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Abstract

This thesis deals with the development of algorithms for recursive estimation within the
errors-in-variables framework. Within this context attention is focused on two major
threads of research: Recursive system identification based on the Frisch scheme and
the extension and application of errors-in-variables Kalman filtering techniques.

In the first thread, recursive algorithms for the approximate update of the estimates
obtained via the Frisch scheme, which makes use of the Yule-Walker model selection
criterion, are developed for the case of white measurement noise. Gradient-based tech-
niques are utilised to update the Frisch scheme equations, which involve the minimisa-
tion of the model selection criterion as well as the solution of an eigenvalue problem, in a
recursive manner. The computational complexity of the resulting algorithms is critically
analysed and, by introducing additional approximations, fast recursive Frisch scheme
algorithms are developed, which reduce the computational complexity from cubic to
quadratic order. In addition, it is investigated how the singularity condition within
the Frisch scheme is affected when the estimates are computed recursively. Whilst this
first group of recursive Frisch scheme algorithms is developed directly from the offline
Frisch scheme equations, it is also possible to interpret the Frisch scheme within an
extended bias compensating least squares framework. Consequently, the development
of recursive algorithms, which update the estimate obtained from the extended bias
compensated least squares technique, is considered. These algorithms make use of the
bilinear parametrisation principle or, alternatively, the variable projection method. Fi-
nally, two recursive Frisch scheme algorithms are developed for the case of coloured
output noise.

The second thread, which considers the theory of errors-in-variables filtering for lin-
ear systems, extends the approach to deal with a class of bilinear systems, a frequently
used subset of nonlinear systems. The application of errors-in-variables filtering for the
purpose of system identification is also considered. This leads to the development of
a prediction error method based on symmetric innovations, which resembles the joint
output method. Both the offline and online implementation of this novel identification

technique are investigated.
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1.1 Introduction

A system is a real-world entity, whose behaviour is of interest for various reasons such as
improved control system design, condition monitoring or fault detection. For instance
a marine vessel can be considered as being a system for which the knowledge of its
behaviour is required in order to design an appropriate dynamic positioning control
strategy. Building mathematical models of real-world systems via measured data is a
common problem not only in engineering, but also in natural sciences, social sciences,
finance and the manufacturing industries. The process of building mathematical models
based on observed data from the system is called system identification (Ljung 1999).

For a system, it is usual to distinguish between the input signals, which drive the system
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and can eventually be manipulated, and the output signals, which are considered to
be the observed values of interest. A frequent assumption in system identification
is that the input variables are known exactly. However, it might often be the case
that not only the outputs, but also the inputs are subject to additive measurement
noise. Using again the marine vessel as an exemplary system, the input to the system
could be the force provided by propellers, which move the vessel through the water,
whilst the position could be regarded as a resulting output. Since the exact force
which is driving the vessel is generally unknown, but can be deduced by measuring the
rotational speed of the propellers, the input signal will be affected by uncertainties.
In such cases, ‘classical’ identification methods may fail to yield consistent parameter
estimates, i.e. the estimated parameters do not converge to the ‘true’ values with an
increasing number of measurements. Especially when the parameters reflect physical
meaning, and depending on the particular application, a systematic estimation error
(bias) may lead to significant problems. This prompts the need for a so-called errors-
in-variables (EIV) approach, where the input noise is taken into account to obtain
unbiased estimates of the model parameters.

An overview of recent developments for the identification of dynamical EIV systems
is given in (Soderstrom 2007b, Soderstrom, Soverini & Mahata 2002, Soderstrom 1981).
Identifying EIV systems is strongly related to the total least squares (TLS) problem,
also known as orthogonal regression, which is extensively treated in (Van Huffel &
Vandewalle 1991, Van Huffel 1997, Van Huffel & Lemmerling 2002). One particular EIV
identification technique, which has received significant attention in recent years, is the
so-called Frisch scheme, which dates back to (Frisch 1934). Whilst originally developed
to deal with an algebraic regression problem, the Frisch scheme has been extended
towards the dynamic case in (Beghelli, Guidorzi & Soverini 1990) with further analysis
and extensions reported in (Guidorzi & Pierantoni 1995, Diversi, Guidorzi & Soverini
2006, Soderstrom 2007a, Hong, Soderstréom, Soverini & Diversi 2007, Soderstrom 2008).
Another EIV system identification approach is the extended bias compensating least
squares (EBCLS) technique, which has been developed in (Ekman 2005). Similar to the
Frisch scheme, the EBCLS approach is based on the bias correction principle (Sagara &
Wada 1977, Stoica & Soderstrom 1982, Zheng & Feng 1989), which exploits the fact that
the asymptotic bias of the least squares (LS) solution can be removed if the variances
of the input and output measurement noise sequences are known, or estimated. The
relation between the Frisch scheme and the EBCLS approach has recently been analysed
in (Hong & Soéderstrom 2008).

In many applications it is required to obtain, or continually update, a model while
the process which is generating the data is operating. In this case, the parame-
ter estimation procedure is required to be carried out in an online manner rather
than making use of a previously collected batch of data, the latter being termed

offline identification. Online system identification can be achieved by making use
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of recursive identification techniques, which are thoroughly discussed in (Ljung &
Soderstrom 1983, Young 1984, Kushner & Yin 2003). Recursive identification tech-
niques continually update a currently obtained model at each successive sample in-
stance, as new data becomes available. Motivation for recursive system identification
stems from adaptive control, fault detection and diagnostics, adaptive signal process-
ing, adaptive filtering and/or its application for offline identification. Note that the
topic of recursive identification is also known as real-time identification or sequential
estimation within the literature.

Closely related to the recursive system identification problem is filtering, a term
which is used here to describe the estimation of signals from noise corrupted measure-
ments. Whilst the fundamental principle of filtering is probably as old as mankind itself,
digital filter design employing statistical ideas dates back to the work of Kolmogorov
and Wiener (Kolmogorov 1941, Wiener 1964), where stationary random processes are
considered. The more general nonstationary case is dealt with by the famous Kalman
filter (KF) (Kalman 1960), which may be regarded as one of the most widely ap-
plied tools in modern engineering and applied mathematics. A thorough treatment of
Kalman filter theory is given by (Jazwinski 1970, Anderson & Moore 1979, Kailath &
Sayed 2000), whilst a historical survey can be found in (Sorenson 1970). When applied
to estimate the states and the outputs of linear systems driven by a deterministic input
signal (and possibly in the presence of process noise), one of the assumptions within
the KF is that the input signal is known exactly. However, as in the case of system
identification, this assumption may not always be fulfilled. This potential shortcoming
has stimulated researchers to consider Kalman filtering within an extended noise en-
vironment, which has led to the recent development of an errors-in-variables Kalman
filter (EIVKF) (Guidorzi, Diversi & Soverini 2003, Markovsky & De Moor 2005, Di-
versi, Guidorzi & Soverini 2005), which allows, under certain assumptions, an estimate
of the system states, the noise-free output signals as well as the noise-free input signals
to be obtained.

Another common assumption in system identification as well as filtering, due mainly
to the wealth of well developed theory, is the linearity of the underlying system or
process leading to the relative simplicity of the required mathematics as well as the
resulting algorithms. Whilst most (if not all) real-world processes are of a nonlinear
nature, it is possible and sufficient in a large number of situations to approximate the
nonlinear process using a linear model structure. One possibility to retain the desirable
features of the well structured linear case, but simultaneously allowing a successful
extension to encompass and approximate a large number of nonlinear systems over a
wider range of operation, is to utilise so-called bilinear models (Pearson 1999); a simple
class of nonlinear models with a far reaching applicability.

The first of the two main threads within the thesis is that of developing recursive

algorithms for the identification of EIV systems based on the (offline) Frisch scheme
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(a) Errors-in-variables setup.
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(b) Classical identification setup.

Figure 1.1: Errors-in-variables setup versus classical setup.

as well as the EBCLS approach. A further strand in this area is that of developing
fast algorithms. Within the second thread, the theory of linear EIV filtering is firstly
extended towards bilinear system representations and secondly applied to derive EIV
identification techniques, which are considered to be novel.

The remainder of this introductory chapter is outlined as follows. Section 1.2 de-
scribes the motivation for the above developments within this thesis and Section 1.3
formulates the problems which are addressed. The methodology as well as a brief out-
line for each of the forthcoming chapters is given in Section 1.4, whilst Section 1.5

itemises the contributions of the author.

1.2 Motivation

1.2.1 Why errors-in-variables?

A frequent assumption within the system identification literature (e.g. Ljung 1999) is
that the input of the system is known exactly. However, in many practical situations
the actual input, which is driving the system, is unknown and must be measured or
estimated, hence the measured variable will be corrupted by noise. Such a setup is
depicted in Figure 1.1(a). Classical prediction error approaches follow a pragmatic
approach and regard the measured input as the actual input whilst lumping all un-
certainties to the output of the system, as illustrated in the classical setup in Figure
1.1(b). This might be a reasonable assumption if the input measurement uncertainties
are negligible and/or if the prediction of future output values is the major objective
of the identification task. If, in contrast, the aim is to obtain a better understand-
ing of the underlying relations between noise-free inputs and noise-free outputs, i.e. if
the parameters themselves are meaningful and of interest, then it is often beneficial
to explicitly account for the input measurement uncertainties. This leads naturally

to the problem of considering the effects of errors on the output as well as the errors

4
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on the input variable. In general, the difficulty of the identification problem increases
when considering an EIV approach. In addition, the resulting algorithms are often
more complex; conceptually and/or computationally. If the input disturbance is not
taken into account, the resulting parameter estimates usually exhibit an asymptotic
bias, i.e. no matter how many samples are utilised for the identification task, the es-
timates obtained will not converge to the ‘true’ parameter vector. Obtaining unbiased
estimates of the parameter vector, if the values of the latter are meaningful (e.g. they
correspond to physical quantities), is considered to be the ‘classical’ motivation for EIV
identification (Soderstrom 2007b). Another motivation for adopting an EIV approach
is that the system can be considered to be symmetric, i.e. there is, in principle, no
need to distinguish between inputs and outputs since both are treated equally. This is
also related to the behavioural framework (Polderman & Willems 1998), an alternative
approach to dynamic system modelling.

It is worth mentioning that in the case of static systems, the EIV concept relates
to other well-known topics such as latent variables and factor models (cf. references
within Soderstrom 2007b). The applicability of EIV modelling techniques is spread

over many areas including econometrics, engineering and finance to name only a few.

1.2.2 Why recursive identification?

Recursive identification techniques aim to update a model while the system which is
generating the data is operating in real time. One area of application is that of fault de-
tection and diagnostics, where the aim is to detect incipient faults in hardware and/or
software before the conditions deteriorate seriously. Naturally, faults may occur when
the process is running and it is therefore required to detect these as early as possi-
ble, in order to prevent major damage. Changes in the system parametrisation, either
abruptly or subtly, can often indicate such fault conditions within the system, which
clearly prompts the need for online system identification. Indeed, the fault detection
scenario outlined here motivates an immediate need for both online and EIV iden-
tification, since a fault is often indicated by changes in the physical properties of a
system. Using an appropriately parameterised model, this leads naturally to a require-
ment for model parameters to be estimated recursively as well as consistently. To the
best knowledge of the author, the recursive EIV identification problem has, however,
received rather limited attention within the literature (see e.g. Chen 2007, Ding, Chen
& Qiu 2006, Chen & Yang 2005, Zheng & Feng 1989). Another motivation for recursive
EIV identification stems from that of adaptive control system design. Assume that a
pole placement controller is to be updated based on an identified model of the system.
If the estimated poles of the system are biased (e.g. due to the presence of input distur-
bances) the closed-loop poles will be ‘misplaced’ and the control performance may differ
significantly from the specified design. Hence, unbiased online estimates are required,

which again clearly prompts the need for recursive EIV identification techniques. In
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general, the use of recursive identification schemes can also give an additional insight
into the functionality of the algorithms, since the trajectories of the estimates reveal the
‘history’ of the estimates. The trajectories can, for instance, indicate problems due to
identifiability or ill-conditioning, which the engineer can detect by inspection. Last but
not least, recursive algorithms are able to track changes in the operating conditions of
a system, which might result in time varying parameters of the identified model, hence
allowing a wider range of applicability. Note that tracking parameter changes, which
might relate to changes in the operating conditions of a system, requires some form
of adaptation, and it is the recursive structure of the algorithms, which provides the

natural environment to realise such adaptivity.

Computational complexity of recursive algorithms

Another important issue within this thesis deals with the reduction of computational
complexity of the recursive algorithms. On the one hand, persistently increasing ca-
pacities of modern digital computers allow for the implementation and realisation of
increasingly complex algorithms. For instance, whilst being unthinkable only a few
years ago, computationally demanding methods, such as the particle filter approach for
nonlinear filtering (Arulampalam, Maskella, Gordon & Clapp 2002), find many prac-
tical applications nowadays. On the other hand, arguing that such an explosion in
computation power eclipses the need for the development of computationally parsimo-
nious algorithms, is a sophism: many companies use the cheapest hardware possible, in
order to maximise their profits. In addition they are restricted to the use of established
technologies, since the introduction of new hardware often accompanies a lengthy ver-
ification process, which implies additional costs, hence an option often avoided. As a
consequence, today’s industrial engineers are still confronted with severe restrictions
concerning the computational complexity of their algorithms. Therefore, the develop-
ment of computationally economic algorithms is naturally motivated by practical needs
of industry. Another justification is given by the fact that the increase in computational
power allows a reduction of the sampling interval and potentially permits the control of
higher bandwidth systems. However, the reduced sampling interval will inevitably con-
tinue to limit the available operating time for online algorithms (which usually perform
their entire operations in between samples). Finally, note that due to the increased com-
plexity of some EIV identification algorithms (with respect to non-EIV approaches), a
reduction in computation time might be a desired feature for recursive implementations.
Whilst an upper limit of the computation time for an online algorithm will ultimately
depend on the targeted application, the above discussion indicates the importance of
minimising the computation time of recursive EIV identification algorithms, which is

also addressed within this thesis.
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1.2.3 Why errors-in-variables filtering?

Filtering aims to reduce the effect of additive noise on signals, hence is a subject of
paramount importance not solely in branches of science and engineering, but also in
many other areas. When both outputs and inputs are corrupted by uncertainties, it
is naturally of interest to filter both quantities, i.e. to remove the noise not only from
the output signal, but also from the input signal. As for filtering in general, a further
motivation for EIV filtering is its use for system identification. It is often possible to
cross-couple filtering and identification, i.e. to use the filtered signals to improve the
parameter estimates, which in turn can be utilised to improve the filter performance
and so on. This can lead to online as well as offline identification techniques, which

motivates the need for filtering in general, and here, in particular, EIV filtering.

1.3 Statement of the problem

The thesis follows two fundamental threads of research: recursive Frisch scheme iden-
tification and EIV filtering.

1.3.1 Recursive Frisch scheme identification

The first thread deals with the development of recursive system identification algorithms
based on the offline Frisch scheme for errors-in-variables system identification. To the
best knowledge of the author, this problem has not to date been considered within the

literature. Within this framework, two cases are considered:

1. Both the input measurement noise sequence and the output measurement noise

sequence are white, i.e. uncorrelated in time.

2. The input measurement noise sequence is white, whereas the output measurement

noise sequence is coloured, i.e. correlated in time.

Hence, the objective is the development of recursive EIV identification techniques which
exactly, or at least approximately, update the estimates using the Frisch scheme. The

development follows two approaches:
(a) Recursive algorithm design based on the offline Frisch scheme.
(b) Recursive algorithm design using the EBCLS approach.
In addition, attention is given to the development of computationally parsimonious
algorithms, in order to allow a wide range of applications.
1.3.2 Errors-in-variables filtering

The second thread within this thesis deals with the EIV filtering problem. Whilst

this has been solved for the linear case (see e.g. Guidorzi et al. 2003), it has not been

7
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considered for bilinear systems within the literature. Therefore, the first objective
within this framework is the development of bilinear EIV filter algorithms. The second
objective concerns the application of EIV filtering for the purpose of offline as well as

online system identification, hence linking the two individual threads within the thesis.

1.4 Outline of approach

1.4.1 Methodology

In mathematics, natural science and engineering, novel developments usually build on
well established foundations of theory and methodology. The underlying approach
within this thesis is to develop novel techniques and algorithms which build on well-
known concepts of EIV system identification and EIV filtering. This is achieved by
either modifying and extending existing techniques towards more general settings, fo-
cusing on different aspects and/or by combining existing theory and methods towards
novel settings. Thereby, importance is attached to providing detailed listings of the
developed algorithms in a form which allows a straightforward implementation in com-
monly used software packages, such as Matlab. Where possible and appropriate, mathe-
matical development is substantiated and demonstrated in numerical simulations, where
care has been taken in order to ensure reproducibility of the latter.

Commonly used notation is introduced in Chapter 2 whilst additional chapter-
specific notation and abbreviations are introduced when required. A list of all abbre-
viations used is given in a global nomenclature section, which also provides an exten-
sive list of the mathematical notation which is used in the overall thesis. In addition,
chapter-specific notation is summarised within a nomenclature section at the beginning
of each chapter. At the commencement of Chapters 3-7 a list of preliminary reading
from specific underpinning sections in the thesis is given. Note that the reader might
only require parts of the review Chapter 2 in order to follow the developments in the
individual chapters. A brief outline for the subsequent chapters is given in the following

subsection.

1.4.2 Chapter outlines

Chapter 2: The purpose of this chapter is to review well known techniques and prin-
ciples of mathematics, system identification and Kalman filtering, which provide
the foundation for the novel developments in the subsequent chapters. In partic-
ular, it reviews the offline identification schemes which are extended and modified
for the purpose of recursive estimation, which is the topic of Chapters 3-5. More-

over, it reviews errors-in-variables filtering, forming the basis for Chapters 6-7.

Chapter 3: Based on the offline algorithm, this chapter derives recursive expressions

for the Frisch scheme equations using the Yule-Walker model selection criterion.
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The computational complexity of the recursive algorithms is analysed in detail and
bottlenecks are identified. Potential shortcomings of the algorithms are discussed

together with possibilities for further improvements.

Chapter 4: This chapter is divided into two parts: The first part builds on the devel-
opment of Chapter 3 and devises, by introducing additional approximations, fast
recursive Frisch scheme algorithms whose computational complexity is reduced
from cubic to second order. The second part considers the coloured output noise

case and develops two recursive algorithms within this framework.

Chapter 5: Recursive Frisch scheme algorithms are developed within this chapter, by
interpreting the Frisch scheme using the Yule-Walker model selection criterion as
an extended bias compensating least squares problem. Bilinear parametrisation
approaches as well as variable projection algorithms are considered. In addition,
an extensive simulation study provides a comparison of the developed algorithms

with those developed in Chapters 3 and 4.

Chapter 6: This chapter considers the problem of EIV filtering, i.e. the estimation
of the noise-free input and noise-free output signals, for a class of bilinear time-
invariant single-input single-output state space systems. It is shown that the
optimal filter, in a minimum variance sense, is infeasible, since its design de-
pends on the knowledge of the noise-free input. Consequently, four suboptimal

approaches are developed and compared via simulation.

Chapter 7: The use of EIV filtering for the purpose of parameter estimation is inves-
tigated in this chapter. Initially, the extended Kalman filter for joint state and
parameter estimation (JEKF) is derived for EIV state space systems. Then, a
recursive prediction error method (RPEM) when applied to an EIV state space
system is studied. Use of the filtered inputs and outputs leads to a modified JEKF
and RPEM design which is able to reduce the asymptotic bias in the parameter
estimates. A mnovel EIV identification method based on symmetric innovations
is derived, which resembles the well-known joint output method for EIV system

identification. Offline and online implementations are investigated.

A ‘road map’ for the outline of the thesis, which indicates the dependencies between

the various chapters and provides a guideline for the reader, is illustrated in Figure 1.2.

1.5 Contributions

The contributions of the author are listed here in descending order with respect to their

considered significance.
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Figure 1.2: Road map outline of the thesis.

1. Development of recursive algorithms based on the offline Frisch scheme: Two

algorithms have been developed which allow an (approximate) update of the pa-
rameter estimates obtained by the offline Frisch scheme. A discussion concerning
shortcomings has been provided together with suggestions for potential improve-

ments. Parts of this work have also been published in:

[1] Linden, J. G., Meyer, N., Vinsonneau, B. & Burnham, K. J. (2006), Recur-
sive Frisch scheme identification incorporating adaptivity, in ‘Proc. DVD-

ROM 21st IAR & ACD Workshop’, Nancy, France.

[2] Linden, J. G. & Burnham, K. J. (2008), Some aspects on recursive Frisch
scheme identification, in ‘Computer Systems Engineering, Proc. 6th & 7th
Polish British Workshop’, pp. 176-187.

[3] Linden, J. G., Vinsonneau, B. & Burnham, K. J. (2008), Gradient-based
approaches for recursive Frisch scheme identification, in ‘Preprints of the
17th TFAC World Congress’, Seoul, Korea, pp. 1390-1395.

[4] Linden, J. G., Larkowski, T. & Burnham, K. J. (2008), An improved recur-
sive Frisch scheme identification algorithm, in ‘Proc. 19th Int. Conf. on

Systems Engineering’, Las Vegas, USA, pp. 65-70.

2. Development of a symmetric prediction error method for errors-in-variables iden-

tification: Analogously to the joint output method, EIV Kalman filtering is
utilised for the development of novel offline and online identification techniques

for a class of EIV systems. Early approaches have been published in:
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[5] Linden, J. G., Vinsonneau, B. & Burnham, K. J. (2007), An investigation of
extended Kalman filtering in the errors-in-variables framework - A joint state
and parameter estimation approach, in ‘Proc. Int. Conf. on Informatics in

Control, Automation and Robotics’, Angers, France, pp. 47-53.

3. Development of fast recursive Frisch scheme algorithms: Building on the pro-
posed recursive algorithms based on the offline Frisch scheme, computationally
less expensive procedures have been developed. This work is based on the devel-

opment in:

[6] Linden, J. G., Vinsonneau, B. & Burnham, K. J. (2007), Fast algorithms for
recursive Frisch scheme system identification, in ‘Proc. CD-ROM 22nd TAR
& ACD Workshop’, Grenoble, France.

4. Development of bilinear errors-in-variables Kalman filters: The theory of EIV
Kalman filtering has been extended to deal with a class of bilinear EIV systems.
Four suboptimal Kalman filters have been proposed within this framework. Part

of this work is based on:

[7] Linden, J. G., Vinsonneau, B. & Burnham, K. J. (2007), Errors-in-variables
filtering approaches for bilinear systems, in A. Grzech, ed., ‘Proc. of 16th
Int. Conf. Systems Science’, Vol. 1, Wroclaw, Poland, pp. 446-455.

5. Development of recursive extended bias compensating least squares algorithms:
Four recursive algorithms have been proposed to estimate the parameters of an
EIV system within the EBCLS framework. Some of the development has been
published in:

[8] Linden, J. G. & Burnham, K. J. (2008), Recursive Frisch scheme identifica-
tion via variable projection, in ‘Proc. CD-ROM 11th Mechatronics Forum

Biennial International Conference’, Limerick, Ireland.

6. Development of recursive Frisch scheme algorithms in the case of coloured output
noise: Two algorithms have been developed which update the estimate of the
Frisch scheme for the case where the output noise sequence is correlated in time.

Part of this development has been published in:

[9] Linden, J. G. & Burnham, K. J. (2008), A recursive Frisch scheme algorithm
for coloured output noise, in ‘Proc. Int. Conf. on Informatics in Control,
Automation and Robotics’, Madeira, Portugal, pp. 163-170.
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Coefficient vector of B(¢™")-polynomial
Estimate after k samples

Polynomial

Schur complement

Polynomial

Noise term to model parameter variations
Polynomial

Set of values over which 6 ranges in a model structure
Output noise (in state space representation)
Function

Auxiliary vector

White noise

Auxiliary matrix

Jacobian

Jacobian

Function

Auxiliary vector

Auxiliary matrix

Auxiliary matrix

Function

Auxiliary vector

Auxiliary matrix

Jacobian

Auxiliary vector

Auxiliary matrix

Auxiliary matrix

Discrete time index

Identity matrix of size n

Number of samples, discrete time index
Kalman gain

Discrete time index

Gain

Order of A(¢™')-polynomial

Order of B(g™")-polynomial

Order of C(g™*)-polynomial

Order of D(¢™")-polynomial

Dimension of parameter vector ng = n, + np
Dimension of state vector

Dimension of zj (either system output or instrument vector)
(Scaled) error covariance matrix (recursive least squares)
Error covariance matrix (Kalman filter)
Initial error covariance matrix (Kalman filter)
Partitioned covariance matrices

Error covariance matrix of filtered input
Error covariance matrix of filtered output
Backward shift operator

Covariance (scalar)

Covariance (scalar)

Nonlinear least squares residual

Innovations covariance matrix
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Uk eee e Measured (noise corrupted) input

UOp, weeve Noise-free system input

U0y wee e Filtered system input

W wee e Input measurement noise

Uy Wh  ovveeeeenanannnnns Process noise

Vi o Yule-Walker cost function

VEC v Cost function

Vin Yule-Walker cost function using linearised Frisch scheme equations
VE Cost function (coloured output noise case)

| U Cost function (coloured output noise case)
Ve(O) oo Cost function

7 P State vector

TO et Mean of initial state

N State estimate

Yk oot Measured (noise corrupted) output

YOp v Noise-free system output

YOg v Filtered system output

Uk oo Output measurement noise

Bl e Output of (non-errors-in-variables) state space system
AT Y- Instrument vectors

ZF Input/output data up from 1 to time k

[0 7 Scalar

(7 S Scalar

B Weighting of ith data at time instance k

Yl e Normalising gain

Ok et Instrument vector

ORI e Kronecker delta function

[ Residual

Ele vt Innovation

€(0) o Symmetric innovation

Choveen e Instrument vector

O Parameter vector

00 oo ‘True’ parameter vector describing the system
Ok oo Estimate after k samples

é%s ....................... Least squares estimate

O Extended parameter vector

O Augmented parameter vector in coloured output noise case
Yo Augmented parameter vector

Al e Forgetting factor

Amin (4) ceieii Minimum eigenvalue operator

v o Covariance vector

Affc ........................ Estimated covariance vector

PG e Vector of auto-correlation elements of gy,

p(A) o Spectral radius of matrix A

O e Vector comprising noise variances

OfL oot Input measurement noise variance

o Maximal admissible value for &%

OF e Output measurement noise variance

o5 Maximal admissible value for [7’5

Sl v Input measurement noise variance (using Amin-equation)
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DI e Covariance matrix

D Covariance matrix

i]ﬁw ....................... Covariance matrix estimate

Dt e Covariance matrix estimate using weighted arithmetic mean
Ya(0) i Noise compensation matrix

Dl e Noisy regression vector

(POf e Noise-free regression vector

Dl v Noise part of regression vector

Dl e Extended noisy regression vector

POf e Extended noise-free regression vector

) Extended noise part of regression vector

O() oo ‘Big-O-notation’ indicating order of complexity
det(M) ..ot Determinant of matrix M

E[] coiiiii, Expected value operator
Mo Moore-Penrose pseudo inverse of M

N(M) oo Nullspace of M

2.1 Introduction

This chapter aims to build the foundation for the forthcoming chapters. Firstly, Section
2.2 introduces some common notation which is utilised throughout the whole thesis.
Section 2.3 introduces the concept of iterative methods for least squares, the variable
projection principle as well as the concept of counting the number of floating point
operations in order to measure the computational complexity of algorithms. These
techniques find several applications in the forthcoming chapters. Section 2.4 reviews
some offline errors-in-variables (EIV) identification techniques: Initially, the fundamen-
tal bias compensation principle, which forms the basis for most of the algorithms within
this thesis, is reviewed. Next, attention is focused in some detail on the Frisch scheme.
Within this context, identification techniques for white and coloured output noise are
considered. The review of EIV identification techniques is concluded with the extended
bias compensation least squares technique and the joint output method. Section 2.5
then departs from the system identification framework and focuses on filtering. Fol-
lowing a review of the standard Kalman filter applied to linear systems, the concept
of EIV filtering is introduced. Subsequently, the Kalman filtering problem for bilinear
systems is considered whilst the section concludes by reviewing the extended Kalman

filter for joint state and parameter estimation.

2.2 Notational conventions

This section introduces the commonly used notation within this thesis. If not stated

otherwise, a discrete-time linear time-invariant (LTI) single-input single-output (SISO)
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EIV system is considered, which is described by
A(g Nyo, = Blg™ Huo,, (2.1)
where k is an integer valued time index and

Al 2 1+aq '+ Fang (2.2a)
big~ " + .+ by ™, (2.2b)

v
—
Ql

=
S~—
>

are polynomials in the backward shift operator ¢!, which is defined such that ¢ 'zj, =

Zi—;. The noise-free input g, and output yo, are unknown and only the measurements

up, = uog, + U (2.3&)

Yk = Yo, T Yk (2.3b)

are available, where 4y and g denote the input and output measurement noise, respec-
tively. Such a setup is depicted in Figure 2.1.
The parameter vector and an extended version is defined as

= [aT bT]T = [al v Qp, b1 .. by, ’ e R™, (2.4a)

a

o [a" bT]T - QT}T c R+, (2.4b)

where ng = ng, + np. Using a linear regression formulation, an alternative description
of (2.1)-(2.3) is given by

@60 =0, (2.5a)
Pk = Poy, + P, (2.5b)
u
Og > System Yo, Z Yk >

Figure 2.1: Errors-in-variables setup.
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where
Qo = (Y0 o Yo, UOey uok—nb]T’ (2.62)
@0, = =y, w8 1" (2.6b)
Ok 2 [—yp_1 ... “~Yk—n, Uk—1 - uk_nb]T, (2.6¢)
e T (2.6d)
Ok 2 [Tkt o —Thony Tpe1 o Tpny) s (2.6e)
ok 2 —ige orl" (2.6)

In addition, it is often convenient to divide the regression vector into two parts corre-

sponding to the outputs and inputs, respectively. This yields

T

of £ {@Zk soifk] : (2.7a)
T

oL 2ol of] (2.7)

For the white noise case, it is convenient to introduce the augmented parameter vector
A T 2
92 [eT JT] € R"0+2, (2.8)

which comprises both the system and the noise parameter vectors, where the latter is

given by
T
g = [0’@ 0'@} S RQ, (2'9)

with o3 and o denoting the variance of the output noise and input noise, respectively.

Within this thesis, cross- and auto-covariance functions are defined by

Tcd(T) £ E [dek—T] 5 (210&)
re(1) £ E[ecr—r] - (2.10b)

where ¢; and dj denote two arbitrary zero mean stochastic processes and where E|']
denotes the expected value operator. The matrices and vectors comprising these co-
variance elements are denoted as ¥ and &, respectively. Consequently, the cross/auto-

covariance matrices of two arbitrary random vectors v, and w;, are denoted

lI>

EUU}
2y

[vewf] (2.11a)

E
E [vf], (2.11b)

lI>

whilst the cross-covariance vector between an arbitrary random vector v and a scalar

17
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stochastic process ¢ is denoted

lI>

[vkcr] (column vector), (2.12a)

[exvi] (row vector)*. (2.12b)

lI>

fve = E
fw=FE

The corresponding estimated sample covariance elements comprising scalars, vectors

and matrices are denoted in a similar manner, given by

k
R 1
Fed(T) 2 A Zcidi—ra (2.13a)
i=1
RPN
Fe(T) = A Zcici—ra (2.13b)
i=1
k
80 T 2.13
Uw—Ezviwia ( C)
i=1
k
5,21 r 2.13d
”_Ezvivi’ (2.13d)
i=1
N
gvc E Zvici, (2.136)
i=1
k
coal -
gcv - E Zcivi . (2.13f)
i=1

If the data is not equally weighted, a weighted arithmetic mean is to be computed,

which is denoted by

gl

k
vw £ Yk ZB}ZUZWZT7 (214)
=1

where ~; is an appropriately chosen normalising gain and ﬁ,i is the weighting of the ith
measurement at time k.
In the white noise case, the auto-covariance matrix %z corresponding to the noisy

part of the regression vector (2.6e) is diagonal, dependent on o and o and given as

I, 0
Sa(o) 2 |7V . (2.15)
0 UﬂInb

For the coloured output noise case, introduce the vector
A T Nng+1
py = |rg(0) ry(1) - Tz}(na)] € R, (2.16)

which comprises the auto-correlation elements of 7, noting that r;(0) = o3. The
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augmented parameter vector for this case becomes

T
©2|ay .. an, b1 .. by, p; oz €RFeTmE2 (2.17)

a b

2.3 Mathematical tools

Some mathematical concepts are repeatedly used in the thesis, and, therefore, these

are reviewed within this section, for future reference.

2.3.1 Stationary iterative methods for least squares

The least squares (LS) problem can be solved in an iterative way by making use of a
suitable matrix splitting. These so-called stationary iterative methods are commonly
used for large sparse LS problems where an initial approximate solution is iteratively
improved until an appropriate stopping criterion is satisfied (Bjorck 1996, Ch. 7).

Based on the normal equations
0 =¢, (2.18)

where Y is a matrix, £ a vector and 6 a parameter vector of interest, the underlying
idea of these methods is to split the matrix ¥ into X = 31 — ¥ and solve the resulting

system of equations in an iterative manner. This gives
Ori1 = 571500, + B1E (2.19)

Naturally, the splitting is chosen such that the inverse computation of ¥ is easy. Note,
however, that it is stated in (Bjorck 1996) that the main weakness of such iterative
methods is their “poor robustness and often narrow range of applicability.” From
(2.19) it is clear that the iteration converges for all initial vectors 6y if all eigenvalues
of 2;122 are within the unit circle. The principle of stationary iterative methods finds
several applications within this thesis, when it is desired to derive a recursive estimation
procedure without computing the (pseudo) inverse of 3. A thorough treatment of this
concept can be found in (Bjorck 1996, Ch. 7).

2.3.2 Variable projection algorithm

The system identification problem frequently reduces to a nonlinear least squares (NLS)

problem, given by
min [|r(@)]3, (2.20)

which aims to find the global minimiser of the sum of squares of m nonlinear residual

functions r;(9), ¢ = 1,...,m. The NLS problem is denoted separable, if the solution
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vector ¢ can be partitioned, e.g.

9= o7 o] (2.21)
such that the subproblem

min (0, 0)]; (2.22)

“is easy to solve” (Bjorck 1996). For instance, if (0, 0) is linear in € the residual can

be expressed as
r(0,0) = F(0)8 — f(o0), (2.23)

where F(o) is a m x ng matrix and f(o) is a vector of dimension m. Hence, the

minimum norm solution of the subproblem (2.22) is given by
0(0) = F(0)'f (o), (2.24)

where (o) denotes the Moore-Penrose pseudo inverse. Consequently, (2.24) can be
substituted into (2.23), which allows (2.20) to be expressed as

main Ir(a)5 = main 1£(0) = F(o)8(0)]l3

2

, (2.25)

= min H 1= F(o)F(o)] f(a)‘ i

where F(0)F(o)! is the orthogonal projector on the range of F(o). Therefore, al-
gorithms based on (2.25) are also referred to as variable projection algorithms or
separable NLS. A standard reference is given by (Golub & Pereyra 1973) whilst a
more recent overview is given by (Golub & Pereyra 2002). The variable projection
approach has been exploited for the identification of EIV systems using the so-called
extended bias compensating least squares (EBCLS) approach which has been developed
in (Ekman 2005), where a consistency analysis has also been provided (see Section 2.4.2
for a review of the EBCLS algorithm).

The variable projection technique exhibits the following properties:

e The global minima of the functionals (6, 0) and r(o) coincide and have the same
values, i.e. ||r(0,6)||? = ||r(6)||3 (Theorem 2.1 in Golub & Pereyra 1973).

e The dimension of the resulting minimisation problem is reduced. This also implies
that fewer initial parameter values are required to be specified which might also

reduce the problem of becoming trapped within a local minimum.

e In comparison to the direct minimisation of (2.20), the variable projection algo-

rithm is always able to converge in less iterations (Golub & Pereyra 2002).
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Description Operation  Flops
Scalar addition c+c 1
Scalar multiplication c? 1
Outer product yy T p?
Inner product yTy 2p
Addition M+ M pr
Scalar multiplication cM pr
Matrix product LM 2por
Matrix-vector product Ly 2pv
Squared vector-norm llyl|3 2p
Square root Ve 8
Inverse (general) st 0O(s?)
Least eigenvalue (general) — Amin(S) 0O(s*)

Table 2.1: Some matrix operations and associated number of flops, where y € RP,
M e RP*", c e R, S € R**® is symmetric and L € RV*P,

e Although the reduced functional is more complex, the total computing time is

smaller for a large class of problems (Golub & Pereyra 2002).

Note that the problem simplifies if the nonlinear set of functions 7(¥) is not only linear

in #, but also linear in o, which means one can express

r(0,0) = G(0)o — g(0) (2.26)
with G(0) € R™*" and g(f) € R™. Such a situation is also referred to as bilinear

parametrisation! (Ljung 1999, cf. p. 335).

2.3.3 Measuring computational complexity

In order to obtain an approximate measure for the computational costs of an al-
gorithm the floating point operations (flops) are counted as described in (Golub &
Van Loan 1996, p. 18). Some matrix operations and corresponding number of flops,
which are utilised in the subsequent development, are summarised in Table 2.1. Flop
counting is only a crude measure for the computational burden and the order of the
complexity is frequently given using the ‘big-O-notation’, e.g. O(n?) for quadratic
complexity, where only the dominant factors are considered, i.e. less significant con-
tributions are dismissed. Although it is only approximate, flop counting is a rather
convenient way to measure the computational costs of an algorithm, since it is quite
general due to its independence of the underlying hardware, programming language
and implementation. Alternatively, it is possible to measure the absolute computation
time on a given machine using a certain programming environment.

Note that the computational complexity evaluated using by the ‘big-O-notation’

considers the asymptotic behaviour for very large model orders. In the context of

INot to be confused with bilinear system representations.
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system identification, however, mainly low model orders are of interest, hence, the
absolute computation time for such low orders will also be investigated via numerical

simulations.

2.4 System identification

This section reviews EIV system identification techniques which form the basis for the
development in the subsequent chapters. In the white noise case, the EIV identification

problem can be formulated as follows.

Problem 2.1. Given k measured input-output samples, denoted,
ZF & {ui,yi}iy, (2.27)
determine an estimate of the augmented parameter vector

by ... by

v=lay .. ap

a

o5 o " (2.28)

b

If not stated otherwise, assumptions concerning the system, the input and the noise

sequences are given as follows.
System assumptions:

AS1 The dynamic system is asymptotically stable, i.e. A(g~!) has all zeros inside

the unit circle.

AS2 All system modes are observable and controllable, i.e. A(¢g~!) and B(q™!)

have no common factors.
AS3 The polynomial degrees n, and n; are known a priori with n, < n,.

Input assumptions:

ATl The true input ug, is a zero-mean ergodic process and is persistently exciting

of sufficiently high order.
Noise assumptions:

AN1 The sequences g and g are zero-mean, ergodic, white noises with un-

known variances, denoted o and oy, respectively, i.e.

oadp = E [ay], (2.29a)
o0 = E (g - (2.29b)

AN2 The sequences 1 and 7 are mutually uncorrelated and also uncorrelated

with both wug, and yo,.
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Within Assumption AN1, d; denotes the Kronecker delta. Note that the assumption
of ny < ng within AS3 is common when dealing with control problems. In contrast,
within a system identification context, such an additional assumption might not be

required.

2.4.1 Bias compensating least squares

It is well known that the parameter estimates are asymptotically biased when LS is
utilised to solve the EIV identification problem. However, if the variances of the input
and output measurement noise sequences are available, it is possible to compensate for

the bias in the LS solution via

0 =[S, —X5(0)] " &y (2.30)

Such bias compensating least squares (BCLS) approaches are well known in the system
identification literature and an early reference is given by (Stoica & Séderstrom 1982),
where this principle is used to identify output error models. By utilising the natural
matrix splitting ¥, — ¥3(0), it is possible to solve (2.30) via a stationary iterative LS
method (cf. Section 2.3.1) by expressing (2.30) as

Ewék = £<py + E@(U)ék—l
& =07 +3125(0)0k1, (2.31)

where é,I;S denotes the LS estimate. In order to obtain a corresponding recursive scheme,
the covariance matrices are required to be updated at each time instance, whilst the
LS estimate can be computed via a standard recursive least squares (RLS) algorithm
(Sagara & Wada 1977, Ding et al. 2006). Such a recursive BCLS (RBCLS) scheme is

given by
ék = é,%s + szg,(()')ékfl, (2.32)

where the need for a matrix inversion is conveniently avoided by utilising the appro-
priately scaled error covariance matrix, denoted Py, of the RLS algorithm, which can
be computed via the matrix inversion lemma (cf. Ljung 1999, Ch. 11). This RBCLS
approach forms the basis for a number of algorithms, which are developed within this
thesis.

It is interesting to note that an iterative BCLS approach as outlined above also forms
the basis of the so-called bias eliminating least squares (BELS) techniques (Zheng &
Feng 1989, Zheng 1998, Zheng 1999, Zheng 2000) for the identification of EIV systems.

23



2. Review

2.4.2 Extended bias compensating least squares

As its name indicates, the extended bias compensating least squares (EBCLS) technique
(Ekman 2005) is a generalisation of the bias compensating least squares approach, which
has been introduced in Section 2.4.1. Rather than making use of the standard LS normal
equations, an instrumental variable (IV) approach with an arbitrary instrument vector,
denoted zp € R"=, where n, > ng is considered. The EBCLS estimate is obtained by

solving

[Xap = Ezp(0)] 0 = &2y — E24(0), (2.33)

where the individual quantities are defined by (2.11)-(2.12). Note, from (2.33), that
depending on the particular choice of zj, not only the covariance matrix on the left
hand side, but also the covariance vector on the right needs to be compensated, in order
to remove the asymptotic bias of the IV estimate. Of course it is possible to select zg,
such that no correlation between the instruments and ¢y, yi exists. However, since
the objective is to estimate not only 6 but also o, the instruments are usually chosen
such that (2.33) depends on o, i.e. ¥35(0) # 0 and/or (35(0) # 0. The noise variance

estimates can then be determined by minimising the sum of the squared residuals
6 = argmin |[Say — Bzp(0)] 6 - €2y + ()2, (2.34)

which is a NLS problem. Note that the resulting NLS problem is separable with respect
to 6 and 0. Consequently, it can be solved by means of the variable projection algorithm
(cf. Section 2.3.2), where

F(0) = %oy — D25(0), (2.35a)
f(O') - gzy - 623}(0)' (2'35b)

Once ¢ has been determined, 6 is obtained by solving (2.33), where o is replaced by 6.

2.4.3 Dynamic Frisch scheme for white noise

One particularly interesting approach for the identification of dynamical EIV systems,
which yields estimates of the model parameters as well as the measurement noise vari-
ances, is the so-called Frisch scheme (Beghelli et al. 1990, Soderstrom 2007b). It was
originally developed to treat static algebraic regression problems (Frisch 1934) without
making any assumptions on the relative amount of noise on the variables. These rather
loose constraints on the required a priori knowledge yield a whole family of solutions.
The extension of the Frisch scheme to deal with dynamical multiple-input single-output
(MISO) LTI systems (Beghelli et al. 1990) leads theoretically to a single solution. In
practice, however, a model selection criterion is required to be utilised, in order to

choose an ‘optimal’ solution from a set of possible Frisch scheme models. Three dif-

24



2. Review

ferent options are discussed in (Hong et al. 2007), whilst the statistical accuracy of
the Frisch scheme has been analysed in (Séderstrém 2007a). Recent work (Hong &
Soderstrom 2008) has also established the connection of the Frisch scheme with the
BELS algorithms (Zheng & Feng 1989, Zheng 1998) as well as the EBCLS method
(Ekman 2005).

Frisch scheme approach

Premultiplying (2.5a) with @p, and taking the expected value leads to an alternative

system description
Y00 =0, (2.36)

where Y5, € R+1x(mo+1) ig the noise-free covariance matrix (cf. (2.11)), which is
singular positive semidefinite, with rank(3gz,) = nq + n4 (i.e. rank-one deficient). Due

to the stated assumptions, the noise-free covariance matrix can be decomposed into
Ego =Yg — X(0), (2.37)

where ¥ is the covariance matrix of the noisy data whilst the noise covariance matrix

is given by

S5(0) = ["91’““ 0 ] (2.38)

0 O'ﬂ[nb

Note that, in the noisy case, the covariance matrix X is generally of full rank, hence,

the Frisch scheme identification problem can be re-expressed as follows.

Problem 2.2. Given the data covariance matrix ¥ of noisy observations, determine

the noise covariance matrix X5 such that
(6) >0 (2.39a)
and

det(Xg,) = 0. (2.39b)

This means that solutions for the values of o3 and o are searched for, such that the
resulting matrix X5, becomes singular. Equation (2.39) essentially defines the core
of the Frisch scheme since these properties distinguish this approach from other EIV

identification techniques. For future reference, the following definition is introduced.

Definition 2.1 (Frisch-character). An estimated parameter vector 9 = [§7 677 is said
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to satisfy the Frisch-character if

det <i¢, - Eé(&)> ~ 0. (2.40)

Problem 2.2 does not yield a unique solution, rather the set of admissible solutions
(04, 05) which satisfies (2.39) defines a convex curve in the first quadrant of the noise

space R?, which is shown in Figure 2.2, for an arbitrary example. A further consequence

3

o 05 1 15 2
04

Figure 2.2: Convex curve in the noise space characterising the Frisch scheme.

of this approach is that each point on the convex curve can be uniquely mapped into the
parameter space R™@ ™" This means that a particular solution of the EIV identification
problem can be characterised by the input measurement noise variance only, since a
given oy uniquely defines oy, hence 6 (Beghelli et al. 1990). The mappings within the

Frisch scheme are consequently given by

O O'g, (241&)

(0@, 05) — 0. (2.41b)

In order to express the Frisch scheme relationships with some mathematical rigour, the
first mapping, defining the relationship between o and oy, is given by the function
[[0,058] x 2 — (0,07, (2.42)
where Z denotes the family of sets comprising all possible data sets, i.e. Z* € Z, whilst
x denotes the Cartesian product (set of all possible ordered pairs). The quantities

max

max
T4

and oy are the maximal admissible values for oz and oy, respectively, which
correspond to the intersections of the convex curve with the horizontal and vertical
axes in Figure 2.2. Equivalently, it is possible to obtain o3 based on o and the data
Z% which might be formulated as

g:10,05%] x Z — [0,05]. (2.43)

Y U
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Finally, the relationship between (o;,05) and 6 can be expressed as
h:log,05 x Z— Dy CR™, (2.44)

where Dy is a subset of R such that 6 € Dy,. The function h is defined by solving

the consistent set of normal equations

il 0
<2w B layo UﬁIan 0 =_E,y. (2.45)

Note that if only one particular data set is regarded, i.e. Z* is one particular realisation
of its corresponding random sequence (Z* is kept constant), the above functions f, g

and h are bijective? and f~! = g, where f~! denotes the inverse relation.

Relation between o; and oy

The key question that is now addressed is: How are f and g defined? i.e. how can
the output noise variance be determined knowing the input noise variance or vice
versa. Utilising the Schur complement, the (nonlinear) relationship is given by (Beghelli
et al. 1990, Soderstrom 2007 a)

. -1
o3 = f(05,2%) = Amin (2% — Sz, [Sa, = 5l t1] z@y%) , (2.46a)
or equivalently, the inverse relation is given by
o5 = g(0a, Z%) = Amin <2¢y — Sy (S — 0aln,] ! zway) : (2.46b)

where A\, denotes the minimum eigenvalue operator and the individual block matrices

are defined by

Ya Yo

E@ — [ Py ‘Py‘PUI (247)
E‘Pu@y Eﬂou

with X, € Rret1xnatl and 3, € R™*™ (also recall the definitions (2.7) and (2.11)).

In the remainder of this thesis Equations (2.46a) and (2.46b) are also referred to as

the Amin-equations. In addition, (2.46) provides explicit expressions for the maximal

admissible values for o; and oy, respectively. By setting oy = 0 in (2.46a) and oz = 0

in (2.46b) these quantities are given by

pmax _ )\ <2¢u - ngu@yz;ylz@y@u) : (2.482)
max -1
0y ** = Amin (Etﬁy - E@y@uzs&u E‘Pu@y) : (2.48D)

2A function is bijective if it is injective and surjective. A bijection is sometime referred to as
one-to-one correspondence.
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Model selection - determination of o

In order to solve the identification problem, ng + 2 equations are required to determine
the ng model parameters as well as oz and oy. So far, only ng + 1 equations are
established: the ng normal equations given by (2.45) plus the Api,-equation (2.46b)3.
Consequently, there is one degree of freedom remaining and an additional equation is
required in order to select one point from the convex curve corresponding to a certain
model. Four different methods are known within the literature and each of them gives

rise to a different Frisch scheme algorithm. These are:

Extended model criterion (EM): The Ayin-equation is evaluated for the nominal

and an extended model structure within the range 0 < oz < 0%, where the
A(g~Y)-polynomial or the B(¢~') polynomial (or both) are extended with ficti-
tious zero valued parameters. This results in two curves (corresponding to the
nominal and the extended model) in the noise plane that theoretically are tan-
gential to each other at a unique point, which corresponds to the ‘true’ noise

variance values (Beghelli et al. 1990). The algorithm is denoted as Frisch-EM.

Covariance match criterion (CM): The statistical properties of the residuals com-
puted from the system are compared with those predicted from a certain model
(Diversi, Guidorzi & Soverini 2003b, Soderstrom 2007a). This algorithm is de-
noted as Frisch-CM.

Yule-Walker criterion (YW): The set of high order Yule-Walker equations can be
exploited, which is equivalent to the utilisation of an additional IV estimator (cf.
e.g. Soderstrom & Mahata 2002, Soderstrom et al. 2002) that assesses the quality
of the admissible solutions (Diversi et al. 2006). The corresponding algorithm is
denoted as Frisch-YW.

The model selection cost function proposed in (Diversi et al. 2006) is given by
Vilow) = 515,013 (249
k\Ou) = 9 ¢pvll2: .

It basically corresponds to the Euclidean norm of the residuals given a certain
value for 6 which is determined by means of an additional IV estimator with
delayed (or time shifted) inputs as instruments. In (Diversi et al. 2006), the

instrument vector is given by

T
Ck = |:uk—nb—1 oo Uk—ny—n, € Rn<7 (250)

where the instrument dimension, denoted n¢ > n, + np + 1, is user specified.

Since a certain oy uniquely defines 0, Vi(og) can be minimised with respect to

3Usually, (2.46b) is chosen, but it would also be possible to use (2.46a).
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og giving
0y = arg min Vi(og). (2.51)
oq
Note that in the asymptotic case the true parameter vector satisfies

Sepf = 0. (2.52)

Extended bias-compensating normal equations (EC): An EBCLS estimator as-
sesses the quality of the admissible solutions. Whilst (j for the YW criterion has
to be chosen, such that the instruments are uncorrelated with ¢ (in order to
obtain a consistent IV estimator), it is possible to choose a general instrument
vector which does not satisfy E [Ckég] = 0 and then to compensate for the re-
sulting bias. This algorithm, which is denoted as Frisch-EC, has recently been
proposed in (Larkowski, Linden, Vinsonneau & Burnham 2008)*. The general

model selection criterion is given by

VEC(Uﬂ) £ Hgmy - 5223} - (22230 - 25295)(22390 - 223¢)T(§zw - 5233}) H%? (2'53)

where 2z, and z3, denote arbitrary instrument vectors whilst Zo, and Z3, denote
the corresponding noise conributions®. In (Larkowski et al. 2008), the instrument

vectors

21, = Pk (2.54a)
T
2o, = 23, = [—yk = Ykhemg—m Uk Uk—ny—m (2.54b)

have been utilised, which basically corresponds to the choice of instruments that
has been suggested in (Ekman 2005) for the EBCLS method. The quantity m > 0
is chosen by the user and denotes the number of supplemental normal equations.
Note that the YW model selection criterion can be considered as being a subset

of the more general EC criterion.

A comparison of the EM, CM and YW model selection criteria is given in (Hong
et al. 2007). Note that all of the different Frisch scheme approaches outlined above
require the solution of a one-dimensional optimisation problem. The search for the
optimal solution can be constrained using the maximal admissible values given in (2.48).

Within the remainder of this thesis, attention is restricted to the YW criterion.

4The author is an advisor for this research programme.

5The notation used here for the instrument vectors is in agreement with that used in (Larkowski
et al. 2008). There, the variable z1, is used in to denote the instrument vector which defines the set
of normal equations which are used to determine 6. Whilst this yields a more general setup, z1, = @&
holds in the particular case of the Frisch scheme.
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Summary

The different Frisch scheme approaches may be summarised in the following steps:
1. Find an ‘optimal’ 3 in the sense of a chosen model criteria outlined above.

2. Compute 65 using
Gy =f <&ﬂ,zk) . (2.55)
3. Determine the parameter vector via BCLS
d=n <au G5, Zk) . (2.56)

Note that oz in Step 1 requires an optimisation, which involves the determination 6
and oy for a given oy at each iteration step. Hence, each iteration also requires the
solution of (2.46a) and (2.45) to be computed.

2.4.4 Dynamic Frisch scheme for coloured output noise

The dynamic Frisch scheme presented in (Beghelli et al. 1990, Soderstrém 2007a) as-
sumes that the additive disturbances on the system input and output are white. Such
an assumption, however, can be rather restrictive since the output noise often not
solely consists of measurement uncertainties, but also aims to account for process dis-
turbances, which are usually correlated in time. In order to overcome this shortcom-
ing, the Frisch scheme has recently been extended to the coloured output noise case
(Soderstrom 2006, Soderstrom 2008).

Problem statement

If the output noise sequence gy is correlated in time, the bias compensated normal

equations (2.45) become

24{709 = ooy
<~ (X = 2g) 0 = Epy — Ea (2.57)

or in block matrix form

Etpy Elpysou _ E@y 0 0 — f‘Pyy _ &'ayg (2 58)
E@u‘ﬂy E‘Pu 0 Uﬂ[nb Swuy 0] |
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where
rg(0) e (g — 1)
Y = : : (2.59)
rg(ng —1) -+ 75(0)

is a symmetric Toeplitz matrix, whilst

§,5 = |ra(1) T’g(na)]T. (2.60)

The Anin-equation, which is used here for the determination of o, becomes for the

coloured output noise case (cf. (2.46))

-1
05 = Amin (2% ~ Zou, [Ze, — T3, z%%) . (2.61)
Hence, it is necessary to replace Assumption AN1 with the following.

AN1a The sequence 1y is a zero-mean, ergodic, white noise process with unknown

variance oy.

AN1b The sequence g is a zero-mean, ergodic noise process with unknown auto-

covariance sequence {rz(0),75(1),--- }.

In the case of coloured output noise, the modified objective can thus be formulated as:

Problem 2.3. Given k samples of noisy input-output data {uy,y, ..., uk, yx }, determine

an estimate of the augmented parameter vector

T

CE a ... ap, b .. bnb Py Oq GRQna+nb+2, (262)

a

where pj is defined by (2.16).

Identification algorithm

In (Soéderstrom 2006, Soderstrom 2008) several possibilities to obtain the remaining
equations are discussed. It is shown that a covariance-matching criterion, as used in
(Diversi, Guidorzi & Soverini 2003a), as well as correlating the residuals with past
outputs, which corresponds to an instrumental variable-like approach with outputs
as instruments, cannot be successful since it always leads to more unknowns than
equations. However, by correlating the residuals, denoted €, with past inputs, the

remaining equations are obtained for the asymptotic case via

E[Crex] =0, (2.63)
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where the instruments are given by (2.50) whilst the residuals are obtained via
A ~1 1y, _ T
er = A(q yr — B(q™ )ug = yr — 1. 0. (2.64)
This yields
géy - ECSOH =0, (2.65)
which can be expressed in block form as
|:EC‘Py EC%} Ok = &y (2.66)

where the dimension n¢ of the instrument vector (; must satisfy ne > n, +1 in order to
obtain at least n, + 1 additional equations for the determination of pj. For simplicity
it is assumed that n; = n, + 1 in the subsequent development. In summary, the

2n4 +nb+ 2 equations for the determination of the 2n, + nb+ 2 unknowns are given as

ESOy E%’y‘ﬂu 2851/ 0 é.Sé’yy 5851137
Ypupy Zeu | = | 0 oaln, | [0= [Eeuy| —| O |, (2.67a)
Yoy Tpu 0 0 Ecy | 0
1-1
75 = Amin (2% ~Tpu, [Ze, — T3, 2¢M> . (2.67b)

In (Soéderstrom 2006, Soderstrom 2008), two algorithms have been proposed to
solve the resulting (nonlinear) estimation problem. Here, the two-step algorithm of
(S6derstrom 2006), which makes use of the separable LS technique is considered. Whilst
in the white noise case the estimate of # is obtained from the compensated normal
equations after the noise variances have been determined, the approach for coloured

output noise is conceptually different as outlined in the remainder of this section.

Step 1 Note that p; only appears in the first n, equations of (2.67a) and in (2.67b).
By combining the last nj equations of the compensated LS normal equations (2.58)

with the n, + 1 IV equations (2.66), one can formulate

Doupy Sou — Uafnb] g — Fsouy] (2.68)
ey Yo S¢u

which constitute ng + np + 1 equations in n, + np + 1 unknowns (6 and o). Equation
(2.68) is an overdetermined system of normal equations with its first part obtained
from the bias compensated LS and the second part given by the IV estimator, which

uses delayed inputs. Moreover, it is nonlinear due to the multiplication of 6 with oy.
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In order to estimate 6 and oy, (2.68) can be re-expressed as
(X5 — 0ad) 0 = &5y, (2.69)

where Y5, and &5, are defined by (2.11) and (2.12) with

T T
5ké[905k (;CT] :[uk—l o Uk—py  Uk—np—1 - Uk—my—ng| (2.70)

whilst J is given by

a |0 I,
e [0 ; ] . (2.71)

Note that (2.69) can be interpreted as a bias-compensated IV approach, where the in-
strument vector d; is constructed from past measured inputs. Using sample covariance

estimates and introducing for convenience
G235, — 0al, (2.72)
the estimates for o and 6 are obtained by minimising the (nonlinear) LS cost function

{0y, 6%} = argmin

010

Gl — ggy‘ ‘2. (2.73)

If o4 is assumed to be fixed, an explicit expression for 0y is given by the well-known

LS solution
bp = GlEL,. (2.74)

where GL £ [GT G 71GE denotes the Moore-Penrose pseudo inverse. Using the sepa-
rable LS approach (see Section 2.3.2 or (Ljung 1999, p. 335)), the problem is reduced

to an optimisation in one variable only by substituting (2.74) in (2.73). Consequently,
k

o, can be obtained via
§ = argmin V/ (2.75)
with

Vi = ||ewclé, - e || = ares - a6, [cfel T o, @

Once &% is obtained, 6} is then given by (2.74). Since the solution of (2.75) should
satisfy Vlk = 0, the value of Vlk indicates whether the optimisation algorithm has

converged to a global or local minimum (Séderstrom 2008).
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Step 2 In order to determine the estimates for the n,+1 terms of the auto-correlation

sequence pg, the remaining n, normal equations (corresponding to the first n, equations
in (2.67a))

{Ew - Elﬁy’ Egaygau} 0= fsoyy - fgéygj (2.77)

together with the Apip-equation

—1
Og — )\min <E<Pu - ESOu@y |:E¢y - Eiﬁy] E‘Py90u> (278)

are considered. Note that for the computation of the compensation terms ¥z and &g, 7,
the auto-covariance elements up to the time shift n, are required, i.e. it is necessary to
determine p;. Using covariance estimates and replacing  with its estimate 0 obtained

in Step 1, Equation (2.77) can be rearranged and expressed as

ko6 &k sk Sk j otk
E@yak o 5851133 - [Ecpy Ecpysou] O — é-spyy? (2.79)
where only the left hand side depends on the unknown p;. In addition, (2.79) is affine

in pg, hence it can be re-expressed as
Hypy = hi, (2.80)

where Hj, is a ng X ng + 1 matrix built up from elements of a; and hy is a vector of
dimension n, given by the right hand side of (2.79). This is a system of equations with
more unknowns than equations, but the set of all possible solutions can be formulated

as
ph = apN(Hy) + Hjhy, (2.81)

where N(-) denotes the nullspace and «y is a scalar factor to be determined. It is
necessary to distinguish between the input measurement noise variance obtained by
(2.75) in Step 1, and the quantity which would be obtained by the A\pp-equation (2.78).

Therefore, introduce
ék = )\min (Bk: (ak)) ; (282)

where

-1

Br(ax) 2 Sy, — Spus, [2% ~ 55 (an)] Seyen. (2.83)

34



2. Review

Using (2.82) it is possible to search for that aj which is in best agreement with the

previously determined &g, ie.
&y, = arg min V3, (2.84)
ag
where
k k 2
Vs =<@f—Q>. (2.85)

This means that the distance between the input noise variance estimate 65 determined
in Step 1 and the input noise variance estimate {;, which is obtained using the n, normal
equations (2.77) together with the A,,;,-equation (2.82) depending on the choice of ay,
is minimised. Once & is determined, it is substituted in (2.81) to obtain ﬁg, the
searched estimate of the auto-covariance elements of the coloured output measurement

noise Y.

Remark 2.1. Note that if only the determination of 0 is of interest, Step 2 of the algo-
rithm described above becomes dispensable. However, since one targeted application of
the algorithms described within thesis is that of fault detection, the additional knowl-
edge of the auto-covariance sequence might be beneficial and its estimation is therefore

considered in the subsequent development.

Algorithm summary

The Frisch scheme for coloured output noise (FSCON) can be summarised as follows.

Algorithm 2.1 (FSCON).

Stepl Determine o; and 6

ok = arg rgkn v (2.86a)
0, = GLééfy?&S) (2.86D)
Step 2 Determine pj
G = arg Holin 1% (2.86¢)
Pk = apN(Hy) + H}hy, (2.86d)

Remark 2.2. Note that Step 2 can be simplified significantly by acknowledging that
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(2.77) and (2.78) can be jointly expressed as
|:E¢y B E:y E‘ﬁy@u 6 =0. (287)
This allows the joint expression of (2.77) and (2.78) as
Hypy = hy, (2.88)

which constitutes n, + 1 equations in n, + 1 unknowns and can be solved in a straight-

forward manner (see Soderstrom 2008).

2.4.5 Joint output method

The joint output method (Séderstrom 1981) re-expresses the SISO EIV model as a mul-
tivariate state space system, which is driven by three white noise sequences. Introduce

the following assumptions.

AI5 The noise-free system input ug, has a rational spectrum, i.e. it can be described

as an ARMA process of the form

D(q Yuo, = Clq™") fr, (2.89)

where fj, is a white noise zero mean random process and the polynomials C'(¢~1)

and D(¢~') are defined, respectively, by

Cla) 21+ 4+ +eng™™, (2.90a)
D(g )2 1+dig + 4 dnyg ™ (2.90b)

AS5 The polynomials A(g~!) and B(q~') are of the same order, i.e. n = n, = ny,
whilst the polynomials C'(g~!) and D(g~!) are chosen such that n, = ng — 1.

Assumption AI5 is essential for the application of the joint output method, whereas
Assumption AS5 is introduced here for convenience only. Note that in the case of the
joint output method, the parameter vector § comprises the coefficients of C'(¢g~!) and
D(qg™') as well, i.e.

T

92[@1 oy by e byl e eny dy e | (2.91)

c
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Consequently, the overall EIV system can be described as a state space system with a

two dimensional output vector. One possibility is (Soderstrom 1981)

Tpr1 = A (0)xy + B(0) fr,

[y’“] — C(0)z +

)

Uk

U Uk

where xj, € R"@ T denotes the system state vector and where

o (0) =
A(0) =
€ (0) £
with
—al 1 0
0
A1(0) =
0 0
—a, 0 0

J2{21(‘9) é Ondxn

and

%1(6) é 0n><17

o O

lo1(0)  ataz(0)
HB(0)
b Oy Oiona | 2 poxntng)
01><n 1 1xXng
(b1 0
eRan, %2(9)é 0 ,eRand
_bn 0
[—d; 1 0 0
0 0,
Ay (0) = ]
: 0 1
|—dn, O 0
T
Z0)2 1 ¢ en| €R™.

(2.92a)

(2.92b)

(2.93a)

(2.93b)

(2.93¢)

(2.94)

c Rnand’

(2.95)

Note that the first element of z;, corresponds to yo,, whilst the (n + 1)th element of

x) corresponds to wug,. By applying the Kalman filter (see below in Section 2.5.1)

it is possible to obtain the optimal state estimate, hence estimates of the noise-free

input and noise-free output, which are denoted 1, and g, , respectively. Based on this

filtered input and output, it is possible to design a two dimensional innovations vector

ek(e) A [yk - @Ok]

U — ﬂOk

(2.96)
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which is termed the symmetric innovation within this thesis. It is then possible to

define the cost function
1
Ve(0) = 5B [ (0)ex(0)] (2.97)

which leads to the well-known prediction error method (Ljung 1999). In addition, it is
possible to obtain the maximum likelihood estimate in the case of Gaussian data (see
Soderstrom 2007b). The minimisation of (2.97) is, however, rather computationally
demanding, since a Riccati equation is required to be solved at each iteration step, in
order to obtain the symmetric innovations {e;(6)}2_,, where N denotes the number of
available samples.

Note that the algorithm can also be formulated using frequency domain data (see
Pintelon & Schoukens 2007).

2.5 Filtering

Filtering can be defined as the problem of determining the unknown state of a dy-
namical system from noise corrupted measurements (Jazwinski 1970). It is therefore
an estimation problem which has, under certain assumptions, an optimal solution in
the linear Gaussian case. This is the well known Kalman filter (KF) which has been
proposed by R. E. Kalman in 1960 (Kalman 1960). This section first reviews the KF
algorithm as well as some modifications, namely the errors-in-variables KF (EIVKF)
and the extended KF for joint state and parameter estimation (JEKF), which form the

bases for further developments within this thesis.

2.5.1 Kalman filtering

Consider the discrete-time linear dynamic state space system given, for k > 0, by

Try1 = Apwy, + Bruy + Grog, xo = To,, (2.98a)
zr = Cyxp, + Dipug + e, (2.98b)

where x;, € R denotes the system state vector, Ty denotes the mean of the initial state
vector g and Ay € R X" By € R%Xnu ) € R%*" D, € R™*" and G, € R™*!

6. The noise sequences v € R and e, € R™

are matrices of appropriate dimension
denote process and measurement noise, respectively. The following assumptions are

introduced.

AT2 The system input uy is known exactly.

SNote that in this non-EIV situation the input u; € R™ is assumed to be known exactly, whilst
the measured output is denoted by 2z € R"*.
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AN3 The noise sequences vy and e are zero mean, white, and satisfy

Ei eﬂ] - [z’; Eﬁe] O (2.99)

Uk
E LD 3.

€k ve e

AN4 The initial state o has the mean Ty with covariance matrix Fy. In addition, xg

T
is independent of [vg eﬂ for all k.
ANS5 The quantities xg, v and e are jointly Gaussian.

The optimal one-step ahead prediction of the state, denoted 21|, is given by the well
known KF, which has been developed in (Kalman 1960). Here, optimal refers to the
unbiased minimum variance property of the estimates. The single phase form of the

KF equations are given by the following algorithm (Anderson & Moore 1979, Sec. 5.4).

Algorithm 2.2 (Single phase KF).

-i'k+1|k = Aki'k\k—l + Bkuk + Kk [Zk - Cki'k\k—l — Dkuk] (2.100&)
-1
Ky = [AkPkUcflCI? + szﬁe} [Ckpk\kflclz + 25} (2.100b)

Pk = ArPur1 AL + GEUGY — Ky [Ckpk\k—lclz + Elg] Kj; (2.100c)

The vector Kj denotes the Kalman gain and Py, denotes the error covariance
matrix of the estimated states. A thorough treatment of Kalman filtering theory can be
found in (Anderson & Moore 1979, Kailath & Sayed 2000), whilst a historical survey is
given in (Sorenson 1970). The relation between RLS and the KF is discussed in (Sayed
& Kailath 19944, Young 1974, Young 1984).

2.5.2 Errors-in-variables filtering

In the non-EIV case, Kalman filtering deals with the optimal estimation of states and
outputs in the presence of process and output noise. EIV filtering, in contrast, aims
at estimating the noise-free outputs and noise-free inputs in the case where both quan-
tities are corrupted by additive noise. This problem was first addressed in (Guidorzi
et al. 2003), where a residual model representation of the EIV system (2.1)-(2.3) has
been considered. By formulating a state space model representation for the residuals,
an optimal (in the unbiased minimum variance sense) estimator for the noise-free in-
puts ug, and outputs yo, has been derived; different implementations have also been
discussed in (Diversi et al. 2003a).

An alternative formulation leading to an identical solution has been reported in
(Markovsky & De Moor 2005), where the optimal filter is directly derived from an
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EIV state space representation by making use of the well known KF algorithm. Whilst
both approaches yield equivalent results, the derivation in (Markovsky & De Moor 2005)
appears to be more straightforward. This is because the problem is essentially solved by
interpreting the input measurement noise as process noise (with accordingly modified
covariance matrices), which allows the KF to be applied directly. Both approaches
consider a zero residual problem (Van Huffel & Vandewalle 1991), that is, the noise-free
input and output signals are related by an exact linear relationship, i.e. no equation
error or process noise is considered. Following the approach in (Markovsky & De
Moor 2005), a unified framework for EIV and Kalman filtering has been presented
in (Diversi et al. 2005), where measurement noise as well as process disturbances are
considered. The relationship between EIV filtering and unknown input Kalman filtering
is discussed in (Gillijns & De Moor 2006), where the derived EIV filter allows a linear
combination of the input vector to be observed instead of the entire input vector.

The errors-in-variables Kalman filter (EIVKF) as presented in (Diversi et al. 2005)

is reviewed in the following.

Errors-in-variables Kalman filter

In (Diversi et al. 2005), a general EIV state space model

Tpp1 = Apwp + Bruo, + Grwr, o = Zo, (2.101a
Yo, = Cxx + Dyuo,, (2.101b
ug = ug, + Uy, (2.101c
Yk = Yo, + Yks (2.101d

)
)
)
)
is considered, which allows for input and output additive measurement noise, denoted
by uj; and g, respectively, as well as process noise, denoted by wy. Here, ) € R™
denotes the state of the system, and Ay, By, Cr, D and G are matrices of appropriate
dimension. The initial state zg is a random vector with mean Zy and covariance matrix
Py. In contrast to the non-EIV state space representation given in (2.98), the true input
ug, € R™ of the system is unknown and only the measured quantity u; is available,
which is affected by additive measurement noise . The following assumptions are

introduced.

ANG6a The noise sequences Uy, Jr and wy are assumed to be zero mean, white, inde-

pendent of ug, and are characterised by the known covariance matrices

Zo Py 0 0 0
U, L 0 X Xk 0
B ad al i wl| = o O (2.102)
Yk 0 Xy ; 0
wy, o 0 0 Xk
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Z~,E§, AkaBkaCk;
Seg n Dy, Gy
Uk 570
—_— -
" EIVKF 5
e -

Th1|k U, Yoy,

Figure 2.3: Inputs and outputs of the EIVKEF.

As before, EJ-] denotes the expected value operator and dx; the Kronecker delta func-
tion. Note that the input and output noise sequences are allowed to be correlated in
this setup. Indeed, the correlation between both sequences plays a crucial role in order
to obtain an estimate of ug, (cf. Remark 2.3 below). Figure 2.3 shows a block diagram
of the EIVKF with corresponding inputs (known quantities) and outputs (estimated
quantities).

The system representation (2.101) can be reformulated by introducing the transfor-

mations

v = Grwy, — By, (2.103a)
2k = Yr — Drug, (2.103Db)
er = Y — Drug, (2.103c¢)

which gives the equivalent state-space representation

Thy1 = Ay, + Brug + vy, (2.104&)
2z = Cray, + ey, (2.104b)

with corresponding covariance matrices

Sy = GkEuwGy + BiZaBl, (2.105a)
Lo =%y — Say' Dy — DkXag + DiSaDy, (2.105b)
Sve = By, [SaDf — Sag) - (2.105¢)

Consequently, a standard single phase KF (one-step prediction state estimator, (see
Chapter 5.4 in Anderson & Moore 1979)) can be applied, which is given by the following
algorithm.

41



2. Review

Algorithm 2.3 (EIVKF).

Ty = ApZrpp—1 + Brug + Kpe (2.106a)
Ek = 2k — ijlﬂkfl (2106b)
S = CpPyp1CiL + 2F (2.106¢)

_ T | vk k]
Ky = [Akpk‘k_lck +2Ue} [25} (2.106d)
Pyiajp = ApP—1 Ap + 38 — KpSEK] (2.106e)

. T -1
o, = Yk — [z’yﬁ —xk Dﬂ [2’;] er (2.106£)

-1
o, = up — [zgg - zgz)ﬂ [2’;} ex (2.106g)

Note that (2.106a)-(2.106e) is identical to Algorithm 2.2 where Dy = 0 and G, = I,
with ;, and ¥¥ being the innovations and corresponding covariance matrix, respectively.
In fact, the only difference with respect to standard Kalman filtering for state estimation

is the symmetric computation of the filtered inputs and outputs, which are obtained
via (Diversi et al. 2005)

= uk — Btz (2.107a)
Jor = Yk — £ [Jrl2k] - (2.107b)

g

The expected filter performance can be evaluated via the error covariance matrices

Pi=FE [[Uok — iy [ug, — ﬁok]T}

-1 T
=k — [ - =hof] [ [ - =ipE] (2:108a)
Py =FE {[yok — Go,] [vo, — @ok]T}
-1 T
—%h— [zt -] [ |sh - =i ol (2.108b)

Remark 2.3. The estimation of the noise-free input is only possible if either D # 0
and/or the input and output measurement noise is correlated. If D = 0 and Elgg =0
the estimate in (2.106g) becomes uj and the corresponding estimation error covariance
matrix in (2.108a) is identical to X%

2.5.3 Kalman filtering for bilinear systems

Whilst EIV filtering has only been considered for linear systems within the literature, a

part of this thesis addresses the EIV filtering problem for bilinear systems, a particular
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class of nonlinear systems. These are reviewed in the following together with the

corresponding KF.

Bilinear systems

Bilinear model representations are an appealing class of nonlinear models, since they are
considered to be ‘nearly linear’ due to their close structural and behavioural connections
with linear models (Pearson 1999). As bilinear characteristics arise in numerous areas
such as engineering, socioeconomics, chemistry and biology (Mohler 1991) and are able
to approximate many dynamical processes, there is a natural interest and motivation
to study such models. In the discrete-time domain, there exist at least two different
definitions of bilinear models: state-space and input-output representations. In con-
trast to their linear counterparts, however, these two representations are in general not
equivalent (Pearson 1999, Pearson & Kotta 2004) and an investigation of the relation-
ship between these two bilinear model classes, together with some general results, is
presented in (Pearson & Kotta 2004). Furthermore, the aspect of stochastic bilinear
realisation theory, i.e. the task of finding bilinear state-space realisations from input-
output representations, is addressed in (Favoreel, De Moor & Van Overschee 1999).
The recursive identification of discrete-time bilinear input-output models is considered
in (Fnaiech & Ljung 1987) whereas a subspace approach for the identification of bi-
linear state-space models is considered in (Favoreel et al. 1999, Verdult 2002). An
approach for the identification of a class of bilinear EIV models by means of extended

compensated least-squares is presented in (Ekman 2005).

Kalman filter for bilinear systems

Consider the bilinear time-invariant single-input single-output (SISO) discrete-time

(non-EIV) state-space representation, which is given by

Tht1 = Azxy, + Buy + Nugxy + Gug, x0 = X, (2.109&)
zr = Cxp + Duy, + e, (2.109b)

where z; € R™ is the state vector, x( its initial value with mean zy and covariance
matrix Py, whilst u; € R and 2z, € R are the system input” and measured output,
respectively. The quantity v is the noise acting on the state and e denotes the
measurement output noise. The matrices A, B, C, D, G and N are known, time-
invariant and of appropriate dimensions. The difference between the bilinear and the

linear case is the additional multiplicative term involving the state and input.

Remark 2.4 (Multiple-input multiple-output case). The restriction to the SISO case is

considered here without loss of generality and for convenience only. In the multivariate

"The system input is assumed to be known for the time-being.
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case, i.e. ur € R™ and y; € R™, the bilinear term in (2.109a) becomes Nuy @ xg,
where the Kronecker product ® is defined such that ¢ ® d = [c;d” - -- cpdT]T c RP4
with ¢ € R? and d € RY being arbitrary vectors. In addition, N = [Ny --- N, | €
RM=*nzmu holds, which allows linear combinations of multiplicative terms between each

input and each element of the state vector.

It is observed, that the bilinear model (2.109) is linear in the input and linear in the
states, but jointly nonlinear in state and input. The fact that bilinear models are linear
in the states allows (2.109) to be considered as a linear time-varying model (Fnaiech
& Ljung 1987, Favoreel et al. 1999). This property is highlighted by factorising the
state or the input term, from which it is clear that this either leads to a time-varying

(input-dependent) system matrix

A 2 A+ Nuy, (2.110)
or a time-varying (state-dependent) input matrix

B, 2 B+ Ny, (2.111)

respectively. Hence, a KF for state estimation of (the non-EIV) model (2.109) can
be derived in a straightforward manner as for linear state-space models (cf. Favoreel
et al. 1999, Ekman 2005) using the time-varying system matrix Ag. Note that for
the case of jointly Gaussian state noise vy and initial state Zg, where the latter is
independent of vy and g for all £ and whose first and second order statistics are
known, xj is Gaussian too, since (2.109a) is linear in the state. Hence, in the case
of known input wuy, the KF for the bilinear model (2.109) will be the optimal filter in
a minimum mean-square error sense (Anderson & Moore 1979). A derivation of the
bilinear KF is given in Appendix H.

Following the interpretation of a bilinear system as a linear time-varying (input
dependent) system as in (2.110), it is apparent that the input signal will influence
the stability of the system. Therefore, it seems natural to introduce the following

assumption.

AT4 The system input ug behaves in a manner, such that the bilinear system whose

dynamics are characterised by the state transition matrix A + Nuy is stable.

Note that in the time-varying case, it is neither necessary nor sufficient to demand
that the spectral radius of A + Nuy is less than unity for all k (see e.g. Stoica &
Soderstrom 1995).

Systems which can be described by (2.109) are commonly referred to as bilinear
systems, whereas if the input wuy is considered to be a random signal rather than a
deterministic sequence, (2.109) is known as a bilinear stochastic system (Carravetta,

Germani & Raimondi 1997). Alternatively, a bilinear stochastic system can be viewed
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as a system with multiplicative state noise or, equivalently, as a linear system with a
random system matrix (De Koning 1984). This point of view can also be taken in the

case of bilinear EIV systems, as outlined in Chapter 6.

2.5.4 Extended Kalman filter for joint state and parameter estimation

When the states of a linear state space model are extended with the parameter vector
f, an extended Kalman filter can be utilised to estimate the states as well as the system
parameters in a joint fashion. This algorithm is the well known extended Kalman filter
for joint state and parameter estimation (JEKF) (Ljung 1979), which is reviewed as

follows.

Preliminaries

Consider the input-output data created by the (non-EIV) discrete-time LTI state space
system given, for £ > 0, by

Tp41 = Aoxk + Boug, + v, Ty = T (2.112a)

2z = Coxp + Douy, + ey, (2.112b)

where x; € R™ denotes the state, ug the input, z; the output, v, the process noise,
er the measurement noise and the ‘true’ system matrices Ag, By, Co and Dy are of
appropriate dimensions. As in Section 2.5.1, the assumptions AI2 and AN3-5 hold.

Also introduce the corresponding model which is given by

Tyl = A(G)xk + B(Q)uk + Vg, (2.113&)
2L = C(G)xk + D(H)uk + ek, (2.113b)

where the matrices A(#), B(#), C(0) and D(6) are dependent on the parameter vector
0, which defines the system.

Standard form

Based on an extended Kalman filter (EKF) (Jazwinski 1970, Anderson & Moore 1979)
an adaptive estimator for the model parameters can be derived by extending the state

with the time dependent parameter vector, denoted 6, which leads to the following
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nonlinear® state space representation

A0 B(6
Tep1| _ | Alk)ze + B(Ok)up e (2.114a)
Or+1 O dy,
2L = C(Hk)xk + D(Gk)uk + eg. (2.114b)
The noise term dj, with covariance matrix
Sap = E [dyd] | (2.115)

allows for variations in the system parameters and is usually set to zero if time-
invariance is assumed.

Defining for convenience

Ci £ C(by), Dy, £ D(0y), (2.116)

the EKF for joint state and parameter estimation (JEKF) is given by the following
algorithm (Ljung 1979) (see also Appendix J for a detailed derivation).

Algorithm 2.4 (JEKF).
i'k-i-l\k = Ak-i'ldk—l + Bruy + Kj, [Zk — Ck-i'ldk—l — Dkuk] (2.117&)
Ok+1 = O + Ly, [21 — Cigpp—1 — Dy (2.117b)
Ky, = [APy, CF + Fu Py C + ApPy, H + Fi Py H{l + 5] S (2.117c)
Sk = CpPL,C} + Cu Py HY + HyPY CL + HyP3, H + %, (2.117d)
Ly = [PLCl+ P, H] S, (2.117¢)
Py, = ApPL AL + APy Fl + Fu Pl A + Fu Py B — K SpKjL + 5, (2.117f)
Py, = ApPo + Fy Py, — KiSpLj; (2.117g)
Py, = B3 — LkSkLg + 24 (2.117h)
The Jacobians in Algorithm 2.4 are defined by
Fk = F(é]ﬁi’k‘kfhuk% (2118&)
Hk = H(ék,i’k‘k_1,ﬂk>, (2118b)

8Nonlinear due to the product between xx and 0k, where the latter is incorporated within A(6y)
and C(0). Since both, xy and 0 are part of the newly formed augmented state vector, the resulting
equations are nonlinear.
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where
F(0,2,u) = = [A(0)z + B(O)u]|,_, (2.119a)

H(0,z,u) = = [C(6)z + D(0)u]|,_,. (2.119Db)

Innovations form

It is shown in (Ljung 1979) that the above recursive parameter estimator can be in-
terpreted as an attempt to minimise the expected value of squared prediction errors
associated with a constant model §. Hence, this estimator is closely related to a re-
cursive prediction error method. In fact, the recursive prediction error method applied
to a state space model and the parameter estimator derived by the EKF are virtually
identical, except that the term corresponding to the derivative of the Kalman gain
(which is a function of ) has been discarded (Ljung & Soderstrom 1983, p. 130). A
convergence analysis of this parameter estimator for linear systems is also carried out
in (Ljung 1979) and it is shown that it can produce biased estimates or it can even
diverge. However, the above procedure can be modified to become a stochastic descent-
algorithm which is globally convergent by including an approximation of the dismissed
term

{iK(e)] - (2.120)

do
into the Jacobian Fj (referred to as the coupling term in (Ljung 1979)), where K () is

the Kalman gain and ¢; denotes the innovation defined by
€k = 2k — C(Q).ﬁ'k“g,l - D(Q)uk (2.121)
One way to ensure this property is to assume an innovation model structure

Tyl = A(G)xk + B(Q)uk + K(@)Ek, (2.122&)
2L = C(G)xk + D(H)uk + €k, (2.122b)

rather than (2.113) and include all elements of the Kalman gain K into the parameter

vector 0, i.e.

T

Hk: ai - Qp, b1 bnb kl /{:nx . (2.123)

It is argued in (Ljung 1979) that the noise covariance information is solely used to
arrive at the Kalman gain (2.117c), and if the latter is estimated directly as part of
the extended state vector, a more parsimonious parametrisation is achieved. Hence the
innovation parametrisation is generally beneficial, if no explicit a priori information of

the noise structure in the form of the covariance matrices is available. Consequently,
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parameterising K () and . explicitly leads to a modified algorithm which can be

summarised as follows.

Algorithm 2.5 (JEKF in innovation form).

i'k-i-l\k = Ak-i'ldk—l + Brup + Kiep, (2.124&
ék—i—l = ék + Lieg (2.124b

ek = 2k — Cgp—1 — Dyug

1
Ly = [P;,Cy + Ps, H | [Ef}

P2k+1 = AkP?k + FkPBk - KszLf (2.124e

Py, =Py, — LSELL + %54 (2.124f
1

oE=31 4 Z (acef - E’;‘l) (2.124g

The quantities F}, and K, are given by

Fiy = F(Op, &pj-1, we, ) (2.125a)
Ky = K(0y), (2.125h)
with
_ 0
F(0,z,u,¢e) = %0 [A(0)z + B(0)u+ K(0)e] | ,_s (2.126)

whilst Hy, is given by (2.118b). Note that the innovation covariance matrix is also
estimated from the data via (2.124g). In addition, a projection facility has to be

utilised to ensure that 6y lies in the compact subset defined by
D, ={0|A(0) — K(0)C(0) is exponentially stable} , (2.127)

which means that the poles of the KF are projected into the unit circle. In practice, a

step-size reduction might also be necessary to achieve convergence.

2.6 Concluding remarks

This Chapter has reviewed a few well-known tools and techniques for the errors-in-
variables identification and filtering problem, hence providing a detailed literature re-
view of the subject. Whilst a more detailed disquisition of the reviewed methods can
be found within the cited literature, this chapter has equipped the reader with the

fundamental concepts, which allow the developments of the forthcoming chapters to be
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followed.
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3. Gradient-based recursive Frisch scheme approaches

Nomenclature

Ap oo Schur complement

dv,ds, db, dk df ... Auxiliary terms

FF F¥ F¥F ... ... Measures for Frisch-character

J(Oa) oo Jacobian (of residual r4(6) with respect to og )
J,i"ﬁ .............. Approximate Jacobian (of residual 7(0) with respect to o )
Ly ool Recursive least squares gain

Lo(¥) «ovviiiit. Linearised 6-equation of Frisch scheme

Lo, () oo Linearised Amin-equation of Frisch scheme
MSEg oot Mean square error

Pe oo Scaled covariance matrix obtained from Recursive least squares
re(0) oo Residual of Yule-Walker cost function

Pl e Residual of conjugate gradient method

R(xr) «ovevinenn. Rayleigh quotient

Vi oo YW cost function

Vi,V First and second order derivative of Vj
Vi Yule-Walker cost function using linearised Frisch scheme equations
Vk(e) ............... Approximate derivative of Vi with respect to 6
Vk(”"‘) .............. Approximate derivative of Vj, with respect to oy
Th et FEigenvector corresponding to Ap

The e Eigenvector zy scaled to unity length

BE Weighting (of ith data at time k)

Vi e Gain sequence or step size

Chovveeeee e Instrument vector comprising delayed inputs
91(57) ................ Approximate derivative of 5, with respect to 6’5
Gl(f‘) ................ Approximate derivative of 0 with respect to 6%
ék Bl Intermediate estimate of 6

Do oo Point of linearisation

() e Auxiliary term

T(Y) oo Auxiliary term

K)o Auxiliary term

D Forgetting factor

Pl o Step size (conjugate gradient)

ot Maximal admissible value for &’5

o Maximal admissible value for &%

01(71’2 ................ Approximate derivative of &’5 with respect to &%
Yk oo Conjugate gradient update direction

Preliminary reading: Sections 2.2, 2.3, 2.4.3.

3.1 Introduction

In many applications, it is essential to identify a system online while the process which is
generating the data is running. This requires recursive system identification algorithms
(see. e.g. Ljung & Soderstrom 1983), which update an existing model as soon as new

measured data becomes available. When not only the outputs, but also the inputs of the
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system are corrupted by additive measurement noise, an errors-in-variables (EIV) setup
(Soderstrom 2007b) arises. Within the literature only limited attention has been given
to the development of recursive EIV identification algorithms. In particular, apart from
the work of the author, no recursive approaches exist to identify an EIV system via the
so-called Frisch scheme (Beghelli et al. 1990, Diversi et al. 2006, Soderstrom 2007a).
The Frisch scheme is an EIV system identification technique, which yields not only
the system parameters, but also the variances of the input and output measurement
noise sequences. Consequently, this technique may be of interest for fault detection and
condition monitoring purposes, since a change in the noise variances could, for instance,
indicate faults associated with sensor devices. Hence, there is a natural motivation to
develop a recursive identification algorithm based on the Frisch scheme.

This chapter develops recursive algorithms based on the offline Frisch scheme, which
makes use of the Yule-Walker (YW) model selection criterion (cf. Section 2.4.3). The
common idea is to use iterative procedures which carry out a single iteration as new
data arrives. Such approaches are commonly utilised for recursive identification (see
e.g. Ljung & Soderstrom 1983, Ljung 1999). The overall problem of developing recursive

Frisch scheme algorithms can be divided into three subproblems:
1. Recursive computation of the parameter vector.
2. Recursive computation of the output measurement noise variance.
3. Recursive computation of the input measurement noise variance.

The first subproblem is addressed by taking the inconsistent recursive least squares
(RLS) solution, from which the bias can be removed at each time instance, if an esti-
mate of the input and output measurement noise variance is available. Such recursive
bias compensating least squares (RBCLS) approaches are well-known within the litera-
ture (see e.g. Sagara & Wada 1977, Zheng & Feng 1989, Zheng 2000). The computation
of the output measurement noise variance requires the solution of an eigenvalue prob-
lem. In order to obtain a recursive update equation, a conjugate gradient subspace
tracking algorithm is utilised, which tracks the smallest eigenvalue of a slowly vary-
ing matrix. The third subproblem requires the minimisation of a model selection cost
function. Two different approaches are discussed here: Firstly, a Gauss-Newton algo-
rithm, which uses approximate derivatives is considered. Secondly, the nonlinear model
selection criterion is replaced by an alternative cost function, which makes use of the
linearised Frisch scheme equations. This allows a closed form solution of the input mea-
surement noise variance to be obtained at each recursion step. The second approach
is equivalent to the application of a steepest gradient technique in combination with a
line search when use is made of the linearised Frisch scheme equations. Based on these
two distinctively different methods for the determination of the input measurement
noise variance, two different recursive Frisch scheme (RFS) algorithms are proposed,

which are compared in simulation. Following on from this, a detailed analysis of the
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computational costs of the derived algorithms is provided revealing the bottlenecks
within the RFS computation. The absolute computation time per recursion of the
two RFS algorithms is also compared to the offline case in a numerical example. Fur-
thermore, attention is given to analyse the so-called Frisch-character, a feature which
distinguishes the offline Frisch scheme from other identification techniques within the
EIV framework. It is investigated via simulation, how the Frisch-character is affected
when the recursive schemes are utilised to compute the estimates!. Finally, the RFS
development is critically reviewed and alternative design strategies are discussed to
overcome some of the potential shortcomings.

The chapter is organised as follows: Section 3.2 provides the formulation of the
problem whilst the recursive algorithms are developed in Section 3.3. Their computa-
tional complexity is analysed in Section 3.4 and Section 3.5 is dedicated to investigate
the Frisch-character of the resulting estimates. A critical discussion is provided in
Section 3.6, and concluding remarks are given in Section 3.7.

Parts of this chapter have been published by the author in a series of papers: The
core of the RFS development is described in (Linden, Vinsonneau & Burnham 2008)
whilst early approaches, are reported in (Meyer, Linden, Vinsonneau & Burnham 2006,
Linden, Meyer, Vinsonneau & Burnham 2006). Some analysis of the so-called Frisch-
character of the estimates has been given in (Linden & Burnham 2008¢), whilst the
steepest gradient algorithm in combination with a line search has been proposed in
(Linden, Larkowski & Burnham 2008).

3.2 Preliminaries

Typically, a recursive estimation scheme must obey the following principles (Ljung
1999):

P1 The processing must with certainty be completed during one sample interval using

a fixed and a priori known amount of calculation.

P2 The data, which is passed from one recursion step to the next, must be stored in

a finite-dimensional information vector.

The first principle is mainly associated with the computational complexity of the result-
ing algorithm. This aspect is fully investigated in Section 3.4. The second principle can
be easily fulfilled for the Frisch-YW case, since it is straightforward to update the re-
quired covariance matrices i]g and 21&3 (see (2.47), (2.49)) or, in the case of adaptivity,

the corresponding weighted arithmetic means (see Appendix B).

Note that the Frisch-character is purely of academic interest and is investigated here to compare
the recursive estimates with the offline estimates. It does, however, not reveal any information about
the accuracy of the estimates obtained. With respect to practical applications, the Frisch-character
might even be considered to be insignificant.
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Recall from Section 2.4.3, that the estimates of the non-recursive Frisch-YW at time

instance k are obtained by solving the nonlinear set of equations given by

. . —1 .
k::<22“2¢@%» 30 (3.1a)
&gzzxnml<Ak), (3.1b)
6k = arg min Vj, (3.1c)
oq
where
k
0%l 0
Ya(bp) =] Y " , 3.2a
e [ X 65[%] (322
—1
oAk Sk Sk Ak Sk
@:z%_z%%P%;ﬁﬂq £ o (3.2b)
1 -,
Vi = SISEAI3. (3.20)

Consequently, recursive expressions for (3.1) are to be developed which are outlined in
the subsequent sections. Note that (3.1a) and (3.1b) form the core of the Frisch scheme
and these are therefore termed the Frisch equations in the subsequent development. As

in the offline Frisch scheme, the following assumptions are stated.

AS1 The dynamic system is asymptotically stable, i.e. A(¢~!) has all zeros inside the

unit circle.

AS2 All system modes are observable and controllable, i.e. A(g~!) and B(g™!) have

no common factors.
AS3 The polynomial degrees n, and n; are known a priori with ny, < n,.

AI1l The true input ug, is a zero-mean ergodic process and is persistently exciting of

sufficiently high order.

AN1 The sequences ;. and §j are zero-mean, ergodic, white noises with unknown

variances, denoted oy and oy, respectively, i.e.

oadn = E [ay)], (3.3a)
0301 = E [gedi] - (3.3b)

AN2 The sequences % and 7 are mutually uncorrelated and also uncorrelated with
both ug, and yo, .
3.3 Algorithmic development

This section develops recursive expressions for the Frisch scheme algorithm given by

(3.1) based on the development presented in (Linden, Vinsonneau & Burnham 2008,
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Linden, Larkowski & Burnham 2008). For the update of the estimated model param-
eters, a recursive bias-compensating least squares algorithm (RBCLS) is considered.
Such approaches are well-known within the literature (see e.g. Sagara & Wada 1977)
and have also been applied to iteratively solve the (offline) bias compensation prob-
lem (Zheng & Feng 1989, Zheng 2000). The underlying idea is to compute the RLS
solution and to compensate for the asymptotic bias at each time instance. In order
to compensate for the bias, the variances of the input and output measurement noise
sequences are required, for which gradient-based approaches are considered here. Note
that the recursive computation of the variances, which is based on the Frisch scheme
approach, distinguishes the algorithms developed within this chapter from other re-
cursive/iterative bias compensating schemes within the literature. Recall from (3.1b),
that an estimate of the output measurement noise variance is determined by solving an
eigenvalue problem. This can be (approximately) solved recursively, by making use of
a conjugate gradient method, which tracks the smallest eigenvalue of a slowly varying
matrix. For the update of the input measurement noise estimate two possibilities are
considered within this section: Whilst the initial development in (Linden, Vinsonneau
& Burnham 2008) considered a steepest gradient algorithm with fixed step size, here,
the minimum of the YW model selection cost function (3.2c) is updated either via a
Gauss-Newton algorithm, or a steepest gradient search employing a line search facility.
The latter is equivalent to minimising a modified cost function, which exclusively de-
pends on linearisations of the Frisch scheme equations (3.1a)-(3.1b) and which allows
a closed form solution of &g to be obtained at each time instance k. This approach has
been proposed in (Linden, Larkowski & Burnham 2008).

Firstly, the update of the covariance matrices is discussed in Section 3.3.1 followed
by development of the update equation for 6, o5 and oz in Sections 3.3.2-3.3.4, respec-
tively. The overall algorithms are summarised in Section 3.3.5 followed by a numerical

example, which is given in Section 3.3.6.

3.3.1 Update of covariance matrices

atia 3 : sk Ck Sk K sk
IAn order to satisfy requirement P2, the covariance elements 37, £, , oy Doyour Dy
Ek

oup, and ﬁ)é“'@ in (3.1) are to be updated. Since the first six covariance elements are
contained within (cf. the definitions (2.10)-(2.12))

_ |7 —é;ia] 0
[—é:zy 5| o
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it is sufficient to consider the update of f]’é and i]é?@. The covariance matrices can be

updated in a straightforward manner as

~ N 1 ~

Sh=Skty - (@k@f - E’Z—,‘l> , (3.5a)
. A B
Se=30"+ T <CW£ - EIE¢1> : (3.5b)

Using (3.5), it is now possible to evaluate the Frisch-YW equations (3.1) at each time
step. Although such an algorithm may satisfy P1 and P2 (provided the time used for
the minimisation of Vj is limited), it cannot be considered to be a recursive scheme
since only the trivial covariance matrix update operations are performed. However,
such a repeatedly applied Frisch scheme (RAFS) is used for comparison purposes in
the subsequent development, since it exhibits all the characteristic properties of the

Frisch scheme. The algorithm can be summarised as follows.

Algorithm 3.1 (RAFS).

1) Initialisation

2) For k =n¢+ny +1,...
a) Update i]é% and 21&3 via (3.5)
b) Compute 6% via (3.1c)

c) Determine 6’5 by solving (3.1b)
d) Compute 0y, via (3.1a)

In order to compute &g, an optimisation has to be performed to obtain the minimum
of the YW cost function, which is usually achieved in an iterative way. If Matlab is
used to implement the algorithm, readily available routines such as fminsearch, which
applies the Nelder-Mead simplex method (cf. MathWorks 2007), can be utilised. Recall
that in order to evaluate the value of the cost function, (3.1a) and (3.1b) need to be
computed, which means that an eigenvalue problem has to be solved at each iteration
step (several times at each k). The computational burden of such an optimisation,
which is to be carried out at each recursion step of the RAFS, is therefore expected
to be rather high. In order to overcome this shortcoming, and following the philos-
ophy of recursive identification techniques, it is possible to apply only one iteration
per recursion, i.e to set the number of maximal iterations to unity. This will, if the
optimisation is initialised with the most recent value of the input measurement noise

variance estimate, gradually improve the estimate of o as time evolves.

o6



3. Gradient-based recursive Frisch scheme approaches

Adaptivity

In order to equip the algorithm with some form of adaptivity, exponential data weight-
ing (forgetting) may be utilised within the update of the covariance matrices. There-
fore, one common approach is to assume that the process generating the data is varying
slowly over time such that stationarity can be assumed to hold approximately (DeGroat,
Dowling & Linebarger 1997). Other choices of data weighting, such as moving windows,
might be more appropriate depending on the desired tracking capability of the estima-
tor. This is, however, not considered here.

In the case of exponential data weighting, the covariance matrices become weighted
arithmetic means, which are denoted ig and 21&5. By weighting the ith data at time
k with

BE =BT for 0<i<k-1 and fgF21, (3.6)

where A\ denotes the forgetting factor, the general update equations for the covariance

matrices are given by (cf. Chapter 11.2 in (Ljung 1999) or see Appendix B for details)

ig = iéfl + Vi (@kgﬁg — Séfl> , (3.7a)

ilg@ = 2?;1 + Vi (Ck@g — i§;1> . (37b)

The normalising gain ~; is given by

. 1
A Vk—1
s ) [ 3.8
Vi <;1 ﬁk,) ot e (3.8)

which reduces to 1/k in the case of no adaptivity, i.e. A; equal to 1. In the case of
exponential forgetting, i.e. A\ = A where 0 < A < 1, the normalising gain becomes
1-A

Rather than using an exponential weighting of the data, it is possible to describe the
variation of the parameters in a stochastic manner which is frequently done by modelling
the variation as random walks or generalisations. If the parameters are assumed to
vary in a more rapid manner, the system might be described via state dependent
parameter models. The identification of such systems is the topic of (Young, McKenna
& Bruun 2001). This is, however, not further considered here, and for simplicity, the
case of no forgetting (vx = 1/k) is considered in the subsequent development (which
implies that the " notation ﬁ)fg and i]’g@ is used).

The next subsection provides recursive update equations of the system parameter

estimates.
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3.3.2 Update of ¢

If the output measurement noise o was computed via (3.1b), i.e. the eigenvalue prob-

lem was solved exactly, the resulting set of normal equations
(22 - E@(&k)) O, = §¢y (3.9)

would be consistent and could be uniquely solved for ék, e.g. via Gaussian elimination.
In the case that the eigenvalue problem is solved approximately (as discussed in Section
3.3.3) the normal equations are inconsistent and an approximate solution is required to
be searched for. Whilst other choices are possible (e.g. total least squares), the most
straightforward way to compute 6, would be via the usage of least squares (LS). In
order to obtain a recursive expression for ék, an approach is adopted here, similar to
that in (Sagara & Wada 1977, Zheng & Feng 1989), where the bias of the recursive least
squares (RLS) estimate is compensated at each time step k. For now, it is assumed
that estimates of &g and 6’5 have already been obtained. The update equations for the
latter two quantities are developed in the remainder of this Section (see Sections 3.3.3
and 3.3.4 below).

Using the RBCLS approach of Section 2.4.1, allows a recursive estimate of ¢ to be
obtained as summarised in the following algorithm (cf. also Appendix A for a more

detailed derivation).

Algorithm 3.2 (RBCLS).

ék = éII;S + szgé(a'k)ék—l- (3.10)

The corresponding RLS equations for the determination of é,I;S and Py are given as

follows.

Algorithm 3.3 (Normalised gain RLS).

é,IgS = é,%gl + Ly (yk — @gé,I;gl) (3.11a)
P
L= P (3.11b)
N T
1 Pi_1019% Peo1
P, = Ppoy — — R =L (3.11c)
L= O Pr—1or + =
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Note that
P, =S5, (3.12)

which means that by making use of the above normalised gain version of RLS and
applying the matrix inversion lemma (see Ch. 11.2 in Ljung 1999), utilisation of Py in

(3.10) to compute [iif,]_l recursively, conveniently avoids the need for matrix inversion.

Remark 3.1. The RLS algorithm provides another means to introduce adaptivity into
the identification via exponential data weighting controlled by v in (3.11). By tuning
the gain ~y, in (3.7) (which is generally different to that used in (3.11)), the user can
choose whether to introduce adaptivity for the estimation of the variances as well as the
parameters, or solely for the system parameters (the latter can be achieved by setting
v in (3.7) to 1/k whilst choosing 7 =1 — Ax in (3.11)).

The next subsection considers the recursive computation of the output measurement

noise variance.

3.3.3 Update of 0y

In order to compute 6’5, the least eigenvalue of Ay in (3.2b) is required to be determined,
which generally requires O(n?) flops for a n xn matrix (Golub & Van Loan 1996). When
only a few eigenpairs are required, more efficient algorithms exist which only track the
subspace corresponding to one or more eigenvalues (Comon & Golub 1990). Such an
approach is feasible when the corresponding matrix (hence the singular triplets) ‘varies
slowly’ with time, which is assumed to be the case here, provided the estimate &g does

not exhibit any rapid changes®. Therefore, introduce the following assumption3.

AE1 The estimate of the input measurement noise variance &g ‘varies slowly’ with

time.

Since the matrix update AA; £ Ay — Aj_q is generally of full rank n, + 1, a gradient
based algorithm, which requires O(n?) flops?, is applied in the subsequent development,
in order to determine a recursive expression for &]g. More specifically, an iterative
conjugate gradient method similar to that proposed in (Chen, Sarkar, Dianat & Brulé
1986, Feng & Owen 1996, Yang 1993) is used, where one iteration per recursion is

applied.

Remark 3.2 (Choice of subspace tracking algorithm). Note that tracking eigenpairs or
singular triplets is a common problem in the area of signal processing and the corre-

sponding research area is termed subspace tracking, which has experienced tremendous

2Note that the sample covariance elements contained in Ay converge towards their expected values
for an increasing number of samples due to the stated assumptions.

3Here, AE corresponds to the assumptions concerning the estimator.

4In the case of a rank-one update, it is possible to track d singular triplets using O(nd2) flops only
(cf. Section V in (Comon & Golub 1990) or see (Davila 1994)).
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interest in the literature (see (Comon & Golub 1990) for a detailed survey and (DeGroat
et al. 1997) for the developments since 1990). Consequently, there exists a rich collec-
tion of algorithms to tackle the problem of tracking 6 within the recursive Frisch-YW
algorithm. Whilst in this chapter the approach is focused on the conjugate gradient

methods, other choices (e.g. inverse power iteration) might well be possible.
Suppose the eigensystem is given by
Akxk = algxk, (3.13)

where z;, € Rt denotes an eigenvector of Aj, and 05 € R the corresponding eigen-
value. Then, the minimum eigenvalue can be obtained by minimising the Rayleigh
quotient (Golub & Van Loan 1996)

T A
ok = R(zy) & TZhTE (3.14)
Ty Tk

Utilising a conjugate gradient method to minimise R(zy), the update equations for the

minimum eigenvalue are given by (cf. Feng & Owen 1996)

Bk = Tt + fik—1¥r—1, (3.15a)
A \1/2

Ty, = an/ (&F k) / , (3.15b)
oy =}, Ay, (3.15¢)

where 2}, denotes an estimate of the eigenvector xj, and Z}, is a scaled version of unity
length. The scalar [i; denotes the stepsize whilst 1/3k € R"a*tl denotes the conjugate

gradient update direction which is given by

e = Apdn — GE Tk, (3.16a)
o1 = —(Ff Aetr—1) /(P Apip—r), (3.16D)
b = + Gro1tr-1, (3.16¢)

where 7, denotes the residual. The optimal step size is chosen as

s = <5’gd{; —dk+ \/d7§> / (2 <d§d§ - d’fd{;)) , (3.17)

where

df = z] Ay, 5 = of Ay,
db = 21y, dk = Ty, (3.18)
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and
dt = (&gd’; . d’5>2 4 (d’;d’g - d’fd{;) <d’f - &gd’g) . (3.19)

With optimal step size it is meant that a line search (cf. Dennis & Schnabel 1996,
Section 6.3) is performed, which chooses the step size i in a manner, such that the
Rayleigh quotient is minimised within the given search direction TZJk The algorithm is

initialised with a guess of g and flo, such that

a2
Zo = @0/ (28 20) / , (3.20a)

Yo = 7o = Aoy — R(Z0)7o. (3.20Db)

Remark 3.3 (Frisch-like character). One of the significant characteristics of the Frisch
scheme is that the estimated model belongs to a class characterised by a convex curve
in the noise space (see Figure 2.2), where the functional relationship between oy and
oy defining a locus of solutions is given by (3.1b). This feature has been termed the
Frisch-character in Definition 2.1. Computing the output noise variance recursively via
(3.15)-(3.20) will inevitably introduce an error, which means that the estimated set
(65, 6’5) will not exactly lie on this convex curve, i.e. the Frisch-character will only be
approximated. This would, strictly speaking, only imply a Frisch-like character for the
solution. However, as will be illustrated in Section 3.3.6, the set (6’5, 6’5 ) can converge

to the convex curve, after the initialisation transients have decayed.

The conjugate gradient subspace tracking algorithm, which minimises the Rayleigh

quotient, is denoted CG-RQ and summarised as follows.

Algorithm 3.4 (CG-RQ).

6 = f, Ay, (3.21a)

2 A ~T A \1/2

Tp = Tx/ (m%xk) / (3.21b)

o ~ N N -1 .

A =3k -5k (B - okn,] Sh,, (3.21c)

g = Epo1 + fi—1tr—1 (3.21d)

i = okdk — db + d’g) / (2 (d’;d’g - d’fd’j)) (3.21¢)

d¥ = ZT Ay, (3.21f)

ds = i Ay, (3.21g)

d& = i1y, (3.21h)

dy = Py, (3.21i)
2

df = (&’gd{; - d’;) —4 <d§d§ - d’fd{;) <d’f - &’gd’g) (3.21])
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Uk =+ Gr1Pr—1 (3.21k)
e = A — 652 (3.211)
Gr—1 = —(P§ Apthe1)/(OF_ 1 Apide—1) (3.21m)

Consider now the recursive computation of the input measurement noise variance.

3.3.4 Update of o4

For the recursive computation of &g, two algorithms are developed within this sub-
section. The first algorithm considers a Gauss-Newton approach, whilst the second
algorithm minimises a modified cost function, based on the linearised Frisch equations,

for which a closed-form solution can be obtained at each time step.

Yule-Walker cost function

Recall that within the Frisch scheme, an estimate of the input measurement noise
variance oy can be obtained by minimising the Yule-Walker (YW) model selection cost
function (3.2c), which can be expressed as a nonlinear least squares (NLS) problem
defined by

ok = arg min Vg, (3.22a)

1
Vi = 3 H?”k(a)H%’ (3.22b)

where r(0) denotes the NLS residual which is defined by
el =] st]|'=sto-g 3.23
Tk;( ) - . - £Cy Cp 0 — “Cp é_Cy ( . )

Equation (3.22b) can be minimised by making use of a general Newton method given
by (cf. Ljung 1999, p. 326)

_ —1
e ) A I 7 (3.24)

Or =0
where Vk’ and Vk{’ denote the first and second order derivative of the YW cost function
(3.22b), respectively, whilst -, is a scalar step size. If the second order derivative is

approximated, a Gauss-Newton method is obtained. In order to proceed, it is necessary
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to obtain the derivative

Vi (3.25)

QU
IS

o

at each recursion step. Recall that for the evaluation of the cost function Vi, the
f-equation (3.1a) and the Apip-equation (3.1b) are required as well. Hence, Vj is a
nonlinear function of oz and its exact evaluation at each time instance k is not desired
(since this would imply the need to solve an eigenvalue problem at each time step). For
this reason, an approximate gradient, based on linearised versions of (3.1a) and (3.1b),

is considered in the subsequent development.

Linearisation of the Frisch equations

Linearised expressions of the Frisch equations (3.1a) and (3.1b) have been derived in

(Séderstrom 2007a) and are given by the following lemma.

Lemma 3.1 (Linearised Frisch equations). Carrying out the linearisation of (3.1a)
and (3.1b) around the point

mé[ef ok afr:[a}f bl o} a;;r, (3.26)

the linearised Frisch equations are given by

&ka,
féb* , (3.27a)

bb, .
6% ~ Loy (0.) 2 0 + == (07 — ok (3.27D)

where it is assumed that 9, is close to 9.

PrOOF. See Appendix C for a detailed derivation. [

Also introduce

e bTb, .
W(9,) £ &5, — S50, + {05 + d;d a}j] [68] : (3.28a)
T
N —f’;‘p{’* Qs
K(0,) = B (3.28b)
So(04) £ 5E — T (0,). (3.28¢)

Using this notation, the quantity oy given by (3.27b) can be eliminated in (3.27a)
k

yielding a linear expression for 6 which only depends on &7

Lyg(9) =6, + E;()I(O'*)L(’ﬂ*) + 2;01(0*)/4(19*)&

IS

(3.29)
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Equation (3.29) will be utilised later, for the development of the second algorithm.

Computation of the derivative

By applying the chain rule for vector differentiation, the exact derivative of Vj, is given
by

1= _ €R, (3.30)

o (00dy 00
I=Dy,

65 - d oy dog * dog

=

where % e RIxme, % € R", 88% € R" and Z;L’Z € R. The task is now to determine
g [ [
approximate expressions for the individual derivative terms in (3.30). Using (3.23) the

cost function (3.22b) is re-expressed as
1 /e - \T e .
V=3 (Sh0-E&) (BE0-E)
1 CET ke CET Nk TkT £k Tk Nk
-9 <£Cy &y — Scy 2ol — 07 Bgpby +0 EQPECSOH) ’ (3.31)
and using the rules for vector differentiation, one obtains for the first term in (3.30)

dVy TkT ke CkT ke 1x
At time instance k, the parameter vector § may be approximated with ék,l, which

gives the approximate derivative

dVi w0 a (4T KT KT Sk

In addition, expressions for the sensitivity derivatives 00/0oy, 00/00y; and doy/dog,

evaluated at ¥ = oy, are given by the following lemma.

Lemma 3.2. The approximate sensitivity derivatives are given by

a0 : . X ~1 [ay_ .

87’,; ~ 00 — (2’; - 2¢(ak_1)) [ Herm, (3.34a)
Yy

00 @ (¢ NN v

@ ~ Hk = (E@ — E@(kal)) Bk_l eR s (334b)

Ak - oL by
g . (@) _ k—1Y%—1

dgk = Ouk = e AT € R. (3.34c)

PROOF. Assuming that Ux_1 is close to ﬁk, the sensitivity derivatives can be directly
computed from the linearised Frisch equations (3.27) when the linearisation is carried

out around ¥, = 7§k71- m
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Consequently, the gradient of the YW cost function with respect to 65 can be computed
by (3.30) using the approximations (3.33) and (3.34), which defines the (approximate)
gradient update direction as
~ vloa) _ 1/ 0) (p@) (@)
Vi~ v = v (000!

g gkt 91@)

T T -1 Bgﬁli)k_l ap
~ o ~ A A ~ — =
= <9%_1E’gw - 5]gy) Egp (Elsz - E%‘B(Jk—l)) !

al yan1 T (3.35)
br—1
or equivalently
(oa) b b1 . 7 Sk
Vi = [_&%_15%1@{1’ b£1:| <Eso - X

(&k41)>__ Sk <2§¢ék71__é?y)' (3.36)

An alternative way to arrive at (3.36) would be to consider (3.22b) as a NLS problem,
for which the gradient of Vj is given by

Vi = J"(oa)ri(0), (3.37)
where J(og) denotes the Jacobian® defined by (cf. Bjérck 1996, p. 340)
ork
Or(0) oo
Joa) 2 TR = 1 (3.38)
dog
ork
ng
aUa
In view of (3.37), equation (3.36) can be expressed as
A Ol 3.39
Kk ko TE(Ok-1), (3.39)

spectively given by

A~

where the approximate Jacobian J,gaﬁ) and the approximate residual ri(f_1) are re-
(ea)T > Sk R 1 kT

Tk A e k1 bg‘1} <E¢ _'E¢(Uk41)> Yo (3.40a)

ri(Ok1) = ilgwék—l - élgy

P
— bp_1bk—1 7

(3.40b)
Note that two approximations have been utilised to arrive at the gradient:

1. The residual is approximated by making use of the most recent estimate of 6.

2. The Jacobian is obtained by making use of the linearised Frisch equations.

5Which reduces to a 1 X ng vector in this univariate case.
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Gauss-Newton algorithm

After the approximate derivative of the YW cost function has been obtained, it is

possible to design a Gauss-Newton algorithm to obtain a recursive update equation for
k

s

340)

or. Therefore, the second order derivative can approximated as (see Bjorck 1996, p.

og T Oq
V)~ gon T glen) (3.41)

The (approximate) Gauss-Newton algorithm (see (3.24)), which minimises the YW cost

function, is denoted YW-GN and can be summarised as follows.

Algorithm 3.5 (YW-GN).

oq T logv1 -1 oq T A
e [l I GO (342
(ca) T b b1 . T Sk A Lo
S R A T SR . <E<p - E@(kal)) 2o (3.42b)
Tk(ékfl) = ilgipékfl — élgy (3.42(})

For a time-invariant system, the stepsize (or gain sequence) is usually chosen as v, =
1/k (see Ljung & Soderstrom 1983, Section 5.6), whilst alternative choices might allow
the introduction of adaptivity within the input measurement variance computation (cf.
also Remark 3.1).

Steepest gradient algorithm with line search

In (Linden, Vinsonneau & Burnham 2008), a steepest gradient algorithm of the form
o T A
Bl T (B) (3.43)

has been proposed to update the input measurement noise variance estimate. Note
that this corresponds to a Newton method with V; = I. Rather than using v, = 1/k
or choosing a constant step size as in (Linden, Vinsonneau & Burnham 2008), it is
possible to perform a line search (cf. Dennis & Schnabel 1996, Section 6.3), in order to
obtain an ‘optimal’ step size at each time instance k. This means that v is chosen in a
manner, such that the residual r(ék) becomes minimal for the negative gradient update
direction. For this purpose, it is again possible to make use of the linearised Frisch
scheme equations (3.27). This is, however, equivalent to minimising an alternative cost

function, which is solely based on the linearisations Lg(ﬁk,l) and Lag (ﬁk,l) rather
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than (3.1a) and (3.1b). Such an approach has been discussed in (Linden, Larkowski &
Burnham 2008).

Minimisation of approximate cost function By linearising the Frisch equations
around the latest estimate ﬁk,l, an approximate cost function, which only depends on
the linearised Frisch equations rather than (3.1a) and (3.1b), can be defined as

Ve & % Hm <L€(7§k71)> Hz (3.44)

In order to determine that 6% which minimises (3.44), the total derivative of Vk!in with

respect to 65 is required. This is given by (Bjorck 1996, cf. p. 340)

avr

= JT (55 (Lg(@kfl)) , (3.45)

where J(5%) denotes the Jacobian defined by (3.38). The dependencies of 4, Ly and
L, are dropped in the subsequent development for the ease of notation. Setting the
total derivative (3.45) equal to zero and substituting (3.29) and (3.40) yields

0= J7(65) (S, [t + S5l Gr1)e(De )
+ E;()l(&kfl)”(@kfl)&g] - éé;y)a (3.46)
from which the input measurement noise variance is computed as

JT(6%) (2]& [ék—l + 2;01(@—1)47%—1)} - éfy)

K
o = —— —— - . (3.47)
b —JT(65)5E Y0 6k 1)k(Dk1)
Note that the Jacobian is given in a straightforward manner from (3.40b) by
~p dL
~k\ _ Ok 0
whilst the total derivative of Ly is obtained from (3.29) as
dLyg RPN 5
yr S0 (6k—1)K(Up—1). (3.49)
u
Finally, substituting (3.49) into (3.48), the Jacobian becomes
J(6E) =3k »-l(6 i 3.50
0q) = XipYigy (Oh—1)K(Tk-1)- (3.50)

The algorithm, which minimises the YW cost function by making use of the linearised

Frisch equations is denoted YW-lin and can be summarised as follows.
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Algorithm 3.6 (YW-lin).

p JL(6%) (ZA)’Z@ {ékq + E;()l(é'kfl)b(ékfl) - éfy) (3.51a)
g, = = = = .Jla
“ —JT(68)SE S0 (61-1)k(Dk—1)

. . . o Bf_lgkfl e | [ar—s

(1) = €y — B0k + |67 + m”g ' 0 (3.51b)
3 Mo or |

Ii(l?k_l) = _ak,lakflakfl bk*l (351C)
S0 (0%-1) = SE — S5(65-1) (3.51d)

3.3.5 Summary of recursive Frisch scheme algorithms

Based on the two different algorithms for the computation of the input measurement
noise variance, two distinct (but similar) algorithms for recursive Frisch scheme identi-
fication can be formulated. The first algorithm, which utilises the Gauss-Newton search

for the determination of 65 is termed RFSa and can be summarised as follows.

Algorithm 3.7 (RFSa).

1) Initialisation

2) For k =n¢+ny +1,...
a) Update 7y via (3.8) and f)fg, 22?@ via (3.5)
b) Compute Py and HA,I;S using Algorithm 3.3
c) Update 6% via Algorithm 3.5
d) Update 6’5 by means of Algorithm 3.4

e) Compute 0 via Algorithm 3.2

The second algorithm, which makes use of the YW-lin approach, is denoted RFSb

and is, for completeness, summarised as follows.

Algorithm 3.8 (RFSb).

1) Initialisation
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2) For k=n¢+np+1,...

a) Update ~; via (3.8) and ﬁ)g, ﬁ)éf@ via (3.5)
b) Compute Py and é,I;S using Algorithm 3.3
c) Update 6% via Algorithm 3.6

d) Update 6’5 by means of Algorithm 3.4

e) Compute 6 via Algorithm 3.2

Remark 3.4 (Projection facility). In order to stabilise the recursive algorithms during
the initial phase, it might be advantageous to project the noise variance estimates into

the intervals

0 <6y < o™, (3.52a)
<65 < U%nax, (3.52b)
where o7'** and ¢'** are the maximal admissible solutions for 63 and 6, respectively.

Recall from Section 2.4.3 that these intervals are naturally motivated from the Frisch
scheme approach and the maximal admissible values can be computed from the data
as described in (2.48)

gmax _ )\ [igu — Sk [i’;y]*lizgy%] , (3.53a)
max ok sk sk 1—1sv0k
OB = Amin [ S5, = 5 o BEITISE L] (3.53b)

Since these boundaries rely on the solution of two eigenproblems, it would be more
pragmatic to consider positive constants for the maximum admissible values, if such a
priori knowledge is available. For the cases where the estimates exceed these maximal
admissible values, it seems reasonable to set 65 = &g_l and /or &’5 = 6’5_1, respectively.
Remark 3.5 (Computational complezity). The computation time per single recursion
can be reduced by approximately two-thirds by making use of the recursive Frisch-YW
approaches compared to the RAFS (cf. Algorithm 3.1), although both algorithms are
of cubic complexity with respect to the number of system parameters to be identified
(see Section 3.4 below). However, approximate fast algorithms of quadratic order are
possible by accounting for the fact that the eigenvector corresponding to the smallest
eigenvalue of A is also part of the parameter vector to be estimated. This is further

discussed in Chapter 4.

Remark 3.6 (Classification of the RFS algorithms). The recursive Frisch-YW algo-

rithms can be considered to belong to the family of iterative bias-compensating LS
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algorithms (see e.g. (Sagara & Wada 1977, Zheng & Feng 1989, Soderstrom 2007b)
and the references within). The essential distinguishing feature is, however, that the
measurement noise variances are computed in a different way which is based on the

offline Frisch scheme approach.

3.3.6 Numerical example

This first example aims to illustrate that the developed recursive Frisch scheme algo-
rithms are able to work satisfactorily when applied to an arbitrarily simulated system,
i.e. that the parameter estimates can successfully compensate for the bias. In addi-
tion, since the recursive algorithms are developed based on the offline Frisch scheme,
it is interesting to investigate whether, and if so to quantify how much, the recursive
schemes will deviate from the offline estimates, due to the introduced assumptions and

approximations.

Remark 3.7. It should be noted that, in this example and others throughout the the-
sis, the RLS estimates have been utilised as a benchmark against which to evaluate the
performance of the various recursive EIV algorithms developed in the present study.
In practice, it is unlikely that the RLS algorithm would be used in such noisy situa-
tions, other than for the limited number of cases when auto-regressive with exogeneous
inputs models are justified. To some extent, therefore, the use of RLS as a benchmark
exaggerates the advantages of the EIV algorithms in practical terms, since superior op-
timal algorithms, such as the recursive prediction error minimisation algorithm in the
Matlab System Identification Toolbox (Mathworks 2008) and the recursive refined in-
strumental variable algorithm in (CAPTAIN Toolboz for Matlab 2008), would be more
appropriate. In this first example, for instance, the recursive prediction error minimisa-
tion algorithm and the recursive refined instrumental variable algorithm yield estimates
that have very small asymptotic bias on the transfer function denominator estimates
and quite small asymptotic bias on the transfer function numerator coefficients. As
a result, the associated frequency response characteristics differ little from the actual
ones (see Section 8.8 in Young, Taylor & Chotai 2009) and the resulting model would
be quite acceptable for many practical control applications. Of course, these biases
would be larger for higher noise levels and so, in noisy situations where parametric bias
is particularly important, the recursive EIV algorithms provide a superior approach
to data-based modelling and it is for such applications as these that the algorithms

described in this thesis have been developed.
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Consider a LTI SISO system with n, = n, = 2, which is given by (cf. (2.4a) and
(2.9))

6:[—1.5 0.7 1 0.5]T, (3.54a)

o= |21 0.1}T. (3.54b)

The input and output measurement noise variances are chosen, such that an equal
signal-to-noise ratio of 10dB is obtained at the input as well as the output of the
EIV system. The system is simulated for 500 samples using a zero mean, white and
Gaussian distributed input signal of unity variance. The RFSa and the RFSb are
applied to estimate ©J; both using n¢ = n, +n,+1 as the number of instruments for the
YW model selection criterion. In order to compare the recursive estimates with those
obtained by the offline Frisch-YW, the RAFS is applied®. Since the system is time
invariant, no adaptivity, i.e. A = 1, is considered. The input and output measurement
noise variances are projected into the intervals [0, c***] and [0, argnax], respectively. The
maximal admissible values for the input and output measurement noise variances are

max
u

chosen to be o = 205 and azrjnax = 20y, respectively. The resulting estimates of 1
are shown in Figure 3.1.

The dashed line corresponds to the offline estimate using 500 samples. As expected,
the RAFS yields identical estimates for k = 500 recursions, whilst the estimates of the
RFSa and RFSb are slightly different. Considering the estimates of 6, it is observed that
the RFSa and RFSb can successfully compensate for the bias in the estimates, compared
to the uncompensated RLS estimates. The most significant difference between the
recursive estimates and the RAFS estimates is observed for o;. The Gauss-Newton
estimate of the RFSa is much smoother than the RFSb estimate obtained via the
minimisation of the modified YW cost function. This is an expected result, since the
former weights new data with 1/k, whilst the latter performs a line search at each
time instance, which can result in rapid changes for the estimate of o5. For the RFS
estimates of oy it is also observed, that the projection facility is active for the first 200
recursions, which results in the ‘flat’ periods within this interval. Apart from this, the
RFSb is able to approximate the offline estimate for oy surprisingly well and it seems
to be superior than that obtained by the RFSa. The estimates for o are virtually
identical in all three cases, which indicates that the conjugate gradient method appears
to satisfactorily to track the smallest eigenvalue of Ay,

It is also of interest to compare the YW cost function Vi with its approximation
thn, which has been used for the determination of o; in the case of RFSb. Both are
shown for k£ = 80, £ = 500 and k£ = 2500 samples in Figure 3.2. It is observed that

after 80 recursion steps, oy corresponding to the minimum of Vklin (around oz = 0.25)

5The number of iterations for the minimisation of the YW cost function is not restricted to unity
within this example, in order to obtain the exact offline estimates at each time instance k.

71



3. Gradient-based recursive Frisch scheme approaches

0.4

0.3

0.2

0.1}

0 i i i i i i i i

100 200 300 400 |---offling 100 200 300 400 500

RAFS

-0.6 rrca 08
— a

_Oj ——RFSb| 06

B, K RLS 55%0.4;

0.2

100 200 300 400 500 100 200 300 400 500

100 200 1 300 400 500

Figure 3.1: Estimates of ¥ for system (3.54) using the offline Frisch scheme, RAFS,
RFSa, RFSb and RLS.

is already close to o corresponding to the minimum of Vi (around oz = 0.5). After
500 recursion steps, the difference between both minima is less than 8 - 1072 and for
k = 2500, both minima virtually coincide. These results are in alignment with the good
estimation performance for o in the case of RFSb, which has been observed in Figure
3.1.

Concerning Remark 3.3, it is interesting to investigate how accurate the computa-
tion of 6’5 is, i.e. how exact the least eigenvalue of Ay, can be approximated using the
conjugate gradient method. Therefore, the experiment is repeated where the RFSa’
utilises the same input measurement noise variance estimate as the exact algorithm,
ie. 65 is identical in both cases. The differences in &’5 is then a measure for the ac-
curacy of the subspace tracking algorithm. It turns out that the difference between
both estimates is marginal: after 500 recursion steps, for instance, it is approximately
6 - 10~7 while it decreases to 8 - 10~% after 5000 iterations. This means (at least in the
example considered here) that the RFS algorithms yield estimates of o and o which
seem to converge to the set of admissible Frisch solutions (cf. Section 2.4.3), once the

initialisation transients have decayed. This aspect is further investigated in Section 3.5.

"Since both RFSa and RFSb use the CG-GN algorithm, here, it is irrelevant which algorithm is
chosen.
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Figure 3.2: Comparison of cost function values for V (3.22b) and V;™ (3.44) after
k =80, k =500 and k = 2500 recursions.

3.4 Computational complexity

A recursive identification scheme is usually intended for online usage, i.e. to obtain
estimates while the process under consideration is in operation. Consequently, it is
important to analyse the computational complexity of the scheme. If, for example, the
parameters are estimated at each sample, the computation time required per recursion
is restricted by the choice of sampling interval for the process as well as the utilised
hardware. Hence the analysis of the computational complexity of the RFS algorithms
is an important issue with respect to their applicability in practical situations.

This section provides a detailed analysis of the computational complexity of the
developed RFSa and RFSb algorithms and compares this with the RAFS algorithm

(which is essentially a repeated application of the offline Frisch scheme equations).

3.4.1 RAFS algorithm

A detailed description of the RAFS algorithm together with its computational costs (cf.
Section 2.3.3) is given in Table 3.1. Steps 1 and 2 are initialisations of the algorithm
which are not taken into account, since it is the computational complexity per recursion
(steps inside the loop) that is of interest. The optimisation for the determination of the
‘optimal’ estimate for the input measurement noise variance in Step 3.4 (YW model
selection) iterates only once per recursion, which is done in order to achieve a fixed
number of RAFS flops. If fminsearch (Nelder-Mead simplex method) is used within
a Matlab implementation (MathWorks 2007), this would correspond to setting the
number of maximal iterations to unity.

It is clear that an application of the offline Frisch-YW equations at each time step
k is rather crude and the overall costs are of cubic order with respect to the number of

model parameters ng as observed in Table 3.1.
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Step  Description Procedure Flops
1 Choose n¢, Ak and j ne=na+nps+1,0< A\ <1, 5 =n¢c +np
2 Initialise 6l = ,.0, 0; :T 0, X, = 0, X, =
n<171 Zi:"b‘l’l pip; and v; = 1/(nC - 1)
3 Recursion fork=j7+1,..
ke
3.1 Update vy Y= X 2
3.2 Update X5 SE=3E"T 4y (@k@g - 253_1) O(ng)
3.3 Update ¢, Sk, = SE 4y, (c,@{ - S’g;l) O(n2)
3.4 Update 6, 65 = arg min [|S§,0]3 (via optimisation, O(ny)
costs given per single iteration)
3.5 Update 6 ok = Amin(Ar) O(n3 +n2ny +nj)
3.6 Update 6 solve (f]@ — E¢(&k)) O = oy O(nj)
Overall complexity (dominant parts) O(n3)

Table 3.1: Computational complexity of the repeatedly applied Frisch scheme (RAFS)

algorithm.
Step  Procedure Flops
P
1 L. = k—1%k o) 2
i ngk—lvk"’_k‘l;; (no)
2 =0 (i eldS) Ot

T
3 Py = (Pk_l R ) O(n3)

1— 1—7p
Vi @ng—ka+Tkk‘

Overall complexity (dominant parts) O(n3)

Table 3.2: Computational complexity of RLS using scaled Pj.

3.4.2 RFS algorithms

This subsection provides a detailed listing of the computational costs of the RFSa and
RFSb algorithms.

Recursive least squares

The RFS algorithms are essentially recursive BCLS procedures based on the RLS algo-
rithm. A basic RLS form together with its computational complexity is given in Table
3.2. It is observed that the RLS is of quadratic complexity with respect to the number
of model parameters ng. Note that there exist numerically more robust and efficient
RLS implementations other than the version presented here (Sayed & Kailath 1994a).
For the analysis in this section, however, this is irrelevant since the bottlenecks of the

RFS algorithms lie elsewhere as pointed out below.

YW-GN algorithm

In order to track the minimum of the YW cost function (3.22b), a Gauss-Newton
algorithm has been proposed (Algorithm 3.5). The computational complexity of the
YW-GN algorithm is listed in Table 3.3. It is observed that the bottlenecks for the
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Step  Description  Procedure Flops
@ -1 0

1 Derivative  6," (Ek Y5 (0k— 1)) . O(n3)
br—1
-1 |ap—

2 Derivative 0% = (zk zw(a—k_l)) { g 1} )
0

3 Derivative ;y,i— —(bF_1br_1) /(@ _yax_1) O(ny + na)
4 Jacobian J(U”) :E’Z (9(1’) (“)—1—0(“)) O(no)
-1 T A
5 Update 65 6% = 651 4 [J;W TP I rfr) - O(na)
Overall complexity (dominant parts) O(n3)

Table 3.3: Computational complexity of YW-GN algorithm.

Step  Description  Procedure Flops

. IT @8 Sk, [0k 1+2%<ok D@ 1)]-€E,) 3

! Update o o5 = —fT(a’wzk Sk @r1)R(h—1) O(no)

2 W(p1) = €, — BEO 1 + {o— + % 2‘1} lak—1 0] O(nj)

A T

3 N AR TR - ~

3 K(Vk—1) { ai 1&’;711 al b{_l} O(na)
4 Yo (0no1) = 55 — S5 (64-1) e

Overall complexity (dominant parts) O(n3)

Table 3.4: Computational complexity of the YW-lin algorithm.

Gauss-Newton method are clearly Steps 1 and 2, i.e. the computation of the derivatives

9,(;1) and 9](;3) due to the matrix inversion that is involved being of cubic complexity.

Y W-lin algorithm

The YW-lin algorithm which minimises the modified cost function (3.44) is summarised
in Table 3.4. It is observed here that the bottleneck is, as in the case of YW-GN, the
computation of the matrix inverse E;Ol(&k_l) = <i’; — iéfl)il, which is of cubic
complexity. Therefore, the overall complexity of the YW-lin algorithm is also O(ng)

Conjugate gradient method

For the computation of the output measurement noise variance the least eigenvalue of
the matrix A in (3.2b) is required to be determined. Whilst a complete eigenvalue
decomposition generally requires O(n?) flops with n being the size of the square matrix,
here only the smallest eigenvalue is of interest. For this purpose, the conjugate gradient

subspace tracking algorithm has been proposed. The procedure, which is of O(n?)
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Step  Description Procedure Flops
1 Schur complement A, = flff;y — flff;y% [fliu — 651%] B f)@u% O(n} 4+ n2ny + nani)
2 Eigenvector T = Tp_1+ [Lkz[)k_l O(na)
3 Normalisation 2 = di/ (ﬁ{:@k)l/Q O(na)
4 Update &, ok =&l Apay, O(n2)
5 Residual P = ApZy — &ka O(n%)
6 Geo1 = — (7 Axtr1)/(Pr_1 Artpr—1) O(nZ)
7 Update direction U = P + Gro1r—1 O(na)
8 di = &} A, O(n2)
9 d5 = )i Awihy O(n3)
10 df = &} n O(na)
11 df = il O(na)
12 b = (6kdf — db)” — 4 (dbdf — didb)
x (df — 65d5) 10

13 Optimal step size  ju, = (65} — db + V/dE) / (2 (dbd5 — atab)) 16

Overall complexity (dominant parts) O(n§ 4+ n2ny + nani)

Table 3.5: Conjugate gradient method for tracking smallest eigenvalue o, (CG-RQ
algorithm).

complexity®, is summarised in Table 3.5. Although the conjugate gradient method is, in
general, only of quadratic order, in this particular application O(ng) flops are necessary.
Upon examination of Step 1 in Table 3.5 it becomes clear, that the computation of
the Schur complement of the block matrix i?f,u — 6k1,, is the bottleneck within the
conjugate gradient method. The matrix inversion in (3.2b) requires O(n}) and the

matrix multiplications require another O(n2n; + n@ng) flops.

Overall complexity

A detailed description as well as the computational costs of the RFS algorithms are
given in Table 3.6. Since only the computation of the input measurement noise variance
differentiates the RFSa algorithm from the RFSb algorithm, Table 3.6 encompasses
both cases (cf. Step 6.5). Steps 1 to 5 are initialisations for the algorithm which are
not taken into account since it is the computational complexity per recursion which is of
interest. The remaining steps summarise the computational complexity of the parts of
the algorithm which have been discussed in detail in the previous paragraphs. As in the
case of RAFS, the overall computational complexity of the RFS algorithms is of cubic
order with respect to ng, the number of model parameters to be identified. This would
apparently represent an undesirable feature, since it also raises questions regarding

the effort which has been expended in order to derive a fully recursive version of the

8Linear complexity for the eigenvalue tracking problem can only be achieved for a rank-one update
of the corresponding matrix. However, since the update AA, = Ar — Ar_1 is generally of full rank,
O(n?) flops are required.
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Step  Description Procedure Flops
1 Choose n¢, A\x and j ne=na+np+1,0 < A\ <1, =n¢c+np
2 RLS initialisations 0% =0, P,, =0.11
3 Recursion fork=n.+1,....5
3.1 Data weighting v =1/k
3.2 RLS Compute Ly, é%s and Py as in Table 3.2
4 CG initialisations Obtain ‘guess’ for eigenvector x; associ-
ated with smallest eigenvalue
4.1 Normalised eigenvector z; = z; (xJTxJ) 2
4.2 Update direction Vi = Az — (@TAJ@) T
5 General initialisations 21@5 =0, 2{5 = n<1_1 Z{:an @:ip; and
v =1/(n¢ — 1)

6 Recursion fork=j4+1,..
6.1 Update ~ Ve = Akﬁ“;;l 2
6.2 Update i; XA)Z% = i]lf{l + Vi (cﬁk@f — XAJ’:{I) O(n%)
6.3 Update S¢, i]]g@ = i?;l + Vi (Ck(ﬁz — i?gl) O(n)
6.4 RLS estimate Compute Ly, %% and Py as in Table 3.2 O(n3)
6.5 Computation of &%

either: Compute 6% as in Table 3.3 O(n3)

or: Compute 6% as in Table 3.4 O(n3)

Project 0 < 6% < gax

6.6 Projection

6.7 CG method for Compute 6, as in Table 3.5 O(nj +n2np + nani)

Project 0 > 6’5 > o5

ék = éi‘s + Pkigék_l O(n

6.8 Projection

6.9 Bias compensation

)

2
0
5)

Overall complexity (dominant parts) O(n

Table 3.6: Computational complexity of gradient-based recursive Frisch-YW (RFSa
and RFSb) algorithms. Abbreviation CG denotes conjugate gradient.

Frisch-YW algorithm. Consequently, this aspect requires some further investigation

and analysis which is given in the following subsection.

3.4.3 Computation time comparison

This section compares the computation time per recursion of the RAFS and RFS
algorithms in simulation. The algorithms are applied to a sequence of systems with
an increasing order. To realise such a comparison, the model order, denoted here for
convenience by n £ n, = ng, of the system to be identified is increased incrementally
from 1 to 30. Apart from the system, which is generating the data, a similar setup as in
Section 3.3.6 is utilised. In particular, the signal-to-noise ratio is set to 10dB on both
input and the output, respectively. In addition, the minimum number of instruments
is chosen, i.e. n¢ = 2n + 1. The computation time for each recursion step using a

certain model order is recorded. For each n, the minimum time for 500 recursions is
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Figure 3.3: Computation time per single recursion with increasing model order n
(linear and logarithmic scale).

considered, which helps to reduce the influencing effects of other applications running
in the background of the operating system. In addition, for the RAFS the number
of iterations for the optimisation of Step 3.4 in Table 3.1 is restricted to one. This
is to ensure a meaningful comparison with the RFS algorithms®. The experiment has
been carried out in MATLAB using the Linux operating system Ubuntu, whilst the
hardware consists of an IBM ThinkCentre with Intel Pentium 4 HT processor having
3.6 GHz. The results are shown in Figure 3.3.

It is observed that the computation time per recursion of the RAFS algorithm,
which basically applies the offline equations at each time step k, is greater than the
time required by the RFS algorithms. In fact, for a model order of n = 30, the RFSa
and RFSb approximately require less than one-third (~ 3ms and ~ 3.5ms, respectively)
of the computation time of the RAFS (= 11ms). Comparing the RFSa and RFSb, the
former appears to be slightly faster. The fact that the slopes of the curves correspond-
ing to all three algorithms is similar would indicate that the computational complexity
is of a similar order in all cases. Indeed, this is in agreement with the theoretical re-
sults obtained in this section; namely that all three algorithms are of cubic complexity.
Although the RAFS and the RFS algorithms are of cubic complexity, the computation
time can be significantly reduced by utilising the latter gradient-based recursive algo-
rithms. The overall complexity of the RFS algorithms can be further reduced towards
quadratic order by introducing various approximations. The resulting novel algorithms

are derived and analysed in Chapter 4.

9In fact, to run one iteration as a new data set arrives is a natural step within recursive schemes.
However, in this case, the RAFS will not yield identical results with respect to the offline algorithm,
which is the reason why the number of iterations was not restricted in the previous simulation.
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3.5 Frisch-character of recursive estimates

In contrast to other bias-compensating approaches, the solution of the Frisch scheme is
uniquely characterised by the set of admissible solutions given by the convex curve in the
noise space as illustrated in Figure 2.2. This curve is defined by (2.39b) and ensures that
given an input measurement noise variance o, the output measurement noise variance
oy is selected such that the data becomes compatible with the chosen EIV model
structure. As outlined in Remark 3.3, however, this Frisch-character (cf. Definition
2.1) of the solution holds only in an approximate sense when the RFS algorithms are
applied. The reason for this is that in the recursive scheme, equation (3.15) is replaced

by the subspace tracking algorithm given in (3.15)-(3.19), which can only approximate

k
]
(3.10) and, as a consequence, will subsequently affect 62"'1. This means that the point

the smallest eigenvalue of Ay, In addition, the error in &% is propagated to ék due to

(&g,&’yf) can no longer be guaranteed to lie on the convex curve in the noise space.
Section 3.3.6 has briefly investigated this issue by observing the difference between
oy computed by (2.46b) and the conjugate gradient method for a particular example.
This section investigates in somewhat more depth the question of how well the RFS
schemes can retain the Frisch-character of the solution and, furthermore, how this can
be measured online. Note that the interest in the Frisch-character of the solution is
rather of an academic nature and might be considered as being of secondary importance
for a practical application. However, it provides additional insight of how well the
recursive algorithms are able to approximate the offline Frisch scheme.

Consider the following example.

Ezample 3.1. A LTI SISO EIV system is given by (cf. (2.4a) and (2.9))

9:[—1.5 0.7 1 0.5] (3.55a)

o= |2 1]T (3.55)

with n, = ny = 2, whilst n¢ is set to ng. For this setup, the signal-to-noise ratio
for the input and output is given by 0.1dB and 23.1dB, respectively. The search for
the input and output noise variances is restricted to the interval 0 < &g < 203 and
0< 6’5 < 20y, respectively, which helps to stabilise the recursive schemes during the
initialisation phase. Since a LTI system is considered, the forgetting factor is chosen
to be A\ = 1 for all k. The system is simulated for 100 samples and the RAFS and
RFSb are applied to estimate ¥ recursively!®. In addition, at each time instant k,
the convex curve in the noise space is computed using (2.46b). The set of convex
curves generating a hypersurface in R? as well as (6’5, 6’5) for both RAFS and RFSb
are shown in Figure 3.4. It is observed that the hypersurface is ‘erratic’ during the

initial phase of the experiment, which is due to finite sample effects. As expected,

10Gince the Frisch-character depends on the computation of &;—j, only one RF'S algorithm is considered.
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Figure 3.4: Convex curve in the noise space evolving with k& discrete-time steps.
The black solid line corresponds to the estimates (6% 6’5 ) of the RAF'S,

o

whereas the grey line corresponds to the RFSb algorithm.

with an increasing number of samples the surface becomes smoothed since the effect
of single samples becomes less significant. For the estimates of (aflj, ag), it is observed,
that whilst the black line corresponding to the noise variance estimates computed by
the RAFS lies exactly on the hypersurface, the estimates obtained from the RFSb
algorithm are considered as providing an approximation only. This observation is more
evident during the first 20 runs of the algorithm, where the ‘peaks’ of the grey line
corresponding to the RFSh, see Figure 3.4, depart from the hypersurface. [

Example 3.1 has shown the a loss of the Frisch-character in the case of the recursive
Frisch scheme. However, it is not evident from Figure 3.4 how close the estimates of the
RFSb algorithm approximate the hypersurface with an evolving number of samples. In
order to make a quantitative statement, appropriate measures need to be introduced.
Note that satisfying the Frisch-character of the estimates basically depends on how
accurate the smallest eigenvalue of Ay, can be computed. One possible measure could
be based on the difference between the ‘exactly’ and ‘approximately’ determined output
measurement noise, as has been utilised in Section 3.3.6. This measure is denoted ¥

and is given by

2
Fh2 <a’; - &’5) , (3.56)

where 6"5* is computed via (2.46b) at each time instant & (as in the RAFS) whereas 6’5

is obtained by the conjugate gradient method. This corresponds to the squared vertical
distance between the point (6%, %) obtained from the RFSb and the hypersurface. A

'’y

more general possibility could be to compute the smallest eigenvalue of

. . 55T 0
Sk (6k) = SF — [Uy Mot ] , (3.57)
b
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Figure 3.5: Different measures for assessing the Frisch-character of the RFS solutions.

which yields

B 2 A (S5, 00)) (3.58)

Recall that the aim of the Frisch scheme is to choose Ulyf, such that

Sk (6%)0k =0 (3.59)

holds, i.e. that ZA)ZK%O is singular positive semidefinite, which means that its smallest
eigenvalue is equal to zero in the exact case.

However, the measures F' and F} are somewhat of an academic nature since the
exact eigenvalue computation is aimed to be avoided within the recursive algorithms.
Recall that an eigenvalue decomposition is, in general, of cubic complexity. Hence,
the use of these measures within the recursive algorithm appears to be impractical
for monitoring the Frisch-character online due to its computational costs. A more
suitable possibility could be to monitor the quantity 7 in (3.16a), since the residual
provides information about the ‘quality’ of the conjugate gradient algorithm. Hence,
the residual contains information about the Frisch-character of the RFS estimates and

a third measure may be given by
k ~ 12
F5 £ [|7ell3, (3.60)

which can easily be computed online. The following example compares these measures

in simulation.

FEzample 3.2. Consider the system of Example 3.1 using 500 recursions. All three
performance measures for the Frisch-character are shown in Figure 3.5. It is observed
that all measures exhibit a similar trend and tend towards zero with evolving k. The

value for Flk , 1.e. the squared error between the exactly computed eigenvalue and that
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computed using the conjugate gradient method, is around 1070 after 500 recursions.

In addition, FQk and Ff are around 10 - 1074 and appear to be very similar. |

Since the ‘cheaply’ computed measure Fgf“ is very similar to FQ’I‘C and exhibits a similar
trend to Flk , it lends itself as it a good candidate for monitoring the Frisch-character of
the solution. In fact, only n, 4+ 1 additional flops are required to compute Fgf“, since 7
is readily given by the conjugate gradient method. In addition, the fact that all mea-
sures tend to zero with increasing k indicates that, at least in the example considered,
the solution of the RFSb scheme can approximately retain the Frisch-character of the

solution, after the initialisation transients of the recursive scheme have decayed.

3.6 Critical appraisal and discussion

So far, recursive expressions for the computation of the Frisch-YW solution have been
obtained. This section critically reviews the previous development and discusses poten-
tial shortcomings of the RFSa and RFSb algorithms while simultaneously evaluating
the potential for improvements. Most of the ideas within this section are not considered
further within this thesis, but indicate several directions for future work. Some aspects,
concerning the reduction of the computation complexity, provide the motivation and

lay the foundation for parts of the next Chapter.

3.6.1 Computation of o

The output measurement noise variance is given as the smallest eigenvalue of the matrix
A, le.

Apzy, = &gzck (3.61)

where zj is the eigenvector corresponding to the eigenvalue 6’5. The requirement to
compute the eigenvalue in a recursive manner prompts the need for subspace tracking
algorithms. These usually track the eigenvector zj from which the eigenvalue is deduced
via the Rayleigh quotient. In this chapter, a conjugate gradient method coupled with
a line search has been utilised for this purpose. However, there exists a rich collection
of subspace tracking algorithms within the literature which could replace the conjugate
gradient method. Indeed, it is stated in (Feng & Owen 1996) that the conjugate gra-
dient method is mainly the preferred choice for large scale problems, and that in the
case of low dimensional problems (such as in the Frisch scheme where the eigenvalue
of a n, + 1 square matrix is to be determined) the inverse power iteration method is
the recommended choice. However, the (iterative) conjugate gradient method exhibits
good convergence properties, which justifies its choice for the RFS algorithms: The
conjugate gradient method is globally convergent, when it is utilised for the minimisa-

tion of the Rayleigh quotient in an iterative manner (Yang 1993). It is also shown in
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(Yang 1993), that the algorithm converges globally in a finite number of steps, provided
the initial eigenvector estimate Iy contains an eigendirection of the true eigenvector.
For the recursive CG-RQ algorithm within the RFS schemes, this means that repeated
iterations at time k would not only improve the approximation of the smallest eigen-
value, but could eventually yield the exact solution (if desired). This would, in turn,
imply that the Frisch-character is exactly satisfied.

Different approaches to estimate the output measurement noise variance are also

k

5 1s part of

feasible by exploiting the fact that the eigenvector xj corresponding to &

the parameter vector 6, as outlined in the following lemma.

Lemma 3.3. The eigenvector of Y, corresponding to the smallest eigenvalue equal

to zero is given by #, whilst the eigenvector of
-1
AL35 — 35,00 [Bew — 0ilny) ™ Seup, (3.62)
corresponding to the minimal eigenvalue oy is given by a.
PRrROOF. Since
Y50 =0 (3.63)

holds, it is clear that the extended parameter vector @ is the eigenvector of Y5, corre-
sponding to the zero eigenvalue.

For the second part of the proof, (3.63) is re-expressed in block matrix form as

R 360
Esou@y E‘Pu - UﬂInb b

where the second block row yields
b=—[Sp, — 0aln,] " Spup,a (3.65)
Substituting b in the upper part of (3.64) gives
<E¢’y — Zayeu (B, — Uafnb]_l Ecpu@y) a = oga, (3.66)
which concludes the proof. ]

Taking the result of Lemma 3.3 into account, it becomes apparent that an estimate of
ay, is computed twice within the RFS algorithms: firstly within the conjugate gradi-
ent algorithm (the eigenvector &, which has to be scaled such that the first element
becomes unity) and secondly within the bias compensating RLS scheme (G within
ék) Consequently, there seems to be scope for improvement for a more efficient RFS

implementation. This is investigated further in Chapter 4.
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3.6.2 Minimisation of the YW cost function

One of the identified bottlenecks of the RFS algorithms in Section 3.4.2 is the com-
putation of 6’5. This requires O(ng’) flops in its present form and this would appear
to be not particularly attractive for a recursive scheme. By making use of stationary
iterative least squares techniques (as implemented within the RBCLS; see also Section
2.3.1), it is, however, possible to reduce the overall computational complexity for both,
the YW-GN and the YW-lin algorithms from cubic to quadratic order. This is also
investigated further in Chapter 4.

3.6.3 Relationship to iterative bias eliminating schemes

Remark 3.6 has highlighted the close relationship between the iterative BCLS tech-
niques and the novel RFS algorithms developed in this chapter. The underlying idea of
the iterative BCLS algorithms is that of recursive bias compensation via RLS, when the
noise variances are known. Iterative/recursive bias eliminating least squares (BELS)
algorithms (Zheng & Feng 1989, Zheng 1998) also utilise the RBCLS concept. In ad-
dition they estimate oz and oy in a recursive fashion. Consequently, the computation
of # within the BELS and RFS algorithms is identical and the only difference is the
manner in which o3 and oj are computed. Moreover, it has recently been shown in
(Hong & Soderstrom 2008) that the Amin-equation (3.1b) for the determination of oy
and the expression used within the BELS algorithms are both equivalent. In addition,
the extended model within the BELS can be chosen in a manner, such that the resulting
equations for oz become identical to the YW equations. In this particular case, BELS
and Frisch-YW use the same equations. This highlights the very close relationship of
both approaches and shows, in fact, that the only difference between the Frisch-YW
scheme and the BELS with an appropriately chosen extended model is only of an al-
gorithmic nature. This implies that the asymptotic accuracy of these methods (in the
case of convergence) is also identical. However, it has been shown in (Séderstrom, Hong
& Zheng 2005) that the iterative BELS implementation might suffer from convergence
problems in the cases of low signal-to-noise ratio. So far, the convergence properties
of the RFS algorithms have not been investigated, but it would seem likely that they

might suffer from the same problems.

3.6.4 Computation of 0

As outlined in Section 3.6.3, the RBCLS algorithm for the determination of 0, which
is based on the principle of stationary iterative methods for LS, might suffer from
convergence problems in the case of low signal-to-noise ratios. In order to investigate

this issue (at least via simulation), the following example is considered.

FEzample 3.3. Consider a similar setup as in Section 3.3.6, i.e. the system is defined
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Figure 3.6: Mean square error of the RFSa and RFSb estimates for different signal-
to-noise ratios.

once again by

T
0=|-15 07 1 05| , (3.67)

whilst n¢ = ngq +np + 1, A = 1 and the input is a zero mean, white random process of
unity variance. Three different signal-to-noise ratios (equal on input and output) are
considered: 10dB, 5dB and 0dB. The system is simulated for N = 500 samples and the
RFSa and RFSb algorithms are applied to estimate 1 for 100 Monte-Carlo simulations.
At each Monte-Carlo run, the mean squared error (MSE), defined by

MSEy & ——2 (3.68)

is computed and stored. The results are presented in Figure 3.6. It is observed that
for the cases of 10dB and 5dB, the MSE lies within acceptable regions, although its
average is larger in the latter case, which is expected due to the increased noise level.
For the case of 0dB, however, several outliers are observed, indicating the divergence
of the recursive scheme. Although a noise level of zero dB might be rather unrealistic
in practice, the example shows that the RFS algorithms, in their present form, cannot

guarantee convergence in general. [

Example 3.3 shows that the RFS algorithms seem to suffer from convergence prob-
lems for low signal-to-noise ratios. Therefore, it appears reasonable, to consider al-
ternative approaches for the computation of the bias compensated parameter vector.
Indeed, if the RBCLS algorithm is replaced with a numerically sound algorithm (e.g.
with the offline LS as discussed below), the modified RFS algorithms show no diver-
gence when applied to Example 3.3. Some potential alternatives to compute ék, which

are, however, not further investigated within this thesis, are listed as follows.
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1. (LS) The LS method can be applied to solve the bias compensated normal equa-

tions in an offline manner at each recursion, yielding the minimum norm solution
b = (85— 2u60)) &
k= © @(Uk) é.apy' (369)

Such an approach is feasible since the number equations is fixed (not growing
with time). A potential drawback could be that of the increased computational
costs since the computational complexity of the LS algorithm is generally of cubic

order. This requires, however, some further investigations.

2. (Matrix factorisation) It is possible to represent the covariance matrices in
factorised form using Cholesky decomposition or UD-factorisation. Whilst this
is known to improve the conditioning of the problem, it also allows an easy in-
troduction of regularisation (Ljung 1999, p. 383). Since the bias compensation
can be regarded as a form of de-regularisation (constants are subtracted from the
diagonal rather than added as in the case of regularisation), the use of matrix
factorisations should provide the means for a more robust recursive bias compen-

sation (rather than using the technique of stationary iterative LS as in the case

of the RBCLS).

3. (Eigendecomposition) As outlined in Section 3.6.1, a is already estimated
within the conjugate gradient subspace tracking algorithm as the eigenvector of
Ay, corresponding to the eigenvalue oj. From (3.64) it is observed, that b could

be determined by solving the overdetermined system of equations

[ E@y‘ﬁu ] b=— [(E(Py B UgIna+1)] a. (370)
(=

Pu Uﬂ[nb) E‘Pu@y

If LS is utilised to estimate b, the problem reduces to O(n}) (in contrast to O(nj)

as in the direct LS approach of Point 1 above).

Whilst a further investigation of the convergence properties of the RFS algorithms
is not considered within this thesis, the above points are interesting candidates for

immediate further work.

3.6.5 Extension to other Frisch scheme forms

Recall from Section 2.4.3 that the YW cost function is only one possibility to single out
(or choose) a model from the set of admissible Frisch scheme solutions. The YW crite-
rion has been chosen within this chapter, since the required covariance matrix 3¢5 can
be obtained recursively in a straightforward manner and without loss of information. In
contrast, when use is made of the covariance-match (CM) criterion, the auto-covariance

sequence of the residuals is required to be updated. Indeed, the residuals at time k
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cannot be computed recursively, since they require the knowledge of the entire data
sequence {ui,yi}le. However, it is possible to approximate the residuals within the
recursive scheme using the current data and the most recent estimate of 6, which allows
a finite dimensional data vector to be stored (cf. Meyer et al. 2006, Linden et al. 2006).
A similar philosophy is also used within the recursive prediction error methods for the
determination of the gradient (see Ljung 1999, p. 371). Consequently the developments
within this chapter require only minor modifications in order to handle the Frisch-CM
case. The development of recursive Frisch-CM algorithms is, therefore, another topic

of potential further work.

3.7 Concluding remarks

The Frisch scheme for dynamic system identification, which utilises the Yule-Walker
(YW) model selection criterion, has been modified to recursively estimate the parame-
ters and measurement noise variances of linear time-invariant single-input single-output
errors-in-variables systems. Two recursive algorithms have been developed which are
denoted RFSa and RFSb, respectively. The system parameter vector is obtained by
making use of the recursive bias compensating least squares (RBCLS) principle, which
removes the asymptotic bias of the recursive least squares (RLS) estimates at each time
instance. The eigenvalue problem, which is required to be solved for the determination
of the output measurement noise variance, is recursively computed by making use of
a conjugate gradient method. For the computation of the input measurement noise
variance, the YW cost function is required to be minimised at each recursion step. In

order to achieve this, two approaches have been considered within this Chapter:

1. A Gauss-Newton algorithm, denoted YW-GN, which makes use of approximate

first and second order derivatives.

2. A steepest gradient algorithm, denoted YW-lin, where the optimal step size is
determined via a line search. When linearisations of the offline Frisch scheme
equations are utilised to approximate the gradient, this approach is equivalent to
minimising a modified cost function, where the Frisch equations are replaced by

their linearisations around the most recent estimates.

These two techniques for the determination of the input measurement noise variance
have led to the proposition of two recursive Frisch scheme (RFS) algorithms, which
are denoted RFSa and RFSb, respectively. These algorithms have been compared with
the offline Frisch scheme in simulation, illustrating that they are able to approximate
the offline Frisch scheme estimates. A detailed overview of the utilised algorithms and
sub-routines of this Chapter is given in Table 3.7.

The computational complexity of both recursive algorithms has been analysed in

terms of floating point operations (flops). It is shown that the recursive algorithms are
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Alg. Name Description
3.1 RAFS Repeatedly applied (offline) Frisch scheme.

3.2 RBCLS  Recursive bias compensating least squares algorithm. Compensates for the RLS
bias at each recursion.

3.3 RLS Normalised gain RLS. Scales the covariance matrix, such that P = [XAJ’;]*I.
3.4 CG-RQ  Conjugate gradient algorithm which tracks the minimum of the Rayleigh quotient.
3.5 YW-GN  Gauss-Newton algorithm which tracks the minimum of the YW cost function.

3.6 Y W-lin Gives closed-form solution of minimum of modified YW cost function, which makes
use of the linearised Frisch scheme equations.

3.7 RFSa First recursive Frisch scheme algorithm. Uses the RBCLS, CG-RQ and the YW-
GN.

3.8 RFSb Second recursive Frisch scheme algorithm. Uses the RBCLS, CG-RQ and the
Y W-lin.

Table 3.7: Overview of developed algorithms for Chapter 3 (Abbreviation Alg. de-
notes Algorithm).

of cubic complexity with respect to the number of system parameters to be estimated,
i.e. they require O(ng) flops. The corresponding bottlenecks of the RFS algorithms
have been identified and pointed out. Whilst the order of complexity of the recursive
algorithms is identical to that of the repeatedly applied offline Frisch scheme (RAFS),
it has been shown in simulation, however, that the recursive algorithms reduce the
absolute computation time per recursion significantly. Therefore, the recursive schemes,
which have been developed within this chapter, would appear to be more suitable for
a practical online implementation.

In addition to the computational complexity, the so-called Frisch-character, which
is a unique feature of the offline Frisch scheme, has been analysed when use is made
of the RFS algorithms. Since a subspace tracking algorithm is utilised to approximate
the output measurement noise variance, the Frisch-character of the solution holds only
approximately for the recursive algorithms. Different measures have been introduced
to quantify the Frisch-character of the recursive solution, and its efficiency for online
computation has been discussed. It has been shown that this characteristic may be
reflected by the residual, which is computed by the conjugate gradient method implic-
itly. Hence, a computationally inexpensive measure for the Frisch-character is available
online. A further numerical example has shown, at least in the specific case considered,
that the recursive algorithms are able to retain the Frisch-character after the initialisa-
tion transients have decayed. Hence, the developed algorithms are able to approximate
the offline solution reasonably well.

Finally, a critical appraisal and discussion has highlighted potential shortcomings of
the recursive schemes. Directions for further refinement have been outlined concerning
the reduction of computational effort. Moreover, a Monte-Carlo simulation has revealed
that the recursive algorithms appear to suffer from convergence problems in the case

of low signal-to-noise ratios. Alternatives have been discussed, in order to potentially
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improve the convergence properties of the algorithms, which provide the bases for
further developments. A thorough convergence analysis for the RFS algorithms also
remains an interesting topic for future work. Finally, the very close relationship of the

RFS algorithms with existing iterative bias-eliminating schemes has been discussed.
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R voveann Auxiliary vector

Hi oot Auxiliary matrix

J(oa) ..., Jacobian (of residual s () with respect to og )

Jr o Auxiliary matrix

Lo(¥) ....... Linearised #-equation of Frisch scheme

Loy(9) - Linearised Amin-equation of Frisch scheme

LE Recursively computed derivative of Lg (1)

MSEg ....... Mean square error

N(A) ....... Nullspace of matrix A

Py oo Scaled covariance matrix obtained from recursive least squares
re(0) ... Residual of Yule-Walker cost function

EIC) Auxiliary vector

S@) ........ Auxiliary matrix

VE Cost function for the determination of oy (coloured output noise case)
Vlkl, V1k” R First and second order derivative of V/*

vino YW cost function using linearised Frisch scheme equations

Ve Cost function for the determination of ay (coloured output noise case)
ngl, ng” R First and second order derivative of Vi

Vis coviiii Asymptotic least squares criterion

Th eeeennnnnn Eigenvector corresponding to Ap

[0 7 R Scaling factor

Ok wvvnnneenns Extended instrument vector comprising delayed inputs

Of veeeeeannn Obtained by deleting last entry in dx

W(0) o Auxiliary term

7(0) ot Auxiliary term

K(9) ool Auxiliary term

PG e Vector of auto-correlation terms of gy,

C v Input measurement noise variance (obtained by Amin equation)
ék_% ........ Intermediate estimate of 6

0,(;]) ......... Approximate derivative of ), with respect to (3';—;

0,(;1) ......... Approximate derivative of 0, with respect to 6%

O ... Augmented parameter vector for coloured output noise case
Chovevneeanns Instrument vector comprising delayed inputs

Preliminary reading: Sections 2.2, 2.3, 2.4.3, 2.4.4, 3.3, 3.4.

4.1 Introduction

Chapter 3 has developed algorithms for the online computation of the estimates ob-
tained by the Frisch scheme, which utilises the Yule-Walker (YW) model selection
criterion (Frisch-YW). Whilst the simulation results are promising, the computational
cost of the recursive Frisch scheme (RFS) algorithms is of cubic order. Consequently,
with respect to practical applicability, it is considered to be pertinent to investigate
potential improvements to reduce the computational complexity. Section 3.6 has al-
ready identified the bottlenecks within the RFS algorithms and the first part of this
chapter develops two novel algorithms with reduced computational costs. In order to

gain computational speed, sacrifices are made by utilising additional approximations,
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which will effect the estimates to be obtained. The fast RFS (FRFS) algorithms are
compared via simulation with the RFSa and RFSb algorithms, which have been devel-
oped in Chapter 3. The very close relationship of the developed FRFS algorithms to
the family of bias eliminating least squares (BELS) algorithms is also discussed. The
development of the FRFES algorithms is based partly on the author’s work published in
(Linden, Vinsonneau & Burnham 2007b).

In the second part of this chapter the assumption of the output noise being white
is relaxed and the development of recursive algorithms for coloured output noise is
considered. First an algorithm is proposed, which uses Newton’s method, based on the
offline Frisch scheme for the coloured output noise case, which has been developed in
(Soderstrom 2006). This initial algorithm leads to a rather computationally demanding
scheme, due to the computation required to obtain the first and second order deriva-
tives. A second approach takes into account some recently proposed simplifications
of the offline scheme (Séderstrom 2008). In addition, it makes use of the particular
bilinear parametrisation structure for the subproblem, which is concerned with esti-
mating the input noise variance. From a computational perspective, this yields a more
appealing algorithm. Both approaches are compared via a simulation example. Parts
of this work have been published in (Linden & Burnham 2008a).

4.2 Fast recursive Frisch scheme algorithms

This section develops fast variants of the RFSa and RFSb algorithms which have been
developed in Chapter 3 (cf. Section 3.3.5). The bottlenecks for these algorithms have

been identified in Section 3.4 and are summarised as follows.

e The computation of gz within the RFSa algorithm is achieved via the YW-GN
algorithm. The computational complexity of this algorithm is of cubic order due
to the computation of the derivatives of 6, with respect to o3 and oy, denoted

alga) and 9,(;7), respectively, which requires the inversion of the matrix E;&(&k,l) =

. . -1
<Efz - Eéfl> (cf. Steps 1-2 in Table 3.3 on page 75).

e The computation of oz within the RFSb algorithm is achieved via the YW-lin
algorithm. The computational complexity of this algorithm is of cubic order also

due to the inversion of E;&(&k,l) (cf. Step 1 in Table 3.4 on page 75).

e The computation of o within both RFS algorithms is achieved via the CG-RQ
algorithm. The computation of the Schur complement Ay, is of cubic complexity

due to the inversion of a n, x n, matrix (cf. Step 1 in Table 3.5 on page 76).

Consequently, alternative approaches are suggested within this section, which avoid the
matrix inversions, thereby reducing the computational complexity of the algorithms

from cubic to quadratic order. In addition, the similarity of the resulting algorithms
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with existing bias eliminating least squares (BELS) approaches is highlighted and a
numerical simulation study compares the novel FRFS algorithms with the RFS algo-

rithms, which have been developed in Chapter 3.

4.2.1 Fast YW-GN algorithm

In Section 3.4 the bottleneck within the Gauss-Newton method has been identified to

be the computation of the derivatives

o = (3 - ar0) [ " ] , (4.12)

br—1
X . A 1 [a.
s .

Due to the matrix inversion involved, the computations are of cubic complexity, i.e.
O(ng’). However, it is straightforward to derive a less computationally demanding
recursive expression of (4.1), by making use of the principle of stationary iterative
least squares (see Section 2.3.1), where the matrix splitting is given naturally by f]f; —

Y3(6%—1). Focusing on the computation of Hl(f), (4.1a) may be re-expressed as

0" = [%]_1 ( b

0

k—1

~

+ 2¢(&kl)e,§ﬂ>> (4.2)

which can be solved in a recursive way. Note that it is not necessary to compute the ma-

trix inverse explicitly since it corresponds to Py within the RLS algorithm (see (3.12)).

)

Proceeding with Hl(cy in a similar fashion, recursive formulations for the derivatives are

then given by

Ql(gu) =P ( “ + E@(@'kl)él(f_)l> , (4.3&)
br—1
0 = P, ( W 2@(@4)%%) ) (4.3b)

where the notation ~ is introduced, in order to distinguish between the recursively com-
puted gradients and the non-recursive gradient computation given in (3.34a)-(3.34b).
Note that only O(n3) flops are required for the computation of (4.3). The correspond-

ing Gauss-Newton algorithm is denoted YW-GN-fast and is summarised as follows.

Algorithm 4.1 (YW-GN-fast).

~

ko k1 ®T ] T
O =04 — Yk "Jk Jk “ Jk V“k(ak,l) (4.4&)
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Step  Description  Procedure Flops
oy T wlm
1 Derivative Gl(cu) =D {0 8{_1} + Z@(&kﬂ)@;(cu_)l O(nj)
o T ol
2 Derivative 9](;’) =Py {&5—1 0] + E¢(a—k_1)9,§y_>l O(n3)
3 Derivative o) = —(bf_1bx—1)/ (G} _1r-1) O(np + na)
T A~ o~ ~ o~
4 Jacobian J = X8, (Gl(gy)o-g’j‘ll + 9,(;)) O(ng)
1 R
5 Update 65 6% =61 + 4 [J,E”TJ;”] I r(b1)  O(no)
Overall complexity (dominant parts) O(n3)

Table 4.1: Computational complexity of YW-GN-fast algorithm.

I =5k, (000 + o) (4.4b)
ok = —(bi_ b)) (@ 1ax) (4.4c)

o(s 0 R o
0 =r| |, + Sp(En- )0 (4.4d)

br—1

i Gr_ R -
Hé) =P, < ko by 2¢(ak1)9,§”1> (4.4¢)
re(Op—1) = il&ék—l - écécy (4.4f)

For completeness, the computational complexity of Algorithm 4.1 is given in Table
4.1.

The next subsection considers a fast implementation of the YW-lin algorithm.

4.2.2 Fast YW-Ilin algorithm

Before developing the fast algorithm it is instructive to begin with a brief review of the
YW-lin algorithm. Then, the two bottlenecks within this algorithm are pointed out

and modifications are proposed to reduce the computational complexity.

Review of the YW-lin algorithm

Recall from Section 3.3.4 that within the YW-lin algorithm, o is obtained by minimis-

ing an approximation of the YW model selection cost function (3.44)

2

: (4.5)

2 e 1ot
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where the residual is given by
- (Lg(ﬁk,1)> = SELy(0 1) — €. (4.6)

The linearised bias compensating least squares equation is given by (3.29)

Lo(I-1) = O + S5 (61-1)e(Dr—1) + 50 (G5-1)R(1-1)57, (4.7)
with
. e | bl by 7
_ ¢k k ~k—1 k—1Y%—1 . —1| | k-1
L(ﬁkfl) - é.@y - Ewak—l + Ug] + m(fﬁ ] [ 0 ] s (48&)
. BUSUSYSN
K(Op_y) = | @Fadsa " (4.8b)
br—1
S0 (Gk—1) = X8 — S5 (63-1).- (4.8¢)
The update equation for oy is then obtained by solving (3.45)
dvlin . .
0= "t = I (b (Lo(dn)) (4.9)
for oy, where the Jacobian is given by (3.48)
oy AL
kN Sk 0

First bottleneck

The first bottleneck of this YW-lin algorithm is due to the computation of the total
derivative of Ly, which has been given by (3.49)
dLyg 1. A
5k = Yoo (Ok—1)K(Fk-1), (4.11)
u
where the matrix inverse E;Ol is required to be computed at each recursion step. How-
ever, by making use of stationary iterative methods for solving LS problems (cf. Section

2.3.1), (4.11) can be re-expressed as

— = I{(ék—l), (4.12)

where the matrix splitting is given naturally by (4.8c). An iterative/recursive way to

compute dLg/ d&lg could therefore be given by

LE 2 P [k(De) + Zp(or) L (4.13)

95



4. Fast algorithms and coloured output noise

where L’gl denotes the recursively computed derivative and P, = [i’;]*l is given by the

matrix inversion lemma of the RLS algorithm (see Algorithm 3.3).

Second bottleneck

The second bottleneck within the YW-lin algorithm is due to the matrix inverse within
the computation of (4.7), therefore, a recursive expression for Lg(@k,l) is required.
Firstly, introduce the notation Lg(@k_l) S L’g, where the index k is chosen to reflect
the fact that L% corresponds to the linearisation at time instance k (although it depends
on the estimate J,_; with time index k — 1). Secondly, assume that all past 6, have
been computed using the expression (4.7), which means that ék can be replaced with
L§ in (4.7). Thirdly, from (4.8a) and (4.8b) it holds

. R . s ) Q
~k k k Ak—1 k—1Y%—1 p—1| [@k—1
L(Og—1) + £(Ok-1)0g = Eoy — Vb1 + |0 + =03
( ) ( ) u Y © g a;{,lakq u 0
?gfll}k:—l ~
+ aj_y k-1 ! 5’5
br—1
~ I;g,li)k:—l A~
_ fk Sk k=1] ~k—1 aT o Gk=1| ~k—1
=&y — Bolk—1 + 0 o5 | Th1% oy
0

bT bp_q .

k1t ly 1| g 0 ik

+ p 1 0k—1 oz + |- Ogs (4.14)
0 br—1
; ik ak—1 Ak . ~k—1 s A k-1 :
and by assuming that o7 ~ 65", o = 0 and using 01 = L, ", one obtains
Rl 0
3 3 k. Ck krk—1 Oydng k—1
L(ﬂkfl) + ﬂ(ﬁkfl)aﬁ NSy — EchG + ST ] L9 (415)
u” "o

Finally, by substituting (4.8c) and (4.15) into (4.7), it holds

(55 = Sp(on1)| b = S5 - Splon)| ™ + €k, — SELET! + Sp(a0) L, (4.16)
which simplifies to
[ii — E@(é’kfl)} ng = —E@(é’kfl)[;lg_l + éf;y + 2@(614:)[/2_1 (417)

Thus, a recursive computation of the linearised f-equation is given by

SELY ~ Sp(p-1)Ly " — Sp(6e-1) Ly + &5, + Sp(on) Ly
& Ly~ [SE)7E, + 25 s (6n) Ly (4.18)
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which interestingly is, indeed, the recursive bias compensating least squares (RBCLS)
algorithm given in Section 3.3.2 (i.e. simply replace 0, with ng in (3.10)). Since
the recursive computation of L’g is identical to the RBCLS computation of ), the
latter, more familiar, notation can be utilised. Substituting the linearised Apiy-equation

(3.27b), with the linearisation carried out around Jj_;, the RBCLS equation becomes

i ALS g
Hk = Hk + Pk AZ]/C
abk—l
. 0 g b by b by
kD PR I B ) e P e L 1 E
br—1 0 ay_10k—1 ap_10k—1
(4.19)
which simplifies to
ék = PkZ(ngfl) + Pkﬂ(@kfl)é'g, (4.20)
where k(Jj_1) is defined by (4.8b) and
A « a bl l;k;—l
(D) 2k [ gkt g Zh L g1 4.21
L( k 1) gcpy 0 Uy a}{fldk—lau ( )

Fast update

Using the previous results, a fast implementation of the YW-lin algorithm can be
realised. With the Jacobian at time instance k being given by (cf. (3.48))

Je 2 8L LE (4.22)

it is therefore possible to solve (4.9) as

0
& JISE |Pie) + P )ok] = ITEE,
;

= JESE Py 1)o% = JF [é’gy - i’gwpkz(@k,l)] . (4.23)
and the fast update for 65 is finally given by

Tk Sk p (4
&’f:Jk éﬁﬁ ngplib(ﬁk_l)] (4.24)
ngprkﬁ(ﬁkq)

The new algorithm, denoted YW-lin-fast, can be summarised as follows.
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Step  Description  Procedure Flops
1 Update 68 &% = JT [égy - 2’5¢sz(z§k_l)] JITSE Puk(Dk—1)  O(nd)
9 _ b br_1 . T ’
2 K(0k-1) = |-z ar—1 bi_y O(na)
A _19%k—1
3 _ kK k1, bF_1bk—1 igk—1] 14 T
3 (k1) =&y + |05 + g3, 0a  |lax-1 0" O(ne)
4 Jacobian Ji = 2’5¢L’g' O(n3)
5 Derivative L = P [n(ﬁkfl) + E(,;(&k,l)L]g_l/] O(nj)
Overall complexity (dominant parts) O(n3)

Table 4.2: Computational complexity of the YW-lin-fast algorithm.

Algorithm 4.2 (YW-lin-fast).
K T éé?y N zA)/lgcppk‘Z(@k‘f1)] (4.253)
oy = - - 25a
“ nglgippkﬂ(ﬁkfl)
5 —Md/ﬁ—l
K(Dp_1) = | Sy (4.25b)
br—1

~ ~ lA)T i)k_l 1 &k:—l
(1) 2 €8, + o571+ gkt 4.25¢
( k 1) &py g dgfl&kfl i | 0 ( )
Iy =Sk LY (4.25d)
' = p, [ﬁ(ék_l) + B (6p_1)LEY (4.25¢)

The number of flops for Algorithm 4.2 are listed in Table 4.2, where a reduction from
cubic to quadratic complexity is observed (cf. Table 3.4 on page 75). Consequently,
the computational complexity for determining O'g has been reduced by one order of
magnitude.

The next subsection addresses the bottleneck within the conjugate gradient sub-

space tracking algorithm.

4.2.3 Alternative computations for o;
Rayleigh quotient based approach

The RFS algorithms utilise a gradient-based subspace tracking algorithm, namely the
conjugate gradient method described in Section 3.3.3, in order to recursively estimate
the eigenvector corresponding to the smallest eigenvalue of Ay. Once the eigenvector

x) is determined, the corresponding eigenvalue can be computed using the Rayleigh
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quotient (cf. Golub & Van Loan 1996)

T A
= Ze KTk (4.26)
Ty Tk

NN

o

asin (3.15c). A computationally less demanding approach for a recursive determination
of 65, which avoids the use of the subspace tracking algorithm, seems possible by
acknowledging the fact that in the asymptotic case, the eigenvector of A corresponding
to the smallest eigenvalue is already contained in the parameter vector, as pointed
out in Lemma 3.3 (cf. page 83). Consequently, by assuming that a;_; computed by
the recursive bias compensating least squares (RBCLS) is an approximation of the
eigenvector of Ay corresponding to the smallest eigenvalue &lyf_l, and by further
assuming that aj_ is sufficiently ‘close’ to aj, the minimum eigenvalue of flk can be
approximated using the Rayleigh quotient, which gives rise to the recursive expression

Nyl T2
ay_Apag—1

oy = , (4.27)

&gﬁlék,l
which completely avoids the need for tracking the eigenvector via the conjugate gradient

algorithm.

Approximation of the Schur complement

Whilst the use of equation (4.27) does indeed reduce the required number of flops, the
order of computational complexity does not change. This is due to the cubic com-
plexity for the computation of the Schur complement Ay, itself, which is the bottleneck
within the conjugate gradient algorithm (see Step 1 in Table 3.5 on page 76). In order
to reduce the order of complexity which is required for the computation of Ay, a fur-
ther approximation might be utilised. Recall, that in the asymptotic case, the Schur

complement is given by (3.62)

A=3%5, — Bg,0. [Zou — 0aln,) ' Tpus, s (4.28)
whilst b can be expressed as (3.65)
b=~ Sy, — 0aln,) " Spuiz,a. (4.29)
Post-multiplying (4.28) with a and substituting (4.29) gives
Aa =Yg, a+ Xg,0,b, (4.30)
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which allows the output measurement noise variance, by using the Rayleigh quotient,
to be expressed as

=T

a _

This gives rise to an approximate recursive update for oy given by

2T
ok = ﬁ (35, k-1 + 55 o b ) (4.32)
which avoids the explicit computation of the Schur complement and only requires 2n2 +
2ngny + 6ng flops. Expression (4.32) does not, however, exploit the knowledge of the
previously determined &g, since it only depends on 0r_1. s seems reasonable, therefore,
to perform an intermediate step, in order to make use of the most recent input noise
variance estimate. This is achieved by computing an intermediate parameter estimate,
denoted ék— 1 which makes use of the most recent estimate of oz. The resulting

algorithm, which is denoted ARQ (approximate Rayleigh quotient), can be summarised

as follows.
Algorithm 4.3 (ARQ).
Ak—1
A M} 0 A
b 1 =054 p |70 by, 4.33a
k-1 =0k k 0 GhT, k—1 ( )
k a’f* 2 S
A _ 2 fay
o = (Bk, a1 + 55 b ) (4.33b)
1]
The ARQ constitutes an update equation for &% 5+ Where GT = [&gﬁ 1 Bgﬁ ,]. The
2

overall fast RF'S algorithms, which make use of the ARQ as Well Qas the fagt algorithms

for the computation of &5, are summarised in the following subsection.

4.2.4 Fast recursive Frisch scheme algorithms

Based on the above approximations and modifications, two fast RFS algorithms can be
proposed. They are, analogously to the RFSa and RFSb, denoted FRFSa and FRFSb,
respectively. The FRFSa makes use of the YW-GN-fast, whilst the FRFSb utilises
the YW-lin-fast. Both algorithms use the ARQ algorithm for the computation of the
output measurement noise variance. In contrast to the RFS algorithms developed in
Chapter 3, the overall complexity of the FRFS algorithms is reduced to O(ng) For

completeness, both algorithms are summarised as follows.
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Algorithm 4.4 (FRFSa).
1) Initialisation
2) For k =n¢+ny +1,...

a) Update ~; via (3.8) and ﬁ)g and i]é?@ via (3.7)
b) Compute Py and é,I;S using Algorithm 3.3

c) Update 6% via Algorithm 4.1

d) Update 6’5 using Algorithm 4.3

e) Compute 6 via Algorithm 3.2

Algorithm 4.5 (FRFSb).
1) Initialisation
2) For k =n¢+ny +1,...

a) Update 7y via (3.8) and f)f% and i?’g@ via (3.7)
b) Compute Py and HAII;S using Algorithm 3.3
k via Algorithm 4.2

u

c) Update &
d) Update &’5 using Algorithm 4.3

e) Compute 6 via Algorithm 3.2

A detailed description providing the computational complexities of the FRFS algo-
rithms is provided in Table 4.3.

Remark 4.1 (Linearised Frisch equations). A similar algorithm with an identical order
of complexity could be defined by making use of the linearised Ap;, equation (3.27b)
rather than (4.32). In general it might seem appealing to make use of both linearised
Frisch equations in order to obtain a ‘cheaply to compute’ recursive Frisch scheme
algorithm. Whilst it has been shown in Section 4.2.2 that a recursive version of the
linearised 6 equation leads in fact to the RBCLS scheme, combining the linearised
Amin equation with the RBCLS and the fast YW-GN or YW-lin algorithm does not
appear to perform well in simulation. One possible explanation could be that the linear

approximation of oy is not accurate enough to yield an overall satisfactory performance.
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Step  Description Procedure Flops
1 Choose n¢, A\x and j ne=na+m+1,0< A <1, j=nc+mn
2 RLS initialisations 055 =0, P,, = 0.11
3 Recursion for k=mnqe+1,...,J
3.1 Data weighting e =1/k
3.2 RLS Compute Ly, é,I;S and Py as in Table 3.2
4 General initialisations XA]]@ =0, ifb = n<171 Eg:nlﬁl @ipi, v = 1/(ne —1),
62 =0,and L}, =0

5 Recursion fork=7+1,..
5.1 Update ~ Ve = /\;I:—;kl,l 2
5.2 Update 3, XA]Z% = f)’;;l + Vi (@kcﬁf — i]lf{l) o(n3)
5.3 Update XA]Q; XA]Z; = 212;1 + Vi (CW‘:Z — f]’g;l) O(ng;)
5.4 RLS estimate Compute Ly, 5% and Py as in Table 3.2 O(n3)
5.5 Fast update of %

either FRFSa: Compute 6% as in Table 4.1 O(n3)

or FRFSb: Compute 6% as in Table 4.2 O(n3)
5.6 Projection Project 0 < 6% < gmax
5.7 Intermediate update of Oy ék_% =05+ Pkduaug(&z’_j*l7 N )Ak_l O(ng)
5.8 Fast 6, computation 6y = ék_l/(éf_%ékfé) (flff;y &,ﬁ% + f)lf;y% l;kfé) O(n?)
5.9 Projection Project 0 < &’5 <oy
5.10  Bias compensation 05, = é,‘;s + Pkflgék_l O(ng)

Overall complexity (dominant parts) O(n3)

Table 4.3: Computational complexity of the FRFSa/FRFSb algorithm.

4.2.5 Relation between FRFS and BELS

Note that the expression (4.32) for the determination of the output measurement noise
variance, which has been derived from the Rayleigh quotient (4.26), could also have

been obtained from the first n, equations of
Yo = 0. (4.34)
By taking the upper block row of (3.64), one obtains

050 = Y,0+ Xg,0,b, (4.35)

Yy

and pre-multiplying with a’ yields

a _
O'g = ﬁ (E%a + 2@y<ﬂub) s (436)
which is essentially (4.32). As already highlighted in Section 3.6.3, the Frisch scheme,

the bias eliminating schemes and the extended bias compensating least squares (cf.
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Chapter 5) are very closely related, since they all, with suitable choice of instruments
and extended model, use the same equations as the Frisch-YW method. The developed
FRFS algorithms resemble even more the bias eliminating least squares (BELS) ap-
proaches, since the latter also determine oy in an iterative/recursive way, as the FRFS
algorithms using (4.36). Although the FRFS algorithms within this section have been
derived from a different perspective, using the Rayleigh quotient to solve the eigen-
value problem associated with the Frisch scheme, the very close relationship to the

BELS algorithms is apparent.

4.2.6 Numerical examples

It is of interest to compare the FRFS approaches with the more computational de-
manding RFS algorithms for a particular example. Also, the effect of the departure (or
otherwise) of the Frisch-character by introducing the various approximations for the
development of the FRFS schemes is investigated in this subsection. Finally it appears

natural to study the reduction of computational costs.

Ezample 4.1 (Estimation of o). Consider a similar setup as in Section 3.3.6, where a

LTT SISO system with n, = ny = 2 and given by

0

[—1.5 0.7 1 0.5]T (4.37a)

g

[2.1 0.1] ! (4.37b)

is simulated for 1000 samples using a zero mean, white and Gaussian distributed input
signal of unity variance. The RFS and FRFS algorithms are applied to estimate ¥
using n¢ = ng + np + 1, whilst A = 1 is chosen (i.e. no forgetting). The maximal
admissible values for the input and output measurement noise variances are chosen to
be o = 20; = 0.2 and Ug‘ax = 205 = 4.2. The estimates of o3 are compared in
Figure 4.1. The upper plot shows the results of the Gauss-Newton approaches RFSa
and FRFSa in comparison to the RAFS. It is observed that the projection facility of
the recursive algorithms is active during the first 200 recursions. After this period, the
RFSa seems only to be able to slowly follow the changes of the RAF'S, as already pointed

out in Section 3.3.6. The FRFSa, which uses the recursively updated derivatives, seems

to be slightly more sluggish. This becomes even more evident, if the o7 is set to larger
upper bound and the experiment is repeated. The lower plot of Figure 4.1 shows the
estimate of oy obtained from the RFSb and FRFSb algorithms. Here it is observed
that the projection facility seems to be more often active for the fast algorithm (see
around k = 420). After approximately 500 recursions, however, the FRFSb estimate
is barely distinguishable from the RFSb and RAFS estimate, although the FRFSb

solution seems to be slightly more erratic. [
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Figure 4.1: Estimates of o; for using the RAFS, RFSa, RFSb, FRFSa and FRFSb.

The following example investigates, how well the ARQ algorithm can approximate

the Frisch-character.

Example 4.2 (Estimation of o). In order to investigate the Frisch-character of the so-
lution, the smallest eigenvalue of i{fzo = 2’; — Y3(0k) (cf. (3.58)) evolving over time
is observed!. Therefore, a similar setup as in Example 4.1 is considered. The RFSb
and the corresponding FRFSb are applied to estimate v/. However, the value of 65 is
identical in both cases (obtained by the YW-lin algorithm), which allows the direct
comparison of 6’5 obtained from the CG-RQ (cf. Algorithm 3.4 on page 61) and that
obtained from the ARQ algorithm. The smallest eigenvalue of ilf,o using both algo-
rithms is shown in Figure 4.2. It is observed, that both estimates of o are virtually
identical after £ = 300 recursions. However, it becomes apparent that there is a price
to pay for the reduction of computational complexity for the computation of oj: The
approximation of the Frisch-character is worse in the case of the FRFSb algorithm,
which uses the fast ARQ update for the computation of the output measurement noise

variance. ]

The final example investigates the computational savings when use is made of the

fast algorithms.

Ezample 4.8 (Computation time). Naturally, it is of major interest to compare the
computation time per recursion of the FRFES algorithms with those of the RFS schemes.
Therefore, the experiment in Section 3.4.3 is repeated (cf. Figure 3.3 on page 78) for the
FRFS algorithms. The results are presented in Figure 4.3, which clearly shows the re-
duction of computational complexity for the FRFS approaches. For the fast algorithms,

'Recall that the smallest eigenvalue is zero in the offline Frisch scheme case.
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CG-RQ
—ARQ

2.5(

< 9

1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

| I
— _2
+§10 | ‘ -
(@10—4l$_‘—§§; ‘ ‘ -
=]
210 -
10 &

| [ | L | | | 1 [ -
100 200 300 400 5]20 600 700 800 900 1000

Figure 4.2: Estimates of the CG-RQ and ARQ algorithms and corresponding Frisch-

character.
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Figure 4.3: Computation time per single recursion with increasing model order n
(linear and logarithmic scale).

the Gauss-Newton approach (FRFSa) for the determination of o appears to be slightly
faster than the YW-lin-fast algorithm (FRFSb). The fact that the slope of the curves
corresponding to the FRFS algorithms is smaller than those of the RFS approaches
illustrates that the computational complexity is reduced from cubic to quadratic order;

this underpins the theoretical results obtained in this section. ]

4.2.7 Summary

The above examples have shown that the fast algorithms are generally able to estimate
the parameters of an EIV system. The price for the gain in terms of reduced compu-
tational cost would appear to be a slower convergence rate in the case of the YW-GN
algorithm and more erratic estimates of oy in the case of the YW-lin algorithm. In

addition, the fast computation of oy is accompanied with a deterioration of the Frisch-
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Determination of
Name flops
0 oy oq

RFS YW-GN (p. 66

* || RBCLS (p. 58) | CG-RQ (p. 61) (p- 66 ) O(nd)
RFSb YW-lin (p. 68 )
FRFSa YW-GN-fast (p. 93 ) )

RBCLS (p. 58) | ARQ (p. 100) O(nj)

FRFSb YW-lin-fast (p. 98 )

Table 4.4: Comparison of RFS and FRFS algorithms (page numbers indicate where
the algorithms may be found).

character. Alternative algorithmic combinations seem also feasible, which might be
able to reduce or overcome the reduction of the Frisch-character. Improved versions of
the FRFS algorithms is therefore a potential topic of further work. Table 4.4 compares

the four developed recursive Frisch scheme algorithms for the white noise case.

4.3 Recursive Frisch scheme for coloured output noise

The dynamic Frisch scheme presented in (Beghelli et al. 1990, Séderstrom 2007a) as-
sumes that the additive disturbances on the system input and output are white. Such
an assumption, however, can be rather restrictive since the output noise often not
solely consists of measurement uncertainties, but also aims to account for process dis-
turbances, which are usually correlated in time. In order to overcome this shortcom-
ing, the Frisch scheme has recently been extended to the coloured output noise case
(Soderstrém 2006, Séderstrém 2008), i.e. the values of the random process {g; }¥_, are
considered to be correlated in time (see Section 2.4.4 for a detailed review of the offline
scheme). This section develops a recursive (adaptive) formulation of the Frisch scheme
for coloured output noise, which allows the estimates to be calculated online as new
data arrives.

Firstly, a recursive algorithm for the offline scheme, which has been developed in
(S6derstrom 2006) is developed in Section 4.3.1 by making use of two separate Newton
algorithms. Whilst the evaluation of the first and second order derivatives is rather
computationally demanding, a second algorithm is proposed in Section 4.3.3, which is
based on the development in (Soderstrém 2008). There, some further simplifications
have been exploited for the offline scheme, which allows a bilinear parametrisation
approach (Ljung 1999, p. 335) to be applied for the corresponding recursive scheme,
leading to a computationally more attractive algorithm.

The following assumptions are stated.

AS1 The dynamic system is asymptotically stable, i.e. A(g~!) has all zeros inside the

unit circle.

106



4. Fast algorithms and coloured output noise

AS2 All system modes are observable and controllable, i.e. A(g~!) and B(g™!) have

no common factors.
AS3 The polynomial degrees n, and n; are known a priori with ny, < n,.

ATl The true input ug, is a zero-mean ergodic process and is persistently exciting of

sufficiently high order.

AN1a The sequence uy is a zero-mean, ergodic, white noise process with unknown

variance oj.

AN1b The sequence g is a zero-mean, ergodic noise process with unknown auto-

covariance sequence {r;(0),75(1),--- }.

AN2 The sequences % and 7 are mutually uncorrelated and also uncorrelated with

both ug, and yo, .
AE2 The dimension of the instrument vector ( is nq + np + 1.

Note that Assumption AE2 is introduced for convenience only.

4.3.1 Newton algorithm based approach

In this section a recursive algorithm for the identification of dynamical linear errors-
in-variables (EIV) systems in the case of coloured output noise, as reviewed in Sec-
tion 2.4.4, is developed. The input measurement noise variance as well as the auto-
covariance elements of the coloured output noise sequence are determined via two sep-
arate Newton algorithms. In a similar manner to the recursive bias compensating least
squares (RBCLS) approach (cf. Section 3.3.2), the model parameter estimates are
obtained by a recursive bias-compensating instrumental variables algorithm with past
noisy inputs as instruments, thus allowing the compensation for the explicitly com-
puted bias at each discrete-time instance. The performance of the developed algorithm
is demonstrated via simulation. This section is based on the development in (Linden &
Burnham 2008a), which, in turn, is based on the two-step offline procedure proposed
in (Soderstrom 2006).

Step 1

Recall from Section 2.4.4 that the first step of the Frisch scheme for coloured output
noise (FSCON) (see Algorithm 2.1 on page 35) consists of obtaining an estimate of ¢
and oy by solving the nonlinear least squares (NLS) problem (2.73)

‘er - ggy\ ‘2, (4.38)

{0y, 6%} = argmin

970-11

107



4. Fast algorithms and coloured output noise

where Gy, is defined in (2.72). By making use of the variable projection principle (see
Section 2.3.2), an estimate for o; can be obtained via (cf. (2.75)-(2.76))

&% = argmin V¥ (4.39)

Og
where

k _ fkTik _ GkT T 171 AT fk
Vit =&y Sy — &5, G GLGy]  GLé&5,. (4.40)
In order to obtain a recursive scheme, a basic approach could be to obtain the first and
second order derivatives of V¥ with respect to oz and then to apply an iterative Newton
method, where it is iterated once as new data arrives. First, however, in order to satisfy
the requirements of a recursive algorithm to store all data in a finite dimensional vector,

the covariance matrices are updated via (3.5), i.e. (see Appendix B for more details)

A aq 1/ ag

k=85 + - (aek - £57), (4.41a)
. . 1 .
Bk, =S+ 2 (Got -1, (4.41D)

from which the required block matrices are readily obtained.

Recursive Update of &g For the determination of &5, an iterative optimisation
procedure can be utilised to minimise (4.40) where it is iterated once at each step,
leading to a recursive scheme (Ljung & Soderstrom 1983, Ljung 1999). Whilst an
iterative Newton method is utilised for this purpose here, it is noted that other choices

are also possible. The (undamped) Newton method given by (Ljung 1999, p. 326) is
" -1 /
oh=ot - W (4.42)

where Vlk/ and Vlk// denote, respectively, the first and second order derivative of V. with
respect to 65 evaluated at &g_l. Explicit expressions for these derivatives are given in

Appendices D.1 and D.2, respectively.
Remark 4.2. In order to stabilise the algorithm, it might be advantageous to restrict
the search for the input measurement noise variance to the interval

0 <og < o™ (4.43)

[ )
max
U

data as discussed in (Beghelli et al. 1990). Alternatively, a positive constant can be

where o is the maximal admissible value for oy, which can be computed from the

chosen for the maximum admissible value, if such a priori knowledge is available.

Remark 4.3. The derivatives given in Appendices D.1 and D.2 are computed in a

straightforward manner. They do not, however, exploit the special structure of the
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variable projection problem. The efficient computation of derivatives of orthogonal
projectors and pseudoinverses is discussed in (Golub & Pereyra 1973). This approach

is, however, not further followed within this thesis.

Recursive Update of ék In order to obtain a recursive expression for ék, a variation
of the RBCLS approach given in Section 2.4.1 is used, where the bias of the recursive
least squares (RLS) estimate is compensated at each time step k (see also Zheng &
Feng 1989, Zheng 1998, Ding et al. 2006).

Recall that the overdetermined IV normal equations (2.69) are given by
(X5 — 0ad) O = Esy- (4.44)

Whilst an application of the RBCLS principle to an overdetermined set of normal
equations is developed in Section 5.3.3, here, the problem is modified to allow for a
direct application of the RBCLS principle. Therefore, only the first n, + n, equations
of (4.44) are considered, since one unknown, namely &5, has already been computed
from the set of equations. Disregarding the last equation of (4.44) leads to the definition

of a truncated instrument vector

T T
5;; 2 [@Zk C]:T} = [uk—l o Uk—ny, Uk—ny—1 -+ Uk—ny—ne—1 : (445)
The corresponding uncompensated IV estimate is given as
ATV —1
0, = 25*¢§5*y, (4.46)

which can be recursively computed via a recursive IV (RIV) algorithm (Ljung 1999, p.
369) given by

I =08+ [ Y] (4472
Pk,1(5*
L=t 1p (4.47b)
n T Pk Lk-10;
1 Py 1650 Py
Pi= - Ppoy — i Rk (4.47¢)
— Yk r +(pkpk‘*15k

where Py, is scaled such that
cp 170
[2 &a] =P, (4.48)

This avoids the matrix inversion in (4.46). Following the derivation for the RBCLS

(see Section 2.4.1), the recursive bias compensation update equation for ék is given by

ék = éIICV + &gpkj*ék,1 (4.49)
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where J* is obtained by deleting the last row of J. A more detailed derivation can also

be found in Appendix E.

Step 2

Recall that the second step of the offline Frisch scheme algorithm for coloured output

noise yields an estimate of the autocorrelation sequence of the output noise via (2.81)
ph = apN(Hy) + Hjhy, (4.50)

where Hy, and hy, are defined via (2.80) and N (-) denotes the nullspace whilst the scaling

factor «y is required to be determined. In the offline case, this is achieved by solving
(cf. (2.84)-(2.85))

&y, = arg min V3, (4.51)
(625
where
k k 2
Vo' = <&a - Q) : (4.52)

Here, ¢ denotes the input measurement noise variance which would be obtained when
the Amin equation is utilised, i.e. (see (2.82)-(2.83))

Sk = Amin (Bk (ak)) ) (453)

where

-1

Bi(ax) 2 Sy, — Spus, [2% ~ 55 ()] Seyen. (4.54)

Pu

In order to solve (4.51) recursively, a further approximate Newton method is applied
where it is iterated once as new data arrives. Consequently, the first and second order
derivatives of the cost function Vi in (2.85) are to be determined with respect to
ay, which are denoted VQk/ and VQI‘“”, respectively. In a similar manner as for the
minimisation of the YW cost function in Section 3.3.4, the linearised A\, equation is

utilised to approximate the first and second order derivatives. These are given by
VE = 9 (&5 - Q) e (4.55a)
v =4, (4.55b)

where ¢, denotes the derivative of ¢, with respect to oy, and for which an approximation

is derived in Appendix D.3. The recursive update for &y, is therefore given by

oy = gy — [T W (4.56)
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from which the sequence of auto-covariance elements of the output measurement noise

U is determined via
Pl = 6N (Hy) + Hihy. (4.57)

The recursive Frisch scheme for correlated output noise, denoted RFSCONI, is sum-

marised as follows.

Algorithm 4.6 (RFSCON1).
~k Ak—1 " -1 /
o5 =05 — [Vl ] Vi (4.58a)
0 = 0 + 65,0, (4.58b)
OF = Oy + L [y — o101 | (4.58¢)
Py_16%
L= — ; B (4.58d)
=t e P10y
1 P, 1550 P
— VK T + 2 Pkflék
" -1 /
Gk = g1 — [VQ } 1% (4.58f)
Pl = & N(Hy) + Hihy, (4.58g)

A more detailed description together with the computational complexity of the
RFSCONT1 algorithm is given in Table 4.5. It is observed that the overall complexity
is of cubic order, which is due the computation of the derivatives of V¥ and V¥ as well

as due to the determination of the nullspace and pseudo inverse in Step 5.14.

4.3.2 Simulation example

In order to compare the results of the RFSCON1 with the non-recursive algorithm
FSCON (cf. Algorithm 2.1 on page 35), a system is chosen similar to that of Example
2 in (Soderstrom 2008), i.e. a LTI SISO system with n, = n, = 1, and characterised
by

6= [—0.8 2]T, s = [1.96 1.37]T, o = 1. (4.59)

The values for 73(0) and r;(1) arise by generating the output noise via the auto-

regressive model

Jk = ————1 UL, (4.60)
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Step  Description Procedure Flops
1 Choose n¢, A\x and j ne=na+m+1,0< A <1, j=nc+mn
2 RIV initialisations 0% =0, P,, =0.11
3 Recursion fork=mnqs+1,....J
3.1 Data weighting v =1/k
3.2 RIV Compute Ly, éiv and Py
4 General initialisations XA]]@ =0, XA){; = n<171 Ef:nb+1 @it v = 1/(ne —1),
6%:Oand J = 0 In,
0 0
5 Recursion fork=j+1,..
5.1 Update ~ Ve = Akﬂit';kl—l 2
5.2 Update 3 f)é = fl’:{l + Yk (Lf)k@f — 22_1) O(n2)
53  Update ¢, Sk, = SEl 4 (c,@{ - 2’;;1) O(n2)
5.4 RIV estimate Compute Ly, 01" and P O(nj)
5.5 First order derivative Vlkl, see Appendix D.1 O(n3)
5.6 Second order derivative Vlku, see Appendix D.2 O(n3)
57  Update of 6% Gh =gkt [V{“] Ty 3
5.8 Projection Project 0 < 6% < gax
5.9 Bias compensation O, = éiv +okp, J* 011 O(ng)
5.10  First order derivative ngl —2 (65 — gk) e 3
5.11  Determine %kﬁ’; & oy = N(]T:Ik) O(n?)
5.12  Second order derivative VJ ~ — Bfali;:q ﬁi’%y ak—1 O(n2)
5.13  Compute & O = Qp—1 — ng”] ' Vkl 4
5.14  Determine ﬁZ p:j = arN(Hy) + H} hs, O(ng)
Overall complexity (dominant parts) O(nj)

Table 4.5: RFSCONT1 algorithm and its computational complexity.

where vy is a zero-mean white process with unity variance. The system is simulated
for 10,000 samples using a zero mean, white and Gaussian distributed input signal also
being of unity variance. The corresponding signal-to-noise ratio for input and output
is given by 10.60dB and 39.12dB, respectively.

Choosing A = 1, the results for Step 1 are shown in Figure 4.4. The first subplot
shows that the Newton method is able to recursively estimate the input measurement
noise variance oy. The remaining two subplots compare the RIV solution é,ICV of the
uncompensated normal equations with the recursively compensated Frisch scheme esti-
mate ). As expected, the RIV is biased whilst the RESCON1 successfully compensates
for this.

Figure 4.5 shows the estimates of p; obtained in Step 2 for both the RESCON1
as well as the off-line case FSCON. In contrast to the results obtained in Step 1, the

112



4. Fast algorithms and coloured output noise

3

| | | | - = =true | | |
1000 2000 3000 4000 RFSCON1 7000 8000 9000 10000

RIV

1 1 1 1 1 1 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1 1 1 1 1 1 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
k

Figure 4.4: Recursive estimates for 6 and o using the RFESCON1 and the biased RIV
solution of the uncompensated normal equations.
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Figure 4.5: Recursive estimates for r;(0) and 73(1) using the RFSCON1 in compari-
son to the FSCON (offline algorithm).
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quality of the estimates obtained in Step 2 for ﬁ’yf would appear to be inferior. This is in
agreement with the results reported in (Séderstrom 2008), where a Monte-Carlo analysis
shows poor performance for ﬁ’yf in the non-recursive case. The important observation
to note here, however, is that the recursively obtained estimates of r;(0) and 75(1)
virtually coincide with their off-line counterparts after k& = 10,000 recursions. It is also
observed that the values of f’g (0) (the estimated variance of the output measurement
noise) occasionally exhibit a negative sign during the first 500 recursion steps. This
could be avoided by projecting the estimates, such that

N N N N -1 .
0<SE <3k -3k [zgu] Sk

PyPu Pupy, (461)

is satisfied (cf. Séderstrom 2008).

4.3.3 Bilinear parametrisation approach

One of the shortcomings of the RFSCONT1 algorithm is its computational complexity.
Note that matrix inversions and matrix-matrix multiplications are required to obtain
the first and second order derivatives of V{* and V§ (cf. Appendix D.1 and D.2). In
addition, Step 2 can be drastically simplified as outlined in Remark 2.2 (see page 35),
which has not yet been exploited.

Step 1

It is worth observing that the NLS problem (4.39) in Step 1 is not only separable for
f and o, but also bilinear in these variables, i.e. linear in 8 for fixed ¢ and linear in o

for fixed 6. This implies that (2.69), which can be re-expressed as

Gr(oa)t = &y (4.62)
can also be expressed as

S(0)oa = s(0), (4.63)

where S(0) € R™ and s(f) € R™. Equation (4.63) constitutes an overdetermined set
of equations in one unknown, which can be solved by means of LS in a straightforward
manner. In order to determine S(6) and s(f), consider the upper part of (2.68), which

can be re-expressed as

|:E<Pu<ﬂy E@u - Uﬂlnb] 0= gtpuy (464&)
= Eoupy @+ Yo, b — boy = oy (4.64Db)
& ogb=Y,,0,0+X,,0— &0,y (4.64c)
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By inspection, it is clear that

S(0) = b, (4.65a)

8(9) = Eﬁ’mﬂya + iéub B éf’uy' (465b)

Consequently, assuming 05— is available and sufficiently close to 0, 0 can be replaced

by ék,l which allows &g to be obtained via the minimum norm solution

A~ A~

= S(0r_1)"s5(0r_1), (4.66)

IS

o
where, assuming b”b # 0, the left pseudo inverse of S (ék) is given by
P b
SO = —. 4.67

The parameter vector is then obtained as the LS solution ), = GL(&E)égy. Alterna-
tively, a recursive bias compensation rule as in (4.49) using the RIV algorithm (4.47)
could be utilised. However, when use was made of the recursive bias compensation
rule, the estimation results appeared to be sensitive in simulation with respect to the

initialisation of the algorithm. Consequently, the offline LS solution for 0y, is utilised.

Step 2

As pointed out in Remark 2.2 (cf. page 35), Step 2 simplifies to solving

H(0)pg = hi(0), (4.68)

where an explicit expression for hy, is given by (Séderstrém 2008)

hi(6) =[Sk, Sk |0 (4.69)
whilst Hy(0) satisfies

P T (4.71)
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Step  Description Procedure Flops
1 Choose n¢, A\x and j ne=na+mn,+1,0< A <1, j=n¢c+n
2 General initialisations f]é¢ =0, ifp = "Cl_l Zz:nbﬂ @:pL, v = 1/(ne — 1),
. 0 I
62 =0and J = "
0 0
3 Recursion fork=j+1,..
_ TYe—1
3.1 Update vy Rl wer— 2
3.2 Update ih; XA]Z% = i]lf{l + Vi (@kcﬁf — XA]’:{I) O(ng—)
3.3 Update ¢, S8 =S8 + (Cm{ - 2‘5;1) O(n2)
Ik A N .
3.4  Update of 6% Gk = BTbkg; - [E’;uwy k-1 + 25, bu_1 — §Zzuy] O(nans)
k—1"k—
3.5 Projection Project 0 < 6% < o>
3.6 Compute 0y, 0 = Gl (&ﬁ)é[;y O(n)
3.7 Compute p Py = I?I,i(ék)fzk(ék) O(nd)
Overall complexity (dominant parts) O(ny)

Table 4.6: RFSCON2 algorithm and its computational complexity.

Since the matrix Hy(#) is not updated via an ordinary rank-one update, pg is computed

here via the offline LS solution as

pr = H(01) . (By).

~

(4.72)

The overall algorithm is denoted RFSCON2 and can be summarised as follows.

A~ be - ~ - 7 ;

Ullf,t = A’I‘kiAl |:El<;u90yak;_1 + El‘;ubk_l B é-S]Zuy (473&)
Op—1bk—1

b = GL(ob)E, (473b)

py = Hi(0x)hy.(6r) (4.73¢)

Algorithm 4.7 (RFSCON2).

A more detailed description together with the computational complexity of the
RFSCON2 algorithm is given in Table 4.6. Note that due to the usage of the pseudo

inverses, the algorithm is of cubic complexity.

4.3.4 Simulation example

In order to compare the estimates obtained by the RFSCON1 with those obtained
by the RESCON2, the simulation in Section 4.3.2 is repeated and both algorithms are
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Figure 4.6: Recursive estimates for § and o using the RESCON1 and the RESCON2.
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Figure 4.7: Mean square difference as defined in (4.74), between RFSCON1 and RF-
SCON2 estimates for 6, and &]g.

applied to estimate © (cf. (2.62)). The estimates of o and 6 are shown in Figure 4.6. It
is observed that the estimates of oz and 6 using the RFSCON1 and the RFSCON2 are
virtually identical. This is confirmed in Figure 4.7, where the mean square difference

between both estimates defined by

~ N T R R
1 0 o 0} 02
T £ ng + 1 ( &2,1] - [&2,2 &271 - &272 , (4.74)

is presented. Note that in (4.74) the superscript 1 denotes the estimates of the RF-
SCONI1 and the superscript 2 denotes the estimates of the RFSCON2. Whilst it was

expected that both estimators would yield similar results, the fact that the estimates

for oy and 6 are virtually identical is rather surprising.

The estimates of p; are shown in Figure 4.8. It is observed, that the estimates of
the auto-covariance sequence of the output measurement noise are different for both
algorithms. After 10,000 recursion steps, the estimates of the RESCON2 even exhibit
an incorrect sign. In addition, the estimates obtained by the RFESCON2 would appear
to have a higher variance when compared to those obtained by the RFSCONT.

It is also of interest to compare the computation time of both algorithms. For this
single first order identification problem, the computation time per recursion could be
reduced from approximately 1.6 - 1073s in the case of the RFESCON1, to 3.7 - 10~%s in
the case of the RFSCON2. This means that the latter algorithm appears to be four
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Figure 4.8: Recursive estimates for r;(0) and 73(1) using the RFSCON1 and the
RFSCONZ2.

times faster than the REFSCONT1.

4.3.5 Summary & discussion

The RFSCON1 makes use of a Newton algorithm to solve the variable projection sub-
problem for the determination of the input noise variance, recursively. Another approx-
imate Newton algorithm is applied, in order to determine the auto-covariance sequence
of the coloured output noise, where the approximate derivatives are, as in the case
of the YW-lin algorithm developed in Section 3.3.4, obtained by considering the lin-
earised Frisch equations. Computing the derivatives, however, is a computationally
expensive task and whilst other approaches for the recursive solution of the variable
projection problem will be discussed in Chapter 5, the solution leading to the RESCON2
exploits the bilinear parametrisation structure of the problem. Thus, the variable pro-
jection problem is avoided and, by making use of additional simplifications reported in
(S6derstrom 2008), the RFSCON2 appears to be computationally more attractive than
its RFSCONT1 counterpart. One remaining potential shortcoming of this fast algorithm
is, however, that the two LS problems of dimension ng and ng, respectively, are to be
solved in an offline manner at each recursion step (cf. (4.72)).

The convergence aspects of both algorithms remain a open field of research. Al-
though it is stated in (Ljung 1999, p. 335) that a multi-stage identification procedure
exploiting the bilinear parametrisation will lead to a local minima, a more thorough

analysis might be required and, as such, is identified as potential further work.

4.4 Concluding remarks

Novel algorithms based on the previously proposed recursive Frisch-YW algorithms
have been developed, in order to reduce the computation time per recursion. Whilst

the computational complexity of the RFS algorithms, which have been developed in
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Chapter 3, is of cubic order, the new approaches, denoted FRFS, only require O(nz)
flops, where ny is the number of model parameters to be identified. Therefore, the
fast FRFS algorithms might be considered as being more applicable in practical ap-
plications, especially when restrictions on the available computation power become
constraining factors. The computational savings have been achieved by introducing
additional approximations and by making use of the principle of stationary iterative
least squares. The improvement in terms of computation time, however, is accom-
panied with a reduction of the Frisch-character; a measure of how well the recursive
algorithm resembles the unique property the offline Frisch scheme. The estimates of
the fast algorithms do, however, appear to be very close to those of the RFS algo-
rithms. Consequently, the FRFS approaches appear to be an attractive alternative to
the RFS algorithms, if the Frisch-character of the estimates is not of importance. The
additional approximations which are introduced in order to derive the fast algorithm,
however, might also effect the convergence properties of the algorithm. It is noted that
this requires some more theoretical analysis and has been identified as a potential item
for further work.

In the second part of this chapter, two recursive algorithms for the Frisch scheme
in the case of coloured output noise have been developed based on their offline coun-
terparts. With respect to practical application, such an extension can be considered
to be of major importance, since the output noise usually aims to model measurement
noise as well as process disturbances. The first algorithm, which makes repeated use
of Newton’s method for the minimisation of the two separate cost functions, is rather
computationally demanding. The second algorithm is able to overcome this shortcom-
ing by exploiting the special structure of the problem. This reduces the estimation task
to three linear least squares problems, which can be solved efficiently at each time step,
leading to a recursive identification scheme. Whilst further numerical and theoretical
analyses for these algorithms may be required, both schemes appear to work well for
the simulation example considered.

The convergence and consistency aspects off all algorithms presented within this
Chapter have not yet been analysed. Consequently, there is scope for potential further

work.
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Chapter 5

Recursive extended bias

compensating least squares

Contents
5.1 Introduction ... ... .... ... .. 00000 121
5.2 Equivalent EBCLS representation . .. ............ 122
5.3 Bilinear parametrisation . . .. ... ... ... .. 0000, 124
5.3.1 Algorithms for overdetermined normal equations . . . . . .. 126
5.3.2 Least squares based approach . . . . . . ... ... ... ... 128
5.3.3 Recursive bias compensating least squares approach . . . . . 128
5.3.4 Numerical examples . . . . .. ... .. ... L. 131
5.3.5 Comments on the matrix pseudo inversion lemma for recursive
estimation . . . . .. ... Lo Lo 133
5.4 Variable projection algorithm . ... ... ... ........ 135
541 Update of Gp1 - o oo oo 137
5.4.2 Update of P . . o o oo 138
5.4.3 Algorithm summary . . . .. .. ... ... ... ... ... 139
5.5 Simulationstudies . . . ... ... ... .. 0000000, 140
5.6 Concludingremarks . . ... ... ... ... .. 0., 146
Nomenclature
flo) ... Auxiliary vector
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L oooo... Recursive least squares gain

Mmoo Model order

MSE; ... Mean squared error

r(0,0) ... Nonlinear least squares residual

Py ... Scaled covariance matrix obtained from recursive least squares
V-7 Instrument vector

Vi oo Scaling factor, step size

Chovvennnn Instrument vector

éi‘/ AAAAAA Uncompensated instrumental variable estimate

ék +1 Intermediate estimate of 6

(7 Gauss-Newton update direction corresponding to v
A,Z ....... Gauss-Newton update direction corresponding to 6
1&2 ....... Gauss-Newton update direction corresponding to o

Preliminary reading: Sections 2.2, 2.3, 2.4.2.

5.1 Introduction

The Frisch scheme which utilises the Yule-Walker (YW) model selection criterion
(Frisch-YW) essentially involves the solution of a set of nonlinear equations. These
consist of the bias compensated normal equations, the A\jn-equation as well as the high-
order YW equations. Recent developments (Hong et al. 2007, Hong & Séderstrom 2008)
have shown, that the same set of nonlinear Frisch-YW equations can also be obtained
by considering an extended bias compensating least squares (EBCLS) approach (cf.
Section 2.4.2). The EBCLS method (Ekman 2005) is another recently developed EIV
identification technique, which allows the estimation of the model parameters as well as
the measurement noise variances by solving a nonlinear least squares (NLS) problem.
Rather than utilising the least squares (LS) normal equations, as used for the deter-
mination of the system parameter vector within the bias compensating least squares
technique (BCLS), it makes use of the instrumental variable (IV) approach to obtain
a set of overdetermined normal equations. The number and the type of instruments
are chosen such that there are sufficient equations to determine not only the param-
eter vector, but also the measurement noise variances. By choosing the instruments
in a particular way, the set of nonlinear Frisch-YW equations is obtained. Whilst the
underlying objective is still focused on the development of recursive Frisch scheme algo-
rithms, this chapter investigates approaches within the EBCLS framework, rather than
following a direct approach as in Chapters 3-4. The developed recursive algorithms,
however, are not restricted to the particular choice of instruments, which lead to the
Frisch-YW, but may also be applied to more general EBCLS cases. In particular, since
the Frisch-EM case (cf. Section 2.4.3) can also be interpreted as an EBCLS problem,
the results in this chapter could also be extended to this case. In contrast, a connection
between the Frisch-CM and the EBCLS is not known.

Section 5.2 states the particular EBCLS setup, which is equivalent to the Frisch-
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YW problem. Subsequently, recursive algorithms based on the bilinear parametrisation
principle are developed in Section 5.3, whilst Section 5.4 considers recursive variable
projection algorithms. Section 5.5 provides an extensive simulation study, which not
only analyses the algorithms developed within this chapter, but also provides a com-
parison with the recursive Frisch scheme algorithm from Chapters 3 and 4. Concluding
remarks are given in Section 5.6.

Part of the material presented within this chapter has been published in (Linden &
Burnham 2008b).

5.2 Equivalent EBCLS representation

It has been shown in (Hong et al. 2007, Hong & Soéderstrom 2008) that it is possible
to reformulate the Frisch-YW equations (3.1) as an EBCLS problem. The equations

which are used within the Frisch-YW scheme can be summarised as

§y<p9 = 7°y(0) — 0y, (5.1&)
[290 - E@(U)] 0= Soys (5.1b)
ECQOH = &y, (5.1c)

where o = [0 053] and the remaining entities are defined by (2.10)-(2.12). Indeed, this
corresponds to the EBCLS framework (see Section 2.4.2) with the particular choice of

instruments given by

T
zp = [yk or Cﬂ € R™ (5.2)
where ¢y, is the regression vector defined by (2.6¢) whilst i is given by (2.50).

Remark 5.1 (Frisch-character of the EBCLS solution). The Frisch scheme equa-
tions (5.1) are equivalent to those used in Chapter 3 given by (3.1). The actual difference
between both representations is that the latter forces (3.1a) to hold exactly, which
is achieved by computing &’5 via the Apin equation (3.1b). This ensures the Frisch-
character of the solution, or stated differently, the singularity of X5 — X 5. Within the
EBCLS framework, this would imply that the estimate obtained via the NLS problem
(5.1) is solved in a way, such that (5.1a)-(5.1b) is exactly satisfied, whilst (5.1c), which
basically corresponds to the equations of the YW model selection criterion, needs only
to hold approximately. Whilst this might be achieved by an appropriate weighting
scheme for Equations (5.1), this is not considered within this thesis. Consequently, it
cannot be expected that the solution of the EBCLS problem will satisfy the Frisch-
character. This will be further investigated in the numerical example given in Section
5.5.
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Following the interpretation within the EBCLS framework, the Frisch-YW equations
(5.1) simplify to (cf. (2.33))

[Ezap - EE@(U)] 0= gzy - 523}(0-)’ (5'3)

where the compensating matrices (noting that n, = ng+n¢+1) of this particular white

noise Frisch-YW case are given by

0 0
il 0
Yi5(0) = 75 na e R"=X"0 (5.4a)
0 O'ﬂ[nb
0 0
oy
Ezlo) =101 . (5.4b)
0

Utilising the notation used for the variable projection problem introduced in Section

2.3.2, the residual to be minimised is given by
r(0,0) = F(0)0 — f(o0), (5.5)
where F(0) and f(o) are given by (2.35a)

F(O’) = Ezgo — Eg@(O’), (56&)
f(O') = fzy - 523}(0)' (5'6b)

In contrast to the more general EBCLS cases, where the input and output measurement
noises may be coloured, the resulting equations for the white noise Frisch-YW case are
not only linear in #, but also linear in o. This means, that (5.5) may be equivalently

expressed as
r(0,0) = G(0)o — g(0), (5.7)

where it is straightforward to verify that

10
coy= | " (5.8)
o -b|” o8

0 0
9(0) = &y — X0 (5.8b)
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Such bilinear parametrisations are conceptually simpler than the more general case
with (0, 0) being separable in 6 and o. Whilst the latter scenario can effectively be
tackled via the variable projection approach as discussed in Section 2.3.2, the problem
in the bilinear parametrisation case reduces to a two-stage linear LS problem which
can be solved efficiently in an iterative/recursive manner (cf. p. 335 Ljung 1999).

As a first approach, a recursive two-step algorithm, which takes advantage of the
bilinear parametrisation, is developed. In order to reduce the complexity from cubic
to quadratic order, the recursive BCLS technique, which has already been used in
Chapter 3 for the implementation of the RFS algorithms (cf. Section 3.3.2), can be
applied. However, the recursive BCLS approach has to be modified in order to deal
with the set of overdetermined normal equations. A second approach considers the
recursive implementation of the more general variable projection method, for which a
Gauss-Newton algorithm is considered. Whilst such an approach might not be required
for the bilinear parametrisation case (as in the Frisch-YW case), it is of interest since
it can easily be extended to deal with more general EBCLS cases when r(6,0) is not
linear in o.

As for the RFS approaches of Chapter 3, the following assumptions are stated.

AS1 The dynamic system is asymptotically stable, i.e. A(¢~!) has all zeros inside the

unit circle.

AS2 All system modes are observable and controllable, i.e. A(g~!) and B(g™!) have

no common factors.
AS3 The polynomial degrees n, and n; are known a priori with ny, < n,.

AI1l The true input ug, is a zero-mean ergodic process and is persistently exciting of

sufficiently high order.

AN1 The sequences u; and g are zero-mean, ergodic, white noises with unknown

variances, denoted oy and oy, respectively, i.e.

oadw = E [ay)], (5.9a)

0301 = E [gedi] - (5.9b)

AN2 The sequences i and 7 are mutually uncorrelated and also uncorrelated with
both ug, and o, .
5.3 Bilinear parametrisation

This section considers a two-stage algorithm, in order to recursively solve the Frisch-

YW equations, by exploiting the bilinear parametrisation. The two resulting linear
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least squares problems

Fi(64-1)0k = frl(6r-1), (5.10a)
G (0x)o% = gr(r), (5.10b)

are solved alternately at each discrete-time instance k, where

Fy(6r-1) = i:];go - 22@(%—1), (5.11a)
Fe(6r1) = &, — E5(64-1), (5.11b)
R 1 —al 0 0 !
G(6y) = [0 . —B;{ 0] , (5.11c)
gk (0r) = €&, — 250 (5.11d)

Note that the quantities Fj(6%_1), fe(6r—1), G(0)) and gi(0)) are time dependent

either due to the incorporated covariance elements which are updated as new data

arrives and/or since the current estimates of o and 6 are updated at each recursion?.
Whilst the covariance elements can be updated in the usual manner (cf. Appendix

B) via

SE, = (1= )35 + vezoh (5.12a)
&= (1= )" + My, (5.12b)

where 7, is a scaling factor, the identification problem essentially reduces to the solution
of two sets of linear equations (5.10) at each time instance. Consider equation (5.10b)
first. Due to the sparse structure of G(ék) the left pseudo inverse can be computed

‘cheaply’ and is explicitly given by (see. Appendix F)

I/ S
GT(ék) _ 1+ak ag 1+ak ag 7BT ) (513)
0 R )
5T bx

Note that only vector-vector multiplications are required, which is of linear complexity
only (cf. Table 2.1 on page 21). Thus, (5.10b) can be solved in a straightforward linear

LS manner and a direct computation of 6 is given by
61 = G}(00)9(0r)- (5.14)

In order to obtain a solution of the overdetermined set of normal equations (5.10a),

several options are discussed in the following subsection.

!The quantity G does not require a subscript k, since it does not contain any covariance elements.
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5.3.1 Algorithms for overdetermined normal equations

In order to obtain ), an overdetermined set of normal equations given by (5.10a) is
required to be solved at each time instance. Several options are available and five such

possibilities are outlined below.

1. (LS) The LS method can be applied to solve (5.10a) in an offline manner at each

recursion, yielding the minimum norm solution
O = F (631) fr(6x1)- (5.15)

An advantage of this approach is that it leads to a robust implementation by
making use of well known and readily implemented routines (Lawson & Hanson
1995). Such an approach is feasible since the dimension of the problem is fixed, i.e.
the number of rows in (5.10a) do not grow with time. A potential drawback could
be that the computational costs could be too large for an online implementation.
The computational complexity of the LS algorithm is generally of cubic order,
which might forbid a practical implementation if the number of instruments n,, is
large. This does, however, depend on the particular application, more specifically

the number of instruments, the sampling interval as well as the available hardware.

2. (TLS) The total least squares (TLS) method could be applied to estimate 6.
Using a Matlab-like notation (MathWorks 2007), the TLS estimate of € is given
by

1

Hk = ﬁ%:ne-f—lﬂlg-}—la (516)
;1
where V' is the matrix of right singular vectors obtained via the singular value

decomposition
Fu(6p—1) Fp(Gp_1)| =USVT, (5.17)

In (5.16), the quantity V ,41 denotes the first element of the last column of V'
whilst V., 41,0941 denotes the last column of V' starting from 2 up to the last
row ng + 1. The estimates of 6 obtained via the LS and TLS differ only for short
sample lengths (i.e. for a finite number of observations), but their asymptotic
accuracy is identical? as pointed out in (Séderstrém & Mahata 2002). There it
is concluded that the LS estimator appears to be more robust, whilst the TLS
estimator is computationally less demanding (Van Huffel & Vandewalle 1991).

3. (RLS) A direct application of the RLS algorithm would certainly be desirable,

2Note that this applies only for the overdetermined system of normal equations considered here.
For a general linear systems of equations it is not necessarily true that the LS and TLS estimates are
asymptotically equivalent.
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but it is not straightforward. This is due to the fact that the matrix Fy(6x_1)
is not updated via a rank-one update, but Fj(6x_1) — Fx_1(0k—2) is generally of
full rank. This, coupled with the fact that the set of normal equations (5.10a) is
overdetermined, prevents the application of the matrix inversion lemma to give a
straightforward recursive algorithm. Note that recursive schemes based on matrix
factorisation updates (cf. Point 2 on page 86) also rely on the rank-one update,

hence are also not straightforward to apply.

4. (RBCLS) It is possible to make use of a more general form of the recursive bias
compensating least squares (RBCLS) procedure (see Section 3.3.2 and Appendix
A), which is essentially based on the stationary iterative LS principle (cf. Section
2.3.1). This means, that at each time instance k, the (uncompensated, hence

biased) IV estimate is calculated as
Sk =&k (5.18)

Subsequently, the bias, which can be determined based on the current estimate
of input and output measurement noise variances, is removed at each time step
k. In order to recursively solve the overdetermined system of normal equations
(5.18), two different approaches of extended recursive least squares (ERLS) are

possible:

a) (ERLS1) One way to deal with an overdetermined system of equations has
been discussed in (Feng, Zhang, Zhang & Bao 2001). There, an extension of
the matrix inversion lemma has been proposed which can be utilised to derive
a recursive estimator? for the overdetermined normal equations (5.18). Such
an algorithm, which is denoted ERLS1 (extended recursive least squares), is

considered in Section 5.3.2.

b) (ERLS2) A recursive algorithm for the overdetermined set of normal equa-
tions based on the (standard) matrix inversion lemma is given in (Friedlander
1984, Soderstrom & Stoica 1989). There, the problem is reformulated, such
that only the inversion of a 2 x 2 matrix is required. A detailed description
of the algorithm, which is here denoted ERLS2, is given in Appendix G.2.

Note that the usage of the RBCLS technique can cause divergence of the overall
algorithm as discussed in Section 3.6.4. Therefore, it remains to be evaluated if
the reduction in computational complexity is worth exploiting given the potential
deterioration of the convergence properties of the algorithm. This aspect is further

investigated in Section 5.5.

5. (Alternative iterative solvers) If n, is considered to be too large for a repeated

application of batch LS techniques and if a RBCLS approach is also not desired,

3See also Section 5.3.5 below.
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an alternative might be to use iterative solvers (Bjorck 1996, Ch. 7 ), such as the
conjugate gradient method for linear LS problems, in a recursive fashion. Such
an approach has been considered in (Chang & Wilson 2000, Bjorck 1997), but is

not further investigated within this thesis.

In the development of this chapter, the usage of the offline LS (Point 1) as well as
the RBCLS approaches (Point 4a) are considered.

5.3.2 Least squares based approach

Motivated by the foregoing discussion, the first algorithm presented in this section
solves the LS problems (5.10) in an offline manner at each time instance k and will
be utilised for future comparison purposes. The algorithm is denoted RBP1 (recursive

bilinear parametrisation) and is summarised as follows:

Algorithm 5.1 (RBP1).
1) Set j=n¢c+np, 6;=0
2) For k=j+1,..
a) Update i]’;w and éfy via (5.12)

b) by = F (651) fr(63_1)
c) 61 = Gt (k) gk ()

It seems natural to initialise ¢ as the null vector, i.e. the algorithm starts with the
(biased) LS solution of § which is subsequently improved during the following recursion
steps (provided o is estimated appropriately). Note that Step 2b requires O(n?) flops
whilst Step 2c is only of order O(ny).

Focus is now directed towards a recursive implementation of the overdetermined
BCLS problem (5.10a) based on a generalisation of the recursive bias compensation

technique (see Point 4a in Section 5.3.1).

5.3.3 Recursive bias compensating least squares approach

In order to develop a recursive algorithm based on the bilinear parametrisation, which
avoids the solution of the resulting LS problems in an offline manner, the approach used
in Section 3.3.2 is extended to deal with a set of overdetermined normal equations. This
will reduce the computational complexity from cubic to quadratic order. The general

case is summarised in the following Lemma.
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Lemma 5.1 (Recursive extended bias compensation). Let ¥ and & denote a
general covariance matrix and covariance vector and let j and & denote the cor-
responding noise compensating terms. Given the overdetermined bias compensated

normal equations
<Ek - ik) O = &k — &, (5.19)
a recursive extended bias compensating (REBC) estimator for 6 may be expressed as
Oy = 0y + 3} (ikékq - gk) : (5.20)
PROOF. Straightforward manipulations allow the re-arrangement of (5.19) as
b, =5} <ikék + & — ék) . (5.21)

Thus, by acknowledging that E;ka is the (biased) IV solution éw, and by approximating
0}, with 0j,_,, leads directly to (5.20). (]

Consequently, by applying Lemma 5.1 to (5.10a) gives the update equation for the

unbiased solution
b = O + S8, (S5510, 0 — 571)), (5.22)

where the compensation terms are given by

[0 0
SIEAT LR (5.230)
0 &k,
0 0
65
z5(0%) = | 0 (5.23b)
0

It remains to determine the instrumental variable estimate HA,ICV recursively. Therefore,

the ERLS1 algorithm, as discussed in Point 4a in Section 5.3.1 is now considered.

ERLS1

The next task concerns the recursive computation of HA,ICV = EELéfy Since the normal
equations are overdetermined, i.e. ZA]ZO is rectangular with more rows than columns, the
matrix inversion lemma (Ljung 1999, p. 364) cannot be applied directly. However, an
extended version of the matrix inversion lemma for the Moore-Penrose pseudo inverse

(also denoted left pseudo inverse) has been reported in (Feng et al. 2001), which allows
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the formulation of a so-called extended RLS. Such an algorithm may be utilised to

recursively solve an overdetermined set of normal equations.

Lemma 5.2 (Matrix pseudo inversion lemma). Define A € R"*" with rank(A) =
n, m > n as well as the vectors b € R™, ¢ € R"™. Furthermore introduce the following

assumptions:
1. The matrix A + bel is of full column rank and
2. R(A+ bcT) =R(A),

where R(A) denotes the range of A. Then the left pseudo inverse of A + bc! is given
by

AfpeT At

A+bT) = AT - ———
[A+ b’ ] LT AT

(5.24)
PROOF. Here, only a sketch of the proof is given. For more details, the reader is
referred to (Feng et al. 2001).

The post-multiplication of (5.24) with A 4 bc” yields the identity on both sides,
which shows that the right hand side of (5.24) is a left inverse of A+ bcl. In order to

show that this left inverse is the unique pseudo inverse, Assumption 2 is used. |

The extended recursive least squares algorithm using the matrix pseudo inversion

lemma and utilising a scaled covariance matrix, such that P, = i]’;;, is given by (see

Appendix G for a detailed derivation)

01" =011 + Li (e — ¢4 05 1) » (5.25a)
Py
Ly = L L , (5.25b)
1=+ o5, Pe—17k2k
1
P, = Po_1— LppiP_q). 5.25¢
1— ( 1 Pk 1) ( )

Note that the pseudo inverse in (5.22) can be replaced by Py which yields
O = O + Py (3551060 - €571) (5.26)

The recursive bias compensating instrumental variable algorithm for overdetermined

normal equations, which is denoted here as REBC, can be summarised as follows.
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Algorithm 5.2 (REBC).
by = 0V + P, <2’;glék,1 _ é’g;) (5.27a)
éllcv = éllc\i1 + L <yk - @gé?g) (5.27Db)
Ly = P’“‘lTW’“ (5.27¢)
1= + o5 Pr—17k2k
Py =7 _1% (Py—1 — Lept Pi1) (5.27d)

The recursive two-stage algorithm based on the bilinear parametrisation, which

makes use of the REBC rule is denoted RBP2 and can be summarised as follows.

Algorithm 5.3 (RBP2).
1) Initialisation
2) For k=ng,+np+1,...

a) Update i]’;w and éfy via (5.12)
b) Determine ), via Algorithm 5.2
c) 0 = Gz(ék)g(ék) using (5.13)

Remark 5.2 (Relation to recursive EBCLS developed in (Ekman 2005)). A recursive
algorithm for the white noise EBCLS case has also been developed in (Ekman 2005).
However, this algorithm requires the inversion of a 2ng X 2ng matrix at each recursion
step. Another conceptual difference is that the algorithm proposed in (Ekman 2005)
propagates the bias compensated inverse covariance matrix (based on the current es-
timate o) at each time step, whereas it is the uncompensated Py which is stored in
the RBP2 algorithm. This means that the RBP2 algorithm always utilises the latest
estimate of o for the bias compensation in contrast to the algorithm in (Ekman 2005)

where the errors in ¢ are propagated.

5.3.4 Numerical examples

The appropriateness of the developed RBP1 and the RBP2 algorithms is investigated

in simulation for a particular system.
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Figure 5.1: Estimates of ¢ using RBP1 and RBP2 in comparison with RAFS for
Example 5.1.

Ezample 5.1. Consider an identical setup as in Section 3.3.6, i.e. the system given by

9:[—1.5 0.7 1 0.5]T, (5.28a)

o= [2.1 0.1}T, (5.28b)

with the input being a zero mean random process of unity variance. The RBP1 and
the RBP2 algorithms are utilised to estimate 9 for N = 500 samples. The recursions
commence at k = n¢ +ny = 8 (cf. the definition of (j in (2.50)) and the estimates
of ¥ are initialised with null vectors for both algorithms. In addition, the pseudo-
inverse Py for the REBC needs to be initialised in the case of RBP2. Here, P, when
k = 8 is chosen to be initialised with the exact pseudoinverse of XA)ZP. The results
of both recursive estimators are compared with those of the offline Frisch scheme,
namely with the RAFS algorithm (see Algorithm 3.1 on page 56). Figure 5.1 shows
the estimates evolving with time. It is observed that the estimates of o obtained by
the RBP1 algorithms are very similar to those obtained by the RAFS. The estimates of
the parameter 6 obtained by the RBP1 and RAFS are virtually identical for & g 200.
The quality of the estimates obtained from the RBP2, in contrast, is rather poor. This

observation is further investigated in the next example. |

Ezxzample 5.2. The simulation of Example 5.1 is repeated for N=5000 and the RBP1
and RBP2 algorithms are applied to estimate 9. However, two different variants of the
RBP2 algorithm are used: The first variant computes, as before, P using the matrix
pseudo inversion lemma, whilst a second variant, denoted here RBP2; computes Py
exactly for the first 250 recursions, in order to achieve a more exact initialisation of the

pseudoinverse. The mean-square-error between the RAFS estimates and those obtained
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Figure 5.2: Mean square error for between RAFS and RBP1, RBP2, RBP2; evolving
with time for Example 5.2.

from the RBP1, RBP2 and RBP2; are, respectively, computed as

~ 112
‘ﬁlﬁAFS — Uk ‘2 5 99
vz .

MSE;, &

where 79’13; apg denotes the estimates of the RAFS. The values of MSE;, evolving over
time are in shown in Figure 5.2. It is observed that the longer period of initialisation
can improve the performance in terms of MSEy, for the RBP2 algorithm (from around
107! to approximately 10~3 with respect to the RAFS). However, the results of the

RBP1 appear to be superior with an average value around 10~". ]

Examples 5.1 and 5.2 reveal an important observation which is captured in the following

remark.

Remark 5.3. The REBC approach for the overdetermined normal equations (Algorithm
5.2) appears to be sensitive with respect to its initialisation of the pseudo inverse. In

fact, some further numerical experiments reveal that the initialisation of P, the left

k
zp)

the algorithm. This requirement may be considered as a major shortcoming that has
been observed for the REBC, hence the resulting RBP2 algorithm.

pseudo inverse of X7 . is of crucial importance in achieving a satisfactory operation of

5.3.5 Comments on the matrix pseudo inversion lemma for recursive

estimation

A potential reason for the poor performance of the ERLS1 algorithm is that the second
assumption within Lemma 5.2 is not necessarily satisfied when applied to recursive
estimation. In this case, the right hand side of (5.24) is a left inverse of A + be!, but
not the unique pseudo inverse (cf. Chapter 7 in Lawson & Hanson 1995) as illustrated

in the following example.
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Ezample 5.3. Let A, b and ¢ be given by

1
0 )

where the pseudo inverse of A is given by

At = <[1 o} léD_l [1 0} = [1 0]. (5.31)

A:

b= H , c=1, (5.30)

In addition, it holds
T 1
A+bc = ) (5.32)
and

(A+bc") = ([1 1] H)l 1] =os[1 1], (5.33)

In contrast, the right hand side of (5.24) gives

o m ] = [1 0] # (At bh)", (5.34)
o] ] '

Hence, when Assumption 2 within Lemma 5.2 is not satisfied, the REBC algorithm

o]

does not use the unique pseudo inverse for the computation of the IV estimate é}ﬁv

The implications for the estimator are illustrated with the following example.

Ezample 5.4. Consider two equations in one unknown given by

=11 -

where z is the scalar parameter to be estimated, whilst e; and ey are zero mean inde-

1
1

€1

T+ , (5.35)

€2

pendent errors having the same variance. A left inverse of [1 1]7 may be given by
H=la 1-al, (5.36)

where o € R can be chosen freely. This allows the formulation of an unbiased estimate

as

T=Hy=x+ae; + (1 — a)es. (5.37)
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However, due to the Gauss-Markov theorem, the best linear unbiased estimator occurs

when

i
H= H — 0.5 [1 1} . (5.38)

Consequently, when Assumption 2 of Lemma 5.2 is not satisfied, but (5.24) is still
used to update the left inverse, the estimate is no longer best in the minimum vari-
ance sense. Hence, although the ERLS1 algorithm is computationally simpler than the
ERLS2 algorithm, it does not solve the same problem and leads to a degraded statis-
tical behaviour. This implies that for the application considered here, it seems to be
advantageous to make use of the ERLS2 algorithm rather than the ERLS1, in order to

compute the IV estimate recursively.

5.4 Variable projection algorithm

This section considers an application of the variable projection algorithm to recur-
sively estimate . Recent work (Ekman 2005, Soderstrom et al. 2005) recommends
this algorithm not only for (offline) EBCLS problems, but also as an alternative for
the iterative BCLS implementations as used, for instance, in the bias eliminating least
squares (BELS) methods. Whilst an application of the variable projection seems to
appear unnecessary for solving the Frisch-YW identification problem due to the nature
of its bilinear parametrisation, it is its generalisability towards more complicated se-
tups, such as coloured noise cases, which makes this approach appealing. In fact, only
the computation of the Jacobian is to be modified, in order to apply this approach to
nonlinear problems which are not bilinear in the parameters, but still separable. In
particular, the approach could be utilised to obtain an alternative recursive algorithm
for the Frisch scheme identification problem in the coloured output noise case, which
has been considered in Chapter 4.

Since the nonlinear least squares problem (5.1) is separable (cf. Section 2.3.2), ¥
can be estimated offline in a two-step manner using a variable projection algorithm

given as follows.

Algorithm 5.4 (Variable projection algorithm - offline case).

2

& = min H ([ - F(U)FT(J)> f(J)H2 (5.39a)

6 =F'5)f(6) (5.39b)

The minimisation problem in (5.39a) could be solved using any suitable optimisation
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routine. However, it is beneficial to take the particular structure of the problem into
account which can be realised, for instance, via a Gauss-Newton algorithm. This also
has the advantage of allowing a straightforward recursive implementation. A Gauss-
Newton algorithm for the variable projection problem is given in (Bjorck 1996) as

follows:

Algorithm 5.5 (Gauss-Newton variable projection algorithm). Let e =

. T
[95 &z] be the current approximation.

1. Solve the linear sub-problem
et = argmin ||F(5) 6 — £ (o0)3 (5.40)
k

. T
., 3 o T ~T
and set 1919+%— [9k+% Uk] .

2. Compute the Gauss-Newton direction 1, at 1§k 41, l.e. solve
2

. . . 2
i = argmin HJ(@H%)W + T(9k+%,ak)‘ o (5.41)
where J(z@kJr%) is the Jacobian matrix.
3. Take
7§k+1 = ’lngr% - r}/qu)k’ (542)
where v, denotes the step size.
The Jacobian matrix in (5.41) is defined by
R 87"(&]9_’__76-]@) 87"(9 1 Jk) 87"(9 1 a’k)
J@, 1) 2 i = e & AN 5.43
( k+§) a’lgk+% 89k+§ 6, ( )
where
0r(6).,1,06%)
M Ry, (5.44a)
90y 1 1
Or(Ok41:0%) OF(61); _ 9(6w) (5.44b)
doy, Oop. kts oy, '
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Recall from (5.7) that in the Frisch-YW case, () is also linear in o, i.e.

T(ékﬁ-%?&k‘) = G(élﬁ_%)a’k - g(élﬂ_%) (5.45)

holds. This simplifies the computation of (5.44b) to

A~

A
0. (5.46)

Consequently, when the problem is bilinear in 6 and o, i.e. (5.5) and (5.7) hold, the

Jacobian in Step 2 simplifies to
). (5.47)

As in Section 5.3, the problem reduces to solving two individual linear least squares
problems, which can be solved in different ways as pointed out in Section 5.3.1. Two
approaches are considered in this Section: The first proposed algorithm uses robust
batch LS techniques and is therefore of cubic complexity, i.e. O((ng + 2)3). The

algorithm is denoted RVP1 (recursive variable projection) and summarised as follows:

Algorithm 5.6 (RVP1).
1) Set j=n¢c+mny, 6;=0
2) For k=j+1,..
a) Update i]’;w and éfy via (5.12)
b) O3 = Fi(61)f(o%)
©) = J WDy 1) Oy 1.6%)
d) Jyy1 = 791%% — kK

In order to reduce the computational complexity of the RVP1 algorithm, the re-
cursive implementation of the two linear LS problems based on a generalisation of
the recursive bias compensation technique and the matrix inversion lemma for pseudo

inverses, as in Section 5.3, is considered, leading to the second approach.

5.4.1 Update of ék+%

Step 1 of Algorithm 5.5 can be solved via an extended bias-compensating linear least
squares approach (cf. Lemma 5.1 on page 128) for which a recursive algorithm has

been derived in Section 5.3 (Algorithm 5.2). The algorithm for the determination of

A~

0

pyl can be summarised as follows.
2
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Algorithm 5.7 (Update of ék+%)

) NV )
Oyl = 9k+% + Py (Ew@k,% - zy) (5.48a)
O =071 + L (yk - @f%‘i%) (5.48b)
P,
Ly = L UL (5.48¢)
1= + o3, Pe—1762k
1
Pe=1— (Pi—1 — L) Pr1) (5.48d)

Next, the update of the Gauss-Newton update direction is considered.

5.4.2 Update of @/A)k

Step 2 in Algorithm 5.5 can be expressed as

0
F(61) GOp.)| Lﬂ = (01 1,0%), (5.49)
where 1% and ¥° denote the Gauss-Newton directions corresponding to 6 and o, respec-
tively. A recursive solution of the linear LS problem (5.49) is, however, not straightfor-
ward: Since the matrix [F(6) G(ékH/Q)] is not updated via a common rank-1 update,
the matrix (pseudo) inversion lemma is not applicable. To overcome this issue, an it-
erative two-step solution is proposed which first computes the solution for ¥¢ followed

by a solution for 7, i.e.
0= F1(00) [0y 1.60) — GOy )91 (5.500)
0 =Gl 1) [r(Ba1.00) — F(o1)) (5.50b)

For the determination of 1&2 the principle of stationary iterative LS methods (cf. Section

2.3.1) can be applied. From (5.50a), one obtains,

(25, = T25(00) | 9 = 1(8y2.00) — GOy )07, (5.51)
which gives rise to the recursive update
V) = P, [T(ék+%76k) - G(ék—f—%)d}gfl + 22¢(&k)¢zfl] , (5.52)

where Pj has already been computed in Algorithm 5.7. Due to the particular sparse

structure of G(ékdr;), its pseudo inverse and hence 1&,‘: in (5.50b) can be computed in
2
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a straightforward manner as given in (5.13)

—aT
L - 0 0
N I+al qa,, 1 44T | ay
b+ b+
GT(HIH-%) = 2 ? BT . (5.53)
0 0 3
o3P
The resulting algorithm is summarised as follows.
Algorithm 5.8 (Update of 1,Bk)
. T
Y = [WT w"T} (5.54a)
= P [r(Bpp1.08) = GO )T + Saa(@n)uf (5.54D)
07 =G0, ) [r(9k+%,&k) — F(&)9! (5.54¢)

5.4.3 Algorithm summary

The recursive algorithm, denoted RVP2, can be summarised as follows.

Algorithm 5.9 (RVP2).
1) Initialisation
2) For k=ng,+np+1,...
a) Update i]’;o and éfy via (5.12)
b) Determine ék 41 via Algorithm 5.7

¢) Compute v, using Algorithm 5.8

d) Update ¥j41 = 1§k+% — Vet

Note that in contrast to the RVP1, Algorithm 5.9 is of only quadratic complexity.
The following example investigates, if the RVP2 algorithm can approximate the

estimates of the more computationally demanding RVP1 algorithm.

Ezxample 5.5. Consider an identical setup as in Section 3.3.6, i.e. the system is given
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1 2500 5000 1 2500 5000

Figure 5.3: Estimates of ¥ using RVP1 and RVP2 for Example 5.5.

0:{—1.5 0.7 1 0.5]T, (5.55a)

o= [2.1 0.1}T, (5.55b)

with the input being a zero mean random process of unity variance. The signal-to-
noise ratio on input and output is given by 10dB and 10dB, respectively. The RVP1
and the RVP2 algorithms are utilised to estimate 9. During the first 100 recursions,
P, within the RVP2 algorithm is computed exactly, rather than by making use of the
matrix pseudo inversion lemma. The estimates of both algorithms evolving over time
are shown in Figure 5.3 for V = 5000 samples. It is observed that the RVP2 algorithm
can successfully approximate the estimates obtained by the RVP1 algorithm. However,
the initialisation of Py is, as already remarked in Section 5.3.4, crucial for the RVP2

algorithm to perform satisfactorily. [

In the next section the four EBCLS-based algorithms which have been developed
in this chapter are compared with those developed in earlier chapters in terms of ro-

bustness, accuracy, Frisch-character as well as computation time.

5.5 Simulation studies

This section compares the recursive EBCLS algorithms of this chapter with the RFS
and FRFS approaches, which have been developed in Chapters 3 and 4, respectively.
For convenience, a brief description of all eight algorithms, which are compared in this
section, are listed in Table 5.1 together with the appropriate sections where the details
can be found. Three simulation examples are designed such that the following aspects

are investigated:

Computation time: For an online implementation it is necessary to gather infor-

mation about the computation time per recursion, consequently this aspect is
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Algorithm | Description Section
RFSa Gradient-based recursive Frisch-YW. | 3.3
RFSh v ks
FRFSa .

FREShH Fast RFS algorithms. 4.2
RBP1 . e L

RBP2 Recursive bilinear parametrisation. 5.3
RVP1 . . L

RVP2 Recursive variable projection. 5.4

Table 5.1: Algorithms used within simulation.

investigated for an incrementally increasing model order.

Frisch-character & estimation accuracy: Whilst the RFS algorithms aim to de-
termine oy such that ¥, is (approximately) singular, the EBCLS approaches do
not explicitly impose such a condition on the solution. It is therefore of inter-
est to investigate how ‘well’ the EBCLS based recursive algorithms satisfy this
singularity condition. To evaluate this property, a Monte-Carlo simulation is
performed, which, in addition, monitors the estimation accuracy of the various
algorithms. Note that the asymptotic accuracy of all eight algorithms is expected
to be similar* (convergence provided) since the same underlying equations are

utilised (Hong et al. 2007, Hong & Soderstrom 2008).

Robustness & convergence: A simulation example is included to give some insight
into the robustness and convergence behaviour for a particular system. In an
attempt to quantify the results, the MSEs of the estimates are monitored in a
Monte-Carlo simulation for an increasing signal-to-noise ratios (SNRs) on input

and output, respectively.

Ezample 5.6 (Computation time). A similar setup as in Section 3.4.3 (page 77) and
Example 4.3 (page 104) is considered, where the computation times of the RAFS, RFS
and FRFS algorithms have been compared. For the considered algorithms, the com-
putation time per recursion for model orders ranging from n = 1,...,30 is presented
in Figure 5.4. The solid lines are utilised for algorithms which are of cubic complex-
ity, whilst the fast versions, which are of quadratic complexity, have dashed lines. It
is observed that the RFS algorithms are the most expensive algorithms in terms of
computation time per recursion. The slopes of the curves corresponding to the RBP1
and RVP1 indicates that these algorithms are of cubic complexity whereas the lowers
slope of the RBP2 and RVP2 approaches indicate the quadratic order of complexity.
This confirms the theoretical results obtained in this chapter (see Sections 5.3 and 5.4).

However, although of cubic complexity, the RBP1 is relatively fast and outperforms

“Note that the weighting is different.
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Figure 5.4: Computation time per single recursion with increasing model order n.

the other algorithms with respect to computing time for a model order less than ap-
proximately 17. For a model order greater than this threshold, the RBP2 algorithm
is the fastest. A similar behaviour is observed when comparing the RVP1 and RVP2
algorithms. For a low model order, the RVP1 is faster, whilst for n Z 17, the RVP2
requires less computation time. It is interesting to observe, that for the considered
range of model order, the RBP1, RBP2 and the RVP2 are all less computationally
demanding than the FRFS algorithms. [

Ezxzample 5.7 (Frisch-character and estimation accuracy). Consider an identical setup

as in Section 3.3.6, i.e. the system given by

6

15 07 1 0.5]T, (5.562)

g

2.1 0.1}T, (5.56D)

with the input being a zero mean random process of unity variance. The system is
simulated for N = 1000 samples and 100 Monte-Carlo iterations. The estimates of
oy and oy are projected into the intervals [0,02**] and [O,Jrgnax], respectively. The
maximal admissible values for the input and output measurement noise variances are
chosen to be 7™ = 203 and o7 = 205. In addition, recall from Examples 5.1-5.5
that the RBP2 and the RVP2 algorithms require an accurate initialisation of the pseudo
inverse Pi. Therefore, these algorithms use the exact computation of P during the first
250 recursions (rather than making use of the matrix pseudo inversion lemma). The
Frisch-character is measured via FQk as defined by (3.58), i.e. the smallest eigenvalue

of ﬁ)éo = i]’; — X3(0k). The average of sz for the last 100 samples, i.e. 901 < k < N,
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Algorithm || mean(F) | std(F) || mean(MSEy) | std(MSEy)
RFSa 4.41-.107%| 1.65-1076 7.19-1073 9.61-1073
RFSb 8.36-1076| 3.51-1076 7.10-1073 9.77-1073
FRFSa 3.21.1073| 6.85-10~% 7.86-1073 1.04-1072
FRFSb 2.93-1073| 7.24.10~% 8.46-1073 1.01-1072
RBP1 1.61-107%| 5.65-10~4 7.43-1073 1.00-1072
RBP2 5.05-107%| 1.38.1073 8.62:1073 1.19-1072
RVP1 8.02-107%| 3.90-1073 7.58-1073 1.04-1072
RVP2 7.95-1073| 4.54-1072 1.04-1072 1.41-1072

Table 5.2: Mean (mean(-)) and standard deviation (std(-)) of F' and MSEy for 100
Monte-Carlo runs.

given by

1 1000
T F}
k=901

(5.57)

is computed for each algorithm and each Monte-Carlo run. In order to evaluate the
estimation accuracy of the individual algorithms, the accuracy of the final estimate On

is measured via the mean square error given by

(5.58)

for each Monte-Carlo run. The means and standard deviations of F' and MSEy with
respect to the Monte-Carlo simulations for each algorithm are presented in Table 5.2.
Consideration is first given to the Frisch-character, as indicated by the measure F. It
is observed, that the RFS algorithms, which both use the conjugate gradient subspace
tracking algorithm for the determination of oy, yield the best performance in terms
of Frisch-character. Comparing the results of these two algorithms, it is noteworthy
that the Frisch-character of the RFSb is worse (approximately double) than that of
the RFSa algorithm. At the first glance, this difference might appear surprising, since
both algorithms utilise the CG-RQ algorithm (cf. Algorithm 3.4 on page 61) to estimate
0y, which finally defines the Frisch-character. However, recall that the CG-RQ assumes
that the matrix Ay, hence 6’5, is varying slowly with time, as stated in Assumption AE1
(cf. Section 3.3.3). In addition, it has been observed in previous examples (cf. Section
3.3.6), that the estimate of oy obtained from the RFSb (cf. Algorithm 3.6 on page 68)
appears to more erratic than that obtained from the RFSa. Consequently, Assumption

AE1 is ‘less satisfied’” in the RFSb case, which could explain the deterioration of Frisch-
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5. Recursive extended bias compensating least squares

character which is observed in Table 5.2. The RBP approaches perform second best
in terms of Frisch-character, but exhibit a relatively high standard deviation, due to

5. The performances of the RVP1 algorithm would appear to be next

several outliers
following the RBP, with the FRFS algorithms providing very similar jointly next best
results. It is noted that the RVP2 algorithm performs worst in terms of Frisch character.

For the estimation accuracy, it is observed that the values of the MSEy are similar
in all cases. This is an expected result, since all algorithms use the same underlying

equations. |

Ezample 5.8 (Robustness € convergence). In order to compare the convergence prop-
erties of the eight algorithms, the system given in Example 5.1, where 9 was given
by

T
0=|-15 07 1 05| , (5.59)

is simulated for different SNRs. The SNR on the input and output, which are denoted
SNRu and SNRy, respectively, are varied incrementally between 0dB and 20dB. For
each combination of SNRu and SNRy, 100 Monte-Carlo iterations are performed using
N = 500 samples. Otherwise, an identical setup as in Example 5.1 is used, in particular
the pseudoinverse within the RBP2 and RVP2 approaches is computed exactly during
the first 250 recursions. At each Monte-Carlo iteration, the estimation accuracy of
each algorithm measured by the MSEx defined in (5.58) is recorded. The mean value
with respect to the Monte-Carlo iterations of this quantity indicates, whether the given
algorithm is able to converge or not: A large value will be interpreted as divergence,
whilst a small mean value will be interpreted as convergence. In order to visualise the
results, a threshold is defined which declares the certain divergence of the algorithm
(values above this threshold are clipped). The value of this threshold is chosen to be
1/(ng)10]3 = 0.12 (cf. (5.59)). The mean values of MSEy for all eight algorithms are
shown in Figure 5.5, where a light colour indicates a small average MSEy for a given
set of SNRu and SNRy, whilst a dark colour corresponds to a large average estimation
error (black corresponds to the threshold value 0.12).

It is observed that the two gradient-based Frisch scheme approaches (RFSa and
RFSb), which have been developed in Chapter 3, exhibit a similar region of convergence
for the particular system considered, indicated by the light area. Furthermore, it is
observed that the additional assumptions and approximations, which have been used
for the development of the fast algorithms FRFSa and FRFSb, lead to a reduced
convergence region. Again, the FRFSa and FRFSD yield a very similar performance.
An interesting fact is observed when comparing the RBP1 and RBP2: In terms of
convergence region, the RBP2 seems to be superior to the RBP1. This is a surprising

result, since the RBP2 aims to compute the RBP1 estimate in a fast manner, by

5Note that the outliers are in terms of Frisch-character and not in terms of estimation accuracy.
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Figure 5.5: Mean values of MSEy with respect to 100 Monte-Carlo iterations for
all eight algorithms considered in Example 5.8 indicating the region of
convergence. A light colour denotes a small average MSE y, whilst a dark
colour corresponds to a large mean estimation error.
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5. Recursive extended bias compensating least squares

introducing additional approximations. Whilst this potentially requires some further
investigations, it is believed that this result may be caused by the rather more favourable
initialisation of the RBP2 scheme. In addition, it is observed that the RVP2 clearly
has a reduced convergence region compared to the RVP1. Comparing all investigated
algorithms, it can be concluded that the RVP1 appears to yield the best convergence
properties, followed by the RFS algorithms. Finally, it is worth mentioning that these
simulations results cannot be interpreted as a convergence analysis, but are rather of
an indicative character. Techniques for a more rigourous mathematical analysis are
discussed in (Ljung & Soderstrom 1983, Kushner & Yin 2003) and are identified as

potential further work. [

5.6 Concluding remarks

The equations of the Frisch scheme using the Yule-Walker (YW) model selection crite-
rion (Frisch-YW) have been interpreted in an extended bias compensating least squares
(EBCLS) framework. T'wo methods have been considered to solve the resulting EBCLS

system identification problem in a recursive manner:
1. Bilinear parametrisation approach.
2. Nonlinear separable least squares (also known as the variable projection method).

Acknowledging the fact that the EBCLS problem for the Frisch-YW case is bilinear in
the parameters allows the solution of the identification problem to be obtained in an
iterative two-step manner, which can easily be modified towards a recursive estimator.
At each recursion, two individual least squares (LS) problems are required to be solved.
A first algorithm, denoted RBP1 (recursive bilinear parametrisation), solves these LS
problems in an offline or batch manner. A second recursive algorithm based on the
bilinear parametrisation approach has been developed, which is denoted RBP2. This
algorithm aims to avoid the application of a batch LS at each recursion by means of a
recursive bias compensating least squares (RBCLS) approach; a technique which is well
known in the literature and which has also been used within the previously developed
RFS and FRFS algorithms. The use of the RBCLS is able to reduce the cubic complex-
ity of the RBP1 (which is due to the batch LS application at each iteration) towards
quadratic order. In order to achieve this, the RBCLS technique has been extended to
deal with overdetermined normal equations by making use of the extended RLS (ERLS)
which relies on the matrix pseudo inversion lemma. However, the RBCLS techniques
can suffer from convergence problems, hence reducing the convergence properties of
the overall RBP2 algorithm. In addition, it appears that the Moore-Penrose pseudo in-
verse, which is propagated within the ERLS, requires a highly accurate initialisation, in
order to ensure that the RBP2 and RVP2 perform satisfactorily. Consequently, whilst

providing reduced computational complexity, these issues could well represent major
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5. Recursive extended bias compensating least squares

limitations of the RBP2 approach. In addition, a simulation example indicates that the
RBP2 fails to reduce the computation time in comparison to the RBP1 for low model
orders. Hence, the practical use of the RBP2 appears to be limited.

In addition to the bilinear parametrisation approaches, two algorithms have been
developed based on the variable projection method. Whilst the Frisch-YW problem is
a special case within the EBCLS framework, which can be solved by the conceptually
simpler bilinear parametrisation, using a variable projection allows more general setups,
such as coloured noise sequences. The developed algorithms within this framework
are based on a Gauss-Newton search to minimise the associated variable projection
cost function. This allows a straightforward modification for a recursive application
by updating the covariance matrices/vectors as new data arrives. As in the bilinear
parametrisation case, the problem reduces to two separate LS problems and as in the
RBP case, two algorithms have been proposed. The first algorithm is denoted RVP1
(recursive variable projection) and can be considered as being analogous to the RBP1,
since the LS problems are solved in an offline manner at each recursion. The second
algorithm by analogy, which corresponds to the RBP2, has been similarly denoted
RVP2. It also makes use of the RBCLS and, therefore, the same implications and
restrictions in terms of convergence and robustness apply.

The four algorithms which have been developed in this Chapter have been com-
pared with the previously derived RFS and FRFS algorithms (cf. Chapters 3 and
4) via Monte-Carlo simulations. The computation time, the Frisch-character, estima-
tion accuracy as well as an indication of convergence behaviour has been investigated.
Firstly, the absolute computation time per recursion has been compared for an increas-
ing model order. It has been found that the fast algorithms RBP2 and RVP2 are only
superior in terms of computation time for an increasing model order, whilst the LS
based approaches RBP1 and RVP1 are computationally less expensive for low model
orders. Within the overall comparison, however, the fast RBP2 and RVP2 approaches
are consistently faster than the FRFS approaches. For the Frisch-character, it has been
found that the EBCLS approaches produce performances that are similar to the FRFS
algorithms, whilst the RF'S algorithms perform best. Finally, the region of convergence
has been determined for a given system. Here, it has been found that the RVP1 yields
the best performance followed by the RFS approaches. All algorithms, however, can fail
to converge in the case of extremely low signal-to-noise ratios. Whilst these simulation
results are required to be confirmed by mathematically sound convergence analyses, the
development of recursive algorithms with improved convergence properties is an area
of potential further work. In general, it can be concluded that the algorithms appear
to be characterised by a trade-off between computational complexity and satisfaction
of the Frisch-character. Within an overall comparison, albeit limited to a single system
setup, the RVP1 seems to provide an appropriate compromise between computation

time, Frisch-character and convergence properties.
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T State estimation error covariance matrix

Pr o Estimation error variance of the input

P; .................... Estimation error variance of the output

Vky Uk, Vpy Vfp v nvvevnnn- Reformulated process noise

Wh v veee e Process noise

Tl oo System state vector

TO oot Mean of initial state vector

77 State estimation error

T One-step-ahead prediction of the state vector

Bl v Reformulated system output

Eh v Innovation

Oty Oy OGg «ovvvveennnn Variances and covariance of input and output noise sequences

O6 it Variance of reformulated output noise

Sk Innovation covariance matrix

O vt Variance of process noise

Ougy Oy veveennennennn Variance of noise-free input and noise-free output, respectively

Oy Oy oeeeeeaeaien. Variance of measured input and measured output, respectively

DU D DI Efj, ...... Auto-covariance matrix of reformulated process noise

DIUIND JLAND DN Eﬁ,e ... Cross-covariance matrix of reformulated process noise and reformulated
output noise

DD Auto-covariance matrix of the state vector

e Cross-covariance matrix of the state vector and state estimation error

p(A) oo Spectral radius of matrix A

Preliminary reading: Sections 2.2, 2.5.1, 2.5.2, 2.5.3.

6.1 Introduction

The estimation of signals from noise corrupted measurements, usually termed filtering,
is a very active research area and modern references date back to the 1940s (see Ch.
1 in (Anderson & Moore 1979) for a historical development of filtering theory). The
estimation of unobserved states of a linear dynamic state space system has numerous
applications in automatic control, signal processing and many other areas. In the linear
Gaussian case, the optimal solution, in the minimum variance sense, is given by the
so-called Kalman filter (KF), which has been developed in (Kalman 1960). Recently,
Kalman filtering within an errors-in-variables (EIV) framework, that is not only the
output signals but also the inputs of a dynamical system are corrupted by additive
measurement noise, has been considered (Guidorzi et al. 2003, Diversi et al. 2005,
Markovsky & De Moor 2005). Essentially, EIV Kalman filtering provides, in addition
to the state and output estimates, an estimate of the noise-free system input if the
latter is unknown and only a noise corrupted measurement is available. Hence the
errors-in-variables Kalman filter (EIVKF) can be considered as a generalisation of the
KF which allows for a symmetric system description.

Whilst EIV filtering has only been considered for linear systems (cf. Section 2.5.2)
within the literature, this chapter addresses the EIV filtering problem for bilinear sys-
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tems, an appealing class of nonlinear systems. Bilinear system representations (cf.
Section 2.5.3) have successfully been applied in numerous areas such as engineering, so-
cioeconomics, chemistry and biology (Mohler 1991) since they are able to approximate
many dynamical processes. Hence, there is a natural interest and motivation to extend
the linear EIV filtering theory towards the bilinear case.

This chapter considers EIV Kalman filtering, i.e. the estimation of noise-free in-
puts and outputs when both quantities are subject to measurement noise, for a class of
bilinear discrete-time dynamical single-input single-output (SISO) systems. The SISO
restriction is adopted for convenience only, and the development within this chapter
can be extended to the multivariate case in a straightforward manner (cf. Remark 2.4).
Four suboptimal filtering approaches are considered and compared with a benchmark
filter whose design depends on the knowledge of the true input, which as a consequence
is an infeasible solution in practice. In addition, a connection between bilinear EIV sys-
tem representations and linear time-varying systems with stochastic parameters (also
known as multiplicative state noise systems) is established. A numerical example com-
pares the performance of the developed filters. Part of the material within this chapter

has been published in (Linden, Vinsonneau & Burnham 2007a).

6.2 Preliminaries

Assume that the input-output data is generated by a SISO bilinear EIV state space
system which is given, for k£ > 0, by

Tpyr1 = Az + Buo, + Nukak + Gy, To = Zo, (6.1a
Yo, = Cxk, + Duy,, (
U = o, + Uk, (6.1c
Yk = Yo, + Uk, (6.1d
where x5, € R"™ denotes the state vector and the system matrices A, B, C, D, G and N,

are known, constant quantities of appropriate dimension, whilst uy and y; are assumed

to be scalars. The following assumptions are introduced.

ANY7T The noise sequences Uy, yr and wy are assumed to be zero mean, white, inde-

pendent of ug, and are characterised by the known covariance matrices

Zo P, 0 0 0
U 0 o5 0

E ~k [l“o u Y wl] = v Okl (6.2)
Yk 0 Oig g 0

The problem considered in this chapter can be summarised as follows.
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Problem 6.1 (EIV filtering for bilinear systems). Given the bilinear EIV system (6.1),
the covariance matrices defined in AN7 and an increasing sequence of measured pairs
of inputs and outputs {u;, yi}le, determine, at each time step k, the estimates of the

noise-free inputs and outputs, denoted 1o, and g, , respectively.

In order to proceed in a similar manner to the linear case, the system representation

(6.1) is transformed into

Tht1 = Axp. + Bug, + Nuk:vk — By, — Nﬂkxk + Gy, xro = X, (6.3&)
zr = Cxy + eg, (6.3b)
where
2k = yr — Duy, (6.4a)
€L — gk — Dﬁk. (6.4b)

A natural approach would be to follow a similar strategy as in the non-EIV bilinear case
and to recast the problem, such that the standard KF can be applied (cf. Algorithm
2.2 on page 39). However, the problem is exacerbated by the additional term —N @yxy
in (6.3a) which can be dealt in two different ways: the system can be interpreted as
having an uncertain system matrix or a state dependent noise term. This is discussed

in the following subsections.

6.2.1 Linear time varying system with uncertain system matrix

The first possibility is to interpret the bilinear EIV system (6.3) as a system with

time-varying but uncertain system matrix, i.e.

Tp1 = Atz + Buy + vy, (6.5a)
zr = Cxyp + eg, (6.5b)

where the actual system matrix is defined by
AL & A+ Nuy — N (6.6)

As in the linear case (see (2.103a) and (2.103c)), the process noise and the output noise

sequences are given by

VE = gwk - Bﬂk, (6.7&)
ex = Yk — Duy, (6.7b)

respectively. The superscript a for the system matrix Ay is introduced here in order

to distinguish between the actual matrix corresponding to the system which generates
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the data and the subsequently utilised design matrix corresponding to a model which
is used for Kalman filter design. Making use of different approximations of A} leads to

suboptimal Kalman filters, which are developed in Section 6.4.1 and Section 6.4.2.

6.2.2 Linear system with state dependent noise

Within this framework, one can take two different (yet mathematically equivalent)
points of view. One possibility is to consider a linear time-invariant (LTT) system with

state dependent process noise depending on ug,, i.e.

Tpy1 = Az + Buy + vy, (6.8a)
zr = Cxy + eg, (6.8b)

where
UZ = Guwy, — Buy, + ./\/Cﬂkuok. (6.9)

The noise acting on the state is now dependent on the state and the unknown input.
Note that this interpretation of the bilinear EIV system requires that the input satisfies

the following assumption.
AI3 The true input ug, is a stationary zero-mean ergodic process with variance o, .

The variance of the true input signal is either known a priori, or an estimate, denoted
Oug, can be obtained from the data and the known variance of the input noise. A filter

within this framework is derived in Section 6.4.4.

Remark 6.1. System (6.8) is a bilinear system with stochastic inputs, which is fre-
quently referred to within the literature as a bilinear stochastic system. Such systems
have many practical applications (cf. Carravetta et al. 1997). Another name for these
systems is stochastic discrete-time systems with multiplicative noise, which can also be
viewed as systems with stochastic parameters (depending on the point of view which
is taken). Indeed, the filtering problem for such systems is addressed by making use
of the interpretation of state dependent noise systems, which has been given in (6.8a)-
(6.9). In the case of white stochastic system parameters, the optimal filter is discussed
in (De Koning 1984) where a direct application of the standard KF is proposed, after
the first- and second-order moments of the ‘reformulated’ non-stationary noise term v},
are determined. If the uncertainties are assumed to be bounded, robust filters can be
developed, as outlined in (Wang & Balakrishnan 2002). Further references within these
frameworks are given by (Yaz 1992, Geromel 1999).

Alternatively, by taking the second viewpoint, it is possible to consider the bilinear

EIV system as a LTV system with state dependent noise based on ; rather than using
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up, as in (6.8a). This gives the system description
Thy1l = Agxk + Buy, + vy, (6.10&)
2z = Cxy + ep, (6.10b)
where
A = A+ Nuy, (6.11a)
Uy = Guy, — By, — Ny, (6.11b)

The remainder of this chapter explores filtering techniques within both frameworks:
Sections 6.4.1-6.4.2 consider a LTV system, where the system matrix is approximated
in different ways, whereas Section 6.4.3 uses a LTV system with state dependent noise
given by Uj. Section 6.4.4 considers a LTI system with state dependent noise term
given by vf. A benchmark filter that is not achievable in practice is given in Section
6.3.

6.3 A benchmark filter

As for the non-EIV case, the bilinear EIV state space system can be regarded as a

linear time varying system, where the system matrix depends on the unknown input

Ug, , 1.€.
Thy1 = A%xk + Buy, + v, (6.12&)
2z = Cxp + ep, (6.12b)
where
VE = ka — Bﬂk, (6.13&)
€L — gk — 'Dﬂk, (6.13b)
k= A+ Nug,. (6.13c)

Clearly, if ug, (hence the system matrix Af) is known, one could design the EIVKF
as in the linear case since the first and second order statistics of v and ej are readily
known and all conditions of standard Kalman filtering are fulfilled. The resulting
filter is denoted BEIVKF1 and can therefore be derived by applying the EIVKF (cf.
Algorithm 2.3 on page 42) using the state space model (6.12). This is achieved by
setting Ay, = Af, B, = B, C}, =C, D, = D, G}, = G, whilst the covariance matrices for
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the SISO case are given by (2.105)

>F =%, = Go,GT + 0aBBT, (6.14a)
af =0, =05 — U@DT — Doy + oiDDT, (6.14b)
¥k, =S = BoiDT — Bogg. (6.14c)

Such a benchmark filter, which is mainly used for comparison purposes in the subse-

quent development, can be summarised as follows.

Algorithm 6.1 (BEIVKF1 - linear benchmark filter).
jk+1|k = Azjk\kfl + Buy, + Keg, (6.15a)
—1
Ky, = [AL Py 1CT + o] [z’g] (6.15b)
T

Prpapr = AgPrjp—1 Al + 30 — K S (6.15¢)
Ek = Rk — Ci‘k‘k,1 (6.15d)
S = CPyj1C" +oe (6.15¢)

- T K]t
Yo, = Yk — |05 — oagD" | [EE} Ek (6.15f)

- T K]
iio, = u — [oag — oaDT] [25] ek (6.15g)

The expected performances for the input and output estimates of the filter are given
by (2.108)

—1 T

PF =gk _ [agg - UZ‘DT} [Ef] {Ugg - UZ‘DT] , (6.16a)
~1 T

Pf = o — [oh —obiDT| 3] ok - ok D] (6.16b)

Due to the very nature of the EIV problem, however, the true input ug, is not avail-
able to design the optimal EIVKF, which assumes that the true input is deterministic
and known. Therefore, suboptimal alternatives are to be explored in the subsequent
development. Firstly, however, to establish a benchmark a numerical example for the
BEIVKF1 is presented, which shows that the filter is working well under ideal condi-

tions.
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Figure 6.1: Comparison of noise-free, noisy and filtered signals using the BEIVKF1.

6.3.1 Numerical example

Consider a bilinear EIV system of the form (6.1) where the matrices are given by

1
Azlo ], B:FL C:@94%y
—0.2 03 1
D= 45, Nézlo 0], g:[1, (6.17)
02 05 0

and where the noise sequences are Gaussian, zero mean and of variance and covariance
ow = 0.05, o = 0.1, o5 = 2.5, oag = 0.5, (6.18)

respectively. The noise-free input is chosen to be a zero mean, white Gaussian process
of variance o, = 0.1. This corresponds to a signal-to-noise ratio on input and output of
0dB and 5.5dB, respectively. The BEIVKF1 is applied to estimate the noise-free input
and output of the EIV system for N = 100 samples. The system is simulated with zero
initial conditions whilst the initial value of the state estimation error covariance matrix
is chosen to be the identity matrix.

An extract (corresponding to the time duration in samples 30-60) of the noisy, noise-
free and filtered input and output signals is presented in Figure 6.1. It is observed that
the noise-free input ug, as well as the noise-free output yo, can be estimated nearly
perfectly. Since it is difficult to read the magnitude of the estimation errors of input and
output from Figure 6.1, an extract of the estimation errors is shown in Figure 6.2. The
estimation error variances of input and output, which are computed via (6.16) are also
shown in Figure 6.2. It is observed that, in contrast to the LTI case, the error covariance
of the input and output estimates do not tend towards a constant value. This is an
expected feature since the bilinear system is considered to be a LTV system with input
dependent matrix Aj. Therefore, the state estimation error covariance matrix Py

is a time varying quantity. This property is propagated to the innovations covariance
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Figure 6.2: An extract of the estimation error of input and output estimates and their
corresponding variances computed via (6.16).

zk,
errors (cf. (6.16)).
In addition to the error variances, another convenient measure for the performance

of the EIV filter may be given by

which finally results into time varying variances of input and output estimation

[|uo — ully — [luo — doll

M, = 100 , (6.19a)
[uo — wull,
llyo — ylls

where the variables without time index (u, y, etc.) denote the corresponding sequence
from 1 to IV, with IV being the number of samples. These performance measures can be
considered as the ‘amount’ of noise in percentage, which is removed by the filter from
the noisy input and output signals, respectively. A negative value would indicate that
the filter is not working satisfactorily, i.e. that, on average, the noisy signal is ‘closer’
to the ‘true’ signal than its estimation. Note that the performance measures (6.19) are
purely of an academic nature, since ug and yg would not be known in practice. For the
given example the values of M, and M, are virtually identical and given by 90.7. This
means that about 90% of the noise can be removed from both the output and input

signals.

Remark 6.2. The results of the previous example might appear surprisingly good to
the reader, however, the conditions within the example are, for illustrative purposes,
carefully chosen: Firstly, the linear part of system (6.17) has a unity steady state gain,
which allows an approximately equal performance for input and output estimates to
be obtained. Furthermore, the variances of the noise sequences have quite a significant
impact on the filter performance. For example, when o5 in (6.18) is altered from
0.5 to 0.2 and the whole experiment is repeated, the filter performance, specified by
(6.19), degrades from approximately 90% to 35%. These aspects should be taken into
consideration, if the EIV filter is aimed to be applied to a practical system. Whilst the
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system within the current example is of a bilinear structure, similar experiences have
been made with the linear EIVKF, which has been reviewed in Section 2.5.2.

6.4 Development of suboptimal filters

6.4.1 Linear Kalman filter design using uy

Since ug, is unknown, a pragmatic approach for the design of a linear Kalman filter can
then be taken by ignoring the uncertainty Nay, which is acting on the actual system
matrix A¢ = A+ Nuy — Nay. In the case of high signal to noise ratio on the input,
this might appear to be a reasonable choice. The corresponding system matrix for the

Kalman filter design is given by
Al = A+ Nuy, (6.20)

whilst the covariance matrices of the noise terms remains as presented in (6.14). Since
the signal model differs from the actual system, the corresponding KF, which is denoted

BEIVKF2, is inevitably suboptimal and can be summarised as follows.

Algorithm 6.2 (BEIVKF2 - linear suboptimal filter).
ik-i-l\k = Ag@ldk—l + Buy, + K&}, (6.21a)
- 47 T K]
Kk - [AkPk‘k_lc —|— Eve} [Eé] (621b)
— — T _ _
Pk+1|k = AszUc—l-Az + Xy — KkEIgKZ (6.21c)
S = Chyp1CT + o (6.21¢)
~ T k -1_
Jo, = vk — [05 — 0y D] [zg] Er (6.21f)
~ T k -1
up,, = U — [O’ag — O'a'D ] [Eg} Ek (6.21g)
Corresponding to (6.16), one obtains for the suboptimal filter
_ -1 T
PF =gk _ [agg - UZ‘DT} [E?] {Ugg - UZ‘DT] , (6.22a)
-1 T
pk _ _k k kT T k k k TyT
P =0y — [O’g — 053D } [Eg] [O’g —og; D ] . (6.22Db)

The uncertainty in the design matrix .AZ, given by Ny, can be interpreted as a sig-
nal model error. The fact that the signal model used for filtering is imperfect is quite

common for practical filter design (Anderson & Moore 1979, Jazwinski 1970), since
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almost always the model is only an approximation of an unknown real-world system.
In general, these model uncertainties can be due to identification errors, linearisation
and /or other approximations, whereas it arises here explicitly due to the input measure-
ment noise 4. Since the model used for filter design differs from the model description
(6.1), the corresponding KF is no longer the minimum variance estimator, nor is Pk+1| k
the estimation error covariance matrix (Jazwinski 1970). This means that P, pro-
vides ‘false’ information about the actual quality of the state estimates, hence in the
case of the EIV configuration, about the quality of the estimates of the noise-free in-
puts and outputs (which are computed based on Pk+1| k). In the worst case, this may
even lead to divergence of the filter. However, it is possible to analyse the qualitative
effects of such model errors as outlined in (Jazwinski 1970). For the BEIVKF2, such

an analysis is carried out in the following subsection.

Analysis of filter performance

The degradation of the filter performance is now analysed following the approach given

in (Jazwinski 1970, p. 244). In order to proceed, an additional assumption is required.
AS4 The bilinearity N is chosen such that yp, is zero mean.

Note that in the case of bilinear systems the zero mean property of the output, which

is stated by AS4, is not guaranteed by choosing a zero mean input, as in the linear

case (Pearson 1999). Assumption AS4 ensures that the (unconditional) mean of the

state is zero, a property which will be exploited in the subsequent development.
Recall that the actual system is defined by

Tp1 = Atz + Buy + vy, (6.23a)
2z = Cxy + ep, (6.23b)

whereas the model for filter design is given by

Tht1 = .Ag.fk + Buy, + v, (6.24&)
zZr = Cxyp + ep, (6.24b)

where the bar-notation is used to distinguish between the state and output of the system
and the design model. The corresponding KF is given by (6.15a)-(6.15¢). Note that K
is not the optimal Kalman gain, nor is Pk+1\lc the estimation error covariance matrix
(as outlined above), since the model differs from the actual system. Consequently,
(6.15a)-(6.15¢) is not the minimum variance filter for (6.23). Using A = A + Nuy, ,
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the actual estimation error is given by

Tt = Tpg1 — B (6.25)
= A%xk + Bug + v — [Agfﬂk‘k,1 + Buy, + Kk [Zk — Cik“g,l]]
= Ajxy + Gwy, — Buy, — A%v’&k\k—l — Nﬂkik“g,l — Ky [CZ + ex]
= [.»4 — KkC] Tk —|—Nu0kjk + Guwy, — Nagxy, + Ny, — Kkgk + [KkD — B] U -
The third equality makes use of (6.23b), whilst the fourth equality utilises (6.13a) and

(6.4b). A measure for the filter performance is then given by the actual estimation

error covariance matrix, which is given by

Pytajp = B [Er184] - (6.26)

Due to the mutual independence of ZTp, wg, g and g, and since uy is zero mean as

well as independent of zj, the estimation error covariance matrix is given by
- = T
PkJrl‘k - [.A - KkC] Pk\k*l [.A - KkC] +NO’UOP]€|]€,1NT + gO'ng

+ NogSENT — Nogsk NT
- NO’@E’E@NT + NO’@Pkw,lNT

+ KoK — Kyoag [KxD — B]"
— [RkD—B] O’agkg—i- [KkD—B] ot [RkD—B]T, (6.27)
where
vkap [mkxﬂ , (6.28a)
Sk 2 E[nidf] . (6.28b)

Note that for the computation of (6.27), the property of zero mean input and output as
well as zero mean state (unconditional) and state estimation error has been utilised (see

AS4). From (6.1a) and (6.25), recursive expressions of ¥ and ¥¥. can be obtained as

SR — AYEAT 1 Boy BT + Now, SENT + GoGT, (6.29a)
¥0 = Py + @l (6.29b)
and
SE = ASE [A - £iC)" + Now S8NT + GoGT (6.30a)
2oz = Po, (6.30b)
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respectively. Finally, if not known a priori, the second order moments of the noise-free

input and noise-free output can be obtained via

Ouw = F [ugk] =F [ui — 2ugly + ﬂz] =0, — 04, (6.31a)

E [yz — 2ylic + Gi) = 0y — 03, (6.31Db)

O-yO é E [ygk]

with E[u?] = o, and E[y;] = o,. The latter quantities can be estimated recursively

from the available measurements as
G [ui - &5*1} , (6.32)
o =op Tt - eh . (6.33)

By making use of (6.14) and (6.31), Equation (6.27) can be further simplified which
finally gives

_ % T % T T _ g T

Py = [A— KiC] Py [A— KiCl" + By + Koo K — Sy K| — KXy,

In addition, by introducing the actual variance of the innovations as
SE = CPyp1C + o, (6.35)

the actual variances of the input and the output estimation error (in contrast to the

‘false’ quantities (6.22)) are given by

—1 T

Ph =gk _ [agg - afijDT} [z’g] [agg - aj:jDT] , (6.36a)
—1 T

Pf = o — [oh —obiDT| 3] ok - ok D] (6.36b)

The values of Pk, PF and Pé“ indicate how satisfactorily the filter is performing,
which can be utilised in practice to make a decision on whether or not to apply the
filter.

There exist, however, alternative approaches to resolve the bilinear EIV filtering
problem, some of which are addressed in the following subsections. Before proceeding,
a numerical simulation is provided, which aims to validate the preceding error analysis.
A comparison of the filter performance is postponed until Section 6.5, where not only
the BEIVKF2, but also the other filters, which are developed within Sections 6.4.2,
6.4.3 and 6.4.4 are compared with the BEIVKF1.
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Figure 6.3: Comparison of (‘false’) error covariance matrix Pk|k,1 computed by the
BEIVKF2 with the actual value of Py;_; and a sample estimate P,

Numerical example

Consider the setup given in Section 6.3.1. The suboptimal BEIVKF2 is applied to
estimate the system state vector and the noise-free input and noise-free output. The
(‘false’) error covariance matrix Pk‘ k—1 (6.21c) is compared with the actual error covari-
ance matrix Py,_1, which can be computed by (6.34). In order to validate the results,
these quantities could be compared with a sample estimate of the error covariance

matrix, which is obtained via

k
P2 = & (6.37)
i=1

x| =

It is noted, however, that the computation of P}, assumes ergodicity and stationarity
of x, which cannot be guaranteed due to the time varying nature of the bilinear state
space system. The values of P, are therefore only of an indicative character and can be
regarded as a rough approximation only. The results for a particular realisation using
N = 500 samples are displayed in Figure 6.3. It is observed that the estimation error
covariance computed by the BEIVKF2 appears to be over optimistic: Considering the
diagonal elements P1; and Psg, the actual values corresponding to Py,_; are larger
than those of Pk|k,1, which is computed by the BEIVKF2. The values of Py;_; seem
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to be in broad agreement with those of the sample covariance Jsk, which appears to
underpin the theoretical results obtained in this section. The peaks which are observed
around a value of £ = 230, might be due to the fact that the stability assumption of the
bilinear system (AI4) is violated, which means that the BEIVKF2 becomes temporarily
unstable (recall that the input is drawn from a zero mean Gaussian distribution).

It can be concluded that the BEIVKF2 algorithm provides false information about
the state estimation accuracy due to the uncertainty in the model, which is used for
the Kalman filter design (and which is basically due to the noise on the input). Note
that this also applies to the error covariance matrices of the noise-free input and output

estimates P* and ]5; , given in (6.22), since these quantities are dependent on Pk| h—1-

6.4.2 Nonlinear Kalman filter design using 1y,

Since the filtered input g, at time k can be evaluated before the Kalman recursions
(i.e. the computation of Tgjk—1, Prjr—1 and K}) take place, it appears to be most
natural to utilise 4o, in order to (hopefully) better approximate Af in (6.15a)-(6.15c).
Such a cross-coupling of the estimate and filter design is commonly used within the
extended Kalman filter (EKF). This leads to the signal model

Tyl = Aki’k + Buy + v, (6.38&)
Zr = CTy + e, (6.38b)
where
Vg = gwk - Bﬂk, (6.39&)
ex = yr — Duy, (6.39b)
A = A+ N, , (6.39¢)

and where the corresponding covariance matrices are given by (6.14). The correspond-
ing EIVKF, which is denoted BEIVKE3, is obtained by substituting A% ~ Ay in the

BEIVKF1 algorithm, and can be summarised as follows.

Algorithm 6.3 (BEIVKF3).
jk+1|k = Akjk\k—l + Buy, + K&y, (6.40a)
_ PO -1
Ky = AkPkUcflCT + Eve] [Eg} (640b)
PkJrl‘k = Akpk\kflfig + 3y — f(kz’gf(,f (6.40c¢)
Ep = 2 — Cik\k—l (6.40d)
E]g = Cpk‘k,ICT —|— O¢ (6406)
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-1
@%Z%—kym@ﬁjpﬂ & (6.40f)

-1
a%zw—h@—%ﬂwg]gk (6.40g)
Ay, = A+ Ny, (6.40h)

Remark 6.3 (Error analysis). Whilst for the BEIVKF2, the uncertainty in the system
matrix (6.20) is characterised by the input measurement noise % with a priori known
covariance oy, the uncertainty in Ay, can be quantified by the estimation error ug, — 1o, ,
hence ultimately by the state estimation error . As in the case of the BEIVKF2
algorithm, the error covariance matrix produced by the BEIVKF3 provides incorrect
information about the actual filter performance. Hence, one could perform an error
analysis as for the BEIVKF2. This leads, however, to a rather complex expression for
the actual estimation error covariance matrix which also involves higher order moments
of the state estimation error. An expression for the state estimation error is given in
Appendix I. Whilst a thorough analysis is identified as potential further work, it is not

considered within this thesis.

6.4.3 Nonlinear Kalman filter design using Zy;_;

Whilst in Section 6.4.2 the estimate of the noise-free input has been cross-coupled with
the design of the BEIVKF, a cross-coupling of the current state estimate and BEIVKF
design seems also possible. Therefore, the bilinear EIV system (6.3) is interpreted as a
linear time varying system with known system matrix and state dependent noise, given

by

Tyl = Agxk + Buy, + v, (6.41a)
zr = Cxy + eg, (6.41b)
where
AL = A+ Nuy, (6.42a)
er = Yx — Duy, (6.42b)
Uy = Guy, — By, — Ny, (6.426)

The state-dependent noise term v can be re-expressed as

Uk, = G, (6.43)
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with
gr = [Q B+ka} , (6.44a)
vl 2 [wf , (6.44b)
—ii,

where G is now viewed as a state-dependent, hence uncertain, matrix. It seems natural

to utilise the approximation
Gl =[G B+Nig ] (6.45)

as the design matrix for the BEIVKF, which is assumed to be known at time k. The

covariances of the approximated state noise are readily given by

T o 0 T
Sk =glE [vicv}f} gl =gy [ N ] gl (6.46a)
0 Og
k dp [ T d 0
Yre = GiE [vper | = Gk - , (6.46b)
ozD" — og3

and a KF can be applied. Note that such an approach could be interpreted as an EKF
(Anderson & Moore 1979, cf. p. 194), where Gi is approximated by zero order Taylor
approximation around the latest state estimate g1 (i.e. xp is simply replaced by
Zyk—1).- The resulting filter, which is denoted BEIVKF4, is suboptimal and the filter

equations are nonlinear in Zg;_;. The BEIVKF4 algorithm can be summarised as

follows.
Algorithm 6.4 (BEIVKF4).
ikJrl‘k = Agjk\k—l + Buy, + K&, (6.47a)
_ _ —1
Ry = [AlBg €T + 2k | [2E] (6.47b)
— — T _ —
Pyiipg = AfPy1 AL + 5k — KSER) (6.47¢)
€k = 2k — Ci’k\k—l (6.47d)
b= CPyjpaC" + 0e (6.47¢)
—1
Jo, =y — [0 — oy D] [z’g] & (6.47f)
N T k -1_
tio, = up, — [oag — 0aD" | {24 Ek (6.47g)
o 0 T
sk — [g B +N5ck‘k,1} [ v ] [g B +N@k|k,1} (6.47h)
U
k T .
She= |0 B+Niyua| [0 0uD o) (6.47i)
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6.4.4 Kalman filter for state dependent noise system

In (De Koning 1984), the optimal state estimator in the minimum variance sense is
derived for linear discrete-time systems where the system matrices contain stochastic
parameters which are statistically independent with respect to time. Basically, the
optimal filter is obtained by considering the system as a linear system with deterministic
matrices and state-dependent noise terms, which can be replaced by a process having
the same first- and second order properties. This means that if the covariance matrix
of the state dependent noise term can be computed (and if it satisfies the zero mean
condition), the optimal filter can be derived by applying standard linear estimation
theory. Although the setup considered in (De Koning 1984) is slightly different to the
bilinear EIV setup (since it assumes that the disturbances in the system matrices are
uncorrelated with the noise acting on the states), the approach can be used to address
the bilinear EIV filtering problem.
The bilinear EIV system is expressed as (6.8a)

zp1 = Az + Bug + vy, (6.48a)
zr = Cxy + eg, (6.48b)
with
€L — gk — 'Dﬂk, (6.49&)
UZ = Guwy, — Bug + Nmkuok. (6.49b)

Whilst o, is given in (6.14b), the covariance matrix of the state dependent noise term
can be computed as
YhA R [UZUZT]

=B [[gwk — Buy, + Nzyuo, | [Gwy — By —i—./\/'ﬂ:kuok]T

= GowGl + BogBT + Noy , SENT, (6.50)
where the property of zero (unconditional) mean of the state has been exploited. Note
that the term ¥ has already been computed for the error analysis of the BEIVKF2
algorithm given in (6.29) and that o, can be computed using (6.31), if it is not known
a priori. It remains to compute the quantity 25* . Which is given by

Siee 2 B [vgex]
=F [gwk — Bﬂk +N$kUQk] [gk - ’Dﬂk]T]

== BO’@DT — BO’{LQ, (651)

where the zero mean property of the state has been exploited. Note that (6.51) is
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identical to X,. given in (6.14c). Since all conditions for the application of the KF are

satisfied, the optimal linear filter for state dependent noise can be given as follows.

Algorithm 6.5 (BEIVKF5).

ik-{-l\k = Ai'lﬂk—l + Buy, + Kjep, (6.52&)
—1

Ky = [APyp1C" + S [z’g] (6.52b)

Pk-i—l\k = APk|k_1¢4T + Eﬁ* — KICEI;KZ (6.52¢)

€k = 2f — Cik“g,l (6.52d)

SE = CPyp1CT + o (6.52€)
. : T k]!

Yo, = Yk — [Uy — 05D ] [EE] €k (6.52f)
—1

ﬁok = U — [O’ag — O'{LIDT] [Elg} Ek (6.52g)

P = GowGT + BogBT + Noy, SENT (6.52h)

SR — ASEAT 4 Boy BT + Now, SENT + Go o GT (6.52i)

Remark 6.4 (Optimality of the BEIVKF5). The BEIVKF5 is the optimal filter if the
true input wg, is considered to be process noise with variance o,,. However, since
the input is measured, there is more available information about ug, than its first and
second order moments only. This means whilst being optimal if only the first and
second order moments of ug, are utilised, the BEIVKF5 does not fully exploit the
knowledge of the measurements wug, in order to estimate the state of the bilinear EIV
system. Therefore, the BEIVKFS5 is assumed to perform suboptimally when applied to
the bilinear EIV filtering problem.

6.5 Numerical example

Consider the setup given in Section 6.3.1. The system is simulated in 100 Monte-Carlo
simulations, each comprising N = 1000 data samples. All five filters are applied to
estimate the noise-free input and output signals. For each Monte-Carlo run, the mean
values of PF, Pyk and/or PF, Py’“ are stored. In addition, measures for the variances of

the estimation errors are estimated from the data as

1 1000

> ~ 2

P, = % | (U’Ok — uok) y (6'533‘)
1=201

. 1 1000

By=— " (y0, — fi0,)?, (6.53b)

800

1=201
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Figure 6.4: Monte-Carlo mean values of the estimation error variances for all five
filters.

and stored for each Monte-Carlo run. The corresponding mean values and standard
deviations of Pff, P;“‘, pff ]5;“‘, P, and Py for the five filters are given in Table 6.1.
The mean values are also illustrated in Figure 6.4. It is observed that the BEIVKF1

Filter mean(P,) mean(FPy) mean(P,)
BEIVKF1 | 8.14-107" # 4.63-107°| 8.11-107* + 5.44.107*° -

BEIVKF2 | 2.88107% # 1.59-107*| 2.90-10™% + 1.58-107" | 9.39-10™% 4 1.24.107°
BEIVKF3 | 8.17-107* =+ 4.91-107° - 8.11.107% 4 7.28.107
BEIVKF4 | 8.27-107* =+ 5.09-107° - 9.59-107% 4 1.86-107°
BEIVKF5 | 2.53-107% £ 1.14-107%| 2.67-107% 4 2.44-10~* -

Filter mean(P,) mean(Py) mean(P,)
BEIVKF1 | 2.03-1072 4+ 1.57-107%| 2.05-1072 + 5.58-107*7 -

BEIVKF2 | 7.19-107% £ 9.80-107%| 7.25:1072 4 3.95-107% | 2.35-107% 4 3.10-10~*
BEIVKF3 | 2.04-1072 =+ 1.23-1073 - 2.03-1072 4 1.82:107°
BEIVKF4 | 2.07-1072 =+ 1.27-1073 - 2401072 4+ 4.65-107*
BEIVKF5 | 6.32.107%2 =+ 2.86-107%| 6.68-1072 4 6.11-107° -

Table 6.1: Mean and standard deviation of Monte-Carlo results for all five filters.

filter exhibits the smallest estimation error variance. The variances determined by this
filter (P, and P,) seem to be in accordance with the sample variances P,, sz. The
pragmatic BEIVKF2 approach appears to perform worst for the given example. As
already observed for the state estimation error in Section 6.4.1, the variances of the
input and output estimation errors determined by the BEIVKF2, which are P, and Py,
provide false information. The latter quantities are too optimistic whereas the actual
variances, which have been derived in Section 6.4.1, are larger. The actual variances
P, and P, are in accordance with the sample estimates Pu, Py. The two nonlinear
filters BEIVKF3 and BEIVKF4 perform best, both obtain a performance very close to
the benchmark filter BEIVKF1. Consequently, these filters can be regarded as quasi-
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optimal for the setup considered. In addition, it should be noted here that the ‘false’
variances P, and Py, which are computed by the filters appear to be close to the sample
estimates. Note that the actual variances P, and P, are not provided for these cases
since an error analysis has not been carried out. The BEIVKF5 performance is slightly
superior to that of the BEIVKF2, however, it is outperformed by the other filters.
Whilst the BEIVKFS5 is optimal for state dependent noise systems, it is only subop-
timal for the filtering of bilinear EIV systems. This may appear somewhat intuitive
by realising that the BEIVKF5 only makes use of the mean and variance of ug, (cf.
Remark 6.4), whereas the optimal filter requires the exact value of the system input.
The BEIVKF3, in contrast, utilises the conditional mean estimate of the input which,
provided convergence occurs, can yield superior filtering results.

Finally, the performance indices defined in (6.19) are assessed. Their values are
stored for each Monte-Carlo iteration and the corresponding mean values and stan-

dard deviations are given in Table 6.2. The results appear to be in alignment with

Filter mean (M) mean (My)

BEIVKF1 | 91.00 £ 0.30 | 91.00 =+ 0.30
BEIVKF2 | 83.19 £1.04 | 83.19 +£1.04
BEIVKF3 | 90.99 £ 0.32 | 90.99 =+ 0.32
BEIVKF4 | 90.90 £ 0.33 | 90.90 =+ 0.33
BEIVKF5 | 84.14 4+ 0.47 | 84.14 £ 047

Table 6.2: Monte-Carlo mean and standard deviations of the filter performance in-
dices; removed noise in percentage.

those obtained for the variances of the estimation errors: The BEIVKF1 performs best
followed by the BEIVKF3 and BEIVKF4. The BEIVKF2 and BEIVKF5 remove the
least amount of noise from the input and output signals, where the latter appears to be
slightly superior. The standard deviations of the BEIVKF2 are quite large in compar-
ison to the other algorithms. As pointed out in Section 6.4.1, this is likely to be due to
the fact that the stability condition of the bilinear system is not satisfied at all times.
The fact that the values for M, and M, are identical for each filter is not a general

property, but is rather a peculiarity of the particular simulation setup.

6.6 Overview & discussion

The different approaches for bilinear EIV filtering are captured in Table 6.3. Further
approaches are feasible by coupling the bilinearity with the input matrix B, which allows
other suboptimal filters to be derived. The problem formulation is, however, similar
to the settings discussed within this chapter. In addition, it might appear tempting
to deal with (6.41)-(6.42) as a state dependent noise system. That is, to compute the

covariance matrix of the state dependent noise vy, whilst considering an LTV system
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Filter System Model for KF design
System matrix | State noise System matrix | State noise
BEIVKF1 | A+ Nuyg, Gwy, — By, Ap = A+ Nuo, | G, — By,
BEIVKF2 | A+ ./\/'uo,C Gwy, — Bug .AZ = A+ Nuk Gwy, — Bug
BEIVKF3 | A+ Nug, Guy, — Biiy, Ay = A+ N, | Guy — B
BEIVKF4 A+/\/uk Gwy, — Bug —Nﬂkxk .Ad = A—i—Nuk Gwy, — Bug —Nﬂkik‘k_l
BEIVKF5 | A Gwy — Bug + kauok A Gwy — Bug + kaU,ok

Table 6.3: Different interpretation of bilinear EIV system and model for KF design
used in various filters.

with A¢ = A+ Nuy. The covariance matrix E% in this case, however, depends on the
(unconditional) mean of the state, which, in turn, depends on the unknown input ug, .
This prevents, of course, the optimal filter within a state dependent noise setting to be
derived.

A fact which has not been discussed so far, is the choice of admissible input signals.
If the bilinear system is interpreted as a LTV system, the system matrix, hence the
equivalent poles of the system, are a function of the input ug,. In order to ensure
stability of the system, the input is to be chosen, such that the poles of the correspond-
ing LTV system remain within the unit circle at all times. Therefore, when dealing
with bilinear systems, the input is usually assumed to be bounded, in order to ensure
stability. Note that this disqualifies the choice of a Gaussian input signal.

The choice of a bounded input also has implications for the distribution of the state,
hence for the performance of the filters. If the true input is not a known deterministic
signal, this will generally yield a non-Gaussian distribution for the state. Hence, there
will be nonlinear filters which achieve superior performance. Depending on the nature
of the input (as well as the nature of the noise sequences and the initial state) it might
be beneficial to consider nonlinear filtering approaches within a Bayesian framework,
to address the bilinear EIV filtering problem. This, as well as the extension towards
more general nonlinear system representations, might be an interesting area of further
work.

Following the interpretation of the bilinear EIV system as a linear system with state
dependent noise, the development of robust bilinear EIV filters within the H, frame-
work also appears to be an area of potential further work (cf. Wang & Balakrishnan
2002, Wang & Qiao 2002).

6.7 Concluding remarks

The errors-in-variables (EIV) filtering problem, i.e. the estimation of noise-free input
and output sequences based on noisy measurements has been considered for a class of
bilinear systems. By using similar techniques as for the filtering of linear EIV systems
and bilinear (non-EIV) systems, it has been shown that the optimal filter, in the min-

imum variance sense, requires the input signal to be an exactly known deterministic

169



6. Errors-in-variables Kalman filtering for bilinear systems

quantity, hence it is infeasible in the bilinear EIV case. Consequently, attention has
been focused on the development of feasible suboptimal filtering approaches. Different
Kalman filter design strategies are possible, by interpreting the bilinear EIV system

from different viewpoints. These are:
1. Linear time-varying system with uncertain system matrix.
2. Linear time-varying system with state dependent noise.

3. Linear time-invariant system with noise dependent on the state as well as the

true input.

Using the first interpretation leads to the development of one linear and one nonlinear
suboptimal EIV Kalman filter (EIVKF). The linear filter simply utilises the measured
input for the filter design, whilst the nonlinear filter uses the conditional mean estimate
of the input. For the linear filter, an error analysis is carried out. This allows for a
qualitative assessment of the deterioration of filter performance, and could be utilised
to make a decision on whether to apply the filter in practice or not. The second point of
view yields a nonlinear filter which can be considered to be a straightforward application
of the extended Kalman filter (EKF), which uses the most recent state estimate for the
design of the Kalman filter equations. The third interpretation allows the application
of a Kalman filter for a system with stochastic parameters, which are also known
within the literature as stochastic systems with multiplicative noise. A simulation
study, which compares the different filters for a particular scenario, has shown that
the nonlinear filters achieve promising performances. Indeed, at least in the particular
setup considered, the nonlinear filters are found to exhibit performances which are very
close to the that of the benchmark filter and could therefore be considered as being
quasi-optimal. The linear filters exhibit an inferior performance in simulation, however,
they might be superior in other situations. Whilst further analysis might be necessary,
the proposed algorithms for the bilinear EIV filtering problem allow the user to select

a filter which is most suitable for a particular problem at hand.
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Nomenclature

Ao, Bo, Co, Do, G ...... System matrices

A(0), B(0), C(6), D() . Model matrices (general)

Ak, B, Cie, D oo Model matrices (depending on ék)

Eh e Reformulated output noise

FO,z,u) «ooovvveina.. Jacobian

Fi oo Jacobian (depending on 0y)

HO,z,u) ... Jacobian

Hyp oo Jacobian (depending on 0y)

J(O,87 e) oo Jacobian

K, Kp(0) .oooooooint. Kalman gain

%(i) .................. Derivative of Kj(0) with respect to 6;

Lig oo Gain for JEKF parameter estimator

My, My ............... Filter performance indices for input and output, respectively

Pyjio—1, Pojp—1(0) ...... Error covariance matrix of Kalman filter

,@éi) ................... Derivative of Py jp—1(0) with respect to 0;

P, Py, P ... Covariance matrices of joint Kalman filter for state and parameter estima-
tion

Ry oo Approximate Hessian

Sk, Sk(0) oo Innovations covariance matrix

yk(i) ................... Derivative of S (6) with respect to 6;

TO), Th «vvvenenanannn. Auxiliary matrix

UGy, wvveee e Intermediate estimate of uo,

Uk eeeeee e Reformulated process noise

V(@) ..ooo oo Prediction error method cost function

V(O) oo Cost function corresponding to modified predictor ¥ (6)

Ve@) oo Cost function corresponding to symmetric innovation e (6)

Wh v eeee e Process noise

Wi, We(0) oot Jacobian of &y;_1(0)

Wi, Wi(0) ..o Jacobian of &;_1(0) corresponding to modified predictor g (6)

Tl oo System state

k-1, Trj—1(0) ... System state estimate

Uy U (0) «ovoviiiiint. Modified predictor

10 Kronecker delta function

€k, €(0) oo Innovation

€y Ex(0) oo Innovation corresponding to modified predictor g (0)

€k, €x(0) oo Symmetric innovation

Me(0)y M vt Negative gradient of symmetric innovation € (6)

AN Weighting matrix

3e(0), Xu(0), Tve(d) ... Noise covariance matrices (general)

skosk sk o Noise covariance matrices (depending on ék)

Vi, Ye(0) oo Gradient of predictor

Preliminary reading: Sections 2.2, 2.4.5, 2.5.1, 2.5.2, 2.5.4.
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7.1 Introduction

This chapter explores novel avenues to combine errors-in-variables (EIV) filtering, i.e.
the estimation of noise-free input and output signals, with EIV system identification
techniques. As a starting point, an EIV extended Kalman filter for joint state and
parameter estimation (JEKF) is developed, which is able to estimate the system states,
the system parameters as well as the noise-free inputs and noise-free outputs of an EIV
system. The system parameters obtained, however, appear to be biased in the presence
of input measurement noise. This is due to the fact, that the parameter estimator
obtained from the JEKF is closely related to the recursive prediction error method
(RPEM), which is known to yield biased estimates when applied directly to identify
an EIV system. In order to further investigate the JEKF approach, the ‘true’” RPEM
method is derived when applied to an EIV state space system. This, in turn, leads
to the proposal for a modification of the JEKF as well as the RPEM approach, in
order to reduce the bias within an EIV setup. Finally, a novel identification method
for EIV state space systems is developed, by introducing a predictor which accounts
for the symmetry of the EIV framework and whose resulting cost function minimises
the distance between the noisy inputs and outputs and their filtered counterparts. A
recursive implementation based on the standard RPEM technique is also developed and
analysed in simulation.

Section 7.2 introduces the setup and assumptions. Section 7.3 derives the JEKF
for the EIV case. The development of this section has also been published in (Linden,
Vinsonneau & Burnham 2007¢). Section 7.4 provides a detailed derivation of the RPEM
when applied to an EIV system, whilst Section 7.5 derives the novel identification
technique based on symmetric innovations. Concluding remarks are given in Section

7.6.

7.2 Preliminaries

Consider the linear time-invariant (LTI) EIV state-space system given by

xpy1 = Aozy, + Bouo, + Gy, (7.1a)
Yo, = Cozk, + Douo,, (7.1b)
U = Ug, + U, (7.1c)
Yk = Yo, T Yk» (7.1d)

where z;, € R™ denotes the state vector of the system, y, € R™ the measured output,
up, € R™ the measured input and Ag, By, Cy, Dy and G are matrices of appropriate

dimensions!. The initial state zg is assumed to be a random vector with mean Zg and

"'Without loss of generality, and for convenience only, it is assumed that the matrix G is known.
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covariance matrix Fy. In addition the following assumption is introduced.

ANG6b The noise sequences uy, yr and wy are assumed to be stationary, zero mean,

white, independent of ug, and are characterised by the known covariance matrices

Zo Py 0 0 0

u 0 X3 Xz O
B [T @ T wl] = o S (7.2)

W 0 0 0 Xy

The model corresponding to (7.1) is given by

z41(0) = A(0)x(0) + B(0)uo, + G, (7.3a)
Yo, = C(Q)xk(e) + ’D(Q)u()k, (73b)
U = ug, + Ug, (7.3C)

where 6 denotes the parameter vector. Using similar techniques as in Section 2.5.2,

(7.3) can be re-expressed as

T11(0) = A(0)w(60) + B(0)uy, + vi(0), (7.4a)
Y = C(@)xk(e) + D(Q)uk + ek(e), (7.4b)
where
Uk(a) = gwk - B(@)ﬂk, 7.5a
ex(6) = s — D(O) (7.5D)

The noise covariance matrices corresponding to (7.5) are given by

¥,(0) = 62,67 + B(0)2:87(0), (7.6a)
Ye(0) = 25 — Xay DT(0) — D(0)2ay + D(0)X:DT(6), (7.6b)
Soe(8) = B(6)ZaDT (8) — B(6)ag- (7.6¢)

Note that the noise sequences, hence their covariance matrices, are dependent on 6.

7.3 Application of the JEKF to the EIV system

7.3.1 Direct application of the JEKF

Using equation (7.4), an application of the JEKF, which has been given in Section 2.5.4,
appears to be straightforward, by simply replacing z; with y,. The only difference to
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the case considered in Section 2.5.4 is that the process and output noise sequences
are functions of the unknown parameter vector 6. For the application of the EKF,
this is not a burden, since a Taylor expansion of vy(f) and ex(d) around ), (cf. p.
194-195 in Anderson & Moore 1979) yields vi(f) and ey (6), i.e. 6 is simply replaced
by its most recent estimate. As a consequence, the corresponding covariance matrices
depend on 6, and are readily given by %,(0), Se(0)) and Sy (0)). After these minor
modifications, the JEKF given in Algorithm 2.4 can be directly applied to the EIV
state space representation (7.4). The corresponding algorithm, which is denoted EIV-

JEKF1, can be summarised as follows (cf. Algorithm 2.4 on page 46).

Algorithm 7.1 (EIV-JEKF1).

€k = Yk — CrTpjp—1 — Drug (7.7a)

Sk = CkP1,Cl + CkPo, H + HyP) CIF + H,Ps, H + SF (7.7b)
Ky, = [ApPL,CL + Fy Py CL + Ay Py HYY + Py HE + 35,15, )
Tpy1k = ArZrpp—1 + Bruk + Kiek )
Ly = [P5,Ci + Py Hi ] S (7.7e)
01 = Oy + Lies, (7.7f)
P, = APy, AL + APy, Fl + F.P) AL + F Py, Fl — K S, KL + 35 (T.7g)
P, = AP, + Fy Py, — Ki.S,Lj (7.7h)
Py, = P5, — LySpLi + 24 (7.71)
Jo. = Yk — [S5 — Sag’ DE] Sy ew (7.79)
o )

= U — [Eﬂg — EQDZ;] S,;lek (7.7k

k

As before, the Jacobians are obtained via

Fiy = F (O, &1, up) € R™X"0, (7.8a)
Hy = H(Op, dppp1,up) € R™™, (7.8b)
where (cf. (2.119))
- d
FO,z,u) = e [A(0)z + B(0)u] {(9:(5’ (7.9a)
- d
HO,z,u) = g [C(0)z + D(0)u] |,_p- (7.9b)

Aj & Ab), By, £ B(0), Cr £ C(0y), Dy, £ D(0y), (7.10)
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and

~ ~

SEAS,0k), SFES.O), Eh ESw), dppo1 2 Tgpa0r), (711

has been used. Note that the innovations covariance matrix is given by S in the JEKF
case (whilst it was denoted ¥ given by (2.106c) for the linear case). As outlined
in Section 2.5.4, variations in the parameters to be estimated can be dealt with by
specifying a corresponding error covariance matrix g, which is added to P3,. The
only novelty in Algorithm 7.1 with respect to the non-EIV version is the additional
estimation of gy, and g, for which the error covariance matrices are given by (cf.
(2.108))

PF =%, — [Say — %aDY] Spt [Sag — ZaDF] (7.12a)
PF =%, - [5y —SLD]] S 25 — Sa"DF] T (7.12b)

It has been shown that an EKF for joint state and parameter estimation can be
obtained in a straightforward manner when applied to an EIV state space system.
However, there is one ‘hitch’ with the previously derived algorithm. Recall that the
JEKF consists effectively of a state estimator which is cross-coupled with a parameter
estimator, whose structure is inspired by the EKF. The cross-coupling means that the
state estimator uses the most recent parameter estimates provided by the parameter
estimator, which, in turn uses the most recent state estimate to arrive at the updated
parameter estimates. As pointed out in (Ljung 1979), the EKF parameter estimator
(cf. Section 2.5.4) is closely related to a recursive prediction error method (RPEM)
assuming a constant model. However, it is pointed out in (Soderstrom 1981), that a
direct application of the prediction error method (PEM) to an EIV problem does not
yield consistent estimates, since the corresponding cost function is not minimised for
the true parameters if the presence of the input noise is neglected. This leads to the

following proposition.
Conjecture 7.1. The parameter estimates of the EIV-JEKF1 algorithm are biased.

A consequence of this conjecture is that, due to the cross-coupling, the performance of
the state estimator will suffer as well, since, even in the asymptotic case, a systematic
mismatch between the system and the model used for filtering will remain. Since the
input and output estimates are based on the state estimates, the quality of the former
will be affected, too. To avoid any ambiguities, the bias mentioned in Proposition 7.1
is not assumed to be due to the missing cross-coupling term [0K (0)/00)ex, which can
be a source of bias and divergence in the non-EIV case (cf. Section 2.5.4), but due
to the EIV nature of the problem. This implies that Proposition 7.1 still holds when
an innovations representation would be utilised to derive the EIV-JEKF1 equations,

which ensures consistency in a non-EIV setting. In order to substantiate Proposition
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7.1, the following example is considered.

7.3.2 Numerical example

Consider an EIV LTI single-input single-output (SISO) dynamical system which is
defined by

Yo, = —01Y0,_, — a2Y0,_, + bouo, + brug, _,, (7.13a)
up, = uog, + U (7.13b)
Yk = Yo, T Yk: (7.13c)

with parameter vector?

ez[al as by bl]T:[—o.?) 0.2 —4.5 5.4}T. (7.14)

A possible state space realisation is given by

OB [_0 _1] , 5(6) - m ,

C(0) = |~azby by — arbol . D(8) = by, (7.15)

The covariance matrix of the input and output measurement noise sequences is given

by

i 02 08 0
E | [al il wl] — 108 5 0 |du, (7.16)
Wi 0 0 01

which corresponds to a signal-to-noise ratio of 15dB and 21dB for the input and output,
respectively. The matrix G is set to G = [1 O]T, which means that only the first element
of the state is affected by process noise. The input is chosen to be a Gaussian zero

mean random sequence of unity variance. The Jacobians are given by

Fiy = F(O, &y, wr)
_9
06

9 L

Y ~1 -2
00 [—agkal — Ty + ug

[AO) k-1 + BO)ur] |,

=0

:[ 0 0 0 0]’ (7.17)

~2 ~1
o1 T 000

2This is an arbitrarily chosen non-minimum phase system. It is actually the system studied in
Chapter 6 with the bilinear term omitted.
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===true |
—EIV-JEKF1
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Figure 7.1: Parameter estimates obtained by the EIV-JEKF'1 algorithm.

and

Hy = H (O, Sgjp—1, up)

0 .
=50 [C(0)E -1+ D(O)ur] |,_y
0 . . .
= % <—a2501‘]1€‘k71 + bleUgfl — alboxz|k71 + bouk>‘ :ék
= |=bhad s —bhake s (mabile - ahad  tw), @3], (718)

where i% x_1 denotes the nth state estimate. The EIV-JEKF1 algorithm is utilised to
estimate the states, the parameters as well as the noise-free input and noise-free output

of the system. The filter is initialised with
~ T
bo=[-05 04 -31 34| . Py = 1001, o = 0. (7.19)

In addition, a projection facility is utilised, in order to ensure that all eigenvalues of
Ay — KiCy, lie strictly within the unit circle (see Section 2.5.4). The parameter estimates
obtained by the EIV-JEKF1 algorithm for N = 1000 samples are shown in Figure 7.1.
It is observed that whilst a; and ag appear to be estimated without (or with very little)
bias, the parameters by and by are notably biased. Although this single realisation can
only be considered to be of an indicative character, it seems to underpin Proposition
7.1.

For completeness, consider the filter performance with regard to obtaining filtered
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input and output signals, given by (6.19)

lJuo — ully — [|uo — o],

M, = 100 , (7.20a)
[uo — wull,
llyo — wll

which can be interpreted as the amount of noise, expressed as a percentage, which is
removed, respectively, from the noisy input and output signals. Note that the variables
without time index (u, y, etc. in (7.20)) denote the corresponding sequences from 1 to
N. For this particular example, the values for M, and M, are found to be 41% and
49%, respectively. Consequently, the filter is able to filter the input and output of the
EIV system, although the estimated model parameters, which are utilised to arrive at

the filtered input and output signals, are biased.

7.3.3 Modified JEKF design

The previous example indicates that the parameter estimator of the EIV-JEKF1 algo-
rithm yields biased estimates. If the true input was available, it would be possible to
design a modified parameter estimator based on the EIV-JEKF1, such that the bias in
the estimates is reduced. Whilst an explanation and further discussion is postponed

until Section 7.4, this conjecture is captured in the following proposition.

Proposition 7.1. If the Jacobian Hj, (cf. (7.8b)) within the EIV-JEKF1 algorithm is
replaced by H (ék,uﬁk‘k_l,uok), where the noise-free input is utilised rather than its
noisy measurement, the accordingly modified EIV-JEKF algorithm is able to provide

estimates with reduced bias.

Although the difference with respect to Algorithm 7.1 is trivial, the algorithm, which

is denoted EIV-JEKF?2, is, for completeness, summarised as follows.

Algorithm 7.2 (EIV-JEKF2).

€k = Yk — CrZpp—1 — Drug (7.21a)

Hy = H(Ok, Z4j—1, uo,) (7.21b)

Sk = CuPL,CL + Ci Py, HY + HyPy C + H,Ps, H] + 5% (7.21c)

Ky, = [AP,Cl + F,. P} Cl + Ap Py HYL + Fy Py HI + 35S, (7.21d)
Tk = Appp_1 + Bruy + Kiey, (7.21¢)
Ly = [Pcl+ Py, HE| S, ! (7.21f)
Or+1 = 01, + Liey (7.21g)
P, = AcPL AL + APy B+ F P AL + By Py FL — KpSp KL + S5 (7.21h)
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P, = AP, + Fy Py, — Ki.SiLi (7.21i)
Py, = Py, — LiSiLi + 34 (7.215)
Jo, = Yk — S5 — Zag’ Dk Sy ‘e (7.21k)
io, = uk — [Sag — SaDi | Sy, 'ex (7.211)

Note that Fj, still uses the noisy input ug, as defined in (7.8a). Although not feasible
in practice, this algorithm is considered here as a benchmark for comparison purposes
in order to evaluate the subsequently developed algorithms. Furthermore, since the
unknown input is estimated within the EIV-JEKF, it appears to be a most natural
choice to use this estimate rather than the impractical ug, within the linearised model,
i.e. to cross-couple the input estimation with the parameter estimation. This implies

the usage of the Jacobians computed via

Fk‘ = F(ékﬁ’ jk‘k*la uk‘)a (722&)
Hy, = H (B, &1, floy, ), (7.22b)

where wp, is approximated via g, for the determination of the Jacobian Hj. Recall

that the input estimate is given by
f, = up — [Sag — SaDf| Sy, e (7.23)

Whilst Dy, and e}, can be computed before the Jacobians are evaluated, the innovations
covariance Sy depends on Hy (see (7.21c)). It seems natural, however, to compute an
intermediate estimate of ug, by making use of the approximation S ~ Sip_i. The
corresponding estimate is denoted g and the accordingly modified filter, which is
denoted EIV-JEKF3, can be summarised as follows.

Algorithm 7.3 (EIV-JEKF3).

ek = Yk — Culpjk—1 — Druk (7.24a)

a5, = uk — [Zag — BaDg | Silien (7.24b)

Hy, = H (O, &1, 05, ) (7.24c)

Sk = Ck P, Cl + CkPo, H + HyP) CIF + H,Ps, H + SF (7.24d)

Ky, = [ApPL,CL + By Py CL + Ay P HY + Py HE + 35,8, (7.24e)
Erpapk = Apdpp_1 + Bouk + Kgep, (7.24f)
Ly = [Plcl + Py, HE| S ! (7.24g)
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Figure 7.2: Parameter estimates obtained by the EIV-JEKF1, EIV-JEKF2 and EIV-
JEKF3 algorithms.

Op+1 = O, + Lier, (7.24h)
Py, = APy AL+ APy, B+ PP AL+ Py, FE — K S KL + 55 (7.241)
P, = AP, + Fy Py, — Ki.S;Li (7.24j)
Py, = Py — LpSpLf + % (7.24k)
Jo. = Yk — [S5 — Sag’ DL Sy en (7.241)
Uo,, = Up — [Eﬂﬂ - E;ﬂ)ﬂ Sk_lffk (7.24m)

In order to substantiate Proposition 7.1 and in order to compare the EIV-JEKF2-3
algorithms with the previously proposed EIV-JEKF1 algorithm, the following example

is considered.

7.3.4 Numerical example

Consider an identical setup as in Section 7.3.2. The experiment is repeated and the
three EIV-JEKF filters are applied to estimate the states, the parameters and the noise-
free input and noise-free output of the system. The parameter estimates obtained by
the three filters are shown in Figure 7.2. It is observed that the values of the estimates
for a; and ao are very similar and close to the true values for all three filters. For the
estimates of by and by, however, it is observed that the values obtained by the EIV-
JEKF2 seem to compensate for the bias, which is obtained when the EIV-JEKF1 is
applied. This appears to underpin the statement given in Proposition 7.1. In addition,

if ug, is approximated by 4y, for the design of the Jacobian H, as it is realised within the
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EIV-JEKF3, the bias appears to be reduced as well. However, perhaps not surprisingly,
the results seem to be slightly inferior to those obtained by the EIV-JEKF2. This might
be an expected result due to the inevitable estimation error of the noise-free input.

So far, no justification has been given, as to why the utilisation of the true input
for the design of Hj should result in a reduction of the bias within the EIV-JEKF
algorithm. This is addressed in the following section by analysing the ‘true’ RPEM
when applied to the EIV state space system.

7.4 RPEM method for EIV identification

In order to provide a thorough analysis of the JEKF algorithms in the EIV framework,
it is necessary to derive the corresponding RPEM. This will give the necessary insight
to understand what role the choice of the true input signal plays within the Jacobian
Hj. and lays the foundation for the development of novel RPEM based methods for
EIV system identification. This section derives the RPEM method for a general EIV
state space representation which is, apart from minor adjustments, analogous to that
presented in (Ljung & Soéderstrom 1983, Appendix 3.B).

7.4.1 Derivation of the RPEM for the EIV case
Consider the EIV state space model given by (7.4)-(7.5)
zp+1(0) = A(0)zk(0) + B(0)ur + vi(0), (
yr = C(0)xk(0) + D(0)uk + ex(0), (7.25b
Uk((g) = Wk — B(Q)ﬂk, (
ek(H) = gk — 'D(Q)ﬂk (

The minimum variance estimates of the state, noise-free input and noise-free output is
given by the EIVKF given in Algorithm 2.3, where ¥¥ is replaced by Si(6)

Tppk(0) = A(0) T p—1(0) + B(O)ug + Ki(0)ex(0), (7.26a)
ex(0) = yr — C(0)Zgp—1(0) — D(O)ug, (7.26b)
Sk(0) = C(0) Pyyy—1(0)CT () + e (6), (7.26¢)

K (0) = [A(0) Pyp—1(0)CT(0) + T0e ()] S, 1 (0), (7.26d)

Py y11x(0) = A(0 )Pk|k 1(0)AT(0) + 24(0) — K (0)Sk(0) K[ (6), (7.26¢)

Jo (0) =y — [E5 — E“TDT(Q)] Si H(0)en(0), (7.26f)
o, (0) = ug — [Sag — ZaDT(0)] S (0)ex(6). (7.26g)
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The application of the standard PEM usually aims to minimise a cost function which

is quadratic in the innovation €4 (0), i.e.
1 _
V(0) = ek (0)A™ ex(0), (7.27)

where A~! is a general weighting matrix, whose optimal choice is given by the innova-
tions covariance matrix.

In order to minimise V' (), its gradient with respect to € is required. Therefore,
define

. d

Uk (0) 2 <5 [CO)anp-1(6) + D(O)ux] € R, (7.28)
W (0) 2 d%;ak‘k,l(e) = (7.29)

as being the gradient of the one-step-ahead prediction of y, and the gradient of the
state estimate, respectively. Note that (7.28) contains the derivatives of a matrix with
respect to a vector (dC(6)/df). Such a quantity will be a tensor, i.e. having three
indices (the first two indices give the row and the column of C'(0), whilst the third index
corresponds to the ith element of #). As proposed in (Ljung & Soéderstrom 1983), the

following matrices are introduced to avoid such a complex notation. Therefore define

N 9 Nz XN,

F(0,2,u) & =5 [A(0)z + B(0)u] |,_g € R"™", (7.30a)
N 0 Ty XN,

H(0,z,u) = 55 [C(O)2 +D(0)u] |y € RwXm0, (7.30b)

This means that F(6’A7 x,u) is a matrix where the ith column is given by

0

)
a5, AO)] 7 + 55 1B(6)] u (7.31)

00;

This holds analogously for H(f,z,u). By applying the product rule and using (7.29)
as well as (7.30b), but replacing d/d(6) by 0/0(f) implying partial differentiation,
Equation (7.28) becomes

d d d
Ui (0) = 7 [C(0)] Zpp—1(0) + 6(9)@ [Zp—1(0)] + 7 [D(0)] ug
= C(O)Wi(0) + H(0, Zpp—1(0), ug,)- (7.32)
Also note that the gradient of the innovation is given by
d d .
@61@(9) =2 [y — C(0)Zk)—1(0) — D(0)uy]
= — 9 (). (7.33)

The immediate objective is now to derive a recursive expression for Wy (6), which is
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obtained by differentiating (7.26a). This yields

Wi (6) = - [AO)] 21 1(6) + A@)We(6) + 5 [B(0)] uy
40 4(0) e1(0) + Ki(0) 5 40, (7.3)

>

and by making use of (7.30a), (7.30b), (7.32) and (7.33), it holds

Wiy1(0) = [A(0) — Kx(0)C(0)] Wi(0) + F(0, 24—1(0), ur)
d

+ =5 [k (0)] ek (0) — Ki(0) H (6, 21 (6), ui)- (7.35)

In order to obtain the gradient of V(#), it remains now to find an expression of
dK(0)/d(6) within (7.35), which is obtained by differentiating (7.26¢)-(7.26¢). There-

fore, introduce the notation

A & g Fk(O), (7.368)
DA d

7l 2 2 5+0), (7.36b)
DA d

) & = Pria (0). (7.36¢)

Also introduce Py, Si and Kj which are obtained via (7.26¢)-(7.26e) with 6 being
replaced by ). Taking the derivative of (7.26¢)-(7.26e) with respect to each element

of 0 individually and evaluating it at the most recent estimate ék, yields

7 = | g A0 PaaCl + A2
i Tp i 0 —1_ () g—1
+ APy 13- [C7(0)] + 5 [Zuel0)] S - Kes st (7.37)
¢ ! 0=0
g _ | 9 C(0)] Pyp_1CF + Ce2cT + P 9 (€T (0)] + 9 [Ze(6)]
0=0y,
(7.38)
and
20— | 2 14(0)] P 1 AT + Ay PO AT + APy 1 [AT(0)] + = [2,(6
ft1 = a_ei[ (0)] Prjr—1 Ak + Ar 2y Ap + A k\kfla_gi[ ()]+3_9i[ o(0)]
. . 1T
- O SKT — KA — Ky [0 ] (7.39)
0=0,,

Note that the convenient notation (7.10) has been used within (7.37)-(7.39). Recall

184



7. Errors-in-variables filtering for parameter estimation

that the error covariance matrices for the EIV case are given by

¥, (0) = 62,67 + B(0)2:87(0), (7.40a)
Ye(0) = 25 — Xay DT(0) — D(0)2ay + D(0)X:DT(6), (7.40b)
Yoe(0) = B(0)2aDT(0) — B(0) sy (7.40c)

Their derivatives with respect to 6;, which are required within (7.37)-(7.39), are there-

fore given by

0 0 0

70, Zv® = 5g; [BO]Zaby + BiXage [B7(6)], (7.41a)
8%26(9) = —zagTa%_ [DT(9)] - a%- [D(6)] Say

+ a% [D()] aDF + Dk}% [DT(0)], (7.41D)
a%zve(e) = a% [B(6)] Dy + Bk&a% [DT(9)] - a% [B(6)] Lag. (7.41¢)

Finally, by setting dK(0)/df in (7.35) to ., whose ith column is given by ,%/k(i), it is
possible to compute the gradient of V(6) by

Lv(0) =~ 2000), (7.42)

where 5,(0) can now be computed in a recursive way. The minimisation of V' (6) can
be carried out via an iterative Newton method, where it is iterated once as new data

arrives. This gives the recursive scheme

O = Op—1 + YRy, " r(0)A e (6), (7.43)

where R is the Hessian (second derivative of V(6)). If the latter is approximated
via 1 (0)A"1T(9) for which a recursive expression is obtained in a straightforward
manner, a Gauss-Newton algorithm is obtained. The scalar 7, is a normalising gain,
which is set to 1/k in the case of no adaptivity, or which becomes 1 — X in the case of

exponential data weighting, where A denotes the forgetting factor.

7.4.2 Direct application of the RPEM

If the weighting matrix A is chosen as the identity matrix, a direct application of the

RPEM to the EIV state space system in general form can be summarised as follows.

Algorithm 7.4 (EIV-RPEM1).

€k = Yk — Ch—1Zxjk—1 — Dp—1uk (7.44a)
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Uk = WGy + HT (01, &1, up) (7.44b
Ry = Ri—1 + i [Yrbf — Ry—1]
O = Op—1 + Ry er,

Sk = CuPyp—1CL + %

K, = [AkPk‘k,IC,{ + 254 Sk—l
g1 = Axlpp—1 + Brug + Kieg
Pyiajp = AxPrp—1 AL + S5 — K, Sp K]

Wit = [Ax — KiCi) Wi + F(Ok, &1 un) + Ao — K H (O, &g, uge) (7.4

7.4.3 Relationship between JEKF and RPEM in the EIV framework

Recall from Section 2.5.4 that in a non-EIV setting, the major difference between
the JEKF and the RPEM was the absence of the cross-coupling term .7 for the
computation of the gradient in the former case. By including, in one way or another,
an approximation of this term into the gradient computation of the JEKF, a consistent
parameter estimator can be obtained (Ljung 1979). In particular, when applied to
an EIV system, the JEKF can still be interpreted as a RPEM, where the term 7 is
absent in the JEKF case. Hence, Algorithm 7.4 corresponds to Algorithm 7.1, where
the latter uses a slightly modified gradient. However, the introduction of the term
J, into the gradient computation does not overcome the bias problem of the EIV-
JEKF1 algorithm, which has been observed in Section 7.3.2. Indeed, it is shown in
(Soderstrom 1981) (although for the case of offline PEM and by utilising a predictor
based on a transfer function representation of the system) that the PEM cost function is
not minimised for the true parameter values, which generally leads to biased estimates,
if the PEM is directly applied to an EIV system.

Since the usage of ug, within the Jacobian design of the JEKF can yield unbiased
parameter estimates as illustrated in Section 7.3.4, it would be of interest to ascer-
tain which predictor would yield an accordingly modified gradient within the PEM
framework. Or stated differently, what cost function is minimised by the parameter
estimator obtained by the JEKF applied to the EIV state space system, when ug, is

used to compute Hy. Let the result be captured in the following lemma.

Lemma 7.1. The parameter estimator, which is obtained from the JEKF applied to
the EIV state space system, when the Jacobian Hy, is computed as H (6, Z,—1(0), uo, ),
i.e. the EIV-JEKF2 given in Algorithm 7.2, corresponds to the application of a RPEM,

where the predictor is chosen as

Uk(0) = C(0)Zg)—1(0) + D(0)uo,.- (7.45)
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The corresponding prediction error is then given by

r(0) = yx — Uk
=y — C(0)Zkx—1(0) — D(O)uo, - (7.46)
The cost function minimised by the RPEM (with A chosen as the identity matrix) is
given by

7(0) = %@(Q)Tgk(e). (7.47)

ProoF. Consider Wy () in (7.35), where H(0,Zy—1(0),ux) is replaced with
H(0, Z)1—1(0), uo,, ). Introducing Wit 1(0) as the quantity which uses H (6, Tik—1(0), uo, )
yields

Wis1(0) = [A(0) — K(0)C(0)] Wi(0) + F(0, &pjpe—1(0), up)

4 1K) 24(6) — Ki(O)H (6, d541(0), un,)

_ d% LA(O)] -1 (0) + AO)Wi(0) + d% 1B(6)] uy, + % (K4 (0)] £x(0)
+ Ki(6) —d% [C(8)] dxji—1(8) — C(O)W(6) — d% (DO uo, | . (7.48)

Also consider the gradient (7.32) of the predictor given by (7.45), where H (0, Zj,—1(0), ux)
is again replaced with H (0, Zj;—1(0), uo, ). This gives

DE(0) = COYWi(0) + H(O, Epp,—1(0), uo,)

- d% [C(0)] Zpp—1(0) + C(e)d% [Zp_1(0)] + % [D(6)] ug,,- (7.49)

A comparison of (7.48) with (7.34) as well as (7.49) with (7.32) shows that the Jacobian
H(0, Zj1—1(0), uo,,) within the JEKF is a result of choosing the prediction error as
€x(0) = yr. — C(0)Zpr—1(0) — D(0)uo,. (7.50)
This corresponds to choosing the predictor (7.45) with the gradient
UF = C(O)Wi(0) + H (9, Tpp—1(0),uo,,)- (7.51)
"

Based on Lemma 7.1, it is possible to design two RPEM algorithms, analogously to
the EIV-JEKF2 and EIV-JEKF3 algorithms. This development is considered in the

following subsections.
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7.4.4 Predictor design using uy,

As a benchmark, the RPEM with the predictor chosen as g given in (7.45) which cor-
responds to a gradient given by (7.51) is derived?, where ug, is assumed to be available
for the predictor design or, equivalently for the design of the Jacobian Hy. Of course,
such an estimator is not feasible in practice, but it will serve for comparison purposes
with the subsequently developed algorithms. The algorithm can be summarised as

follows.

Algorithm 7.5 (EIV-RPEM2).

€k = Yk — Cr—1Zgp—1 — Dr—1uk (7.52a)
b= WECE |+ HT (051, Zxpp1, uo,) (7.52b)

Ry = Rp—1+ [@ME? — qu] (7.52¢)

Or = Ok 1 + Ry "2y, (7.52d)

Sk = CkPyjs—1CL + % (7.52¢)

Ky = [AkPk‘k,lc,f + z’;e} ;! (7.52t)
pg1p = Axlrp—1 + Brug + Kieg (7.52g)
Pyiajp = AePep1 Ap + 28 — KpSuKjL (7.52h)
Wit = [Ax — KiC) Wi + F(Ox, Zppp1, ur) + Hi — KiH(Og, g1, u0,) (7.521)

Note that the Kalman filter still operates with the actual innovation ej (rather
than &), since only the computation of the gradient which is used for the parameter

estimator is based on the predictor yy.

7.4.5 Predictor design using o,

This estimator corresponds to the EIV-JEKF3 which has been given in Algorithm 7.3.
It is obtained by simply replacing g, with its estimate g, for the design of the Jacobian

Hj.. For completeness, the algorithm, denoted EIV-RPEMS3, is summarised as follows.

Algorithm 7.6 (EIV-RPEM3).

€k = Yk — Cr—1Zgk—1 — Dr—1ui (7.53a)
G0, = ur, — [Zag — SaDi ] S tyen (7.53b)

3The dependency on 6 is again dropped in the subsequent development for ease of notation.

188



7. Errors-in-variables filtering for parameter estimation
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Figure 7.3: Parameter estimates obtained by the EIV-RPEM1, EIV-RPEM2 and
EIV-RPEMS3 algorithms.

Uk = WECE + H" (01, g1, tlo,.) (7.53c)

Ry = Ry—1+ W WMZJ;{ - qu} (7.53d)

O = Op—1 + Ry "y (7.53e)

Sk = CuPyp_1CL + ¥ (7.53f)

Ky = [ApPy o CF + k| 57 (7.53g)

Brye = Axrpp_r + Bruy, + Kiey, (7.53h)

Pyiajp = AxPij—1 AL + 58 — KpSp K} (7.53i)
Wit = [Ax — KpC) Wi + F (O, Eppp—r, ) + % — Ky H (O, g1, o,

(7.53j)

The following subsection compares the three EIV-RPEM algorithms in a numerical

example.

7.4.6 Numerical example

Consider an identical setup as in Section 7.3.2. The experiment is repeated and the
three EIV-RPEM algorithms are applied to estimate the parameters of the EIV system.
The resulting parameter estimates are shown in Figure 7.3. The main observation is
that the estimates provided by the EIV-RPEMI1, EIV-RPEM2 and EIV-RPEMS3 are
virtually identical to those obtained by their counterparts EIV-JEKF1, EIV-JEKF2
and EIV-JEKF3, respectively (cf. Figure 7.2). This emphasises the close relationship
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between the parameter estimators obtained from the JEKF approach and the those
obtained from the prediction error framework. In addition, this shows that the appli-
cation of the RPEM applied to an EIV system can yield a reduced bias in the estimates,
if the predictor is modified appropriately.

Remark 7.1. In the above example, the modified EIV-RPEM algorithms were able to
compensate for the bias almost perfectly. The success of this method, however, depends
on the quality of the noise-free input estimate. As it has been pointed out in Remark
6.2, the filter performance of the EIVKF can strongly depend on the particular system
under consideration?. Furthermore, the feedthrough term of the system which has been
considered in this example is rather dominant. It might be reasonable to assume that
the bias reduction will be less efficient, if a system is chosen, where the by term is less
significant. In the extreme case, i.e. in the absence of a feedthrough term (D = 0), the
Jacobian Hj does not depend on the input and the modified EIV-RPEM algorithms
are reduced to the standard RPEM. This means that no bias reduction is possible if

D = 0, which somewhat limits this approach.

7.5 A symmetric RPEM identification method

Although it has been shown that a modified predictor given by (7.45) can reduce the
bias problem associated with the RPEM when applied for EIV system identification, it
does not, however, reflect the symmetry of the EIV framework. This section introduces
a further predictor, which allows the design of a cost function which minimises the
distance between the measured input and output sequences and the corresponding

filtered inputs and outputs, which are computed by the EIVKEF.

7.5.1 Non-recursive case

The development considers first an offline or non-recursive case, where the parameter
estimate is obtained by minimising a suitable cost function via a standard optimisation
technique.

Define the symmetric innovation as

Ek(e) A [yk - yOk (0) c Rny-i-nu’ (754)

g — g, (0)

where the estimates are computed via the EIVKF given in Algorithm 2.3 on page 42.

It is then possible to design a quadratic cost function given by

Vi(6) = 3B [ (0)A " e(6)] (7.55)

4Note that Chapter 6 considers a bilinear system setup. The observations stated in Remark 6.2,
however, also apply for the linear case.
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which accounts for the symmetry of the EIV framework. Whilst the development of a
recursive implementation is postponed until Section 7.5.3, V() can be minimised via
an appropriate optimisation routine yielding parameter estimation scheme for offline

identification. In this case the parameters are obtained via
0 = arg mein Ve(0), (7.56)

and where the filtered inputs and outputs are computed using the EIVKFE algorithm

given in (7.26). For completeness, the algorithm is summarised here as follows.

Algorithm 7.7 (PEM-SYM).
0 = arg m@in Ve(0) (7.57a)
Ty k(0) = A(0)Zpp—1(0) + B(0)ug, + K (0)ex(0) (7.57Db)
er(0) = yi — C(0)Zxk—1(0) — D(0)ug (7.57¢)
Sk(0) = C( ) Prji—1(0)CT (0) + c(0) (7.57d)
K3, (0) = [A(0) Pui—1(0)CT () + Sue(6)] S5 1 (6) (7.57e)
Pk (0) = A(0) Py (0 VAT (0) + 2,(0) — Ki(0)Sk(0) K[ (0) (7.57f)
9o, (0) = i [2 — gy DT(0)] S;, 1 (0)er(9) (7.57g)
o, (0) = uy, — [Sag — TaDT(0)] S, 1 (0)ex(0) (7.57h)
er(0) = [of —8.(0) uf — aOTk(e)]T (7.57i)

The optimisation procedure to solve (7.57a) is generally computationally expensive,
since the Kalman filter has to be applied (i.e. a Riccati equation must be solved) at

each iteration, in order to obtain the symmetric innovations.

Remark 7.2. The symmetric innovation (7.57i) within the PEM-SYM algorithm is ob-
tained via the EIVKF, which is in one-step-ahead predictor form. In the offline case,
it would appear natural to assume that superior results could be obtained by making
use of fixed-interval smoothing, rather than using the one-step-ahead predictor. This
means that the optimal input and output estimate at time &k does not only use the
data up to time k (as in the prediction case), but makes use of the whole batch of
available data up to time N. Using well known techniques (Anderson & Moore 1979,
Section 7.4), an EIV fixed interval smoother can be derived in a straightforward man-
ner. However, this idea is not pursued further within this thesis, but could be further

work.

Note that, for comparison purposes, a similar algorithm to the PEM-SYM could

be defined which minimises the squared innovations ex(f) (as in the standard PEM
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framework) rather than € (¢). For completeness, such an algorithm is summarised here

as follows.
Algorithm 7.8 (PEM).

0 = arg m@in V(0) (7.58a)

Tpy1p(0) = AO)Zpp—1(0) + B(O)uy + Ki(0)ex(0) (7.58b)
er(0) = yi — C(0)Zkk—1(0) — D(0)uy (7.58¢)

S (6) = C(0) Pyjs—1(0)C" (8) + £ (6) (7.584)

Ky (8) = [A(0)Pyy—1(0)CT (8) + Sue(0)] S (6) (7.58¢)
Piyajr(0) = A(0) Pry—1 (0) AT (0) + 54(0) — Ki(0)Sk(0) K] () (7.58f)

Note that V(0) is given by (7.27). Both algorithms are compared in the following

example.

FEzample 7.1. Consider a similar setup as in Section 7.3.2, where the parameter vector

is given by
T
9:{—0.3 02 —45 5.4] . (7.59)

For this example, a reduced noise environment is utilised, such that the covariance

matrix of the noise sequences is given by

i 0.1 05 0
E || [al i wl} — 105 25 0| (7.60)
wi 0 0 0

Algorithms 7.7 and 7.8 are applied to estimate # using N = 500 samples for 100 Monte-
Carlo iterations. The fminsearch (Nelder-Mead Simplex Method) routine of Matlab is
utilised to minimise V,(0) and V (0), where the initial value of 6 is chosen to be the null
vector. The initial values Py and x( for the EIVKF are set as in (7.19). The mean and
standard deviations of the estimates obtained are given in Table 7.1. It is observed that
by making use of Algorithm 7.8, the parameters, particularly by and by, are notably
biased. This is an expected result, since in this case the PEM is directly applied to the
EIV identification problem, which is known to yield biased estimates. By contrast, in
the case of the symmetric innovations approach given by Algorithm 7.7, the parameters
are estimated quite accurately with low standard deviations, being comparable for both
approaches. Hence, it would appear that minimising the symmetric innovations could

yield unbiased parameter estimates within an EIV setup. |

192



7. Errors-in-variables filtering for parameter estimation

Algorithm 7.7 Algorithm 7.8

ar | —2.96-1071 £ 2.78.1072| —3.13-107" £ 2.62:1072
as | 2.01-107' £241.1072| 2.06-107" £ 2.33-1072
by | —4.51 + 1.33-107| —3.62 + 1.18:107*
by 5.38 + 1.46-1071|  4.80 + 1.24-1071

Table 7.1: Mean and standard deviation of parameter estimates for 100 Monte-Carlo
iterations, comparing Algorithm 7.7 and Algorithm 7.8.

7.5.2 Analogy to Joint Output method

The PEM-SYM method given in Algorithm 7.7 strongly resembles the so called joint
output method® (cf. Section 2.4.5), an EIV identification technique which has been
proposed in (Soderstrom 1981). In this approach, the EIV system is reformulated as
a multivariate state space system which is driven by three independent noise sources.
Since the states contain the noise-free inputs and outputs, it is possible to estimate
these quantities by means of a standard KF. For clarity, let such a KF applied to the
multivariate state space system be denoted EIVKF-JO in the subsequent discussion.
Indeed, the EIVKF-JO could be regarded as an alternative to the EIV filtering ap-
proaches that have been discussed so far within this thesis and which are based on
the development described in (Diversi et al. 2005) and (Markovsky & De Moor 2005).
In contrast to the EIV filters discussed in Section 2.5.2, the EIVKF-JO neither re-
lies on the existence of a feedthrough term D nor on the cross-correlation between
and gk, which is believed to be one of the shortcomings of the EIVKF (cf. Remark
2.3). However, the EIVKF-JO is only able to estimate the noise-free input, since the
latter is assumed to be described by an auto-regressive moving average process which
is driven by white noise, i.e. wug, is assumed to be characterised by a rational spec-
trum (Soderstrom et al. 2002). Consequently, it might be beneficial to prefer either
an EIVKEF or an EIVKF-JO in order to filter the input and output of an EIV system,
which can subsequently be utilised for the purpose of system identification. A preferred
choice would certainly depend on the underlying assumption for the system and noise
sequences.

Returning to the discussion comparing of the joint output method with the PEM-
SYM, it is clear that the main distinction lies in the utilisation of the different EIV
filters, which exploit differing assumptions to estimate ug, and yo,. A more detailed
comparison of both identification techniques would be quite interesting and is identified

as an avenue for potential further work.

®Within the literature (Séderstrém et al. 2002), estimators based on the joint output method are
also termed maximum likelihood or prediction error approach, depending on the chosen cost function.
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7.5.3 Recursive case

It is also possible to minimise V.(#) in a recursive manner, using the Gauss-Newton
approach as outlined in Section 7.4. Indeed, only minor adjustment of the previously
developed RPEM algorithms is required in order to derive a symmetric RPEM for the
EIV state space system.

Recall from (7.57g)-(7.57h) that the symmetric innovation (7.54) can be re-expressed

as
¥y — 2L.DT(9)
)= |"Y “w S1(0)er(0
er(0) Sas — TaDT(0)] F (0)er(0)
=T(6)S; " (0)ex(6), (7.61)
where
Y, XL I
T(a) A Y ay c R(ny—i—nu)xny. (762)
Yag Za | |=-DT(9)

It is then possible to minimise the quadratic cost function V,(#) using a Gauss-Newton
approach as outlined in Section 7.4.1. Therefore, define the gradient of the symmetric

innovation as

d
—nk) 2 —er(0) € R(utny)xno, (7.63)

which, by making use of the product rule, can be computed as
=i (0) = J(0, 5 (0)ex(0)) = T(0) S (0)-545;, " (0)ew(0) — T(0) S (0)wy (0), (7.64)
with the ith column of %} being given by (7.38) and where

J(ék,S_l,a) = d

£ — [T(0)S™"e] |, R(wFnu)xng (7.65)

is defined in a similar manner to (7.30). Consequently, the gradient of the cost function

becomes

d

5 Vel0) = —mi(O)A i (0). (7.66)

Note from (7.64) that 7;(0) depends on ¢ (f) which can be computed in a recursive
fashion as outlined in Section 7.4.1. Therefore, a recursive algorithm is obtained by
taking Algorithm 7.4 and modifying the computation of Ry and 0}, in accordance with
the modified gradient (7.66). By choosing A = I, the symmetric algorithm, which is
denoted RPEM-SYM, can be summarised as follows.
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Algorithm 7.9 (RPEM-SYM).

€k = Yk — Cp—1Zpjk—1 — Dr—1uk (7.67a)
Y = WkTC/?A + HT(ék—l,ij—lauk) (7.67b)
M = Th1S, T-1S0 ik + Tho1 Se 08 — T(Ok—1, Sk—1,€x) (7.67c)
Ry = Ri—1 + i [ment — R (7.67d)
90, (0) = yk — [S5 — Zag" DI_1(0)] S \en (7.67¢)
ﬁok (9) = U — [Eag — Ea’D%ﬁl(a)] Sk__llz’:“k (7.67f)
T
ew(0) = [yf — b uf —af] (7.67¢)
ék = ék,1 + 'YlezlnkEk (7.67h)
Sk = CpPyp1CL + F (7.671)
Ky = [-Akpk\k—lclz + Eﬁe:| St (7.67j)
:AEk_H‘k = Akik\k—l + Bruy, + Kieg, (7.67k)
Pyi1pk = ApPr—1 AL + Sh — K, Sp K} (7.671)
W1 = [A — KiC) Wi + F (O, Sxjs—1, ur) + Ay — KiH (O, Sppp—1, up)
(7.67m)
Here, the convenient notation
e = ik (Ok), (7.68a)
Ty = T(0r), (7.68b)

has been used. The performance of the algorithm is investigated in the following

example.

Ezample 7.2. In order to compare the RPEM-SYM algorithm with the EIV-RPEM1

approach, consider a similar setup as in Example 7.1, i.e.

T
0=|-03 02 —45 54| (7.69)
and
o 0.1 05 0
Ell||a o w]|=]05 25 0] (7.70)
" 0 0 0

are chosen. The signal-to-noise ratio on the input and output is, respectively, given by
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Figure 7.4: Estimates obtained from the RPEM-SYM in comparison to those ob-
tained from the EIV-RPEMI1.

29.7dB and 28.3dB. The symmetric algorithm RPEM-SYM is compared to the EIV-
RPEMI1 algorithm (cf. page 185) for N = 5000 samples. Both algorithms are initialised
with

A~

60 = 0, PO = 100[, o = 0, Ro =0.11 Wo =0. (7.71)

In addition, a projection facility is utilised, in order to ensure that all eigenvalues of
Ay — K,Cy, lie strictly within the unit circle. The estimates obtained for both algorithms
are given in Figure 7.4. It is observed that the convergence rate of the EIV-RPEM1
is rather slow and the estimates for by appear to be biased. The results obtained from
the RPEM-SYM, in contrast, show a rapid convergence rate and it seems that the

algorithm can successfully compensate for the bias in the estimates. [

Remark 7.3. The results obtained in Example 7.2 appear to be very promising, how-
ever, the simulation setup has been chosen with care. If lower signal-to-noise ratios
are chosen, e.g. as in Section 7.3.2, it appears to be difficult to obtain satisfactory
results when applying the RPEM-SYM algorithm. A potential reason for this could be
that a careful initialisation of the recursive scheme is necessary and/or that a step size

reduction might be required.

7.6 Concluding remarks

The extended Kalman filter for joint state and parameter estimation (JEKF) has been
derived to estimate the states, the parameters as well as the noise-free inputs and out-
puts of an errors-in-variables (EIV) state space system. A simulation has revealed,
however, that the parameter estimates obtained are biased. Since the parameter es-

timator, which is obtained by applying the JEKF, can be interpreted as a recursive
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Alg. Name Description

7.1 EIV-JEKF1 Direct application of the JEKF for EIV state space systems. Produces biased
parameter estimates in presence of input noise.

7.2 EIV-JEKF2  Modified JEKF algorithm. Utilises uo, for design of Jacobian Hy. Can
reduce the bias in parameter estimates.

7.3 EIV-JEKF3 Modified JEKF algorithm. Utilises o, for design of Jacobian Hj. Can
reduce the bias in parameter estimates.

7.4 EIV-RPEM1 ‘True’ RPEM applied to an EIV state space system. Produces biased pa-
rameter estimates in presence of input noise.

7.5 EIV-RPEM2 Modified predictor. Analogue to EIV-JEKF2. Utilises uo, for design of
Jacobian Hj. Can reduce the bias in parameter estimates.

7.6 EIV-RPEM3  Modified predictor. Analogue to EIV-JEKF3. Utilises uo, for design of
Jacobian Hj. Can reduce the bias in parameter estimates.

7.7 PEM-SYM Offline PEM technique, minimising quadratic cost function of symmetrically
defined innovations.

7.8 PEM ‘True’ (offline) PEM applied to an EIV state space system. Produces biased
parameter estimates in presence of input noise.

7.9 RPEM-SYM  Recursive implementation of PEM-SYM algorithm.

Table 7.2: Overview of developed algorithms for Chapter 7 (Alg. stands for Algo-
rithm).

prediction error method (RPEM), this is not a surprising result, since it is known
within the literature, that a direct application of the prediction error method (PEM)
to the EIV case does not yield consistent estimates. Making use of the filtered input for
the design of the Jacobians which are used within the JEKF design yields a modified
version of the JEKF. Using this algorithm, it is possible to, at least partly, compensate
for the resulting bias in the estimates. By deriving the ‘true’ RPEM for the EIV state
space system and using these results to analyse the modified JEKF procedure, it is
revealed that the usage of the filtered input in the Jacobian design corresponds to a
modified predictor, which is able to reduce the bias of the EIV system parameters in
the presence of a feedthrough term. Whilst this modified predictor is able to reduce
the bias in the estimates, it does not account for the symmetric structure of the EIV
framework. Consequently, a novel algorithm is developed, which uses the filtered in-
puts and outputs to define symmetric innovations. The corresponding predictor then
allows the design of a symmetric (non-recursive) PEM, which resembles the joint out-
put method, a well known EIV identification technique. Moreover, an algorithm for
recursively solving the identification problem, which is based on the RPEM design, is
also developed. An overview of the algorithms, which have been developed within this
Chapter, is provided in Table 7.2.

The thread which has been followed throughout this chapter, i.e. the idea of com-
bining filtering and estimation, is certainly not novel, but a common approach within
the system identification literature (cf. e.g. Ljung 1999, Young 1984, Young et al. 2001).
Filtering the data explicitly or implicitly (as realised in the joint output method) can be
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7. Errors-in-variables filtering for parameter estimation

utilised in order to affect the asymptotic bias in the parameter estimates. The novelty
within this chapter is that usage of the EIVKF has been made in order to filter the
inputs and outputs. Consequently, the limitations regarding the EIVKF, as mentioned
in Remark 2.3, also apply for the algorithms of this chapter, which has been discussed
in Remark 7.1. Therefore, it would be of interest to investigate, under which exact
requirements the EIVKF can provide reasonable estimates. With ‘reasonable’; it is
meant, that the EIVKF is, on average, able to effectively remove noise from the mea-
sured inputs and outputs, as indicated by a positive value of the performance criteria
(7.20). In addition, an EIV fixed interval smoother could yield superior results with
respect to the one-step-ahead predictor, which is utilised by the EIVKF considered in
this thesis. These aspects are deemed to be interesting avenues for potential further
work. In addition, the convergence and consistency properties of the developed algo-
rithms have not yet been investigated. For potential practical applications, however,
such an analysis is of major interest and can also identified as potential future work.
This also applies to the relationship between the new PEM-SYM algorithm and the
joint output method, which has been discussed, but requires a more thorough analysis

which is also identified as potential further work.
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Chapter 8

Conclusions & further work

8.1 Conclusions

Prompted by a desire to exploit the errors-in-variables system identification and filtering
approaches to encompass online realisation of the techniques, this thesis has focused
attention on the development of pragmatically applicable algorithms for potential online

implementation. As outlined in Chapter 1, there are two main threads, namely:

1. Errors-in-variables identification, where the emphasis has been focused on the de-
velopment of recursive algorithms to realise the Frisch scheme, as well as exploit-

ing the similarities to the extended bias compensating least squares framework.

2. Errors-in-variables filtering where the emphasis is aimed at developing recursive
algorithms for reconstructing the noise-free input and noise-free output signals,

which may be subsequently utilised for errors-in-variables identification.

The development of the algorithms within this thesis is considered to be timely in
that there exists significant immediate potential for deployment in a range of indus-
trial/commercial settings where models with inherently unbiased parameters can be
utilised to advantage.

This Chapter summarises the main outcomes of the research documented in this
thesis. The two threads of research are separately discussed in Sections 8.1.1 and 8.1.2,
with reference to the chapters where details can be found. The main contributions are
summarised in descending order of significance in Section 8.1.3. Finally, avenues for
further work, as identified throughout the thesis, are summarised and listed in Section

8.2 in order of importance in the context of this work.

8.1.1 Recursive Frisch scheme identification

Algorithms to recursively approximate the Frisch scheme estimates of linear time-in-
variant single-input single-output dynamic errors-in-variables systems have been devel-

oped. The estimates of the model parameters and the input/output measurement noise
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variances are updated via gradient-based techniques, which are developed based on the
offline Frisch scheme equations for the white noise case. Two novel recursive algorithms
have been proposed in Chapter 3, which allow the update of a Frisch scheme model
as new data becomes available. This extends the applicability of the Frisch scheme
towards cases, which often rely on an online implementation, such as fault detection,
adaptive signal processing and adaptive errors-in-variables filtering. It has been shown
that the recursive algorithms can successfully approximate the offline Frisch scheme
solution and even retain the Frisch-character, the unique feature of the Frisch scheme.
A detailed analysis of the computational complexity of the developed algorithms has
been carried out. This has prompted, in Chapter 4, the development of two additional
fast recursive Frisch scheme algorithms, which reduce the computational complexity
from cubic to second order. The development of the fast algorithms further increases
the applicability range of the recursive Frisch scheme algorithms towards cases where
only limited computational resources are available and the use of complex algorithm
implementations is prohibitive.

In addition to the development of recursive approaches based on the offline Frisch
scheme, recursive algorithms for the extended bias compensating least squares identi-
fication problem have also been developed in Chapter 5 for the white noise case. Since
the Frisch scheme using the Yule-Walker model selection criterion can be interpreted
within this framework, the developed algorithms provide an alternative to the recursive
methods based on the offline Frisch scheme, hence enriching the portfolio of available
algorithms. A bilinear parametrisation concept has been exploited to derive a type of
recursive algorithm based on a two-step estimation approach leading to a computation-
ally attractive implementation. Moreover, a recursive implementation of the variable
projection method, which is also known as the nonlinear separable least squares tech-
nique, has been considered. This not only yields numerically sound algorithms for
the identification problem, but also allows the generalisability towards more complex
bias compensating settings, such as the coloured output noise case. Thus, the algo-
rithms developed within this framework, find wider applicability beyond the scope of
the identification via the Frisch scheme approach. In addition, an extensive simulation
study has provided a detailed comparison between the recursive algorithms developed
within the extended bias compensation framework and those based on the offline Frisch
scheme.

As well as the case of white output noise, a modified scenario whereby the output
noise is correlated in time (that is coloured output noise), a setup which is likely
to be more realistic in many practical applications, has been considered. Two novel
recursive algorithms have been proposed in Chapter 4, which have been developed
from existing offline identification schemes. Whilst the first algorithm follows a basic
approach involving the application of Newton’s method, the second algorithm leads to

a more straightforward and less computationally demanding scheme, which exploits the
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special structure of the underlying problem.

8.1.2 Errors-in-variables filtering

The theory of errors-in-variables Kalman filtering, which has only been considered for
linear systems within the literature, has been extended in Chapter 6 to encompass
a class of bilinear systems, an appealing and commonly utilised subset of nonlinear
systems. The significance of this contribution is twofold: Firstly, it can be considered
as a piece of pioneering work of extending the theory of errors-in-variables filtering
towards more practically oriented, yet correspondingly more sophisticated nonlinear
system structures. Since bilinear systems are closely related to linear systems, it appears
to be a most natural step to begin such an extension with this relatively simple class
of nonlinear systems. Secondly, since bilinear models are widely used within numerous
versatile areas, this contribution also lays the foundation for a practical application
of errors-in-variables filtering to the wider realm of real-world problems. Whilst the
optimal algorithm is shown to be infeasible in the bilinear errors-in-variables case,
the outcome of this work is that of a collection of four suboptimal algorithms from
which a user can choose the most suitable filter structure depending on the underlying
application. Due to the close relationship of bilinear and linear systems, the developed
filters are all based on the well known Kalman filter theory, hence they are relatively
easy to understand and to apply.

In addition to the bilinear errors-in-variables problem, Chapter 7 considers the
idea of combining (linear) errors-in-variables filtering and system identification, i.e. to
utilise the filtered inputs and outputs within the identification algorithm, in order to
reduce and eventually overcome the asymptotic bias of otherwise inconsistent estima-
tors. Whilst filtering for identification is commonly used within the literature to affect
the bias distribution of the estimates, the usage of the errors-in-variables Kalman filter
for this purpose has, to the author’s knowledge, not yet been considered. The basis
for the system identification procedure has been the recursive prediction error method
(either in approximate form given by the extended Kalman filter for joint state and
parameter estimation, or in its ‘true’/direct form), which is known to yield biased es-
timates in the presence of input measurement noise. A modified predictor has been
derived, which is shown (via simulation) to radically reduce the bias in the parame-
ter estimates of an errors-in-variables state space system. The chapter culminates, by
proposing a modified symmetric predictor, which can be implemented in an offline or
online manner. In addition, a Monte-Carlo simulation has indicated that the technique
may yield unbiased estimates. Finally, the similarities to the joint output method have
been discussed. The outcome is thus a novel errors-in-variables identification technique,

which provides a basis for discussion and eventual future research.
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8.1.3 Contributions in descending order of significance

A summary of the developments within this thesis are given as follows in a descending

order with respect to their considered significance.

1.

8.2

Recursive algorithms based on the offline Frisch scheme using the Yule-Walker

model selection criterion have been developed (Chapter 3).

A symmetric prediction error method for errors-in-variables identification which

utilises errors-in-variables filtering techniques has been proposed (Chapter 7).

Based on the proposed recursive Frisch scheme algorithms, computationally less

expensive procedures have been developed (Chapter 4).

Algorithms for bilinear errors-in-variables filtering have been developed (Chapter
6).

. Recursive algorithms for the extended bias compensating least squares approach

have been proposed (Chapter 5).

Recursive Frisch scheme algorithms for the coloured output noise case have been

proposed (Chapter 4).

Further work

The developments within this thesis have identified several topics for potential further

work.

In the time available, it did not prove possible to include any real world examples,
although several were considered. There is an urgent requirement, therefore, to
evaluate all of the proposed algorithms on some real application data. Work in

this regard is proceeding and will be reported in future publications.

As regards further algorithmic developments, additional research on the recursive Frisch

scheme should include:

e The development of alternative algorithms to replace the recursive bias compen-

sating least squares technique for the computation of the parameter vector. In

particular, the use of matrix factorisations could be an interesting direction.

e The use of other subspace tracking algorithms rather than the conjugate gradient

method might provide attractive alternatives.

e An extension of the developed recursive Frisch scheme algorithms when use is

made of the covariance match criterion is possible and is an interesting aspect for

further work.
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e A thorough mathematical analysis of the convergence and consistency aspects of
(some of ) the developed algorithms would be desirable and could provide another

interesting topic of further work.

e All of the recursive algorithms should be considered from the point of view of time
variable parameter estimation since this is one of the major reasons for exploiting
recursive algorithms. In addition to simple exponential data weighting of the kind
considered in Appendix B, more sophisticated and flexible optimal approaches
need to be evaluated, as discussed for example in (Young 1999, Young 2000,
Young 2002). These include stochastic modelling of the parameter variations and
optimisation of the associated hyper-parameters, as well as the implementation
of recursive fixed interval smoothing to allow for improved offline estimation and

the removal of the estimation lag that affects online ’filtering’ recursions.

For the errors-in-variables filtering, the following aspects are considered to provide

topics for potential further work:

e The development of robust errors-in-variables filters for bilinear systems could be

a topic of interest.

e The extension of errors-in-variables filtering techniques towards more general non-
linear systems, other than bilinear, might be desirable. Within this context,
Bayesian approaches for bilinear errors-in-variables filtering might lead to im-

proved performance for the non-Gaussian case.

e The theory of (linear) errors-in-variables filtering techniques could be extended to
deal with stochastic parameters or coloured noise setups which would be another

direction for further work.

e An investigation of the relationship between errors-in-variables Kalman filtering
and classical Kalman filters, which can estimate the noise-free input when the
latter is described by a rational spectrum, would be illustrative. In particular,
it would be interesting to develop the optimal filter for the case when the input
has a rational spectrum and, in addition, when a feedthrough term and/or cross-
correlation between the input and output measurement noise is present (which

forms the basis for the errors-in-variables Kalman filter).

e In connection with the previous point, a detailed comparison of the joint output
method and symmetric prediction error method would be of interest. In addition,

a convergence and consistency analysis for the latter would also be desirable.

e Rather than the Kalman filter in one-step ahead prediction form, a fixed inter-
val smoother could be used for the symmetric prediction error method in the
offline case. This is likely to give some improvement with respect to estimation

performance and is, therefore, of potential interest.
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Appendix A

RBCLS derivation

Equation (2.1) can be rewritten as
Alg™)yi — Blg™ui = Alq™)gi — Blq™ )i = e, (A1)

where the residual e; is the difference of two moving average processes. This allows the

formulation of a linear regression problem
_ T
yi =p; 0+e; (A.2)

and the application of the least squares (LS) estimator. It is well known that the LS

estimate

k
0" = [Z SDz‘SDiT] Z PiYi (A.3)
i=1 i=1

is asymptotically biased in the presence of measurement noise. An explicit expression
for the bias can be obtained by substituting (A.2) in (A.3) which yields

055 = 0 + > e (A.4)
=1

k
> wiof
i=1

Making use of the fact that e; = —p7 6 + §j;, and dividing by & it follows that

k k k
1 . 1 . 1 -
x > el (9158 - 9) =z > wigif + z > il (A.5)
i=1 i=1 i=1
which becomes, in the asymptotic case, i.e. for k — oo
iln 0
S, (015 — ) = — |77 " 0 (A.6)
0 O'ﬂ_[nb
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A. RBCLS derivation

or, equivalently,

Uﬂlnb

_ pLS —1 O-g‘[na 0
0=0" 43 [ X ]9, (A7)

where X, is obtained by deleting the first row and column of ¥Xz.
Equation (A.7) gives rise to a recursive form and, if the noise variances are known
(or estimated), it is possible to apply the RLS estimator and compensate for the bias

at each time step k. This gives the update equation
. . W11
- [z@] S5 (63) 01 (A.8)

with the noise compensation matrix

~k
Sp(0x) = [“ﬂf"“ ’ ] : (A.9)
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Appendix B

Recursive update of covariance

matrices

This appendix reviews the recursive update equation for covariance matrix estimates

for both, equally and exponentially weighted data.

B.1 Equally weighted data

A commonly used estimator for a covariance matrix of two general vectors a; and b; is

defined by
1 k
sk 2 - > aiby (B.1)
i=1

A recursive version of this estimator is given by

k—1
1
Sk = - [Z aibl + apbl |, (B.2)
i=1
1 .
= = [k = D + ] ] (B.3)
. 1 .
=S4 2 ] - S5 (B.4)

B.2 Exponentially weighted data

In order to allow an algorithm to be adaptive, an exponential form of data weight-
ing may be utilised (Ljung 1999, Sec. 11.2). This can be realised by giving the ith

measurement at time k the weighting ﬁf, which satisfies the properties

ﬁf — Akﬂfil for0 <i< k-1, (B.5)
BE =1, (B.6)
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where 0 < A\ < 1 is a potentially time-varying forgetting factor. The properties of the

weighting leads to the recursive relation

k k—1
> Braib] = Braib] + axbi, (B.7)
i=1 i=1
k—1 '
=X > Bho1aib] + abf. (B.8)
i=1

Due to the individual weighting of each summand in (B.7), the accordingly weighted
covariance matrix estimate cannot simply use the scaling 1/k as is (B.1). Instead, a

weighted arithmetic mean is to be computed which is given by
k .
Sh = > Braiby (B.9)
i=1

where 7, denotes a normalising gain given by

1
R - (B.10)

- .
> i1 B

Note that in the case of no adaptivity, i.e. Ay = 1 for all k, the data weighting becomes

BF =1 for all 0 <4 < k which results in 4 = 1/k. In this case (B.9) becomes (B.1), i.e.

the standard estimator for covariance matrices. Using (B.8) and (B.9), the recursive

update of the Ssb is given by

k
Sy = > Hhat! B11)
i=1
k—1 ‘
=Y [Ak > Bioiab] + aiby | (B.12)
i=1
1 <
=V [ARW—E’;b 1 + akbf] . (B.l?))
Exploiting the fact that the normalising gain satisfies the recursive relationship
1
M _ 1 1, (B.14)
Ye—-1 Tk
equation (B.13) simplifies to
Shy = Sh 4w [and] - 557 (B.15)
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Appendix C

Linearisation of the Frisch

scheme equations

This appendix reviews the linearisation of the Frisch scheme equations as outlined in
(Séderstrom 2007a). Dropping the time index for the ease of notation, recall that the

basic Frisch equations are given by

(50— 2(6)) 6 =&, (C.1a)

A _1 a
05 = Amin (290,1/ - E@y%’u [ESOu - Uﬂ[nb] 2%#’1/) : (C.1b)

The linearisation is carried out around the value

6*
A oy (C.2)
o
C.1 Linearisation of #-equation
From (C.1a), one obtains
* S A\ g *
0—-0" = <E¢—E¢(U)) €y — 0
o A o 01, 0 *
= <Ee0 - E@(U)) (@y - (Ew - y() &aInb]> ’ )
. RS I oga*
~ (290 —Xg(o )> (fsoy — Y,0" + Ay *]> ) (C.3)
O'{Lb
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where it is assumed that 9 is close to the point of linearisation ¥*, in order to allow for

the approximation

(8- 50)) ~ (8 - 2p(0") (C.4)

- k k A%
b= -m) (1 om - et [17])
i=1 i=1 u
/e e ! l k e T s G50 ora* ota*

ogb*
- k 05 —oS)a* ota*
(20 — E@(o*)) 1 <% ; ©ie(0*) + E&i B o—zjf))b*] + Lf’;b*D ; (C.5)

Further modification of (C.3) gives

*

S

+

u

which yields the linearisation result given in (Soderstrom 2007a) given by

(iq, — z¢(a*)) (é - 9*) - [Cg] (65— 03) — [;] (60— o03) =

k
1 ota*
- (0% + 4 . C.6
k ;so (6%) a;;b*] (C.6)
C.1.1 Sensitivity derivatives
From (C.3) it is straightforward to compute
a0 . .\-L|0
g (20 = Zp(0") H , (C.7a)
a0 - S\ at
5 (30— Zal0M) [0] . (C.7b)

C.2 Linearisation of )\ ,-equation

The idea is to linearise the A\pip-equation around ¥* using perturbation theory.

Assume that 9* satisfies the compensated normal equations
Yo, — Ya (o o a*
[ Py R @y( y) . PyPu . ] [ *] -0 (CS)
E%’u@y E%’u - E@y (Uﬂ) b
which are rewritten for ease of notation as

A-oil,, C
cT D,
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Similarly, introduce

A—6y4l,, C||a
“ 1.l =0 C.10
cT D| |b ( )
Note that O’Z and &; are obtained via
05 = Amin (Bx), (C.11a)
5 = Amin (B) , (C.11b)
where
B.,=A-CD;CT, (C.12a)
B=A-CcD'cT. (C.12b)
Now, the result of perturbation theory states that
. al ABa,
)\min(B) - )\min(B* + AB) ~ )\min(B*) + I (C13)
al a.
where
AB=B-B,=C (D;l - 15*1) o7, (C.14)
Consequently, one can write
,T —
. y a,; ABa,
05— 05 = Amin(B*) + —7- Amin(B*)
ala,
ay i
= aTa, (AB) as. (C.15)
Expanding AB as
AB=cD;'cT —cD7tcT
— oD;! (f) - D*) DT (C.16)
and introducing
D =D —é6al,, (C.17a)
D, =D —o}l,,, (C.17b)
gives
D —D,=D —él,, — D+ 0%l =0kl — 6aln,, (C.18)
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and Equation (C.15) becomes

ala, (65— 0}) = —al CD; ! (65 — o) D107 ..

Y

From the lower part of (C.9), one obtains
b, = —D;*CTa,,

and by assuming that b, ~ D~1C7a,, (C.19) becomes

a, Gy (65 — o) & —blo, (64 —02).

C.2.1 Sensitivity derivatives

From (C.21) it is straightforward to compute

doz 0,

— R
dog ala,

(C.19)

(C.20)

(C.21)

(C.22)
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Appendix D

Derivatives for RFSCON1

D.1 First order derivative of V[

Denoting (-)’ the derivative w.r.t. 6% and introducing
fe 2 GLE, Fy, £ GG,
it holds that
0
f]lc = [Ak‘ ] )
5%Ouy
&k T
F]:: = AkO i ?Q@u@y & ] s
Py 205 Iy, 22%

-1/ _ —1 o a1
F = =—F_"F.F,
and the first order derivative is given by

V= - (FF )

T _ 1/ _
- = /Ic Fklfk—fkTFkl fk—flcTFklfllc-

D.2 Second order derivative of V}*

Utilising the product rule, the second order derivative is given by

" 1T =17 1T =1 pr
Vl =~ Jk Fk fk_kafk

T _1/ 1" 1/
A (A (A 3R [l O /4

T +— 1/
- RR - A

T —1/ T ~—
:—2f//€ Fklfk_2fl/€ Fklfl,c

_qn 17
—ngkl fk_2ngklfé

(D.1)

(D.2a)

(D.2b)

(D.2¢c)
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with
1" —1/ _ _ _ _ —1/
'Y =-FVEF'-F'FF'-F'F F, (D.5a)
0 0
F = . (D.5b)
0 21,

D.3 Derivative of ¢,

The idea is to linearise the Frisch equation (2.82) using perturbation theory (as in
Appendix C.2), in order to approximate the derivative of ¢, w.r.t. a. The derivation
here is conceptually similar to that given in Appendix II.B of (Séderstrom 2007a), but
with the linearisation carried out around ﬁk—l rather than the true parameters .

Assume that at time instance k—1, U5 satisfies the extended compensated normal

equations
Sk—1 k-1 S k—1 ~
E@y o E@y E@yﬁou k-1 —
Shk—1 -1 _ sk—1g b =0 (D.6)
PuPy eu —9a Am k—1

which are rewritten for ease of notation as

A —B ¢ a
=0. D.7
¢ D- &{;11] H (D7)

Similarly, introduce the notation at time instance k as

a4—B C a
cl' p—GEI| |6

Let 6% denote the estimate obtained via (2.75). Alternatively, if i]:sy is known, the

input measurement noise could be obtained using (2.82) and denote this quantity ¢*.

= 0. (D.8)

Using perturbation theory for eigenvalues yields

" = Amin {Br (%)} = Amin {Br_1(ax_1) + ABy}
b ABb
zgk—l + v abpt

s (D.9)
where the perturbation is given by (cf. (2.83))
ABy, = By(ag) — Br_1(ag—1)
—p—clla-8 ' 'c—-D+ecqa-3] e
=p-—Cc'Flc—-D+e"F e (D.10)
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D. Derivatives for RESCON1

with 7 £ [4 — 8] and § 2 [ — B]. Substituting (D.10) in (D.9) yields

bT
FoFlx —(p-D+"F le-cTr )0

bTb
b” b7 Xb
where X can be expressed as
+elgtle—ely e
+¢3 lc—e"F e
=@ - gtc+dF(e-0
—TF 1 F-m)F'c (D.12)
and by combining (D.11) and (D.12), it holds that
676 (sF — ¢F7) ~ b7 (D - D) b
+o" (e =) 7 cb
+elelg L (e—-0)b
— b7 (F - F) F e (D.13)
Now, the first row of (D.7) gives
a=-F b (D.14)
and by assuming that F ~!cb ~ —a, (D.13) finally simplifies to
676 (<~ ¢*1) ~ b7 (D - D) b
—b" ("= ") a
—al'(€-0)b
—a'(F-7F)a, (D.15)
where ¥ is the only element depending on «y. Therefore,
b d (ol @a-may e (D.16)
doy, ~ doy, b7b b7 ‘
or equivalently
d at_y d ey s
—)\min B N ————— X% Ap_1- D.1
dag \min {Bi(en)} Ty dog (D.17)
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D. Derivatives for RESCON1

Since E% consists of the quantities f’g(O), ey f’g (ng), it remains to determine
Y

d ~k d A~k d A~k
—d i Py = dor ’I“g (0) U dam ’I“g (na)] (D18)
WhiCh, due to (281), 18 given by
d ok — N(H ) (D 19)
kpy = k)- .
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Appendix E

Recursive bias compensation of
the IV estimator

In order to obtain an explicit expression for the bias, the linear regression formulation
T
Yi = @; 0+ e; (E.1)

is substituted in (4.46) which gives

k -1 %
. 1 1
v — [E 2 5;%T] - 2 5 (0] 0+ €)
Zl k; le
=0+ EZ&;@T] %Zﬁei (E.2)
=1 =1

By substituting e; = —@;6 + y; it follows that
oY =6+

. Ty i T
EZW] 5D 00— [EZW?] L2 oo (B3)
=1 =1 =1 =1

The vector 6; is uncorrelated with g; which means that the middle part of the sum in

(E.3) diminishes in the asymptotic case, whereas

. 1 r Pu, - 1T 0 oaly
lim E; [g] [ap; apfi] = [O . b] , (E.4)

where ( is obtained by deleting the last entry of ;. Consequently, for k¥ — oo (E.3)

becomes

0" =0 —0;%;5)J*0, (E.5)
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E. Recursive bias compensation of the IV estimator

where J* is obtained by deleting the last row of J in (2.71). Equation (E.5) gives rise

to the recursive bias compensation update equation for 0
~ ~ ~ -1 ~
@:ﬁ%ﬁﬂ%@ T 051, (E.6)

where the uncompensated parameter estimate HAIEV can be recursively computed via a
recursive IV (RIV) algorithm (Ljung 1999, p. 369) given by

O = 0 s+ Li [ — T (ETa)
Py16}
Ly = F10k (E.7b)

1—y T x 7

1 Py 10501 Py
P= - Ppoy — bk kol (E.7c)
— Yk e +§Okpk,15k
with the only difference being that P is scaled such that
17!
[25¢] — P, (E.8)
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Appendix F

Left pseudo inverse of G.(6;.)

Recall that

Then

GT(0r)G(0r) = [;

and

e o] =

AT

_ak

0

1 0
A —a, 0
G(0y) = .
0 —bg
0 0
10
0 Of|-a O
b o] | 0 —by
0 0
(14 afar)”
0

which yields the left pseudo inverse of Gy, (6)) as

GH(6y) = [ B066)] G0

o ] b
(bkbk) 0 0

—al (1+a%a) ™"

0

0

(1+ala,) "

(1+ &g&k)il

0

N

(@%Bi)l} |

0 0]
b0

0 0

b (i) o

1+ dg&k 0
0 ol by,

} |

|

(F.1)

(F.2)
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Appendix G

Recursive algorithms for

overdetermined normal equations

G.1 ERLS1

The first algorithm makes use of the matrix inversion lemma for pseudo inverses (Feng
et al. 2001) and is denoted ERLS].
G.1.1 Recursive update of pseudo inverse

Recall that the pseudo matrix inversion lemma is given by (5.24)

AfveT At

A4 b= At = 200 4
[A+bc] =4 14 cTAtb

(G.1)
The update for the weighted arithmetic mean i]’;w is given by (cf. Appendix B)

ko k—1 T
Yoo = (1 —)XZ, + k2K ) - (G.2)
A b cT

Defining
s [ek |
P2 [SE ] (G.3)
the application of the pseudo matrix inversion lemma yields

1 T 1
P — 1 P = Pr—1 260 7=5; Pr—1
1+ 805—1,1% Py_17vkzk

T —%

1 <Pk - Po_ 1z} Peoa >
1 — v + ©F Po_1vk2k

T —%

1
= (Pe — Lyt P ), G.4
= (Pe ok Pr-1) (G.4)
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G. Recursive algorithms for overdetermined normal equations

where

P12y
L=y, + of Poc1viezi

L 2

G.1.2 Recursive update of 6}V
The recursive update of the parameter vector is given by
0. = Pk,
1 .
= (Py—1 — Ly Pi—1) [(1 —R)Eit + ’szkyk]

1=
_ 91\1 - LkSDTaI\i + Tk Po 12t — V&
k—1 e r 1—

k k
=01, — Lipr 031 + ( i Pr_1z, — i Lksﬁgpkﬂk) Yk (G.6)
L= L=

Lis Pe—121yn

and since

Tk

L= =Yk

Vi <Pk—1zk B Py 12k P12 )
1=+ of P12k

% Pi_1zi (1= v + of Po—1vie2k) B P 1vkz19t Pe_12y
=% 1=k + oF Poo1vk2k 1 — vk + of Poo17k2k

_ Mk ( Pr_121 (1 — ) )
=% \ 1=y + @i Pe_1vi2k

1 < Vi Pr—12k _ Vi Pr—1 267k >
L= \1 =y + @l Pec1veze 1 — vk + oF Pec1vk2k

=1 _1% (Lx —vLg)

L=

R

— L, (G.7)

Lot P12k

Ly,

(G.6) simplifies to

01 =01V — Lot 0 | + Ly,
=011 + Ly, (ye — 01017 4) - (G.8)

The extended recursive least squares algorithm, denoted ERLS1, can be summarised

as follows.
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G. Recursive algorithms for overdetermined normal equations

Algorithm G.1 (ERLS1).

O = 0+ L (s Ol

I Py 17k 2k
k= T
1= + o3, Pe—1762k
1
Py = Py_1 — Ly} Py
1= ( F )

(G.9a)

(G.9b)

(G.9¢)

G.2 ERLS2

The second algorithm uses the standard matrix inversion lemma applied to a reformu-

lated problem, which reduces the dimension of matrix to be inverted to a fixed size of

2 x 2. This method is given in (Séderstrém & Stoica 1989).

Consider the overdetermined system of normal equations
k k
Y0 =&

for which the least squares solution is given by

R 1 Tp 1Y kT ok kT ok
Op = 2588, = [E§¢Ezs0] Yplay = Dhdip oy

zp
where
poa [sETsk |7
k= zZp—zp
A recursive expression for 0y is then given by

A~ ~ T ~
O = 61+ PXE] [ggy - zgvak,l} .

It follows that

(G.10)

(G.11)

(G.12)

(G.13)

T N _1T _ _ A
I |:§§y - Efgﬁk*l] = [ngl + Sﬁkzﬂ |:§§y Y 2y — <El§¢1 + ZW%) 9%1]

_1T _ 1A 1T ~
=S (5 = 28 00) + 25 s (e — ol B )

+ oz {5{;{1 - Eiglék_l + 2k (yk - wgékq)} .

(G.14)
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G. Recursive algorithms for overdetermined normal equations

Noting that {f;l - 2’;;19},1 =0, (G.14) can be re-expressed as

T k—1 k—1p
. A . o (g5 =210
E'I;cp é.];y - El;goekfl] = |:90ka Egipl 2k + ka'zgzk} [ v i

Yk — @%ékq
0 1 ZTé-kfl U)T N
= 212_1Tzk590k kSzy - k 0r_1
e | L\ A
= (bA];l <Uk — ¢£ék,1> s (G.15)
where
wy = E’;;szk, (G.16a)
b2 [wn o], (G.16D)
0 1
AT E . ] : (G.16¢)
_1 2} 2k
[T ¢ck—1
o &[S (G.16d)
| Uk

Using (G.15), it holds

— 1T _
Pk; b= <E§Lp1 + Sokzlz> (E];pl + Zk@z)

= P+ orwi + wipl + oz 10k
-1 [ } 0 1 wl
= w
k—1 kE Pk 1 Zng (p%
~1 ~1,T
=P + oA, 9y, (G.17)
which allows an application of the (standard) matrix inversion lemma giving

—1
Py = Py1 — P16y (A + 61 Po10r)  ¢F Prr, (G.18)

and

Py = Py_1¢5 (Mg + ¢£Pk—1¢k)_1 Ay (G.19)

The ERLS2 algorithm can be summarised as follows.
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G. Recursive algorithms for overdetermined normal equations

Algorithm G.2 (ERLS2).
ék = ék,1 + Ly (Uk — (békfl) (G.20a)
-1

Ly, = Py_1¢k (Ak + ¢F Pr16%) (G.20Db)

P, =Py, — Lol P, (G.20c)

Wy, = E];;lTZk (G.20d)

oK = Wk gok} (G.20e)
_—szk 1

Ap=1| "% G.20f

= (@200

[T ¢k—1

e (G.20g)
L Yk

224



Appendix H

Derivation of the Kalman filter

for bilinear systems

The single phase Kalman filter (one-step prediction problem giving Zj.|;) is derived
for a bilinear discrete-time system based on an innovations approach. As outlined in
(Favoreel et al. 1999), a bilinear system can be regarded as a time-varying linear system,

hence, the derivation follows the approach given in (Anderson & Moore 1979, Sec. 5.4).

H.1 Preliminaries

For k > 0, let the bilinear system be given by

Tra1 = Axxr + Brug + Nyugzyp + Grog, (H.la)
2z = Crxy + Dyuy + e, (Hlb)

where xj, is the state vector, u; the system input, z; the measured system output and
v, and e, are state noise and output noise, respectively. The system matrices Ay, By,
Ck, Dy, G), and N depend on the time instance k and are of appropriate dimensions.

Additionally, the following assumptions hold:

AT2 The system input uy is known exactly.

AN3 The noise sequences v, and e, are zero mean, white, and satisfy

xk o xk
[UZT eﬂ] = [2,;% Ev,f] Okt (H.2)
ve e

Uk

E

€k

AN4 The initial state o has the mean Ty with covariance matrix Fy. In addition, xg

T
is independent of [vg eﬂ for all k.

ANS5 The quantities xg, v and e are jointly Gaussian.
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H. Derivation of the Kalman filter for bilinear systems

Basically, there are two different approaches to tackle the problem: The first one
is to exploit Assumption AN5 and derive the optimal minimum variance (conditional
mean) estimator @, = E[zg|Z;_1], where E[] denotes the expected value operator
and Zp = {20, 21,..-,2¢}. In this case, the corresponding covariance matrix Pj,_; is
both, conditional and unconditional. Alternatively, one can drop AN5 and seek the
linear minimum variance estimator 1 = E*[z|Z;_1], (Which is not an expectation)
where the associated covariance matrix P;_; is unconditional (cf. (Anderson & Moore
1979, Sec. 5.2) for more details). Here, the first approach is followed.

H.2 Evolution of the conditional mean 7,

The objective is to find
Ekk—1 = Elar| Zo-1] = Elzy| Zp-1], (H.3)
where Z;,_1 is the sequence of innovations 2y, 71, ..., Z5_1, with

Zr = zx — Blzg| Zp—1]) = 21 — E[zk|2k_1]
=z, — Ciy|k—1 — Dyug
= Cyrg + Dyug + e — g1 — Dyug
= Crxp + eg, (H.4)

and

Tp = T — Tgpp—1 (H.5)
denotes the state prediction error with associated error covariance matrix

Pyje—1 = El@pdf]. (H.6)

Since the innovations are independent, one can write for (H.3) (Anderson & Moore 1979,
Theorem 2.4, p. 94)

i‘kJrl‘k = E[xk+1’20, veey Z~k] = El:karl‘gk] + E[$k+1’20, veey Z~k,1] — El:karl], (H?)

and due to the fact that x;1 and Zj are jointly Gaussian, one can write for the first
term (Anderson & Moore 1979, Theorem 2.1, p. 93)

Elzjy1)2k] = Elzis1] + cov(@pgt, 2x) [cov (G, 21)] 7 2. (H.8)

Restricting attention the the first covariance term in (H.8), one obtains utilising
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H. Derivation of the Kalman filter for bilinear systems

(H.4)

cov(xpi1,2k) = F [wké;ﬂ

=F [[Akxk + Byuy, + Nyugzy, + Grog] [Crdig + ex]” | - (H.9)

By exploiting the independence of the various variables and since wuy is known and Zy,

hence CyZ, has zero mean, one obtains

COV(x;H_l,Ek) =F [Ak:ckf;‘kaT] + FE [Nkuka:kfcfcg] + F [Gkvkeﬂ
= ALE [5,3 | O + AE |12 | CF
+ Npup [fkjg] Cg + Npup B [f;ﬂk,ljg] Cg + szﬁe' (H.lO)

The quantity F [ikw,lfcﬂ is equal to zero, since “Ij is the error in projecting x; onto

the subspace generated by zi_1, zx_2, ... and is, therefore, orthogonal to that subspace,

while 2,1 is a member of it” (Anderson & Moore 1979, p. 106). This gives
Cov(karl, fk) = Akpk“g,lcg + NkukPk‘k,ICkT + szlge. (H.ll)

The second covariance term in (H.8) is given by

cov (%, 2) = E [212]]
= B [Cy#k + ex] [Crn + ex)”
= CkPk|k_1CkT + Elg (H12)

Therefore, (H.8) becomes

E[Sﬂk+1|§k] = E[$k+1] + {AkPMk,ng + NkUkPk‘k,ICg + szlge]

T K]
X {CkPk‘k,lc’k +Ee] Zk- (H13)

In order to determine the prediction of the state, it remains to determine the second

term in (H.7), which is given by
E[:Ck+1|2k_1] = FE[Arxy + Brug + Npugxy + Gkvk|2k_1], (H.14)
and due to the independence of v and Zk,l and the fact that u; is known, one obtains

Elz11]Zk—1] = Arigi—1 + Brur + Npw@gjp—1- (H.15)
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H. Derivation of the Kalman filter for bilinear systems

Hence, the state prediction of (H.7) becomes

-1
ijrl\k = E[$k+1] + AkPk\k:flClz + ]\[kUk;.P]g‘k,1(/\1121 + szlge} |:C/€Pk|kflclzﬂ + Elg Zk

+ Akv’ﬁk\k—l + Bruy + Nkukjk\k—l — Elxp44],

(H.16)
which is equivalent to
Tk = AkZrip—1 + Brug + Neugpdy—1 + Ky, [21 — Crodgp—1 — Dru] (H.17a)
1
Ky = [Akpk\k—lclz +Nkukpk|k—1clz+szz]fe} [Ckpk\chkTJrEﬂ - (H.17b)

H.3 Evolution of the covariance matrix

The state estimation error is given by

Tyl = Thy1 — Thy1jk

= Agzy + Brug + Nyugay + Grog — Ag@ppp—1 — Brug — Npugdgp—1 — K2k
= AT + NpupZp + Grop — Ky, [Cki'k + ek]

= [Ak + Npup — chk] T + Grop — Krey, (H.18)

and consequently, since Tj, vy and ej are mutually independent, the corresponding
covariance matrix is

Pepapp = E [Tr41 73]

= [Ak + Nywp — KyC Peji—1 [AL +uf NI — CF K]
T
+ Gy 2hGT - gk KE — K3k 6T + K 2R KF
= [Ag + Nyug, — KCr] Py [AL + uf N} — CL K]
D Vil

T Gg
=, sk

+ [Gk —Kk} o
k

. (H.19)

Alternative formulation In the literature, the Kalman filter covariance matrix fre-

quently occurs in a slightly different form, which is obtained by replacing the Kalman
gain K}, into (H.19). This gives

Pyiaje = [Ax + Niugp — KiCr] Py [AL +uf N = CEK]]
+GIRGT — Gyt KT — Kk TGT 4 K SERT
= APy AL + AxPyjo—uj NI — APy CF KJF
+ Ny Py Al + N Prjp—1uf, N — Nyug P CL KL

— KkaPk“g,lA% — KkaPk‘k,luzNg + KkaPk“g,ngKg
+GIRGT — ek KT - K2k TGT 4 K SERT
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H. Derivation of the Kalman filter for bilinear systems

= A Pyp—1 AL + Nywp Pye—1ui N + GpSEGL
- [Akpkm—lcg + Nyug Py 1 CF + szﬁe] Kjp
T
— Ky [CkplqkflAg + CyPyj—ruf N+ Sk, GZ]

+ Ky | ChPup OF + 38| KT (H.20)

Notice, that by utilising the Kalman gain equation (H.17b), it is seen that the last

three terms of the sum in (H.20) are, apart form their sign, identical to

~1
{Akpk\kflclz+Nkukpk\kflcg+szlge} [CkpmkfleT%-Eg}
T
X [Ckpmk—v‘l{ + Cr Pep—ruf Njf + 2, G;;F] ; (H.21)
hence, (H.20) simplifies to

~ Ky [ckpk‘k_lc,f + x| KT (H.22)

H.4 Summary

The single-phase Kalman filter for the bilinear case (BKF) is given by the following

algorithm.

Algorithm H.1 (BKF).

Tk = AkBrip—1 + Brug + Neupdyp—1 + Ki, |21 — Crdgp—1 — Drug]  (H.23a)
Ky = {AkPk‘k_leT + Ny Peo_1 CF + szﬁe} [ckpk|k_1c,f + z‘;} o
(H.23b)
Pi1jk = AePrp—1 A% + Ngup Py quf N+ G 28 GY
~ Ky [CkPk‘k,l(JkT + z’g] KT (H.23c)

Note, that this is identical to the standard Kalman filter where the transition matrix

is replaced by Ay, = A + Nyuy,.
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Appendix I

Actual estimation error for the
BEIVKEF3

Defining the error in the input estimate as

~ A A
U,Qk, = U,Qk, — uok

= —Uy, + [oa5 — UﬂDT] [El;] o (21 — Cigpper ]
= —d + H, {E’;} - [CZy + ex], (L.1)
where
H, 2 045 — 0z D" (1.2)

is used for ease of notation. Using i, = ug, — to,, the actual state estimation error is
given by
Tht1 = Tht1 — Tk
= Ajxy + Buy, + v, — [Akjk\k—l + Buy, + K, [Zk — Cik\k—l]]

= Azmk + ka - Bﬂk - -Azi'ldk—l - J\/ﬂoki'kw_l - Rk [ka + ek]
= [./4 — KkC] Tk —|—./\/'U()kfk + Guy, — Kkgk + [KkD — B] U —Nﬂokik‘k_l, (1.3)
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1. Actual estimation error for the BEIVKF3

where

Nﬁoki'kk_lz./\/—|: uy + Hy, [ ka—kek} [wk—fck]

= Nz, + NH,

]

[ Ny + NH, [2] Ciy, + N H, [ ] 1%} (), — @]
{ } Cipxy + NH, [2’;] erTh
NH |

+ Ny, — 5 } Ciniy, — NH, [2’;] e (L4)
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Appendix J

Derivation of the JEKF

This appendix reviews the development of the extended Kalman filter for joint state
and parameter estimation given in (Ljung 1979). First, the extended Kalman filter
is reviewed followed by its application for joint parameter estimation. Finally, by

introducing appropriate block matrices, the expression given in (2.117) is obtained.

J.1 Extended Kalman filter

The extended Kalman filter (EKF) is probably the most widely used tool to estimate
the states of a nonlinear state space system. The key idea is to linearise the state space
equations at each time instance and to apply linear Kalman filter theory.

Let the discrete-time nonlinear state space system be given by

M1 = @M, wie) + (M) (J.1a)
2k = (ks uk) + ex(NK), (J.1b)

where 7 is the state vector, z; the system output, and where g and r; denote non-
linear functions, whilst process noise and output noise are denoted vy (n) and eg(n),
respectively. Note that, in contrast to the scenario considered in (Ljung 1979), here the
noise sequences are functions of the unknown state. This generalisation is introduced
for the application to the EIV case, where the process and output noise are, depend-
ing on the chosen parametrisation, functions of the parameter vector to be estimated.
One possibility to estimate the state based on the observations up to time k, which is

denoted 741, is the EKF which is summarised as follows (Ljung 1979).
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J. Derivation of the JEKF

Algorithm J.1 (EKF).

Me+1 = Qi (M wk) + Nig [z = 7 (e, wr)] (J.2a)
Ny, = [Qr (i, ur) P RE (e, ur,) + Soe (k)]
X [ Ry (e, we) PR, (e, wk) + Ee(Ak)rl (J.2b)
Prr1 = Qi ur) PeQF (M, ui) + So(ik)
— Ny, [Se(ik) + Ri(f, ur) PuRE, (s ur)] Ni (J.2¢)

The Jacobians in Algorithm J.1 are given by

) 0
Q. (M, up) = B—Qk(ﬁk,uk) ; (J.3a)
n n="k
. 0
Ry (g, ug) = a—rk(ﬁk,uk) : (J.3b)
n n="k
whilst the covariance matrices are defined by
So(mi) = E [05(ne)v] (k)] Ona, J.4
Se(mk) = E [ex(mi)el (k)] Ox, J.5
Soe(mi) = E [0k (ne)el ()] 6 (J.6)

J.2 Application of the EKF for joint state and parameter

estimation

Consider the nonlinear system (2.114) which can be brought into the form of (J.1) by

defining
e = x’“] , (J.7a)
_ak
A 0.)xr + B0 )u
U (B (6e) k] : (J.7b)
. Hk
k(s ug) = C(Or)xr + D(O))uy, (J.7¢)
_ Vg
— . J.7d
U _d/j (J.7d)
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J. Derivation of the JEKF

Hence, the EKF given by (J.2) can be applied to estimate the states and parameters
of (2.114). The Jacobians for this case become

R A Fy
, U = 3 J.8a
Qk (M k) 0 7 (J.8a)
Ry (g, ug) = [Ck Hk] ; (J.8b)
where
Fiy = F(Or, &p—1,wr), (J.9a)
Hy = H(Ok, Sgjp—1, ur), (J.9b)
with F and H being defined by (2.119)
A 0
FO,z,u) = 2 [A(0)x + B(0)u] |9:é, (J.10a)
- 0
H(0,z,u) = 2 [C(0)x + D(0)u] ‘G:é' (J.10b)
The noise covariance matrices are given by
Y, = X 0 ’ (J.11a)
0 Xy
by
Ve = [ g] , (J.11b)

whereas the initial state and its corresponding error covariance matrix are given by

0

ﬁo = [A ] 5 (J12a)
o
P, 0

Py=|1" . (J.12b)
0 Py

The quantities 90 and Ps, represent a priori knowledge of the parameter estimates, see
(Sayed & Kailath 1994a, Sayed & Kailath 1994b) for a detailed treatment.
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J. Derivation of the JEKF

J.3 Block form

Introducing the natural block structure

K
N, & [ ’“] : (J.13a)
Ly,
P, P
L e (J.13b)
equation (J.2a) becomes
z ArZpip—1 + B K
Trt1lk KOk R VR et — Din] | (J.14)
Or41 O Ly,

which clearly corresponds to (2.117a) and (2.117b). By introducing

Sy & Ry (g, ur) PuRE (g, ug) + Xe

= |Cx 1] P Lo, [e H]T+2
= |Ck Hg ki e
Pi P,
= Cyw P, Cf + HyP3.Cl + Cp Py HiY + Hp Py H + S, (J.15)
equation (J.2b) becomes
K Ar Fi| |P, P T
o I I v I [/ - S S (J.16)
Ly 0 I||FL P
which yields (2.117¢) and (2.117e). Finally, Pyy; becomes in block form
T T
Plk ng _ A, Iy Plk ng A, Fy o 0 B Ky, A Ky,
PL Py, 0 I||PL Py| |0 I 0 Xy Ly, Li|

ApP Al + F P FF + Ay Py, L + FyP3, Al APy, + Fy P,
P£A£—|—P3kaT ng

KpSiK! KpSkLi

LpSpKl  LpSipLE

S, 0
(J.17)

0 Yy

from which (2.117f)-(2.117h) are obtained.
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Appendix K

Assumptions

This appendix serves as a reference book for the various assumptions which have been

used within this thesis and which are scattered throughout the chapters.
System assumptions:

AS1 The dynamic system is asymptotically stable, i.e. A(g~!) has all zeros inside

the unit circle.

AS2 All system modes are observable and controllable, i.e. A(¢g~!) and B(q™1)

have no common factors.
AS3 The polynomial degrees n, and n; are known a priori with n, < n,.
AS4 The bilinearity N is chosen such that yg, is zero mean.

AS5 The polynomials A(¢~!) and B(qg~!) are of the same order, i.e. n = n, = ny,
whilst the polynomials C'(¢~1) and D(¢!) are chosen such that n, = ng— 1.

Input assumptions:

ATl The true input ug, is a zero-mean ergodic process and is persistently exciting

of sufficiently high order.
AI2 The system input u is known exactly.

AI3 The true input ug, is a stationary zero-mean ergodic process with variance

Oug -

AT4 The system input ug behaves in a manner, such that the bilinear system
whose dynamics are characterised by the state transition matrix A + Nuy is
stable.
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K. Assumptions

AI5 The noise-free system input ug, has a rational spectrum, i.e. it can be
described as an ARMA process of the form

D(q "Yuo, = C(q ") fr, (K.1)

where fi is a white noise zero mean random process and the polynomials
C(q71) and D(q™') are defined, respectively, by

ClgHE21+eqg !+ +en g™, (K.2a)
DgHE1+digt + - +dp,q " (K.2b)

Noise assumptions:

AN1 The sequences g and g are zero-mean, ergodic, white noises with un-

known variances, denoted oy and oy, respectively, i.e.

oadn = E [ay], (K.3a)
o0k = E (g - (K.3b)

AN1la The sequence 1 is a zero-mean, ergodic, white noise process with un-

known variance oy.

AN1b The sequence 7 is a zero-mean, ergodic noise process with unknown

auto-covariance sequence {rg(0),75(1),--- }.

AN2 The sequences 1 and 7 are mutually uncorrelated and also uncorrelated

with both wug, and yo,.

AN3 The noise sequences v, and e are zero mean, white, and satisfy

o, kooyk
E [T T} | e el g K.4
H T ™ -

AN4 The initial state xg has the mean Zy with covariance matrix Fy. In addition,

T
2o is independent of vg eﬂ for all k.
ANS5 The quantities xg, v and e are jointly Gaussian.

ANG6a The noise sequences Uy, 7 and wy are assumed to be zero mean, white,

independent of ug, and are characterised by the known covariance matrices

To Py 0 0
U, o 0 Xk Xk 0

E|| | |t af gf wz] =1, Ek“T Ez;y 0 Okl (K.5)
wy, 0 0 xk
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K. Assumptions

ANG6b The noise sequences uy, yr and wj are assumed to be stationary, zero

mean, white, independent of ug, and are characterised by the known covari-
ance matrices

Zo Py 0 0 0
Uy, [ 0 X3 Xz O
E || xd ulT le wl] 0 E; Eu~y 0 Ol (K.6)
Yk g ]
wy, 0 0 0 X

ANT The noise sequences Uy, yr and wy are assumed to be zero mean, white,

independent of ug, and are characterised by the known covariance matrices

Zo P, 0 0 0
U 0 o5 0
ol [azg @ G wl] = o ug Sil- (K.7)
Yk 0 Oag Of 0
Wi 0 0

Estimator assumptions:

AE1 The estimate of the input measurement noise variance &g ‘varies slowly’
with time.

AE2 The dimension of the instrument vector (i is n, + ny + 1.
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