University of Tennessee, Knoxville

ne UUNIVERSITY of

TENNESSEE TRACE: Tennessee Research and Creative

EMOVILLE EXChange

Doctoral Dissertations Graduate School
12-2012

Quaternionic Attitude Estimation with Inertial Measuring Unit for
Robotic and Human Body Motion Tracking using Sequential
Monte Carlo Methods with Hyper-Dimensional Spherical
Distributions

Gary To
gto@utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

0 Part of the Biomedical Devices and Instrumentation Commons

Recommended Citation

To, Gary, "Quaternionic Attitude Estimation with Inertial Measuring Unit for Robotic and Human Body
Motion Tracking using Sequential Monte Carlo Methods with Hyper-Dimensional Spherical Distributions. "
PhD diss., University of Tennessee, 2012.

https://trace.tennessee.edu/utk_graddiss/1592

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.


https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1592&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/235?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1592&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

| am submitting herewith a dissertation written by Gary To entitled "Quaternionic Attitude
Estimation with Inertial Measuring Unit for Robotic and Human Body Motion Tracking using
Sequential Monte Carlo Methods with Hyper-Dimensional Spherical Distributions." | have
examined the final electronic copy of this dissertation for form and content and recommend
that it be accepted in partial fulfillment of the requirements for the degree of Doctor of
Philosophy, with a major in Biomedical Engineering.

Mohamed Mahfouz, Major Professor
We have read this dissertation and recommend its acceptance:
Richard Komistek, William Hamel, Aly Fathy
Accepted for the Council:
Carolyn R. Hodges
Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



Quaternionic Attitude Estimation with Inertial Measuring Unit for Robotic and Human
Body Motion Tracking using Sequential Monte Carlo Methods with

Hyper-Dimensional Spherical Distributions

A Dissertation Presented for the
Doctor of Philosophy
Degree

The University of Tennessee, Knoxville

Gary To
December 2012



Copyright by
Gary To
2012

ii



“Out of the night that covers me,
Black as the Pit from pole to pole,
I thank whatever gods may be
For my unconquerable soul.

In the fell clutch of circumstance
I have not winced nor cried aloud.
Under the bludgeonings of chance
My head is bloody, but unbowed.

Beyond this place of wrath and tears
Looms but the Horror of the shade,
And yet the menace of the years
Finds, and shall find, me unafraid.

It matters not how strait the gate,
How charged with punishments the scroll,
I am the master of my fate:
I am the captain of my soul.”
Invictus, William Ernest Henley

I dedicate this dissertation to my mother, Shirley Ho, for her continuous support, love,
and teaching me the importance of dreaming. I also dedicate this to my sister, Carine To,

who has bought much excitement and joy in my life.
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Abstract

This dissertation examined the inertial tracking technology for robotics and
human tracking applications. This is a multi-discipline research that builds on the
embedded system engineering, Bayesian estimation theory, software engineering,

directional statistics, and biomedical engineering.

A discussion of the orientation tracking representations and fundamentals of
attitude estimation are presented briefly to outline the some of the issues in each
approach. In addition, a discussion regarding to inertial tracking sensors gives an insight

to the basic science and limitations in each of the sensing components.

An initial experiment was conducted with existing inertial tracker to study the
feasibility of using this technology in human motion tracking. Several areas of
improvement were made based on the results and analyses from the experiment. As the
performance of the system relies on multiple factors from different disciplines, the only
viable solution is to optimize the performance in each area. Hence, a top-down approach

was used in developing this system.

The implementations of the new generation of hardware system design and
firmware structure are presented in this dissertation. The calibration of the system,
which is one of the most important factors to minimize the estimation error to the
system, is also discussed in details. A practical approach using sequential Monte Carlo
method with hyper-dimensional statistical geometry is taken to develop the algorithm

for recursive estimation with quaternions.

An analysis conducted from a simulation study provides insights to the

capability of the new algorithms. An extensive testing and experiments was conducted

vi



with robotic manipulator and free hand human motion to demonstrate the
improvements with the new generation of inertial tracker and the accuracy and stability
of the algorithm. In addition, the tracking unit is used to demonstrate the potential in
multiple biomedical applications including kinematics tracking and diagnosis

instrumentation.

The inertial tracking technologies presented in this dissertation is aimed to use
specifically for human motion tracking. The goal is to integrate this technology into the

next generation of medical diagnostic system.
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1. Introduction
1.1 Motivation

Human body motion tracking is an important area of research where many
medical applications can be derived based on this technology. Medical device
researchers and engineers use motion analysis to study the kinetics and kinematics of
the human joint, and to design better implants and prostheses. Motion analysis is also
used as diagnostic tools to acquire valuable information for physicians. Furthermore,
many surgeries have begun to incorporate robots as part of the operating procedures to
improve the overall surgical outcome. The performance of these systems relies heavily
on the positioning accuracy of the tracking system of these surgical robots. In addition,
motion tracking system is also used in exercise science and sport medicine to improve

the performance of the athletes.

The principle of motion tracking is to resolve the locations and orientations of an
object in three-dimensional (3D) space during motion. There is a vast variety of tracking
systems that utilize different localization and tracking technologies. Tracking
technologies can be divided into two main categories, which either observes a certain
number amount of fixed points on an object externally or estimating poses between
sequential frames temporarily. Optical, electro-magnetic, global positioning system,
radio frequency (RF) positioning systems are examples of exterior pose monitoring
system. In addition to these technologies, a sub-class of external tracking using
radioactive based imaging techniques is often used to track in-vivo motions.

Fluoroscopy is one of the frequently used in-vivo tracking systems.

Inertial tracking system, on the other hand, is an example of relative pose

estimating system. In recent years, with the advance of semiconductor based inertial



sensing technologies and sophisticated designs in attitude estimation algorithm, inertial
tracking system has been used extensively in many different tracking applications.
Previous studies discuss in the later section of this dissertation demonstrates the
potential of inertial tracking for human body motion. However, the dynamic range of
the human motion varies with activities and the motion of interest. The options for off
the shelf inertial tracker are limited and significantly hinder the optimal tracking
capability. In addition, current algorithm design does not model the change of the signal
characteristics and artifacts after the system is attached to the human body. Algorithm

stability becomes an issue as the some of the algorithms” assumptions no longer apply.

The motivation of this dissertation is to develop an inertial tracking system for
human body motion tracking by optimizing the tracking problem from multiple

disciplines.

In order to contextualize the challenges and necessities of human body motion
tracking technologies, the section below provides a comprehensive background review
on the current tracking technologies and discussion concerning the advantages and

disadvantages of each system.

1.2 Background in Motion Tracking Technologies
1.2.1 Optical Tracking Technology

Optical tracking is generally considered to be the standard for body motion
tracking. It is typically done with infrared cameras and a set of either active or passive
markers. Active markers emit infrared ray signals to the camera, whereas passive
markers have reflective coating to reflect the infrared flash emitted adjacent to the
camera [1]. A passive marker optical tracking system is shown in Figure 1-1. Infrared

camera is the choice for optical tracking as it is outside the visible colour spectrum,



hence reducing the ambiguity between the markers and the background (Figure 1-2). A
minimum of two cameras are needed for triangulating and estimating the position of the
markers in 3D. The system can only resolve the translation motion on each of the
marker. The rotation of the object, however, requires attaching multiple markers to

determine the orientation via rigid body dynamics.

The camera in the optical system has a viewing volume that guarantees the object
is within the acceptable accuracy as seen in Figure 1-3. Hence, for activities such as gait
analysis, multiple cameras are necessary to ensure the markers on the subject to stay
within the viewing volume [2]. Optical system also suffers from the line of sight issue.
Any marker that is obstructed from the cameras will adversely affect the tracking
performance. Multiple camera setup can eliminate the uncertainty of the occluded
markers; improving the accuracy of the system. However, such measure significantly
increases the cost of the system. In addition, the mobility of the equipment becomes very
limited [3]. Optical tracking is known to have the highest accuracy among all tracking
device system. The rated 3-D accuracy of the Polaris Spectra system is 0.25 mm root-
mean-squared error (RMSE) for a single marker, 0.233 mm RMSE for 3-D position of a
rigid body with active markers, and 0.231 mm RMSE for 3-D position of a rigid body

with passive markers [4].

Figure 1-1: Polaris Spectra optical tracking system from Northern Digital Inc. (a)
optical receiver, (b) passive optical probe with four reflective markers [5].
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capability of motion capture during
ambient sunlight [6]

1.2.2 Electromagnetic (EM) motion tracking technology

Electromagnetic (EM) tracking is done with measuring the magnetic field created
from three sets of sensor coils that are placed orthogonal to each other [7], [8]. These
coils act as transmitter, and are excited in sequence by a driving circuit to generate EM
field. Another set of fixed coils that act as the receiver, monitor the changes of the pulses

of the EM field to determine the six degrees of freedom of the transmitter.

A magnetic tracking by Acension Technology is shown in Figure 1-4. Due to the
nature of this type of sensor, ferromagnetic materials can disrupt the magnetic field
generated by the coils; thus decreasing the accuracy of the system [4,9,10]. Hence, the
primary focus in EM tracking research has been focused on calibrating the device, i.e.

either eliminate or account for such disruption [11].



Figure 1-4 - Magnetic tracking system from Acension Technology [12]

The major drawback of EM tracking, aside from the ferromagnetic interference, is
the need of to use wires to connect the tracking unit. The 3-D static position accuracy of
the system was reported to be 1.8 mm RMSE using the mid-range transmitter over an
operating range of 0.203 to 0.762 m from the transmitting coil to the sensor [12].
Dynamic accuracy of the system is not available due to non-reproducible magnetic
disturbance during testing. The accuracy of the system also diminishes significantly as
the transmitter moved further away from the receiver. The maximum operating range of

the system with 1.8 mm RMSE is 0.75 m from transmitting coil to magnetic sensor.

1.2.3 Global and Radio frequency (RF) Local Positioning System

Tracking technique such as global positioning system (GPS) uses multiple
satellites for positioning [13]. The sensor transmits a signal to multiple satellites in orbit.
The difference of the signal arrival time can be used to triangulate the position of the
object. There are multiple error sources in GPS, including Ionospheric effect [14], and
Tropospheric effect [15], which are uncommon in other motion tracking system. The
accuracy of the GPS is approximately 5 to 30m. It is reliable for geo-localization.
However, it’s not accurate enough for human motion analysis. GPS is also limited to

outdoor only where you can maintain line of sight communications to satellites.



Local positioning system (LPS) uses the same concept as GPS; however, the
satellites are set up as base stations and fixed indoor. Multiple LPS technologies have
been developed with RF technologies. Recently, ultra-wide-band (UWB) systems using
3.1 to 10.6 GHz channels bandwidth have shown promising results as a local positioning
system [16,17]. The current leading edge research in UWB systems have reached sub
millimeter static accuracy and less than 5mm in dynamic motion in indoor environment
[18]. The mobility of the system is limited as the LPS satellites or base stations are fixed
and mounted indoor. Additionally, multi-tag and targets interferences adversely affect

the accuracy of the system, and the solution is still being actively researched.

1.2.4 Inertial motion tracking technology

With the limitation of the exterior monitoring tracking systems mentioned above,
a different tracking strategy was introduced. Inertial Measurement Unit (IMU) measures
the inertial properties of an object in motion; and uses the laws of physics to calculate
the relative motion of the object to its initial position. IMU is usually consisted of
multiple inertial measuring sensors, e.g. accelerometers and gyroscopes. It is capable of
tracking without using any external observer. Using the information from the sensors
such as accelerations and angular velocities, the positions and orientations of the object
can be estimated relative to its previously known location. This method is known as
dead reckoning, which will be discussed in detail in the later chapter. Additional sensors

may be added on it to increase the capability and accuracy of the system.

IMU was initially designed by Robert Goddard for rocket stabilization, and later
developed into missiles guidance system in World War II [19]. The early development
of inertial sensors shown the system was subjected to accumulative drifting error, which

severely reduces the accuracy of the system over extended period of time. During that



time, the primary focus of research was to develop more sensitive and accurate sensors
to minimize the potential noise in calculation. The performance of the inertial tracking
system improved drastically with the advance of digital computing, which replaces the
original analog computer. Digital computer also enables the implementation of more
complex estimation algorithms. In the early 60s during the Apollo project, the IMU was
used as a guidance and navigation for human flight for the first time in history [20]. The
use of this technology is now wide spread into other navigation systems for aero-planes,
ships, and submarines. In recent years, semiconductor based IMU has been integrated
with GPS system to provide navigation for automobiles and unmanned vehicles. GPS
provides an accurate checkpoint for correcting the drift in IMU. At the same time, the
IMU provides real time positions and orientations in between each GPS updates, as well

as during GPS blackout.

There are multiple types of IMU system depending on the accuracy required and
the available space. The micro-machined micro-electro-mechanical system (MEMS)
based sensors coupled with integrated circuit (IC) allow miniaturization of the IMU to
portable system as shown in Figure 1-5. The static accuracy of this system is 0.4 degrees

in orientation; whereas the dynamic accuracy under cyclic motion is 4 degrees [21,22].

Figure 1-5 - IMU by Xsens (Left) [21] and MicroStrain (Right) [22]



1.2.5 In-vivo tracking technologies

The optical tracking device are usually used to perform motion tracking outside
of the human body, although there are several attempts to use them in-vivo during
certain surgical procedures [23,24]. EM tracking device has been used for tracking the

needle during injection [25].

1.2.5.1 Fluoroscopy

In-vivo bone tracking is a primary interest to the orthopedic industry.
Understanding the biomechanics of the human joint plays an important role in the
implant design process. Fluoroscopic is an example of a bio-imaging unit that is capable
of performing in-vivo motion analysis. Fluoroscopy unit consists of an X-ray source, an
image intensifier or a flat panel detector couple with a charge-coupled device (CCD)
camera. The x ray is attenuated as it interacts with different soft tissues of the body. The
CCD camera records the image and displays them as video. Figure 1-6 shows a subject
performing deep knee bend motion under fluoroscopy. An image processing technique

was developed to register the two dimensional (2D) shadow casted from the area of

interest to a 3D polygon models on the computer as shown in Figure 1-7.

Figure 1-6 - Patient performing a deep knee Figure 1-7 - 2D image to 3D model
bend activity under fluoroscopic surveillance registration



The dynamics of the motion captured by the fluoroscopy unit can be evaluated
after registering the models on multiple frames [25,26,27]. Fluoroscopy suffers the same
problem as optical device; i.e. the viewing volume is limited. Motion such as walking,

jogging can easily go out of range of the viewing volume of the fluoroscopy unit.

1.2.5.2 Roentgen Stereophotogrammetry Analysis

Another  approach  for in-vivo motion tracking is  Roentgen
stereophotogrammetry analysis (RSA), which was pioneered by Davidson in the early
19t century [28]. The localization concept is very similar to optical motion tracking using
passive markers. Tantalum markers are implanted either onto the bone of the patient or
within the prosthesis at known locations. Multiple x-ray images were taken while the
patient is performing activities. The measurements of these markers are taken and the
poses of the bones or prostheses on each radiograph are calculated as shown in Figure
1-8 [29]. This method is considered quasi static kinematics analysis since the patients are
required to hold still when the radiograph is being taken. It has been proven by Fuller
that the relative motion between the skin and the bone can introduce a significant
amount of error while performing kinematic analysis [30]. While the IMU itself cannot
track the motion of the in-vivo joint, it is possible to couple with other non-radioactive
imaging techniques such as ultrasound to achieve in vivo tracking. IMU provides the
kinematic data between the global and skin frames, while the ultrasound transducers
provide the skin to bone transformation. This promotes the concept of a low cost, non-
radioactive, high mobility in-vivo motion tracking device that can be used in many areas
such as sport science and orthopedics research. In this dissertation, the primary focus is
to develop the strategy in maximizing the accuracy of the IMU for human body motion

tracking with both hardware and software development.



Figure 1-8 - RSA tracking of a hip implant [31]

1.2.6 Human motion tracking Using Inertial Tracking Technologies

The initial effort to use IMU to track human body motion began towards the end
of 90s; where the technology to design and fabricate Micro-Electro-Mechanical System
(MEMS) based sensors began to mature. In 1996, Veltink published the initial concept of
using accelerometer sensors to motion analysis using uniaxial accelerometer [32]. Bouten
used triaxial accelerometer to analysis daily activities such as standing, walking, and
performing desk work [33]. Multiple studies had been performed for posture

estimations and daily activities monitoring using tri-axial accelerometers [34,35,36].

In 1999, Miyazaki measured the stride length and instantaneous velocity of the
patients during gait by attaching gyroscopes to their thighs [37], and Tong used
gyroscopes for a full gait analysis [38]. In 2002, Mayagoita introduced the initial
framework of tracking lower extremities with a fusion of accelerometers and gyroscopes
in 2D sagittal plane [39]. Various clinical applications have been proposed using inertial
motion tracking for gait analysis [40,41,42], as well as other joint studies [43,44,45].
Roetenberg used a set of tri-axial accelerometers, tri-axial gyroscopes and a

magnetometer to monitor human motion in his dissertation in 2006 [46,47]. Many
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researchers built on and improved this technology for human motion orientation
tracking with IMU [48,49]. There are also multiple researches for incorporating IMU

motion tracking into virtual and augmented reality environment [41,50,51].

In recent years, semiconductor based sensor have successfully introduced into
the consumer electronics industry. Wii-Remote is one of the most successful commercial
systems that incorporate accelerometers, gyroscopes and infrared range sensors for
motion tracking as an interface to an entertainment system [52]. The performance of the
system mentioned above provides excellent static result, yet the accuracy of dynamic
tracking is lacking due to various limitations in the design. This research is aimed to
minimize the error from both hardware and software perspectives, and to achieve mili-
degree accuracy for human body dynamic motion. Table 1-1 compares all the existing

motion tracking technologies and the proposing system in this research.
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Table 1-1 - Comparison between different motion tracking systems

3D Static 3D Static Dynamic Dynamic Flexibilit
Translation Orientation Translation Orientation Cost (mobilit /seilu ) Multi-track | In-vivo
Accuracy Accuracy Accuracy Accuracy Y P
Optical ?F'f,\‘;’gg ; 0.25mm ; High N Y N
EM T4mm 1 5o (RMSE) N/A N/A Moderate N Y N
(RMSE) '
GPS 5m - 5m - Low Y Y N
LPS (%f/l”;’é‘) i 3mm (RMS) i Moderate N R&D N
Fluoroscopy - - 0.3mm (RMS) 0.3° (RMSE) High N Y Y
RSA 10[;23550 il o.o[gs-é) 4(])6 . . Moderate N Y %
0.4-1° 4° (cyclic,
IMU N/A (RMSE) N/A RMSE) Low Y Y N
Proposing <0.5° o
system N/A (RMSE) N/A <1° (RMSE) Moderate Y Y N
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1.3 Contributions

There are extensive researches in the field of inertial tracking technologies and
estimation algorithms. The fundamental contribution presented in this dissertation is
realizing a highly accurate inertial tracking system to monitor human body motion with
engineering designs based on scientific analysis in multiple disciplines. The following

section outlines the contributions presented in this dissertation.

1.3.1 Quaternion estimation with sequential Monte Carlo method
(Particle Filter) and directional statistics for Non Gaussian, Non
linear system

The analysis of current attitude estimation algorithms leads to the development
of the quaternionic attitude estimation algorithm using sequential Monte Carlo method
due to the instability issue observed during human motion tracking experiment.
Sequential Monte Carlo method (or particle filter) is a sequential approach to a Bayesian
estimation problem. It does not assume Gaussian characteristic of the system and it does
not require direct determination of the system’s states error covariance. This approach
allows considerable amount of flexibility in a wide variety of problems. Moreover, it is
not necessary to directly determine the true density of the system as the particle filter
approximates the statistical properties of the system through sequential importance
sampling. The primary challenge is that quaternion is a hyper-complex vector within the
special orthogonal group (SO(3)) in the fourth dimension. Statistical inference with
quaternion is difficult using conventional statistical tool. Hyper-dimensional directional
statistic is used in this dissertation to solve this problem.

In this dissertation, the quaternion particle filter is implemented with two hyper-
dimensional statistical geometries, von Mises-Fisher density, and Non-Uniform density.

Non-uniform density is based on the principle of Bingham density, and its sampling
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technique is presented. The implementation of the particle filter is different between the
two densities because of the sampling technique. The merit in this implementation is to
realize the likelihood functions in particle filtering for both of the densities. For von
Mises-Fisher density, the likelihood is determined through computation of the particle
spread to the dispersion factor whereas it is determined by the density bounds
evaluation for non-uniform density.

In addition, this dissertation presented a computation method to determine the
quaternion expectation via weighted quaternion interpolation using a double recursion

with spherical linear interpolation.

1.3.2 High tracking accuracy for biomedical applications

This dissertation presented multiple validation studies to verify the capabilities
and potentials of the inertial tracking system and the particle filtering algorithms. A top
level simulation model was designed to validate the design of the algorithm. Current
simulation model for particle filter design does not capture the signal characteristic of an
inertial tracking device. The presented model simulated the outputs from various
sensors. The simulation demonstrates the capability of the particle filters, whereas the
particles population increases, its accuracy improves. With enough particles, the particle
filtering estimation algorithm can outperform the benchmarking algorithms such as the
extended Kalman filter and the complementary filter.

The performance of the inertial tracking system and the algorithm were
examined with robotic and human free hand motion applications. The performance of
the system is comparable with optical tracking system. The experimental results and
analyses also indicate that several configurations of the particle filters perform better
than the benchmarking algorithms. Human free hand motion activities have also

increased the root mean squared error of the estimation significantly compare to the
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robotic application. In addition, the particle filter algorithm shows remarkable stability
comparing against the benchmarking algorithms during free hand motion activities.

The developed tracking system were used in two biomedical applications to
demonstrates its potential. The first application shows the basic multi-tracking ability of
the system from multiple knee joint activities, such as deep knee bend and chair rise.
The performance of the system is compared with the optical tracking system, and shows
great performance with approximately 0.5 degrees root mean squared error on all axes
relative to the optical system. The second application shows the capability of the inertial
tracking system as a clinical diagnostic device. The tracking system was used on a
normal subject and a subject with degenerative lumbar spine. The tracking system
monitors the subjects performing several activities including flexing and extending their
back and twisting their torso. During these activities, the subject with degenerative spine
has more out of plane motions compare to the normal subject. The result from the

inertial tracker also correlates with the results found in previous fluoroscopic study.

1.3.3 Modular system design

This dissertation presented the design philosophy and implementation of a
modular tracking system. Off the shelf inertial tracking systems utilize sensing elements
with a specific dynamic range. However, human body motion goes through phases of
activities with different ranges of speed. In order to optimize the performance of the
tracking system, the hardware must be able to provide sensing elements in multiple
dynamic ranges. A modular design of the inertial tracker was implemented to provide
multi-resolution sensing based on different activities. The sensing elements of different
properties are organized into different sensing strips that can be plugged in or remove
from the base system easily. Secondly, the inertial tracking system presented in this

dissertation drastically increases the resolution available for the inertial sensors. The
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current high-end inertial tracking system uses 16-bit analog to digital converter.
However, the specification generally does not taken account into the performance
degradation from conversion speed and signal dynamic range matching. The current
design for the modular system provides 18.1 effective noiseless bits matched to the

sensors dynamic output range at top conversion speed.

1.4 Organization

There are many orientation representations methods, as well as attitude
estimation algorithms. Chapter 2 provides the background information and reviews
various types of attitude representations, including Euler angles, axis-angle, Euler
Rodrigues symmetric parameters, quaternions, Cayley-Klein parameters, Rodrigues
parameters, and modified Rodrigues parameters. The principles of various attitude
estimations and tracking theories based on recursive Bayesian estimation, including the
Kalman class estimators and its variations and sequential Monte Carlo method, were
discussed. Chapter 3 reviews the background and fundamentals of inertial sensing with
accelerometers, gyroscopes and magnetometers. The configurations and designs of
several inertial tracking devices were also examined. The pilot experiment with an off
the shelf IMU is discussed in Chapter 4. The calibration techniques of each of the sensing
elements were discussed. The tracking experiment used quaternionic Kalman and
Extended Kalman filters to perform attitude estimation. The experimental analysis
provides insights to the designs and improvements necessary to achieve high accuracy

tracking for human body motion.

The hardware implementation of the new generation of IMU is discussed in
Chapter 5. The specification of the system is also discussed. The modular design of the

IMU is presented as well as the counter measure to hardware performance degradation
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from current off the shelf systems. The signal conditioning circuits for each of the sensor

type are shown, and the firmware of the IMU system is illustrated.

In chapter 6, the implementation of various attitude estimation algorithms were
presented. The Complementary and Kalman class estimators for quaternion are
examined in details. The sequential Monte Carlo methods presented here in this
dissertation use hyper-dimensional directional statistical geometries such as von Mises-
Fisher and non-uniform densities. The implementations of the sampling methods are
shown. In addition, the likelihood functions, the importance sampling and resampling

methods for each of the densities are also demonstrated and discussed in details.

In chapter 7, the results from multiple validation experiments are discussed. The
validation study for the algorithm designs were conducted through simulation studies.
A top-level simulation model for inertial tracking system was presented. The simulation
results are compared to the noise free model. A robotic testing was conducted to access
the dynamic capabilities of the IMU system and the results is compared to other
benchmarking algorithms such as extended Kalman filter and complementary filter
relative to the optical tracking system. Free hand motion experiments are also presented
to demonstrate the robustness of the particle filter algorithm design. In chapter 8, the
inertial tracking systems were tested on the knee joint and lumbar spine to demonstrate
the potential as a diagnostic device for biomedical applications. The knee joint activities
demonstrate the feasibility of using multiple IMUs for kinematic studies. The
performance of the IMU is compared to optical tracking system. The second application
demonstrates the feasibility to identify subject with either normal or degenerative
lumbar spine by analyzing the orientation result from the IMU during activities. The
conclusion of this dissertation is presented in chapter 9, and the discussion related to the

future work is discussed in chapter 10.
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2. Attitude Representations and Estimation Algorithms
2.1 Overview of Orientation Representations

A six degree-of-freedom (DOF) motion tracker constitutes two sets of data
regarding to the position (translations) and orientation (rotations) of an object. The
position of an object is commonly represented by a vector in Cartesian, cylindrical, or
spherical co-ordinate system. Orientation, on the other hand, has many different kinds
of representations, which can be parameterized to sets of vectors or matrixes. The
following sections discuss the pros and cons of different parameterization methods for

orientation.

2.1.1 Rotation Matrix

Suppose the object A has an orthogonal base axis of {E, @, al} and it is rotated
by an angle of # (rad) around a} as shown in Figure 2-1 . The rotational transformations

of A to its new orientation {a—,zc, a—jz,, aZ} are given by equations (1-3).

a_,zc = @cos@ + a_},sine @
a_32, = —a_,lcsine + a_},cose (2)
aZ=a2 ©)
P e
a, a,
s
aX
e o
ax

Figure 2-1 - Rotation of Object A around al
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These are typically expressed in matrix form, which is known as the transformation

matrix.
2
Ax cosf sinf 0 ax
2 —
@ = sm@ cosG O ay (4)
aZ
Equation (4) demonstrates the transformation of an object rotating around a

single axis. To obtain the full three DOF of rotations, the transformations for a_}c in

equation (5) and @ in equation (6) are required. The orthogonal base axes of the object

can then sequentially transformed by these matrixes.

] 1 o o [«
| = [0 cos(p) sin(p)] P ©)
_a_g 0 —sin(p) cos(p) 2z
a_f? cos(p) 0 —sin(p) a_,3(
at[=] O 1 0 @, ©)
r sin(p) 0 cos(p) _a—g
where p is the rotation of object A around a_,zc, and ¢ is the rotation around a_f’,.
The combined rotation matrix (R) is given by,
c(@)c(®) —c(p)s(0) +s(p)s(@)c(8)  s(p)s(O) + c(p)s(p)c(0)
R =|c(p)s(8) c(p)c(8) +s(p)s(p)s(8) —s(p)c(B) + c(p)s(p)s(6) )

—-s(p) s(p)s(p) c(p)c(8)

where ¢ - cos,s — sin

Lastly, R has 9 components to represents 3 rotation. Hence, six constraints are required,

which can be expressed by

RTR =1,det(R) =1 (8)
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2.1.2 Euler Angle Representation

The angles (p, ¢, 6) in equation (7) are commonly referred as the Euler angles
representation of rotations. There are multiple ways to convert the Euler angles
representation into rotation matrix depending on the multiplication sequence of the
matrixes. There are a total of six symmetric and six asymmetric sequences as
summarized in Due to these limitations, the choice of the sequence of rotations becomes
very important. The obvious advantage of using Euler angles is that they are intuitive
representation of the rotations. One of the major issues is that the inverse conversion

between the rotation matrix and the Euler angles as shown in equations (12-14).

Table 2-1 .
Euler angles are not unique as the mirror angles result as the same orientation as

shown in equation (9) for symmetric sets and equation (10) for asymmetric sets
R(p,9,0) =R(p +1,—¢,6 — 1) )
R(p,p,0) =R(p+mm—¢,0 —m) (10)
Because of these ambiguities, the following constraints are commonly used to ensure the

uniqueness of the Euler angles.

—TT
0<p<2m, TSQDS , 0<6<2m (12)

N

Due to these limitations, the choice of the sequence of rotations becomes very
important. The obvious advantage of using Euler angles is that they are intuitive
representation of the rotations. One of the major issues is that the inverse conversion

between the rotation matrix and the Euler angles as shown in equations (12-14).
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Table 2-1 - Rotation sets for Euler Angle

Symmetric sets Asymmetric sets

X-Y-X X-Y-Z
Y-Z-Y Y-Z-X
Z-X-Z Z-X-Y
X-Z-X X-Z-Y
Y-X-Y Y-X-Z
Z-Y-Z Z-Y-X

Singularity occurs at ¢ = i% for equations (123) and ((14) as the denominator is zero.

This is known as the mathematical gimbal lock, where two of the rotational axes are

parallel to each other.

¢ = asin(R31) (12)
p = atan (@)
R33 (13)
Ry
0 = atan (—)
Ry (14)

2.1.3 Axis-Angle Representations

Consider the rotation of object A is parameterized by a single rotation (a) around
a unit length axis (6 = [é; &, &;3]) in the plane of rotation. There are many different
parameterization methods based on this principle. Equation (15) demonstrated the

simplest parameterization method with Euler angles (p, ¢, ) .

cos(p)sin(¢) (15)

&
é
s sin(p)
a

‘ lCOS(p)COS(q’)

Similar to Euler angles, the parameterization can create different sets of axis-angle
representations depending on the choice of the angles used in the above equation. The

rotation matrix for axis angle representation is shown in equation (16).
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8,%(E) + cos(a)  8,8,(E) + &5sin(a) &,65(E) — &, sin(a)
( (16)

R; = |é,é,(E) — é; sin(a) 6,%(E) + cos(a)  é,65(E) + é, sin(a)
€361(E) + é;sin(a) é3é,(E) — é;sin(a) &5 2(E) + cos(a)

where E = 1 — cos(a).

2.1.4 Euler-Rodrigues symmetric parameters
The Euler-Rodrigues symmetric parameters (n = [n; 1, 13 71,]) are one of the

frequently used parameterization methods for axis-angle representation. It is defined as,

1sm(—)
] a7

Zsm( ) »y Ma = COS(_)
l’l35m(_)

with unity constraint of
m? 405 +m® =1 (18)

The rotation matrix for Euler-Rodrigues symmetric parameters is shown below.

21Nz + Nan3) 2(M1M3 — Nalz2)
2402 — 3% 4, 2(N2n3 + Nany)
—M2 =%+t 4,

7712 - 7722 - 7732 - 7742
R, = 2(N2M1 — Nan3) —M
2(M3n1 + Nanz2) 2(N3N2 — NaMi)

(19)
2

Rotation transformation between two Euler Rodrigues symmetric parameters can

be performed in equation (20).
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G =6 =G =0l
G G (o —G3||n2
G =G G CRIUE
(o ¢35 =G —¢ilna

RyRg=1® 7 = (20)

The advantage of Euler Rodrigues symmetric parameters is that it uses
considerably less elements compare to the rotation matrix constructed from Euler

angles. In addition, it has only one simple constraint as shown in equation (18).

2.1.5 Quaternion

The Euler-Rodrigues symmetric parameters are a special case of a general hyper-
complex number group known as quaternion. Quaternion is defined as a vector with

one real component g, and three imaginary vector component (q; 1, qJ, q3k),

q=4qo+ q1l+qzj +qsk (21)

with the following properties,

i2=j2=k?=-1 (22)
ij=—ji=k (23)
jk=—kj=i (24)
ki = —ik = (25)

The conjugate of a quaternion gq* gives the inverse rotation of the Euler-

Rodrigues symmetric parameters.

Q" =qo— q1i — q2J — qsk (26)
Quaternions are non-commutative and follow the multiplication rule in equation

(20). The inverse of a quaternion is given by the conjugate divided by the norm.

*

1 q
qo% + q12 + q2% + q3*

Quaternion with norm root equals to one is known as unit quaternion. Unit

(27)

quaternion uses the same Lie algebra as the special orthogonal rotation group (SO(3)).

Each elements in the SO(3) is composed of two unit quaternions (q, —q). Because of this

23



unique property, rotation representations parameterized as quaternion do not suffer
from the mathematical gimbal locking issues in Euler angle representation. Quaternion
can be calculated from Euler angles via equations (28-31). Since there are 12 different
rotational sets for the Euler angle representation for the same rotation, there are 12 ways
to project the quaternion back to Euler angles. Equation (32-34) demonstrates the
conversion to Z-Y-X rotational set. In addition, the limitations in equation (11) for Euler

angles representation to maintain its uniqueness still apply in this calculation.

o = coS (g) cos (g) cos (g) + sin (g) sin (%) sin (g) (28)
qs = —cos (g) sin (%) sin (g) + cos (g) cos (g) sin (g) (29)
g, = cos (g) cos (%) sin (g) + sin (g) cos (g) sin (g) (30)
05 = cos (8)cos(£)in (4) - in (8) os (£)sin 2 @

p = atan (2(‘12‘13 + %%))
1-2(qf +43) (32)

@ = asin(2(q193 — 9092)) (33)
2 +

6 = atan< (9192 . %qi)> (34)
1-2(q; +q3)

2.1.6 Cayley-Klein Parameters

Cayley Klevin Parameters are a set of four complex parameters that is closely

related to quaternion. The parameterization of Cayley Klein Parameters is as followed.

Ca=qo tiq3 (35)
Cp=q2 +iqq (36)
C,=—q2 +iq, (37)
Cs=q4 —iq3 (38)

where i = v—1.
The Cayley-Klein Parameters follow the constraints in equations (39-41), and the

rotation matrix is shown in (42).
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Where (" is the complex conjugate of C,.

G =GP =G +CY) (-G =GP+ G2 +CsY) (GG — Calp)
Re=12(C* =2+ G2 —C%) (G2 +C7+C7+ G2 —i(Cls+GCo)| (42

(C4Cs — CaCy) i(C.C, + C5Cs) (CaCs + C,Cp)

B 14 14 B y-B

2.1.7 Rodrigues Parameters

The Rodrigues parameters are a representation that reduces the element in the
Euler Rodrigues symmetric parameters. It is defined as,

A @ n

Y1 nltan(z) [ 1/ 774]
A a

[Vz] =|Mztan(x) | = lnz/ n4J (43)

YV .

S stan| 1"/ g,

The rotation transformation between two Rodrigues parameters is shown below.

Yy+T—yXT

R,R, = (y,7) = (44)

11—yt
The primarily disadvantage for Rodrigues Parameter is that there are two singularity
points occur as a approaches .

2.1.8 Modified Rodrigues Parameters

The modified Rodrigues parameters are very similar to the Rodrigues

parameters. It is defined as followed.
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. a M
op [tan@] [ +ny]

A a
| = 1t | = 1 @
% 5 il 3

7]3tan(4) /(1 + .’,’4)

The rotation matrix for modified Rodrigues Parameters is shown in equation

(46), and the rotation transformation between two modified Rodrigues Parameters is

shown in equation (47).

1
Ry = ———s
7 (1+070)?
4(612 - 022 - 632) - E2 86102 + 4773E 80’10‘3 + 4’an (46)
80,01 — 413E 4(=0,% + 05> — 05%) — E? 2(n2m3 + Man1)
80301 + 4‘an 80302 - 4‘7]1E 4(_0-12 - 0'22 + 032) - EZ

where E =1 —g.

A—1oDZ+A - 2o —2E X0

R Ry = (0,5) =
ofz = (0,2) 1+ o222 — 20 -2

(47)

Similar to Rodrigues Parameters, Modified Rodrigues Parameters experience
singularity at certain attitude. However, there is only one single singularity point at 0,2

for modified Rodrigues Parameters.

2.2 Review of Attitude Estimation Algorithm

The initial design of the IMU system were using analog computer to implement
simple algorithm, which are subjected to noise and calculation error. With the advance
in digital computing, multiple signal processing algorithms for improving the condition
of the signal were realized. However, in an inherently noisy system, it is not possible to
completely eliminate the noise that contributes to the arithmetic drift. Algorithm designs
for sensor fusion techniques have also played an important role in improving the
accuracy of the IMU system. The following section reviews the principle of various

algorithmic designs for attitude estimation.
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2.2.1 Recursive Bayesian Estimation

The principle of attitude estimation algorithm is to predict and correct the input
data to generate meaningful outputs in a recursive manner. Recursive Bayesian
estimation is a statistical estimation technique based on the prediction and correction
principles. The algorithm predicts the future states of the system based on data in the
current interval and the priori knowledge of the system’s statistical model. The
observation states computed from the measurements collected at the current interval is
compared with the prediction made in the previous interval. This knowledge is then
used to update and correct the statistical properties of the system model. There are many
implementations based on the core principles of recursive Bayesian estimation. The

sections below illustrated some of the most notable designs.

2.2.2 Principle of Kalman Filter

In 1951, Rudolf Kalman introduced a recursive estimation algorithm for discrete
linear filtering problem, which is now known as Kalman filter [55]. Kalman filter is a
state space modeling method for a dynamic linear system with input measurements
polluted by random noise. The filter is to model such conditions, produces predictions,
computes the uncertainty of each sensor inputs, and determined the most likely
outcome of the system. As a recursive estimator, Kalman filter only requires the
measurements from the previous state to calculate the prediction and the measurements
from the current state to calculate the errors and adjustments. It does not require any

other memories of the measurements.

Consider a discrete linear dynamic model, the transition between the current
state at time k and the previous state at time (k-1) can be described with the following

model.
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X = Axk_l + Buk_l + Wg_-1 (48)

where x; is the state vector of the current state, xj_; is the state vector from the previous
state, A is the transitional matrix model to transform the previous state into the current
state, Bis the matrix model for controlled input u,_; from the previous state, and
Wy—_1is the process noise, which is independent and normally distributed around zero

means with process noise covariance matrix Q.

p(w) =N(0,Q) (49)

The model that relates the measurement to the state vector x;, of the system at time k is,

Zp = ka + hk (50)

where z, is the measurements vector at time k, H is the matrix of measurement
equations that relates the state x to zy, and vy, is the measurement noise at time k, which
is independent with zero means normal probability with measurement noise covariance

matrix R.

p(v) = N(0,R) (51)

As the same vector at different instances is needed for the calculation, the
following parameters are defined. J?k_ is defined as the priori estimation of the state at
step k with the knowledge of the process prior to step k. X, is defined as the posteriori
estimation of the state at step k given the measurement z,. The errors for the priori and
posteriori estimations are defined as

e =xp— %, (52)

The error covariance matrixes for the priori and posteriori estimations are,
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P, =E[e, e, ] (54)
P, =E[eg ef] (55)

The essence of the Kalman filter is to determine the differences between the
predictions and the measurements, and adjust the filter accordingly. The equation below

is known as the innovation matrix, which is the difference between the priori

prediction H ’D\Ck_ , and the measurement z,,.
}7]{ =Zy — H/.')\Ck_ (56)
where Jy, is the innovation matrix.

The innovation error covariance matrix, Sy, determines residuals error

between H ?ck_ and zj as shown in equation below.
S, = HP, HT + R (57)

The posteriori state estimate X, , is then a linear combination of the priori estimate

J?R_ , and a weighted innovation adjustment.
fk = 5C\k +Kk}7k (58)

where K is the optimal Kalman gain.
The Kalman gain is determined by minimizing the posteriori estimate covariance

matrix, which can be computed as follow. The posteriori error covariance P, is given as
Py =cov(xy — %) (59)

By expanding the formula above with the equations from the measurement

model, innovation, and the posteriori state estimate.

P, = cov <xk - (J?k_ + Ky (ka + v, — H% ))) (60)
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As the priori estimate is an invariant; its process noise is not correlated with the
other parameters, and has zero means normal probability with process noise covariance

matrix R, the equation becomes

P, = - KH )P, (U — K )T + K R K (61)
=P, —K.HyP, — P, HTKT + K, S, KT

The optimal Kalman gain minimizes the posteriori error covariance estimate to
zero. By putting the derivative of the posteriori estimate P, with respect to K}, equals to

zero, the optimal Kalman gain can then be determined.

aPk =\T
T =0=2- (HiPe ) + KiSi) (62)

Ki = P HESi? (63)

Kalman filter can be separated into 2 major sets of equations, which are the time
updates equations and the measurements update equations. The time update equations
predict the priori estimates at time k with the knowledge of the current states and error

covariance at time k-1 in equation (64) respectively.

Qk = Afk—l + Buk_1 (64)
P, = AP, A" +Q (65)
The measurements update equations use the measurements acquired with the

priori estimates to calculate the posteriori estimates.

S, = HP, HT + R (66)

Ki = P, HESi" (67)

k\k = 5C\k_ + ka’k' yk =Zr — H/)\Ck_ (68)
P, = —K.H)P, (69)
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The posteriori estimate is then use to predict priori estimate at the next time step. As
displayed from the equations above, no further information is required beside the state
and error covariance from the previous state. The algorithm is extremely efficient and
suitable for the tracking problem where multiple concurrent input measurements are

required.

2.2.3 Principle of Extended Kalman Filter

Kalman filter makes an assumption regarding to the linearity of the dynamic
system. Extended Kalman Filter (EKF) is an extension of the Kalman filter, developed to
tackle the non-linear problem by approximating the non-linear system by linearization.
[56]. The basic concept is to determine the estimate through linearization of current
estimates by calculating the Jacobian of the process and measurement matrixes. The
process and measurement models are redefined as followed,

X = [ (Xp-1, Up—1, Wi—1) (70)

z = h(xy, vy) (71)

where f is the non-linear function to transform the previous state into the current state,
and h is the non-linear function that relates the state x;, to z,. The non-linear process and
measurement model can be expressed as,

X = X + A1 (X1 — Xp—1) + Wiemawpe—4 (72)

Zp = Zk + Hk(xk - fk) + Vkvk (73)

where X, is the approximate process state vector, and Z, is the approximate
measurement vector.

Ay, is the Jacobian matrix of partial derivate of f with respect to x.

ot .
Ak—l[i,j] = K[;](xk—li Up-1) (74)
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Wy is the Jacobian matrix of partial derivate of f with respect to w.

Ofial o
W11 = m(xk—lr Ug—1) (75)

H,, is the Jacobian matrix of partial derivate of h with respect to x.

Hk[i,j] = Fm(fk ) (76)
Vy is the Jacobian matrix of partial derivate of h with respect to w.
Vi) = oo (G (77)
[j1
The error for priori and posteriori estimations are redefined as
xy = A1 (X1 — Xp—1) + & (78)
€z, = Hyby, + 1y (79)

where ¢, is defined as an independent random variable with zero means and covariance
matrix Wy_1QW_,",

p(ex)~N(0, Wy, QWy_,") (80)

and nyis defined as an independent random variable with zero means and covariance
. T
matrix V, RV} " .

p(Mi)~N(0, Vi RV;") (81)

The time updates equations for the extended Kalman filter are updated to

X = f(Xk-1, Ug-1) (82)
Py = AP 1A + Wi Qo W " (83)

And the measurement update equations are

S, = H.P, H" + VRV, " (84)
K, = P, HIS;1 (85)
X =% +KeVo e =2k — h(%y) (86)
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Py = (I — KeH)Py (87)

The primarily difference between KF and EKEF is the linearization of the system
state by the calculation of the Jacobian matrixes. The prediction and update equations
are essentially the same. It should be noted that this is a first order EKF, where an
assumption that the effects of higher order terms are negligible. However, in some cases,
where higher order terms affect the accuracy of the filter, Hessian matrixes will be
required in the calculation. In addition, Kalman filter is considered as an optimal filter
with sub-optimal conditions owning the assumptions of the system states. Extended
Kalman filter becomes a non-optimal filter due to the linearization process. The system
models and noise processes must be designed carefully to ensure stability of the

algorithm and prevent it diverging.

2.2.4 Kalman and Extended Kalman filter with QUEST

There are numerous variations of the KF and EKF based on the interpretation in
optimizing the error estimation. One of most notable families is using the QUaternion
ESTimator (QUEST) algorithm. The QUEST family tackles the minimization method of
the Wahba’s problem for quaternion estimation [57]. Consider the following system,

v, = R¥Bv, k=1:N (88)
where vy, is a set of N vectors representing the measurements from sensor A, v, is a set
of N vectors representing the measurement from sensor B, and R4 is a rotation matrix
to transform vy, to vy,. The goal is to obtain the R4 that minimizes the error. This is
done by computing the R4E that minimizes the lose function,
|z

N
J(R4B) = 0.5 Z wy [vi, — R4B vy, (89)
k=1

where ] is the lose function, wy is non-negative weights, and N is total number of

measurements.
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There are many approaches to solve this problem. In 1978, Lerner proposed the

g-method [58]. By expanding the loss function,

JRA) = 05 TRy wi (v, = R4Pvy,) (v, — R4y,

_ncyN T T T pAB T o T, —
=053 N=y Wi (Vie, "V + Vi Uiy — 2Vi,t R*BVy, ), where vy, Tvy, = vp,Tv, =1 (90)

TRAB

=21]¥=1Wk (1 - va ka)

According to equation (90), minimizing J is to maximize the gain function defined as,

N
g(RAB) = Z Wk vaTRAkaB (91)
k=1
For quaternion, the gain function can be defined as,
9(q) = q"Kq (92)

where K is a symmetric traceless matrix

_[B+BT—tr[Bll, Z

K = 93
zT tr[B] ®3)
B= ZIIX=1 Wi vakaT (94)
Z = [By3 — B3y B3y — Bys Bi; — By l” (95)
Adding the Lagrange multiplier (96) and differentiate the gain function (97),
9(9) =q"Kq—2q"q (96)
Kq = Aq (97)

The optimal attitude is the largest eigenvalue of Kthat maximizes the gain function. This
method obtains the least-square optimal estimate of the orientation by solving the
eigenvector directly. Shuster proposed the QUEST algorithm to solve the minimization
problem with much higher efficient by approximating the largest eigenvalue [59].
Based on equations (90) and (91), the optimal eigenvalue can be expressed as,
Aopt = Z]I¥=1 wi —J

(98)
= 2112/:1 Wi

34



The optimal quaternion can then be determined by first calculating the Rodrigues

parameters (1), which can be converted to quaternion as shown in equation (100).

1
= VA
T~ Thope + tr[B] = 5]

q= ﬁ [,ﬂ (100)

Filter QUEST [60] and REQUEST [61] combines the Kalman measurement stage

(99)

with the QUEST estimation procedure. The primarily differences between the two
algorithm is that filter QUEST uses the attitude matrix in predicting and updating B,
while REQUEST predicts and updates the Kmatrix. Optimal REQUEST [62] is similar to
REQUEST but uses stochastic process noise model to solve for optimal filter gain.

Extended QUEST [63] uses the linearization in the prediction stage as in the EKF.

2.2.5 Principle of Unscented Kalman Filter

One of the main issues with EKF is that the normality of the distribution of the
random variables is lost during the non-linear transformation. In 1996, Julier proposed a
new strategy to maintain the normality of the distribution during non-linear
transformation [64]. The principle is to select a minimal sets of chosen sample points to
capture the true mean and covariance of the Gaussian random variables, and propagate
through the non-linear system. This technique is known as unscented transformation.

The following algorithm lay out the basic for unscented transforms.

Assuming a random variable x with dimension L, which has known mean X and

covariance P, undergoes a non-linear function f.
y=f(x) (102)
The statistic of y can be computed by defining a matrix y of 2L + 1 sample vectors y;.

Xo =X (102)
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A=a?(L+k)—1L (103)
x=%+(JT+DE) ; i=1..,L (104)

i

x=%-(JT+DE) 5 i=L+1..2L (105)

i-L

where ais a constant that decides the spread of sample points around X, and kis a

scaling parameter. The weights W; of the sample vectors are defined with the following

equations.
A

(m) _
N ) (106)
WO=_2 - arip (107)

o L+ND

1

(m) _ 1@ _ .=

w; w; 20+ i=0,..,2L (108)

where f represents the priori information of the distribution of the random variable x.

The non-linear function is then applied to the sample vectors.

Yi=fQ) ; i=0,..2L (109)

The mean and covariance of y can then be calculated with
y =~ S W™ Y, (110)
P, ~ Y2 WO (Y - (Y — )T (111)
Unscented Kalman filter (UKF) is an adaptation of the unscented transform
algorithm into the Extended Kalman filter. Using the non-linear model from previous

section, a random vector x,, is defined as the initial state of the vector with known mean

and covariance.

to = E[x,] (112)
P = E[(xo — to) (X0 — 110)"] (113)
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In the time update steps, an augmented state is introduced, which consists of
both the original state and the process noise.
Xioq = [xg—q wi—q]" (114)
The covariance matrix xj; is
P4 0]
Q

Py = [ 0 (115)

Following the unscented transform algorithm by calculating the sample points,

-1 = Xf—q (116)

Xik-1 = Xfg_q + ( /(L + A)P,?_l) ; i=1,..,L (117)
i
Y = xl — ( I+ A)P,?_1> D oi=L4+1,.2L (118)
i

The sample points are then propagated to the non-linear transitional function,
Xk = k=1 U—1 Xic-1] (119)

The mean of covariance of the sample points are,

B =SE WM pE (120)

Pe =320 W xF o, — Rl oy — Faa]” (121)

In the measurement model, the augmented state is defined as,
xig =[x vi]” (122)
The covariance matrix of xf is
P 0
a _ |1k
P = [ 0 R] (123)
Using unscented transform yields,

a

xR = (124)

Xk
o=x+(Ja+nrg) =11 (125)
i

=~ ( I+ DPE) 5=l (126)
i
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The sample points are propagated into the non-linear measurement function,

Xk = hlxk, x«] (127)
The measurement vector z, and its covariance can be expressed as,
2, =T WMXE, (128)
2 2 = zzio Wi(C) [ka - ZAk_][ka - ZAk_]T (129)
The process vector and measurement vector cross covariance matrix is calculated.
Pfk 2 = Z?ﬁo Wi(C) [Xixk_l - J?k_—l][Xick - ZAk_]T (130)

The Kalman gain is determined by both the error covariance matrix of measurement
vector and the error covariance of between the process and measurement vectors.

_ -1
Kie = Pa?k 2k Pik 2 (131)

Posteriori estimates and the covariance matrix can then be evaluated.

X =X + Ko k=2 — Zy (132)
- T

One of the main advantages of unscented Kalman filter over extended Kalman filter is
that it does not require the derivation and computation of a Jacobian or Hessian
matrixes for the system model, which can be problematic for complex system. Similar to
other Kalman filters, unscented Kalman filter operates under the assumption that the
system models are Gaussian in nature. Hence, non-Gaussian system generally yields

inferior result with these filters.

2.2.6 Sequential Monte Carlo Methods

Consider a discrete non-linear non-Gaussian stochastic system that has the

following process and measurement models.
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Xk = fr(Xk—1, Wi—1) (134)
z = hy(xg, Vi) (135)

where f} is a function of unknown properties that ties the previous state and the current

state, and hy is the a function with unknown properties that links the state x;, to z.

As the statistical properties of these processes are unknown, the Bayesian
approach to this problem is to construct a posterior probability density function of the
predicting estimate given all previous observations,

p(xxlzix), Z1ik 2 {21, 25 - 21} (136)

The prior pdf at time k can be expressed by the Chapman-Kolmogorov equation,
p(Xk|Z1:k-1), = f Pl xp—1, Z1.k—1)P (X —1121.1—1) AXpe—q (137)

where p(xy|xg_1,21.,-1) is the predictive conditional density of the process model, and

p(xx—-1121.,—1) is the posterior pdf from previous interval.

The posterior pdf at time k is determined by,

Pz lx ) o (xp | Z1.0-1)
p(zklzk-1)

p(xplz10) = (138)

where

PGz = [ pGrlxOp Gz dxe (139)
In equation (138), p(zx|xy) is the likelihood function described by the measurement
model, and p(z|z,_1) is the normalizing constant. Equation (137) is regarded as the
prediction stage of the estimation algorithm, while equation (138) is the update stage.
This recursion forms the bases of the recursive estimation algorithm. However, the
posterior density is an intractable inference problem that cannot be determined

analytically as the size of the dataset is sequentially expanding.
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Sequential Monte Carlo (SMC) method [65], or particle filter (PF), is a technique
to tackle the intractable integral in the posterior density approximation of the sequential
Bayesian estimation with the Monte Carlo method [66,67]. Particle filter can be
considered a brute force approach to approximate the posterior density with a large sum
of independent and identically distributed random variables or particles from the same

probability density space.

Consider a set of N independent random samples are drawn from a probability
density p(xg|zy),

Xe(D~p(Xg|z10), T=1:N (140)

The Monte Carlo representation of the probability density can then be approximated as,

N
1
POulZ1a) = 7 D By () (141
i=1

where ;) is the Dirac delta function of the points mass. Using this interpretation, the

expectation of the any testing function h(x) is given by

N
1
B(00) = [ AGdpCeelzvddne = [ MG Y. deo G dxi
Lo o (142)
_ N; h(ee (D)), i=1:N

In practice, sampling from p(x) directly is usually not possible due to latent
hidden variables in the estimation. Alternatively, samples are drawn from a different
probability density q(xx|z,.) is proposed,

X (D) ~q (xXk|21.8), i=1:N (143)
which is generally known as the importance function or the importance density. A
correction step is then used to ensure the expectation estimation from the probability

density q(xg|z;.,) remains valid. The correction factor, which is generally regarded as
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the importance weights of the samples (wy (7)), is proportional to the ratio between the
target probability density and the proposed probability density,

~ POkl za)
Wk(l) (o8 m i=1:N (144)

The importance weights are normalized,

Zliv=1 w (@) =1 (145)
Based on the sample drawn from equation (143), the posterior probability density
becomes,

Pzl x| Zk—1)p (Xg | 2 1)

p(xlzyp) =

P(zilzi—) (146)
_ P (Zx |23 )P (g | k- 1) (x| )
p(zi|z—1) Skt (147)
& p(zg|x ) g [ — 1) (x| 21.-1) (148)
And the importance weight from equation (144) becomes,
W) o p(Zk|xk(l)).p(xk(l)|x'k—1(l))p(x1ik—1(l)lzl:k—l)’ PCLN 19)
Q(xk(l)|x1:k—1(l))CI(xl:k—1(l)|Zl:k—1)
N 1A 0) { CROILST0)
et q(xk(i)lxl:k—l(i)) (150)
P (2 D) p (e (D) i1 (D)
X Wy _1 (1) , ,
kl q (2 (D|x-1 (D) (11)
The posterior probability density can then be approximated empirically by,
p(xlz1p) = Z?Ll wy (D) 8x(d) () (152)
The expectation of the estimation from equation (142) can be expressed as,
N
B(C) = [ AGedpCrelaiddne = [ A0 Y wie@ ey Gao)
=1 (153)

= Z{v=1 wi(Dh(x, (i), i=1:N
The technique demonstrated by equations (149-152) is regarded as the sequential

importance sampling (SIS) procedure. However, the issue with SIS is that the
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importance weights will be concentrated on a few samples while the rest of them
become negligible after a few recursions. This is known as the degeneracy problem with
particle filter. A frequent approach to counter this problem is resampling the samples
such that they are all equally weighted based on the posterior density. However, since
resampling the samples introduces Monte Carlo error, resampling should not be
performed in every recursion. It should only be executed when the distribution of the
importance weight of the sample has been degraded. The state of the samples is

determined by the effective sample size, which is defined by, [68]

N
Ngrr = , i=1N
T 71 + var(w* Q) ! (154)

where wy " (i) is the true weight of the sample,

wre p (x| zy.1) S
T EN G FG) K (159

However, as the true weight of the sample cannot be determined directly, the following

method is used to approximate the effective sample size empirically with the

normalized weights. [69]

1 .
Neff = Z—?]Wiz’ i=1:N (156)

Resampling is performed when N,¢ drops below a predetermined threshold N.,, which
is done by relocating the samples with small weight to the samples with higher weights,

hence, redistributing the weights of the particles.

Particle filter is a remarkably robust algorithm for non-linear non-Gaussian
system estimation. The primarily drawback, is the exhaustive computation requirement,
as it requires substantial amount of samples to accurately approximate and capture the

statistical properties of the system
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2.2.7 Principles of Complementary filter

Complementary filter is a special class of estimation filters that filters and
performs estimations based on measurements from the signals that have complementary
spectral properties [70,71,72]. Consider two set of noisy measurements x and y that are
generated as a result of signal z, and assuming that signal x is dominated by low
frequency noise and signal y is dominated by high frequency noise. The estimation of
the original signal (2) can be determined with the strategy in Figure 2-2.

In the case of IMU composing of magnetometers, accelerometers and rate
gyroscopes sensors, the complementary filter can be modeled for a first order integrator
system,

x=y (157)
where x is the orientation estimation from the gyroscopes that is dominated by high
frequency noise, and y is the orientation determined from the accelerometers and
magnetometers inputs, that contains primarily low frequency noise. Figure 2-3 shows

the block diagram for the complementary filter for the IMU system.

X —> 1'FLPF(S) |

y > FLPF(S)

—_—

z

Figure 2-2 - Principle of Complementary Filter (F;pr(s) is a low pass filter)
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Figure 2-3 - Principle of Complementary Filter for IMU system
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3. Operating Principle of Inertial Sensors

3.1

Tracking system based on inertial sensing technologies utilizes a different
reference system comparing to the other systems that use external observer system as
their point of reference. Inertial tracking systems utilize the Earth’s gravitational and
magnetic fields as the external frame of reference. This is generally referred as the
inertial reference frame.

In order to discuss the positioning and orientations techniques, the following
reference frames and axes are used as shown in Figure 3-1. Pitch, Roll and, Yaw
represents the rotation of the x, y, and z axes of the object in its inertial reference frame
respectively. Gravity field is used as an external reference for the pitch and row rotations

of the object, while the azimuth angle, determined by the deviation between the object

Inertial Measurement Unit Reference Axes and Frames

heading and local magnetic field is used as the reference of yaw rotation.

Local magnetic pole
G, B
<
- X

e /\‘
=
W

2
Heading/ Yaw

Inertial frame

Roll
Xu%' Pitch ﬁ@ X,

~
~

~
> G

G

3

1

lGravity

Figure 3-1 - Reference frames and axes of the IMU system
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3.2 Measuring Principle of Accelerometer

Accelerometer is a device used to measure acceleration of an object in both
inertial and Newtonian frames. In principle, an accelerometer is equivalent to a mass
attached to a spring as shown in Figure 3-2. In Figure 3-2a, a mass m, is attached to a
base by a spring with spring constant k at a relaxed length of x0 with no external force
applied to it. Newton’s second law of motion states that an external force F is required to

accelerate a mass.

F =ma (158)

In Figure 3-2b, the assembly accelerates and the spring is stretched to provide
enough force to accelerate the mass. Hooke’s Law states that a force will be acting on the

spring if it is extended from its equilibrium position Ax.

F = kAx (159)

By equating the Newton’s second law of motion and the Hooke’s law, the
acceleration of a mass can be calculated from the spring constant, displacement and
mass alone.

F = kAx = ma (160)

_kAx
T om

a (161)

where a is acceleration; k is the spring constant; m is the mass and Ax is the

displacement.
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relaxed spring k Acceleration

Mass

—\X —

x0 X x0

Figure 3-2 - Conceptual illustration of accelerometers

Many of the accelerometers are designed based on this principle. One of the
common designs for micromachined accelerometer is an array of microcantilevers where
the bending of the cantilever beam (displacement) has a relationship with acceleration.
This leads to the secondary effect of accelerometers, which are vibration sensing. The

transient acceleration of the spring mass model in Figure 3-2 will be as follow.

a(t) = —w?xpsin(wt), w = 2nf (162)
and the mass motion is

mx, .
Ax = Ta) sin(wt) (163)
where f is applied frequency, x,, is the initial peak position, t is time.

The oscillation of the cantilever beam may introduce unwanted noise depending
on the application. Hence, there are many types of accelerometers with different
frequencies ranges, which balance between the displacement and the damping
coefficient. For the IMU system, the focus is to obtain acceleration from the motion and

not the vibration. The accelerometer should have a higher sensitivity on Ax.
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Using the equation of motion, the basic calculation for position from the data

from accelerometer is to integrate acceleration over time twice as shown below,

v = f alAt = v; + aAt (164)
1
s = vat =s; + v;At + EaAt2 (165)

where a is acceleration, v is velocity, v; is velocity of the previous state, s is position, s; is

position from the previous state, and At is time interval.

Upon close examination, one will notice that the velocity and position from the
previous states also contributes the calculation of the current states. In other words, if
there is any noise and error from the previous states, it will be accumulated. This is
known as the arithmetic drift error. The most difficult part of designing the IMU system
is the ability to control and minimize this drift, which was discussed previously in

Chapter 2.

Besides of positioning, certain accelerometer is also capable of measuring
orientations. Gravity is a unique external reference vector for certain type of
accelerometer. In Figure 3-3, the illustration shows the effect of gravity to the
microcantilever. In Figure 3-3a, when it is placed perpendicular to the gravity vector,
the beam bends towards gravity, indicating 1g of acceleration towards the Earth. As the
microcantilever is tilted towards the gravity vector as in Figure 3-3b, the effect of gravity
lessens, and it decreases to less than 1g of acceleration. When the gravity is completely
parallel to gravity as shown in Figure 3-3c, there is no deflation on the microcantilever
from gravity. As a result, Og of acceleration would be observed. According to this

principle, tilting of the accelerometer can be observed and calculated
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A A

(a) (b) ()

Figure 3-3 - Illustration of the micro-cantilever to the effect of gravity. Gravity has full effect
on the microcantilever in a, and no effect in c.

In order to calculate the 3D tilting of the object, a tri-axial accelerometer is

needed. Using simple trigonometry, the tilt angles on an object can be calculated.

(166)

, ( Ax )
=atan | ———
Pa JAZ + A2

Pa = atan (A—y> (167)

Az
6, = atan (—) (168)

JAZ+ A2

where Ax, Ay, Az are the acceleration vectors at x, y, or z axis, and p,, @,, and 0, are

tilt angles relative to x, y and z-axis respectively.

While the accelerometer is capable of measuring tilting relative to gravity, any
orientation changes on the plane that is perpendicular to gravity will have no effect on
the output of the sensors. Additionally, the root sum square in equations (166-168)
would yield the same result for the unit in its original and its mirror orientations on the
diagonally opposite quadrants. This leads the introduction to the second type of inertial

sensors that are commonly used in IMU system.
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3.3 Measuring Principle of Gyroscopes

Gyroscope is an instrument that measures angular motion of the object within
the inertial frame. The classical illustration of the principle of gyroscope is shown in
Figure 3-4. It consists of a motor with mass, which is suspended on three frictionless
supporting rings called gimbals. Based on the conservation of angular momentum, as
the rotor spins, the angular momentum of the rotor stabilizes the gyroscope and

maintains constant positions with respect to horizon or direction.

Commercially available gyroscopes are generally classified into 2 different
categories, which are mechanical based and optical based. This refers to the physical
operating principle of the sensors. The primary difference between the two is that
optical gyroscope has no moving parts as compare to the mechanical counterpart. Ring
laser gyroscope (RLG) is one of the most accurate designs available in the market, which
has less than 0.01°/hour error. [73] However, due to its size and weight, it is not suitable

to mount it onto human for motion tracking.

The most suitable type of gyroscope for motion tracking is the micro-machined
vibratory based gyroscope. It is very small and has a low power requirement, which is
ideal for wireless tracking application. Figure 3-5 illustrated the working principle of a
vibratory gyroscope. The proof mass m is driven to oscillate at predetermined
amplitude. When the proof mass is being rotated around an axis, the Coriolis force
causes the proof mass to move in a different mode of oscillation. The Coriolis force Fc is

calculated by the following equation.
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Spin axis

Figure 3-4 - Principle of gyroscope Figure 3-5 - Operating principle of vibratory
gyroscope

E =-2m(v X w) (169)

where v and w are the velocity and angular velocity of the proof mass respectively.

Using this relationship, the angular velocity of the motion can then be
determined by monitoring the shift in oscillation of the proof mass.
Similar to the accelerometer, the relative orientation of the object can be

calculated by the equation of motion.
4= fwAt = /£; + wAt (170)

where £ is the angle of orientation, and £; is the orientation from previous state.

Due to the integration, the orientation calculation experiences the same
numerical drifting problem as stated earlier. One of the most common methods to
reduce this drift is to compare the result with the orientation calculated from
accelerometers with a sensor fusion technique. Since the calculation for orientation
based on gravity does not involve any numerical integration, the output is very stable

and drift is minimal. However, as mentioned previously, the accelerometer is incapable
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of resolving orientation changes when the rotation is perpendicular to the gravity vector.

Hence, it brings in an addition component to the IMU system.

3.4 Measuring Principle of Magnetometers

The most convenient way to measure heading or azimuth is by using a compass
and calculate the relative change in angle compare to the magnetic north. Magnetometer
is an instrument to measure the orientation difference between the sensor and the
magnetic field of the earth. The principle is that the magnetic flux passing through a coil
depends on its orientation with respect to the magnetic field lines of the Earth as shown

in Figure 3-6.

The magnetometer determines the heading direction angle (azimuth) of the unit.
On a flat 2D plane (XY) that is parallel to the Earth’s surface, the calculation of the

azimuth is shown below.

azimuth = tan™?! A};—i (171)

azimuth = g (x=0,y<0) (172)
azimuth = %ﬂ (x=0,y>0) (173)
azimuth = mw — (tan™! Z—Z) (x<0) (174)
azimuth = — (tan‘1 A};—i) (x>0,y<0) (175)
azimuth = 2m — (tan™?! A};—i) (x>0,y>0) (176)

where M, is the magnetic disturbance experienced on the x-axis, M, is the magnetic

disturbance on the y —axis.
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Figure 3-6 - Principle of magnetometer. The dash arrows represent the direction of the
magnetic field H, and angle 0 is the deviation angle between the coil and the magnetic field

However, the unit is not always going to be parallel to the Earth’s surface, and
there is a significant amount of error if the unit is tilted away from its optimal position.
The tilt angles from the accelerometer (p,, @,) can be used to compensate the data from

the magnetometer.

My, = My cos(pg) + Mysin(@,) sin(pg) + M, cos(@,) sin(p,)
Ma,, = M, cos(py) — Msin(p,) o
The above equation is for 2 axes tilt compensation. However, the plane that is
parallel to the Earth switches if the unit is rotated more than 90 degrees on either the
pitch or roll axis. Hence, 3 axes tilt compensation is necessary to ensure the proper
function of the magnetometer. The rotational matrix of the object can be used to de-

rotate the magnetic data. The azimuth can then be used to compare and identified with

the result of the yaw rotation calculated from the gyroscope.

There are multiple configurations for implementing an IMU system. The
following section gives a brief introduction on the different types of the system as well

as the advantages and disadvantages of each configuration.
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3.5 Types of Inertial Measurement Units

IMU is an intuitive system, yet very complicated to be implemented. It is a
combination of creative hardware design, meticulous calibration techniques, and
innovative software designs to reduce the inherit error and achieve higher accuracy of
the system. The various configurations listed below are essentially strategies to
minimize the shortcomings of the inertial based sensors from the hardware design

perspective.

3.5.1 Gimbaled Inertial Platform

The main idea of the gimballed inertial platform is to isolate the inertial sensors
inside the inertial frame. The simplest form consists of a triaxial accelerometer and a
triaxial gyroscope that are placed within 3 gimbal rings, where each ring revolves
around one axis. The outputs of the gyro are connected to a set of servo-motor that
drives the gimbals in opposite rotation than the active motion. Hence, it keeps the
orientation of the platform constantly aligning with the inertial frame. Because of this

unique property, the calculation for translations becomes extremely easy.

On the other hand, the design and the manufacturing of the gears with high
tolerance becomes a factor that affects the performance of the stabilizing platform. The
unit also requires routine maintenance to assure performance. Gimbal rings based
system also suffer from a phenomenon known as gimbal lock, where 2 of the 3 rings are
driven in parallel, resulting the loss of 1 degree of freedom. Furthermore, this system
contains multiple parts, three gimbals, and 3 servo-motors, which becomes quite bulky
for human motion tracking. A gimbaled inertial platform by Marconi electronic systems

is shown in Figure 3-7.
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Figure 3-7 - Gimballed inertial platform by Marconi Electronics (now BAE systems) shows the
instrumentation are surrounded by 3 gimbal rings

Gimbealled inertial platform has recently become popular in aerial photography
instead of inertial positioning tracking. A simplified version of the system is used as a
means to stabilize the camera, and isolates the maneuvers of the aircraft from the

mounting platform.

3.5.2 Strapdown Inertial Measurement Unit System

Strapdown system introduces a new concept of inertial navigation. As
mentioned in the gimbaled inertial platform, the system is expensive, bulky and
occasionally experiencing gimbal lock issues. A strapdown system fixed both
accelerometers and gyroscopes onto the platform and confined both of them in the
inertial reference frame. A Strapdown approach eliminates the mechanical rings. It uses
the gyroscopes as a way to measure and keep track on orientation of the system instead
of canceling the changes mechanically. The gimbals rings functions are performed

mathematically from the gyroscopes” outputs. There are two major categories with the
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strapdown approach, which the primary difference is the gyroscope that the system

uses.

Ring Laser Gyroscope (RLG) strapdown IMU is developed to achieve higher
accuracy by eliminating the mechanical aspect of the gyroscope design, where the noise
is the primary source of the arithmetic drift. RLG strapdown IMU is still relatively bulky
as shown in Figure 3-8; since it needs to house multiple lasers generating units as well as
electronics. RLG is typically used in aviation or space flight that requires extreme

accuracy.

MEMS based micro-machined gyroscope, on the other hand, is developed to
significantly reduce the size of the gyroscope unit. A typical MEMS gyro is 3 by 3 by 1.2
mm and costs less than 5 US dollars. The IMU itself is typically within the size of a 2
inch cube. Figure 3-9 shows an example of the MEMS based IMU. This system is
extremely light weighted, low cost, low power and small, thus, the initial framework

and testing of the IMU system used in this research is based on the MEMS strapdown

IMU system.

Figure 3-8 - GG1320 ring laser gyros for Figure 3-9 - MEMS based strapdown IMU by
military aircraft inertial system [74] Sparkfun Electronic
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4. Pilot experiment
4.1 Off the Shelf IMU specification for pilot experiment

A pilot study was conducted with off the shell (OTS) hobbyist grade IMU system
to check the feasibility of the research, as well as to identify the potential problems. Two
IMUs from Sparkfun Electronics were used in the experiments. The basic specification of

the unit is shown in Table 4-1.

The unit is processed with LPC2138 ARM? microcontroller with built in 10 bit
analog to digital converter (ADC) for digitization. The data are transmitted via
Bluetooth. The data allocation for the transmission protocol is shown in Figure 4-1. As
the output from the IMU is in the format of digital code, calibrations for all the sensors
are needed to produce meaningful result from the experiment. The calibrations of the

sensors are conducted using the protocols outlined in the following sections.

Table 4-1 - Specification of IMU used in pilot study

Axis Range Power Sensitivity
Accelerometer XY,Z +/-4g 3.3V 308 mV/g
Gyroscope XY +/- 500°/s 3V 2mV/°/s
Gyroscope Z +/- 300°/s 5V 6 mV/°/s
Magnetometer 1 +/- 6 gauss 3V 1mV/V/gauss
Magnetometer 2,3 +/- 6 gauss 3V 1mV/V/gauss

8bit MagX MagY¥ MagZ AccX | AccY AccZ | GyroX | GyroY | GyroZ 8bit

word | | word

Figure 4-1 - Data transmission protocol
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4.2 Accelerometer calibration

Accelerometer is calibrated via static calibration. The IMU is hold still by a plastic
calibration arm on a flat surface as shown in Figure 4-2 in various positions. The
calibration is designed to hold the unit in pitch and roll rotation at 15 degrees of
increment. Readouts of the accelerometer in different combination of positions were
recorded. The accelerometer raw data are the numerical output from the ADC as shown
in Figure 4-3. The figure shows the unit sitting still with Z axis parallel to gravity. Figure
4-4 shows the output data of a full revolution around the x axis. It is obvious that there

are offsets and scale factors in the output that requires calibrations.

The accelerometer calibration equation is
A; = (ai + bai) X Cg, C, = a_range/2" (178)
where i is the x, y, and z axis, A is the corrected acceleration, a is raw acceleration data, n
is resolution of the ADC, b, is the inherit offset, which is the difference between

midrange of the ADC 2"/2 and the static output of the corresponding axis at Og,

a_range is the full scale range of the of the accelerometer.

Figure 4-5 shows the calibrated static output from Figure 4-3. It shows that Z axis
is parallel with the gravity with approximately 9.81m/s output. Figure 4-6 shows the
various tilt angles around the x axis after calibration. The tilt angles are calculated based

on the equation mentioned from equations (166-168).
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Figure 4-2 - Plastic arm for accelerometer calibration

Accelerometer raw data (Z pointing up)
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Figure 4-3 - Raw data from the accelerometer
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Accelerometer (Z pointing up) Readoutof the accelerometer (Tilting around x axis)

— — — —

100

— g * ]
o g w
H ® ] .
= 6o - . - *
G
g‘ » L ] m *
= " e+ ] *
E n "
=) > | +
]
T o+ * *
N o . " a ;
R ) o o PRy o
)
- - = -
= @ i L]
E &0 : + @ =
= * * | I
= w0
= + =
i

-100

e—_—

300 1600 Tt Tilt Angles related to gravity vector (input)
Figure 4-5 - Calibrated static output Figure 4-6 - Calibrated tilt angle output of Y
and Z around the x axis

4.3 Gyroscopes Calibration

Gyroscope, unlike accelerometer, measures the changes within the inertial frame.
Hence, dynamic calibration is required. Due to limit access to rate table equipment, the
gyroscopes are calibrated with a servo turn table. Since the turn table can only produce
rotation in 1 axis, the calibration arm is use to align different axes of the IMU to the turn
table’s rotational axis. The gyroscopes are first hold still on a flat service to determine its

bias. The raw data from the gyroscopes of a stationary IMU is shown in Figure 4-7.

The gyroscope output is very stable, however it has a considerably amount of
noise. The turn table is able to provide up to 136°/s rotation at 8°/s increment on both
clockwise and counter clockwise directions. The output of the gyroscope rotating

around the x-axis with different turning rate is shown in Figure 4-8.
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Digital output of the gyroscope rotating around axis X
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Figure 4-7 - raw data from the gyroscopes Figure 4-8 - Raw data of the gyroscope at
different turning rate of the turn table around
X axis

The calibration equation for gyroscope is similar to the accelerometer, which is
Wi = (w; + by, ) X Gleare (179)
where iis the x, y, and z axis, W is the corrected angular velocity, w is raw gyroscope
data, n is resolution of the ADC, by is the inherit offset, which is the difference between
midrange of the ADC 2"/2 and the static output of the corresponding axis when it is

stationary, Gl.q. is the calibration scale of the gyroscope which is defined by the

following equation,

int(wéutj - bg i)

Wi/ int(wt . —wt 180
int(Wout, ~ Wout;_,) (180)

scale

; i _ i
int(Woue; ~ Wout;_,)
where i =X, y, and z axis, Gscqie is the scale for the gyroscope in axis [, w; is the rate of

the turn table at angular velocity j, and W(l,utj is the digital output of the gyroscope on [

axis at angular velocity j.
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4.4 Magnetometer Calibration

Magnetometer is calibrated by simply revolving the IMU system around each of
its axis. Data are collected by rotating the magnetometers around the plane
perpendicular to gravity around each axis. The scale factors for the axis perpendicular to

the rotation can be determined by,

_ (max(m;) — min(m,))
Msray = (max(m,) — min(m,)) (181)

_ (max(m;) — min(m,))
Msr2) = (max(m,) — min(m,)) (182)

The offsets can be calculated by

(max(m;) — min(m;)) ]
MBias(i) = < L > L — max(mi) MSF(i): i=1:3 (183)

Figure 4-9 shows the deviation angle between the IMU and the magnetic north. The non-

linear portion is attributed to the ferromagnetic hysteresis.

Output from Magnetometer (rotating around x-axis)

Figure 4-9 - Deviation angle between the sensors to true north calculated from magnetometer
rotating around x-axis
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4.5 Attitude Estimation Experiment

Quaternion was chosen to be used as the orientation representation because it
has fewer elements and constraints, yet it contains no singularity point. Discrete Kalman
filter and EKF are implemented for the determination of orientation using these sensors.
The priori estimates are calculated by the inputs from the gyroscopes, while the posteriori
estimates are determined by the calculation from the accelerometers for pitch and roll
and magnetometer for yaw. The implementation of these algorithms is discussed in

detail in chapter 6. The basic process flow is shown in Figure 4-10.

The orientation outputs are projected back as Euler angles for visualization.
Figure 4-11 and Figure 4-12 show the orientation outputs of the IMU undergoing the
same activity of rotating around the z-axis for Kalman and Extended Kalman filters

respectively.

Pitch P+1, Roll Pi+1 Kalman filter_
(accelerometers)

Y - 2 ; -
Process model Pitch py, Roll ¢y, Yaw By

(gyroscopes)
Yaw Ox+1

Measurement model
(magnetometers)

Figure 4-10 - Kalman filter models for IMU
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4.6 Human body motion tracking

The next step of the pilot experiment is to test the feasibility for human motion
tracking. An IMU containing knee brace was made with a prototyping machine and two
IMUs are secured onto the brace as shown in Figure 4-13. Two passive optical tracker
targets are attached to the brace for comparisons. The infrared optical camera is placed
such that the knee joint is within the viewing volume of the unit.

The first sets of test are static testing, which include sitting and standing still. The
data for standing and sitting postures, as shown Figure 4-14 a and b, were recorded for 1
minute for each posture. Due to the differences in sampling rate between the IMU and
the optical unit, the IMU orientations after calculation are re-sampled to fit with the
optical data time frame. The data for standing still is shown in Figure 4-15 for thigh and
Figure 4-16 for shank. The output orientations for sitting are shown in Figure 4-17 for
thigh and Figure 4-18 for shank. There is no post processing on the optical data except
converting the absolute orientation into relative orientation to its initial position at (0,
0°, 0°). The root mean squared errors (RMSE) between the IMU output and the optical

tracker for static testing are calculated and summarized in Table 4-2.

Figure 4-13 - IMU brace Figure 4-14 - Static testing with IMU brace. (a)
Standing still; (b) Sitting still
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Figure 4-15 - IMU vs optical outputs (Standing, Thigh) Light blue: Optical X, Purple: Optical Y,
Yellow: Optical Z; Dark blue: IMU X, Green: IMU Y, Red: IMU Z
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Figure 4-16 - IMU vs optical outputs (Standing, Shank) Dark blue: Optical X, Green: Optical Y,
Red: Optical Z; Purple: IMU X, Light blue: IMU Y, Yellow: IMU Z
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Figure 4-17 - IMU vs optical outputs (Sitting, Thigh) Light blue: Optical X, Purple: Optical Y,
Yellow: Optical Z; Dark blue: IMU X, Green: IMU Y, Red: IMU Z

Rotation (Degrees)

2 —— Optatrack X Optatrack ¥ Optotrack 1MUY IMUX Uz
3l | | J
[ 20 &0 &0 80 100 10 140 160 180 200
Samples

Figure 4-18- IMU vs optical outputs (Sitting, Shank) Dark blue: Optical X, Green: Optical Y,
Red: Optical Z; Purple: IMU X, Light blue: IMU Y, Yellow: IMU Z
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The dynamic testing of the brace is conducted by the following two activities,
deep knee bend and chair rise as shown in the sequence in Figure 4-19 and Figure 4-20
respectively. Multiple of these activities were performed under the surveillance of both
IMU and optical tracking systems. The orientation of the IMU and optical unit were both
calculated relative to their respective initial null orientation. Figure 4-21 and Figure 4-22
show the comparisons between the IMU calculation and the optical tracker of the thigh
and shank respectively for deep knee bend. Figure 4-23 and Figure 4-24 show the data
during chair rise activities for the thigh and shank respectively. The RMSE between the
IMU output and the optical tracker for dynamic testing are calculated and summarized

in Table 4-2.

Figure 4-20 - Chair rise sequence

Table 4-2 - RMSE on each axis during static and dynamic testing

XAxis Y Axis Z Axis

Thigh (Static) 091°  029° 1.30°
Shank(Static) 0.30° 0.15° 0.36°
Thigh (Dynamic) 3.86° 3.84° 4.09°
Shank (Dynamic) 3.41° 4.51° 3.06°
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Figure 4-21 - IMU vs optical outputs (Deep Knee Bend, Thigh). Dark blue: Optical X, Green:
Optical Y, Red: Optical Z; Light blue: IMU X, Purple: IMU Y, Yellow: IMU Z
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Figure 4-22 - IMU vs optical outputs (Deep Knee Bend, Shank). Dark blue: Optical X, Green:
Optical Y, Red: Optical Z; Purple: IMU X, Light blue: IMU Y, Yellow: IMU Z
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Figure 4-23 - IMU vs optical outputs (Chair RiseThigh). Dark blue: Optical X, Green: Optical
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Figure 4-24 - IMU vs optical outputs (Chair Rise, Shank). Dark blue: Optical X, Green: Optical
Y, Red: Optical Z; Purple: IMU X, Light blue: IMU Y, Yellow: IMU Z
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The RMS error shows a significant difference in estimation calculations when
compare between static and random dynamic activities. There are several factors that
contribute to the error. The most dominate source of error comes from the limited
resolution of the ADC. At 10 bit, the theoretical maximum resolving power of the least
significant bit (LSB) on the ADC on each sensor is shown in Table 4-3. This, however,
does not include practical practice such as limiting the sensor output range to be smaller
than the maximum dynamic range of the ADC. The inherit limit of the ADC introduce a

considerable amount during error to the signal.

Another source of error originated from the gyroscopes. Duration calibration, the
outputs of the gyroscopes were observed at different angular velocities of the rotating
table. Figure 4-25 shows the box plot of the outputs from one of the axis. As the rotating
speed increases, the variance of the gyroscopes from the OTS IMU increases
substantially. This leads to an unexpected rate dependent error in the error covariance of

the system. In addition, variance of the signal behaves as a non-linear function.

The third source of error comes from the Kalman filter algorithm used for sensor
fusion. Because quaternion is a hyper-complex vector with a unit-norm constraint
resides on a different manifold, the error covariance matrixes used in the algorithm is an

approximation which appears to underestimate the true error covariance.

Table 4-3 - Resolving power of the lease significant bit on each sensor

LSB
Accelerometer 7.66cm/s
Gyroscope (X,Y) 0.98°s
Gyroscope (2) 0.59°s
Magnetometer 11.72mgauss/s
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5. Hardware implementation

There are three major areas of improvement based on the analysis from the OTS
IMU system, which are the ADC resolution, the sensors selection and the attitude
estimation algorithm design. This chapter focuses on the hardware implementation and

introduces a modular design to enhance flexibility to the IMU.
5.1 Hardware specification

After examining the performances of the gyroscopes from several manufacturers,
LPY510-AL and LPR-510-AL by ST Microelectronics were chosen due to their superior
performance as shown in Figure 5-1. Both of the sensors have two operating
configurations that can be adjusted by an external signal. The sensors selected in the
prototype design are shown in Table 5-1. Low power microcontroller (MSP430F2274,
Texas Instrument) was used as central processor. A compact wireless transmitting
module (A2500R24A, Anaren) was used for communication. The receiver uses pre-
determined device identification number to process the received data from multiple

IMUs. The high level system architecture is shown in Figure 5-2.

3.5
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Figure 5-1 Box plot of the X-axis of the gyroscopes (LPR510-AL) undergoing rotations at
different angular velocities
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Table 5-1 - Inertial sensors used in prototype

Model Axis Range Power Sensitivity
Accelerometer MMA7361L XY,Z +/- 1.5g 3.3V 800 mV/g
Gyroscope (1) LPR510-AL XY +/- 100°/s 3V 10 mV/°/s
Gyroscope (1) LPY510-AL 4 +/- 100°/s 3V 10 mV/°/s
Gyroscope (2) LPR510-AL XY +/- 400°/s 3V 2.5mV/°/s
Gyroscope (2) LPY510-AL V4 +/- 400°/s 3V 2.5mV/°ls
Magnetometer HMC1053 XY, Z +/- 6 gauss 3V 1mV/V/gauss

Power
Regulations

Microprocessor Wireless
i Communication

Analog to Digital
Converter

[ Inertial Sensor Signal Conditioning

b

Signal Conditioning Multiplexer

T

[ Inertial Sensor

ARSI
T &

[ Inertial Sensor Signal Conditioning
] ]
® ®
[ ] [ ]

Figure 5-2 - System Architecture for Prototype IMU

In the OTS IMU, the signal to noise ratio of a 10 bit converter operating at its
fastest convention speed has approximately 55dB dynamic range, which is inadequate
for a system demanding high accuracy. A 16-bit A/D converter, which gives
approximately 98dB signal dynamic range, should be sufficient for the system.
However, in practice, the actual effective number of bits (ENOB) is much lower than 16-
bit at the fastest conversion speed of the ADC due to various design limitations such as
the settling time of the converter. In addition, the rail-to-rail input signal clearance is
required to avoid undesired signal chopping. Because of these considerations, a multi-
channel 24-bit A/D converter (ADS1258, Texas Instrument) was selected. At its fastest
convention speed for single ended operation and optimal sensor range, the converter

has an approximately 18 noise free effective bit.



5.2 Power Supply Design

The IMU requires two power source regulators for components operating at 3.3V
and 5V. A high capacity capacitor is used as the decoupling capacitor for the 5V power
regulator to provide more stable voltage reference for the high resolution ADC. The
schematic design is shown in Appendix A. The circuit is designed to be powered by
either 2 CR2052 coin cell batteries or a 200mAh Lithium Iron Phosphate rechargeable

battery, which can last approximately two hours.
5.3 Signal conditioning circuit Design

The primary goal of the signal conditioning circuit is to minimize the difference
between the sensors output range and the ADC input range. Figure 5-3 is an offset
amplifier designed for the signal outputs from the accelerometers and gyroscopes. The

value of the resistors network can be determined by the following equations.

hisensor lowsensor

(184)

b = (Vddapc — VsSapc) = Vhigypeor X M (185)
where Vdd,pc is the maximum allowable input to the ADC, Vss,pc is the minimum
allowable input to the ADC, Vy;_, _is the maximum output range from the sensor and
Viowgonso, 1S the minimum output range of the sensor. RF and R2 can then be calculated

after picking the resistor value for R1 and RG.

R, = &
* (- ) [ < e (187)
Vee " Ry Vee " Ry

The resistors value for the signal conditioning circuit for each type of sensors are

determined from circuit simulation as shown in Figure 5-4.
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Figure 5-3 - Signal conditioning circuit for accelerometers and gyroscopes

Figure 5-4 - Circuit simulation for the signal conditioning circuit
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The magnetometers used in the prototype are magnetoresistive sensors
(HMC1053, Honeywell, Inc). The sensors use an internal Wheatstone bridge for the
magnetic field measurements. The outputs of the bridge are input into a differential
amplifier as shown in Figure 5-5. Because the output of the differential amplifier is bi-
polar, a stable offset voltage is applied to the input at the positive end of the sensor

output.

A set and reset circuit is used to eliminate any prior magnetic disturbance. This is
achieved by sending a positive and negative current pulse to the sensors. The pulse
sequence is controlled by the microcontroller. The schematic designs of the signal

conditioning circuits are shown in Appendix A.

vdd

RS

Ré

Ik

1||

Signal in (+)]

Signal out

Signal in (-]

Figure 5-5 — Signal conditioning circuit for Magnetometers
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5.4 Electronics Design

The outputs from the signal conditioning circuit are connected directly into
ADS1258, where they are multiplexed internally to the ADC. The output of the ADCis a
32 bit word, which includes an 8 bit header to indicate the active channel during
conversion. The data is collected with the microcontroller (MCU) MSP430 via spi-by-
wire, breaks up into packets, and submits to the transmitter (TX) via universal
asynchronous receiver/transmitter (UART). The pin routing table for the MCU is shown
in Table 5-2. The schematic designs of the signal conditioning circuits are shown in

Appendix A.

5.4.1 Firmware Design

The firmware for the IMU is designed to co-ordinates with all other electronics of
the system, and is stored on the MCU. The firmware first initializes operating
instructions to the ADC and the TX. The unit then enters seeking mode to look for the
access point (AP). To conserve power, the data acquisition only begins after the IMU
has joined a network. TX is disabled during the ADC convention period and re-enable
when data is ready to transmit. The IMU rejoins the shared network and transmits the
data packet. The instructions flow of the MCU is shown in Figure 5-6 and Figure 5-7.

The access point composes of a MCU and a receiver (RX). The primarily function
of the access point is to monitor and establish connection to the end devices within its
broadcasting vicinity. It also performs checks on the received data to ensure their
integrity and transmits them to the computer. The firmware instruction flow of the
access point is shown in Figure 5-8.

The dataset from each acquisition is broken into two transmission packages. The
received package on the access point formats the data for PC communication as shown

in Figure 5-9. The data in each package is encapsulated within the Beginning of Data
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(BOD) and the End of Data (EOD) tags. The access point also assigns an end device
number according to the sequence that the units join the network. An additional data
sequence number is used to distinguish the two data packages. The 8-bit channel
identification number in the original data is discarded. The channel data are converted
into a 6-digit hex number. The device identification number was programmed uniquely

into each IMU such that the processing algorithm can locate the stored calibration data.

Table 5-2 - Routing table from Microcontroller

Connection to Dongle MISO P35
MOSI P34
Connection to ADC DRDY P1.0
MISO P3.5
MOSI P34
CS P14
SCLK P 3.0
PWDN P 1.1
RESET P1.2
START P13
Connection to CC2500 GDO P26
GD2 P27
MISO P3.2
MOSI P 3.1
CS P45
SCLK P 3.3

Note: MISO=Master In Slave Out; MOSI=Master Out Slave In; DRDY=Data ReaDY; CS=Chip Select;
SCLK=Serial CLocK; GDO and GD2= interrupt flag
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Figure 5-9 — Wireless transmission data format

5.5 Modular IMU design

One of the observations from working with the OTS IMU is that the system
architecture of these units is rigid and very limiting. The specifications of the unit are
fixed by the sensors that cannot be easily modified and substituted. While it is obvious
that there is a difference on the range of motion among different joints of the human
body, the degree and magnitude of the motion also varies with activities. In a control
environment, the motions are predicable, and corresponding IMUs can be used to access
motion. However, human activities are very different than missiles, airborne vehicles
and automobiles. It contains agile transition motions, such as switching from walking to
running, or sudden change of direction similar to taking sharp corner turns while in
motion. A fixed set of IMU sensors creates excessive boundaries that hinder the

performance of the system.

With the consideration of designing a tracking device that needs to be used and
operates in different conditions, a modular strategy is implemented. The principle of this
design is to allow sensors with different specifications to connect to the same system in a

‘plug-and-play’ manner. The IMU system is separated into electronics and sensing
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components, which are attached together via inter-board connectors. This allows the

users to switch sensors with different sensitivities based on their needs and applications.

5.5.1 Circuit layout

The circuit layout of the IMU is designed with Easy-PC by Number One system.
Several design iterations were made to test different components and features, as well as
improving the system with different mix-signal layout schemes (Figure 5-10). The latest
version (2.4.2) uses a star-ground configuration on a 4 layers design. It contains three
sensor ports with two of the ports support 6 input channels, and last one supports 3
channels. The current configuration groups the accelerometers and gyroscopes into one
sensing strip, and the magnetometer is placed on a separate one to minimize
interference (Figure 5-11 A). In addition, two configurations of the gyroscopes with
different sensitivities were implemented. The assembled unit is shown in (Figure 5-11
B). The current design is 35.5x35.6x13.7 mm in size. The layout of the current circuit

design can be found on Appendix B.

Figure 5-10 - The evolution of the IMU circuit designs
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Figure 5-11 — The sensing strips and electronic board of the modular IMU design (A). The
assembled IMU system (B)
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6. Software Implementation

In chapter 2, several basic principles of the attitude estimation algorithms were
discussed. This chapter is going to focus on the implementation of these algorithms for
IMU tracking application. As mentioned previously in Chapter 2 and 4, quaternion is an
orientation representation of the SO(3) rotation group that does not contain singularity

point. Hence, the following algorithms are implemented with quaternion.

6.1 Kalman Filter Implementation

Kalman filter (KF) is a generic model for estimation applications. One of the most
notably application is the tracking problem. Early implementation of KF was used for
military applications. The first implementation of KF for navigation system is credited to
Leonard McGee and Stanley Schmidt in 1961 [75]. Luinge implemented KF to measure
the orientation of human body segment with accelerometers and gyroscopes [43]. Zhu
uses KF for human tracking with IMU [48]. The following section outline the

implementation of discrete KF discussed in chapter 2.2.2 for quaternions.

For the process model shown in equation (48), the state equations correspond to
the estimation of the orientations of the IMU at time = k + 1based on the inputs from

the gyroscopes. The rate of change of the quaternion from time k to k + 1 is given by

Hughes [76],
. 1
G = 5 e G (188)
with
0 —wy —wy —w,
W 0 W -
Q=" “ Y (189)
wy —w, 0 Wy
W, Wy Ty 0
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where w,, w,, and w, are the angular velocities for pitch, roll, and yaw in the inertial
frame respectively. The state transition model sequentially integrate the orientation of

the IMU with the from time k to k + 1 becomes,

Qr+1 = Ardr (190)
(1 0 0 o 0 —wy -y -] |
{lo 1 0 o], 6 I|jowx O w; —wy
A = IO 01 0 +§wy —w, 0 o, - At (191)
0 0 01 w, w, —w, 0

The quaternion in the measurement model is computed as followed. The output from

the magnetic sensor is first declinated by the orientation from previous iteration,

[h1 Ry hs hy] = qr-1 ® [0 My My, M,]®q}_4 (192)
b=[b, b, b,]=][h?+hs® 0 hy (193)
b = b/norm(b) (194)

The measurement model is constructed from the outputs from the accelerometer and

magnetometers.

X = [Ax Ay A, MM, M, (195)

The measurement transformation from state x; to z; is estimated by,

H, =
[ —2qy, 2q3, —2q, 2qy,
2qy, 2qo, 2q3, 2q3,
0 —4qy, —4q3, 0 (196)
_ZbZQZk szq3k _4bxq2k - ZquOk _4be3k - szqlk
_beQOk + 2sz1k _beQZk + szqok beqlk + szqu _beCIok + szCIZk
beQZk beq3k - 4‘bzq1k beQOk - 4‘bzq2k beqlk

The process noise covariance matrix Q@ and the measurement noise R were
determined empirically in equations (197) and (198) respectively, and the error
covariance matrix Py is initialized as a 4x4 identity matrix. Table 6-1 outlines the IMU

attitude algorithm with discrete Kalman filter.

87



0.12 -0.06 0 —0.06
—-0.06 0.12 -0.06 0

Q= o —006 012 —006 (197)
-0.06 —-0.06 —-0.06 0.12
R =[0.001 0.001 0.001 0.001] (198)
Table 6-1 - Pseudo code for quaternionic Kalman Filter algorithm
Attime=1
Initialization:
Initialize noise covariance matrixes Q and R, error covariance matrix P,
Initialize the initial orientation at [1 0 0 0]
Attime>1
1. Compute (Hy) € (equation (196))
2. Compute the observation quaternion (q,ps)
Qovs = Hi[Ax Ay A, My My M,]" (199)
3. Computer transition matrix (4;) € (equation (191))
4. Compute the prediction quaternion (qx+1) € (equation (190))
5. Compute predicted error covariance (Py41) € (equation (65))
6. Computer Kalman gain (K) € (equations (66-67))
7. Computer posteriori estimates (g, Py) € (equations (68-69))
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6.2 Extended Kalman Filter Implementation

As discussed in chapter Principle of Extended Kalman Filter, the EKF is designed
to deal with the non-linear assumption of the Kalman filter estimation model. This is the
most popular estimation filter within the Kalman family of the estimator as well as the
most diverse. There are many different designs and implementations that optimize the
algorithm to deal with different applications. Lefferts published an implementation of a
quaternion EKF using multiplicative approach by assuming the 4x4 quaternion error
covariance matrix must be singular [77]. Bar-Itzhack, on the other hand, used addictive
approach that based on quaternion re-normalization stage [78]. In 2002, Kasdin
demonstrated an alternative to EKF called two-step optimal estimator [79]. It is
composed of a linear and a non-linear estimation stage, where the linear stage is the
same discrete KF and the non-linear uses an optimization algorithm such as Gauss-
Newton method. Goddard demonstrated the implementation of an EKF using dual

quaternions approach [80].

The presented EKF implementation follows the algorithmic design by Marins
[81]. The first order linearization can be achieved via Gauss Newton algorithm, and the
second order can be determined with Quasi Newton method. Consider x;, from equation

(195) is expressed in the Earth frame

xE=[001ME ME ME]" (200)

The error function can be defined as,

Q= e"e = (xf — Mx)" (xf — M) (201)
R 0
M = [ 3“] 202
Oz R (202)
— A A A 0 0 1
E _ x y z — —
i = [Mx M, MZ]’ e = [Mf ME  ME (203)
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where R is the rotation matrix from time = k — 1 given by equation (19).

The first order derivative of the error function is Jacobian matrix of Q

] oM oM aM oM
= - X X X X
aQOk k aqlk k a‘hk k aq3k k (204)
[ quZk_l + qu3k_1 + AZq4k_1 _qulk—l + quOk_l + Aquk_1
qulk—l - quOk_l - Azq?)k_l quOk_l + qulk—l + Azq3k_1
] _ quZk_l + qu3k_1 - AZqu_l _qu3k—1 + quZk_l - Aquk—l
qulk—l + MyQZk_l + qu3k_1 _quzk_l + Myqlk_1 + MZqu_1
Mx‘hk_l - Myqlk_1 - MzQOk_l qulk—l + My‘hk_l + MZq3k_1
-qu3k—1 + Mquk_1 - qulk—l _quok—l + Myq3k_1 - MZqZk_l (205)
_quZk_1 - qu3k—1 + AZqu_l qu3k_1 - quZk_l + Aquk_1 i
qu3k—1 - quZk_l + Aquk_1 quZk_l + qu3k_1 + AZqu_1
quOk_l + qulk_1 + AZqZk_l _qulk_1 + quOk_l + AZq3k_1
- xQZk_l - MyQ3k_1 + MzQOk_l qu3k—1 - MyQZk_l + qulk—l
qu3k_1 - Mquk_l + qulk—l quZk_l + Mngk—l + MZqu_l
qu()k_1 + Myqlk_l + MZqZk_1 _qulk—l + MyQOk_l + qu3k—1-
The iterative Gauss Newton step is defined as,
1 = —
am = @™ = (7)1 G — M) (206)

The covariance matrixes Q and R, and the error covariance P, were defined the same as

the KF. Table 6-2 outlines the IMU attitude algorithm with EKF.
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Table 6-2 - Pseudo code for quaternionic Extended Kalman Filter algorithm

Attime=1

Initialization:
Initialize noise covariance matrixes Q and R, error covariance matrix Py,
Initialize the initial orientation at [1 0 0 0]

At time>1

For steps=1-> N

1. Compute (J) € (equation (205))

2. Compute quaternion via Gauss Newton step (qn;) € (equation (206))
Return gn;

End

ANy = Qobs

3. Computer transition matrix (4) € (equation (191))

4. Compute the prediction quaternion (qx+1) € (equation (190))

5. Compute predicted error covariance (P.1) € (equation (83))

6. Computer Kalman gain (K) € (equations (84-85))

7. Computer posteriori estimates (g, Pr) € (equations (86-87))
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6.3 Unscented Kalman Filter

Unscented Kalman filter is designed to restore the normality of the system
process that was lost in the linearization method in EKF as discussed in chapter 2.2.5.
One of the issues with UKEF is the sigma points calculation in equations (102-105). The
square root function of the matrix is typically achieved by lower triangle Cholesky
decomposition. However, Cholesky’s method require the matrix to be positive definite,
which is not always true depending on the choice of @, k and the dimensionality L in
equation (103). Cheon simulated a quaternionic UKF that calculates barycentric mean of
the sigma point quaternions by renormalization. However, the matrix square root issue

was never discussed.

In 2003, Crassidis demonstrated a practical implementation of quaternionic UKF
by converting the quaternions into modified Rodrigues parameters (MRP) during the
sigma point calculation [82]. This method raises another issue, which is the statistical
assumption that the transformation between quaternion and modified Rodrigues
parameters. Upon transformation, the sigma points of the quaternion, which carries the
statistical information, are projected from its hyper-dimensional manifold onto the 3-
dimensional (3D) space. After the estimation and filtering process, the 3D modified
Rodrigues parameters are projected back to quaternion. However, the distribution
cannot be fully restored the statistical information as a part of the information is lost

during projection.

Consider this problem in one less dimension with a generic 3D distribution in
Figure 6-1, the projection of 3D distribution onto 2D space is equivalent of taking a “slice’
of the distribution. The projection will be similar to a generic Gaussian curve. However,

the Gaussian curve cannot return to a 3D distribution without making statistical
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Figure 6-1- Generic 3D distribution

assumptions on the true mean and variance of the distribution. This is demonstrated in a
simulation study in Appendix C. For biomedical tracking application, Harada used

quaternionic UKF with IMU as a portable orientation tracking device [83].

6.4 Complementary filter implementation

Complementary filter one of the most used implementation for attitude heading
references system (AHRS) for standalone embedded system such as unmanned vehicle
because of its compact algorithm design. Mahony demonstrated various
implementations of the complementary filters [72]. Sebastian used a gradient descent
method to estimate the drift of the gyroscope as part of the filter [84].

The following implementation follows Mahony’s complementary design. The
data from the magnetometers is first processed by equations (192-194). The quaternion
from prior state is transformed to the gravity and magnetic fields by,

qukq3k - quqZk
Vg = 2q0,91;, + 92,93, (207)
quz - q1k2 - qZkz + q3k2
2bx(05 - q2k2 - q3k2) + sz(qlkq3k - quqZk)
Um = be(qlquk + QORQSR) + sz(QOk‘hk + qqu3k) (208)
be(QOkQZk - qlkq3k) + 2bZ(0'5 - qlkz - QZkZ)
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The error function is defined by,
Emes = ([Ax 4y Azl xv, + [My My, M,]xuv,) (209)
The integral drift error is calculated with
Earirt, = Earift,_, T EmesAt (210)
The corrective feedback term is applied,
[@x Wy @z] =[Wx Wy Oz] + KpEpes + KiEarige, (211)

where K, and K; are error gains. The prediction is then performed with equation (190)

and (191).

6.5 Seguential Monte Carlo Methods Implementation

The fundamental problem with the Kalman estimation family for quaternion is
the construction of the error covariance matrix. The components of the quaternion vary
with each other as a function to maintain the unit norm constraint. Many
implementations and variations optimize the error covariance via projections or various
ad hoc techniques such as modifying and restoring the quaternion to maintain the unit
norm property. The current implementation of EKF obtains these matrixes empirically
through trial and error.

Sequential Monte Carlo method or particle filter (PF) does not use the error
covariance directly in its calculation, instead, it approximate the distribution through a
finite set of independent and identically distributed samples. The challenge is to
generate a statistical geometry for the quaternion. Yang [85] and Cheng [86]
implemented the quaternionic PF using the similar technique from Crassidia’s UKF by
projecting the quaternion with MPR to perform statistical analysis. IN 2010, Yang

introduced the Gaussian sum PF for quaternion, which uses expectation maximization
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method to approximate the Gaussian mixture [87]. Carmi also implemented a

quaternionic PF by using genetic algorithm to approximate the likelihood function [88].

The PF implementation in this research utilized high dimensional directional
statistical method to generate and examine the quaternions. The following sections

review and discuss the principles and implementations of these statistical geometries.

6.5.1 Directional Statistic

Directional statistic is a special subset of statistic that primarily deals with
directions, axes and rotations. The problem with these types of geometry is the
mathematical singularity point or the switching of polarities, which cannot be processed
by traditional statistical calculations without special rules and exceptions. For example,

the mean of the rotations at 10 and 350 degrees yield 180 degrees instead of 0.

6.5.2 Stiefel Manifold

The topological space of a collection of p-dimensional orthonormal vectors in N-
dimensional space is considered to be the Stiefel Manifold (},), which is defined as [89],
V,(RN) = {A € RN*P: 4"A = 1} (212)

where R" can be any inner product space.

For quaternion, where p =4 and N = 3, satisfies such condition and forms a unique case

on the manifold,
L, (RV) = {q € RV*?:q*®q = I,,} (213)

where I, = [10 0 0].

Statistical distributions residing on the Stiefel manifold generally includes any
arbitrary dimensional objects in any dimensional space. In general, any distribution

satisfying the condition of p < N can be used as a quaternionic distribution. Two of these
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distributions were examined in this research, which are the von Mises-Fisher
distribution and the Bingham distribution. The reason of these distributions is
interesting is that von-Mises Fisher is a uniformly distribution in 4D space while
Bingham distribution allows more complex and non-uniform statistical geometries [90].

The formulation of these distributions is discussed below.

6.5.3 von Mises- Fisher Distribution

The von Mises Fisher (vMF) distribution is a generalized spherical distribution of
p-dimensional object in p — 1 dimensional space. The probability density function (pdf)

of a generalized von Mises Fisher distribution of p-dimensional object is given as [91],

fomr (X3 F) = %e”(”ﬂ) (214)

where X is a p X N matrix of orthogonal unit vectors, F is a p X N parameters matrix,
and 1/a(F) is the normalizing constant, which can be expressed by a confluent

hypergeometric limit function,

F) = ,F N FET (215)
r(z+1)
=I,(F) N (216)
F\ 2
(2)
where I, is the Bessel function of the first kind, I is the gamma function.
The distribution applied to quaternion with p = 4 becomes [92],
Forar (63 1, 1) = C4()e (') (217)
- K

* 72w, (k) (218)

where x is a random quaternion, p is the mean vector, and « is the dispersion factor.
Direct statistical inference with the von Mises-Fisher distribution is often

impractical. However indirect approaches using expectation maximization methods
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[93,94,95] can be used to sample the distribution indirectly. An efficient sampling
method is proposed by Wood in 1994 [96]. Wood’s algorithm is based on Ulrich’s
simulation proposal for m-sphere [97]. Instead of trying to generate samples from the
distribution, the algorithm simulates random samples that have the statistical properties
of the real distribution. Ulrichs’s theorem postulated that a unit p-vector X has a von

Mises-Fisher distribution with mean direction at X, = [1 0 0 0] if and only if

X" = (vi1-wzw) (219)
where V is a uniformly distributed unit (p-1) vector and W is the scalar random variable
ranging from -1 to 1. The von Mises-Fisher simulation comes down to determining an

efficient method to simulate W, which is calculated with Ulrich’s proposal by using an

envelope proportional to the density along with beta random variables.

e(x,b) = dph, (1 — xZ)(mT_g’)u +b—(1-b)x)~(m-D (220)
2

A = (F <(m2_ D)) b7 / 2I'(m — 1) (221)

. —2F +\/4F2 + (m — 1)2 (222)

m-—1

Z~B[-(m—1)/2,(m —1)/2] (223)
1-(1+b)Z

w="1"( )/1—(1—b)Z (224)

The simulation algorithm is shown in Table 6-3. Figure 6-2 shows the output from the
von Mises-Fisher simulation with different level of dispersion parameters at the mean
direction of [1 0 0 0]. As the dispersion factor increases, the concentration of the sample
increases. Since the distributions below is projected to the 3-sphere with an identity

matrix, the figures below do not represent the full distribution but an instance of it.
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Table 6-3 - Pseudo code for von Mises distribution simulation

Input: p (mean vector),
K (dispersion factor),
N (number of samples/particles)

1. b=—Kk+ Vrk?+1
2. Xo= =

1+b
3. ¢ =kKk(xy) + 2log(1 — xpxg)
4. forn=1>N
5. whilet <u
6. whiles <1
7. uu~[1(-1,1) , vv~[](0,1)
8. s=uu+vv

End
9. z= %+uu*vv*‘/1__s
10. u~T](0,1)

1-z(1+b
11. - 1—z§1—b;
12. t= k(w)+ 2log(1 —xw) —c
End

13.  6~11(0,2m), u~TI(—1,1)
14. v=+v1—uu
15. rand3DVec = [v * cos(0) v *sin(f) u]
16. q-=w

17.  qyy, = V1—w?xrand3DVec

18.  q=19r9x 4y q,]

19.  quur(n) =q®u
End

20. Return q,ur
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k=1 : k=10

k=100 K =1000

Figure 6-2 — Randomly sampled quaternions with von Mises-Fisher distributions with
different dispersion factor. The samples are projected to 3-sphere with identity matrix. The red
lines indicate the mean direction of the samples.
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6.5.4 Bingham Distribution

The von Mises-Fisher distribution is a subclass of a generic higher dimensional
distribution known as Bingham distribution. The von Mises-Fisher assumes the samples
are uniformly distributed around the mean direction of the rotation manifold. Bingham
distribution is a statistical distribution for hyper-dimensional object that does not
assume rotational symmetry and uniformity. The distribution is extremely flexible that
can represent even elliptic or girdle distribution geometry. The probability density for

the Bingham distribution is defined as

-1

1

fe(xq¢; K) = 1F (E,g,K> ed' UKUTq (225)
© 1/ ) pn
1p /2 K

A5 50) = Y 22— (226)
n=0 /2 n!

-1
where g is the quaternion describing the orientation, F; G,g, K ) is Kummer’s
function of the first kind as normalizing constant, U is an orthogonal matrix describing
the orientation of the distribution, and K is diagonal matrix that describes the dispersion

axes of the distribution defined as,

ks 0 0 0
0 k, 0 O

K= 1 227
0 0 k2 O (227)
0 0 0 k3

Similar to the von Mises-Fisher distributions, Bingham distribution cannot be sampled
directly, and indirect simulation method is used. Hoff demonstrated the generation of
random samples from the Bingham distribution using Gibbs sampling algorithm [98].
Glove applied Metropolis-Hasting algorithm for sampling random quaternions from the

Bingham density [99].
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In this research, a rejection sampling algorithm was designed to create a set of
random simulation samples from the Bingham density. Rejection criterion is based on
the maximum and minimum acceptance densities. The algorithm design is shown in the
Table 6-4. As shown in the table, there are two methods to initialize the samples for the
rejection algorithm, which are random hypersphere simulation shown in step 2 to 10,
and the von Mises-Fisher simulation method on step 11. According to equation (225),
Bingham density models an antipodal symmetric distribution. Hence, rejection sampling
using random hyperspheres will result with bimodally distributed sample as the
equation accepts the quaternions and its complex conjugates that fall within the
acceptance range. This can adversely affect the expectation’s direction of the random
samples as it becomes unpredictable when projecting back to 3D. This is highly

undesirable for tracking applications.

A secondary proposal is to use the samples created from the von Mises-Fisher
simulation with small dispersion factor to initialize the sampling with a large particles
spread. This will remove the possibility of sampling the complex conjugate of the
quaternion. In addition, initializing with von Mises-Fisher density reduces the time to
generate samples significantly as it restricts the seeking space of the samples. However,
since the samples generated from this method eliminate the antipodal properties of the
distribution, it cannot be considered as the Bingham distribution. This is referred as the
non-uniform (NU) distribution and density in the following sections. Figure 6-3 shows
the output from the simulation with different dispersion matrix (K) at the mean

direction of [1 0 0 0].
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Table 6-4 - Pseudo code for Non-Uniform distribution simulation

Input: p (mean vector),
K (dispersion matrix),
U (Orthogonal matrix of the distribution’s symmetry axes)
fmax> fmin Maximum and minimum accepting densities)
N (number of samples/particles)

x; =0,i=1234
while n<N
Ifx,2 +x,2 = 1orxz? +x,2 > 1
xi~TI(-1,1),i = 1,2,34
else
1—2x124+x,2
X324x42
Q1 =Xy Xt Q2 =Xy, (3=X3 (a=2x3X1
end (goto12.)
—OR --
Use von Mises-Fisher simulation in

Table 6-3

-1
_ 1p Tuku TuKu
10. f— 1F1 (z,z,q) el 1 x e1 q

11. Iff >fmin&f<fmax
12. dru(Mm) =q®p
13. n=n+1
end
end
Return qyy

N gl

o
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Figure 6-3 — Randomly sampled quaternions with non-uniform distributions with different
density proportion in K. The samples are projected to 3-sphere with identity matrix. The red
lines indicate the mean direction of the samples.

103



6.5.5 Sequential Monte Carlo Methods with von Mises-Fisher Density

As discussed in chapter 2.2.6, there are essentially four stages in particle filtering
(PF), which are particles generation, states evolution, particles evaluation and particle
maintenance. In this section, the implementation of PF for tracking application based on
the von Mises-Fisher density is examined. The overall block diagram of the algorithm is

shown in Figure 6-4.

One of the challenges in formulating PF is to tie the particles generation, particles
evaluation and particles maintenance together such that the particles can be weighed
correctly and to produce the optimal importance density that reflects the state of the
estimation. The following method establishes a correlation between the uncertainties of
the random particles and the dispersion factors such that particles can be generated and

evaluated based on the posterior density.

A set of N particles samples is simulated at different dispersion factor at the
mean direction [1 0 0 0]. The rotational uncertainty of these particles is determined by

the root sum squared of the minimum angle between two hyper-complex vectors.

b= 52~ acos(lafi - ao))’
qo = [1 00 0] , q;cc,iNVMF(K) ’ i=1- N,k = Knin 2 Kmax

(228)

The relationship between §; and « is realized with least squared approximation of the

two datasets with the function in equation (229), and Figure 6-5.

K(8,x) = ae @ 4 ce740¥),  x=[abcd] (229)
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Figure 6-4 — Functional block diagram of the PF algorithm with von Mises-Fisher density
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Figure 6-5 — Estimation function between particles uncertainty and dispersion factor

During the initialization procedure, the observation quaternion is initialized with the
Gauss Newton method demonstrated in equations (200-206). A set of N particles are
computed based on the Wood’s simulation in Table 6-3 with an arbitrary dispersion

factor. The initial particles estimates (g5 ; (t)) become,

Gest,i () ~VMF()® qops(t),i =1..N (230)

All the particles are assigned with equal weights during the initialization period. The
weights and dispersion factor are updated accordingly in the subsequent cycle by the
posterior filtering density. The algorithm then computes the particles estimates for the

next cycle at time =t +1,

Gesti(t + 1) = q% i () + 0.5(q% (DR [0 w, w, w,])At, i=1..N (231)

where w are the angular rate measured at time t, and At is the sampling period.

After the initialization, the recursive portion of the algorithm begins by first

determining the observation quaternion q,,s(t) at the current time, and the estimates of
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the next cycle are computed with equation (231). Particles evaluation depends on the
hypothesis of the optimal importance density. Since there are two parameters in the von
Mises-Fisher density, the ideal choice for the orientation tracking is the residual density
defined in equation (232). This is because the optimal mean direction of the residual

particles is always [1 0 0 0] instead of an arbitrary quaternion.

Qres,i(t) = qest,i(t)® Conj(QObs(t))' i=1..N (232)

The second parameter, the dispersion factor, is approximated sequentially with
following method. The weight of the particles must first be determined. The rotational

disparity between the optimal residual quaternion and the residual particles is given by,

Oresii = 2€05(qres,i(t) " qo),  i=1..N (233)

The rotational difference is then used to determine the importance weights of the
particles estimates, where less rotational discrepancy receives higher weight and vice

versa.

- 1/6res,i
' Zév(l/&”es,i) '

The posterior dispersion parameter is updated with,

A\

The expectation of the filtered quaternion is computed with the particles

=1..N (234)

al 2 _b< Z{V 19res,iz) _d< Ziv 19res,iz)
Z Uresi” X | = ae +ce , (235)
i

x=[abcd],i=1..N

estimates and their weights. This is accomplished by computing the weighted spherical

averages of the particles in a successive double loop shown in Table 6-5.
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Table 6-5 - Pseudo code for expectation calculation for quaternion

Input: qes i =1 — N (Estimation data),
w;, i = x,y,z (Data weights),
N (number of particles)

for x = 1> log(N)/log(2)
for k=1 >(size(qest,;))/2
Wy = Wor—1/(Wok—1 + Wak)

0 = acos(qest,2k-1 * Gest,2k)

sin ((1-wy)6) sin (wy,)6)
Qv.k = Gest,2k-1 (T) + Gest,2k (T)

Wy e = Wok—1 (W) + wpr (1 —wy)
end

Qvk = Yest,ixl = 1-k
Wy o w,i=1-k

AN ol M

end
Return gy

There are various techniques to compute spherical averaging [100]. Buss demonstrated
spherical averaging with exponential mapping technique [101]. Clark and Thompson

used stereographic projection for averaging [102].

The presented algorithm uses spherical linear interpolation (SLERP) [103] to
interpolate the rotation between two quaternion. SLERP computes the intermediate
rotation of two orientation inputs and the weight parameter ranging from 0 to 1. The
weight parameter determines the influence of each of the rotational inputs to the output.
A weight of 0.5 is equal to calculating the mean rotation of the two inputs. Since all the
particles are weighted differently, the weights are first normalized between two
examining particles (Step 3). The weight of the output is computed by the ratio of the
normalized weight (Step 6). In each iteration, the algorithm interpolates a new

generation of particles and weights that is half the size of the input (steps 2 to 8) until
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there is only one particle left. This algorithm is limited to sample size of 2". Zero

padding is for this algorithm necessary if other sample size is used.

Particle maintenance is to ensure the effectiveness of the particle estimates for
statistical inference and to avoid degeneracy. The first step is to determine the effective
sample size N,rr described in equation (156) in chapter 2.2.6. In the current

implementation of the PF, the particle maintenance is accomplished by two scenarios.
p p p y

In the first scenario, two thresholds are set by the user. The first threshold (N¢p4)
determines whether the particle samples require importance resampling. If the N,z is
smaller than N;, importance resampling is performed. There are three importance
resampling methods examined in this research, which are deterministic [104], residual

[69], and auxiliary [105] as shown in Appendix D.

The second threshold (N;,,) is used to enrich the particles’ diversity. This
threshold is added in addition to the original because instead of the importance weights’
degeneracy; the importance density becomes highly concentrated from the resampling
where a large population of the particles estimates becomes identical. If N,f is larger
than Ngy,, the particles are replaced by the new particles that are sampled from the
posterior density in equation (235) and the expectation quaternion from the algorithm in

Table 6-5.

qrs,i(t)"’VMF K (236)

The weight is also updated based on the resampled particles. This step increases the

diversity of the particles while maintaining the statistical properties of the particles.
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The second scenario takes into account of the hardware system of the IMU.
Several cases were identified that can cause temporary interruption or interference to the
system. For instance, external magnetic field such as laptop batteries or speakers can
disturb the magnetometer’s measurement. Motion that causes temporary sensing signal
saturation can lead to incorrect estimations. In addition, the antenna on the IMU may be
obscured by the user. This causes a transmission lag as shown in Figure 6-6, which is

highly undesirable for rate-dependent estimation.

These events may lead to a significant error in the posterior density
approximation as the prediction and observation are misrepresented. The dispersion
factor, which is based on the state of the residual particles, will decrease to increase the
spread of the particles. It is possible for the filter to destabilize if the dispersion factor is
low enough that the particles become completely random hyperspheres. Since the
effectiveness of the particles is monitored by normalized importance weight, it cannot
directly observe if the residual particles are drifting away from the optimal direction.
The most direct method is to monitor the posterior density, which infers the uncertainty
state of the residual particles. Therefore, a dispersion threshold (kry) is set up to prevent
excessive dispersion. If the dispersion calculated in (235) drops below kry, the particles
are reset by sampling a new set particles at (qops(t)) with the initial dispersion factor

used at time = 1.
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Figure 6-6 - Receiving time lag between samples
6.5.6 Sequential Monte Carlo Methods with non-Uniform Density

Since the sampling method between von Mises-Fisher and non-uniform densities
are substantially different from one another, the set up for the PF, and the particles
maintenance procedures need to be re-designed. In non-uniform sampling method
described in chapter 6.5.4, the shape of the density is governed by the dispersion shape
matrix K, defined in equation (227); and the amount of dispersion is controlled by the
maximum and minimum acceptance boundaries (fjqx and finin ). The overall function
block for PF with NU density is shown in Figure 6-7. The particles are initialized with
sampling with the rejection sampling method outlined in Table 6-4. The initial particles

estimates (g5 ; (t)) become,

Qest,i(t)"‘NU([fmax; fmin]:K)® QObs(t): i=1..N (237)

These particles are weighted equally. The particles estimates are computed with
equation (231). The uncertainty states of the particles are determined with equation (232-

234). The effective sample size is calculated with equation (156) in chapter 2.2.6.
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Sequential importance resampling is performed in the same manner as the PF with von
Mises-Fisher density method. However, to enrich the particle diversity after the effective
particle size N,r; exceeds N.p,, replacement particles must be sampled from the density
that describes the current particle state. This is achieved by first determining the density

of the residual quaternions,

-1
1p ()T . .
fres,i = 1F1 <§’§’qres'i(t)> eQres,l(f) UKUQreS,l(t)’ i=1'N (238)

< eQres,i(t)TUKUQTes,i(t)
The maximum and minimum residual densities are used as the new acceptances

boundaries, where the replacement particles are drawn from.
Grsi O~NU(finax fin) KO® (qesp(t+ 1)) i=1..N (239)

The state of the residual particles direction is monitored by two pre-determined
densities boundaries (f; & f>, f1 < f2) to prevent particles divergence from fault inputs.
If [finax, fimin] is not within the density bounds defined by f; & f,, the particles are reset

by sampling a new set particles at (q,ps(t)) with the initial boundaries at time = 1.

6.5.7 Sequential Monte Carlo Methods with Bias compensation

Gyroscopes drifting bias is one of the major causes in attitude estimation error.
The PF discussed in previous sections can only observe and correct drifting error via
monitoring the direction of the residual density and correct the particles only if they
jeopardize the stability of the filter. Hence, the bias correction developed by Mohany
[72] is used in conjunction to produce the particle estimates. This can enhance the
stability and accuracy of the filter as it reduces the occurrence of particles replacement

caused by large prediction and update error; where the particles are reset.
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Figure 6-7 - Functional block diagram of the PF algorithm with non-uniform density
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7. Experimental Results

Three experiments were designed to test the IMU system and the algorithm
design. The first experiment focuses on the validation of the algorithms by testing it with
synthetic signal and compare against benchmarks algorithms such as extended Kalman
filter (EKF) and complementary filter (CF). The second experiment tested the IMU and
algorithm with a robotic manipulator. The third experiment explores the capability of

the IMU in tracking human body motion by free-hand motion.

7.1 Synthetic Data Simulation

The first experiment verified the algorithm design. Synthetic signal is generated
by the following model to simulate the output from an IMU system. The model

simulates a single axis rotation of one of the IMU axis at constant speed.

G=w;+ngi  MNgi~ n(#g,irag,i) (240)

A= a+nap  Map~ | [(aioad) (241)

M= [sin(@) cos®) 1+m 1y~ [@y00n0) (242)
i=x,9,2z

where 7 are signal noise which is assumed to be Gaussian with mean (u) and variance
(0). In addition, the signal noise model on each axis is independent from one other. The
simulated raw signal is shown in Figure 7-1. The data is processed by various settings of
the PF and compare to the benchmark algorithms (EKF, CF), which is summarized as
shown Table 7-1.

Table 7-1 — Testing Algorithms for the experiment

Testing Algorithms
PF
exE | N =128, 256, 512, 1024
vMF vMF-BC NU NU-BC
DET | RES | AUX | DET | RES | AUX | DET | RES | AUX [ DET | RES | AUX

EKF: Extended Kalman Filter, CF: Complementary Filter, PF: Particle Filter, vMF: von-Mises Fisher density, NU: Non Uniform
density, BC: Bias Correction, DET: Deterministic Resampling, RES: Residual Resampling,, AUX: Auxiliary Resampling
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Figure 7-1 - Synthetic signal simulated raw output of the sensors

The processed data are converted back to Euler angles and compare to the
ground truth, which is the intended motion trajectory without noise. The error between
the algorithms” outputs and the ground truth is calculated. Figure 7-2 shows the error
plot of different algorithm outputs around the axis of rotation (Z). The PFs were set up
with 512 particles and auxiliary resampling was used. RAW data is the prediction based
on the gyroscopes output and the observation quaternion calculated from the
accelerometers and magnetometers. No feedback mechanism was used. The root mean
squared errors (RMSE) were computed for each of the algorithm as shown in Figure 7-3
and Table 7-2. For the PF, the RMSEs were averaged over 200 simulation runs. The
results show that increasing particle population has a positive impact to the PFs’ results
regardless of the resampling strategy or whether BC was used. Benchmark testing
algorithms, CF and EKF, have the RMSEs of 0.93°, 0.59°, 0.72° and 1.34°, 0.71°, and 0.72°
on each axis respectively. Among all of the testing algorithms, PF using the combination
of NU density, BC, AUX along with 1024 particles gives the best result. The RMSEs are
0.49°, 0.44°, and 0.52° on X, Y, and Z axis respectively. In addition, only PFs using the
AUX and BC combination with 512 particles or more can achieve better result than the

benchmark algorithms.
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Figure 7-2 — Error between different algorithms and the intended motion
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Figure 7-3 - RMSE of the testing algorithms for synthetic signal
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Table 7-2 - RMSE of the testing algorithms for synthetic signal

Algorithm RMSE X RMSE Y RMSE Z
Raw 2.90 2.54 2.64
CF 0.93 0.59 0.72
EKF 1.34 0.71 0.72
Posterior Importance
Density Resampling Particle size

128 1.43 1.35 1.37
256 1.32 1.33 1.11
DET 512 1.17 1.01 1.01
1024 1.08 1.05 0.85
128 1.50 1.24 1.13
256 1.43 1.24 1.23
vMF RES 512 135 111 1.05
1024 1.16 0.94 0.81
128 2.09 1.76 1.87
256 1.50 1.05 1.80
AUX 512 1.48 0.96 0.96
1024 0.88 0.99 0.63
128 1.20 0.98 0.98
256 1.05 0.99 1.01
DET 512 0.94 1.00 1.00
1024 0.94 0.88 0.99
128 1.09 1.11 1.06
256 1.05 1.07 1.12
vMF BC RES 512 1.01 0.96 0.92
1024 0.87 0.92 0.92
128 1.00 0.80 0.93
256 0.75 0.72 0.81
AUX 512 0.65 0.61 0.61
PE 1024 0.56 0.60 0.54
128 1.12 1.06 1.25

2 K . .
DET 56 1.09 0.63 0.54
512 0.96 0.40 0.82
1024 0.63 0.60 0.65
128 1.29 1.22 1.18
256 1.24 1.23 1.11
NU RES 512 0.91 0.99 0.97
1024 0.85 0.68 0.50
128 1.72 1.60 1.55
256 1.25 0.90 1.19
AUX 512 1.14 0.87 0.67
1024 0.75 0.78 0.80
128 0.68 0.65 0.74
DET 256 0.66 0.69 0.64
512 0.68 0.67 0.75
1024 0.55 0.59 0.61
128 0.67 0.72 0.63
256 0.82 0.70 0.72
NUBC RES 512 0.72 0.81 0.67
1024 0.60 0.67 0.59
128 0.97 0.77 0.93
256 0.79 0.79 0.77
AUX 512 0.60 0.58 0.57
1024 0.49 0.44 0.52
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The experiment was implemented within MATLAB (Mathworks, MA)
environment and was simulated with an Intel i7core mobile platform. The average
processing time of each of these algorithms were shown in Figure 7-4. Both of the
benchmark algorithms are extremely efficient with average of 0.0004 and 0.001 seconds
per recursion. PFs took considerably longer. In addition, the processing time scales with
the particle populations. PFs using vMF density require less processing time than the
PFs using NU. The red dashed line in Figure 7-4 indicates threshold for reaching 30
frames per second (fps). None of the PFs with particle population over 512 require

substantially longer processing time such that 30 fps refresh rate cannot be obtained.

| PF
0.180 - ......................................................................................................... e

0160 1 pET RES AUX DET RES AUX DET| RES, AUX DET RES AUX
0.140 -
0.120 -

0.100 -

0.080 -

0.060 -

Average Processing time (s)

0.040 -

0.020 ‘
0.000 : I
o~
n
Figure 7-4 — Average processing time of the testing algorithms
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Moreover, PFs using NU density with BC also consumes less processing time than the
ones without. This is primarily due to the sampling method for quaternion with the NU
density. Rejection sampling relies on the random quaternion proposal and produces
samples that match the predetermined criteria. PF with BC dramatically reduce the
search space for the optimal posterior density and converges quickly with importance
sampling. PF without BC often yield suboptimal density that takes substantially longer
to sample from. In Figure 7-5, the distribution on the left is the distribution obtained
with PF with BC. The red, green and blue particles represent the 3-sphere projection of
the accepted quaternion, and the magenta particles represent the 3-sphere projection of
the quaternion rejected by the algorithm. On the right hand side, the distribution is
obtained with PF without BC. As shown in the figure, the rejection algorithm rejected
considerable amount of proposed quaternions, which can significantly slow down the

algorithm.

Figure 7-5 - Difference in Rejection Rate for PF with (Left) and without (Right) BC. Magenta
indicates rejected particles
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7.2 Robotic application

The second experiment was designed to test the hardware and software systems
in a controlled setting with robotic manipulator. The modular IMU system was used and
the data is processed by the testing algorithm in Table 7-1. The modular IMU was
attached to a hydraulic robotic manipulator (TITAN II, Schilling robotics), as shown in
Figure 7-6.

An optical tracking system is used as a reference tracking device for comparison
(Polaris Spectra, Northern Digital Inc.). One of the optical trackers is attached on the
robotic manipulator with the IMU and a secondary reference tracker transforms the

reference co-ordinate from the camera to itself.

~- IMU holder:
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'x Optica
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Figure 7-6 — Experimental setup with robotic manipulator
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The experiments were divided into two parts. The first part of the experiment
uses the manipulator to rotate the IMU into six different locations and static
measurements were taken. Static measurements are defined as the unit being stationary
for at least 300 samples. The reference datasets consists of 4000 sample points was
collected from a stationary pose. The data were used to establish the frame of reference

between the optical and IMU systems.

One of the major issues surfaced during this study is that when the robotic
manipulator was powered up, a large magnetic flux was created, which caused a
significantly interference to the magnetometer as shown in Figure 7-7. The generated

magnetic field placed the bias very close to the limit of the sensor’s dynamic range.
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Figure 7-7 — Raw sensor output showing the magnetic interference of the robot to the
magnetometer
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The magnetic interference has a negative impact on the algorithm as the magnetic sensor
is one of the major components to the observation quaternion calculation. In the robotic
experiment, the outputs of the magnetometer were removed from the attitude
estimation algorithms. This is achieved by initializing the initial azimuth direction
at[0 0 1], and the azimuth rotation is only evolved by the data from the gyroscopes.
Since there isn’t any feedback mechanism on the azimuth, this method is subjected to
drift if it’s being used over an extended period of time. However, since the duration of
this experiment is relatively short, it does not generate any adverse effect on the

estimations.

For this experiment, there were total of six static poses with 2000 samples in each
these locations. The reference and acquired data were processed by the testing
algorithms. The orientation outputs in each algorithm were referenced to the quaternion
calculated by the same algorithm from the reference data set. The data are then projected
as Euler angles for analysis. The RMSEs between the optical tracker and the output of

the IMU from the testing algorithms are shown in Figure 7-8 and Figure 7-9.

The results of the PFs were averaged over 100 simulation runs. The RMSE of all
the PFs decreases as the particle population increases. Unlike the previous simulation
study, the AUX importance resampling performs poorer in general against DET and
RES resampling methods except for the setup with the combination of NU density and
BC. In general, PFs using BC has a substantial reduction in RMSE compared to the PFs
without BC. Moreover, PFs using NU density and BC performs the slightly better than
other PFs’ setup as shown in Table 7-3. In addition, all the PF in that setup yields very
similar results regardless of particle size. According to these data, the optimal density is
similar to the dispersion shape of a non-uniform distribution if the bias state is being

monitored. However, without BC, vMF density yields slightly better results.
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Figure 7-8 - RMSE of PF without BC against benchmark algorithms in static experiment
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Figure 7-9 — RMSE of PF with BC against benchmark algorithms for static experiment
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Table 7-3 - RMSE of the testing algorithms for static testing (Robotic)

Algorithm RMSE X RMSE Y RMSE Z
CF 0.094222 0.07576 0.119904
EKF 0.08794 0.087234 0.086992
Posterior Importance
Density Resampling Particle size
128 0.188319 0.095297 0.261448
256 0.172609 0.13697 0.259736
DET 512 0.181397 0.133245 0.250197
1024 0.15561 0.090218 0.218639
128 0.295108 0.218929 0.374347
256 0.214258 0.144711 0.272441
vMF RES 512 0.191978 0.133263 0.261605
1024 0.155693 0.099802 0.219879
128 3.810779 2.179338 3.857003
AUX 256 1.07336 0.574956 1.122582
512 2.73659 1.075031 2.889297
1024 0.428951 0.220149 0.480787
128 0.052704 0.053494 0.05114
DET 256 0.051976 0.047886 0.051198
512 0.048029 0.044188 0.048131
1024 0.044953 0.043039 0.046477
128 0.055541 0.053279 0.053093
256 0.051763 0.046638 0.049745
VMF BC RES 512 0.048876 0.045114 0.048815
1024 0.04526 0.041431 0.045239
128 0.097537 0.108991 0.087638
AUX 256 0.061223 0.062119 0.058472
512 0.03416 0.029248 0.020629
1024 0.048727 0.043644 0.047794
P 128 0.492502 0.413593 0.588879
DET 256 0.450647 0.344851 0.535529
512 0.367797 0.252407 0.463451
1024 0.455673 0.247375 0.533236
128 0.546932 0.490291 0.671212
NU RES 256 0.552253 0.348043 0.643582
512 0.39228 0.280542 0.472807
1024 0.313518 0.205091 0.38964
128 1.98869 1.352399 2.116004
AUX 256 1.161698 0.770032 1.155362
512 1.096437 0.726698 1.160275
1024 0.913441 0.594777 0.979783
128 0.047275 0.047833 0.043357
DET 256 0.048932 0.048564 0.044298
512 0.040981 0.040113 0.03904
1024 0.039741 0.038944 0.038255
128 0.04592 0.042901 0.041453
256 0.044662 0.044657 0.040909
NUBC RES 512 0.041395 0.041463 0.040345
1024 0.039235 0.0408 0.038686
128 0.038039 0.037987 0.036783
256 0.038241 0.03766 0.036878
AUX 512 0.031382 0.039987 0.037308
1024 0.039471 0.038537 0.037606
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The second part of the robotic experiment is to verify the tracking ability of the
modular IMU. The robotic manipulator was programmed to maneuver the segment
where the IMU and the optical tracker were attached to. Similar to the static experiment,
the relative orientations are referenced to the reference orientations calculated in
previous static experiment. Figure 7-10 compares one of the 3-sphere projections of the
reconstructed orientations from the PF with the optical data. In the figure below, there
are several occasions that the manipulator remains stationary for an extended period.
Those data should be eliminated from the analysis to reduce the influence from the static
data on a dynamic experiment. This is performed by manually removing the static

segment from the data after time synchronization between the optical and IMU data.

Optical X == Optical Y == Optical Z = |[MUX :<:- IMUY <:-- IMUZ -+

Orientations (Degrees)

Figure 7-10 — Comparison between IMU data reconstructed with PF with the combination of
NU density, BC and 256 particles population and the optical data.
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The RMSE of the testing algorithms are shown in Figure 7-11 and Figure 7-12. The
RMSE of the PFs are also average from 100 simulation runs. In this experiment, the
RMSE of all the algorithms are slightly elevated compared to the static experiment. The
PFs without BC performs relatively poorly compare to other algorithms. In addition, the
PFs using AUX without BC have the highest RMSE among all testing algorithms, with
most of them exceeding one degree of RMSE. On the other hand, the PFs with BC
perform slightly better than the benchmark algorithms. Unlike the static experiment, the
best setup combination for PF estimation is to use NU density with DET resampling and

particle population of 1024 as shown in Table 7-4.
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Figure 7-11 - RMSE of PF without BC against benchmark algorithms in dynamic experiment
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Figure 7-12 - RMSE of PF with BC against benchmark algorithms in dynamic experiment

Apart from the magnetic interference discussed in the section above, another potential
source of error comes from data synchronization. Recall in Figure 6-6, the transmission time
between the end devices and the access point are not constant due wireless or other interferences.
Transmission lag extends At in orientation prediction equation (191), and cause the algorithm to
produce wrong estimation. This is an inherent problem with using gyroscopes in the IMU since
the gyroscopes’ estimation is rate dependent. Although all the algorithms have feedback
mechanism to correct wrong prediction, the algorithm will still need multiple recursions to
converge to the optimal estimation. Additionally, the time stamps of the estimation will be offset
from the optical data in an entirely random fashion. The current solution is to perform a rough
data resampling based on the length of the IMU and optical dataset, and use the receiving time

interval to determine if additional resynchronization is necessary in separate interval.
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Table 7-4 - RMSE of the testing algorithms for dynamic testing (Robotic)

Algorithm RMSE X RMSE Y RMSE Z
CF 0.0616998 | 0.0573525 0.0695404
EKF 0.0615615 0.0814767 0.0806343
Posterior Importance
Density Resampling Particle size
128 0.189092 0.336857 0.358421
DET 256 0.174758 0.280237 0.303821
512 0.165289 0.273752 0.299744
1024 0.170001 0.275147 0.300706
128 0.200679 0.324983 0.348563
256 0.17922 0.277551 0.305678
vMF RES 512 0.164033 0.26233 0.284008
1024 0.155074 0.275534 0.297549
128 1.753507 1.711711 2.123659
AUX 256 1.354614 1.520028 1.459685
512 1.4640955 1.6417059 1.8519901
1024 0.992514 1.330192 1.282388
128 0.061333 0.053166 0.052505
DET 256 0.06237 0.052839 0.053174
512 0.060406 0.051889 0.051606
1024 0.058796 0.052492 0.052777
128 0.061639 0.055421 0.055916
256 0.060491 0.054152 0.055051
vMF BC RES 512 0.059117 0.053177 0.053464
1024 0.060864 0.05265 0.051852
128 0.06721 0.063484 0.063084
AUX 256 0.062515 0.056407 0.057441
512 0.063941 0.063491 0.075611
PE 1024 0.059904 0.05317 0.05291
128 0.332174 0.487942 0.536764
DET 256 0.262747 0.386814 0.427934
512 0.207468 0.415915 0.442872
1024 0.214491 0.349704 0.3855
128 0.307349 0.416816 0.444533
NU RES 256 0.321066 0.440656 0.489518
512 0.20685 0.375547 0.40531
1024 0.223702 0.368107 0.40286
128 1.521842 1.451801 1.376179
AUX 256 1.449068 1.612242 1.336461
512 1.014376 1.427508 1.540379
1024 1.368266 1.590364 1.374839
128 0.060193 0.051715 0.051381
DET 256 0.058877 0.051457 0.050797
512 0.060915 0.05113 0.051715
1024 0.059541 0.049843 0.051075
128 0.061677 0.052007 0.053656
256 0.060378 0.051723 0.052286
NU BC RES 512 0.060025 0.052474 0.053012
1024 0.059948 0.053195 0.052247
128 0.060641 0.058272 0.056142
AUX 256 0.058997 0.052201 0.051822
512 0.064721 0.057566 0.06973
1024 0.058446 0.052396 0.052275
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7.3 Human motion tracking

The last validation experiment was to use the modular IMU and test the
algorithms with human body motion. This is achieved by performing orientation
tracking of the IMU with free hand motion activities. The estimated orientation from the
IMU is compared to the optical system. A plastic container was created with rapid
prototyping machine to fit the IMU and passive optical marker (Figure 7-13). In
addition, the container has additional mounting spots for more optical trackers to
provide flexibility in testing the system such that it will not restricted by the line of sight
limitation of the optical tracker.

In this validation study, 35 free hand motion activities were performed. Similar
to the robotic experiment, this data acquisition is divided into two parts. The first part of
the activity collects static reference data, and the second part of the activity collects
dynamic motion data. The protocol on the following page was used for this activities

testing.

Additional
mounting spots

for Optical Target 2 :

Figure 7-13 — Plastic container for both the IMU and optical systems for free hand motion
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Holding the container such that one of the optical trackers is facing the
optical camera sensors and maintain the pose as steady as possible for 4000
samples. This is used as the human static testing as well as creating the
reference pose for the activity.

The user is free to maneuver the container after step 1 (Figure 7-14)

In order to facilitate the data synchronization procedure discussed in the
robotic experiment, the subject is encouraged to pause the motion briefly
every 1500 samples. The data acquisition progress and the 1500-sample mark
are shown on the computer. This step is not necessary, but it can help with
the resynchronization of out of sync data during analysis.

At the end of each acquisition, the subject holds the container still for a brief
period of time (~200 samples) before exiting the acquisition of the IMU and

optical tracking system.

IMU
Tracker

r‘...; E—

Optial

E—

Figure 7-14 — Free hand motion testing
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The optical data were checked to see if there is any corrupted data caused by
interference or the tracker is partially out of view from the optical camera. If amount of
corrupted data is small, interpolated data is used as replacement. However, if a large

portion of the data is corrupted, the section is noted to remove from analysis.

One of the interesting discoveries during the static experiment was the signal
characteristic changed considerably compare to the previous experiments. It was
expected that the variances of the signals is higher for human body motion due to the
feedback mechanism of the musculoskeletal system. However, it was not expected that
the elevation in signal variances are not uniform among the sensors. As shown in Figure
7-15, the change in variance for the accelerometers was substantially higher than the
gyroscopes and magnetometers. While it should not present any problem to the Kalman
class estimation family, it becomes problematic for the complementary filter class. This is
due to the assumptions of the CF discussed in Figure 2-3. The core idea of CF is
assuming the gyroscopes data has a higher frequency noise than the accelerometers and
magnetometers, and the two datasets complement each other by the CF. While this
assumption is still valid for robotic tracking application as shown in Figure 7-15, it does
not fit with the data obtained in human motion analysis. This is very likely the

fundamental cause of the instability issues observed with the CF algorithm.

In the free hand motion study, instability has been observed on both of the
benchmark algorithms. There were 5 instances of instability observed with CF algorithm
and 2 partial cases of instability observed with the EKF algorithm. There are zero cases
of instability from any of the setups of the PFs. All of the instability cases with CF failed
to stabilize during the initialization and static phases of the experiment, and the filter
never converges throughout the entire activity. Figure 7-16 shows one of the activities

where CF did not stabilize and Figure 7-17 shows the same activity processed by PF.
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Figure 7-15 — Signal variance of the IMU tracker during still, static (robot), static (human)
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Figure 7-16 — One of the activities showing the instability of CF during human motion testing
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Figure 7-17 — Activity in Figure 7-16 processed with PF (NU density, BC, RES, 256 particles)

As for the instability cases of the EKF, one of the cases destabilized briefly during
the dynamic activities but quickly recovers during one of the recommended time
resynchronization stall from step 3 of the protocol. However, for the second case, the
filter failed to stabilize throughout the entire activity as shown in Figure 7-18. The initial
hypothesis for the cause of instability is the initial setup parameters for the EKF. Upon
further investigation, it was discovered that there was a narrow range of the
components in the process noise matrix that stabilizes the filter in this specific activity.
However, the new values are significantly higher than the data that was determined
empirically from previous experiments. In contrast, all the initial parameters for the PFs
were setup identically in all of the tests presented. Figure 7-19 shows the output of the
PF processing the same activity. In addition, the error analysis of this study omits all

destabilized cases from the calculation.
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Figure 7-18 — Activity showing the instability of EKF during human motion testing
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Figure 7-19 — Activity in Figure 7-18 processed with PF (NU density, BC, RES, 256 particles)
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Using the data from the optical tracking system as the base reference, the RMSE
of the IMU system in the static and dynamic experiment were determined. Figure 7-20
and Figure 7-21 show the RMSE of the IMU during the static experiment. As seen from
the figures, the RMSE computed from all of the testing algorithms for free hand motion
have significantly increased compared to the robotic experiment. Similar to the result in
previous experiment, PF without BC generally performs less accurate than the ones
using BC. In addition, the performance of PF using AUX resampling without BC is the
least accurate among all testing algorithms. On the other hand, all other PFs’ setups
perform as well or better than the EKF benchmark algorithm. However, only PFs using

the combination of BC and DET/RES resampling can perform as good as the CF.
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Figure 7-20 - RMSE of PF without BC against benchmark algorithms in static experiment
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Figure 7-21 - RMSE of PF with BC against benchmark algorithms in static experiment

As shown in the figures, the size of the particle population still affects the accuracy of
the estimation considerably for PFs using AUX resampling. Significant improvement can
be seen as the particle population increases. However, the effect of the particle size is
more subtle in other PF setups. The numerical values of the RMSE of all the tested
algorithms are shown in Table 7-5. Among all the testing algorithms, PF using the
combination of NU density, BC, and RES resampling method along with particle size of

1024 particles achieved the best estimation result relative to the optical tracking system.
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Table 7-5 - RMSE of the testing algorithms for static testing (Free hand)

Algorithm RMSE X RMSE Y RMSE Z
CF 0.25612 0.373993 0.262638
EKF 0.382841 0.550061 0.380544
Posterior Importance
Density Resampling Particle size
128 0.307122 0.410819 0.317397
256 0.271844 0.392004 0.314143
DET 512 0.284503 0.398816 0.315527
1024 0.358976 0.484019 0.380054
128 0.333785 0.45429 0.355885
YME RES 256 0.315931 0.425939 0.310733
512 0.287602 0.417071 0.330296
1024 0.270091 0.387038 0.286044
128 0.761925 1.582088 1.655977
AUX 256 0.545583 0.781831 0.856825
512 0.432447 0.695762 0.666667
1024 0.37797 0.561692 0.588535
128 0.224862 0.34756 0.285018
DET 256 0.211572 0.33483 0.267825
512 0.207415 0.333673 0.268589
1024 0.233448 0.347217 0.263668
128 0.215172 0.34466 0.285647
256 0.212124 0.335681 0.269624
vMF BC RES 512 0.204367 0.330324 0.267061
1024 0.203573 0.332325 0.266135
128 0.301573 0.41862 0.312684
AUX 256 0.287334 0.396205 0.270464
512 0.231889 0.354159 0.275005
PF 1024 0.251373 0.362193 0.268307
128 0.422045 0.536371 0.450702
DET 256 0.304779 0.482179 0.429707
512 0.366009 0.494424 0.377386
1024 0.33032 0.479976 0.425423
128 0.438439 0.565644 0.488093
NU RES 256 0.334518 0.537028 0.46502
512 0.337148 0.497906 0.41011
1024 0.405563 0.538982 0.455208
128 0.945622 1.317771 1.147613
AUX 256 0.699663 1.17447 1.154055
512 0.500278 0.869395 0.8483
1024 0.424287 0.656811 0.608006
128 0.231545 0.353274 0.280067
DET 256 0.210024 0.334776 0.267098
512 0.214518 0.338352 0.264464
1024 0.235435 0.346328 0.263697
128 0.23785 0.356481 0.281458
256 0.209942 0.336734 0.268509
NU BC RES 512 0.212007 0.335277 0.264162
1024 0.196174 0.326332 0.263526
128 0.39146 0.480272 0.307755
AUX 256 0.32398 0.424034 0.264874
512 0.271683 0.383183 0.27531
1024 0.236518 0.353079 0.26451
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The RMSE of the dynamic testing are shown in Figure 7-22 and Figure 7-23. The
RMSE of the free hand motion activities have increased in all testing algorithms.
However, the performance between each algorithm is similar to the static testing. The
PFs without BC does not surpass the performance of the benchmark algorithms. In
addition, the estimation of PF with AUX resampling without BC is the least accurate
among all testing algorithms, where most of the RMSE are over one degree. There is no

significant difference between using vMF and NU densities without BC.
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Figure 7-22 - RMSE of PF without BC against benchmark algorithms in dynamic experiment
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Figure 7-23 — RMSE of PF with BC against benchmark algorithms in dynamic experiment

The PFs using BC performs substantially better. All of the PFs using BC

surpassed the performance of both EKF and CF benchmark algorithms. There is also no

significant difference between different setups for the PFs with BC, although PF using

the combination of NU density, BC with AUX resampling performs slightly better than

other setups as shown in Table 7-6. Figure 7-24 shows the average processing time for

one recursion for all the testing algorithms. The red dashed line indicates the limit to

achieve 30 fps. The PFs takes considerably longer processing time than the benchmark

algorithms. The PFs using vMF density is capable of processing the data higher than the

30fps limit up to particle size of 512.
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Table 7-6 - RMSE of the testing algorithms for dynamic testing (Free hand)

Algorithm RMSE X RMSE Y RMSE Z
CF 0.4952489 0.6107693 0.5665034
EKF 0.6182459 0.7526171 0.6829901
Posterior Importance
Density Resampling Particle size
128 0.508892 0.797903 0.77175
DET 256 0.499949 0.785951 0.759114
512 0.500613 0.839728 0.806064
1024 0.499115 0.90813 0.880749
128 0.519744 0.773136 0.740493
256 0.51388 0.800693 0.777159
vMF RES 512 0.52013 0.839364 0.809415
1024 0.52974 0.858904 0.827738
128 0.657208 1.483329 1.508125
AUX 256 0.616842 1.393874 1.394849
512 0.5479825 1.3873705 1.384049
1024 0.573341 1.412107 1.389825
128 0.479415 0.538749 0.505995
DET 256 0.475554 0.542755 0.510727
512 0.481012 0.541729 0.506701
1024 0.474022 0.541672 0.516435
128 0.476657 0.53817 0.504506
256 0.481245 0.538359 0.510545
vMF BC RES 512 0.472261 0.535864 0.504269
1024 0.482221 0.546473 0.516422
128 0.495023 0.542086 0.505512
AUX 256 0.482958 0.539402 0.50105
512 0.480376 0.537294 0.504424
1024 0.471602 0.55182 0.522952
PF 128 0.534292 0.802687 0.776815
DET 256 0.545651 0.821376 0.789982
512 0.542016 0.882812 0.84822
1024 0.510333 0.94512 0.908605
128 0.545159 0.801632 0.774195
NU RES 256 0.527002 0.835063 0.812712
512 0.5205 0.888143 0.855909
1024 0.5472 0.870096 0.828992
128 1.098755 1.903985 1.818134
AUX 256 1.037757 1.936444 1.815091
512 1.071673 1.885124 1.744471
1024 1.240428 2.06301 1.876578
128 0.475803 0.534248 0.498518
DET 256 0.477444 0.537339 0.505884
512 0.465708 0.529678 0.496506
1024 0.475375 0.540826 0.514757
128 0.468722 0.535177 0.503762
256 0.47744 0.543751 0.510588
NU BC RES 512 0.474823 0.537505 0.503417
1024 0.47921 0.539201 0.513155
128 0.467373 0.537376 0.506471
AUX 256 0.454624 0.529517 0.504732
512 0.459872 0.530146 0.506857
1024 0.457122 0.529544 0.49975
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Figure 7-24 — Average processing time of the testing algorithms for free hand activities

For the PFs using NU density, only particle size of 128 is capable of achieving higher

than 30 fps limit except the combination with BC and AUX resampling, where up to 512

particles can processing the data within 0.033 seconds per recursion. Based the error

analysis and the processing time of the testing algorithm, the PF using the combination

of NU density, BC, and AUX resampling with 256 particles is most suitable for freehand

motion activities.

7.4 System analysis

Recalling the initial experiment with OTS IMU in chapter 4, the EKF algorithm

that was used as benchmark algorithm for the robotic and free hand experiment in this
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chapter is the same implementation of the EKF used for the OTS IMU assessment in
chapter 4. The only difference was the process noise covariance was updated. Due to the
change and upgrade of the hardware components, the modular IMU demonstrates

significant improvement for orientation tracking accuracy summarized in Table 7-7.

There are several reasons why the results of the testing during the robotic
experiment are far better than the free hand motion. The motion of the robotic
manipulator is much smoother than the human free hand motion. As mentioned
previously, the neuron feedback mechanism of the human musculoskeletal system alters

the signal characteristic of the sensors output.

Another cause of error comes from the magnetometer. Due to the magnetic
interference during the robotic experiment, the outputs from the magnetometers were
not used in the attitude estimation algorithm. However, it was used in the free hand
motion study. It was discovered that one of the magnetometers axis exhibits cross axis
effect once the sensor is slighted tilted. Cross axis calibration were performed to
minimize the effect initially by rotating the IMU around all three of the major axis. The
outputs of the magnetometer were analyzed and the cross axis coefficients were
determined empirically. The raw output of the X axis and Z-axis azimuth detection is
slightly elliptic as shown in Figure 7-25. Cross axis correction is applied prior to offset

and scale compensation. Figure 7-26 shows the corrected outputs of the magnetometers.

Table 7-7 — Comparison orientation accuracy between OTS and Modular IMU
(Both are processed by EKF)
RMSEX RMSEY RMSEZ
OTS IMU (average) 3.64° 4.18° 3.58°
Modular IMU (average)  0.62° 0.75° 0.68°
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Despite of the calibration, a secondary artifact was observed on the rotation
perpendicular to the magnetic field around Y-axis observed at certain azimuth direction.
During this motion, the magnetometers use the orientation estimation from previous
state to compensate the outputs with the declination process. However, due to this
artifact, the outputs of magnetometers do not declinate correctly and cause error in the
estimation. Since there is no effective method to monitor and compensate this error
without extensive calibration with a multi-axis rate table at each testing environment,
the current approach is to strategically place the IMU such that Y-axis is parallel to the
axis with least motion. In addition, the magnetometer feedback is disabled if the

azimuth is point in the direction near the artifact region.
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8. Biomedical Applications

The primary function for IMU orientation tracking in biomedical applications is
to assist diagnosis. Since many diseases are diagnosed by observing the joint mechanics
of the patients, IMU device can be used to provide quantitative results for the physicians
and medical device engineers. The following studies demonstrate the capability of the
modular IMU as a diagnostic device. The first study is similar to the experiment
conducted in the pilot study in Chapter 4.6. The goal is to monitor the joint kinematics
during flexion and extension activities such as deep knee bend and chair rise. The
second study demonstrates the potential for IMU as a diagnostic device for lumber

spines’ condition.

8.1 Knee joint activities

The primary focus in the knee joint research is to observe the kinematics of the
joint during motion and to apply the findings in designing the treatment plans or
medical device such as prosthetic implants or knee brace. There are many clinical
applications for the knee joint that can be developed based on the IMU technology. For
instance, the IMU can be used to monitor the progress of the patient undergoing
physical therapy. Due to its compact size and simple set-up, it can be used in clinic as a
substitution for gait lab for some of the diagnostic procedures. In addition, exercise
science and sport science can use IMU as a feedback to the athletes in correcting their

postures to improve their performances.

In this study, the IMU is used to monitor the orientation changes of the upper
and lower extremities. Unlike the knee brace introduced in the pilot experiment, the
IMUs are placed in separate container and strapped onto the subject’s thigh and calf as

shown in Figure 8-1. A passive optical tracker is securely attached to each container.
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Two activities, deep knee bend (Figure 8-2) and chair rise (Figure 8-3), were performed
under the surveillance of both IMU and optical tracking systems as shown. The
following protocol was used for the data collection:
1. Subject stands still such that both of the optical trackers are facing the optical
camera sensors and maintain the pose as steady as possible for 4000 samples.
This is used as the reference pose for the activity.
2. The subject performs one continuous activity and pauses momentarily to
facilitate data resynchronization during analysis
3. The subject repeats step 2 to acquire multiple dataset of the same activity.
4. At the end of each acquisition, the subject stands still for a brief period of

time (~200 samples) before exiting the acquisition of the IMU and optical

tracking system.

Figure 8-1 — Knee joint dynamic study set up. The coordinate system between the IMU tracker
are shown in the left hand side of the figure.
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Figure 8-2 —Subject performing deep knee bend activities

s

Figure 8-3 — Subject performaning chair rise activities

There are three sets of data collected for this experiment. Each set consists of multiple
deep knee bend and chair rise activities. If the optical tracker is temporary outside of the
viewing volume of the optical tracker during any of the activity, the missing data are
interpolated. The collected data were processed by the algorithms in Table 7-1. The
output quaternions are calculated relative to the reference quaternion established in step
1 of the protocol, which were then projected to 3-sphere via an identity matrix. The
performance of the PF algorithm is compared to the benchmark algorithms relative to
the optical data. The RMSE of all the testing algorithms were computed against the
optical system. The outputs were averaged over all activity sets as shown in Figure 8-4

(thigh) and Figure 8-5 (shank). The average processing time in each recursion has
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significantly increased due to the addition of a second IMU as shown in Figure 8-6. The
red dashed line in the figure indicates the condition to achieve at least 30 fps. Most of the
PFs failed to fulfill the condition except for the ones using vMF with particle population
256 or smaller and NU using AUX and BC with particle population of 256 or smaller.

The RMSE decreased slightly compared to the free hand motion experiment in previous
chapter as illustrated by the numerical data in Table 8-1 and Table 8-2. This is due to the
deep knee bend and chair rise activities have more constraints, where the majority of the
motion revolves around one axis. The PF with AUX without BC remains to be the least
accurate among all algorithms, while the PF using AUX and BC yields the best result.
The RMSE also decreases as the particle population increases although the particle size
to performance ratio is small. The best strategy with the consideration of accuracy and

processing time is PF using NU density and BC with 256 particles.
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Figure 8-4 — Comparison between the RMSE of PF and the benchmark algorithms for
IMU located at thigh during knee joint activities
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Figure 8-5 — Comparison between the RMSE of PF and the benchmark algorithms for
shank during knee joint activities
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Figure 8-6 — Average processing time of all testing algorithms for knee joint activities
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Table 8-1 - RMSE of the testing algorithms for dynamic testing (thigh)

Algorithm RMSE X RMSE Y RMSE Z
CF 0.324628 0.465855 0.463407
EKF 0.416998 0.587236 0.598235
Posterior Importance
Density Resampling Particle size
128 0.40652 0.446681 0.451516
256 0.387251 0.417212 0.424143
DET 512 0.391946 0.421225 0.422965
1024 0.402673 0.432454 0.436764
128 0.39931 0.435609 0.441193
YME RES 256 0.394968 0.426112 0.423514
512 0.413259 0.429296 0.420109
1024 0.390083 0.425742 0.427685
128 0.484144 0.79161 0.777059
AUX 256 0.529528 0.814311 0.826135
512 0.466454 0.835663 0.811539
1024 0.416824 0.832426 0.833625
128 0.397709 0.428169 0.436941
DET 256 0.400959 0.419716 0.420432
512 0.404553 0.418835 0.416868
1024 0.415252 0.41994 0.419715
128 0.435045 0.414229 0.418314
256 0.410515 0.423846 0.428496
VMF BC RES 512 0.398688 0.414318 0.423451
1024 0.387155 0.413804 0.412882
128 0.352875 0.410506 0.40724
AUX 256 0.364042 0.386864 0.388586
512 0.377671 0.392906 0.389772
1024 0.355447 0.391104 0.389053
PF 128 0.381415 0.457865 0.461421
DET 256 0.337517 0.436777 0.447388
512 0.345554 0.431794 0.433812
1024 0.373989 0.423383 0.430074
128 0.367673 0.434364 0.450963
NU RES 256 0.370254 0.431317 0.443187
512 0.354173 0.356792 0.378091
1024 0.339651 0.36424 0.38462
128 0.742855 0.953975 0.961032
AUX 256 0.508693 0.99229 1.00357
512 0.479046 0.870522 0.877844
1024 0.409379 0.875489 0.903102
128 0.368647 0.522497 0.443228
DET 256 0.371336 0.509478 0.443086
512 0.36801 0.521242 0.442473
1024 0.351464 0.518449 0.445021
128 0.368075 0.52139 0.451569
256 0.38154 0.52649 0.448103
NUBC RES 512 0.366057 0.51908 0.446344
1024 0.349975 0.514702 0.44233
128 0.352392 0.504013 0.440037
256 0.339917 0.486217 0.430011
AUX 512 0.322679 0.473601 0.416804
1024 0.29787 0.469611 0.412399
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Table 8-2 - RMSE of the testing algorithms for dynamic testing (shank)

Algorithm RMSE X RMSE Y RMSE Z
CF 0.361234 0.475167 0.410433
EKF 0.430701 0.605816 0.573356
Posterior Importance
Density Resampling Particle size
128 0.36697 0.33451 0.362384
256 0.355031 0.337851 0.35836
DET 512 0.353171 0.335397 0.361793
1024 0.360111 0.324276 0.350328
128 0.3663 0.34629 0.36993
256 0.358331 0.33823 0.369685
vMF RES 512 0.356747 0.336699 0.368974
1024 0.347879 0.324751 0.35846
128 0.473697 0.624209 0.645817
AUX 256 0.460228 0.662193 0.687106
512 0.464368 0.638276 0.640524
1024 0.439086 0.601871 0.616599
128 0.351879 0.360873 0.383911
DET 256 0.355727 0.358138 0.377867
512 0.353474 0.35858 0.379108
1024 0.352698 0.35758 0.376628
128 0.359841 0.357472 0.381631
256 0.352841 0.365049 0.386456
VMF BC RES 512 0.35049 0.358687 0.380419
1024 0.354917 0.353847 0.380386
128 0.376686 0.364286 0.376351
AUX 256 0.359598 0.343834 0.366673
512 0.36004 0.348186 0.363026
1024 0.352518 0.335008 0.356943
PF 128 0.358632 0.347195 0.375258
DET 256 0.390247 0.346124 0.375843
512 0.37515 0.343721 0.364373
1024 0.357094 0.330081 0.370834
128 0.384424 0.351709 0.396317
NU RES 256 0.377658 0.358932 0.382354
512 0.357676 0.334205 0.376862
1024 0.362837 0.33792 0.372338
128 0.579639 0.78012 0.81227
AUX 256 0.437536 0.673492 0.725298
512 0.493264 0.705367 0.733129
1024 0.44728 0.730884 0.744864
128 0.347802 0.353396 0.373244
DET 256 0.349527 0.346308 0.366912
512 0.358042 0.346313 0.361706
1024 0.346902 0.343523 0.36292
128 0.359612 0.360545 0.370087
256 0.351709 0.35519 0.375252
NUBC RES 512 0.35106 0.350104 0.37031
1024 0.3465 0.341601 0.362705
128 0.369503 0.354304 0.375568
256 0.355348 0.342114 0.365768
AUX 512 0.356148 0.343175 0.35282
1024 0.353763 0.330291 0.348451
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8.2 Lumbar spine activities

In United States, low back pain is one of the most common musculoskeletal
disorders that contribute to at least 50 billion dollars in health care cost annually. [106].
The cause of low back pain varies greatly, which can be from simple muscle sprain to
degenerative discs. Physicians rely heavily on magnetic resonance imaging (MRI) in
diagnosing low back pain, which is the leading cost to health care expenses. In a recent
study, fluoroscopy analysis was performed on normal, normal with low back pain, and
disc degeneration subjects in several activities. The hypothesis for this phenomenon was
that the kinematics of the degenerative subjects has changed to avoid pain, which can be
observed as out of plane motions during these activities. The study developed a
classification algorithm that differentiates the normal and degenerative subjects based
on the kinematics of the L1 and L5 in the lumbar region [107]. The ability to differentiate
normal and degenerative patients with kinematics information during diagnosis can

reduce the instance requiring MRIL

In this study, IMUs were used to demonstrate the capability as a preliminary
diagnostic device to obtain the kinematics information of L1 and L5 of the subjects.
There were two subjects participating in this experiment. One of the subjects (Subject 1)
is classified as normal and the other (Subject 2) is classified as degenerative according to
previous study [107]. The IMU is secured in positions on the back of the subject with
Tegaderm (3M) as shown in Figure 8-7. Optical tracker was not used in this experiment
due to the size of the trackers are too large and they interfere with the motions of the
subject. The subjects were asked to perform three activities, including flexion/extension
(Figure 8-8), lateral bending (Figure 8-9) and axial rotation (Figure 8-10). The following

protocol was used for lumbar activity data collection:
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A

Subject stands still for a duration of 4000 samples to establish the reference
positions

Subject performs multiple flexion and extension activities

Subject performs multiple lateral bending activities

Subject performs multiple axial rotation activities

At the end of each acquisition, the subject stands still for a brief period of

time (~200 samples) before exiting the acquisition of the IMU tracking

system.

Superior-Inferior
Rotational axis

Medial-Lateral
Rotational axis

Unit 1 Anterior-Posterior
Rotational axis

Superior-Inferior
Rotational axis

edial-Lateral
Rotational axis

Unit 2 Anterior-Posterior
Rotational axis

Figure 8-7 — IMUs setup for lumbar spine experiment

Figure 8-8 — Subject performing flexion / extension activity
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Figure 8-10 — Subject performing axial rotation activity

Based on the result from previous experiments, PF algorithm using NU density
and BC with 1024 particles was chosen to process the data. Figure 8-11 and Figure 8-12
shows the outputs on each rotational axis of the IMU located at the L1 region for healthy
and degenerative subject respectively. Figure 8-13 and Figure 8-14 shows the outputs on
each rotational axis of the IMU located at the L1 region for healthy and degenerative
subject respectively. The definition of the rotational axis is shown in Figure 8-7. During
the experiment with the degenerative subject, the IMU at L5 was temporary slipped out
of placed during the flexion / extension activity. A new reference position was re-
defined during the temporary pause after the flexion / extension activity. All subsequent
data were referenced to this new orientation in the analysis. Figure 8-15 shows the
procedure to calculate the relative angles between the two IMUs. The quaternion is
projected with three orthogonal vectors. The relative angles between the vectors in L1
and L5 were calculated by the dot product between the vectors. The result gives the

absolute angle of each axis of the L1 IMU in the L5 IMU frame.
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The absolute change in orientation between L1 IMU and L5 IMU axis during
flexion/extension activity (Figure 8-16 and Figure 8-17), lateral bending (Figure 8-18 and
Figure 8-19), and axial rotation (Figure 8-20 and Figure 8-21) for healthy and
degenerative subjects were analyzed. Out of plane motion is characterized from
observing the two axes perpendicular to the rotational changes. For instance, during the
flexion/extension activity, the IMU axes in the anterior-posterior (AP) and superior-
inferior (SI) directions were rotated around the medial-lateral (ML) rotational axis.
Hence, the absolute angular change of these axes should be very similar to each other.
However, an orientation offset between the two axes indicates out of plane motion
between the IMUs on L1 and L5. In addition, the result shows that out of plane motion

can be detected much easier during the lateral bending activity.

During the flexion/extension activity shown in Figure 8-16 and Figure 8-17, the
ratio between the in-plane activity motion and out-of plane motion is so large that it is
difficult to identify abnormal motion. However, during the lateral bending activity
shown in Figure 8-18 and Figure 8-19, out of plane motion can be identified easily on the
degenerative subject during the activity. The relative angular difference between the
IMU axis in L1 and L5 in the ML and SI directions are similar with the healthy subject,
while there is up to 10 degrees of orientation offset between the two axes for the
degenerative subject in some instances. Similar phenomenon can also be observed
during the axial rotation activity shown in Figure 8-20 and Figure 8-21. The axial
rotation activity is less preferable than lateral bending activity because the back muscles
of the subject bulges significantly during axial rotation, which push and slide the IMU

away from the anchored position.
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Figure 8-19 — Absolute change in orientation of each axis of L1 relative to L5
for degenerative subject during lateral bending activities
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Figure 8-20 — Absolute change in orientation of each axis of L1 relative to L5
for healthy subject during axial rotation activities
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Figure 8-21 — Absolute change in orientation of each axis of L1 relative to L5
for healthy subject during axial rotation activities
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The primary issue with current IMU configuration for lumbar assessment is that
the container of the IMU does not fit very well with the back of the subject as shown in
Figure 8-22. This creates unwanted spaces for the IMU to slide during the activity. A
different ergonomic design to house the IMU tracking system can be developed to
remedy this problem. Nevertheless, this experiment demonstrates the potential use of

IMU orientation tracking to differentiate normal and degenerative patients.

Figure 8-22 — Empty space between the IMU and the back of the subject
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9. Conclusion

This dissertation provides an extensive investigation of inertial tracking
technologies for human motion monitoring. There are three important factors that affect
the accuracy of an inertial tracking system, which are hardware design, calibration and
algorithm design. This dissertation examined and optimized all three factors through

novel designs and approaches.

The calibrations of the IMU sensors were discussed in details in Chapter 4. The
current primary cause of error in estimation rooted from the cross axis effect from the
magnetometers. The cross axis effect compensation method was discussed in Chapter 7.
As discussed in Chapter 5, the modular design of the IMU allows flexibility to the
tracking system, which allows fast customization of the system that best suited the
dynamics of the activities. This design has also taken account into the ADC dynamic
range and performance degradation at the maximum convention speed to provide high
performance and high resolution system. Chapter 2 provides extensive review on the
orientation representations and the theoretical background to the tracking problem,
which leads to the conclusion of the necessity of using quaternion with sequential Monte
Carlo method to tackle the human motion tracking problem. These theories for attitude
estimation were realized and discussed in details in Chapter 6. In addition, a novel
approach for quaternionic particle filtering for tracking problem is realized by
introducing hyperdimensional directional statistic geometries. The sampling methods
for these statistical geometries, the von Mises-Fisher and Bingham densities, were
discussed. A non-uniform density is also introduced by modifying the sampling method
of the Bingham density. A fast and novel implementation to calculate weighted
quaternions were also demonstrated. Lastly, a novel 2-stage resampling techniques were

designed for each of the statistical distribution to maintain the posterior density of the
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estimation while increasing the particle diversity and preventing density divergence

from faulty sensors input.

An extensive validation study for the IMU and the attitude estimation algorithms
was discussed in Chapter 7. A synthetic signals model is introduced to simulate the
noisy outputs from the sensors. It is also demonstrated that Gaussian noise from
individual system can lead to non-Gaussian system due to the data fusion technique.
The system is tested with robotic manipulator as well as human free hand motion. An
optical system serves as the ground truth and is used as the bases to compare with the
benchmark algorithms, which are the Extended Kalman Filter and the Complementary
Filter. The validation study also demonstrates the hardware upgrade on the IMU
improves the estimation significantly compare to the off the shelf IMU in Chapter 4. It is
also shown that the particle filter performs slightly better than the benchmark
algorithms. However, the primary advantage of the particle filtering over the
benchmark algorithm is stability. The interaction between IMU and the musculoskeletal
system invalidates some of the assumptions in the complementary filter designs, which
prevent the filter to converge to a solution. The instability of the complementary filter
during free hand motion is found to be statistically significant (Fisher exact test, p <

0.05).

Chapter 8 discusses the biomedical applications of the IMU orientation tracking.
The first study demonstrates the capability of tracking knee joint during activities and
the accuracy was accessed by comparing with optical tracker. In the second study, the
IMU tracking system was used on monitoring motion for normal and degenerative
subjects. The study demonstrates the potential of using IMU as a diagnostic device that

differentiate normal patient with low back pain to degenerative patients.
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10. Future work

The design of a highly accurate inertial tracking system is a multi-discipline
optimization problem. There are several areas that can be improved in the current
system. The following sections discuss the future work in the hardware design,
calibration techniques, algorithms for this system, and potential applications, which is
also summarized in Table 10-1. In addition, potential applications for using inertial

tracking system for biomedical applications are discussed.

10.1 Hardware

There are several hardware upgrades that can improve the performance of the
current system. The most important one is the wireless transmission system. Since the
current IMU firmware simply instructs the transmitter to transmit the data whenever a
packet becomes available in the buffer of the microcontroller, the receiver may receive
multiple packets from one IMU before receiving the data from the second unit. In
addition, the receiver’s firmware has to identify the origin of the received data prior to
type-casting the data to send to the computer. In the current setup, the wireless
transmission protocols discarded approximately 25% of the receiving data. This
occasionally introduces time lag in the data. Since the expectation of the attitude
estimation is rate dependent, time lag introduces error in the prediction. Even though
the error is corrected once new observation data is obtained, the rubber-banding effect is
still undesirable. This can be remedied with using high capacity wireless protocol or
UWB transmission that supports high data rate as well as upgrading the firmware of the
receiver by implementing time division multi-access (TDMA) scheme on the receiver.

Secondly, the current option for sensing strips is still limited. The selection can
support most of the normal daily activities. Expanding the sensor selections will allow

testing on more rigorous activities such as running.
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Thirdly, other sensor types can be introduced into the system to perform other
tracking purposes. Ultrasonic or infrared range finder can provide translational
information that is currently unobtainable. With the translation data, it is possible to
perform Simultaneous Localization And Mapping (SLAM) with medical ultrasound
transducer to map and create the tissues model (e.g. bone).

Lastly, as demonstrated in the current implementation of the particle filter, the
bottleneck of the algorithm is the processing time. While it is feasible to process and
display the data in real time for single IMU, there is a heavy burden of the processing for
each additional IMU joining the network. One of the possible solutions is to shift the
burden of data processing onto the IMU system. Since microcontroller does not have the
capacity to process complicated algorithm such as particle filter, which requires
exhaustive memory, programmable logic device such as field programmable gate array

(FPGA) becomes a good candidate for data processing for the IMU.

10.2 Calibration

As mentioned in previous chapter, magnetometer calibration is severely
complicated due to the cross axis effect. The cross axis coefficients must be determined
in each location and preferable every time prior to data acquisition. The future work in
this area will included a mechanical gimbal that rotates the IMU in multiple
orientations. An optimization algorithm can be used to automate the coefficients

estimation.

10.3 Algorithm Design

The current particle filter algorithm provides an initial framework for
quaternionic attitude estimation. There are vast variety of distributions and sampling

method that is yet to explore. The primary focus is to design an algorithm that allows
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fast sampling and evaluation. There are many importance resampling methods that
have to be examined. In addition, the current algorithm has not fully utilized the
capability of the IMU system. The modular IMU uses sensors of the same kind but with
different configurations or has different dynamic range. However, since they are
monitoring the same motion, an optimization algorithm can be used with different

configuration to compute the optimal results.

10.4 Potential Applications

Besides of the applications introduced in the chapter 8, there are many other
potential applications to use IMU orientation tracking. From the perspective of joint
motion tracking, once the characteristic of the activity such as the range of motion and
speed are identified, the systems can be used reconfigured with appropriate sensing
elements that suit the needs of the application. The challenging aspect, however, is
designing an ergonomic container for the tracker such that it can be mounted easily onto
the joints without hindering or altering the range of motion of the joint. In addition,
multi-joint segments tracking are also possible with combination of more than two IMU
systems. However, the computation burden of the particle filter in each IMU must be

elevated before realizing this system.

One of the emerging technologies is computer assisted surgeries. Many new surgical
techniques use computer assisted surgical planning in the effort to minimize surgery
time and improve the overall performance. During the surgery, optical system is
frequently used to track and provide position feedback of the instruments according to
the surgical plans. Since IMU cannot be used to track translational movement, a tightly

coupled IMU and UWB localization system can potentially replace the optical tracking
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system. The advantage of that is that neither system has line-of-sight requirements,

which allows the surgeons to move around more freely during the surgery.

Another application is to couple the IMU-UWB localization system with ultrasound
transducers for in-vivo bone motion monitoring. Currently, there are limited options for
performing in-vivo kinematics analysis. Most of the in-vivo examinations are done with
either X-ray or fluoroscopy. Future work in this are included using IMU-UWB
localization for external positing observation, and the ultrasound system monitors the
skin to bone correction. The complete system can estimate the in-vivo kinematics of the

joint motion.

Table 10-1 - Summary on future work

Hardware Upgrade wireless transmitter that supports higher data rate
Wireless transmission protocol

More variety of sensing strips

Integration with other sensing system

Shift computational burden to FPGA

Calibration Cross axis compensation protocol

Optimization algorithm to estimation cross axis coefficient

Algorithm Faster sampling and evaluation
Improvement on resampling method

Optimization algorithm based on the modular architecture

Application Multi-joint segment tracking
Tightly coupled UWB-IMU system for computed assisted surgery
Tightly coupled UWB-IMU-US system to perform SLAM on bone tissues

Tightly coupled UWB-IMU-US system to perform in-vivo joint motion analysis
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B.Appendix B

Figure B-2: Layout for magnetometer sensor strip (Top Copper)
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Figure B-4: Layout for magnetometer sensor strip (Bottom Copper)
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Figure B-6: Layout for magnetometer sensor strip ((Inner Layer: Power)
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Figure B-8: Layout for magnetometer sensor strip ((Inner Layer: Ground)
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Figure B-10: Layout for accelerometers and gyroscopes sensor strip (Bottom Copper)
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C.Appendix C

Using the statistical simulation methods discussed in chapter 6.5, an analysis was
conducted to examine the quaternion to modified Rodriguez parameters (MRP)
convention. In the analysis, vMF and NU densities were tested. Quaternions were
generated from both of the densities and were converted to MRP. The expectation was
calculated in MPR and converted back into quaternion. The expectation of the original
quaternion is then compared with the MPR converted quaternion. In general, the
difference between the two expectations is trivial regardless of the densities or offset

rotations as shown from the two rotations sets in Figure C-1.However, if offset rotation
approaches 2m, there is a discrepancy between the expectations between the original and MRP
converted quaternions. The rotation set in Figure C-2 and C-3 show the expectations differences

using quaternions sampled from vMF and NU densities respectively.

MRP expectation MRP expectation
— Quaternion expectation —— Quaternion expectation

05 ) 1 05 4

05 SN T

X X

Figure C-1: Expectations between quaternion and MRP converted quaternion; (Left) no offsets,
(Right) offset rotation [45 45 45]
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05 o s

-0.5 s -0.5 ——""0s

Figure C-2: Comparsion between the expectations of the original quaternion sampled from
vMF density and the quaternion converted from the MRP expectation; (Left) offset rotation: [0
4 359], (Right) offset rotation: [355 0 5]
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Figure C-3: Comparsion between the expectations of the original quaternion sampled from NU
density and the quaternion converted from the MRP expectation; (Left) offset rotation: [0 4
359], (Right) offset rotation: [355 0 5]
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D.Appendix D

Table D-1- Pseudo code of Deterministic Resampling Technique [104]

Input: q(i) (Particles),
w(i) (Normalized importance weight),
N (number of particles)

L. kj:=[0]1-n
2. Determine the cumulative distribution of q(i), (p(q))
3. a~II[0,1]
4. S=(a->(N—-1+a))/N
5. Definej =1
6. Fori:1->N
7. While S > p(q)
8. j++
End
9.  ki++
End

10. Define indexn =1
11. Fori:1 > N
12, Ifk;>1
13. Forjin ->n+k;(i) —1
14. nresample(j) = n(i)

End

End
15. n=n+k;@
End

Return Nyresample
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Table D-2- Pseudo code of Residual Resampling Technique [69]

Input: q(i) (Particles),
w(i) (Normalized importance weight),
N (number of particles)

ki :=[0]1-n

Gresiauar(l) = N(Q(i)T)

kj = truncate(qresiqual (1))
kresiauar = N — X kj

If kresidual =0

(@resiauar(D)—kj)

kresidual

Determine the cumulative distribution of q,esiguai (1), ®(Qresidual))
Generate k;4giquq Ordered random variables (U) distributed between 0 and 1
Definej =1
For i:1 - kresiqua
While U > p(qresidual)
j++
End
ki ++
End
End
14. Define indexn =1
15. Fori:1 > N
16. Ifk;>1
17. Forjin->n+ N(@) -1
18. Nresampte J) = (D)
End
End
19. n=n+N®)
End
Return Nresample

Gresidual (1) =

0 XN PN =

[
N = o

—_
®
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Table D-3- Pseudo code of Auxiliary Resampling Technique [105]

Input: q(i) (Particles),
w(i) (Normalized importance weight),
N (Number of particles)
a (Regularize constant)

k _ (e-1)qD+q®)

auxiliary — o
kauxiliary = kauxiliary/z q(i)
Fori:1-> N
U~11[0,1]
ki =0
Forj:1->N

N GOl »h =

kj = kj + kauxiliary
End
8. If kj =>U
9. ar() = q(@)
End

End
Return g,
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