225 research outputs found

    Noise behavior in CGPS position time series : the eastern North America case study

    Get PDF
    We analyzed the noise characteristics of 112 continuously operating GPS stations in eastern North America using the Spectral Analysis and the Maximum Likelihood Estimation (MLE) methods. Results of both methods show that the combination ofwhite plus flicker noise is the best model for describing the stochastic part of the position time series. We explored this further using the MLE in the time domain by testing noise models of (a) powerlaw, (b)white, (c)white plus flicker, (d)white plus randomwalk, and (e) white plus flicker plus random-walk. The results show that amplitudes of all noise models are smallest in the north direction and largest in the vertical direction. While amplitudes of white noise model in (c–e) are almost equal across the study area, they are prevailed by the flicker and Random-walk noise for all directions. Assuming flicker noise model increases uncertainties of the estimated velocities by a factor of 5–38 compared to the white noise model

    Human robot interaction in a crowded environment

    No full text
    Human Robot Interaction (HRI) is the primary means of establishing natural and affective communication between humans and robots. HRI enables robots to act in a way similar to humans in order to assist in activities that are considered to be laborious, unsafe, or repetitive. Vision based human robot interaction is a major component of HRI, with which visual information is used to interpret how human interaction takes place. Common tasks of HRI include finding pre-trained static or dynamic gestures in an image, which involves localising different key parts of the human body such as the face and hands. This information is subsequently used to extract different gestures. After the initial detection process, the robot is required to comprehend the underlying meaning of these gestures [3]. Thus far, most gesture recognition systems can only detect gestures and identify a person in relatively static environments. This is not realistic for practical applications as difficulties may arise from people‟s movements and changing illumination conditions. Another issue to consider is that of identifying the commanding person in a crowded scene, which is important for interpreting the navigation commands. To this end, it is necessary to associate the gesture to the correct person and automatic reasoning is required to extract the most probable location of the person who has initiated the gesture. In this thesis, we have proposed a practical framework for addressing the above issues. It attempts to achieve a coarse level understanding about a given environment before engaging in active communication. This includes recognizing human robot interaction, where a person has the intention to communicate with the robot. In this regard, it is necessary to differentiate if people present are engaged with each other or their surrounding environment. The basic task is to detect and reason about the environmental context and different interactions so as to respond accordingly. For example, if individuals are engaged in conversation, the robot should realize it is best not to disturb or, if an individual is receptive to the robot‟s interaction, it may approach the person. Finally, if the user is moving in the environment, it can analyse further to understand if any help can be offered in assisting this user. The method proposed in this thesis combines multiple visual cues in a Bayesian framework to identify people in a scene and determine potential intentions. For improving system performance, contextual feedback is used, which allows the Bayesian network to evolve and adjust itself according to the surrounding environment. The results achieved demonstrate the effectiveness of the technique in dealing with human-robot interaction in a relatively crowded environment [7]

    Regularized System Identification

    Get PDF
    This open access book provides a comprehensive treatment of recent developments in kernel-based identification that are of interest to anyone engaged in learning dynamic systems from data. The reader is led step by step into understanding of a novel paradigm that leverages the power of machine learning without losing sight of the system-theoretical principles of black-box identification. The authors’ reformulation of the identification problem in the light of regularization theory not only offers new insight on classical questions, but paves the way to new and powerful algorithms for a variety of linear and nonlinear problems. Regression methods such as regularization networks and support vector machines are the basis of techniques that extend the function-estimation problem to the estimation of dynamic models. Many examples, also from real-world applications, illustrate the comparative advantages of the new nonparametric approach with respect to classic parametric prediction error methods. The challenges it addresses lie at the intersection of several disciplines so Regularized System Identification will be of interest to a variety of researchers and practitioners in the areas of control systems, machine learning, statistics, and data science. This is an open access book

    Changement de masse des glaciers à l’échelle mondiale par analyse spatiotemporelle de modèles numériques de terrain

    Get PDF
    Les glaciers de la planète rétrécissent rapidement, et produisent des impacts qui s'étendent de la hausse du niveau de la mer et la modification des risques cryosphériques jusqu'au changement de disponibilité en eau douce. Malgré des avancées significatives durant l'ère satellitaire, l'observation des changements de masse des glaciers est encore entravée par une couverture partielle des estimations de télédétection, et par une faible contrainte sur les erreurs des évaluations associées. Dans cette thèse, nous présentons une estimation mondiale et résolue des changements de masse des glaciers basée sur l'analyse spatio-temporelle de modèles numériques de terrain. Nous développons d'abord des méthodes de statistiques spatio-temporelles pour évaluer l'exactitude et la précision des modèles numériques de terrain, et pour estimer des séries temporelles de l'altitude de surface des glaciers. En particulier, nous introduisons un cadre spatial non stationnaire pour estimer et propager des corrélations spatiales multi-échelles dans les incertitudes d'estimations géospatiales. Nous générons ensuite des modèles numériques de terrain massivement à partir de deux décennies d'archives d'images optiques stéréo couvrant les glaciers du monde entier. À partir de ceux-ci, nous estimons des séries temporelles d'altitude de surface pour tous les glaciers de la Terre à une résolution de 100,m sur la période 2000--2019. En intégrant ces séries temporelles en changements de volume et de masse, nous révélons une accélération significative de la perte de masse des glaciers à l'échelle mondiale, ainsi que des réponses régionalement distinctes qui reflètent des changements décennaux de conditions climatiques. En utilisant une grande quantité de données indépendantes et de haute précision, nous démontrons la validité de notre analyse pour produire des incertitudes robustes et cohérentes à différentes échelles de la structure spatio-temporelle de nos estimations. Nous espérons que nos méthodes favorisent des analyses spatio-temporelles robustes, en particulier pour identifier les sources de biais et d'incertitudes dans les études géospatiales. En outre, nous nous attendons à ce que nos estimations permettent de mieux comprendre les facteurs qui régissent le changement des glaciers et d'étendre nos capacités de prévision de ces changements à toutes échelles. Ces prédictions sont nécessaires à la conception de politiques adaptatives sur l'atténuation des impacts de la cryosphère dans le contexte du changement climatique.The world's glaciers are shrinking rapidly, with impacts ranging from global sea-level rise and changes in freshwater availability to the alteration of cryospheric hazards. Despite significant advances during the satellite era, the monitoring of the mass changes of glaciers is still hampered by a fragmented coverage of remote sensing estimations and a poor constraint of the errors in related assessments. In this thesis, we present a globally complete and resolved estimate of glacier mass changes by spatiotemporal analysis of digital elevation models. We first develop methods based on spatiotemporal statistics to assess the accuracy and precision of digital elevation models, and to estimate time series of glacier surface elevation. In particular, we introduce a non-stationary spatial framework to estimate and propagate multi-scale spatial correlations in uncertainties of geospatial estimates. We then massively generate digital elevation models from two decades of stereo optical archives covering glaciers worldwide. From those, we estimate time series of surface elevation for all of Earth's glaciers at a resolution of 100,m during 2000--2019. Integrating these time series into volume and mass changes, we identify a significant acceleration of global glacier mass loss, as well as regionally-contrasted responses that mirror decadal changes in climatic conditions. Using a large amount of independent, high-precision data, we demonstrate the validity of our analysis to yield robust and consistent uncertainties at different scales of the spatiotemporal structure of our estimates. We expect our methods to foster robust spatiotemporal analyses, in particular to identify sources of biases and uncertainties in geospatial assessments. Furthermore, we anticipate our estimates to advance the understanding of the drivers that govern glacier change, and to extend our capabilities of predicting these changes at all scales. Such predictions are critically needed to design adaptive policies on the mitigation of cryospheric impacts in the context of climate change

    System Identification Theory Approach to Cohesive Sediment Transport Modelling

    Get PDF
    Two aspects of the modelling sediment transport are investigated. One is the univariate time series modelling the current velocity dynamics. The other is the multivariate time series modelling the suspended sediment concentration dynamics. Cohesive sediment dynamics and numerical sediment transport model are reviewed and investigated. The system identification theory and time series analysis method are developed and applied to set up the time series model for current velocity and suspended sediment dynamics. In this thesis, the cohesive sediment dynamics is considered as an unknown stochastic system to be identified. The study includes the model structure determination, system order estimation and parameter identification based on the real data collected from relevant estuaries and coastal areas. The strong consistency and convergence rate of recursive least squares parameter identification method for a class of time series model are given and the simulation results show that the time series modelling of sediment dynamics is accurate both in data fitting and prediction in different estuarine and coastal areas. It is well known that cohesive sediment dynamics is a very complicated process and it contains a lot of physical, chemical, biological and ocean geographical factors which are still not very well understood. The numerical modelling techniques at present are still not good enough for quantitative analysis. The time series modelling is first introduced in this thesis to set up cohesive sediment transport model and the quantitative description and analysis of current velocity and suspended sediment concentration dynamics, which provides a novel tool to investigate cohesive sediment dynamics and to achieve a better understanding of its underlying character

    Use of Consumer-grade Depth Cameras in Mobile Robot Navigation

    Get PDF
    Simultaneous Localization And Mapping (SLAM) stands as one of the core techniques used by robots for autonomous navigation. Cameras combining Red-Green-Blue (RGB) color information and depth (D) information are called RGB-D cameras or depth cam- eras. RGB-D cameras can provide rich information for indoor mobile robot navigation. Microsoft’s Kinect device, a representative low cost RGB-D camera product, has attracted tremendous attention from researchers in recent years, for its relatively high quality of depth measurement. By analyzing the multi-data stream of both color and depth, better 3D plane detectors, local shape registration techniques can be designed to improve the quality of mobile robot navigation. In the first part of this work, models of the Kinect’s cameras and projector are es- tablished, which can be applied for calibration and characterization of the Kinect device. Experiments show both variable depth resolution and Kinect’s own optical noises in depth values calculation. Based on Kinect’s models and characterization, this project implements an optimized 3D matching system for SLAM, from processing of RGB-D data to further algorithms design. The developed system includes the following parts: (1) raw data pre- processing and de-noising, improving the quality of integrated environment depth maps. (2) 3D planes surfaces detection and fitting with RANSAC algorithms; also providing ap- plications and illustrative examples about multi-scale-multi-planes detections algorithms which designed for common indoor environment. The proposed approach is validated on scene and object reconstruction. RGB-D features matching under uncertainty and noise in a large scale of data, forms the basis of future application in mobile robot naviga- tion. Experimental results have shown that system performance improvement is valid and feasible
    • …
    corecore