataset was labelled by a researcher in neuropsychological assessment. The errors associated with IMU systems has been reduced significantly through a combination of a Complementary filter and applying the constraints imposed by the range of movements available in human joints. Novel features have been extracted from each dataset. A piecewise feature set based on a moving window approach has been applied to the Shaolin Kung Fu dataset. While a combination of standard statistical features and a Durbin Watson analysis has been extracted from the modified UPDRS measurements. The project has also contributed a comparison of 24 models has been done on all 3 datasets and the optimal model for each dataset has been determined. The resulting models were commensurate with current gold standards. The Shaolin Kung Fu dataset was classified with the computational costly fine decision tree algorithm using 400 splits, resulting in: an accuracy of 98.9%, a precision of 96.9%, a recall value of 99.1%, and a F1-score of 98.0%. A novel approach of using sequential forward feature analysis was used to determine the minimum number of IMU devices required as well as the optimal number of IMU devices. The modified UPDRS datasets were then classified using a support vector machine algorithm requiring various kernels to achieve their highest accuracies. The measurements were repeated with a sensor located on the wrist and finger, with the wrist requiring a linear kernel and the finger a quadratic kernel. Both locations achieved an accuracy, precision, recall, and F1-score of 99.2%. Additionally, the project contributed an evaluation to the effect sensor location has on the proposed models. It was concluded that the IMU-based system has the potential to construct a reference standard both in sports science and clinical movement analysis. Data protection security and communication speeds were limitations in the system constructed due to the measured data being transferred from the devices via Bluetooth Low Energy communication. These limitations were considered and evaluated in the future works of this project
    • …
    corecore