29,781 research outputs found

    Packet Loss Rate Differentiation in slotted Optical Packet Switching OCDM/WDM

    Get PDF
    We propose a multi-class mechanism for Optical Code Division Multiplexing (OCDM), Wavelength Division Multiplexing (WDM) Optical Packet Switch (OPS) architecture capable of supporting Quality of Service (QoS) transmission. OCDM/WDM has been proposed as a competitive hybrid switching technology to support the next generation optical Internet. This paper addresses performance issues in the slotted OPS networks and proposed four differentiation schemes to support Quality of Service. In addition, we present a comparison between the proposed schemes as well as, a simulation scheduler design which can be suitable for the core switch node in OPS networks. Using software simulations the performance of our algorithm in terms of losing probability, the packet delay, and scalability is evaluated

    Self-management of hybrid optical and packet switching networks

    Get PDF
    Hybrid optical and packet switching networks are composed of multi-service hybrid devices that enable forwarding of data at multiple levels. Large IP flows at the IP level may be therefore moved to the optical level bypassing therefore the per hop routing decisions of the IP level. Such move could be beneficial since congested IP networks could be offloaded; leaving more resources for other smaller IP flows. At the same time, the flows switched at the optical level would experience better Quality of Service (QoS) thanks to larger bandwidth and negligible jitter. Moving these large flows to the optical level requires the creation of lightpaths to carry them. Currently, two approaches are used for that purpose: direct management and indirect management. With a direct approach, management messages are explicitly issued by the network manager to each managed device (e.g., multi-service hybrid devices). Whereas with an indirect approach, messages are issued by the manager to one managed device that is in charge of signaling the other ones. In both approaches, the decision of which IP flows will be moved to lightpaths is although taken by network managers. As a result, only IP flows explicitly selected by such managers will take advantage of being transferred over lightpaths. However, it may be that there are also other large IP flows, not known to the manager, that could potentially profit from being moved to the optical level. The objective aimed in this Ph.D. thesis is at investigating the use of self-management principles in hybrid optical and packet switching networks in order to identify which IP flows should be moved to the optical level as well as establish and release lightpaths for such flows

    Multi-Granular Optical Cross-Connect: Design, Analysis, and Demonstration

    Get PDF
    A fundamental issue in all-optical switching is to offer efficient and cost-effective transport services for a wide range of bandwidth granularities. This paper presents multi-granular optical cross-connect (MG-OXC) architectures that combine slow (ms regime) and fast (ns regime) switch elements, in order to support optical circuit switching (OCS), optical burst switching (OBS), and even optical packet switching (OPS). The MG-OXC architectures are designed to provide a cost-effective approach, while offering the flexibility and reconfigurability to deal with dynamic requirements of different applications. All proposed MG-OXC designs are analyzed and compared in terms of dimensionality, flexibility/reconfigurability, and scalability. Furthermore, node level simulations are conducted to evaluate the performance of MG-OXCs under different traffic regimes. Finally, the feasibility of the proposed architectures is demonstrated on an application-aware, multi-bit-rate (10 and 40 Gbps), end-to-end OBS testbed
    corecore