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Abstract

This thesis deals with the development of algorithms for recursive estimation within the

errors-in-variables framework. Within this context attention is focused on two major

threads of research: Recursive system identification based on the Frisch scheme and

the extension and application of errors-in-variables Kalman filtering techniques.

In the first thread, recursive algorithms for the approximate update of the estimates

obtained via the Frisch scheme, which makes use of the Yule-Walker model selection

criterion, are developed for the case of white measurement noise. Gradient-based tech-

niques are utilised to update the Frisch scheme equations, which involve the minimisa-

tion of the model selection criterion as well as the solution of an eigenvalue problem, in a

recursive manner. The computational complexity of the resulting algorithms is critically

analysed and, by introducing additional approximations, fast recursive Frisch scheme

algorithms are developed, which reduce the computational complexity from cubic to

quadratic order. In addition, it is investigated how the singularity condition within

the Frisch scheme is affected when the estimates are computed recursively. Whilst this

first group of recursive Frisch scheme algorithms is developed directly from the offline

Frisch scheme equations, it is also possible to interpret the Frisch scheme within an

extended bias compensating least squares framework. Consequently, the development

of recursive algorithms, which update the estimate obtained from the extended bias

compensated least squares technique, is considered. These algorithms make use of the

bilinear parametrisation principle or, alternatively, the variable projection method. Fi-

nally, two recursive Frisch scheme algorithms are developed for the case of coloured

output noise.

The second thread, which considers the theory of errors-in-variables filtering for lin-

ear systems, extends the approach to deal with a class of bilinear systems, a frequently

used subset of nonlinear systems. The application of errors-in-variables filtering for the

purpose of system identification is also considered. This leads to the development of

a prediction error method based on symmetric innovations, which resembles the joint

output method. Both the offline and online implementation of this novel identification

technique are investigated.
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3.3.3 Update of σỹ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
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Âk . . . . . . . . . . . . . . . . . . . . . . . . Schur complement

Ak, Bk, Ck, Dk, Gk, Nk . . System matrices (non-errors-in-variables state space)

Ak, Bk, Ck, Dk, Gk . . . . . . . . System matrices (errors-in-variables state space)

A0, B0, C0, D0, G . . . . . . . . . ‘True’ system matrices (errors-in-variables state space)

A(θ), B(θ), C(θ), D(θ) . . . . Model matrices (general)

Aa
k . . . . . . . . . . . . . . . . . . . . . . . . Actual input dependent system matrix

Ad
k . . . . . . . . . . . . . . . . . . . . . . . . Design value for system matrix
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ŷ0k
. . . . . . . . . . . . . . . . . . . . . . . Filtered system output
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(ũ)
k . . . . . . . . . . . . . . . . . . . . . . . Approximate derivative of θ̂k with respect to σ̂k

ũ
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σỹ . . . . . . . . . . . . . . . . . . . . . . . . Output measurement noise variance

σmax
ỹ . . . . . . . . . . . . . . . . . . . . . . Maximal admissible value for σ̂k

ỹ
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1.1 Introduction

A system is a real-world entity, whose behaviour is of interest for various reasons such as

improved control system design, condition monitoring or fault detection. For instance

a marine vessel can be considered as being a system for which the knowledge of its

behaviour is required in order to design an appropriate dynamic positioning control

strategy. Building mathematical models of real-world systems via measured data is a

common problem not only in engineering, but also in natural sciences, social sciences,

finance and the manufacturing industries. The process of building mathematical models

based on observed data from the system is called system identification (Ljung 1999).

For a system, it is usual to distinguish between the input signals, which drive the system
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and can eventually be manipulated, and the output signals, which are considered to

be the observed values of interest. A frequent assumption in system identification

is that the input variables are known exactly. However, it might often be the case

that not only the outputs, but also the inputs are subject to additive measurement

noise. Using again the marine vessel as an exemplary system, the input to the system

could be the force provided by propellers, which move the vessel through the water,

whilst the position could be regarded as a resulting output. Since the exact force

which is driving the vessel is generally unknown, but can be deduced by measuring the

rotational speed of the propellers, the input signal will be affected by uncertainties.

In such cases, ‘classical’ identification methods may fail to yield consistent parameter

estimates, i.e. the estimated parameters do not converge to the ‘true’ values with an

increasing number of measurements. Especially when the parameters reflect physical

meaning, and depending on the particular application, a systematic estimation error

(bias) may lead to significant problems. This prompts the need for a so-called errors-

in-variables (EIV) approach, where the input noise is taken into account to obtain

unbiased estimates of the model parameters.

An overview of recent developments for the identification of dynamical EIV systems

is given in (Söderström 2007b, Söderström, Soverini & Mahata 2002, Söderström 1981).

Identifying EIV systems is strongly related to the total least squares (TLS) problem,

also known as orthogonal regression, which is extensively treated in (Van Huffel &

Vandewalle 1991, Van Huffel 1997, Van Huffel & Lemmerling 2002). One particular EIV

identification technique, which has received significant attention in recent years, is the

so-called Frisch scheme, which dates back to (Frisch 1934). Whilst originally developed

to deal with an algebraic regression problem, the Frisch scheme has been extended

towards the dynamic case in (Beghelli, Guidorzi & Soverini 1990) with further analysis

and extensions reported in (Guidorzi & Pierantoni 1995, Diversi, Guidorzi & Soverini

2006, Söderström 2007a, Hong, Söderström, Soverini & Diversi 2007, Söderström 2008).

Another EIV system identification approach is the extended bias compensating least

squares (EBCLS) technique, which has been developed in (Ekman 2005). Similar to the

Frisch scheme, the EBCLS approach is based on the bias correction principle (Sagara &

Wada 1977, Stoica & Söderström 1982, Zheng & Feng 1989), which exploits the fact that

the asymptotic bias of the least squares (LS) solution can be removed if the variances

of the input and output measurement noise sequences are known, or estimated. The

relation between the Frisch scheme and the EBCLS approach has recently been analysed

in (Hong & Söderström 2008).

In many applications it is required to obtain, or continually update, a model while

the process which is generating the data is operating. In this case, the parame-

ter estimation procedure is required to be carried out in an online manner rather

than making use of a previously collected batch of data, the latter being termed

offline identification. Online system identification can be achieved by making use

2
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of recursive identification techniques, which are thoroughly discussed in (Ljung &

Söderström 1983, Young 1984, Kushner & Yin 2003). Recursive identification tech-

niques continually update a currently obtained model at each successive sample in-

stance, as new data becomes available. Motivation for recursive system identification

stems from adaptive control, fault detection and diagnostics, adaptive signal process-

ing, adaptive filtering and/or its application for offline identification. Note that the

topic of recursive identification is also known as real-time identification or sequential

estimation within the literature.

Closely related to the recursive system identification problem is filtering, a term

which is used here to describe the estimation of signals from noise corrupted measure-

ments. Whilst the fundamental principle of filtering is probably as old as mankind itself,

digital filter design employing statistical ideas dates back to the work of Kolmogorov

and Wiener (Kolmogorov 1941, Wiener 1964), where stationary random processes are

considered. The more general nonstationary case is dealt with by the famous Kalman

filter (KF) (Kalman 1960), which may be regarded as one of the most widely ap-

plied tools in modern engineering and applied mathematics. A thorough treatment of

Kalman filter theory is given by (Jazwinski 1970, Anderson & Moore 1979, Kailath &

Sayed 2000), whilst a historical survey can be found in (Sorenson 1970). When applied

to estimate the states and the outputs of linear systems driven by a deterministic input

signal (and possibly in the presence of process noise), one of the assumptions within

the KF is that the input signal is known exactly. However, as in the case of system

identification, this assumption may not always be fulfilled. This potential shortcoming

has stimulated researchers to consider Kalman filtering within an extended noise en-

vironment, which has led to the recent development of an errors-in-variables Kalman

filter (EIVKF) (Guidorzi, Diversi & Soverini 2003, Markovsky & De Moor 2005, Di-

versi, Guidorzi & Soverini 2005), which allows, under certain assumptions, an estimate

of the system states, the noise-free output signals as well as the noise-free input signals

to be obtained.

Another common assumption in system identification as well as filtering, due mainly

to the wealth of well developed theory, is the linearity of the underlying system or

process leading to the relative simplicity of the required mathematics as well as the

resulting algorithms. Whilst most (if not all) real-world processes are of a nonlinear

nature, it is possible and sufficient in a large number of situations to approximate the

nonlinear process using a linear model structure. One possibility to retain the desirable

features of the well structured linear case, but simultaneously allowing a successful

extension to encompass and approximate a large number of nonlinear systems over a

wider range of operation, is to utilise so-called bilinear models (Pearson 1999); a simple

class of nonlinear models with a far reaching applicability.

The first of the two main threads within the thesis is that of developing recursive

algorithms for the identification of EIV systems based on the (offline) Frisch scheme
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actual input actual output measured output

noise
noise measured input

System

(a) Errors-in-variables setup.

measured input measured output

lumped uncertainties

System

(b) Classical identification setup.

Figure 1.1: Errors-in-variables setup versus classical setup.

as well as the EBCLS approach. A further strand in this area is that of developing

fast algorithms. Within the second thread, the theory of linear EIV filtering is firstly

extended towards bilinear system representations and secondly applied to derive EIV

identification techniques, which are considered to be novel.

The remainder of this introductory chapter is outlined as follows. Section 1.2 de-

scribes the motivation for the above developments within this thesis and Section 1.3

formulates the problems which are addressed. The methodology as well as a brief out-

line for each of the forthcoming chapters is given in Section 1.4, whilst Section 1.5

itemises the contributions of the author.

1.2 Motivation

1.2.1 Why errors-in-variables?

A frequent assumption within the system identification literature (e.g. Ljung 1999) is

that the input of the system is known exactly. However, in many practical situations

the actual input, which is driving the system, is unknown and must be measured or

estimated, hence the measured variable will be corrupted by noise. Such a setup is

depicted in Figure 1.1(a). Classical prediction error approaches follow a pragmatic

approach and regard the measured input as the actual input whilst lumping all un-

certainties to the output of the system, as illustrated in the classical setup in Figure

1.1(b). This might be a reasonable assumption if the input measurement uncertainties

are negligible and/or if the prediction of future output values is the major objective

of the identification task. If, in contrast, the aim is to obtain a better understand-

ing of the underlying relations between noise-free inputs and noise-free outputs, i.e. if

the parameters themselves are meaningful and of interest, then it is often beneficial

to explicitly account for the input measurement uncertainties. This leads naturally

to the problem of considering the effects of errors on the output as well as the errors
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on the input variable. In general, the difficulty of the identification problem increases

when considering an EIV approach. In addition, the resulting algorithms are often

more complex; conceptually and/or computationally. If the input disturbance is not

taken into account, the resulting parameter estimates usually exhibit an asymptotic

bias, i.e. no matter how many samples are utilised for the identification task, the es-

timates obtained will not converge to the ‘true’ parameter vector. Obtaining unbiased

estimates of the parameter vector, if the values of the latter are meaningful (e.g. they

correspond to physical quantities), is considered to be the ‘classical’ motivation for EIV

identification (Söderström 2007b). Another motivation for adopting an EIV approach

is that the system can be considered to be symmetric, i.e. there is, in principle, no

need to distinguish between inputs and outputs since both are treated equally. This is

also related to the behavioural framework (Polderman & Willems 1998), an alternative

approach to dynamic system modelling.

It is worth mentioning that in the case of static systems, the EIV concept relates

to other well-known topics such as latent variables and factor models (cf. references

within Söderström 2007b). The applicability of EIV modelling techniques is spread

over many areas including econometrics, engineering and finance to name only a few.

1.2.2 Why recursive identification?

Recursive identification techniques aim to update a model while the system which is

generating the data is operating in real time. One area of application is that of fault de-

tection and diagnostics, where the aim is to detect incipient faults in hardware and/or

software before the conditions deteriorate seriously. Naturally, faults may occur when

the process is running and it is therefore required to detect these as early as possi-

ble, in order to prevent major damage. Changes in the system parametrisation, either

abruptly or subtly, can often indicate such fault conditions within the system, which

clearly prompts the need for online system identification. Indeed, the fault detection

scenario outlined here motivates an immediate need for both online and EIV iden-

tification, since a fault is often indicated by changes in the physical properties of a

system. Using an appropriately parameterised model, this leads naturally to a require-

ment for model parameters to be estimated recursively as well as consistently. To the

best knowledge of the author, the recursive EIV identification problem has, however,

received rather limited attention within the literature (see e.g. Chen 2007, Ding, Chen

& Qiu 2006, Chen & Yang 2005, Zheng & Feng 1989). Another motivation for recursive

EIV identification stems from that of adaptive control system design. Assume that a

pole placement controller is to be updated based on an identified model of the system.

If the estimated poles of the system are biased (e.g. due to the presence of input distur-

bances) the closed-loop poles will be ‘misplaced’ and the control performance may differ

significantly from the specified design. Hence, unbiased online estimates are required,

which again clearly prompts the need for recursive EIV identification techniques. In
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general, the use of recursive identification schemes can also give an additional insight

into the functionality of the algorithms, since the trajectories of the estimates reveal the

‘history’ of the estimates. The trajectories can, for instance, indicate problems due to

identifiability or ill-conditioning, which the engineer can detect by inspection. Last but

not least, recursive algorithms are able to track changes in the operating conditions of

a system, which might result in time varying parameters of the identified model, hence

allowing a wider range of applicability. Note that tracking parameter changes, which

might relate to changes in the operating conditions of a system, requires some form

of adaptation, and it is the recursive structure of the algorithms, which provides the

natural environment to realise such adaptivity.

Computational complexity of recursive algorithms

Another important issue within this thesis deals with the reduction of computational

complexity of the recursive algorithms. On the one hand, persistently increasing ca-

pacities of modern digital computers allow for the implementation and realisation of

increasingly complex algorithms. For instance, whilst being unthinkable only a few

years ago, computationally demanding methods, such as the particle filter approach for

nonlinear filtering (Arulampalam, Maskella, Gordon & Clapp 2002), find many prac-

tical applications nowadays. On the other hand, arguing that such an explosion in

computation power eclipses the need for the development of computationally parsimo-

nious algorithms, is a sophism: many companies use the cheapest hardware possible, in

order to maximise their profits. In addition they are restricted to the use of established

technologies, since the introduction of new hardware often accompanies a lengthy ver-

ification process, which implies additional costs, hence an option often avoided. As a

consequence, today’s industrial engineers are still confronted with severe restrictions

concerning the computational complexity of their algorithms. Therefore, the develop-

ment of computationally economic algorithms is naturally motivated by practical needs

of industry. Another justification is given by the fact that the increase in computational

power allows a reduction of the sampling interval and potentially permits the control of

higher bandwidth systems. However, the reduced sampling interval will inevitably con-

tinue to limit the available operating time for online algorithms (which usually perform

their entire operations in between samples). Finally, note that due to the increased com-

plexity of some EIV identification algorithms (with respect to non-EIV approaches), a

reduction in computation time might be a desired feature for recursive implementations.

Whilst an upper limit of the computation time for an online algorithm will ultimately

depend on the targeted application, the above discussion indicates the importance of

minimising the computation time of recursive EIV identification algorithms, which is

also addressed within this thesis.
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1.2.3 Why errors-in-variables filtering?

Filtering aims to reduce the effect of additive noise on signals, hence is a subject of

paramount importance not solely in branches of science and engineering, but also in

many other areas. When both outputs and inputs are corrupted by uncertainties, it

is naturally of interest to filter both quantities, i.e. to remove the noise not only from

the output signal, but also from the input signal. As for filtering in general, a further

motivation for EIV filtering is its use for system identification. It is often possible to

cross-couple filtering and identification, i.e. to use the filtered signals to improve the

parameter estimates, which in turn can be utilised to improve the filter performance

and so on. This can lead to online as well as offline identification techniques, which

motivates the need for filtering in general, and here, in particular, EIV filtering.

1.3 Statement of the problem

The thesis follows two fundamental threads of research: recursive Frisch scheme iden-

tification and EIV filtering.

1.3.1 Recursive Frisch scheme identification

The first thread deals with the development of recursive system identification algorithms

based on the offline Frisch scheme for errors-in-variables system identification. To the

best knowledge of the author, this problem has not to date been considered within the

literature. Within this framework, two cases are considered:

1. Both the input measurement noise sequence and the output measurement noise

sequence are white, i.e. uncorrelated in time.

2. The input measurement noise sequence is white, whereas the output measurement

noise sequence is coloured, i.e. correlated in time.

Hence, the objective is the development of recursive EIV identification techniques which

exactly, or at least approximately, update the estimates using the Frisch scheme. The

development follows two approaches:

(a) Recursive algorithm design based on the offline Frisch scheme.

(b) Recursive algorithm design using the EBCLS approach.

In addition, attention is given to the development of computationally parsimonious

algorithms, in order to allow a wide range of applications.

1.3.2 Errors-in-variables filtering

The second thread within this thesis deals with the EIV filtering problem. Whilst

this has been solved for the linear case (see e.g. Guidorzi et al. 2003), it has not been

7



1. Introduction and outline of approach

considered for bilinear systems within the literature. Therefore, the first objective

within this framework is the development of bilinear EIV filter algorithms. The second

objective concerns the application of EIV filtering for the purpose of offline as well as

online system identification, hence linking the two individual threads within the thesis.

1.4 Outline of approach

1.4.1 Methodology

In mathematics, natural science and engineering, novel developments usually build on

well established foundations of theory and methodology. The underlying approach

within this thesis is to develop novel techniques and algorithms which build on well-

known concepts of EIV system identification and EIV filtering. This is achieved by

either modifying and extending existing techniques towards more general settings, fo-

cusing on different aspects and/or by combining existing theory and methods towards

novel settings. Thereby, importance is attached to providing detailed listings of the

developed algorithms in a form which allows a straightforward implementation in com-

monly used software packages, such as Matlab. Where possible and appropriate, mathe-

matical development is substantiated and demonstrated in numerical simulations, where

care has been taken in order to ensure reproducibility of the latter.

Commonly used notation is introduced in Chapter 2 whilst additional chapter-

specific notation and abbreviations are introduced when required. A list of all abbre-

viations used is given in a global nomenclature section, which also provides an exten-

sive list of the mathematical notation which is used in the overall thesis. In addition,

chapter-specific notation is summarised within a nomenclature section at the beginning

of each chapter. At the commencement of Chapters 3-7 a list of preliminary reading

from specific underpinning sections in the thesis is given. Note that the reader might

only require parts of the review Chapter 2 in order to follow the developments in the

individual chapters. A brief outline for the subsequent chapters is given in the following

subsection.

1.4.2 Chapter outlines

Chapter 2: The purpose of this chapter is to review well known techniques and prin-

ciples of mathematics, system identification and Kalman filtering, which provide

the foundation for the novel developments in the subsequent chapters. In partic-

ular, it reviews the offline identification schemes which are extended and modified

for the purpose of recursive estimation, which is the topic of Chapters 3-5. More-

over, it reviews errors-in-variables filtering, forming the basis for Chapters 6-7.

Chapter 3: Based on the offline algorithm, this chapter derives recursive expressions

for the Frisch scheme equations using the Yule-Walker model selection criterion.
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The computational complexity of the recursive algorithms is analysed in detail and

bottlenecks are identified. Potential shortcomings of the algorithms are discussed

together with possibilities for further improvements.

Chapter 4: This chapter is divided into two parts: The first part builds on the devel-

opment of Chapter 3 and devises, by introducing additional approximations, fast

recursive Frisch scheme algorithms whose computational complexity is reduced

from cubic to second order. The second part considers the coloured output noise

case and develops two recursive algorithms within this framework.

Chapter 5: Recursive Frisch scheme algorithms are developed within this chapter, by

interpreting the Frisch scheme using the Yule-Walker model selection criterion as

an extended bias compensating least squares problem. Bilinear parametrisation

approaches as well as variable projection algorithms are considered. In addition,

an extensive simulation study provides a comparison of the developed algorithms

with those developed in Chapters 3 and 4.

Chapter 6: This chapter considers the problem of EIV filtering, i.e. the estimation

of the noise-free input and noise-free output signals, for a class of bilinear time-

invariant single-input single-output state space systems. It is shown that the

optimal filter, in a minimum variance sense, is infeasible, since its design de-

pends on the knowledge of the noise-free input. Consequently, four suboptimal

approaches are developed and compared via simulation.

Chapter 7: The use of EIV filtering for the purpose of parameter estimation is inves-

tigated in this chapter. Initially, the extended Kalman filter for joint state and

parameter estimation (JEKF) is derived for EIV state space systems. Then, a

recursive prediction error method (RPEM) when applied to an EIV state space

system is studied. Use of the filtered inputs and outputs leads to a modified JEKF

and RPEM design which is able to reduce the asymptotic bias in the parameter

estimates. A novel EIV identification method based on symmetric innovations

is derived, which resembles the well-known joint output method for EIV system

identification. Offline and online implementations are investigated.

A ‘road map’ for the outline of the thesis, which indicates the dependencies between

the various chapters and provides a guideline for the reader, is illustrated in Figure 1.2.

1.5 Contributions

The contributions of the author are listed here in descending order with respect to their

considered significance.
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Figure 1.2: Road map outline of the thesis.

1. Development of recursive algorithms based on the offline Frisch scheme: Two

algorithms have been developed which allow an (approximate) update of the pa-

rameter estimates obtained by the offline Frisch scheme. A discussion concerning

shortcomings has been provided together with suggestions for potential improve-

ments. Parts of this work have also been published in:

[1] Linden, J. G., Meyer, N., Vinsonneau, B. & Burnham, K. J. (2006), Recur-

sive Frisch scheme identification incorporating adaptivity, in ‘Proc. DVD-

ROM 21st IAR & ACD Workshop’, Nancy, France.

[2] Linden, J. G. & Burnham, K. J. (2008), Some aspects on recursive Frisch

scheme identification, in ‘Computer Systems Engineering, Proc. 6th & 7th

Polish British Workshop’, pp. 176–187.

[3] Linden, J. G., Vinsonneau, B. & Burnham, K. J. (2008), Gradient-based

approaches for recursive Frisch scheme identification, in ‘Preprints of the

17th IFAC World Congress’, Seoul, Korea, pp. 1390–1395.

[4] Linden, J. G., Larkowski, T. & Burnham, K. J. (2008), An improved recur-

sive Frisch scheme identification algorithm, in ‘Proc. 19th Int. Conf. on

Systems Engineering’, Las Vegas, USA, pp. 65–70.

2. Development of a symmetric prediction error method for errors-in-variables iden-

tification: Analogously to the joint output method, EIV Kalman filtering is

utilised for the development of novel offline and online identification techniques

for a class of EIV systems. Early approaches have been published in:
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[5] Linden, J. G., Vinsonneau, B. & Burnham, K. J. (2007), An investigation of

extended Kalman filtering in the errors-in-variables framework - A joint state

and parameter estimation approach, in ‘Proc. Int. Conf. on Informatics in

Control, Automation and Robotics’, Angers, France, pp. 47–53.

3. Development of fast recursive Frisch scheme algorithms: Building on the pro-

posed recursive algorithms based on the offline Frisch scheme, computationally

less expensive procedures have been developed. This work is based on the devel-

opment in:

[6] Linden, J. G., Vinsonneau, B. & Burnham, K. J. (2007), Fast algorithms for

recursive Frisch scheme system identification, in ‘Proc. CD-ROM 22nd IAR

& ACD Workshop’, Grenoble, France.

4. Development of bilinear errors-in-variables Kalman filters: The theory of EIV

Kalman filtering has been extended to deal with a class of bilinear EIV systems.

Four suboptimal Kalman filters have been proposed within this framework. Part

of this work is based on:

[7] Linden, J. G., Vinsonneau, B. & Burnham, K. J. (2007), Errors-in-variables

filtering approaches for bilinear systems, in A. Grzech, ed., ‘Proc. of 16th

Int. Conf. Systems Science’, Vol. 1, Wroclaw, Poland, pp. 446–455.

5. Development of recursive extended bias compensating least squares algorithms:

Four recursive algorithms have been proposed to estimate the parameters of an

EIV system within the EBCLS framework. Some of the development has been

published in:

[8] Linden, J. G. & Burnham, K. J. (2008), Recursive Frisch scheme identifica-

tion via variable projection, in ‘Proc. CD-ROM 11th Mechatronics Forum

Biennial International Conference’, Limerick, Ireland.

6. Development of recursive Frisch scheme algorithms in the case of coloured output

noise: Two algorithms have been developed which update the estimate of the

Frisch scheme for the case where the output noise sequence is correlated in time.

Part of this development has been published in:

[9] Linden, J. G. & Burnham, K. J. (2008), A recursive Frisch scheme algorithm

for coloured output noise, in ‘Proc. Int. Conf. on Informatics in Control,

Automation and Robotics’, Madeira, Portugal, pp. 163–170.
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a . . . . . . . . . . . . . . . . . . . . . . . . . . Coefficient vector of A(q−1)-polynomial

âk . . . . . . . . . . . . . . . . . . . . . . . . Estimate after k samples

A(q−1) . . . . . . . . . . . . . . . . . . . . Polynomial

Ak, Bk, Ck, Dk, Gk, Nk . . System matrices (non-errors-in-variables state space)

Ak, Bk, Ck, Dk, Gk . . . . . . . . System matrices (errors-in-variables state space)

A (θ),B(θ),C (θ) . . . . . . . . . . System matrices (reformulated errors-in-variables-system)
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b . . . . . . . . . . . . . . . . . . . . . . . . . . Coefficient vector of B(q−1)-polynomial

b̂k . . . . . . . . . . . . . . . . . . . . . . . . . Estimate after k samples

B(q−1) . . . . . . . . . . . . . . . . . . . . Polynomial

Bk(αk) . . . . . . . . . . . . . . . . . . . . Schur complement

C(q−1) . . . . . . . . . . . . . . . . . . . . Polynomial

dk . . . . . . . . . . . . . . . . . . . . . . . . Noise term to model parameter variations

D(q−1) . . . . . . . . . . . . . . . . . . . Polynomial

DM . . . . . . . . . . . . . . . . . . . . . . . Set of values over which θ ranges in a model structure

ek . . . . . . . . . . . . . . . . . . . . . . . . . Output noise (in state space representation)

f . . . . . . . . . . . . . . . . . . . . . . . . . Function

f(σ) . . . . . . . . . . . . . . . . . . . . . . Auxiliary vector

fk . . . . . . . . . . . . . . . . . . . . . . . . White noise

F (σ) . . . . . . . . . . . . . . . . . . . . . . Auxiliary matrix

Fk . . . . . . . . . . . . . . . . . . . . . . . . Jacobian

F̄k . . . . . . . . . . . . . . . . . . . . . . . . Jacobian

g . . . . . . . . . . . . . . . . . . . . . . . . . . Function

g(θ) . . . . . . . . . . . . . . . . . . . . . . . Auxiliary vector

G(θ) . . . . . . . . . . . . . . . . . . . . . . Auxiliary matrix

Gk . . . . . . . . . . . . . . . . . . . . . . . . Auxiliary matrix

h . . . . . . . . . . . . . . . . . . . . . . . . . Function

hk . . . . . . . . . . . . . . . . . . . . . . . . Auxiliary vector

Hk . . . . . . . . . . . . . . . . . . . . . . . . Auxiliary matrix

Hk . . . . . . . . . . . . . . . . . . . . . . . . Jacobian

h̄k . . . . . . . . . . . . . . . . . . . . . . . . Auxiliary vector

H̄k . . . . . . . . . . . . . . . . . . . . . . . . Auxiliary matrix

J . . . . . . . . . . . . . . . . . . . . . . . . . Auxiliary matrix

i . . . . . . . . . . . . . . . . . . . . . . . . . . Discrete time index

In . . . . . . . . . . . . . . . . . . . . . . . . Identity matrix of size n

k . . . . . . . . . . . . . . . . . . . . . . . . . Number of samples, discrete time index

Kk . . . . . . . . . . . . . . . . . . . . . . . . Kalman gain

l . . . . . . . . . . . . . . . . . . . . . . . . . . Discrete time index

Lk . . . . . . . . . . . . . . . . . . . . . . . . Gain

na . . . . . . . . . . . . . . . . . . . . . . . . Order of A(q−1)-polynomial

nb . . . . . . . . . . . . . . . . . . . . . . . . Order of B(q−1)-polynomial

nc . . . . . . . . . . . . . . . . . . . . . . . . Order of C(q−1)-polynomial

nd . . . . . . . . . . . . . . . . . . . . . . . . Order of D(q−1)-polynomial

nθ . . . . . . . . . . . . . . . . . . . . . . . . Dimension of parameter vector nθ = na + nb

nx . . . . . . . . . . . . . . . . . . . . . . . . Dimension of state vector

nz . . . . . . . . . . . . . . . . . . . . . . . . Dimension of zk (either system output or instrument vector)

Pk . . . . . . . . . . . . . . . . . . . . . . . . (Scaled) error covariance matrix (recursive least squares)

Pk|k−1 . . . . . . . . . . . . . . . . . . . . Error covariance matrix (Kalman filter)

P0 . . . . . . . . . . . . . . . . . . . . . . . . Initial error covariance matrix (Kalman filter)

P1k
, P2k

, P3k
. . . . . . . . . . . . . Partitioned covariance matrices

P k
u . . . . . . . . . . . . . . . . . . . . . . . . Error covariance matrix of filtered input

P k
y . . . . . . . . . . . . . . . . . . . . . . . . Error covariance matrix of filtered output

q−1 . . . . . . . . . . . . . . . . . . . . . . . Backward shift operator

rcd(τ ) . . . . . . . . . . . . . . . . . . . . . Covariance (scalar)

rc(τ ) . . . . . . . . . . . . . . . . . . . . . . Covariance (scalar)

r(ϑ), r(θ, σ) . . . . . . . . . . . . . . . Nonlinear least squares residual

Sk . . . . . . . . . . . . . . . . . . . . . . . . Innovations covariance matrix
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uk . . . . . . . . . . . . . . . . . . . . . . . . Measured (noise corrupted) input

u0k
. . . . . . . . . . . . . . . . . . . . . . . Noise-free system input

û0k
. . . . . . . . . . . . . . . . . . . . . . . Filtered system input

ũk . . . . . . . . . . . . . . . . . . . . . . . . Input measurement noise

vk, wk . . . . . . . . . . . . . . . . . . . . Process noise

Vk . . . . . . . . . . . . . . . . . . . . . . . . Yule-Walker cost function

VEC . . . . . . . . . . . . . . . . . . . . . . . Cost function

V lin
k . . . . . . . . . . . . . . . . . . . . . . . Yule-Walker cost function using linearised Frisch scheme equations

V k
1 . . . . . . . . . . . . . . . . . . . . . . . . Cost function (coloured output noise case)

V k
2 . . . . . . . . . . . . . . . . . . . . . . . . Cost function (coloured output noise case)

Vǫ(θ) . . . . . . . . . . . . . . . . . . . . . . Cost function

xk . . . . . . . . . . . . . . . . . . . . . . . . State vector

x̄0 . . . . . . . . . . . . . . . . . . . . . . . . Mean of initial state

x̂k|k−1 . . . . . . . . . . . . . . . . . . . . State estimate

yk . . . . . . . . . . . . . . . . . . . . . . . . Measured(noise corrupted) output

y0k
. . . . . . . . . . . . . . . . . . . . . . . Noise-free system output

ŷ0k
. . . . . . . . . . . . . . . . . . . . . . . Filtered system output

ỹk . . . . . . . . . . . . . . . . . . . . . . . . Output measurement noise

zk . . . . . . . . . . . . . . . . . . . . . . . . . Output of (non-errors-in-variables) state space system

z1k
, z2k

, z3k
. . . . . . . . . . . . . . . Instrument vectors

Zk . . . . . . . . . . . . . . . . . . . . . . . . Input/output data up from 1 to time k

αk . . . . . . . . . . . . . . . . . . . . . . . . Scalar

α̂k . . . . . . . . . . . . . . . . . . . . . . . . Scalar

βk
i . . . . . . . . . . . . . . . . . . . . . . . . Weighting of ith data at time instance k

γk . . . . . . . . . . . . . . . . . . . . . . . . Normalising gain

δk . . . . . . . . . . . . . . . . . . . . . . . . . Instrument vector

δkl . . . . . . . . . . . . . . . . . . . . . . . . Kronecker delta function

ǫk . . . . . . . . . . . . . . . . . . . . . . . . . Residual

εk . . . . . . . . . . . . . . . . . . . . . . . . . Innovation

ǫk(θ) . . . . . . . . . . . . . . . . . . . . . . Symmetric innovation

ζk . . . . . . . . . . . . . . . . . . . . . . . . . Instrument vector

θ . . . . . . . . . . . . . . . . . . . . . . . . . . Parameter vector

θ0 . . . . . . . . . . . . . . . . . . . . . . . . . ‘True’ parameter vector describing the system

θ̂k . . . . . . . . . . . . . . . . . . . . . . . . . Estimate after k samples

θ̂LS
k . . . . . . . . . . . . . . . . . . . . . . . Least squares estimate

θ̄ . . . . . . . . . . . . . . . . . . . . . . . . . . Extended parameter vector

Θ . . . . . . . . . . . . . . . . . . . . . . . . . Augmented parameter vector in coloured output noise case

ϑ . . . . . . . . . . . . . . . . . . . . . . . . . Augmented parameter vector

λk . . . . . . . . . . . . . . . . . . . . . . . . Forgetting factor

λmin (·) . . . . . . . . . . . . . . . . . . . Minimum eigenvalue operator

ξvc . . . . . . . . . . . . . . . . . . . . . . . . Covariance vector

ξ̂k
vc . . . . . . . . . . . . . . . . . . . . . . . . Estimated covariance vector

ρỹ . . . . . . . . . . . . . . . . . . . . . . . . Vector of auto-correlation elements of ỹk

ρ(A) . . . . . . . . . . . . . . . . . . . . . . Spectral radius of matrix A

σ . . . . . . . . . . . . . . . . . . . . . . . . . Vector comprising noise variances

σũ . . . . . . . . . . . . . . . . . . . . . . . . Input measurement noise variance

σmax
ũ . . . . . . . . . . . . . . . . . . . . . . Maximal admissible value for σ̂k

ũ

σỹ . . . . . . . . . . . . . . . . . . . . . . . . Output measurement noise variance

σmax
ỹ . . . . . . . . . . . . . . . . . . . . . . Maximal admissible value for σ̂k

ỹ

ς̂k . . . . . . . . . . . . . . . . . . . . . . . . . Input measurement noise variance (using λmin-equation)
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Σvw . . . . . . . . . . . . . . . . . . . . . . . Covariance matrix

Σv . . . . . . . . . . . . . . . . . . . . . . . . Covariance matrix

Σ̂k
vw . . . . . . . . . . . . . . . . . . . . . . . Covariance matrix estimate

Σ̄vw . . . . . . . . . . . . . . . . . . . . . . . Covariance matrix estimate using weighted arithmetic mean

Σϕ̃(σ) . . . . . . . . . . . . . . . . . . . . . Noise compensation matrix

ϕk . . . . . . . . . . . . . . . . . . . . . . . . Noisy regression vector

ϕ0k
. . . . . . . . . . . . . . . . . . . . . . . Noise-free regression vector

ϕ̃k . . . . . . . . . . . . . . . . . . . . . . . . Noise part of regression vector

ϕ̄k . . . . . . . . . . . . . . . . . . . . . . . . Extended noisy regression vector

ϕ̄0k
. . . . . . . . . . . . . . . . . . . . . . . Extended noise-free regression vector

˜̄ϕk . . . . . . . . . . . . . . . . . . . . . . . . Extended noise part of regression vector

O(·) . . . . . . . . . . . . . . . . . . . . . . . ‘Big-O-notation’ indicating order of complexity

det(M) . . . . . . . . . . . . . . . . . . . Determinant of matrix M

E [·] . . . . . . . . . . . . . . . . . . . . . . . Expected value operator

M† . . . . . . . . . . . . . . . . . . . . . . . Moore-Penrose pseudo inverse of M

N(M) . . . . . . . . . . . . . . . . . . . . Nullspace of M

2.1 Introduction

This chapter aims to build the foundation for the forthcoming chapters. Firstly, Section

2.2 introduces some common notation which is utilised throughout the whole thesis.

Section 2.3 introduces the concept of iterative methods for least squares, the variable

projection principle as well as the concept of counting the number of floating point

operations in order to measure the computational complexity of algorithms. These

techniques find several applications in the forthcoming chapters. Section 2.4 reviews

some offline errors-in-variables (EIV) identification techniques: Initially, the fundamen-

tal bias compensation principle, which forms the basis for most of the algorithms within

this thesis, is reviewed. Next, attention is focused in some detail on the Frisch scheme.

Within this context, identification techniques for white and coloured output noise are

considered. The review of EIV identification techniques is concluded with the extended

bias compensation least squares technique and the joint output method. Section 2.5

then departs from the system identification framework and focuses on filtering. Fol-

lowing a review of the standard Kalman filter applied to linear systems, the concept

of EIV filtering is introduced. Subsequently, the Kalman filtering problem for bilinear

systems is considered whilst the section concludes by reviewing the extended Kalman

filter for joint state and parameter estimation.

2.2 Notational conventions

This section introduces the commonly used notation within this thesis. If not stated

otherwise, a discrete-time linear time-invariant (LTI) single-input single-output (SISO)
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EIV system is considered, which is described by

A(q−1)y0k
= B(q−1)u0k

, (2.1)

where k is an integer valued time index and

A(q−1) , 1 + a1q
−1 + ...+ anaq

−na, (2.2a)

B(q−1) , b1q
−1 + ...+ bnb

q−nb , (2.2b)

are polynomials in the backward shift operator q−1, which is defined such that q−ixk =

xk−i. The noise-free input u0k
and output y0k

are unknown and only the measurements

uk = u0k
+ ũk, (2.3a)

yk = y0k
+ ỹk (2.3b)

are available, where ũk and ỹk denote the input and output measurement noise, respec-

tively. Such a setup is depicted in Figure 2.1.

The parameter vector and an extended version is defined as

θ ,
[

aT bT
]T

=
[

a1 ... ana b1 ... bnb

]T
∈ R

nθ , (2.4a)

θ̄ ,
[

āT bT
]T

=
[

1 θT
]T

∈ R
nθ+1, (2.4b)

where nθ = na + nb. Using a linear regression formulation, an alternative description

of (2.1)-(2.3) is given by

ϕ̄T0k
θ̄ = 0, (2.5a)

ϕ̄k = ϕ̄0k
+ ˜̄ϕk, (2.5b)

u0k
y0k yk

ỹk
ũk uk

System

Figure 2.1: Errors-in-variables setup.
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where

ϕ0k
, [−y0k−1

... −y0k−na
u0k−1

... u0k−nb
]T , (2.6a)

ϕ̄0k
, [−y0k

ϕT0k
]T , (2.6b)

ϕk , [−yk−1 ... −yk−na uk−1 ... uk−nb
]T , (2.6c)

ϕ̄k , [−yk ϕTk ]T , (2.6d)

ϕ̃k , [−ỹk−1 ... −ỹk−na ũk−1 ... ũk−nb
]T , (2.6e)

˜̄ϕk , [−ỹk ϕ̃Tk ]T . (2.6f)

In addition, it is often convenient to divide the regression vector into two parts corre-

sponding to the outputs and inputs, respectively. This yields

ϕTk ,
[

ϕTyk
ϕTuk

]T
, (2.7a)

ϕ̄Tk ,
[

ϕ̄Tyk
ϕTuk

]T
. (2.7b)

For the white noise case, it is convenient to introduce the augmented parameter vector

ϑ ,
[

θT σT
]T

∈ R
nθ+2, (2.8)

which comprises both the system and the noise parameter vectors, where the latter is

given by

σ ,
[

σỹ σũ

]T
∈ R

2, (2.9)

with σỹ and σũ denoting the variance of the output noise and input noise, respectively.

Within this thesis, cross- and auto-covariance functions are defined by

rcd(τ) , E [ckdk−τ ] , (2.10a)

rc(τ) , E [ckck−τ ] . (2.10b)

where ck and dk denote two arbitrary zero mean stochastic processes and where E[·]

denotes the expected value operator. The matrices and vectors comprising these co-

variance elements are denoted as Σ and ξ, respectively. Consequently, the cross/auto-

covariance matrices of two arbitrary random vectors vk and wk are denoted

Σvw , E
[
vkw

T
k

]
, (2.11a)

Σv , E
[
vkv

T
k

]
, (2.11b)

whilst the cross-covariance vector between an arbitrary random vector vk and a scalar

17
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stochastic process ck is denoted

ξvc , E [vkck] (column vector), (2.12a)

ξcv , E
[
ckv

T
k

]
(row vector)‘. (2.12b)

The corresponding estimated sample covariance elements comprising scalars, vectors

and matrices are denoted in a similar manner, given by

r̂cd(τ) ,
1

k

k∑

i=1

cidi−τ , (2.13a)

r̂c(τ) ,
1

k

k∑

i=1

cici−τ , (2.13b)

Σ̂vw ,
1

k

k∑

i=1

viw
T
i , (2.13c)

Σ̂v ,
1

k

k∑

i=1

viv
T
i , (2.13d)

ξ̂vc ,
1

k

k∑

i=1

vici, (2.13e)

ξ̂cv ,
1

k

k∑

i=1

civ
T
i . (2.13f)

If the data is not equally weighted, a weighted arithmetic mean is to be computed,

which is denoted by

Σ̄vw , γk

k∑

i=1

βikviw
T
i , (2.14)

where γk is an appropriately chosen normalising gain and βik is the weighting of the ith

measurement at time k.

In the white noise case, the auto-covariance matrix Σϕ̃ corresponding to the noisy

part of the regression vector (2.6e) is diagonal, dependent on σũ and σỹ and given as

Σϕ̃(σ) ,

[

σỹIna 0

0 σũInb

]

. (2.15)

For the coloured output noise case, introduce the vector

ρỹ ,
[

rỹ(0) rỹ(1) · · · rỹ(na)
]T

∈ R
na+1, (2.16)

which comprises the auto-correlation elements of ỹk, noting that rỹ(0) = σỹ. The
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augmented parameter vector for this case becomes

Θ ,
[

a1 ... ana b1 ... bnb
ρỹ σũ

]T
∈ R

2na+nb+2. (2.17)

2.3 Mathematical tools

Some mathematical concepts are repeatedly used in the thesis, and, therefore, these

are reviewed within this section, for future reference.

2.3.1 Stationary iterative methods for least squares

The least squares (LS) problem can be solved in an iterative way by making use of a

suitable matrix splitting. These so-called stationary iterative methods are commonly

used for large sparse LS problems where an initial approximate solution is iteratively

improved until an appropriate stopping criterion is satisfied (Björck 1996, Ch. 7).

Based on the normal equations

Σθ = ξ, (2.18)

where Σ is a matrix, ξ a vector and θ a parameter vector of interest, the underlying

idea of these methods is to split the matrix Σ into Σ = Σ1 −Σ2 and solve the resulting

system of equations in an iterative manner. This gives

θ̂k+1 = Σ−1
1 Σ2θ̂k + Σ−1

1 ξ. (2.19)

Naturally, the splitting is chosen such that the inverse computation of Σ1 is easy. Note,

however, that it is stated in (Björck 1996) that the main weakness of such iterative

methods is their “poor robustness and often narrow range of applicability.” From

(2.19) it is clear that the iteration converges for all initial vectors θ̂0 if all eigenvalues

of Σ−1
1 Σ2 are within the unit circle. The principle of stationary iterative methods finds

several applications within this thesis, when it is desired to derive a recursive estimation

procedure without computing the (pseudo) inverse of Σ. A thorough treatment of this

concept can be found in (Björck 1996, Ch. 7).

2.3.2 Variable projection algorithm

The system identification problem frequently reduces to a nonlinear least squares (NLS)

problem, given by

min
ϑ

‖r(ϑ)‖2
2 , (2.20)

which aims to find the global minimiser of the sum of squares of m nonlinear residual

functions ri(ϑ), i = 1, ...,m. The NLS problem is denoted separable, if the solution
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vector ϑ can be partitioned, e.g.

ϑ =
[

θT σT
]T

(2.21)

such that the subproblem

min
θ

‖r(θ, σ)‖2
2 (2.22)

“is easy to solve” (Björck 1996). For instance, if r(θ, σ) is linear in θ the residual can

be expressed as

r(θ, σ) = F (σ)θ − f(σ), (2.23)

where F (σ) is a m × nθ matrix and f(σ) is a vector of dimension m. Hence, the

minimum norm solution of the subproblem (2.22) is given by

θ(σ) = F (σ)†f(σ), (2.24)

where F (σ)† denotes the Moore-Penrose pseudo inverse. Consequently, (2.24) can be

substituted into (2.23), which allows (2.20) to be expressed as

min
σ

‖r(σ)‖2
2 = min

σ
‖f(σ) − F (σ)θ(σ)‖2

2

= min
σ

∥
∥
∥

[

I − F (σ)F (σ)†
]

f(σ)
∥
∥
∥

2

2
, (2.25)

where F (σ)F (σ)† is the orthogonal projector on the range of F (σ). Therefore, al-

gorithms based on (2.25) are also referred to as variable projection algorithms or

separable NLS. A standard reference is given by (Golub & Pereyra 1973) whilst a

more recent overview is given by (Golub & Pereyra 2002). The variable projection

approach has been exploited for the identification of EIV systems using the so-called

extended bias compensating least squares (EBCLS) approach which has been developed

in (Ekman 2005), where a consistency analysis has also been provided (see Section 2.4.2

for a review of the EBCLS algorithm).

The variable projection technique exhibits the following properties:

• The global minima of the functionals r(θ, σ) and r(σ) coincide and have the same

values, i.e. ‖r(θ̂, σ̂)‖2
2 = ‖r(σ̂)‖2

2 (Theorem 2.1 in Golub & Pereyra 1973).

• The dimension of the resulting minimisation problem is reduced. This also implies

that fewer initial parameter values are required to be specified which might also

reduce the problem of becoming trapped within a local minimum.

• In comparison to the direct minimisation of (2.20), the variable projection algo-

rithm is always able to converge in less iterations (Golub & Pereyra 2002).
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Description Operation Flops

Scalar addition c+ c 1

Scalar multiplication c2 1

Outer product yyT p2

Inner product yT y 2p

Addition M +M pr

Scalar multiplication cM pr

Matrix product LM 2pvr

Matrix-vector product Ly 2pv

Squared vector-norm ||y||22 2p

Square root
√
c 8

Inverse (general) S−1 O(s3)

Least eigenvalue (general) λmin(S) O(s3)

Table 2.1: Some matrix operations and associated number of flops, where y ∈ R
p,

M ∈ R
p×r, c ∈ R, S ∈ R

s×s is symmetric and L ∈ R
v×p.

• Although the reduced functional is more complex, the total computing time is

smaller for a large class of problems (Golub & Pereyra 2002).

Note that the problem simplifies if the nonlinear set of functions r(ϑ) is not only linear

in θ, but also linear in σ, which means one can express

r(θ, σ) = G(θ)σ − g(θ) (2.26)

with G(θ) ∈ R
m×nσ and g(θ) ∈ R

m. Such a situation is also referred to as bilinear

parametrisation1 (Ljung 1999, cf. p. 335).

2.3.3 Measuring computational complexity

In order to obtain an approximate measure for the computational costs of an al-

gorithm the floating point operations (flops) are counted as described in (Golub &

Van Loan 1996, p. 18). Some matrix operations and corresponding number of flops,

which are utilised in the subsequent development, are summarised in Table 2.1. Flop

counting is only a crude measure for the computational burden and the order of the

complexity is frequently given using the ‘big-O-notation’, e.g. O(n2) for quadratic

complexity, where only the dominant factors are considered, i.e. less significant con-

tributions are dismissed. Although it is only approximate, flop counting is a rather

convenient way to measure the computational costs of an algorithm, since it is quite

general due to its independence of the underlying hardware, programming language

and implementation. Alternatively, it is possible to measure the absolute computation

time on a given machine using a certain programming environment.

Note that the computational complexity evaluated using by the ‘big-O-notation’

considers the asymptotic behaviour for very large model orders. In the context of

1Not to be confused with bilinear system representations.
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system identification, however, mainly low model orders are of interest, hence, the

absolute computation time for such low orders will also be investigated via numerical

simulations.

2.4 System identification

This section reviews EIV system identification techniques which form the basis for the

development in the subsequent chapters. In the white noise case, the EIV identification

problem can be formulated as follows.

Problem 2.1. Given k measured input-output samples, denoted,

Zk , {ui, yi}
k
i=1, (2.27)

determine an estimate of the augmented parameter vector

ϑ =
[

a1 ... ana b1 ... bnb
σỹ σũ

]T
. (2.28)

If not stated otherwise, assumptions concerning the system, the input and the noise

sequences are given as follows.

System assumptions:

AS1 The dynamic system is asymptotically stable, i.e. A(q−1) has all zeros inside

the unit circle.

AS2 All system modes are observable and controllable, i.e. A(q−1) and B(q−1)

have no common factors.

AS3 The polynomial degrees na and nb are known a priori with nb ≤ na.

Input assumptions:

AI1 The true input u0k
is a zero-mean ergodic process and is persistently exciting

of sufficiently high order.

Noise assumptions:

AN1 The sequences ũk and ỹk are zero-mean, ergodic, white noises with un-

known variances, denoted σũ and σỹ, respectively, i.e.

σũδkl , E [ũkũl] , (2.29a)

σỹδkl , E [ỹkỹl] . (2.29b)

AN2 The sequences ũk and ỹk are mutually uncorrelated and also uncorrelated

with both u0k
and y0k

.
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Within Assumption AN1, δkl denotes the Kronecker delta. Note that the assumption

of nb ≤ na within AS3 is common when dealing with control problems. In contrast,

within a system identification context, such an additional assumption might not be

required.

2.4.1 Bias compensating least squares

It is well known that the parameter estimates are asymptotically biased when LS is

utilised to solve the EIV identification problem. However, if the variances of the input

and output measurement noise sequences are available, it is possible to compensate for

the bias in the LS solution via

θ̂ = [Σϕ − Σϕ̃(σ)]−1 ξϕy. (2.30)

Such bias compensating least squares (BCLS) approaches are well known in the system

identification literature and an early reference is given by (Stoica & Söderström 1982),

where this principle is used to identify output error models. By utilising the natural

matrix splitting Σϕ − Σϕ̃(σ), it is possible to solve (2.30) via a stationary iterative LS

method (cf. Section 2.3.1) by expressing (2.30) as

Σϕθ̂k = ξϕy + Σϕ̃(σ)θ̂k−1

⇔ θ̂k = θ̂LS
k + Σ−1

ϕ Σϕ̃(σ)θ̂k−1, (2.31)

where θ̂LS
k denotes the LS estimate. In order to obtain a corresponding recursive scheme,

the covariance matrices are required to be updated at each time instance, whilst the

LS estimate can be computed via a standard recursive least squares (RLS) algorithm

(Sagara & Wada 1977, Ding et al. 2006). Such a recursive BCLS (RBCLS) scheme is

given by

θ̂k = θ̂LS
k + PkΣϕ̃(σ)θ̂k−1, (2.32)

where the need for a matrix inversion is conveniently avoided by utilising the appro-

priately scaled error covariance matrix, denoted Pk, of the RLS algorithm, which can

be computed via the matrix inversion lemma (cf. Ljung 1999, Ch. 11). This RBCLS

approach forms the basis for a number of algorithms, which are developed within this

thesis.

It is interesting to note that an iterative BCLS approach as outlined above also forms

the basis of the so-called bias eliminating least squares (BELS) techniques (Zheng &

Feng 1989, Zheng 1998, Zheng 1999, Zheng 2000) for the identification of EIV systems.
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2.4.2 Extended bias compensating least squares

As its name indicates, the extended bias compensating least squares (EBCLS) technique

(Ekman 2005) is a generalisation of the bias compensating least squares approach, which

has been introduced in Section 2.4.1. Rather than making use of the standard LS normal

equations, an instrumental variable (IV) approach with an arbitrary instrument vector,

denoted zk ∈ R
nz , where nz ≥ nθ is considered. The EBCLS estimate is obtained by

solving

[Σzϕ − Σz̃ϕ̃(σ)] θ = ξzy − ξz̃ỹ(σ), (2.33)

where the individual quantities are defined by (2.11)-(2.12). Note, from (2.33), that

depending on the particular choice of zk, not only the covariance matrix on the left

hand side, but also the covariance vector on the right needs to be compensated, in order

to remove the asymptotic bias of the IV estimate. Of course it is possible to select zk,

such that no correlation between the instruments and ϕk, yk exists. However, since

the objective is to estimate not only θ but also σ, the instruments are usually chosen

such that (2.33) depends on σ, i.e. Σz̃ϕ̃(σ) 6= 0 and/or ζz̃ỹ(σ) 6= 0. The noise variance

estimates can then be determined by minimising the sum of the squared residuals

σ̂ = arg min
σ

‖[Σzϕ − Σz̃ϕ̃(σ)] θ − ξzy + ξz̃ỹ(σ)‖2
2 , (2.34)

which is a NLS problem. Note that the resulting NLS problem is separable with respect

to θ and σ. Consequently, it can be solved by means of the variable projection algorithm

(cf. Section 2.3.2), where

F (σ) = Σzϕ − Σz̃ϕ̃(σ), (2.35a)

f(σ) = ξzy − ξz̃ỹ(σ). (2.35b)

Once σ̂ has been determined, θ̂ is obtained by solving (2.33), where σ is replaced by σ̂.

2.4.3 Dynamic Frisch scheme for white noise

One particularly interesting approach for the identification of dynamical EIV systems,

which yields estimates of the model parameters as well as the measurement noise vari-

ances, is the so-called Frisch scheme (Beghelli et al. 1990, Söderström 2007b). It was

originally developed to treat static algebraic regression problems (Frisch 1934) without

making any assumptions on the relative amount of noise on the variables. These rather

loose constraints on the required a priori knowledge yield a whole family of solutions.

The extension of the Frisch scheme to deal with dynamical multiple-input single-output

(MISO) LTI systems (Beghelli et al. 1990) leads theoretically to a single solution. In

practice, however, a model selection criterion is required to be utilised, in order to

choose an ‘optimal’ solution from a set of possible Frisch scheme models. Three dif-
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ferent options are discussed in (Hong et al. 2007), whilst the statistical accuracy of

the Frisch scheme has been analysed in (Söderström 2007a). Recent work (Hong &

Söderström 2008) has also established the connection of the Frisch scheme with the

BELS algorithms (Zheng & Feng 1989, Zheng 1998) as well as the EBCLS method

(Ekman 2005).

Frisch scheme approach

Premultiplying (2.5a) with ϕ̄0k
and taking the expected value leads to an alternative

system description

Σϕ̄0 θ̄ = 0, (2.36)

where Σϕ̄0 ∈ R
(nθ+1)×(nθ+1) is the noise-free covariance matrix (cf. (2.11)), which is

singular positive semidefinite, with rank(Σϕ̄0) = na + nb (i.e. rank-one deficient). Due

to the stated assumptions, the noise-free covariance matrix can be decomposed into

Σϕ̄0 = Σϕ̄ − Σ ˜̄ϕ(σ), (2.37)

where Σϕ̄ is the covariance matrix of the noisy data whilst the noise covariance matrix

is given by

Σ ˜̄ϕ(σ) =

[

σỹIna+1 0

0 σũInb

]

. (2.38)

Note that, in the noisy case, the covariance matrix Σϕ̄ is generally of full rank, hence,

the Frisch scheme identification problem can be re-expressed as follows.

Problem 2.2. Given the data covariance matrix Σϕ̄ of noisy observations, determine

the noise covariance matrix Σ ˜̄ϕ such that

Σϕ̄0 = Σϕ̄ − Σ̂ ˜̄ϕ(σ) ≥ 0 (2.39a)

and

det(Σϕ̄0) = 0. (2.39b)

This means that solutions for the values of σũ and σỹ are searched for, such that the

resulting matrix Σϕ̄0 becomes singular. Equation (2.39) essentially defines the core

of the Frisch scheme since these properties distinguish this approach from other EIV

identification techniques. For future reference, the following definition is introduced.

Definition 2.1 (Frisch-character). An estimated parameter vector ϑ̂ = [θ̂T σ̂T ]T is said
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to satisfy the Frisch-character if

det
(

Σ̂ϕ̄ − Σ ˜̄ϕ(σ̂)
)

= 0. (2.40)

Problem 2.2 does not yield a unique solution, rather the set of admissible solutions

(σũ, σỹ) which satisfies (2.39) defines a convex curve in the first quadrant of the noise

space R
2, which is shown in Figure 2.2, for an arbitrary example. A further consequence

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

σũ

σ
ỹ

Figure 2.2: Convex curve in the noise space characterising the Frisch scheme.

of this approach is that each point on the convex curve can be uniquely mapped into the

parameter space R
na+nb . This means that a particular solution of the EIV identification

problem can be characterised by the input measurement noise variance only, since a

given σũ uniquely defines σỹ, hence θ (Beghelli et al. 1990). The mappings within the

Frisch scheme are consequently given by

σũ 7→ σỹ, (2.41a)

(σũ, σỹ) 7→ θ. (2.41b)

In order to express the Frisch scheme relationships with some mathematical rigour, the

first mapping, defining the relationship between σũ and σỹ, is given by the function

f : [0, σmax
ũ ] ×Z → [0, σmax

ỹ ], (2.42)

where Z denotes the family of sets comprising all possible data sets, i.e. Zk ∈ Z, whilst

× denotes the Cartesian product (set of all possible ordered pairs). The quantities

σmax
ũ and σmax

ỹ are the maximal admissible values for σũ and σỹ, respectively, which

correspond to the intersections of the convex curve with the horizontal and vertical

axes in Figure 2.2. Equivalently, it is possible to obtain σũ based on σỹ and the data

Zk which might be formulated as

g : [0, σmax
ỹ ] ×Z → [0, σmax

ũ ]. (2.43)
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Finally, the relationship between (σũ, σỹ) and θ can be expressed as

h : [σũ, σỹ] ×Z → DM ⊂ R
nθ , (2.44)

where DM is a subset of R
nθ , such that θ ∈ DM. The function h is defined by solving

the consistent set of normal equations

(

Σϕ −

[

σỹIna 0

0 σũInb

])

θ = ξϕy. (2.45)

Note that if only one particular data set is regarded, i.e. Zk is one particular realisation

of its corresponding random sequence (Zk is kept constant), the above functions f , g

and h are bijective2 and f−1 = g, where f−1 denotes the inverse relation.

Relation between σũ and σỹ

The key question that is now addressed is: How are f and g defined? i.e. how can

the output noise variance be determined knowing the input noise variance or vice

versa. Utilising the Schur complement, the (nonlinear) relationship is given by (Beghelli

et al. 1990, Söderström 2007a)

σũ = f(σỹ, Z
k) = λmin

(

Σϕu − Σϕuϕ̄y

[
Σϕ̄y − σ̂ỹIna+1

]−1
Σϕ̄yϕu

)

, (2.46a)

or equivalently, the inverse relation is given by

σỹ = g(σũ, Z
k) = λmin

(

Σϕ̄y − Σϕ̄yϕu [Σϕu − σũInb
]−1 Σϕuϕ̄y

)

, (2.46b)

where λmin denotes the minimum eigenvalue operator and the individual block matrices

are defined by

Σϕ̄ =

[

Σϕ̄y Σϕ̄yϕu

Σϕuϕ̄y Σϕu

]

(2.47)

with Σϕ̄y ∈ R
na+1×na+1 and Σϕu ∈ R

nb×nb (also recall the definitions (2.7) and (2.11)).

In the remainder of this thesis Equations (2.46a) and (2.46b) are also referred to as

the λmin-equations. In addition, (2.46) provides explicit expressions for the maximal

admissible values for σũ and σỹ, respectively. By setting σỹ = 0 in (2.46a) and σũ = 0

in (2.46b) these quantities are given by

σmax
ũ = λmin

(

Σϕu − Σϕuϕ̄yΣ−1
ϕ̄y

Σϕ̄yϕu

)

, (2.48a)

σmax
ỹ = λmin

(
Σϕ̄y − Σϕ̄yϕuΣ−1

ϕu
Σϕuϕ̄y

)
. (2.48b)

2A function is bijective if it is injective and surjective. A bijection is sometime referred to as
one-to-one correspondence.
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Model selection - determination of σũ

In order to solve the identification problem, nθ + 2 equations are required to determine

the nθ model parameters as well as σũ and σỹ. So far, only nθ + 1 equations are

established: the nθ normal equations given by (2.45) plus the λmin-equation (2.46b)3.

Consequently, there is one degree of freedom remaining and an additional equation is

required in order to select one point from the convex curve corresponding to a certain

model. Four different methods are known within the literature and each of them gives

rise to a different Frisch scheme algorithm. These are:

Extended model criterion (EM): The λmin-equation is evaluated for the nominal

and an extended model structure within the range 0 ≤ σũ ≤ σmax
ũ , where the

A(q−1)-polynomial or the B(q−1) polynomial (or both) are extended with ficti-

tious zero valued parameters. This results in two curves (corresponding to the

nominal and the extended model) in the noise plane that theoretically are tan-

gential to each other at a unique point, which corresponds to the ‘true’ noise

variance values (Beghelli et al. 1990). The algorithm is denoted as Frisch-EM.

Covariance match criterion (CM): The statistical properties of the residuals com-

puted from the system are compared with those predicted from a certain model

(Diversi, Guidorzi & Soverini 2003b, Söderström 2007a). This algorithm is de-

noted as Frisch-CM.

Yule-Walker criterion (YW): The set of high order Yule-Walker equations can be

exploited, which is equivalent to the utilisation of an additional IV estimator (cf.

e.g. Söderström & Mahata 2002, Söderström et al. 2002) that assesses the quality

of the admissible solutions (Diversi et al. 2006). The corresponding algorithm is

denoted as Frisch-YW.

The model selection cost function proposed in (Diversi et al. 2006) is given by

Vk(σũ) =
1

2
‖Σ̂k

ζϕ̄θ̄‖
2
2. (2.49)

It basically corresponds to the Euclidean norm of the residuals given a certain

value for θ which is determined by means of an additional IV estimator with

delayed (or time shifted) inputs as instruments. In (Diversi et al. 2006), the

instrument vector is given by

ζk ,
[

uk−nb−1 ... uk−nb−nζ

]T
∈ R

nζ , (2.50)

where the instrument dimension, denoted nζ ≥ na + nb + 1, is user specified.

Since a certain σũ uniquely defines θ, Vk(σũ) can be minimised with respect to

3Usually, (2.46b) is chosen, but it would also be possible to use (2.46a).
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σũ giving

σ̂ũ = arg min
σũ

Vk(σũ). (2.51)

Note that in the asymptotic case the true parameter vector satisfies

Σζϕ̄θ̄ = 0. (2.52)

Extended bias-compensating normal equations (EC): An EBCLS estimator as-

sesses the quality of the admissible solutions. Whilst ζk for the YW criterion has

to be chosen, such that the instruments are uncorrelated with ˜̄ϕk (in order to

obtain a consistent IV estimator), it is possible to choose a general instrument

vector which does not satisfy E[ζk ˜̄ϕTk ] = 0 and then to compensate for the re-

sulting bias. This algorithm, which is denoted as Frisch-EC, has recently been

proposed in (Larkowski, Linden, Vinsonneau & Burnham 2008)4. The general

model selection criterion is given by

VEC(σũ) , ‖ξz2y − ξz̃2ỹ −
(
Σz2ϕ − Σz̃2ϕ̃

)
(Σz3ϕ − Σz̃3ϕ̃

)†(
ξz3y − ξz̃3ỹ

)
‖2
2, (2.53)

where z2k
and z3k

denote arbitrary instrument vectors whilst z̃2k
and z̃3k

denote

the corresponding noise conributions5. In (Larkowski et al. 2008), the instrument

vectors

z1k
= ϕk (2.54a)

z2k
= z3k

=
[

−yk · · · − yk−na−m uk · · · uk−nb−m

]T
(2.54b)

have been utilised, which basically corresponds to the choice of instruments that

has been suggested in (Ekman 2005) for the EBCLS method. The quantity m ≥ 0

is chosen by the user and denotes the number of supplemental normal equations.

Note that the YW model selection criterion can be considered as being a subset

of the more general EC criterion.

A comparison of the EM, CM and YW model selection criteria is given in (Hong

et al. 2007). Note that all of the different Frisch scheme approaches outlined above

require the solution of a one-dimensional optimisation problem. The search for the

optimal solution can be constrained using the maximal admissible values given in (2.48).

Within the remainder of this thesis, attention is restricted to the YW criterion.

4The author is an advisor for this research programme.
5The notation used here for the instrument vectors is in agreement with that used in (Larkowski

et al. 2008). There, the variable z1k
is used in to denote the instrument vector which defines the set

of normal equations which are used to determine θ. Whilst this yields a more general setup, z1k
= ϕk

holds in the particular case of the Frisch scheme.
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Summary

The different Frisch scheme approaches may be summarised in the following steps:

1. Find an ‘optimal’ σ̂ũ in the sense of a chosen model criteria outlined above.

2. Compute σ̂ỹ using

σ̂ỹ = f
(

σ̂ũ, Z
k
)

. (2.55)

3. Determine the parameter vector via BCLS

θ̂ = h
(

σ̂ũ, σ̂ỹ, Z
k
)

. (2.56)

Note that σũ in Step 1 requires an optimisation, which involves the determination θ

and σỹ for a given σũ at each iteration step. Hence, each iteration also requires the

solution of (2.46a) and (2.45) to be computed.

2.4.4 Dynamic Frisch scheme for coloured output noise

The dynamic Frisch scheme presented in (Beghelli et al. 1990, Söderström 2007a) as-

sumes that the additive disturbances on the system input and output are white. Such

an assumption, however, can be rather restrictive since the output noise often not

solely consists of measurement uncertainties, but also aims to account for process dis-

turbances, which are usually correlated in time. In order to overcome this shortcom-

ing, the Frisch scheme has recently been extended to the coloured output noise case

(Söderström 2006, Söderström 2008).

Problem statement

If the output noise sequence ỹk is correlated in time, the bias compensated normal

equations (2.45) become

Σϕ0θ = ξϕ0y

⇔ (Σϕ − Σϕ̃) θ = ξϕy − ξϕ̃ỹ, (2.57)

or in block matrix form

([

Σϕy Σϕyϕu

Σϕuϕy Σϕu

]

−

[

Σϕ̃y 0

0 σũInb

])

θ =

[

ξϕyy

ξϕuy

]

−

[

ξϕ̃y ỹ

0

]

, (2.58)
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where

Σϕ̃y =







rỹ(0) · · · rỹ(na − 1)
...

. . .
...

rỹ(na − 1) · · · rỹ(0)







(2.59)

is a symmetric Toeplitz matrix, whilst

ξϕ̃y ỹ =
[

rỹ(1) · · · rỹ(na)
]T
. (2.60)

The λmin-equation, which is used here for the determination of σũ, becomes for the

coloured output noise case (cf. (2.46))

σũ = λmin

(

Σϕu − Σϕuϕ̄y

[

Σϕ̄y − Σ ˜̄ϕy

]−1
Σϕyϕu

)

. (2.61)

Hence, it is necessary to replace Assumption AN1 with the following.

AN1a The sequence ũk is a zero-mean, ergodic, white noise process with unknown

variance σũ.

AN1b The sequence ỹk is a zero-mean, ergodic noise process with unknown auto-

covariance sequence {rỹ(0), rỹ(1), · · · }.

In the case of coloured output noise, the modified objective can thus be formulated as:

Problem 2.3. Given k samples of noisy input-output data {u1, y1, ..., uk, yk}, determine

an estimate of the augmented parameter vector

Θ ,
[

a1 ... ana b1 ... bnb
ρỹ σũ

]T
∈ R

2na+nb+2, (2.62)

where ρỹ is defined by (2.16).

Identification algorithm

In (Söderström 2006, Söderström 2008) several possibilities to obtain the remaining

equations are discussed. It is shown that a covariance-matching criterion, as used in

(Diversi, Guidorzi & Soverini 2003a), as well as correlating the residuals with past

outputs, which corresponds to an instrumental variable-like approach with outputs

as instruments, cannot be successful since it always leads to more unknowns than

equations. However, by correlating the residuals, denoted ǫk, with past inputs, the

remaining equations are obtained for the asymptotic case via

E [ζkǫk] = 0, (2.63)
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where the instruments are given by (2.50) whilst the residuals are obtained via

ǫk , A(q−1)yk −B(q−1)uk = yk − ϕTk θ. (2.64)

This yields

ξζy − Σζϕθ = 0, (2.65)

which can be expressed in block form as

[

Σζϕy Σζϕu

]

θk = ξζy, (2.66)

where the dimension nζ of the instrument vector ζk must satisfy nζ ≥ na+1 in order to

obtain at least na + 1 additional equations for the determination of ρỹ. For simplicity

it is assumed that nζ = na + 1 in the subsequent development. In summary, the

2na+nb+2 equations for the determination of the 2na+nb+2 unknowns are given as











Σϕy Σϕyϕu

Σϕuϕy Σϕu

Σζϕy Σζϕu




−






Σϕ̃y 0

0 σũInb

0 0









 θ =






ξϕyy

ξϕuy

ξζy




−






ξϕ̃y ỹ

0

0




 , (2.67a)

σũ = λmin

(

Σϕu − Σϕuϕ̄y

[

Σϕ̄y − Σ ˜̄ϕy

]−1
Σϕyϕu

)

. (2.67b)

In (Söderström 2006, Söderström 2008), two algorithms have been proposed to

solve the resulting (nonlinear) estimation problem. Here, the two-step algorithm of

(Söderström 2006), which makes use of the separable LS technique is considered. Whilst

in the white noise case the estimate of θ is obtained from the compensated normal

equations after the noise variances have been determined, the approach for coloured

output noise is conceptually different as outlined in the remainder of this section.

Step 1 Note that ρỹ only appears in the first na equations of (2.67a) and in (2.67b).

By combining the last nb equations of the compensated LS normal equations (2.58)

with the na + 1 IV equations (2.66), one can formulate

[

Σϕuϕy Σϕu − σũInb

Σζϕy Σζϕu

]

θ =

[

ξϕuy

ξζy

]

(2.68)

which constitute na + nb + 1 equations in na + nb + 1 unknowns (θ and σũ). Equation

(2.68) is an overdetermined system of normal equations with its first part obtained

from the bias compensated LS and the second part given by the IV estimator, which

uses delayed inputs. Moreover, it is nonlinear due to the multiplication of θ with σũ.
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In order to estimate θ and σũ, (2.68) can be re-expressed as

(Σδϕ − σũJ) θ = ξδy, (2.69)

where Σδϕ and ξδy are defined by (2.11) and (2.12) with

δk ,
[

ϕTuk
ζTk

]T
=
[

uk−1 ... uk−nb
uk−nb−1 ... uk−nb−nζ

]T
, (2.70)

whilst J is given by

J ,

[

0 Inb

0 0

]

. (2.71)

Note that (2.69) can be interpreted as a bias-compensated IV approach, where the in-

strument vector δk is constructed from past measured inputs. Using sample covariance

estimates and introducing for convenience

Gk , Σ̂k
δϕ − σũJ, (2.72)

the estimates for σũ and θ are obtained by minimising the (nonlinear) LS cost function

{θ̂k, σ̂
k
ũ} = arg min

θ,σũ

∣
∣
∣

∣
∣
∣Gkθ − ξkδy

∣
∣
∣

∣
∣
∣

2
. (2.73)

If σũ is assumed to be fixed, an explicit expression for θ̂k is given by the well-known

LS solution

θ̂k = G†
k ξ̂
k
δy, (2.74)

where G†
k , [GTkGk]

−1GTk denotes the Moore-Penrose pseudo inverse. Using the sepa-

rable LS approach (see Section 2.3.2 or (Ljung 1999, p. 335)), the problem is reduced

to an optimisation in one variable only by substituting (2.74) in (2.73). Consequently,

σ̂kũ can be obtained via

σ̂kũ = arg min
σũ

V k
1 (2.75)

with

V k
1 =

∣
∣
∣

∣
∣
∣GkG

†
k ξ̂
k
δy − ξ̂kδy

∣
∣
∣

∣
∣
∣

2
= ξ̂kTδy ξ̂

k
δy − ξ̂kTδ̄y Gk

[
GTkGk

]−1
GTk ξ̂

k
δy. (2.76)

Once σ̂kũ is obtained, θ̂k is then given by (2.74). Since the solution of (2.75) should

satisfy V k
1 = 0, the value of V k

1 indicates whether the optimisation algorithm has

converged to a global or local minimum (Söderström 2008).
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Step 2 In order to determine the estimates for the na+1 terms of the auto-correlation

sequence ρỹ, the remaining na normal equations (corresponding to the first na equations

in (2.67a))

[

Σϕy − Σϕ̃y , Σϕyϕu

]

θ = ξϕyy − ξϕ̃y ỹ (2.77)

together with the λmin-equation

σũ = λmin

(

Σϕu − Σϕuϕ̄y

[

Σϕ̄y − Σ ˜̄ϕy

]−1
Σϕyϕu

)

(2.78)

are considered. Note that for the computation of the compensation terms Σ ˜̄ϕy
and ξϕ̃y ỹ,

the auto-covariance elements up to the time shift na are required, i.e. it is necessary to

determine ρỹ. Using covariance estimates and replacing θ with its estimate θ̂k obtained

in Step 1, Equation (2.77) can be rearranged and expressed as

Σ̂k
ϕ̃y
âk − ξ̂kϕ̃y ỹ =

[

Σ̂k
ϕy

Σ̂k
ϕyϕu

]

θ̂k − ξ̂kϕyy, (2.79)

where only the left hand side depends on the unknown ρỹ. In addition, (2.79) is affine

in ρỹ, hence it can be re-expressed as

Hkρỹ = hk, (2.80)

where Hk is a na × na + 1 matrix built up from elements of âk and hk is a vector of

dimension na given by the right hand side of (2.79). This is a system of equations with

more unknowns than equations, but the set of all possible solutions can be formulated

as

ρ̂kỹ = αkN(Hk) +H†
khk, (2.81)

where N(·) denotes the nullspace and αk is a scalar factor to be determined. It is

necessary to distinguish between the input measurement noise variance obtained by

(2.75) in Step 1, and the quantity which would be obtained by the λmin-equation (2.78).

Therefore, introduce

ς̂k , λmin (Bk (αk)) , (2.82)

where

Bk(αk) , Σϕu − Σϕuϕ̄y

[

Σϕ̄y − Σ ˜̄ϕy
(αk)

]−1
Σϕyϕu . (2.83)
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Using (2.82) it is possible to search for that αk which is in best agreement with the

previously determined σ̂kũ, i.e.

α̂k = arg min
αk

V k
2 , (2.84)

where

V k
2 =

(

σ̂kũ − ς̂k

)2
. (2.85)

This means that the distance between the input noise variance estimate σ̂kũ determined

in Step 1 and the input noise variance estimate ς̂k, which is obtained using the na normal

equations (2.77) together with the λmin-equation (2.82) depending on the choice of αk,

is minimised. Once α̂k is determined, it is substituted in (2.81) to obtain ρ̂kỹ , the

searched estimate of the auto-covariance elements of the coloured output measurement

noise ỹk.

Remark 2.1. Note that if only the determination of θ is of interest, Step 2 of the algo-

rithm described above becomes dispensable. However, since one targeted application of

the algorithms described within thesis is that of fault detection, the additional knowl-

edge of the auto-covariance sequence might be beneficial and its estimation is therefore

considered in the subsequent development.

Algorithm summary

The Frisch scheme for coloured output noise (FSCON) can be summarised as follows.

Algorithm 2.1 (FSCON).

Step1 Determine σũ and θ

σ̂kũ = arg min
σ̂k

ũ

V k
1 (2.86a)

θ̂k = G†
k ξ̂
k
δy(σ̂

k
ũ) (2.86b)

Step 2 Determine ρỹ

α̂k = arg min
αk

V k
2 (2.86c)

ρ̂kỹ = αkN(Hk) +H†
khk (2.86d)

Remark 2.2. Note that Step 2 can be simplified significantly by acknowledging that
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(2.77) and (2.78) can be jointly expressed as

[

Σϕ̄y − Σ ˜̄ϕy
Σϕ̄yϕu

]

θ̄ = 0. (2.87)

This allows the joint expression of (2.77) and (2.78) as

H̄kρỹ = h̄k, (2.88)

which constitutes na+ 1 equations in na+ 1 unknowns and can be solved in a straight-

forward manner (see Söderström 2008).

2.4.5 Joint output method

The joint output method (Söderström 1981) re-expresses the SISO EIV model as a mul-

tivariate state space system, which is driven by three white noise sequences. Introduce

the following assumptions.

AI5 The noise-free system input u0k
has a rational spectrum, i.e. it can be described

as an ARMA process of the form

D(q−1)u0k
= C(q−1)fk, (2.89)

where fk is a white noise zero mean random process and the polynomials C(q−1)

and D(q−1) are defined, respectively, by

C(q−1) , 1 + c1q
−1 + · · · + cncq

−nc, (2.90a)

D(q−1) , 1 + d1q
−1 + · · · + dnd

q−nd. (2.90b)

AS5 The polynomials A(q−1) and B(q−1) are of the same order, i.e. n , na = nb,

whilst the polynomials C(q−1) and D(q−1) are chosen such that nc = nd − 1.

Assumption AI5 is essential for the application of the joint output method, whereas

Assumption AS5 is introduced here for convenience only. Note that in the case of the

joint output method, the parameter vector θ comprises the coefficients of C(q−1) and

D(q−1) as well, i.e.

θ =
[

a1 · · · an b1 · · · bn c1 · · · cnc d1 · · · dnd

]T
. (2.91)
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Consequently, the overall EIV system can be described as a state space system with a

two dimensional output vector. One possibility is (Söderström 1981)

xk+1 = A (θ)xk + B(θ)fk, (2.92a)
[

yk

uk

]

= C (θ)xk +

[

ỹk

ũk

]

, (2.92b)

where xk ∈ R
na+nb denotes the system state vector and where

A (θ) ,

[

A11(θ) A12(θ)

A21(θ) A22(θ)

]

∈ R
(n+nd)×(n+nd), (2.93a)

B(θ) ,

[

B1(θ)

B2(θ)

]

∈ R
n+nd (2.93b)

C (θ) ,

[

1 01×(n−1) 01×nd

01×n 1 01×nd

]

∈ R
2×(n+nd) (2.93c)

with

A11(θ) ,










−a1 1 0 0
... 0

. . . 0
... 0 0 1

−an 0 0 0










∈ R
n×n, A12(θ) ,







b1 0
... 0

bn 0






,∈ R

n×nd (2.94)

A21(θ) , 0nd×n A22(θ) ,










−d1 1 0 0
... 0

. . . 0,
... 0 0 1

−dnd
0 0 0










∈ R
nd×nd ,

and

B1(θ) , 0n×1, B2(θ) ,
[

1 c1 · · · cnc

]T
∈ R

nd . (2.95)

Note that the first element of xk corresponds to y0k
, whilst the (n + 1)th element of

xk corresponds to u0k
. By applying the Kalman filter (see below in Section 2.5.1)

it is possible to obtain the optimal state estimate, hence estimates of the noise-free

input and noise-free output, which are denoted û0k
and ŷ0k

, respectively. Based on this

filtered input and output, it is possible to design a two dimensional innovations vector

ǫk(θ) ,

[

yk − ŷ0k

uk − û0k

]

, (2.96)
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which is termed the symmetric innovation within this thesis. It is then possible to

define the cost function

Vǫ(θ) =
1

2
E
[
ǫTk (θ)ǫk(θ)

]
, (2.97)

which leads to the well-known prediction error method (Ljung 1999). In addition, it is

possible to obtain the maximum likelihood estimate in the case of Gaussian data (see

Söderström 2007b). The minimisation of (2.97) is, however, rather computationally

demanding, since a Riccati equation is required to be solved at each iteration step, in

order to obtain the symmetric innovations {ǫk(θ)}
N
k=1, where N denotes the number of

available samples.

Note that the algorithm can also be formulated using frequency domain data (see

Pintelon & Schoukens 2007).

2.5 Filtering

Filtering can be defined as the problem of determining the unknown state of a dy-

namical system from noise corrupted measurements (Jazwinski 1970). It is therefore

an estimation problem which has, under certain assumptions, an optimal solution in

the linear Gaussian case. This is the well known Kalman filter (KF) which has been

proposed by R. E. Kalman in 1960 (Kalman 1960). This section first reviews the KF

algorithm as well as some modifications, namely the errors-in-variables KF (EIVKF)

and the extended KF for joint state and parameter estimation (JEKF), which form the

bases for further developments within this thesis.

2.5.1 Kalman filtering

Consider the discrete-time linear dynamic state space system given, for k ≥ 0, by

xk+1 = Akxk +Bkuk +Gkvk, x0 = x̄0, , (2.98a)

zk = Ckxk +Dkuk + ek, (2.98b)

where xk ∈ R
nx denotes the system state vector, x̄0 denotes the mean of the initial state

vector x0 and Ak ∈ R
nx×nx, Bk ∈ R

nx×nu , Ck ∈ R
nz×nx , Dk ∈ R

nu×nu and Gk ∈ R
nx×1

are matrices of appropriate dimension6. The noise sequences vk ∈ R and ek ∈ R
nz

denote process and measurement noise, respectively. The following assumptions are

introduced.

AI2 The system input uk is known exactly.

6Note that in this non-EIV situation the input uk ∈ R
nu is assumed to be known exactly, whilst

the measured output is denoted by zk ∈ R
nz .
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AN3 The noise sequences vk and ek are zero mean, white, and satisfy

E

[[

vk

ek

]
[

vTl eTl

]
]

=

[

Σk
v Σk

ve

ΣkT

ve Σk
e

]

δkl. (2.99)

AN4 The initial state x0 has the mean x̄0 with covariance matrix P0. In addition, x0

is independent of
[

vTk eTk

]T
for all k.

AN5 The quantities x0, vk and ek are jointly Gaussian.

The optimal one-step ahead prediction of the state, denoted x̂k+1|k, is given by the well

known KF, which has been developed in (Kalman 1960). Here, optimal refers to the

unbiased minimum variance property of the estimates. The single phase form of the

KF equations are given by the following algorithm (Anderson & Moore 1979, Sec. 5.4).

Algorithm 2.2 (Single phase KF).

x̂k+1|k = Akx̂k|k−1 +Bkuk +Kk

[
zk − Ckx̂k|k−1 −Dkuk

]
(2.100a)

Kk =
[

AkPk|k−1C
T
k +GkΣ

k
ve

] [

CkPk|k−1C
T
k + Σk

e

]−1
(2.100b)

Pk+1|k = AkPk|k−1A
T
k +GkΣ

k
vG

T
k −Kk

[

CkPk|k−1C
T
k + Σk

e

]

KT
k (2.100c)

The vector Kk denotes the Kalman gain and Pk+1|k denotes the error covariance

matrix of the estimated states. A thorough treatment of Kalman filtering theory can be

found in (Anderson & Moore 1979, Kailath & Sayed 2000), whilst a historical survey is

given in (Sorenson 1970). The relation between RLS and the KF is discussed in (Sayed

& Kailath 1994a, Young 1974, Young 1984).

2.5.2 Errors-in-variables filtering

In the non-EIV case, Kalman filtering deals with the optimal estimation of states and

outputs in the presence of process and output noise. EIV filtering, in contrast, aims

at estimating the noise-free outputs and noise-free inputs in the case where both quan-

tities are corrupted by additive noise. This problem was first addressed in (Guidorzi

et al. 2003), where a residual model representation of the EIV system (2.1)-(2.3) has

been considered. By formulating a state space model representation for the residuals,

an optimal (in the unbiased minimum variance sense) estimator for the noise-free in-

puts u0k
and outputs y0k

has been derived; different implementations have also been

discussed in (Diversi et al. 2003a).

An alternative formulation leading to an identical solution has been reported in

(Markovsky & De Moor 2005), where the optimal filter is directly derived from an
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EIV state space representation by making use of the well known KF algorithm. Whilst

both approaches yield equivalent results, the derivation in (Markovsky & De Moor 2005)

appears to be more straightforward. This is because the problem is essentially solved by

interpreting the input measurement noise as process noise (with accordingly modified

covariance matrices), which allows the KF to be applied directly. Both approaches

consider a zero residual problem (Van Huffel & Vandewalle 1991), that is, the noise-free

input and output signals are related by an exact linear relationship, i.e. no equation

error or process noise is considered. Following the approach in (Markovsky & De

Moor 2005), a unified framework for EIV and Kalman filtering has been presented

in (Diversi et al. 2005), where measurement noise as well as process disturbances are

considered. The relationship between EIV filtering and unknown input Kalman filtering

is discussed in (Gillijns & De Moor 2006), where the derived EIV filter allows a linear

combination of the input vector to be observed instead of the entire input vector.

The errors-in-variables Kalman filter (EIVKF) as presented in (Diversi et al. 2005)

is reviewed in the following.

Errors-in-variables Kalman filter

In (Diversi et al. 2005), a general EIV state space model

xk+1 = Akxk + Bku0k
+ Gkwk, x0 = x̄0, (2.101a)

y0k
= Ckxk + Dku0k

, (2.101b)

uk = u0k
+ ũk, (2.101c)

yk = y0k
+ ỹk, (2.101d)

is considered, which allows for input and output additive measurement noise, denoted

by ũk and ỹk, respectively, as well as process noise, denoted by wk. Here, xk ∈ R
nx

denotes the state of the system, and Ak, Bk, Ck, Dk and Gk are matrices of appropriate

dimension. The initial state x0 is a random vector with mean x̄0 and covariance matrix

P0. In contrast to the non-EIV state space representation given in (2.98), the true input

u0k
∈ R

nu of the system is unknown and only the measured quantity uk is available,

which is affected by additive measurement noise ũk. The following assumptions are

introduced.

AN6a The noise sequences ũk, ỹk and wk are assumed to be zero mean, white, inde-

pendent of u0k
and are characterised by the known covariance matrices

E

















x0

ũk

ỹk

wk









[

xT0 ũTl ỹTl wl

]









=









P0 0 0 0

0 Σk
ũ Σk

ũỹ 0

0 ΣkT

ũỹ Σk
ỹ 0

0 0 0 Σk
w









δkl. (2.102)
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EIVKF

uk

yk

Σk
ũ,Σ

k
ỹ,

Σk
ũỹ,Σ

k
w

x̄0

P̄0

x̂k+1|k û0k ŷ0k

Ak, Bk, Ck,
Dk, Gk

Figure 2.3: Inputs and outputs of the EIVKF.

As before, E[·] denotes the expected value operator and δkl the Kronecker delta func-

tion. Note that the input and output noise sequences are allowed to be correlated in

this setup. Indeed, the correlation between both sequences plays a crucial role in order

to obtain an estimate of u0k
(cf. Remark 2.3 below). Figure 2.3 shows a block diagram

of the EIVKF with corresponding inputs (known quantities) and outputs (estimated

quantities).

The system representation (2.101) can be reformulated by introducing the transfor-

mations

vk = Gkwk − Bkũk, (2.103a)

zk = yk −Dkuk, (2.103b)

ek = ỹk −Dkũk, (2.103c)

which gives the equivalent state-space representation

xk+1 = Akxk + Bkuk + vk, (2.104a)

zk = Ckxk + ek, (2.104b)

with corresponding covariance matrices

Σv = GkΣwG
T
k + BkΣũB

T
k , (2.105a)

Σe = Σỹ − Σũỹ
TDT

k −DkΣũỹ + DkΣũD
T
k , (2.105b)

Σve = Bk
[
ΣũD

T
k − Σũỹ

]
. (2.105c)

Consequently, a standard single phase KF (one-step prediction state estimator, (see

Chapter 5.4 in Anderson & Moore 1979)) can be applied, which is given by the following

algorithm.
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Algorithm 2.3 (EIVKF).

x̂k+1|k = Akx̂k|k−1 + Bkuk +Kkεk (2.106a)

εk = zk − Ckx̂k|k−1 (2.106b)

Σk
ε = CkPk|k−1C

T
k + Σk

e (2.106c)

Kk =
[

AkPk|k−1C
T
k + Σk

ve

] [

Σk
ε

]−1
(2.106d)

Pk+1|k = AkPk|k−1A
T
k + Σk

v −KkΣ
k
εK

T
k (2.106e)

ŷ0k
= yk −

[

Σk
ỹ − ΣkT

ũỹD
T
k

] [

Σk
ε

]−1
εk (2.106f)

û0k
= uk −

[

Σk
ũỹ − Σk

ũD
T
k

] [

Σk
ε

]−1
εk (2.106g)

Note that (2.106a)-(2.106e) is identical to Algorithm 2.2 where Dk = 0 and Gk = I,

with εk and Σk
ε being the innovations and corresponding covariance matrix, respectively.

In fact, the only difference with respect to standard Kalman filtering for state estimation

is the symmetric computation of the filtered inputs and outputs, which are obtained

via (Diversi et al. 2005)

û0k
= uk − E [ũk|zk] , (2.107a)

ŷ0k
= yk − E [ỹk|zk] . (2.107b)

The expected filter performance can be evaluated via the error covariance matrices

P ku = E
[

[u0k
− û0k

] [u0k
− û0k

]T
]

= Σk
ũ −

[

Σk
ũỹ − Σk

ũD
T
k

] [

Σk
ε

]−1 [

Σk
ũỹ − Σk

ũD
T
k

]T
, (2.108a)

P ky = E
[

[y0k
− ŷ0k

] [y0k
− ŷ0k

]T
]

= Σk
ỹ −

[

Σk
ỹ − ΣkT

ũỹD
T
k

] [

Σk
ε

]−1 [

Σk
ỹ − ΣkT

ũỹD
T
k

]T
. (2.108b)

Remark 2.3. The estimation of the noise-free input is only possible if either D 6= 0

and/or the input and output measurement noise is correlated. If D = 0 and Σk
ũỹ = 0

the estimate in (2.106g) becomes uk and the corresponding estimation error covariance

matrix in (2.108a) is identical to Σk
ũ.

2.5.3 Kalman filtering for bilinear systems

Whilst EIV filtering has only been considered for linear systems within the literature, a

part of this thesis addresses the EIV filtering problem for bilinear systems, a particular
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class of nonlinear systems. These are reviewed in the following together with the

corresponding KF.

Bilinear systems

Bilinear model representations are an appealing class of nonlinear models, since they are

considered to be ‘nearly linear’ due to their close structural and behavioural connections

with linear models (Pearson 1999). As bilinear characteristics arise in numerous areas

such as engineering, socioeconomics, chemistry and biology (Mohler 1991) and are able

to approximate many dynamical processes, there is a natural interest and motivation

to study such models. In the discrete-time domain, there exist at least two different

definitions of bilinear models: state-space and input-output representations. In con-

trast to their linear counterparts, however, these two representations are in general not

equivalent (Pearson 1999, Pearson & Kotta 2004) and an investigation of the relation-

ship between these two bilinear model classes, together with some general results, is

presented in (Pearson & Kotta 2004). Furthermore, the aspect of stochastic bilinear

realisation theory, i.e. the task of finding bilinear state-space realisations from input-

output representations, is addressed in (Favoreel, De Moor & Van Overschee 1999).

The recursive identification of discrete-time bilinear input-output models is considered

in (Fnaiech & Ljung 1987) whereas a subspace approach for the identification of bi-

linear state-space models is considered in (Favoreel et al. 1999, Verdult 2002). An

approach for the identification of a class of bilinear EIV models by means of extended

compensated least-squares is presented in (Ekman 2005).

Kalman filter for bilinear systems

Consider the bilinear time-invariant single-input single-output (SISO) discrete-time

(non-EIV) state-space representation, which is given by

xk+1 = Axk +Buk +Nukxk +Gvk, x0 = x̄0, (2.109a)

zk = Cxk +Duk + ek, (2.109b)

where xk ∈ R
nx is the state vector, x0 its initial value with mean x̄0 and covariance

matrix P0, whilst uk ∈ R and zk ∈ R are the system input7 and measured output,

respectively. The quantity vk is the noise acting on the state and ek denotes the

measurement output noise. The matrices A, B, C, D, G and N are known, time-

invariant and of appropriate dimensions. The difference between the bilinear and the

linear case is the additional multiplicative term involving the state and input.

Remark 2.4 (Multiple-input multiple-output case). The restriction to the SISO case is

considered here without loss of generality and for convenience only. In the multivariate

7The system input is assumed to be known for the time-being.

43



2. Review

case, i.e. uk ∈ R
nu and yk ∈ R

ny , the bilinear term in (2.109a) becomes Nuk ⊗ xk,

where the Kronecker product ⊗ is defined such that c ⊗ d = [c1d
T · · · cpd

T ]T ∈ R
pq

with c ∈ R
p and d ∈ R

q being arbitrary vectors. In addition, N = [N1 · · · Nnu
] ∈

R
nx×nxnu holds, which allows linear combinations of multiplicative terms between each

input and each element of the state vector.

It is observed, that the bilinear model (2.109) is linear in the input and linear in the

states, but jointly nonlinear in state and input. The fact that bilinear models are linear

in the states allows (2.109) to be considered as a linear time-varying model (Fnaiech

& Ljung 1987, Favoreel et al. 1999). This property is highlighted by factorising the

state or the input term, from which it is clear that this either leads to a time-varying

(input-dependent) system matrix

Ak , A+Nuk, (2.110)

or a time-varying (state-dependent) input matrix

Bk , B +Nxk, (2.111)

respectively. Hence, a KF for state estimation of (the non-EIV) model (2.109) can

be derived in a straightforward manner as for linear state-space models (cf. Favoreel

et al. 1999, Ekman 2005) using the time-varying system matrix Ak. Note that for

the case of jointly Gaussian state noise vk and initial state x̄0, where the latter is

independent of vk and ỹk for all k and whose first and second order statistics are

known, xk is Gaussian too, since (2.109a) is linear in the state. Hence, in the case

of known input uk, the KF for the bilinear model (2.109) will be the optimal filter in

a minimum mean-square error sense (Anderson & Moore 1979). A derivation of the

bilinear KF is given in Appendix H.

Following the interpretation of a bilinear system as a linear time-varying (input

dependent) system as in (2.110), it is apparent that the input signal will influence

the stability of the system. Therefore, it seems natural to introduce the following

assumption.

AI4 The system input uk behaves in a manner, such that the bilinear system whose

dynamics are characterised by the state transition matrix A+Nuk is stable.

Note that in the time-varying case, it is neither necessary nor sufficient to demand

that the spectral radius of A + Nuk is less than unity for all k (see e.g. Stoica &

Söderström 1995).

Systems which can be described by (2.109) are commonly referred to as bilinear

systems, whereas if the input uk is considered to be a random signal rather than a

deterministic sequence, (2.109) is known as a bilinear stochastic system (Carravetta,

Germani & Raimondi 1997). Alternatively, a bilinear stochastic system can be viewed
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as a system with multiplicative state noise or, equivalently, as a linear system with a

random system matrix (De Koning 1984). This point of view can also be taken in the

case of bilinear EIV systems, as outlined in Chapter 6.

2.5.4 Extended Kalman filter for joint state and parameter estimation

When the states of a linear state space model are extended with the parameter vector

θ, an extended Kalman filter can be utilised to estimate the states as well as the system

parameters in a joint fashion. This algorithm is the well known extended Kalman filter

for joint state and parameter estimation (JEKF) (Ljung 1979), which is reviewed as

follows.

Preliminaries

Consider the input-output data created by the (non-EIV) discrete-time LTI state space

system given, for k ≥ 0, by

xk+1 = A0xk +B0uk + vk, x0 = x̄0 (2.112a)

zk = C0xk +D0uk + ek, (2.112b)

where xk ∈ R
nx denotes the state, uk the input, zk the output, vk the process noise,

ek the measurement noise and the ‘true’ system matrices A0, B0, C0 and D0 are of

appropriate dimensions. As in Section 2.5.1, the assumptions AI2 and AN3-5 hold.

Also introduce the corresponding model which is given by

xk+1 = A(θ)xk +B(θ)uk + vk, (2.113a)

zk = C(θ)xk +D(θ)uk + ek, (2.113b)

where the matrices A(θ), B(θ), C(θ) and D(θ) are dependent on the parameter vector

θ, which defines the system.

Standard form

Based on an extended Kalman filter (EKF) (Jazwinski 1970, Anderson & Moore 1979)

an adaptive estimator for the model parameters can be derived by extending the state

with the time dependent parameter vector, denoted θk, which leads to the following
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nonlinear8 state space representation

[

xk+1

θk+1

]

=

[

A(θk)xk +B(θk)uk

θk

]

+

[

vk

dk

]

, (2.114a)

zk = C(θk)xk +D(θk)uk + ek. (2.114b)

The noise term dk with covariance matrix

Σdδkl = E
[
dkd

T
l

]
(2.115)

allows for variations in the system parameters and is usually set to zero if time-

invariance is assumed.

Defining for convenience

Ak , A(θ̂k), Bk , B(θ̂k),

Ck , C(θ̂k), Dk , D(θ̂k), (2.116)

the EKF for joint state and parameter estimation (JEKF) is given by the following

algorithm (Ljung 1979) (see also Appendix J for a detailed derivation).

Algorithm 2.4 (JEKF).

x̂k+1|k = Akx̂k|k−1 +Bkuk +Kk

[
zk − Ckx̂k|k−1 −Dkuk

]
(2.117a)

θ̂k+1 = θ̂k + Lk
[
zk − Ckx̂k|k−1 −Dkuk

]
(2.117b)

Kk = [AkP1k
CTk + FkP

T
2k
CTk +AkP2k

HT
k + FkP3k

HT
k + Σve]S

−1
k (2.117c)

Sk = CkP1k
CTk + CkP2k

HT
k +HkP

T
2k
CTk +HkP3k

HT
k + Σe (2.117d)

Lk =
[
P T2k

CTk + P3k
HT
k

]
S−1
k (2.117e)

P1k+1
= AkP1k

ATk +AkP2k
F Tk + FkP

T
2k
ATK + FkP3k

F Tk −KkSkK
T
k + Σv (2.117f)

P2k+1
= AkP2k

+ FkP3k
−KkSkL

T
k (2.117g)

P3k+1
= P3k

− LkSkL
T
k + Σd (2.117h)

The Jacobians in Algorithm 2.4 are defined by

Fk = F (θ̂k, x̂k|k−1, uk), (2.118a)

Hk = H(θ̂k, x̂k|k−1, uk), (2.118b)

8Nonlinear due to the product between xk and θk, where the latter is incorporated within A(θk)
and C(θk). Since both, xk and θk are part of the newly formed augmented state vector, the resulting
equations are nonlinear.
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where

F (θ̂, x, u) =
∂

∂θ
[A(θ)x+B(θ)u]

∣
∣
θ=θ̂

, (2.119a)

H(θ̂, x, u) =
∂

∂θ
[C(θ)x+D(θ)u]

∣
∣
θ=θ̂

. (2.119b)

Innovations form

It is shown in (Ljung 1979) that the above recursive parameter estimator can be in-

terpreted as an attempt to minimise the expected value of squared prediction errors

associated with a constant model θ. Hence, this estimator is closely related to a re-

cursive prediction error method. In fact, the recursive prediction error method applied

to a state space model and the parameter estimator derived by the EKF are virtually

identical, except that the term corresponding to the derivative of the Kalman gain

(which is a function of θ) has been discarded (Ljung & Söderström 1983, p. 130). A

convergence analysis of this parameter estimator for linear systems is also carried out

in (Ljung 1979) and it is shown that it can produce biased estimates or it can even

diverge. However, the above procedure can be modified to become a stochastic descent-

algorithm which is globally convergent by including an approximation of the dismissed

term

[
d

dθ
K(θ)

]

εk (2.120)

into the Jacobian Fk (referred to as the coupling term in (Ljung 1979)), where K(θ) is

the Kalman gain and εk denotes the innovation defined by

εk , zk − C(θ)x̂k|k−1 −D(θ)uk. (2.121)

One way to ensure this property is to assume an innovation model structure

xk+1 = A(θ)xk +B(θ)uk +K(θ)εk, (2.122a)

zk = C(θ)xk +D(θ)uk + εk, (2.122b)

rather than (2.113) and include all elements of the Kalman gain K into the parameter

vector θ, i.e.

θk =
[

a1 · · · ana b1 · · · bnb
k1 · · · knx

]T
. (2.123)

It is argued in (Ljung 1979) that the noise covariance information is solely used to

arrive at the Kalman gain (2.117c), and if the latter is estimated directly as part of

the extended state vector, a more parsimonious parametrisation is achieved. Hence the

innovation parametrisation is generally beneficial, if no explicit a priori information of

the noise structure in the form of the covariance matrices is available. Consequently,
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parameterising K(θ) and Σε explicitly leads to a modified algorithm which can be

summarised as follows.

Algorithm 2.5 (JEKF in innovation form).

x̂k+1|k = Akx̂k|k−1 +Bkuk +Kkεk (2.124a)

θ̂k+1 = θ̂k + Lkεk (2.124b)

εk = zk − Ckx̂k|k−1 −Dkuk (2.124c)

Lk =
[
P T2k

CTk + P3k
HT
k

] [

Σk
ε

]−1
(2.124d)

P2k+1
= AkP2k

+ F̄kP3k
−KkΣ

k
εL

T
k (2.124e)

P3k+1
= P3k

− LkΣ
k
εL

T
k + Σd (2.124f)

Σk
ε = Σk−1

ε +
1

k

(

εkε
T
k − Σk−1

ε

)

(2.124g)

The quantities F̄k and Kk are given by

F̄k = F̄ (θ̂k, x̂k|k−1, uk, εk), (2.125a)

Kk = K(θ̂k), (2.125b)

with

F̄ (θ̂, x, u, ε) =
∂

∂θ
[A(θ)x+B(θ)u+K(θ)ε]

∣
∣
θ=θ̂

, (2.126)

whilst Hk is given by (2.118b). Note that the innovation covariance matrix is also

estimated from the data via (2.124g). In addition, a projection facility has to be

utilised to ensure that θ̂k lies in the compact subset defined by

Ds = {θ|A(θ)−K(θ)C(θ) is exponentially stable} , (2.127)

which means that the poles of the KF are projected into the unit circle. In practice, a

step-size reduction might also be necessary to achieve convergence.

2.6 Concluding remarks

This Chapter has reviewed a few well-known tools and techniques for the errors-in-

variables identification and filtering problem, hence providing a detailed literature re-

view of the subject. Whilst a more detailed disquisition of the reviewed methods can

be found within the cited literature, this chapter has equipped the reader with the

fundamental concepts, which allow the developments of the forthcoming chapters to be
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followed.
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Nomenclature

Âk . . . . . . . . . . . . . . . . . Schur complement

dk
1 , d

k
2 , dk

3 , dk
4 , dk

5 . . . Auxiliary terms

F k
1 , F k

2 , F k
3 . . . . . . . . Measures for Frisch-character

J(σũ) . . . . . . . . . . . . . . Jacobian (of residual rk(θ) with respect to σũ )

J
(σũ)
k . . . . . . . . . . . . . . Approximate Jacobian (of residual rk(θ) with respect to σũ )

Lk . . . . . . . . . . . . . . . . . Recursive least squares gain

Lθ(ϑ) . . . . . . . . . . . . . . Linearised θ-equation of Frisch scheme

Lσỹ (ϑ) . . . . . . . . . . . . . Linearised λmin-equation of Frisch scheme

MSEk . . . . . . . . . . . . . . Mean square error

Pk . . . . . . . . . . . . . . . . . Scaled covariance matrix obtained from Recursive least squares

rk(θ) . . . . . . . . . . . . . . . Residual of Yule-Walker cost function

r̂k . . . . . . . . . . . . . . . . . . Residual of conjugate gradient method

R(xk) . . . . . . . . . . . . . . Rayleigh quotient

Vk . . . . . . . . . . . . . . . . . YW cost function

V ′
k, V ′′

k . . . . . . . . . . . . . First and second order derivative of Vk

V lin
k . . . . . . . . . . . . . . . . Yule-Walker cost function using linearised Frisch scheme equations

V
(θ)
k . . . . . . . . . . . . . . . Approximate derivative of Vk with respect to θ

V
(σũ)
k . . . . . . . . . . . . . . Approximate derivative of Vk with respect to σũ

xk . . . . . . . . . . . . . . . . . Eigenvector corresponding to Âk

x̄k . . . . . . . . . . . . . . . . . Eigenvector xk scaled to unity length

βk
i . . . . . . . . . . . . . . . . . Weighting (of ith data at time k)

γk . . . . . . . . . . . . . . . . . Gain sequence or step size

ζk . . . . . . . . . . . . . . . . . . Instrument vector comprising delayed inputs

θ
(ỹ)
k . . . . . . . . . . . . . . . . Approximate derivative of θ̂k with respect to σ̂k

ỹ

θ
(ũ)
k . . . . . . . . . . . . . . . . Approximate derivative of θ̂k with respect to σ̂k

ũ

θ̂k+ 1

2

. . . . . . . . . . . . . . . Intermediate estimate of θ

ϑ∗ . . . . . . . . . . . . . . . . . Point of linearisation

ι(ϑ) . . . . . . . . . . . . . . . . Auxiliary term

ῑ(ϑ) . . . . . . . . . . . . . . . . Auxiliary term

κ(ϑ) . . . . . . . . . . . . . . . Auxiliary term

λk . . . . . . . . . . . . . . . . . Forgetting factor

µ̂k . . . . . . . . . . . . . . . . . Step size (conjugate gradient)

σmax
ỹ . . . . . . . . . . . . . . . Maximal admissible value for σ̂k

ỹ

σmax
ũ . . . . . . . . . . . . . . . Maximal admissible value for σ̂k

ũ

σ
(ũ)
ỹ,k . . . . . . . . . . . . . . . . Approximate derivative of σ̂k

ỹ with respect to σ̂k
ũ

ψ̂k . . . . . . . . . . . . . . . . . Conjugate gradient update direction

Preliminary reading: Sections 2.2, 2.3, 2.4.3.

3.1 Introduction

In many applications, it is essential to identify a system online while the process which is

generating the data is running. This requires recursive system identification algorithms

(see. e.g. Ljung & Söderström 1983), which update an existing model as soon as new

measured data becomes available. When not only the outputs, but also the inputs of the
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system are corrupted by additive measurement noise, an errors-in-variables (EIV) setup

(Söderström 2007b) arises. Within the literature only limited attention has been given

to the development of recursive EIV identification algorithms. In particular, apart from

the work of the author, no recursive approaches exist to identify an EIV system via the

so-called Frisch scheme (Beghelli et al. 1990, Diversi et al. 2006, Söderström 2007a).

The Frisch scheme is an EIV system identification technique, which yields not only

the system parameters, but also the variances of the input and output measurement

noise sequences. Consequently, this technique may be of interest for fault detection and

condition monitoring purposes, since a change in the noise variances could, for instance,

indicate faults associated with sensor devices. Hence, there is a natural motivation to

develop a recursive identification algorithm based on the Frisch scheme.

This chapter develops recursive algorithms based on the offline Frisch scheme, which

makes use of the Yule-Walker (YW) model selection criterion (cf. Section 2.4.3). The

common idea is to use iterative procedures which carry out a single iteration as new

data arrives. Such approaches are commonly utilised for recursive identification (see

e.g. Ljung & Söderström 1983, Ljung 1999). The overall problem of developing recursive

Frisch scheme algorithms can be divided into three subproblems:

1. Recursive computation of the parameter vector.

2. Recursive computation of the output measurement noise variance.

3. Recursive computation of the input measurement noise variance.

The first subproblem is addressed by taking the inconsistent recursive least squares

(RLS) solution, from which the bias can be removed at each time instance, if an esti-

mate of the input and output measurement noise variance is available. Such recursive

bias compensating least squares (RBCLS) approaches are well-known within the litera-

ture (see e.g. Sagara & Wada 1977, Zheng & Feng 1989, Zheng 2000). The computation

of the output measurement noise variance requires the solution of an eigenvalue prob-

lem. In order to obtain a recursive update equation, a conjugate gradient subspace

tracking algorithm is utilised, which tracks the smallest eigenvalue of a slowly vary-

ing matrix. The third subproblem requires the minimisation of a model selection cost

function. Two different approaches are discussed here: Firstly, a Gauss-Newton algo-

rithm, which uses approximate derivatives is considered. Secondly, the nonlinear model

selection criterion is replaced by an alternative cost function, which makes use of the

linearised Frisch scheme equations. This allows a closed form solution of the input mea-

surement noise variance to be obtained at each recursion step. The second approach

is equivalent to the application of a steepest gradient technique in combination with a

line search when use is made of the linearised Frisch scheme equations. Based on these

two distinctively different methods for the determination of the input measurement

noise variance, two different recursive Frisch scheme (RFS) algorithms are proposed,

which are compared in simulation. Following on from this, a detailed analysis of the
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computational costs of the derived algorithms is provided revealing the bottlenecks

within the RFS computation. The absolute computation time per recursion of the

two RFS algorithms is also compared to the offline case in a numerical example. Fur-

thermore, attention is given to analyse the so-called Frisch-character, a feature which

distinguishes the offline Frisch scheme from other identification techniques within the

EIV framework. It is investigated via simulation, how the Frisch-character is affected

when the recursive schemes are utilised to compute the estimates1. Finally, the RFS

development is critically reviewed and alternative design strategies are discussed to

overcome some of the potential shortcomings.

The chapter is organised as follows: Section 3.2 provides the formulation of the

problem whilst the recursive algorithms are developed in Section 3.3. Their computa-

tional complexity is analysed in Section 3.4 and Section 3.5 is dedicated to investigate

the Frisch-character of the resulting estimates. A critical discussion is provided in

Section 3.6, and concluding remarks are given in Section 3.7.

Parts of this chapter have been published by the author in a series of papers: The

core of the RFS development is described in (Linden, Vinsonneau & Burnham 2008)

whilst early approaches, are reported in (Meyer, Linden, Vinsonneau & Burnham 2006,

Linden, Meyer, Vinsonneau & Burnham 2006). Some analysis of the so-called Frisch-

character of the estimates has been given in (Linden & Burnham 2008c), whilst the

steepest gradient algorithm in combination with a line search has been proposed in

(Linden, Larkowski & Burnham 2008).

3.2 Preliminaries

Typically, a recursive estimation scheme must obey the following principles (Ljung

1999):

P1 The processing must with certainty be completed during one sample interval using

a fixed and a priori known amount of calculation.

P2 The data, which is passed from one recursion step to the next, must be stored in

a finite-dimensional information vector.

The first principle is mainly associated with the computational complexity of the result-

ing algorithm. This aspect is fully investigated in Section 3.4. The second principle can

be easily fulfilled for the Frisch-YW case, since it is straightforward to update the re-

quired covariance matrices Σ̂k
ϕ̄ and Σ̂k

ζϕ̄ (see (2.47), (2.49)) or, in the case of adaptivity,

the corresponding weighted arithmetic means (see Appendix B).

1Note that the Frisch-character is purely of academic interest and is investigated here to compare
the recursive estimates with the offline estimates. It does, however, not reveal any information about
the accuracy of the estimates obtained. With respect to practical applications, the Frisch-character
might even be considered to be insignificant.
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Recall from Section 2.4.3, that the estimates of the non-recursive Frisch-YW at time

instance k are obtained by solving the nonlinear set of equations given by

θ̂k =
(

Σ̂k
ϕ − Σϕ̃(σ̂k)

)−1
ξ̂kϕy, (3.1a)

σ̂kỹ = λmin

(

Âk

)

, (3.1b)

σ̂kũ = arg min
σũ

Vk, (3.1c)

where

Σϕ̃(σ̂k) =

[

σ̂kỹIna 0

0 σ̂kũInb

]

, (3.2a)

Âk , Σ̂k
ϕ̄y

− Σ̂k
ϕ̄yϕu

[

Σ̂k
ϕu

− σ̂kũInb

]−1
Σ̂k
ϕuϕ̄y

, (3.2b)

Vk =
1

2
‖Σ̂k

ζϕ̄θ̄‖
2
2. (3.2c)

Consequently, recursive expressions for (3.1) are to be developed which are outlined in

the subsequent sections. Note that (3.1a) and (3.1b) form the core of the Frisch scheme

and these are therefore termed the Frisch equations in the subsequent development. As

in the offline Frisch scheme, the following assumptions are stated.

AS1 The dynamic system is asymptotically stable, i.e. A(q−1) has all zeros inside the

unit circle.

AS2 All system modes are observable and controllable, i.e. A(q−1) and B(q−1) have

no common factors.

AS3 The polynomial degrees na and nb are known a priori with nb ≤ na.

AI1 The true input u0k
is a zero-mean ergodic process and is persistently exciting of

sufficiently high order.

AN1 The sequences ũk and ỹk are zero-mean, ergodic, white noises with unknown

variances, denoted σũ and σỹ, respectively, i.e.

σũδkl , E [ũkũl] , (3.3a)

σỹδkl , E [ỹkỹl] . (3.3b)

AN2 The sequences ũk and ỹk are mutually uncorrelated and also uncorrelated with

both u0k
and y0k

.

3.3 Algorithmic development

This section develops recursive expressions for the Frisch scheme algorithm given by

(3.1) based on the development presented in (Linden, Vinsonneau & Burnham 2008,
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Linden, Larkowski & Burnham 2008). For the update of the estimated model param-

eters, a recursive bias-compensating least squares algorithm (RBCLS) is considered.

Such approaches are well-known within the literature (see e.g. Sagara & Wada 1977)

and have also been applied to iteratively solve the (offline) bias compensation prob-

lem (Zheng & Feng 1989, Zheng 2000). The underlying idea is to compute the RLS

solution and to compensate for the asymptotic bias at each time instance. In order

to compensate for the bias, the variances of the input and output measurement noise

sequences are required, for which gradient-based approaches are considered here. Note

that the recursive computation of the variances, which is based on the Frisch scheme

approach, distinguishes the algorithms developed within this chapter from other re-

cursive/iterative bias compensating schemes within the literature. Recall from (3.1b),

that an estimate of the output measurement noise variance is determined by solving an

eigenvalue problem. This can be (approximately) solved recursively, by making use of

a conjugate gradient method, which tracks the smallest eigenvalue of a slowly varying

matrix. For the update of the input measurement noise estimate two possibilities are

considered within this section: Whilst the initial development in (Linden, Vinsonneau

& Burnham 2008) considered a steepest gradient algorithm with fixed step size, here,

the minimum of the YW model selection cost function (3.2c) is updated either via a

Gauss-Newton algorithm, or a steepest gradient search employing a line search facility.

The latter is equivalent to minimising a modified cost function, which exclusively de-

pends on linearisations of the Frisch scheme equations (3.1a)-(3.1b) and which allows

a closed form solution of σ̂kũ to be obtained at each time instance k. This approach has

been proposed in (Linden, Larkowski & Burnham 2008).

Firstly, the update of the covariance matrices is discussed in Section 3.3.1 followed

by development of the update equation for θ, σỹ and σũ in Sections 3.3.2-3.3.4, respec-

tively. The overall algorithms are summarised in Section 3.3.5 followed by a numerical

example, which is given in Section 3.3.6.

3.3.1 Update of covariance matrices

In order to satisfy requirement P2, the covariance elements Σ̂k
ϕ, ξ̂kϕy, Σ̂k

ϕ̄y
, Σ̂k

ϕ̄yϕu
, Σ̂k

ϕu
,

Σ̂k
ϕuϕ̄y

and Σ̂k
ζϕ̄ in (3.1) are to be updated. Since the first six covariance elements are

contained within (cf. the definitions (2.10)-(2.12))

Σ̂k
ϕ̄ =

[

Σ̂k
ϕ̄y

Σ̂k
ϕ̄yϕu

Σ̂k
ϕuϕ̄y

Σ̂k
ϕu

]

=

[

r̂y(0) −ξ̂kyϕ
−ξ̂kϕy Σ̂k

ϕ

]

, (3.4)
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it is sufficient to consider the update of Σ̂k
ϕ̄ and Σ̂k

ζϕ̄. The covariance matrices can be

updated in a straightforward manner as

Σ̂k
ϕ̄ = Σ̂k−1

ϕ̄ +
1

k

(

ϕ̄kϕ̄
T
k − Σ̂k−1

ϕ̄

)

, (3.5a)

Σ̂k
ζϕ̄ = Σ̂k−1

ζϕ̄ +
1

k

(

ζkϕ̄
T
k − Σ̂k−1

ζϕ̄

)

. (3.5b)

Using (3.5), it is now possible to evaluate the Frisch-YW equations (3.1) at each time

step. Although such an algorithm may satisfy P1 and P2 (provided the time used for

the minimisation of Vk is limited), it cannot be considered to be a recursive scheme

since only the trivial covariance matrix update operations are performed. However,

such a repeatedly applied Frisch scheme (RAFS) is used for comparison purposes in

the subsequent development, since it exhibits all the characteristic properties of the

Frisch scheme. The algorithm can be summarised as follows.

Algorithm 3.1 (RAFS).

1) Initialisation

2) For k = nζ + nb + 1, ...

a) Update Σ̂k
ϕ̄ and Σ̂k

ζϕ̄ via (3.5)

b) Compute σ̂kũ via (3.1c)

c) Determine σ̂kỹ by solving (3.1b)

d) Compute θ̂k via (3.1a)

In order to compute σ̂kũ, an optimisation has to be performed to obtain the minimum

of the YW cost function, which is usually achieved in an iterative way. If Matlab is

used to implement the algorithm, readily available routines such as fminsearch, which

applies the Nelder-Mead simplex method (cf. MathWorks 2007), can be utilised. Recall

that in order to evaluate the value of the cost function, (3.1a) and (3.1b) need to be

computed, which means that an eigenvalue problem has to be solved at each iteration

step (several times at each k). The computational burden of such an optimisation,

which is to be carried out at each recursion step of the RAFS, is therefore expected

to be rather high. In order to overcome this shortcoming, and following the philos-

ophy of recursive identification techniques, it is possible to apply only one iteration

per recursion, i.e to set the number of maximal iterations to unity. This will, if the

optimisation is initialised with the most recent value of the input measurement noise

variance estimate, gradually improve the estimate of σũ as time evolves.
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Adaptivity

In order to equip the algorithm with some form of adaptivity, exponential data weight-

ing (forgetting) may be utilised within the update of the covariance matrices. There-

fore, one common approach is to assume that the process generating the data is varying

slowly over time such that stationarity can be assumed to hold approximately (DeGroat,

Dowling & Linebarger 1997). Other choices of data weighting, such as moving windows,

might be more appropriate depending on the desired tracking capability of the estima-

tor. This is, however, not considered here.

In the case of exponential data weighting, the covariance matrices become weighted

arithmetic means, which are denoted Σ̄k
ϕ̄ and Σ̄k

ζϕ̄. By weighting the ith data at time

k with

βki = λkβ
k−1
i for 0 ≤ i ≤ k − 1 and βkk , 1, (3.6)

where λk denotes the forgetting factor, the general update equations for the covariance

matrices are given by (cf. Chapter 11.2 in (Ljung 1999) or see Appendix B for details)

Σ̄k
ϕ̄ = Σ̄k−1

ϕ̄ + γk

(

ϕ̄kϕ̄
T
k − Σ̄k−1

ϕ̄

)

, (3.7a)

Σ̄k
ζϕ̄ = Σ̄k−1

ζϕ̄ + γk

(

ζkϕ̄
T
k − Σ̄k−1

ζϕ̄

)

. (3.7b)

The normalising gain γk is given by

γk ,

(
k∑

i=1

βk,i

)−1

=
γk−1

λk + γk−1
, (3.8)

which reduces to 1/k in the case of no adaptivity, i.e. λk equal to 1. In the case of

exponential forgetting, i.e. λk = λ where 0 < λ < 1, the normalising gain becomes

1 − λ.

Rather than using an exponential weighting of the data, it is possible to describe the

variation of the parameters in a stochastic manner which is frequently done by modelling

the variation as random walks or generalisations. If the parameters are assumed to

vary in a more rapid manner, the system might be described via state dependent

parameter models. The identification of such systems is the topic of (Young, McKenna

& Bruun 2001). This is, however, not further considered here, and for simplicity, the

case of no forgetting (γk = 1/k) is considered in the subsequent development (which

implies that the ˆ notation Σ̂k
ϕ̄ and Σ̂k

ζϕ̄ is used).

The next subsection provides recursive update equations of the system parameter

estimates.

57



3. Gradient-based recursive Frisch scheme approaches

3.3.2 Update of θ

If the output measurement noise σỹ was computed via (3.1b), i.e. the eigenvalue prob-

lem was solved exactly, the resulting set of normal equations

(

Σ̂k
ϕ − Σϕ̃(σ̂k)

)

θ̂k = ξ̂ϕy (3.9)

would be consistent and could be uniquely solved for θ̂k, e.g. via Gaussian elimination.

In the case that the eigenvalue problem is solved approximately (as discussed in Section

3.3.3) the normal equations are inconsistent and an approximate solution is required to

be searched for. Whilst other choices are possible (e.g. total least squares), the most

straightforward way to compute θ̂k would be via the usage of least squares (LS). In

order to obtain a recursive expression for θ̂k, an approach is adopted here, similar to

that in (Sagara & Wada 1977, Zheng & Feng 1989), where the bias of the recursive least

squares (RLS) estimate is compensated at each time step k. For now, it is assumed

that estimates of σ̂kũ and σ̂kỹ have already been obtained. The update equations for the

latter two quantities are developed in the remainder of this Section (see Sections 3.3.3

and 3.3.4 below).

Using the RBCLS approach of Section 2.4.1, allows a recursive estimate of θ to be

obtained as summarised in the following algorithm (cf. also Appendix A for a more

detailed derivation).

Algorithm 3.2 (RBCLS).

θ̂k = θ̂LS
k + PkΣϕ̃(σ̂k)θ̂k−1. (3.10)

The corresponding RLS equations for the determination of θ̂LS
k and Pk are given as

follows.

Algorithm 3.3 (Normalised gain RLS).

θ̂LS
k = θ̂LS

k−1 + Lk

(

yk − ϕTk θ̂
LS
k−1

)

(3.11a)

Lk =
Pk−1ϕk

ϕTk Pk−1ϕk + 1−γk
γk

(3.11b)

Pk =
1

1 − γk

(

Pk−1 −
Pk−1ϕkϕ

T
k Pk−1

ϕTk Pk−1ϕk + 1−γk
γk

)

(3.11c)
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Note that

Pk = [Σ̂k
ϕ]−1, (3.12)

which means that by making use of the above normalised gain version of RLS and

applying the matrix inversion lemma (see Ch. 11.2 in Ljung 1999), utilisation of Pk in

(3.10) to compute [Σ̂k
ϕ]−1 recursively, conveniently avoids the need for matrix inversion.

Remark 3.1. The RLS algorithm provides another means to introduce adaptivity into

the identification via exponential data weighting controlled by γk in (3.11). By tuning

the gain γk in (3.7) (which is generally different to that used in (3.11)), the user can

choose whether to introduce adaptivity for the estimation of the variances as well as the

parameters, or solely for the system parameters (the latter can be achieved by setting

γk in (3.7) to 1/k whilst choosing γk = 1 − λk in (3.11)).

The next subsection considers the recursive computation of the output measurement

noise variance.

3.3.3 Update of σỹ

In order to compute σ̂kỹ , the least eigenvalue of Âk in (3.2b) is required to be determined,

which generally requires O(n3) flops for a n×nmatrix (Golub & Van Loan 1996). When

only a few eigenpairs are required, more efficient algorithms exist which only track the

subspace corresponding to one or more eigenvalues (Comon & Golub 1990). Such an

approach is feasible when the corresponding matrix (hence the singular triplets) ‘varies

slowly’ with time, which is assumed to be the case here, provided the estimate σ̂kũ does

not exhibit any rapid changes2. Therefore, introduce the following assumption3.

AE1 The estimate of the input measurement noise variance σ̂kũ ‘varies slowly’ with

time.

Since the matrix update ∆Ak , Âk − Âk−1 is generally of full rank na + 1, a gradient

based algorithm, which requires O(n2) flops4, is applied in the subsequent development,

in order to determine a recursive expression for σ̂kỹ . More specifically, an iterative

conjugate gradient method similar to that proposed in (Chen, Sarkar, Dianat & Brulé

1986, Feng & Owen 1996, Yang 1993) is used, where one iteration per recursion is

applied.

Remark 3.2 (Choice of subspace tracking algorithm). Note that tracking eigenpairs or

singular triplets is a common problem in the area of signal processing and the corre-

sponding research area is termed subspace tracking, which has experienced tremendous

2Note that the sample covariance elements contained in Âk converge towards their expected values
for an increasing number of samples due to the stated assumptions.

3Here, AE corresponds to the assumptions concerning the estimator.
4In the case of a rank-one update, it is possible to track d singular triplets using O(nd2) flops only

(cf. Section V in (Comon & Golub 1990) or see (Davila 1994)).

59



3. Gradient-based recursive Frisch scheme approaches

interest in the literature (see (Comon & Golub 1990) for a detailed survey and (DeGroat

et al. 1997) for the developments since 1990). Consequently, there exists a rich collec-

tion of algorithms to tackle the problem of tracking σ̂ỹ within the recursive Frisch-YW

algorithm. Whilst in this chapter the approach is focused on the conjugate gradient

methods, other choices (e.g. inverse power iteration) might well be possible.

Suppose the eigensystem is given by

Âkxk = σkỹxk, (3.13)

where xk ∈ R
na+1 denotes an eigenvector of Âk and σkỹ ∈ R the corresponding eigen-

value. Then, the minimum eigenvalue can be obtained by minimising the Rayleigh

quotient (Golub & Van Loan 1996)

σkỹ = R(xk) ,
xTk Âkxk

xTk xk
. (3.14)

Utilising a conjugate gradient method to minimise R(xk), the update equations for the

minimum eigenvalue are given by (cf. Feng & Owen 1996)

x̂k = ˆ̄xk−1 + µ̂k−1ψ̂k−1, (3.15a)

ˆ̄xk = x̂k/
(
x̂Tk x̂k

)1/2
, (3.15b)

σ̂kỹ = ˆ̄xTk Âk ˆ̄xk, (3.15c)

where x̂k denotes an estimate of the eigenvector xk and ˆ̄xk is a scaled version of unity

length. The scalar µ̂k denotes the stepsize whilst ψ̂k ∈ R
na+1 denotes the conjugate

gradient update direction which is given by

r̂k = Âk ˆ̄xk − σ̂kỹ ˆ̄xk, (3.16a)

q̂k−1 = −(r̂Tk Âkψ̂k−1)/(ψ̂
T
k−1Âkψ̂k−1), (3.16b)

ψ̂k = r̂k + q̂k−1ψ̂k−1, (3.16c)

where r̂k denotes the residual. The optimal step size is chosen as

µ̂k =

(

σ̂kỹd
k
4 − dk2 +

√

dk5

)

/
(

2
(

dk2d
k
3 − dk1d

k
4

))

, (3.17)

where

dk1 = x̄Tk Âkψ̂k, dk2 = ψ̂Tk Âkψ̂k,

dk3 = x̄Tk ψ̂k, dk4 = ψ̂Tk ψ̂k (3.18)
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and

dk5 =
(

σ̂kỹd
k
4 − dk2

)2
− 4

(

dk2d
k
3 − dk1d

k
4

)(

dk1 − σ̂kỹd
k
3

)

. (3.19)

With optimal step size it is meant that a line search (cf. Dennis & Schnabel 1996,

Section 6.3) is performed, which chooses the step size µ̂k in a manner, such that the

Rayleigh quotient is minimised within the given search direction ψ̂k. The algorithm is

initialised with a guess of x̂0 and Â0, such that

ˆ̄x0 = x̂0/
(
x̂T0 x̂0

)1/2
, (3.20a)

ψ̂0 = r̂0 = Â0 ˆ̄x0 −R(x̂0)ˆ̄x0. (3.20b)

Remark 3.3 (Frisch-like character). One of the significant characteristics of the Frisch

scheme is that the estimated model belongs to a class characterised by a convex curve

in the noise space (see Figure 2.2), where the functional relationship between σũ and

σỹ defining a locus of solutions is given by (3.1b). This feature has been termed the

Frisch-character in Definition 2.1. Computing the output noise variance recursively via

(3.15)-(3.20) will inevitably introduce an error, which means that the estimated set

(σ̂kũ, σ̂
k
ỹ ) will not exactly lie on this convex curve, i.e. the Frisch-character will only be

approximated. This would, strictly speaking, only imply a Frisch-like character for the

solution. However, as will be illustrated in Section 3.3.6, the set (σ̂kũ, σ̂
k
ỹ ) can converge

to the convex curve, after the initialisation transients have decayed.

The conjugate gradient subspace tracking algorithm, which minimises the Rayleigh

quotient, is denoted CG-RQ and summarised as follows.

Algorithm 3.4 (CG-RQ).

σ̂kỹ = ˆ̄xTk Âk ˆ̄xk (3.21a)

ˆ̄xk = x̂k/
(
x̂Tk x̂k

)1/2
(3.21b)

Âk = Σ̂k
ϕ̄y

− Σ̂k
ϕ̄yϕu

[

Σ̂k
ϕu

− σ̂kũInb

]−1
Σ̂k
ϕuϕ̄y

(3.21c)

x̂k = ˆ̄xk−1 + µ̂k−1ψ̂k−1 (3.21d)

µ̂k =

(

σ̂kỹd
k
4 − dk2 +

√

dk5

)

/
(

2
(

dk2d
k
3 − dk1d

k
4

))

(3.21e)

dk1 = ˆ̄xTk Âkψ̂k (3.21f)

dk2 = ψ̂Tk Âkψ̂k (3.21g)

dk3 = ˆ̄xTk ψ̂k (3.21h)

dk4 = ψ̂Tk ψ̂k (3.21i)

dk5 =
(

σ̂kỹd
k
4 − dk2

)2
− 4

(

dk2d
k
3 − dk1d

k
4

)(

dk1 − σ̂kỹd
k
3

)

(3.21j)

61



3. Gradient-based recursive Frisch scheme approaches

ψ̂k = r̂k + q̂k−1ψ̂k−1 (3.21k)

r̂k = Âk ˆ̄xk − σ̂kỹ ˆ̄xk (3.21l)

q̂k−1 = −(r̂Tk Âkψ̂k−1)/(ψ̂
T
k−1Âkψ̂k−1) (3.21m)

Consider now the recursive computation of the input measurement noise variance.

3.3.4 Update of σũ

For the recursive computation of σ̂kũ, two algorithms are developed within this sub-

section. The first algorithm considers a Gauss-Newton approach, whilst the second

algorithm minimises a modified cost function, based on the linearised Frisch equations,

for which a closed-form solution can be obtained at each time step.

Yule-Walker cost function

Recall that within the Frisch scheme, an estimate of the input measurement noise

variance σũ can be obtained by minimising the Yule-Walker (YW) model selection cost

function (3.2c), which can be expressed as a nonlinear least squares (NLS) problem

defined by

σ̂kũ = arg min
σũ

Vk, (3.22a)

Vk =
1

2
‖rk(θ)‖

2
2 , (3.22b)

where rk(θ) denotes the NLS residual which is defined by

rk(θ) ,







rk1
...

rknθ







=
[

−ξ̂ζy Σ̂k
ζϕ

]
[

1

θ

]

= Σ̂k
ζϕθ − ξ̂kζy. (3.23)

Equation (3.22b) can be minimised by making use of a general Newton method given

by (cf. Ljung 1999, p. 326)

σ̂kũ = σ̂k−1
ũ − γk

[
V ′′
k

]−1
V ′
k, (3.24)

where V ′
k and V ′′

k denote the first and second order derivative of the YW cost function

(3.22b), respectively, whilst γk is a scalar step size. If the second order derivative is

approximated, a Gauss-Newton method is obtained. In order to proceed, it is necessary
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to obtain the derivative

V ′
k ,

d

dσ̂kũ
Vk (3.25)

at each recursion step. Recall that for the evaluation of the cost function Vk, the

θ-equation (3.1a) and the λmin-equation (3.1b) are required as well. Hence, Vk is a

nonlinear function of σũ and its exact evaluation at each time instance k is not desired

(since this would imply the need to solve an eigenvalue problem at each time step). For

this reason, an approximate gradient, based on linearised versions of (3.1a) and (3.1b),

is considered in the subsequent development.

Linearisation of the Frisch equations

Linearised expressions of the Frisch equations (3.1a) and (3.1b) have been derived in

(Söderström 2007a) and are given by the following lemma.

Lemma 3.1 (Linearised Frisch equations). Carrying out the linearisation of (3.1a)

and (3.1b) around the point

ϑ∗ ,
[

θT∗ σ∗ỹ σ∗ũ

]T
=
[

aT∗ bT∗ σ∗ỹ σ∗ũ

]T
, (3.26)

the linearised Frisch equations are given by

θ̂k ≈ Lθ(ϑ∗) , θ∗ +
(

Σ̂k
ϕ − Σϕ̃(σ∗)

)−1
(

ξ̂kϕy − Σ̂k
ϕθ∗ +

[

σ̂kỹa∗

σ̂kũb∗

])

, (3.27a)

σ̂kỹ ≈ Lσỹ
(ϑ∗) , σ∗ỹ +

bT∗ b∗
āT∗ ā∗

(

σ∗ũ − σ̂kũ

)

, (3.27b)

where it is assumed that ϑ∗ is close to ϑ.

Proof. See Appendix C for a detailed derivation.

Also introduce

ι(ϑ∗) , ξ̂kϕy − Σ̂k
ϕθ∗ +

[

σ∗ỹ +
bT∗ b∗
āT∗ ā∗

σ∗ũ

][

a∗

0

]

, (3.28a)

κ(ϑ∗) ,

[

− bT∗ b∗
āT
∗ ā∗

a∗

b∗

]

, (3.28b)

Σϕ0(σ∗) , Σ̂k
ϕ − Σϕ̃(σ∗). (3.28c)

Using this notation, the quantity σỹ given by (3.27b) can be eliminated in (3.27a)

yielding a linear expression for θ which only depends on σ̂kũ

Lθ(ϑ∗) = θ∗ + Σ−1
ϕ0

(σ∗)ι(ϑ∗) + Σ−1
ϕ0

(σ∗)κ(ϑ∗)σ̂
k
ũ. (3.29)

63



3. Gradient-based recursive Frisch scheme approaches

Equation (3.29) will be utilised later, for the development of the second algorithm.

Computation of the derivative

By applying the chain rule for vector differentiation, the exact derivative of Vk is given

by

V ′
k ,

dVk

dσ̂kũ
=
dVk
dθ

(
∂θ

∂σỹ

dσỹ
dσũ

+
∂θ

∂σũ

)∣
∣
∣
∣
ϑ=ϑ̂k

∈ R, (3.30)

where dVk
dθ ∈ R

1×nθ , ∂θ
∂σỹ

∈ R
nθ , ∂θ

∂σũ
∈ R

nθ and
dσỹ

dσũ
∈ R. The task is now to determine

approximate expressions for the individual derivative terms in (3.30). Using (3.23) the

cost function (3.22b) is re-expressed as

Vk =
1

2

(

Σ̂k
ζϕθ − ξ̂ζy

)T (

Σ̂k
ζϕθ − ξ̂ζy

)

=
1

2

(

ξ̂k
T

ζy ξ̂
k
ζy − ξ̂k

T

ζy Σ̂k
ζϕθ − θT Σ̂kT

ζϕ ξ̂
k
ζy + θT Σ̂kT

ζϕΣ̂k
ζϕθ
)

, (3.31)

and using the rules for vector differentiation, one obtains for the first term in (3.30)

dVk
dθ

= θT Σ̂kT

ζϕΣ̂k
ζϕ − ξ̂k

T

ζy Σ̂k
ζϕ ∈ R

1×nθ . (3.32)

At time instance k, the parameter vector θ may be approximated with θ̂k−1, which

gives the approximate derivative

dVk
dθ

≈ V
(θ)
k ,

(

θ̂Tk−1Σ̂
kT

ζϕ − ξ̂k
T

ζy

)

Σ̂k
ζϕ. (3.33)

In addition, expressions for the sensitivity derivatives ∂θ/∂σũ, ∂θ/∂σỹ and dσỹ/dσũ,

evaluated at ϑ = ϑ̂k, are given by the following lemma.

Lemma 3.2. The approximate sensitivity derivatives are given by

∂θ̂k

∂σ̂kỹ
≈ θ

(ỹ)
k =

(

Σ̂k
ϕ − Σϕ̃(σ̂k−1)

)−1
[

âk−1

0

]

∈ R
nθ , (3.34a)

∂θ̂

∂σ̂kũ
≈ θ

(ũ)
k =

(

Σ̂k
ϕ − Σϕ̃(σ̂k−1)

)−1
[

0

b̂k−1

]

∈ R
nθ , (3.34b)

dσ̂kỹ

dσ̂kũ
≈ σ

(ũ)
ỹ,k = −

b̂Tk−1b̂k−1

ˆ̄aTk−1
ˆ̄ak−1

∈ R. (3.34c)

Proof. Assuming that ϑ̂k−1 is close to ϑ̂k, the sensitivity derivatives can be directly

computed from the linearised Frisch equations (3.27) when the linearisation is carried

out around ϑ∗ = ϑ̂k−1.

64



3. Gradient-based recursive Frisch scheme approaches

Consequently, the gradient of the YW cost function with respect to σ̂kũ can be computed

by (3.30) using the approximations (3.33) and (3.34), which defines the (approximate)

gradient update direction as

V ′
k ≈ V

(σũ)
k = V

(θ)
k

(

θ
(ỹ)
k σ

(ũ)
ỹ,k + θ

(ũ)
k

)

=
(

θ̂Tk−1Σ̂
kT

ζϕ − ξ̂k
T

ζy

)

Σ̂k
ζϕ

(

Σ̂k
ϕ − Σϕ̃(σ̂k−1)

)−1




−
b̂Tk−1 b̂k−1

ˆ̄aT
k−1

ˆ̄ak−1
âk−1

b̂k−1



 , (3.35)

or equivalently

V
(σũ)
k =

[

−
b̂Tk−1 b̂k−1

ˆ̄aT
k−1

ˆ̄ak−1
âTk−1, b̂Tk−1

](

Σ̂k
ϕ − Σϕ̃(σ̂k−1)

)−1
Σ̂kT

ζϕ

(

Σ̂k
ζϕθ̂k−1 − ξ̂kζy

)

. (3.36)

An alternative way to arrive at (3.36) would be to consider (3.22b) as a NLS problem,

for which the gradient of Vk is given by

V ′
k = JT (σũ)rk(θ), (3.37)

where J(σũ) denotes the Jacobian5 defined by (cf. Björck 1996, p. 340)

J(σũ) ,
∂rk(θ)

∂σũ
=








∂rk
1

∂σũ

...
∂rk

nθ
∂σũ







, (3.38)

In view of (3.37), equation (3.36) can be expressed as

V
(σũ)
k = J

(σũ)
k

T
rk(θ̂k−1), (3.39)

where the approximate Jacobian J
(σũ)
k and the approximate residual rk(θ̂k−1) are re-

spectively given by

J
(σũ)
k

T
=

[

−
b̂Tk−1 b̂k−1

ˆ̄aT
k−1

ˆ̄ak−1
âTk−1, b̂Tk−1

](

Σ̂k
ϕ − Σϕ̃(σ̂k−1)

)−1
Σ̂kT

ζϕ , (3.40a)

rk(θ̂k−1) = Σ̂k
ζϕθ̂k−1 − ξ̂kζy. (3.40b)

Note that two approximations have been utilised to arrive at the gradient:

1. The residual is approximated by making use of the most recent estimate of θ.

2. The Jacobian is obtained by making use of the linearised Frisch equations.

5Which reduces to a 1 × nθ vector in this univariate case.
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Gauss-Newton algorithm

After the approximate derivative of the YW cost function has been obtained, it is

possible to design a Gauss-Newton algorithm to obtain a recursive update equation for

σ̂kũ. Therefore, the second order derivative can approximated as (see Björck 1996, p.

340)

V ′′
k ≈ J

(σũ)
k

T
J

(σũ)
k . (3.41)

The (approximate) Gauss-Newton algorithm (see (3.24)), which minimises the YW cost

function, is denoted YW-GN and can be summarised as follows.

Algorithm 3.5 (YW-GN).

σ̂kũ = σ̂k−1
ũ − γk

[

J
(σũ)
k

T
J

(σũ)
k

]−1

J
(σũ)
k

T
rk(θ̂k−1) (3.42a)

J
(σũ)
k

T
=

[

−
b̂Tk−1b̂k−1

ˆ̄aT
k−1

ˆ̄ak−1
âTk−1, b̂Tk−1

](

Σ̂k
ϕ − Σϕ̃(σ̂k−1)

)−1
Σ̂kT

ζϕ (3.42b)

rk(θ̂k−1) = Σ̂k
ζϕθ̂k−1 − ξ̂kζy (3.42c)

For a time-invariant system, the stepsize (or gain sequence) is usually chosen as γk =

1/k (see Ljung & Söderström 1983, Section 5.6), whilst alternative choices might allow

the introduction of adaptivity within the input measurement variance computation (cf.

also Remark 3.1).

Steepest gradient algorithm with line search

In (Linden, Vinsonneau & Burnham 2008), a steepest gradient algorithm of the form

σ̂kũ = σ̂k−1
ũ − γk J

(σũ)
k

T
rk(θ̂k−1) (3.43)

has been proposed to update the input measurement noise variance estimate. Note

that this corresponds to a Newton method with V ′′
k = I. Rather than using γk = 1/k

or choosing a constant step size as in (Linden, Vinsonneau & Burnham 2008), it is

possible to perform a line search (cf. Dennis & Schnabel 1996, Section 6.3), in order to

obtain an ‘optimal’ step size at each time instance k. This means that γk is chosen in a

manner, such that the residual r(θ̂k) becomes minimal for the negative gradient update

direction. For this purpose, it is again possible to make use of the linearised Frisch

scheme equations (3.27). This is, however, equivalent to minimising an alternative cost

function, which is solely based on the linearisations Lθ(ϑ̂k−1) and Lσỹ
(ϑ̂k−1) rather
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than (3.1a) and (3.1b). Such an approach has been discussed in (Linden, Larkowski &

Burnham 2008).

Minimisation of approximate cost function By linearising the Frisch equations

around the latest estimate ϑ̂k−1, an approximate cost function, which only depends on

the linearised Frisch equations rather than (3.1a) and (3.1b), can be defined as

V lin
k ,

1

2

∥
∥
∥rk

(

Lθ(ϑ̂k−1)
)∥
∥
∥

2

2
. (3.44)

In order to determine that σ̂kũ which minimises (3.44), the total derivative of V lin
k with

respect to σ̂kũ is required. This is given by (Björck 1996, cf. p. 340)

dV lin
k

dσ̂kũ
= JT (σ̂kũ)rk

(

Lθ(ϑ̂k−1)
)

, (3.45)

where J(σ̂kũ) denotes the Jacobian defined by (3.38). The dependencies of rk, Lθ and

Lσỹ
are dropped in the subsequent development for the ease of notation. Setting the

total derivative (3.45) equal to zero and substituting (3.29) and (3.40) yields

0 = JT (σ̂kũ)
(

Σ̂k
ζϕ

[
θ̂k−1 + Σ−1

ϕ0
(σ̂k−1)ι(ϑ̂k−1)

+ Σ−1
ϕ0

(σ̂k−1)κ(ϑ̂k−1)σ̂
k
ũ

]
− ξ̂kζy

)

, (3.46)

from which the input measurement noise variance is computed as

σ̂kũ =
JT (σ̂kũ)

(

Σ̂k
ζϕ

[

θ̂k−1 + Σ−1
ϕ0

(σ̂k−1)ι(ϑ̂k−1)
]

− ξ̂kζy

)

−JT (σ̂kũ)Σ̂
k
ζϕΣ

−1
ϕ0 (σ̂k−1)κ(ϑ̂k−1)

. (3.47)

Note that the Jacobian is given in a straightforward manner from (3.40b) by

J(σ̂kũ) = Σ̂k
ζϕ

dLθ

dσ̂kũ
, (3.48)

whilst the total derivative of Lθ is obtained from (3.29) as

dLθ

dσ̂kũ
= Σ−1

ϕ0
(σ̂k−1)κ(ϑ̂k−1). (3.49)

Finally, substituting (3.49) into (3.48), the Jacobian becomes

J(σ̂kũ) = Σ̂k
ζϕΣ

−1
ϕ0

(σ̂k−1)κ(ϑ̂k−1). (3.50)

The algorithm, which minimises the YW cost function by making use of the linearised

Frisch equations is denoted YW-lin and can be summarised as follows.
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Algorithm 3.6 (YW-lin).

σ̂kũ =
JT (σ̂kũ)

(

Σ̂k
ζϕ

[

θ̂k−1 + Σ−1
ϕ0

(σ̂k−1)ι(ϑ̂k−1)
]

− ξ̂kζy

)

−JT (σ̂kũ)Σ̂
k
ζϕΣ−1

ϕ0 (σ̂k−1)κ(ϑ̂k−1)
(3.51a)

ι(ϑ̂k−1) = ξ̂kϕy − Σ̂k
ϕθ̂k−1 +

[

σ̂k−1
ỹ +

b̂Tk−1b̂k−1

ˆ̄aTk−1
ˆ̄ak−1

σ̂k−1
ũ

] [

âk−1

0

]

(3.51b)

κ(ϑ̂k−1) =

[

−
b̂Tk−1b̂k−1

ˆ̄aT
k−1

ˆ̄ak−1
âTk−1 b̂Tk−1

]T

(3.51c)

Σϕ0(σk−1) = Σ̂k
ϕ − Σϕ̃(σ̂k−1) (3.51d)

3.3.5 Summary of recursive Frisch scheme algorithms

Based on the two different algorithms for the computation of the input measurement

noise variance, two distinct (but similar) algorithms for recursive Frisch scheme identi-

fication can be formulated. The first algorithm, which utilises the Gauss-Newton search

for the determination of σ̂kũ is termed RFSa and can be summarised as follows.

Algorithm 3.7 (RFSa).

1) Initialisation

2) For k = nζ + nb + 1, ...

a) Update γk via (3.8) and Σ̂k
ϕ̄, Σ̂k

ζϕ̄ via (3.5)

b) Compute Pk and θ̂LS
k using Algorithm 3.3

c) Update σ̂kũ via Algorithm 3.5

d) Update σ̂kỹ by means of Algorithm 3.4

e) Compute θ̂k via Algorithm 3.2

The second algorithm, which makes use of the YW-lin approach, is denoted RFSb

and is, for completeness, summarised as follows.

Algorithm 3.8 (RFSb).

1) Initialisation
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2) For k = nζ + nb + 1, ...

a) Update γk via (3.8) and Σ̂k
ϕ̄, Σ̂k

ζϕ̄ via (3.5)

b) Compute Pk and θ̂LS
k using Algorithm 3.3

c) Update σ̂kũ via Algorithm 3.6

d) Update σ̂kỹ by means of Algorithm 3.4

e) Compute θ̂k via Algorithm 3.2

Remark 3.4 (Projection facility). In order to stabilise the recursive algorithms during

the initial phase, it might be advantageous to project the noise variance estimates into

the intervals

0 ≤σ̂ũ ≤ σmax
ũ , (3.52a)

0 ≤σ̂ỹ ≤ σmax
ỹ , (3.52b)

where σmax
ũ and σmax

ỹ are the maximal admissible solutions for σ̂ũ and σ̂ỹ, respectively.

Recall from Section 2.4.3 that these intervals are naturally motivated from the Frisch

scheme approach and the maximal admissible values can be computed from the data

as described in (2.48)

σmax
ũ = λmin

[

Σ̂k
ϕu

− Σ̂k
ϕuϕy

[Σ̂k
ϕy

]−1Σ̂k
ϕyϕu

]

, (3.53a)

σmax
ỹ = λmin

[

Σ̂k
ϕy

− Σ̂k
ϕyϕu

[Σ̂k
ϕu

]−1Σ̂k
ϕuϕy

]

. (3.53b)

Since these boundaries rely on the solution of two eigenproblems, it would be more

pragmatic to consider positive constants for the maximum admissible values, if such a

priori knowledge is available. For the cases where the estimates exceed these maximal

admissible values, it seems reasonable to set σ̂kũ = σ̂k−1
ũ and/or σ̂kỹ = σ̂k−1

ỹ , respectively.

Remark 3.5 (Computational complexity). The computation time per single recursion

can be reduced by approximately two-thirds by making use of the recursive Frisch-YW

approaches compared to the RAFS (cf. Algorithm 3.1), although both algorithms are

of cubic complexity with respect to the number of system parameters to be identified

(see Section 3.4 below). However, approximate fast algorithms of quadratic order are

possible by accounting for the fact that the eigenvector corresponding to the smallest

eigenvalue of Ak is also part of the parameter vector to be estimated. This is further

discussed in Chapter 4.

Remark 3.6 (Classification of the RFS algorithms). The recursive Frisch-YW algo-

rithms can be considered to belong to the family of iterative bias-compensating LS
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algorithms (see e.g. (Sagara & Wada 1977, Zheng & Feng 1989, Söderström 2007b)

and the references within). The essential distinguishing feature is, however, that the

measurement noise variances are computed in a different way which is based on the

offline Frisch scheme approach.

3.3.6 Numerical example

This first example aims to illustrate that the developed recursive Frisch scheme algo-

rithms are able to work satisfactorily when applied to an arbitrarily simulated system,

i.e. that the parameter estimates can successfully compensate for the bias. In addi-

tion, since the recursive algorithms are developed based on the offline Frisch scheme,

it is interesting to investigate whether, and if so to quantify how much, the recursive

schemes will deviate from the offline estimates, due to the introduced assumptions and

approximations.

Remark 3.7. It should be noted that, in this example and others throughout the the-

sis, the RLS estimates have been utilised as a benchmark against which to evaluate the

performance of the various recursive EIV algorithms developed in the present study.

In practice, it is unlikely that the RLS algorithm would be used in such noisy situa-

tions, other than for the limited number of cases when auto-regressive with exogeneous

inputs models are justified. To some extent, therefore, the use of RLS as a benchmark

exaggerates the advantages of the EIV algorithms in practical terms, since superior op-

timal algorithms, such as the recursive prediction error minimisation algorithm in the

Matlab System Identification Toolbox (Mathworks 2008) and the recursive refined in-

strumental variable algorithm in (CAPTAIN Toolbox for Matlab 2008), would be more

appropriate. In this first example, for instance, the recursive prediction error minimisa-

tion algorithm and the recursive refined instrumental variable algorithm yield estimates

that have very small asymptotic bias on the transfer function denominator estimates

and quite small asymptotic bias on the transfer function numerator coefficients. As

a result, the associated frequency response characteristics differ little from the actual

ones (see Section 8.8 in Young, Taylor & Chotai 2009) and the resulting model would

be quite acceptable for many practical control applications. Of course, these biases

would be larger for higher noise levels and so, in noisy situations where parametric bias

is particularly important, the recursive EIV algorithms provide a superior approach

to data-based modelling and it is for such applications as these that the algorithms

described in this thesis have been developed.
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Consider a LTI SISO system with na = nb = 2, which is given by (cf. (2.4a) and

(2.9))

θ =
[

−1.5 0.7 1 0.5
]T
, (3.54a)

σ =
[

2.1 0.1
]T
. (3.54b)

The input and output measurement noise variances are chosen, such that an equal

signal-to-noise ratio of 10dB is obtained at the input as well as the output of the

EIV system. The system is simulated for 500 samples using a zero mean, white and

Gaussian distributed input signal of unity variance. The RFSa and the RFSb are

applied to estimate ϑ; both using nζ = na+nb+1 as the number of instruments for the

YW model selection criterion. In order to compare the recursive estimates with those

obtained by the offline Frisch-YW, the RAFS is applied6. Since the system is time

invariant, no adaptivity, i.e. λ = 1, is considered. The input and output measurement

noise variances are projected into the intervals [0, σmax
ũ ] and [0, σmax

ỹ ], respectively. The

maximal admissible values for the input and output measurement noise variances are

chosen to be σmax
ũ = 2σũ and σmax

ỹ = 2σỹ, respectively. The resulting estimates of ϑ

are shown in Figure 3.1.

The dashed line corresponds to the offline estimate using 500 samples. As expected,

the RAFS yields identical estimates for k = 500 recursions, whilst the estimates of the

RFSa and RFSb are slightly different. Considering the estimates of θ, it is observed that

the RFSa and RFSb can successfully compensate for the bias in the estimates, compared

to the uncompensated RLS estimates. The most significant difference between the

recursive estimates and the RAFS estimates is observed for σũ. The Gauss-Newton

estimate of the RFSa is much smoother than the RFSb estimate obtained via the

minimisation of the modified YW cost function. This is an expected result, since the

former weights new data with 1/k, whilst the latter performs a line search at each

time instance, which can result in rapid changes for the estimate of σũ. For the RFS

estimates of σũ it is also observed, that the projection facility is active for the first 200

recursions, which results in the ‘flat’ periods within this interval. Apart from this, the

RFSb is able to approximate the offline estimate for σũ surprisingly well and it seems

to be superior than that obtained by the RFSa. The estimates for σỹ are virtually

identical in all three cases, which indicates that the conjugate gradient method appears

to satisfactorily to track the smallest eigenvalue of Âk.

It is also of interest to compare the YW cost function Vk with its approximation

V lin
k , which has been used for the determination of σũ in the case of RFSb. Both are

shown for k = 80, k = 500 and k = 2500 samples in Figure 3.2. It is observed that

after 80 recursion steps, σũ corresponding to the minimum of V lin
k (around σũ = 0.25)

6The number of iterations for the minimisation of the YW cost function is not restricted to unity
within this example, in order to obtain the exact offline estimates at each time instance k.
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Figure 3.1: Estimates of ϑk for system (3.54) using the offline Frisch scheme, RAFS,
RFSa, RFSb and RLS.

is already close to σũ corresponding to the minimum of Vk (around σũ = 0.5). After

500 recursion steps, the difference between both minima is less than 8 · 10−3 and for

k = 2500, both minima virtually coincide. These results are in alignment with the good

estimation performance for σũ in the case of RFSb, which has been observed in Figure

3.1.

Concerning Remark 3.3, it is interesting to investigate how accurate the computa-

tion of σ̂kỹ is, i.e. how exact the least eigenvalue of Âk can be approximated using the

conjugate gradient method. Therefore, the experiment is repeated where the RFSa7

utilises the same input measurement noise variance estimate as the exact algorithm,

i.e. σ̂kũ is identical in both cases. The differences in σ̂kỹ is then a measure for the ac-

curacy of the subspace tracking algorithm. It turns out that the difference between

both estimates is marginal: after 500 recursion steps, for instance, it is approximately

6 · 10−7 while it decreases to 8 · 10−8 after 5000 iterations. This means (at least in the

example considered here) that the RFS algorithms yield estimates of σũ and σỹ which

seem to converge to the set of admissible Frisch solutions (cf. Section 2.4.3), once the

initialisation transients have decayed. This aspect is further investigated in Section 3.5.

7Since both RFSa and RFSb use the CG-GN algorithm, here, it is irrelevant which algorithm is
chosen.
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Figure 3.2: Comparison of cost function values for Vk (3.22b) and V lin
k (3.44) after

k = 80, k = 500 and k = 2500 recursions.

3.4 Computational complexity

A recursive identification scheme is usually intended for online usage, i.e. to obtain

estimates while the process under consideration is in operation. Consequently, it is

important to analyse the computational complexity of the scheme. If, for example, the

parameters are estimated at each sample, the computation time required per recursion

is restricted by the choice of sampling interval for the process as well as the utilised

hardware. Hence the analysis of the computational complexity of the RFS algorithms

is an important issue with respect to their applicability in practical situations.

This section provides a detailed analysis of the computational complexity of the

developed RFSa and RFSb algorithms and compares this with the RAFS algorithm

(which is essentially a repeated application of the offline Frisch scheme equations).

3.4.1 RAFS algorithm

A detailed description of the RAFS algorithm together with its computational costs (cf.

Section 2.3.3) is given in Table 3.1. Steps 1 and 2 are initialisations of the algorithm

which are not taken into account, since it is the computational complexity per recursion

(steps inside the loop) that is of interest. The optimisation for the determination of the

‘optimal’ estimate for the input measurement noise variance in Step 3.4 (YW model

selection) iterates only once per recursion, which is done in order to achieve a fixed

number of RAFS flops. If fminsearch (Nelder-Mead simplex method) is used within

a Matlab implementation (MathWorks 2007), this would correspond to setting the

number of maximal iterations to unity.

It is clear that an application of the offline Frisch-YW equations at each time step

k is rather crude and the overall costs are of cubic order with respect to the number of

model parameters nθ as observed in Table 3.1.
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Step Description Procedure Flops

1 Choose nζ , λk and j nζ = na + nb + 1, 0 < λk < 1, j = nζ + nb

2 Initialise σ̂j
u = 0, θ̂j = 0, Σ̂j

ζϕ̄ = 0, Σ̂j
ϕ̄ =

1
nζ−1

Pj
i=nb+1 ϕ̄iϕ̄

T
i and γj = 1/(nζ − 1)

3 Recursion for k = j + 1, ...

3.1 Update γ γk =
γk−1

λk+γk−1

2

3.2 Update Σ̂ϕ̄ Σ̂k
ϕ̄ = Σ̂k−1

ϕ̄ + γk

“

ϕ̄kϕ̄
T
k − Σ̂k−1

ϕ̄

”

O(n2
θ̄)

3.3 Update Σ̂ζϕ̄ Σ̂k
ζϕ̄ = Σ̂k−1

ζϕ̄ + γk

“

ζkϕ̄
T
k − Σ̂k−1

ζϕ̄

”

O(n2
θ̄)

3.4 Update σ̂u σ̂k
u = arg min

σu

‖Σ̂k
ζϕ̄ θ̄‖2

2 (via optimisation,

costs given per single iteration)

O(n3
θ)

3.5 Update σ̂y σ̂k
y = λmin(Âk) O(n3

ā + n2
ānb + n3

b)

3.6 Update θ̂ solve
“

Σ̂k
ϕ − Σϕ̃(σ̂k)

”

θ̂k = ξ̂ϕy O(n3
θ)

Overall complexity (dominant parts) O(n3
θ)

Table 3.1: Computational complexity of the repeatedly applied Frisch scheme (RAFS)
algorithm.

Step Procedure Flops

1 Lk =
Pk−1ϕk

ϕT
k

Pk−1ϕk+
1−γk

γk

O(n2
θ)

2 θ̂LS
k = θ̂LS

k−1 + Lk

“

yk − ϕT
k θ̂

LS
k−1

”

O(nθ)

3 Pk = 1
1−γk

„

Pk−1 − Pk−1ϕkϕT
k Pk−1

ϕT
k

Pk−1ϕk+
1−γk

γk

«

O(n2
θ)

Overall complexity (dominant parts) O(n2
θ)

Table 3.2: Computational complexity of RLS using scaled Pk.

3.4.2 RFS algorithms

This subsection provides a detailed listing of the computational costs of the RFSa and

RFSb algorithms.

Recursive least squares

The RFS algorithms are essentially recursive BCLS procedures based on the RLS algo-

rithm. A basic RLS form together with its computational complexity is given in Table

3.2. It is observed that the RLS is of quadratic complexity with respect to the number

of model parameters nθ. Note that there exist numerically more robust and efficient

RLS implementations other than the version presented here (Sayed & Kailath 1994a).

For the analysis in this section, however, this is irrelevant since the bottlenecks of the

RFS algorithms lie elsewhere as pointed out below.

YW-GN algorithm

In order to track the minimum of the YW cost function (3.22b), a Gauss-Newton

algorithm has been proposed (Algorithm 3.5). The computational complexity of the

YW-GN algorithm is listed in Table 3.3. It is observed that the bottlenecks for the
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Step Description Procedure Flops

1 Derivative θ
(ũ)
k =

“

Σ̂k
ϕ − Σϕ̃(σ̂k−1)

”−1

2

4

0

b̂k−1

3

5 O(n3
θ)

2 Derivative θ
(ỹ)
k =

“

Σ̂k
ϕ − Σϕ̃(σ̂k−1)

”−1

2

4

âk−1

0

3

5 O(n3
θ)

3 Derivative σ
(ỹ)
ỹ,k = −(b̂Tk−1b̂k−1)/(ˆ̄a

T
k−1

ˆ̄ak−1) O(nb + na)

4 Jacobian J
(σũ)T

k = Σ̂k
ζϕ

“

θ
(ỹ)
k σ

(ũ)
ỹ,k + θ

(ũ)
k

”

O(nθ)

5 Update σ̂ũ σ̂k
ũ = σ̂k−1

ũ + γk

h

J
(σũ)T

k J
(σũ)
k

i−1

J
(σũ)T

k rk(θ̂k−1) O(nθ)

Overall complexity (dominant parts) O(n3
θ)

Table 3.3: Computational complexity of YW-GN algorithm.

Step Description Procedure Flops

1 Update σũ σ̂k
ũ =

JT (σ̂k
ũ)

“

Σ̂k
ζϕ

h

θ̂k−1+Σ−1

ϕ0
(σ̂k−1)ι(ϑ̂k−1)

i

−ξ̂k
ζy

”

−JT (σ̂k
ũ
)Σ̂k

ζϕ
Σ−1

ϕ0
(σ̂k−1)κ(ϑ̂k−1)

O(n3
θ)

2 ι(ϑ̂k−1) = ξ̂k
ϕy − Σ̂k

ϕθ̂k−1 +

»

σ̂k−1
ỹ +

b̂T
k−1

b̂k−1

ˆ̄aT
k−1

ˆ̄ak−1

σ̂k−1
ũ

–

[âT
k−1 0]T O(n2

θ)

3 κ(ϑ̂k−1) =

»

− b̂T
k−1

b̂k−1

ˆ̄aT
k−1

ˆ̄ak−1

âT
k−1 b̂Tk−1

–T

O(nā)

4 Σϕ0
(σk−1) = Σ̂k

ϕ − Σϕ̃(σ̂k−1) nθ

Overall complexity (dominant parts) O(n3
θ)

Table 3.4: Computational complexity of the YW-lin algorithm.

Gauss-Newton method are clearly Steps 1 and 2, i.e. the computation of the derivatives

θ
(ũ)
k and θ

(ỹ)
k due to the matrix inversion that is involved being of cubic complexity.

YW-lin algorithm

The YW-lin algorithm which minimises the modified cost function (3.44) is summarised

in Table 3.4. It is observed here that the bottleneck is, as in the case of YW-GN, the

computation of the matrix inverse Σ−1
ϕ0

(σ̂k−1) =
(

Σ̂k
ϕ − Σ̂k−1

ϕ̃

)−1
, which is of cubic

complexity. Therefore, the overall complexity of the YW-lin algorithm is also O(n3
θ).

Conjugate gradient method

For the computation of the output measurement noise variance the least eigenvalue of

the matrix Âk in (3.2b) is required to be determined. Whilst a complete eigenvalue

decomposition generally requires O(n3) flops with n being the size of the square matrix,

here only the smallest eigenvalue is of interest. For this purpose, the conjugate gradient

subspace tracking algorithm has been proposed. The procedure, which is of O(n2)
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Step Description Procedure Flops

1 Schur complement Âk = Σ̂k
ϕ̄y

− Σ̂k
ϕ̄yϕu

h

Σ̂k
ϕu

− σ̂k
uInb

i−1

Σ̂k
ϕuϕ̄y

O(n3
b + n2

ānb + nān
2
b)

2 Eigenvector x̂k = ˆ̄xk−1 + µ̂kψ̂k−1 O(nā)

3 Normalisation ˆ̄xk = x̂k/
`

x̂T
k x̂k

´1/2
O(nā)

4 Update σ̂y σ̂k
y = ˆ̄xT

k Âk ˆ̄xk O(n2
ā)

5 Residual r̂k = Âk ˆ̄xk − σ̂k
ỹ
ˆ̄xk O(n2

ā)

6 q̂k−1 = −(r̂T
k Âkψ̂k−1)/(ψ̂

T
k−1Âkψ̂k−1) O(n2

ā)

7 Update direction ψ̂k = r̂k + q̂k−1ψ̂k−1 O(nā)

8 dk
1 = ˆ̄xT

k Âkψ̂k O(n2
ā)

9 dk
2 = ψ̂T

k Âkψ̂k O(n2
ā)

10 dk
3 = ˆ̄xT

k ψ̂k O(nā)

11 dk
4 = ψ̂T

k ψ̂k O(nā)

12 dk
5 =

`

σ̂k
ỹd

k
4 − dk

2

´2 − 4
`

dk
2d

k
3 − dk

1d
k
4

´

×
`

dk
1 − σ̂k

ỹd
k
3

´

10

13 Optimal step size µ̂k =
“

σ̂k
ỹd

k
4 − dk

2 +
p

dk
5

”

/
`

2
`

dk
2d

k
3 − dk

1d
k
4

´´

16

Overall complexity (dominant parts) O(n3
b + n2

ānb + nān
2
b)

Table 3.5: Conjugate gradient method for tracking smallest eigenvalue σy (CG-RQ
algorithm).

complexity8, is summarised in Table 3.5. Although the conjugate gradient method is, in

general, only of quadratic order, in this particular application O(n3
b) flops are necessary.

Upon examination of Step 1 in Table 3.5 it becomes clear, that the computation of

the Schur complement of the block matrix Σ̂k
ϕu

− σ̂kuInb
is the bottleneck within the

conjugate gradient method. The matrix inversion in (3.2b) requires O(n3
b) and the

matrix multiplications require another O(n2
ānb + nān

2
b) flops.

Overall complexity

A detailed description as well as the computational costs of the RFS algorithms are

given in Table 3.6. Since only the computation of the input measurement noise variance

differentiates the RFSa algorithm from the RFSb algorithm, Table 3.6 encompasses

both cases (cf. Step 6.5). Steps 1 to 5 are initialisations for the algorithm which are

not taken into account since it is the computational complexity per recursion which is of

interest. The remaining steps summarise the computational complexity of the parts of

the algorithm which have been discussed in detail in the previous paragraphs. As in the

case of RAFS, the overall computational complexity of the RFS algorithms is of cubic

order with respect to nθ, the number of model parameters to be identified. This would

apparently represent an undesirable feature, since it also raises questions regarding

the effort which has been expended in order to derive a fully recursive version of the

8Linear complexity for the eigenvalue tracking problem can only be achieved for a rank-one update
of the corresponding matrix. However, since the update ∆Ak = Ak − Ak−1 is generally of full rank,
O(n2) flops are required.
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Step Description Procedure Flops

1 Choose nζ , λk and j nζ = na +nb +1, 0 < λk < 1, j = nζ +nb

2 RLS initialisations θ̂LS
na

= 0, Pna = 0.1I

3 Recursion for k = na + 1, ..., j

3.1 Data weighting γk = 1/k

3.2 RLS Compute Lk, θ̂LS
k and Pk as in Table 3.2

4 CG initialisations Obtain ‘guess’ for eigenvector xj associ-
ated with smallest eigenvalue

4.1 Normalised eigenvector x̄j = xj

`

xT
j xj

´1/2

4.2 Update direction ψx
j = Âjx̄j −

“

x̄T
j Âjx̄j

”

x̄j

5 General initialisations Σ̂j
ζϕ̄ = 0, Σ̂j

ϕ̄ = 1
nζ−1

Pj
i=nb+1 ϕ̄iϕ̄

T
i and

γj = 1/(nζ − 1)

6 Recursion for k = j + 1, ...

6.1 Update γ γk =
γk−1

λk+γk−1

2

6.2 Update Σ̂ϕ̄ Σ̂k
ϕ̄ = Σ̂k−1

ϕ̄ + γk

“

ϕ̄kϕ̄
T
k − Σ̂k−1

ϕ̄

”

O(n2
θ̄)

6.3 Update Σ̂ζϕ̄ Σ̂k
ζϕ̄ = Σ̂k−1

ζϕ̄ + γk

“

ζkϕ̄
T
k − Σ̂k−1

ζϕ̄

”

O(n2
θ̄)

6.4 RLS estimate Compute Lk, θ̂LS
k and Pk as in Table 3.2 O(n2

θ)

6.5 Computation of σ̂k
ũ

either: Compute σ̂k
u as in Table 3.3 O(n3

θ)

or: Compute σ̂k
u as in Table 3.4 O(n3

θ)

6.6 Projection Project 0 ≤ σ̂k
ũ ≤ σmax

ũ

6.7 CG method for σ̂y Compute σ̂k
y as in Table 3.5 O(n3

b + n2
ānb + nān

2
b)

6.8 Projection Project 0 ≥ σ̂k
ỹ ≥ σmax

ỹ

6.9 Bias compensation θ̂k = θ̂LS
k + PkΣ̂k

˜̄ϕθ̂k−1 O(n2
θ)

Overall complexity (dominant parts) O(n3
θ)

Table 3.6: Computational complexity of gradient-based recursive Frisch-YW (RFSa
and RFSb) algorithms. Abbreviation CG denotes conjugate gradient.

Frisch-YW algorithm. Consequently, this aspect requires some further investigation

and analysis which is given in the following subsection.

3.4.3 Computation time comparison

This section compares the computation time per recursion of the RAFS and RFS

algorithms in simulation. The algorithms are applied to a sequence of systems with

an increasing order. To realise such a comparison, the model order, denoted here for

convenience by n , na = nb, of the system to be identified is increased incrementally

from 1 to 30. Apart from the system, which is generating the data, a similar setup as in

Section 3.3.6 is utilised. In particular, the signal-to-noise ratio is set to 10dB on both

input and the output, respectively. In addition, the minimum number of instruments

is chosen, i.e. nζ = 2n + 1. The computation time for each recursion step using a

certain model order is recorded. For each n, the minimum time for 500 recursions is
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Figure 3.3: Computation time per single recursion with increasing model order n
(linear and logarithmic scale).

considered, which helps to reduce the influencing effects of other applications running

in the background of the operating system. In addition, for the RAFS the number

of iterations for the optimisation of Step 3.4 in Table 3.1 is restricted to one. This

is to ensure a meaningful comparison with the RFS algorithms9. The experiment has

been carried out in MATLAB using the Linux operating system Ubuntu, whilst the

hardware consists of an IBM ThinkCentre with Intel Pentium 4 HT processor having

3.6 GHz. The results are shown in Figure 3.3.

It is observed that the computation time per recursion of the RAFS algorithm,

which basically applies the offline equations at each time step k, is greater than the

time required by the RFS algorithms. In fact, for a model order of n = 30, the RFSa

and RFSb approximately require less than one-third (≈ 3ms and ≈ 3.5ms, respectively)

of the computation time of the RAFS (≈ 11ms). Comparing the RFSa and RFSb, the

former appears to be slightly faster. The fact that the slopes of the curves correspond-

ing to all three algorithms is similar would indicate that the computational complexity

is of a similar order in all cases. Indeed, this is in agreement with the theoretical re-

sults obtained in this section; namely that all three algorithms are of cubic complexity.

Although the RAFS and the RFS algorithms are of cubic complexity, the computation

time can be significantly reduced by utilising the latter gradient-based recursive algo-

rithms. The overall complexity of the RFS algorithms can be further reduced towards

quadratic order by introducing various approximations. The resulting novel algorithms

are derived and analysed in Chapter 4.

9In fact, to run one iteration as a new data set arrives is a natural step within recursive schemes.
However, in this case, the RAFS will not yield identical results with respect to the offline algorithm,
which is the reason why the number of iterations was not restricted in the previous simulation.
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3.5 Frisch-character of recursive estimates

In contrast to other bias-compensating approaches, the solution of the Frisch scheme is

uniquely characterised by the set of admissible solutions given by the convex curve in the

noise space as illustrated in Figure 2.2. This curve is defined by (2.39b) and ensures that

given an input measurement noise variance σu, the output measurement noise variance

σy is selected such that the data becomes compatible with the chosen EIV model

structure. As outlined in Remark 3.3, however, this Frisch-character (cf. Definition

2.1) of the solution holds only in an approximate sense when the RFS algorithms are

applied. The reason for this is that in the recursive scheme, equation (3.15) is replaced

by the subspace tracking algorithm given in (3.15)-(3.19), which can only approximate

the smallest eigenvalue of Âk. In addition, the error in σ̂kỹ is propagated to θ̂k due to

(3.10) and, as a consequence, will subsequently affect σ̂k+1
ũ . This means that the point

(σ̂kũ, σ̂
k
ỹ ) can no longer be guaranteed to lie on the convex curve in the noise space.

Section 3.3.6 has briefly investigated this issue by observing the difference between

σỹ computed by (2.46b) and the conjugate gradient method for a particular example.

This section investigates in somewhat more depth the question of how well the RFS

schemes can retain the Frisch-character of the solution and, furthermore, how this can

be measured online. Note that the interest in the Frisch-character of the solution is

rather of an academic nature and might be considered as being of secondary importance

for a practical application. However, it provides additional insight of how well the

recursive algorithms are able to approximate the offline Frisch scheme.

Consider the following example.

Example 3.1. A LTI SISO EIV system is given by (cf. (2.4a) and (2.9))

θ =
[

−1.5 0.7 1 0.5
]

(3.55a)

σ =
[

2 1
]T

(3.55b)

with na = nb = 2, whilst nζ is set to nθ̄. For this setup, the signal-to-noise ratio

for the input and output is given by 0.1dB and 23.1dB, respectively. The search for

the input and output noise variances is restricted to the interval 0 ≤ σ̂kũ ≤ 2σũ and

0 ≤ σ̂kỹ ≤ 2σỹ, respectively, which helps to stabilise the recursive schemes during the

initialisation phase. Since a LTI system is considered, the forgetting factor is chosen

to be λk = 1 for all k. The system is simulated for 100 samples and the RAFS and

RFSb are applied to estimate ϑ recursively10. In addition, at each time instant k,

the convex curve in the noise space is computed using (2.46b). The set of convex

curves generating a hypersurface in R
3 as well as (σ̂kũ, σ̂

k
ỹ ) for both RAFS and RFSb

are shown in Figure 3.4. It is observed that the hypersurface is ‘erratic’ during the

initial phase of the experiment, which is due to finite sample effects. As expected,

10Since the Frisch-character depends on the computation of σ̂k
ỹ , only one RFS algorithm is considered.
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Figure 3.4: Convex curve in the noise space evolving with k discrete-time steps.
The black solid line corresponds to the estimates (σ̂kũ, σ̂

k
ỹ ) of the RAFS,

whereas the grey line corresponds to the RFSb algorithm.

with an increasing number of samples the surface becomes smoothed since the effect

of single samples becomes less significant. For the estimates of (σkũ, σ
k
ỹ ), it is observed,

that whilst the black line corresponding to the noise variance estimates computed by

the RAFS lies exactly on the hypersurface, the estimates obtained from the RFSb

algorithm are considered as providing an approximation only. This observation is more

evident during the first 20 runs of the algorithm, where the ‘peaks’ of the grey line

corresponding to the RFSb, see Figure 3.4, depart from the hypersurface.

Example 3.1 has shown the a loss of the Frisch-character in the case of the recursive

Frisch scheme. However, it is not evident from Figure 3.4 how close the estimates of the

RFSb algorithm approximate the hypersurface with an evolving number of samples. In

order to make a quantitative statement, appropriate measures need to be introduced.

Note that satisfying the Frisch-character of the estimates basically depends on how

accurate the smallest eigenvalue of Âk can be computed. One possible measure could

be based on the difference between the ‘exactly’ and ‘approximately’ determined output

measurement noise, as has been utilised in Section 3.3.6. This measure is denoted F k1
and is given by

F k1 ,
(

σ̂k∗ỹ − σ̂kỹ

)2
, (3.56)

where σ̂k∗y is computed via (2.46b) at each time instant k (as in the RAFS) whereas σ̂kỹ
is obtained by the conjugate gradient method. This corresponds to the squared vertical

distance between the point (σ̂kũ, σ̂
k
ỹ ) obtained from the RFSb and the hypersurface. A

more general possibility could be to compute the smallest eigenvalue of

Σ̂k
ϕ̄0

(σ̂k) = Σ̂k
ϕ̄ −

[

σ̂kỹIna+1 0

0 σ̂kũInb

]

, (3.57)
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Figure 3.5: Different measures for assessing the Frisch-character of the RFS solutions.

which yields

F k2 , λmin

(

Σ̂k
ϕ̄0

(σ̂k)
)

. (3.58)

Recall that the aim of the Frisch scheme is to choose σkỹ , such that

Σ̂k
ϕ̄0

(σ̂k)θ̄k = 0 (3.59)

holds, i.e. that Σ̂k
ϕ̄0

is singular positive semidefinite, which means that its smallest

eigenvalue is equal to zero in the exact case.

However, the measures F k1 and F k2 are somewhat of an academic nature since the

exact eigenvalue computation is aimed to be avoided within the recursive algorithms.

Recall that an eigenvalue decomposition is, in general, of cubic complexity. Hence,

the use of these measures within the recursive algorithm appears to be impractical

for monitoring the Frisch-character online due to its computational costs. A more

suitable possibility could be to monitor the quantity r̂k in (3.16a), since the residual

provides information about the ‘quality’ of the conjugate gradient algorithm. Hence,

the residual contains information about the Frisch-character of the RFS estimates and

a third measure may be given by

F k3 , ||r̂k||
2
2 , (3.60)

which can easily be computed online. The following example compares these measures

in simulation.

Example 3.2. Consider the system of Example 3.1 using 500 recursions. All three

performance measures for the Frisch-character are shown in Figure 3.5. It is observed

that all measures exhibit a similar trend and tend towards zero with evolving k. The

value for F k1 , i.e. the squared error between the exactly computed eigenvalue and that
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computed using the conjugate gradient method, is around 10−10 after 500 recursions.

In addition, F k2 and F k3 are around 10 · 10−4 and appear to be very similar.

Since the ‘cheaply’ computed measure F k3 is very similar to F k2 and exhibits a similar

trend to F k1 , it lends itself as it a good candidate for monitoring the Frisch-character of

the solution. In fact, only na + 1 additional flops are required to compute F k3 , since r̂k

is readily given by the conjugate gradient method. In addition, the fact that all mea-

sures tend to zero with increasing k indicates that, at least in the example considered,

the solution of the RFSb scheme can approximately retain the Frisch-character of the

solution, after the initialisation transients of the recursive scheme have decayed.

3.6 Critical appraisal and discussion

So far, recursive expressions for the computation of the Frisch-YW solution have been

obtained. This section critically reviews the previous development and discusses poten-

tial shortcomings of the RFSa and RFSb algorithms while simultaneously evaluating

the potential for improvements. Most of the ideas within this section are not considered

further within this thesis, but indicate several directions for future work. Some aspects,

concerning the reduction of the computation complexity, provide the motivation and

lay the foundation for parts of the next Chapter.

3.6.1 Computation of σỹ

The output measurement noise variance is given as the smallest eigenvalue of the matrix

Âk, i.e.

Âkxk = σ̂kỹxk (3.61)

where xk is the eigenvector corresponding to the eigenvalue σ̂kỹ . The requirement to

compute the eigenvalue in a recursive manner prompts the need for subspace tracking

algorithms. These usually track the eigenvector xk from which the eigenvalue is deduced

via the Rayleigh quotient. In this chapter, a conjugate gradient method coupled with

a line search has been utilised for this purpose. However, there exists a rich collection

of subspace tracking algorithms within the literature which could replace the conjugate

gradient method. Indeed, it is stated in (Feng & Owen 1996) that the conjugate gra-

dient method is mainly the preferred choice for large scale problems, and that in the

case of low dimensional problems (such as in the Frisch scheme where the eigenvalue

of a na + 1 square matrix is to be determined) the inverse power iteration method is

the recommended choice. However, the (iterative) conjugate gradient method exhibits

good convergence properties, which justifies its choice for the RFS algorithms: The

conjugate gradient method is globally convergent, when it is utilised for the minimisa-

tion of the Rayleigh quotient in an iterative manner (Yang 1993). It is also shown in
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(Yang 1993), that the algorithm converges globally in a finite number of steps, provided

the initial eigenvector estimate x̂0 contains an eigendirection of the true eigenvector.

For the recursive CG-RQ algorithm within the RFS schemes, this means that repeated

iterations at time k would not only improve the approximation of the smallest eigen-

value, but could eventually yield the exact solution (if desired). This would, in turn,

imply that the Frisch-character is exactly satisfied.

Different approaches to estimate the output measurement noise variance are also

feasible by exploiting the fact that the eigenvector xk corresponding to σ̂kỹ is part of

the parameter vector θ, as outlined in the following lemma.

Lemma 3.3. The eigenvector of Σϕ̄0 corresponding to the smallest eigenvalue equal

to zero is given by θ̄, whilst the eigenvector of

A , Σϕ̄y − Σϕ̄yϕu [Σϕu − σũInb
]−1 Σϕuϕ̄y (3.62)

corresponding to the minimal eigenvalue σỹ is given by ā.

Proof. Since

Σϕ̄0 θ̄ = 0 (3.63)

holds, it is clear that the extended parameter vector θ̄ is the eigenvector of Σϕ̄0 corre-

sponding to the zero eigenvalue.

For the second part of the proof, (3.63) is re-expressed in block matrix form as

[

Σϕ̄y − σỹIna+1 Σϕ̄yϕu

Σϕuϕ̄y Σϕu − σũInb

][

ā

b

]

= 0, (3.64)

where the second block row yields

b = − [Σϕu − σũInb
]−1 Σϕuϕ̄y ā. (3.65)

Substituting b in the upper part of (3.64) gives

(

Σϕ̄y − Σϕ̄yϕu [Σϕu − σũInb
]−1 Σϕuϕ̄y

)

ā = σỹā, (3.66)

which concludes the proof.

Taking the result of Lemma 3.3 into account, it becomes apparent that an estimate of

āk is computed twice within the RFS algorithms: firstly within the conjugate gradi-

ent algorithm (the eigenvector x̂k which has to be scaled such that the first element

becomes unity) and secondly within the bias compensating RLS scheme (âk within

θ̂k). Consequently, there seems to be scope for improvement for a more efficient RFS

implementation. This is investigated further in Chapter 4.
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3.6.2 Minimisation of the YW cost function

One of the identified bottlenecks of the RFS algorithms in Section 3.4.2 is the com-

putation of σ̂kũ. This requires O(n3
θ) flops in its present form and this would appear

to be not particularly attractive for a recursive scheme. By making use of stationary

iterative least squares techniques (as implemented within the RBCLS; see also Section

2.3.1), it is, however, possible to reduce the overall computational complexity for both,

the YW-GN and the YW-lin algorithms from cubic to quadratic order. This is also

investigated further in Chapter 4.

3.6.3 Relationship to iterative bias eliminating schemes

Remark 3.6 has highlighted the close relationship between the iterative BCLS tech-

niques and the novel RFS algorithms developed in this chapter. The underlying idea of

the iterative BCLS algorithms is that of recursive bias compensation via RLS, when the

noise variances are known. Iterative/recursive bias eliminating least squares (BELS)

algorithms (Zheng & Feng 1989, Zheng 1998) also utilise the RBCLS concept. In ad-

dition they estimate σũ and σỹ in a recursive fashion. Consequently, the computation

of θ within the BELS and RFS algorithms is identical and the only difference is the

manner in which σũ and σỹ are computed. Moreover, it has recently been shown in

(Hong & Söderström 2008) that the λmin-equation (3.1b) for the determination of σỹ

and the expression used within the BELS algorithms are both equivalent. In addition,

the extended model within the BELS can be chosen in a manner, such that the resulting

equations for σũ become identical to the YW equations. In this particular case, BELS

and Frisch-YW use the same equations. This highlights the very close relationship of

both approaches and shows, in fact, that the only difference between the Frisch-YW

scheme and the BELS with an appropriately chosen extended model is only of an al-

gorithmic nature. This implies that the asymptotic accuracy of these methods (in the

case of convergence) is also identical. However, it has been shown in (Söderström, Hong

& Zheng 2005) that the iterative BELS implementation might suffer from convergence

problems in the cases of low signal-to-noise ratio. So far, the convergence properties

of the RFS algorithms have not been investigated, but it would seem likely that they

might suffer from the same problems.

3.6.4 Computation of θ

As outlined in Section 3.6.3, the RBCLS algorithm for the determination of θ̂k, which

is based on the principle of stationary iterative methods for LS, might suffer from

convergence problems in the case of low signal-to-noise ratios. In order to investigate

this issue (at least via simulation), the following example is considered.

Example 3.3. Consider a similar setup as in Section 3.3.6, i.e. the system is defined
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Figure 3.6: Mean square error of the RFSa and RFSb estimates for different signal-
to-noise ratios.

once again by

θ =
[

−1.5 0.7 1 0.5
]T
, (3.67)

whilst nζ = na + nb + 1, λ = 1 and the input is a zero mean, white random process of

unity variance. Three different signal-to-noise ratios (equal on input and output) are

considered: 10dB, 5dB and 0dB. The system is simulated for N = 500 samples and the

RFSa and RFSb algorithms are applied to estimate ϑ for 100 Monte-Carlo simulations.

At each Monte-Carlo run, the mean squared error (MSE), defined by

MSEN ,

∥
∥
∥ϑ− ϑ̂N

∥
∥
∥

2

2

nθ + 2
(3.68)

is computed and stored. The results are presented in Figure 3.6. It is observed that

for the cases of 10dB and 5dB, the MSE lies within acceptable regions, although its

average is larger in the latter case, which is expected due to the increased noise level.

For the case of 0dB, however, several outliers are observed, indicating the divergence

of the recursive scheme. Although a noise level of zero dB might be rather unrealistic

in practice, the example shows that the RFS algorithms, in their present form, cannot

guarantee convergence in general.

Example 3.3 shows that the RFS algorithms seem to suffer from convergence prob-

lems for low signal-to-noise ratios. Therefore, it appears reasonable, to consider al-

ternative approaches for the computation of the bias compensated parameter vector.

Indeed, if the RBCLS algorithm is replaced with a numerically sound algorithm (e.g.

with the offline LS as discussed below), the modified RFS algorithms show no diver-

gence when applied to Example 3.3. Some potential alternatives to compute θ̂k, which

are, however, not further investigated within this thesis, are listed as follows.
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3. Gradient-based recursive Frisch scheme approaches

1. (LS) The LS method can be applied to solve the bias compensated normal equa-

tions in an offline manner at each recursion, yielding the minimum norm solution

θ̂k =
(

Σ̂k
ϕ − Σϕ̃(σ̂k)

)†
ξ̂kϕy. (3.69)

Such an approach is feasible since the number equations is fixed (not growing

with time). A potential drawback could be that of the increased computational

costs since the computational complexity of the LS algorithm is generally of cubic

order. This requires, however, some further investigations.

2. (Matrix factorisation) It is possible to represent the covariance matrices in

factorised form using Cholesky decomposition or UD -factorisation. Whilst this

is known to improve the conditioning of the problem, it also allows an easy in-

troduction of regularisation (Ljung 1999, p. 383). Since the bias compensation

can be regarded as a form of de-regularisation (constants are subtracted from the

diagonal rather than added as in the case of regularisation), the use of matrix

factorisations should provide the means for a more robust recursive bias compen-

sation (rather than using the technique of stationary iterative LS as in the case

of the RBCLS).

3. (Eigendecomposition) As outlined in Section 3.6.1, a is already estimated

within the conjugate gradient subspace tracking algorithm as the eigenvector of

Âk corresponding to the eigenvalue σỹ. From (3.64) it is observed, that b could

be determined by solving the overdetermined system of equations

[

Σϕ̄yϕu

(Σϕu − σũInb
)

]

b = −

[(
Σϕ̄y − σỹIna+1

)

Σϕuϕ̄y

]

ā. (3.70)

If LS is utilised to estimate b, the problem reduces to O(n3
b) (in contrast to O(n3

θ)

as in the direct LS approach of Point 1 above).

Whilst a further investigation of the convergence properties of the RFS algorithms

is not considered within this thesis, the above points are interesting candidates for

immediate further work.

3.6.5 Extension to other Frisch scheme forms

Recall from Section 2.4.3 that the YW cost function is only one possibility to single out

(or choose) a model from the set of admissible Frisch scheme solutions. The YW crite-

rion has been chosen within this chapter, since the required covariance matrix Σζϕ̄ can

be obtained recursively in a straightforward manner and without loss of information. In

contrast, when use is made of the covariance-match (CM) criterion, the auto-covariance

sequence of the residuals is required to be updated. Indeed, the residuals at time k
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cannot be computed recursively, since they require the knowledge of the entire data

sequence {ui, yi}
k
i=1. However, it is possible to approximate the residuals within the

recursive scheme using the current data and the most recent estimate of θ, which allows

a finite dimensional data vector to be stored (cf. Meyer et al. 2006, Linden et al. 2006).

A similar philosophy is also used within the recursive prediction error methods for the

determination of the gradient (see Ljung 1999, p. 371). Consequently the developments

within this chapter require only minor modifications in order to handle the Frisch-CM

case. The development of recursive Frisch-CM algorithms is, therefore, another topic

of potential further work.

3.7 Concluding remarks

The Frisch scheme for dynamic system identification, which utilises the Yule-Walker

(YW) model selection criterion, has been modified to recursively estimate the parame-

ters and measurement noise variances of linear time-invariant single-input single-output

errors-in-variables systems. Two recursive algorithms have been developed which are

denoted RFSa and RFSb, respectively. The system parameter vector is obtained by

making use of the recursive bias compensating least squares (RBCLS) principle, which

removes the asymptotic bias of the recursive least squares (RLS) estimates at each time

instance. The eigenvalue problem, which is required to be solved for the determination

of the output measurement noise variance, is recursively computed by making use of

a conjugate gradient method. For the computation of the input measurement noise

variance, the YW cost function is required to be minimised at each recursion step. In

order to achieve this, two approaches have been considered within this Chapter:

1. A Gauss-Newton algorithm, denoted YW-GN, which makes use of approximate

first and second order derivatives.

2. A steepest gradient algorithm, denoted YW-lin, where the optimal step size is

determined via a line search. When linearisations of the offline Frisch scheme

equations are utilised to approximate the gradient, this approach is equivalent to

minimising a modified cost function, where the Frisch equations are replaced by

their linearisations around the most recent estimates.

These two techniques for the determination of the input measurement noise variance

have led to the proposition of two recursive Frisch scheme (RFS) algorithms, which

are denoted RFSa and RFSb, respectively. These algorithms have been compared with

the offline Frisch scheme in simulation, illustrating that they are able to approximate

the offline Frisch scheme estimates. A detailed overview of the utilised algorithms and

sub-routines of this Chapter is given in Table 3.7.

The computational complexity of both recursive algorithms has been analysed in

terms of floating point operations (flops). It is shown that the recursive algorithms are
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Alg. Name Description

3.1 RAFS Repeatedly applied (offline) Frisch scheme.

3.2 RBCLS Recursive bias compensating least squares algorithm. Compensates for the RLS
bias at each recursion.

3.3 RLS Normalised gain RLS. Scales the covariance matrix, such that Pk = [Σ̂k
ϕ]−1.

3.4 CG-RQ Conjugate gradient algorithm which tracks the minimum of the Rayleigh quotient.

3.5 YW-GN Gauss-Newton algorithm which tracks the minimum of the YW cost function.

3.6 YW-lin Gives closed-form solution of minimum of modified YW cost function, which makes
use of the linearised Frisch scheme equations.

3.7 RFSa First recursive Frisch scheme algorithm. Uses the RBCLS, CG-RQ and the YW-
GN.

3.8 RFSb Second recursive Frisch scheme algorithm. Uses the RBCLS, CG-RQ and the
YW-lin.

Table 3.7: Overview of developed algorithms for Chapter 3 (Abbreviation Alg. de-
notes Algorithm).

of cubic complexity with respect to the number of system parameters to be estimated,

i.e. they require O(n3
θ) flops. The corresponding bottlenecks of the RFS algorithms

have been identified and pointed out. Whilst the order of complexity of the recursive

algorithms is identical to that of the repeatedly applied offline Frisch scheme (RAFS),

it has been shown in simulation, however, that the recursive algorithms reduce the

absolute computation time per recursion significantly. Therefore, the recursive schemes,

which have been developed within this chapter, would appear to be more suitable for

a practical online implementation.

In addition to the computational complexity, the so-called Frisch-character, which

is a unique feature of the offline Frisch scheme, has been analysed when use is made

of the RFS algorithms. Since a subspace tracking algorithm is utilised to approximate

the output measurement noise variance, the Frisch-character of the solution holds only

approximately for the recursive algorithms. Different measures have been introduced

to quantify the Frisch-character of the recursive solution, and its efficiency for online

computation has been discussed. It has been shown that this characteristic may be

reflected by the residual, which is computed by the conjugate gradient method implic-

itly. Hence, a computationally inexpensive measure for the Frisch-character is available

online. A further numerical example has shown, at least in the specific case considered,

that the recursive algorithms are able to retain the Frisch-character after the initialisa-

tion transients have decayed. Hence, the developed algorithms are able to approximate

the offline solution reasonably well.

Finally, a critical appraisal and discussion has highlighted potential shortcomings of

the recursive schemes. Directions for further refinement have been outlined concerning

the reduction of computational effort. Moreover, a Monte-Carlo simulation has revealed

that the recursive algorithms appear to suffer from convergence problems in the case

of low signal-to-noise ratios. Alternatives have been discussed, in order to potentially
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3. Gradient-based recursive Frisch scheme approaches

improve the convergence properties of the algorithms, which provide the bases for

further developments. A thorough convergence analysis for the RFS algorithms also

remains an interesting topic for future work. Finally, the very close relationship of the

RFS algorithms with existing iterative bias-eliminating schemes has been discussed.
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Bk(αk) . . . . . . Schur complement
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hk . . . . . . . . . . Auxiliary vector

Hk . . . . . . . . . . Auxiliary matrix

J(σũ) . . . . . . . Jacobian (of residual sk(θ) with respect to σũ )

J∗ . . . . . . . . . . Auxiliary matrix

Lθ(ϑ) . . . . . . . Linearised θ-equation of Frisch scheme

Lσỹ (ϑ) . . . . . . Linearised λmin-equation of Frisch scheme

Lk′

θ . . . . . . . . . Recursively computed derivative of Lθ(ϑ)

MSEk . . . . . . . Mean square error

N(A) . . . . . . . Nullspace of matrix A

Pk . . . . . . . . . . Scaled covariance matrix obtained from recursive least squares

rk(θ) . . . . . . . . Residual of Yule-Walker cost function

s(θ) . . . . . . . . . Auxiliary vector

S(θ) . . . . . . . . Auxiliary matrix

V k
1 . . . . . . . . . . Cost function for the determination of σũ (coloured output noise case)

V k′

1 , V k′′

1 . . . . First and second order derivative of V k
1

V lin
k . . . . . . . . . YW cost function using linearised Frisch scheme equations

V k
2 . . . . . . . . . . Cost function for the determination of αk (coloured output noise case)

V k′

2 , V k′′

2 . . . . First and second order derivative of V k
2

VLS . . . . . . . . . Asymptotic least squares criterion

xk . . . . . . . . . . Eigenvector corresponding to Âk

αk . . . . . . . . . . Scaling factor

δk . . . . . . . . . . . Extended instrument vector comprising delayed inputs

δ∗k . . . . . . . . . . . Obtained by deleting last entry in δk

ι(ϑ) . . . . . . . . . Auxiliary term

ῑ(ϑ) . . . . . . . . . Auxiliary term

κ(ϑ) . . . . . . . . Auxiliary term

ρỹ . . . . . . . . . . Vector of auto-correlation terms of ỹk

ς . . . . . . . . . . . . Input measurement noise variance (obtained by λmin equation)

θ̂k− 1

2

. . . . . . . . Intermediate estimate of θ

θ
(ỹ)
k . . . . . . . . . Approximate derivative of θ̂k with respect to σ̂k

ỹ

θ
(ũ)
k . . . . . . . . . Approximate derivative of θ̂k with respect to σ̂k

ũ

Θ . . . . . . . . . . . Augmented parameter vector for coloured output noise case

ζk . . . . . . . . . . . Instrument vector comprising delayed inputs

Preliminary reading: Sections 2.2, 2.3, 2.4.3, 2.4.4, 3.3, 3.4.

4.1 Introduction

Chapter 3 has developed algorithms for the online computation of the estimates ob-

tained by the Frisch scheme, which utilises the Yule-Walker (YW) model selection

criterion (Frisch-YW). Whilst the simulation results are promising, the computational

cost of the recursive Frisch scheme (RFS) algorithms is of cubic order. Consequently,

with respect to practical applicability, it is considered to be pertinent to investigate

potential improvements to reduce the computational complexity. Section 3.6 has al-

ready identified the bottlenecks within the RFS algorithms and the first part of this

chapter develops two novel algorithms with reduced computational costs. In order to

gain computational speed, sacrifices are made by utilising additional approximations,
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which will effect the estimates to be obtained. The fast RFS (FRFS) algorithms are

compared via simulation with the RFSa and RFSb algorithms, which have been devel-

oped in Chapter 3. The very close relationship of the developed FRFS algorithms to

the family of bias eliminating least squares (BELS) algorithms is also discussed. The

development of the FRFS algorithms is based partly on the author’s work published in

(Linden, Vinsonneau & Burnham 2007b).

In the second part of this chapter the assumption of the output noise being white

is relaxed and the development of recursive algorithms for coloured output noise is

considered. First an algorithm is proposed, which uses Newton’s method, based on the

offline Frisch scheme for the coloured output noise case, which has been developed in

(Söderström 2006). This initial algorithm leads to a rather computationally demanding

scheme, due to the computation required to obtain the first and second order deriva-

tives. A second approach takes into account some recently proposed simplifications

of the offline scheme (Söderström 2008). In addition, it makes use of the particular

bilinear parametrisation structure for the subproblem, which is concerned with esti-

mating the input noise variance. From a computational perspective, this yields a more

appealing algorithm. Both approaches are compared via a simulation example. Parts

of this work have been published in (Linden & Burnham 2008a).

4.2 Fast recursive Frisch scheme algorithms

This section develops fast variants of the RFSa and RFSb algorithms which have been

developed in Chapter 3 (cf. Section 3.3.5). The bottlenecks for these algorithms have

been identified in Section 3.4 and are summarised as follows.

• The computation of σũ within the RFSa algorithm is achieved via the YW-GN

algorithm. The computational complexity of this algorithm is of cubic order due

to the computation of the derivatives of θ̂k with respect to σũ and σỹ, denoted

θ
(ũ)
k and θ

(ỹ)
k , respectively, which requires the inversion of the matrix Σ−1

ϕ0
(σ̂k−1) =

(

Σ̂k
ϕ − Σ̂k−1

ϕ̃

)−1
(cf. Steps 1-2 in Table 3.3 on page 75).

• The computation of σũ within the RFSb algorithm is achieved via the YW-lin

algorithm. The computational complexity of this algorithm is of cubic order also

due to the inversion of Σ−1
ϕ0

(σ̂k−1) (cf. Step 1 in Table 3.4 on page 75).

• The computation of σỹ within both RFS algorithms is achieved via the CG-RQ

algorithm. The computation of the Schur complement Âk is of cubic complexity

due to the inversion of a nb × nb matrix (cf. Step 1 in Table 3.5 on page 76).

Consequently, alternative approaches are suggested within this section, which avoid the

matrix inversions, thereby reducing the computational complexity of the algorithms

from cubic to quadratic order. In addition, the similarity of the resulting algorithms
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with existing bias eliminating least squares (BELS) approaches is highlighted and a

numerical simulation study compares the novel FRFS algorithms with the RFS algo-

rithms, which have been developed in Chapter 3.

4.2.1 Fast YW-GN algorithm

In Section 3.4 the bottleneck within the Gauss-Newton method has been identified to

be the computation of the derivatives

θ
(ũ)
k =

(

Σ̂k
ϕ − Σϕ̃(σ̂k−1)

)−1
[

0

b̂k−1

]

, (4.1a)

θ
(ỹ)
k =

(

Σ̂k
ϕ − Σϕ̃(σ̂k−1)

)−1
[

âk−1

0

]

. (4.1b)

Due to the matrix inversion involved, the computations are of cubic complexity, i.e.

O(n3
θ). However, it is straightforward to derive a less computationally demanding

recursive expression of (4.1), by making use of the principle of stationary iterative

least squares (see Section 2.3.1), where the matrix splitting is given naturally by Σ̂k
ϕ −

Σϕ̃(σ̂k−1). Focusing on the computation of θ
(ũ)
k , (4.1a) may be re-expressed as

θ
(ũ)
k =

[

Σ̂k
ϕ

]−1
([

0

b̂k−1

]

+ Σϕ̃(σ̂k−1)θ
(ũ)
k

)

(4.2)

which can be solved in a recursive way. Note that it is not necessary to compute the ma-

trix inverse explicitly since it corresponds to Pk within the RLS algorithm (see (3.12)).

Proceeding with θ
(ỹ)
k in a similar fashion, recursive formulations for the derivatives are

then given by

θ̆
(ũ)
k = Pk

([

0

b̂k−1

]

+ Σϕ̃(σ̂k−1)θ̆
(ũ)
k−1

)

, (4.3a)

θ̆
(ỹ)
k = Pk

([

âk−1

0

]

+ Σϕ̃(σ̂k−1)θ̆
(ỹ)
k−1

)

, (4.3b)

where the notation ˘ is introduced, in order to distinguish between the recursively com-

puted gradients and the non-recursive gradient computation given in (3.34a)-(3.34b).

Note that only O(n2
θ) flops are required for the computation of (4.3). The correspond-

ing Gauss-Newton algorithm is denoted YW-GN-fast and is summarised as follows.

Algorithm 4.1 (YW-GN-fast).

σ̂kũ = σ̂k−1
ũ − γk

[

J
(r)
k

T
J

(r)
k

]−1

J
(r)
k

T
rk(θ̂k−1) (4.4a)
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Step Description Procedure Flops

1 Derivative θ̆
(ũ)
k = Pk

 

»

0 b̂Tk−1

–T

+ Σϕ̃(σ̂k−1)θ̆
(ũ)
k−1

!

O(n2
θ)

2 Derivative θ̆
(ỹ)
k = Pk

 

»

âT
k−1 0

–T

+ Σϕ̃(σ̂k−1)θ̆
(ỹ)
k−1

!

O(n2
θ)

3 Derivative σ
(ỹ)
ỹ,k = −(b̂Tk−1b̂k−1)/(ˆ̄a

T
k−1

ˆ̄ak−1) O(nb + na)

4 Jacobian J
(r)T

k = Σ̂k
ζϕ

“

θ̆
(ỹ)
k σ

(ũ)
ỹ,k + θ̆

(ũ)
k

”

O(nθ)

5 Update σ̂ũ σ̂k
ũ = σ̂k−1

ũ + γk

h

J
(r)T

k J
(r)
k

i−1

J
(r)T

k rk(θ̂k−1) O(nθ)

Overall complexity (dominant parts) O(n2
θ)

Table 4.1: Computational complexity of YW-GN-fast algorithm.

J
(r)T

k = Σ̂k
ζϕ

(

θ̆
(ỹ)
k σ

(ũ)
ỹ,k + θ̆

(ũ)
k

)

(4.4b)

σ
(ỹ)
ỹ,k = −(b̂Tk−1b̂k−1)/(ˆ̄a

T
k−1

ˆ̄ak−1) (4.4c)

θ̆
(ũ)
k = Pk

([

0

b̂k−1

]

+ Σϕ̃(σ̂k−1)θ̆
(ũ)
k−1

)

(4.4d)

θ̆
(ỹ)
k = Pk

([

âk−1

0

]

+ Σϕ̃(σ̂k−1)θ̆
(ỹ)
k−1

)

(4.4e)

rk(θ̂k−1) = Σ̂k
ζϕθ̂k−1 − ξ̂kζy (4.4f)

For completeness, the computational complexity of Algorithm 4.1 is given in Table

4.1.

The next subsection considers a fast implementation of the YW-lin algorithm.

4.2.2 Fast YW-lin algorithm

Before developing the fast algorithm it is instructive to begin with a brief review of the

YW-lin algorithm. Then, the two bottlenecks within this algorithm are pointed out

and modifications are proposed to reduce the computational complexity.

Review of the YW-lin algorithm

Recall from Section 3.3.4 that within the YW-lin algorithm, σũ is obtained by minimis-

ing an approximation of the YW model selection cost function (3.44)

V lin
k ,

1

2

∥
∥
∥rk

(

Lθ(ϑ̂k−1)
)∥
∥
∥

2

2
, (4.5)
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where the residual is given by

rk

(

Lθ(ϑ̂k−1)
)

= Σ̂k
ζϕLθ(ϑ̂k−1) − ξ̂kζy. (4.6)

The linearised bias compensating least squares equation is given by (3.29)

Lθ(ϑ̂k−1) = θ̂k−1 + Σ−1
ϕ0

(σ̂k−1)ι(ϑ̂k−1) + Σ−1
ϕ0

(σ̂k−1)κ(ϑ̂k−1)σ̂
k
ũ, (4.7)

with

ι(ϑ̂k−1) = ξ̂kϕy − Σ̂k
ϕθ̂k−1 +

[

σ̂k−1
ỹ +

b̂Tk−1b̂k−1

ˆ̄aTk−1
ˆ̄ak−1

σ̂k−1
ũ

][

âk−1

0

]

, (4.8a)

κ(ϑ̂k−1) =




−
b̂Tk−1b̂k−1

ˆ̄aT
k−1

ˆ̄ak−1
âk−1

b̂k−1



 , (4.8b)

Σϕ0(σ̂k−1) = Σ̂k
ϕ − Σϕ̃(σ̂k−1). (4.8c)

The update equation for σũ is then obtained by solving (3.45)

0 =
dV lin

k

dσ̂kũ
= JT (σ̂kũ)rk

(

Lθ(ϑ̂k−1)
)

, (4.9)

for σũ, where the Jacobian is given by (3.48)

J(σ̂kũ) = Σ̂k
ζϕ

dLθ

dσ̂kũ
. (4.10)

First bottleneck

The first bottleneck of this YW-lin algorithm is due to the computation of the total

derivative of Lθ, which has been given by (3.49)

dLθ

dσ̂kũ
= Σ−1

ϕ0
(σ̂k−1)κ(ϑ̂k−1), (4.11)

where the matrix inverse Σ−1
ϕ0

is required to be computed at each recursion step. How-

ever, by making use of stationary iterative methods for solving LS problems (cf. Section

2.3.1), (4.11) can be re-expressed as

Σ̂k
ϕ

dLθ

dσ̂kũ
− Σϕ̃(σ̂k−1)

dLθ

dσ̂kũ
= κ(ϑ̂k−1), (4.12)

where the matrix splitting is given naturally by (4.8c). An iterative/recursive way to

compute dLθ/dσ̂
k
ũ could therefore be given by

Lk
′

θ , Pk

[

κ(ϑ̂k−1) + Σϕ̃(σ̂k−1)L
k−1′

θ

]

, (4.13)
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where Lk
′

θ denotes the recursively computed derivative and Pk = [Σ̂k
ϕ]−1 is given by the

matrix inversion lemma of the RLS algorithm (see Algorithm 3.3).

Second bottleneck

The second bottleneck within the YW-lin algorithm is due to the matrix inverse within

the computation of (4.7), therefore, a recursive expression for Lθ(ϑ̂k−1) is required.

Firstly, introduce the notation Lθ(ϑ̂k−1) , Lkθ , where the index k is chosen to reflect

the fact that Lkθ corresponds to the linearisation at time instance k (although it depends

on the estimate ϑ̂k−1 with time index k − 1). Secondly, assume that all past θ̂k have

been computed using the expression (4.7), which means that θ̂k can be replaced with

Lkθ in (4.7). Thirdly, from (4.8a) and (4.8b) it holds

ι(ϑ̂k−1) + κ(ϑ̂k−1)σ̂
k
ũ = ξ̂kϕy − Σ̂k

ϕθ̂k−1 +

[

σ̂k−1
ỹ +

b̂Tk−1b̂k−1

ˆ̄aTk−1
ˆ̄ak−1

σ̂k−1
ũ

][

âk−1

0

]

+




−
b̂Tk−1 b̂k−1

ˆ̄aT
k−1

ˆ̄ak−1
âk−1

b̂k−1



 σ̂kũ

= ξ̂kϕy − Σ̂k
ϕθ̂k−1 +

[

âk−1

0

]

σ̂k−1
ỹ +





b̂Tk−1 b̂k−1

ˆ̄aT
k−1

ˆ̄ak−1
âk−1

0



 σ̂k−1
ũ

+




−
b̂Tk−1 b̂k−1

ˆ̄aT
k−1

ˆ̄ak−1
âk−1

0



 σ̂kũ +

[

0

b̂k−1

]

σ̂kũ, (4.14)

and by assuming that σ̂kũ ≈ σ̂k−1
ũ , σ̂kỹ ≈ σ̂k−1

ỹ and using θ̂k−1 = Lk−1
θ , one obtains

ι(ϑ̂k−1) + κ(ϑ̂k−1)σ̂
k
ũ ≈ ξ̂kϕy − Σ̂k

ϕL
k−1
θ +

[

σ̂kỹIna 0

0 σ̂kũInb

]

Lk−1
θ . (4.15)

Finally, by substituting (4.8c) and (4.15) into (4.7), it holds

[

Σ̂k
ϕ − Σϕ̃(σ̂k−1)

]

Lkθ =
[

Σ̂k
ϕ − Σϕ̃(σ̂k−1)

]

Lk−1
θ + ξ̂kϕy − Σ̂k

ϕL
k−1
θ + Σϕ̃(σ̂k)L

k−1
θ , (4.16)

which simplifies to

[

Σ̂k
ϕ − Σϕ̃(σ̂k−1)

]

Lkθ = −Σϕ̃(σ̂k−1)L
k−1
θ + ξ̂kϕy + Σϕ̃(σ̂k)L

k−1
θ . (4.17)

Thus, a recursive computation of the linearised θ-equation is given by

Σ̂k
ϕL

k
θ ≈ Σϕ̃(σ̂k−1)L

k−1
θ − Σϕ̃(σ̂k−1)L

k−1
θ + ξ̂kϕy + Σϕ̃(σ̂k)L

k−1
θ

⇔ Lkθ ≈ [Σ̂k
ϕ]−1ξ̂kϕy + [Σ̂k

ϕ]−1Σϕ̃(σ̂k)L
k−1
θ , (4.18)
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which interestingly is, indeed, the recursive bias compensating least squares (RBCLS)

algorithm given in Section 3.3.2 (i.e. simply replace θ̂k with Lkθ in (3.10)). Since

the recursive computation of Lkθ is identical to the RBCLS computation of θ̂k, the

latter, more familiar, notation can be utilised. Substituting the linearised λmin-equation

(3.27b), with the linearisation carried out around ϑ̂k−1, the RBCLS equation becomes

θ̂k = θ̂LS
k + Pk

[

σ̂kỹ âk−1

σ̂kũbk−1

]

⇔ θ̂k = θ̂LS
k + Pk

[

0

b̂k−1

]

σ̂kũ + Pk

[

âk−1

0

][

σ̂k−1
ỹ +

b̂Tk−1b̂k−1

ˆ̄aTk−1
ˆ̄ak−1

σ̂k−1
ũ −

b̂Tk−1b̂k−1

ˆ̄aTk−1
ˆ̄ak−1

σ̂kũ

]

,

(4.19)

which simplifies to

θ̂k = Pk ῑ(ϑ̂k−1) + Pkκ(ϑ̂k−1)σ̂
k
ũ, (4.20)

where κ(ϑ̂k−1) is defined by (4.8b) and

ῑ(ϑ̂k−1) , ξ̂kϕy +

[

âk−1

0

][

σ̂k−1
ỹ +

b̂Tk−1b̂k−1

ˆ̄aTk−1
ˆ̄ak−1

σ̂k−1
ũ

]

. (4.21)

Fast update

Using the previous results, a fast implementation of the YW-lin algorithm can be

realised. With the Jacobian at time instance k being given by (cf. (3.48))

Jk , Σ̂k
ζϕL

k′

θ , (4.22)

it is therefore possible to solve (4.9) as

0 = JTk

[

Σ̂k
ζϕθ̂k − ξ̂kζy

]

⇔ JTk Σ̂k
ζϕ

[

Pk ῑ(ϑ̂k−1) + Pkκ(ϑ̂k−1)σ̂
k
ũ

]

= JTk ξ̂
k
ζy

⇔ JTk Σ̂k
ζϕPkκ(ϑ̂k−1)σ̂

k
ũ = JTk

[

ξ̂kζy − Σ̂k
ζϕPk ῑ(ϑ̂k−1)

]

, (4.23)

and the fast update for σ̂kũ is finally given by

σ̂kũ =
JTk

[

ξ̂kζy − Σ̂k
ζϕPk ῑ(ϑ̂k−1)

]

JTk Σ̂k
ζϕPkκ(ϑ̂k−1)

. (4.24)

The new algorithm, denoted YW-lin-fast, can be summarised as follows.
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Step Description Procedure Flops

1 Update σ̂k
ũ σ̂k

ũ = JT
k

h

ξ̂k
ζy − Σ̂k

ζϕPk ῑ(ϑ̂k−1)
i

/JT
k Σ̂k

ζϕPkκ(ϑ̂k−1) O(n2
θ)

2 κ(ϑ̂k−1) =

»

− b̂T
k−1

b̂k−1

ˆ̄aT
k−1

ˆ̄ak−1

T

âk−1 b̂Tk−1

–T

O(nā)

3 ῑ(ϑ̂k−1) = ξ̂k
ϕy +

»

σ̂k−1
ỹ +

b̂T
k−1

b̂k−1

ˆ̄aT
k−1

ˆ̄ak−1

σ̂k−1
ũ

–

[âT
k−1 0]T O(nθ)

4 Jacobian Jk = Σ̂k
ζϕL

k′

θ O(n2
θ)

5 Derivative Lk′

θ = Pk

h

κ(ϑ̂k−1) + Σϕ̃(σ̂k−1)L
k−1′

θ

i

O(n2
θ)

Overall complexity (dominant parts) O(n2
θ)

Table 4.2: Computational complexity of the YW-lin-fast algorithm.

Algorithm 4.2 (YW-lin-fast).

σ̂kũ =
JTk

[

ξ̂kζy − Σ̂k
ζϕPk ῑ(ϑ̂k−1)

]

JTk Σ̂k
ζϕPkκ(ϑ̂k−1)

(4.25a)

κ(ϑ̂k−1) =




−
b̂Tk−1 b̂k−1

ˆ̄aT
k−1

ˆ̄ak−1
âk−1

b̂k−1



 (4.25b)

ῑ(ϑ̂k−1) , ξ̂kϕy +

[

σ̂k−1
ỹ +

b̂Tk−1b̂k−1

ˆ̄aTk−1
ˆ̄ak−1

σ̂k−1
ũ

] [

âk−1

0

]

(4.25c)

Jk = Σ̂k
ζϕL

k′

θ (4.25d)

Lk
′

θ = Pk

[

κ(ϑ̂k−1) + Σϕ̃(σ̂k−1)L
k−1′

θ

]

(4.25e)

The number of flops for Algorithm 4.2 are listed in Table 4.2, where a reduction from

cubic to quadratic complexity is observed (cf. Table 3.4 on page 75). Consequently,

the computational complexity for determining σkũ has been reduced by one order of

magnitude.

The next subsection addresses the bottleneck within the conjugate gradient sub-

space tracking algorithm.

4.2.3 Alternative computations for σ̂ỹ

Rayleigh quotient based approach

The RFS algorithms utilise a gradient-based subspace tracking algorithm, namely the

conjugate gradient method described in Section 3.3.3, in order to recursively estimate

the eigenvector corresponding to the smallest eigenvalue of Âk. Once the eigenvector

xk is determined, the corresponding eigenvalue can be computed using the Rayleigh
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quotient (cf. Golub & Van Loan 1996)

σ̂kỹ =
xTk Âkxk

xTk xk
, (4.26)

as in (3.15c). A computationally less demanding approach for a recursive determination

of σ̂ky , which avoids the use of the subspace tracking algorithm, seems possible by

acknowledging the fact that in the asymptotic case, the eigenvector of A corresponding

to the smallest eigenvalue is already contained in the parameter vector, as pointed

out in Lemma 3.3 (cf. page 83). Consequently, by assuming that ˆ̄ak−1 computed by

the recursive bias compensating least squares (RBCLS) is an approximation of the

eigenvector of Âk−1 corresponding to the smallest eigenvalue σ̂k−1
ỹ , and by further

assuming that ˆ̄ak−1 is sufficiently ‘close’ to ˆ̄ak, the minimum eigenvalue of Âk can be

approximated using the Rayleigh quotient, which gives rise to the recursive expression

σ̂kỹ =
ˆ̄aTk−1Âk ˆ̄ak−1

ˆ̄aTk−1
ˆ̄ak−1

, (4.27)

which completely avoids the need for tracking the eigenvector via the conjugate gradient

algorithm.

Approximation of the Schur complement

Whilst the use of equation (4.27) does indeed reduce the required number of flops, the

order of computational complexity does not change. This is due to the cubic com-

plexity for the computation of the Schur complement Âk itself, which is the bottleneck

within the conjugate gradient algorithm (see Step 1 in Table 3.5 on page 76). In order

to reduce the order of complexity which is required for the computation of Âk, a fur-

ther approximation might be utilised. Recall, that in the asymptotic case, the Schur

complement is given by (3.62)

A = Σϕ̄y − Σϕ̄yϕu [Σϕu − σũInb
]−1 Σϕuϕ̄y , (4.28)

whilst b can be expressed as (3.65)

b = − [Σϕu − σũInb
]−1 Σϕuϕ̄y ā. (4.29)

Post-multiplying (4.28) with ā and substituting (4.29) gives

Aā = Σϕ̄y ā+ Σϕ̄yϕub, (4.30)
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which allows the output measurement noise variance, by using the Rayleigh quotient,

to be expressed as

σỹ =
āT

āT ā

(
Σϕ̄y ā+ Σϕ̄yϕub

)
. (4.31)

This gives rise to an approximate recursive update for σỹ given by

σ̂kỹ =
ˆ̄aTk−1

ˆ̄aTk−1
ˆ̄ak−1

(

Σ̂k
ϕ̄y

ˆ̄ak−1 + Σ̂k
ϕ̄yϕu

b̂k−1

)

, (4.32)

which avoids the explicit computation of the Schur complement and only requires 2n2
ā+

2nānb + 6nā flops. Expression (4.32) does not, however, exploit the knowledge of the

previously determined σ̂kũ, since it only depends on θ̂k−1. Is seems reasonable, therefore,

to perform an intermediate step, in order to make use of the most recent input noise

variance estimate. This is achieved by computing an intermediate parameter estimate,

denoted θ̂k− 1
2
, which makes use of the most recent estimate of σũ. The resulting

algorithm, which is denoted ARQ (approximate Rayleigh quotient), can be summarised

as follows.

Algorithm 4.3 (ARQ).

θ̂k− 1
2

= θ̂LS
k + Pk

[

σ̂k−1
ỹ Ina 0

0 σ̂kũInb

]

θ̂k−1 (4.33a)

σ̂kỹ =

ˆ̄aT
k− 1

2

ˆ̄aT
k− 1

2

ˆ̄ak− 1
2

(

Σ̂k
ϕ̄y

ˆ̄ak− 1
2

+ Σ̂k
ϕ̄yϕu

b̂k− 1
2

)

(4.33b)

The ARQ constitutes an update equation for σ̂kỹ , where ˆ̄θT
k− 1

2

= [ˆ̄aT
k− 1

2

b̂T
k− 1

2

]. The

overall fast RFS algorithms, which make use of the ARQ as well as the fast algorithms

for the computation of σ̂kũ, are summarised in the following subsection.

4.2.4 Fast recursive Frisch scheme algorithms

Based on the above approximations and modifications, two fast RFS algorithms can be

proposed. They are, analogously to the RFSa and RFSb, denoted FRFSa and FRFSb,

respectively. The FRFSa makes use of the YW-GN-fast, whilst the FRFSb utilises

the YW-lin-fast. Both algorithms use the ARQ algorithm for the computation of the

output measurement noise variance. In contrast to the RFS algorithms developed in

Chapter 3, the overall complexity of the FRFS algorithms is reduced to O(n2
θ). For

completeness, both algorithms are summarised as follows.
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Algorithm 4.4 (FRFSa).

1) Initialisation

2) For k = nζ + nb + 1, ...

a) Update γk via (3.8) and Σ̂k
ϕ̄ and Σ̂k

ζϕ̄ via (3.7)

b) Compute Pk and θ̂LS
k using Algorithm 3.3

c) Update σ̂kũ via Algorithm 4.1

d) Update σ̂kỹ using Algorithm 4.3

e) Compute θ̂k via Algorithm 3.2

Algorithm 4.5 (FRFSb).

1) Initialisation

2) For k = nζ + nb + 1, ...

a) Update γk via (3.8) and Σ̂k
ϕ̄ and Σ̂k

ζϕ̄ via (3.7)

b) Compute Pk and θ̂LS
k using Algorithm 3.3

c) Update σ̂kũ via Algorithm 4.2

d) Update σ̂kỹ using Algorithm 4.3

e) Compute θ̂k via Algorithm 3.2

A detailed description providing the computational complexities of the FRFS algo-

rithms is provided in Table 4.3.

Remark 4.1 (Linearised Frisch equations). A similar algorithm with an identical order

of complexity could be defined by making use of the linearised λmin equation (3.27b)

rather than (4.32). In general it might seem appealing to make use of both linearised

Frisch equations in order to obtain a ‘cheaply to compute’ recursive Frisch scheme

algorithm. Whilst it has been shown in Section 4.2.2 that a recursive version of the

linearised θ equation leads in fact to the RBCLS scheme, combining the linearised

λmin equation with the RBCLS and the fast YW-GN or YW-lin algorithm does not

appear to perform well in simulation. One possible explanation could be that the linear

approximation of σỹ is not accurate enough to yield an overall satisfactory performance.
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Step Description Procedure Flops

1 Choose nζ , λk and j nζ = na + nb + 1, 0 < λk < 1, j = nζ + nb

2 RLS initialisations θ̂LS
na

= 0, Pna = 0.1I

3 Recursion for k = na + 1, ..., j

3.1 Data weighting γk = 1/k

3.2 RLS Compute Lk, θ̂LS
k and Pk as in Table 3.2

4 General initialisations Σ̂j
ζϕ̄ = 0, Σ̂j

ϕ̄ = 1
nζ−1

Pj
i=nb+1 ϕ̄iϕ̄

T
i , γj = 1/(nζ − 1),

σ̂j
ũ = 0, and Lj′

θ = 0

5 Recursion for k = j + 1, ...

5.1 Update γ γk =
γk−1

λk+γk−1

2

5.2 Update Σ̂ϕ̄ Σ̂k
ϕ̄ = Σ̂k−1

ϕ̄ + γk

“

ϕ̄kϕ̄
T
k − Σ̂k−1

ϕ̄

”

O(n2
θ̄)

5.3 Update Σ̂ζϕ̄ Σ̂k
ζϕ̄ = Σ̂k−1

ζϕ̄ + γk

“

ζkϕ̄
T
k − Σ̂k−1

ζϕ̄

”

O(n2
θ̄)

5.4 RLS estimate Compute Lk, θ̂LS
k and Pk as in Table 3.2 O(n2

θ)

5.5 Fast update of σ̂k
ũ

either FRFSa: Compute σ̂k
ũ as in Table 4.1 O(n2

θ)

or FRFSb: Compute σ̂k
ũ as in Table 4.2 O(n2

θ)

5.6 Projection Project 0 ≤ σ̂k
ũ ≤ σmax

ũ

5.7 Intermediate update of θ̂k θ̂k− 1

2

= θ̂LS
k + Pkdiag(σ̂k−1

ỹ , ..., σ̂k
ũ, ...)θ̂k−1 O(nθ)

5.8 Fast σ̂y computation σ̂k
ỹ = ˆ̄aT

k− 1

2

/(ˆ̄aT
k− 1

2

ˆ̄ak− 1

2

)
“

Σ̂k
ϕ̄y

ˆ̄ak− 1

2

+ Σ̂k
ϕ̄yϕu

b̂k− 1

2

”

O(n2
ā)

5.9 Projection Project 0 ≤ σ̂k
ỹ ≤ σmax

ỹ

5.10 Bias compensation θ̂k = θ̂LS
k + PkΣ̂k

˜̄ϕθ̂k−1 O(n2
θ)

Overall complexity (dominant parts) O(n2
θ)

Table 4.3: Computational complexity of the FRFSa/FRFSb algorithm.

4.2.5 Relation between FRFS and BELS

Note that the expression (4.32) for the determination of the output measurement noise

variance, which has been derived from the Rayleigh quotient (4.26), could also have

been obtained from the first na equations of

Σϕ0 θ̄ = 0. (4.34)

By taking the upper block row of (3.64), one obtains

σỹā = Σϕ̄y ā+ Σϕ̄yϕub, (4.35)

and pre-multiplying with āT yields

σỹ =
āT

āT ā

(
Σϕ̄y ā+ Σϕ̄yϕub

)
, (4.36)

which is essentially (4.32). As already highlighted in Section 3.6.3, the Frisch scheme,

the bias eliminating schemes and the extended bias compensating least squares (cf.
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Chapter 5) are very closely related, since they all, with suitable choice of instruments

and extended model, use the same equations as the Frisch-YW method. The developed

FRFS algorithms resemble even more the bias eliminating least squares (BELS) ap-

proaches, since the latter also determine σỹ in an iterative/recursive way, as the FRFS

algorithms using (4.36). Although the FRFS algorithms within this section have been

derived from a different perspective, using the Rayleigh quotient to solve the eigen-

value problem associated with the Frisch scheme, the very close relationship to the

BELS algorithms is apparent.

4.2.6 Numerical examples

It is of interest to compare the FRFS approaches with the more computational de-

manding RFS algorithms for a particular example. Also, the effect of the departure (or

otherwise) of the Frisch-character by introducing the various approximations for the

development of the FRFS schemes is investigated in this subsection. Finally it appears

natural to study the reduction of computational costs.

Example 4.1 (Estimation of σũ). Consider a similar setup as in Section 3.3.6, where a

LTI SISO system with na = nb = 2 and given by

θ =
[

−1.5 0.7 1 0.5
]T

(4.37a)

σ =
[

2.1 0.1
]T

(4.37b)

is simulated for 1000 samples using a zero mean, white and Gaussian distributed input

signal of unity variance. The RFS and FRFS algorithms are applied to estimate ϑ

using nζ = na + nb + 1, whilst λ = 1 is chosen (i.e. no forgetting). The maximal

admissible values for the input and output measurement noise variances are chosen to

be σmax
ũ = 2σũ = 0.2 and σmax

ỹ = 2σỹ = 4.2. The estimates of σũ are compared in

Figure 4.1. The upper plot shows the results of the Gauss-Newton approaches RFSa

and FRFSa in comparison to the RAFS. It is observed that the projection facility of

the recursive algorithms is active during the first 200 recursions. After this period, the

RFSa seems only to be able to slowly follow the changes of the RAFS, as already pointed

out in Section 3.3.6. The FRFSa, which uses the recursively updated derivatives, seems

to be slightly more sluggish. This becomes even more evident, if the σmax
ũ is set to larger

upper bound and the experiment is repeated. The lower plot of Figure 4.1 shows the

estimate of σũ obtained from the RFSb and FRFSb algorithms. Here it is observed

that the projection facility seems to be more often active for the fast algorithm (see

around k = 420). After approximately 500 recursions, however, the FRFSb estimate

is barely distinguishable from the RFSb and RAFS estimate, although the FRFSb

solution seems to be slightly more erratic.
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Figure 4.1: Estimates of σũ for using the RAFS, RFSa, RFSb, FRFSa and FRFSb.

The following example investigates, how well the ARQ algorithm can approximate

the Frisch-character.

Example 4.2 (Estimation of σỹ). In order to investigate the Frisch-character of the so-

lution, the smallest eigenvalue of Σ̂k
ϕ0

= Σ̂k
ϕ − Σϕ̃(σ̂k) (cf. (3.58)) evolving over time

is observed1. Therefore, a similar setup as in Example 4.1 is considered. The RFSb

and the corresponding FRFSb are applied to estimate ϑ. However, the value of σ̂kũ is

identical in both cases (obtained by the YW-lin algorithm), which allows the direct

comparison of σ̂kỹ obtained from the CG-RQ (cf. Algorithm 3.4 on page 61) and that

obtained from the ARQ algorithm. The smallest eigenvalue of Σ̂k
ϕ0

using both algo-

rithms is shown in Figure 4.2. It is observed, that both estimates of σỹ are virtually

identical after k = 300 recursions. However, it becomes apparent that there is a price

to pay for the reduction of computational complexity for the computation of σỹ: The

approximation of the Frisch-character is worse in the case of the FRFSb algorithm,

which uses the fast ARQ update for the computation of the output measurement noise

variance.

The final example investigates the computational savings when use is made of the

fast algorithms.

Example 4.3 (Computation time). Naturally, it is of major interest to compare the

computation time per recursion of the FRFS algorithms with those of the RFS schemes.

Therefore, the experiment in Section 3.4.3 is repeated (cf. Figure 3.3 on page 78) for the

FRFS algorithms. The results are presented in Figure 4.3, which clearly shows the re-

duction of computational complexity for the FRFS approaches. For the fast algorithms,

1Recall that the smallest eigenvalue is zero in the offline Frisch scheme case.
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Figure 4.2: Estimates of the CG-RQ and ARQ algorithms and corresponding Frisch-
character.
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Figure 4.3: Computation time per single recursion with increasing model order n
(linear and logarithmic scale).

the Gauss-Newton approach (FRFSa) for the determination of σũ appears to be slightly

faster than the YW-lin-fast algorithm (FRFSb). The fact that the slope of the curves

corresponding to the FRFS algorithms is smaller than those of the RFS approaches

illustrates that the computational complexity is reduced from cubic to quadratic order;

this underpins the theoretical results obtained in this section.

4.2.7 Summary

The above examples have shown that the fast algorithms are generally able to estimate

the parameters of an EIV system. The price for the gain in terms of reduced compu-

tational cost would appear to be a slower convergence rate in the case of the YW-GN

algorithm and more erratic estimates of σũ in the case of the YW-lin algorithm. In

addition, the fast computation of σỹ is accompanied with a deterioration of the Frisch-
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Name
Determination of

flops
θ σỹ σũ

RFSa
RBCLS (p. 58) CG-RQ (p. 61)

YW-GN (p. 66 )
O(n3

θ)
RFSb YW-lin (p. 68 )

FRFSa
RBCLS (p. 58) ARQ (p. 100)

YW-GN-fast (p. 93 )
O(n2

θ)
FRFSb YW-lin-fast (p. 98 )

Table 4.4: Comparison of RFS and FRFS algorithms (page numbers indicate where
the algorithms may be found).

character. Alternative algorithmic combinations seem also feasible, which might be

able to reduce or overcome the reduction of the Frisch-character. Improved versions of

the FRFS algorithms is therefore a potential topic of further work. Table 4.4 compares

the four developed recursive Frisch scheme algorithms for the white noise case.

4.3 Recursive Frisch scheme for coloured output noise

The dynamic Frisch scheme presented in (Beghelli et al. 1990, Söderström 2007a) as-

sumes that the additive disturbances on the system input and output are white. Such

an assumption, however, can be rather restrictive since the output noise often not

solely consists of measurement uncertainties, but also aims to account for process dis-

turbances, which are usually correlated in time. In order to overcome this shortcom-

ing, the Frisch scheme has recently been extended to the coloured output noise case

(Söderström 2006, Söderström 2008), i.e. the values of the random process {ỹi}
k
i=1 are

considered to be correlated in time (see Section 2.4.4 for a detailed review of the offline

scheme). This section develops a recursive (adaptive) formulation of the Frisch scheme

for coloured output noise, which allows the estimates to be calculated online as new

data arrives.

Firstly, a recursive algorithm for the offline scheme, which has been developed in

(Söderström 2006) is developed in Section 4.3.1 by making use of two separate Newton

algorithms. Whilst the evaluation of the first and second order derivatives is rather

computationally demanding, a second algorithm is proposed in Section 4.3.3, which is

based on the development in (Söderström 2008). There, some further simplifications

have been exploited for the offline scheme, which allows a bilinear parametrisation

approach (Ljung 1999, p. 335) to be applied for the corresponding recursive scheme,

leading to a computationally more attractive algorithm.

The following assumptions are stated.

AS1 The dynamic system is asymptotically stable, i.e. A(q−1) has all zeros inside the

unit circle.
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AS2 All system modes are observable and controllable, i.e. A(q−1) and B(q−1) have

no common factors.

AS3 The polynomial degrees na and nb are known a priori with nb ≤ na.

AI1 The true input u0k
is a zero-mean ergodic process and is persistently exciting of

sufficiently high order.

AN1a The sequence ũk is a zero-mean, ergodic, white noise process with unknown

variance σũ.

AN1b The sequence ỹk is a zero-mean, ergodic noise process with unknown auto-

covariance sequence {rỹ(0), rỹ(1), · · · }.

AN2 The sequences ũk and ỹk are mutually uncorrelated and also uncorrelated with

both u0k
and y0k

.

AE2 The dimension of the instrument vector ζk is na + nb + 1.

Note that Assumption AE2 is introduced for convenience only.

4.3.1 Newton algorithm based approach

In this section a recursive algorithm for the identification of dynamical linear errors-

in-variables (EIV) systems in the case of coloured output noise, as reviewed in Sec-

tion 2.4.4, is developed. The input measurement noise variance as well as the auto-

covariance elements of the coloured output noise sequence are determined via two sep-

arate Newton algorithms. In a similar manner to the recursive bias compensating least

squares (RBCLS) approach (cf. Section 3.3.2), the model parameter estimates are

obtained by a recursive bias-compensating instrumental variables algorithm with past

noisy inputs as instruments, thus allowing the compensation for the explicitly com-

puted bias at each discrete-time instance. The performance of the developed algorithm

is demonstrated via simulation. This section is based on the development in (Linden &

Burnham 2008a), which, in turn, is based on the two-step offline procedure proposed

in (Söderström 2006).

Step 1

Recall from Section 2.4.4 that the first step of the Frisch scheme for coloured output

noise (FSCON) (see Algorithm 2.1 on page 35) consists of obtaining an estimate of θ

and σũ by solving the nonlinear least squares (NLS) problem (2.73)

{θ̂k, σ̂
k
ũ} = arg min

θ,σũ

∣
∣
∣

∣
∣
∣Gkθ − ξ̂kδy

∣
∣
∣

∣
∣
∣

2
, (4.38)
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where Gk is defined in (2.72). By making use of the variable projection principle (see

Section 2.3.2), an estimate for σũ can be obtained via (cf. (2.75)-(2.76))

σ̂kũ = arg min
σũ

V k
1 (4.39)

where

V k
1 = ξ̂kTδy ξ̂

k
δy − ξ̂kTδ̄y Gk

[
GTkGk

]−1
GTk ξ̂

k
δy. (4.40)

In order to obtain a recursive scheme, a basic approach could be to obtain the first and

second order derivatives of V k
1 with respect to σũ and then to apply an iterative Newton

method, where it is iterated once as new data arrives. First, however, in order to satisfy

the requirements of a recursive algorithm to store all data in a finite dimensional vector,

the covariance matrices are updated via (3.5), i.e. (see Appendix B for more details)

Σ̂k
ϕ̄ = Σ̂k−1

ϕ̄ +
1

k

(

ϕ̄kϕ̄
T
k − Σ̂k−1

ϕ̄

)

, (4.41a)

Σ̂k
ζϕ̄ = Σ̂k−1

ζϕ̄ +
1

k

(

ζkϕ̄
T
k − Σ̂k−1

ζϕ̄

)

. (4.41b)

from which the required block matrices are readily obtained.

Recursive Update of σ̂kũ For the determination of σ̂kũ, an iterative optimisation

procedure can be utilised to minimise (4.40) where it is iterated once at each step,

leading to a recursive scheme (Ljung & Söderström 1983, Ljung 1999). Whilst an

iterative Newton method is utilised for this purpose here, it is noted that other choices

are also possible. The (undamped) Newton method given by (Ljung 1999, p. 326) is

σ̂kũ = σ̂k−1
ũ −

[

V k′′
1

]−1
V k′

1 , (4.42)

where V k′
1 and V k′′

1 denote, respectively, the first and second order derivative of Vk with

respect to σ̂kũ evaluated at σ̂k−1
ũ . Explicit expressions for these derivatives are given in

Appendices D.1 and D.2, respectively.

Remark 4.2. In order to stabilise the algorithm, it might be advantageous to restrict

the search for the input measurement noise variance to the interval

0 ≤σũ ≤ σmax
ũ , (4.43)

where σmax
ũ is the maximal admissible value for σũ, which can be computed from the

data as discussed in (Beghelli et al. 1990). Alternatively, a positive constant can be

chosen for the maximum admissible value, if such a priori knowledge is available.

Remark 4.3. The derivatives given in Appendices D.1 and D.2 are computed in a

straightforward manner. They do not, however, exploit the special structure of the
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variable projection problem. The efficient computation of derivatives of orthogonal

projectors and pseudoinverses is discussed in (Golub & Pereyra 1973). This approach

is, however, not further followed within this thesis.

Recursive Update of θ̂k In order to obtain a recursive expression for θ̂k, a variation

of the RBCLS approach given in Section 2.4.1 is used, where the bias of the recursive

least squares (RLS) estimate is compensated at each time step k (see also Zheng &

Feng 1989, Zheng 1998, Ding et al. 2006).

Recall that the overdetermined IV normal equations (2.69) are given by

(Σδϕ − σũJ) θk = ξδy. (4.44)

Whilst an application of the RBCLS principle to an overdetermined set of normal

equations is developed in Section 5.3.3, here, the problem is modified to allow for a

direct application of the RBCLS principle. Therefore, only the first na + nb equations

of (4.44) are considered, since one unknown, namely σ̂kũ, has already been computed

from the set of equations. Disregarding the last equation of (4.44) leads to the definition

of a truncated instrument vector

δ∗k ,
[

ϕTuk
ζ∗Tk

]T
=
[

uk−1 ... uk−nb
uk−nb−1 ... uk−nb−nζ−1

]T
. (4.45)

The corresponding uncompensated IV estimate is given as

θ̂IV
k = Σ−1

δ∗ϕξδ∗y, (4.46)

which can be recursively computed via a recursive IV (RIV) algorithm (Ljung 1999, p.

369) given by

θ̂IV
k = θ̂IV

k−1 + Lk

[

yk − ϕTk θ̂
IV
k−1

]

, (4.47a)

Lk =
Pk−1δ

∗
k

1−γk
γk

+ ϕTk Pk−1δ
∗
k

, (4.47b)

Pk =
1

1 − γk

[

Pk−1 −
Pk−1δ

∗
kϕ

T
k Pk−1

1−γk
γk

+ ϕTk Pk−1δ
∗
k

]

, (4.47c)

where Pk is scaled such that

[

Σ̂k
δϕ

]−1
= Pk. (4.48)

This avoids the matrix inversion in (4.46). Following the derivation for the RBCLS

(see Section 2.4.1), the recursive bias compensation update equation for θ̂k is given by

θ̂k = θ̂IV
k + σ̂kũPkJ

∗θ̂k−1 (4.49)
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where J∗ is obtained by deleting the last row of J . A more detailed derivation can also

be found in Appendix E.

Step 2

Recall that the second step of the offline Frisch scheme algorithm for coloured output

noise yields an estimate of the autocorrelation sequence of the output noise via (2.81)

ρ̂kỹ = αkN(Hk) +H†
khk, (4.50)

whereHk and hk are defined via (2.80) and N(·) denotes the nullspace whilst the scaling

factor αk is required to be determined. In the offline case, this is achieved by solving

(cf. (2.84)-(2.85))

α̂k = arg min
αk

V k
2 , (4.51)

where

V k
2 =

(

σ̂kũ − ς̂k

)2
. (4.52)

Here, ς̂k denotes the input measurement noise variance which would be obtained when

the λmin equation is utilised, i.e. (see (2.82)-(2.83))

ς̂k , λmin (Bk (αk)) , (4.53)

where

Bk(αk) , Σϕu − Σϕuϕ̄y

[

Σϕ̄y − Σ ˜̄ϕy
(αk)

]−1
Σϕyϕu . (4.54)

In order to solve (4.51) recursively, a further approximate Newton method is applied

where it is iterated once as new data arrives. Consequently, the first and second order

derivatives of the cost function V k
2 in (2.85) are to be determined with respect to

αk, which are denoted V k′
2 and V k′′

2 , respectively. In a similar manner as for the

minimisation of the YW cost function in Section 3.3.4, the linearised λmin equation is

utilised to approximate the first and second order derivatives. These are given by

V k′

2 = −2
(

σ̂kũ − ς̂k

)

ς̂ ′k, (4.55a)

V k′′
2 = ς̂ ′k, (4.55b)

where ς̂ ′k denotes the derivative of ς̂k with respect to αk and for which an approximation

is derived in Appendix D.3. The recursive update for α̂k is therefore given by

α̂k = α̂k−1 −
[

V k′′

2

]−1
V k′

2 , (4.56)
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from which the sequence of auto-covariance elements of the output measurement noise

ỹk is determined via

ρ̂kỹ = α̂kN(Hk) +H†
khk. (4.57)

The recursive Frisch scheme for correlated output noise, denoted RFSCON1, is sum-

marised as follows.

Algorithm 4.6 (RFSCON1).

σ̂kũ = σ̂k−1
ũ −

[

V k′′

1

]−1
V k′

1 (4.58a)

θ̂k = θ̂IV
k + σ̂kũPkJ

∗θ̂k−1 (4.58b)

θ̂IV
k = θ̂IV

k−1 + Lk

[

yk − ϕTk θ̂
IV
k−1

]

(4.58c)

Lk =
Pk−1δ

∗
k

1−γk
γk

+ ϕTk Pk−1δ
∗
k

, (4.58d)

Pk =
1

1 − γk

[

Pk−1 −
Pk−1δ

∗
kϕ

T
k Pk−1

1−γk
γk

+ ϕTk Pk−1δ
∗
k

]

(4.58e)

α̂k = α̂k−1 −
[

V k′′

2

]−1
V k′

2 (4.58f)

ρ̂kỹ = α̂kN(Hk) +H†
khk (4.58g)

A more detailed description together with the computational complexity of the

RFSCON1 algorithm is given in Table 4.5. It is observed that the overall complexity

is of cubic order, which is due the computation of the derivatives of V k
1 and V k

2 as well

as due to the determination of the nullspace and pseudo inverse in Step 5.14.

4.3.2 Simulation example

In order to compare the results of the RFSCON1 with the non-recursive algorithm

FSCON (cf. Algorithm 2.1 on page 35), a system is chosen similar to that of Example

2 in (Söderström 2008), i.e. a LTI SISO system with na = nb = 1, and characterised

by

θ =
[

−0.8 2
]T
, ρỹ =

[

1.96 1.37
]T
, σũ = 1. (4.59)

The values for rỹ(0) and rỹ(1) arise by generating the output noise via the auto-

regressive model

ỹk =
1

1 − 0.7q−1
vk, (4.60)
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Step Description Procedure Flops

1 Choose nζ , λk and j nζ = na + nb + 1, 0 < λk < 1, j = nζ + nb

2 RIV initialisations θ̂IVna
= 0, Pna = 0.1I

3 Recursion for k = na + 1, ..., j

3.1 Data weighting γk = 1/k

3.2 RIV Compute Lk, θ̂IVk and Pk

4 General initialisations Σ̂j
ζϕ̄ = 0, Σ̂j

ϕ̄ = 1
nζ−1

Pj
i=nb+1 ϕ̄iϕ̄

T
i , γj = 1/(nζ − 1),

σ̂j
ũ = 0 and J∗ =

2

4

0 Inb

0 0

3

5

5 Recursion for k = j + 1, ...

5.1 Update γ γk =
γk−1

λk+γk−1

2

5.2 Update Σ̂ϕ̄ Σ̂k
ϕ̄ = Σ̂k−1

ϕ̄ + γk

“

ϕ̄kϕ̄
T
k − Σ̂k−1

ϕ̄

”

O(n2
θ̄)

5.3 Update Σ̂ζϕ̄ Σ̂k
ζϕ̄ = Σ̂k−1

ζϕ̄ + γk

“

ζkϕ̄
T
k − Σ̂k−1

ζϕ̄

”

O(n2
θ̄)

5.4 RIV estimate Compute Lk, θ̂IVk and Pk O(n2
θ)

5.5 First order derivative V k′

1 , see Appendix D.1 O(n3
θ)

5.6 Second order derivative V k′′

1 , see Appendix D.2 O(n3
θ)

5.7 Update of σ̂k
ũ σ̂k

ũ = σ̂k−1
ũ −

h

V k′′

1

i−1

V k′

1 3

5.8 Projection Project 0 ≤ σ̂k
ũ ≤ σmax

ũ

5.9 Bias compensation θ̂k = θ̂IVk + σ̂k
ũPkJ

∗θ̂k−1 O(nθ)

5.10 First order derivative V k′

2 = −2
`

σ̂k
ũ − ς̂k

´

ς̂ ′k 3

5.11 Determine d
dαk

ρ̂k
y

d
dαk

ρ̂k
y = N(Hk) O(n3

a)

5.12 Second order derivative V k′′

2 ≈ − ˆ̄aT
k−1

b̂T
k−1

b̂k−1

d
dαk

Σ̂k
˜̄ϕy

ˆ̄ak−1 O(n2
ā)

5.13 Compute α̂k α̂k = α̂k−1 −
h

V k′′

2

i−1

V k′

2 4

5.14 Determine ρ̂k
y ρ̂k

y = α̂kN(Hk) +H†
khk O(n3

a)

Overall complexity (dominant parts) O(n3
θ)

Table 4.5: RFSCON1 algorithm and its computational complexity.

where vk is a zero-mean white process with unity variance. The system is simulated

for 10, 000 samples using a zero mean, white and Gaussian distributed input signal also

being of unity variance. The corresponding signal-to-noise ratio for input and output

is given by 10.60dB and 39.12dB, respectively.

Choosing λ = 1, the results for Step 1 are shown in Figure 4.4. The first subplot

shows that the Newton method is able to recursively estimate the input measurement

noise variance σũ. The remaining two subplots compare the RIV solution θ̂IV
k of the

uncompensated normal equations with the recursively compensated Frisch scheme esti-

mate θ̂k. As expected, the RIV is biased whilst the RFSCON1 successfully compensates

for this.

Figure 4.5 shows the estimates of ρỹ obtained in Step 2 for both the RFSCON1

as well as the off-line case FSCON. In contrast to the results obtained in Step 1, the
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Figure 4.4: Recursive estimates for θ and σũ using the RFSCON1 and the biased RIV
solution of the uncompensated normal equations.
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Figure 4.5: Recursive estimates for rỹ(0) and rỹ(1) using the RFSCON1 in compari-
son to the FSCON (offline algorithm).
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quality of the estimates obtained in Step 2 for ρ̂kỹ would appear to be inferior. This is in

agreement with the results reported in (Söderström 2008), where a Monte-Carlo analysis

shows poor performance for ρ̂kỹ in the non-recursive case. The important observation

to note here, however, is that the recursively obtained estimates of rỹ(0) and rỹ(1)

virtually coincide with their off-line counterparts after k = 10, 000 recursions. It is also

observed that the values of r̂kỹ(0) (the estimated variance of the output measurement

noise) occasionally exhibit a negative sign during the first 500 recursion steps. This

could be avoided by projecting the estimates, such that

0 < Σ̂k
˜̄ϕy
< Σ̂k

ϕ̄y
− Σ̂k

ϕ̄yϕu

[

Σ̂k
ϕu

]−1
Σ̂k
ϕuϕ̄y

(4.61)

is satisfied (cf. Söderström 2008).

4.3.3 Bilinear parametrisation approach

One of the shortcomings of the RFSCON1 algorithm is its computational complexity.

Note that matrix inversions and matrix-matrix multiplications are required to obtain

the first and second order derivatives of V k
1 and V k

2 (cf. Appendix D.1 and D.2). In

addition, Step 2 can be drastically simplified as outlined in Remark 2.2 (see page 35),

which has not yet been exploited.

Step 1

It is worth observing that the NLS problem (4.39) in Step 1 is not only separable for

θ and σ, but also bilinear in these variables, i.e. linear in θ for fixed σ and linear in σ

for fixed θ. This implies that (2.69), which can be re-expressed as

Gk(σũ)θ = ξδy (4.62)

can also be expressed as

S(θ)σũ = s(θ), (4.63)

where S(θ) ∈ R
nb and s(θ) ∈ R

nb . Equation (4.63) constitutes an overdetermined set

of equations in one unknown, which can be solved by means of LS in a straightforward

manner. In order to determine S(θ) and s(θ), consider the upper part of (2.68), which

can be re-expressed as

[

Σϕuϕy Σϕu − σũInb

]

θ = ξϕuy (4.64a)

⇔ Σϕuϕya+ Σϕub− bσũ = ξϕuy (4.64b)

⇔ σũb = Σϕuϕya+ Σϕub− ξϕuy. (4.64c)
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By inspection, it is clear that

S(θ) = b, (4.65a)

s(θ) = Σ̂k
ϕuϕy

a+ Σ̂k
ϕu
b− ξ̂kϕuy. (4.65b)

Consequently, assuming θ̂k−1 is available and sufficiently close to θ̂k, θ can be replaced

by θ̂k−1 which allows σ̂kũ to be obtained via the minimum norm solution

σ̂kũ = S(θ̂k−1)
†s(θ̂k−1), (4.66)

where, assuming bT b 6= 0, the left pseudo inverse of S(θ̂k) is given by

S(θ)† =
bT

bT b
. (4.67)

The parameter vector is then obtained as the LS solution θ̂k = G†
k(σ̂

k
ũ)ξ̂

k
δy . Alterna-

tively, a recursive bias compensation rule as in (4.49) using the RIV algorithm (4.47)

could be utilised. However, when use was made of the recursive bias compensation

rule, the estimation results appeared to be sensitive in simulation with respect to the

initialisation of the algorithm. Consequently, the offline LS solution for θ̂k is utilised.

Step 2

As pointed out in Remark 2.2 (cf. page 35), Step 2 simplifies to solving

H̄k(θ)ρỹ = h̄k(θ), (4.68)

where an explicit expression for h̄k is given by (Söderström 2008)

h̄k(θ) =
[

Σ̂k
ϕ̄y

Σ̂k
ϕ̄yϕu

]

θ̄, (4.69)

whilst H̄k(θ) satisfies

H̄k(θ)ρỹ = Σ ˜̄ϕy
θ̄, (4.70)

where the symmetric Toeplitz matrix Σ ˜̄ϕy
is defined by

Σϕ̃y =







rỹ(0) · · · rỹ(na)
...

. . .
...

rỹ(na) · · · rỹ(0)






. (4.71)
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Step Description Procedure Flops

1 Choose nζ , λk and j nζ = na + nb + 1, 0 < λk < 1, j = nζ + nb

2 General initialisations Σ̂j
ζϕ̄ = 0, Σ̂j

ϕ̄ = 1
nζ−1

Pj
i=nb+1 ϕ̄iϕ̄

T
i , γj = 1/(nζ − 1),

σ̂j
ũ = 0 and J∗ =

2

4

0 Inb

0 0

3

5

3 Recursion for k = j + 1, ...

3.1 Update γ γk =
γk−1

λk+γk−1

2

3.2 Update Σ̂ϕ̄ Σ̂k
ϕ̄ = Σ̂k−1

ϕ̄ + γk

“

ϕ̄kϕ̄
T
k − Σ̂k−1

ϕ̄

”

O(n2
θ̄)

3.3 Update Σ̂ζϕ̄ Σ̂k
ζϕ̄ = Σ̂k−1

ζϕ̄ + γk

“

ζkϕ̄
T
k − Σ̂k−1

ζϕ̄

”

O(n2
θ̄)

3.4 Update of σ̂k
ũ σ̂k

ũ =
b̂T
k−1

b̂T
k−1

b̂k−1

h

Σ̂k
ϕuϕy

âk−1 + Σ̂k
ϕu
b̂k−1 − ξ̂k

ϕuy

i

O(nanb)

3.5 Projection Project 0 ≤ σ̂k
ũ ≤ σmax

ũ

3.6 Compute θ̂k θ̂k = G†
k(σ̂k

ũ)ξ̂k
δy O(n3

θ̄)

3.7 Compute ρ̂k
ỹ ρ̂k

ỹ = H̄†
k(θ̂k)h̄k(θ̂k) O(n3

ā)

Overall complexity (dominant parts) O(n3
θ̄)

Table 4.6: RFSCON2 algorithm and its computational complexity.

Since the matrix H̄k(θ) is not updated via an ordinary rank-one update, ρỹ is computed

here via the offline LS solution as

ρ̂kỹ = H̄†
k(θ̂k)h̄k(θ̂k). (4.72)

The overall algorithm is denoted RFSCON2 and can be summarised as follows.

Algorithm 4.7 (RFSCON2).

σ̂kũ =
b̂Tk−1

b̂Tk−1b̂k−1

[

Σ̂k
ϕuϕy

âk−1 + Σ̂k
ϕu
b̂k−1 − ξ̂kϕuy

]

(4.73a)

θ̂k = G†
k(σ̂

k
ũ)ξ̂

k
δy (4.73b)

ρ̂kỹ = H̄†
k(θ̂k)h̄k(θ̂k) (4.73c)

A more detailed description together with the computational complexity of the

RFSCON2 algorithm is given in Table 4.6. Note that due to the usage of the pseudo

inverses, the algorithm is of cubic complexity.

4.3.4 Simulation example

In order to compare the estimates obtained by the RFSCON1 with those obtained

by the RFSCON2, the simulation in Section 4.3.2 is repeated and both algorithms are
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Figure 4.6: Recursive estimates for θ and σũ using the RFSCON1 and the RFSCON2.
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Figure 4.7: Mean square difference as defined in (4.74), between RFSCON1 and RF-
SCON2 estimates for θ̂k and σ̂kũ.

applied to estimate Θ (cf. (2.62)). The estimates of σũ and θ are shown in Figure 4.6. It

is observed that the estimates of σũ and θ using the RFSCON1 and the RFSCON2 are

virtually identical. This is confirmed in Figure 4.7, where the mean square difference

between both estimates defined by

Γk ,
1

nθ + 1

([

θ̂1
k

σ̂k,1ũ

]

−

[

θ̂2
k

σ̂k,2ũ

])T ([

θ̂1
k

σ̂k,1ũ

]

−

[

θ̂2
k

σ̂k,2ũ

])

, (4.74)

is presented. Note that in (4.74) the superscript 1 denotes the estimates of the RF-

SCON1 and the superscript 2 denotes the estimates of the RFSCON2. Whilst it was

expected that both estimators would yield similar results, the fact that the estimates

for σũ and θ are virtually identical is rather surprising.

The estimates of ρỹ are shown in Figure 4.8. It is observed, that the estimates of

the auto-covariance sequence of the output measurement noise are different for both

algorithms. After 10,000 recursion steps, the estimates of the RFSCON2 even exhibit

an incorrect sign. In addition, the estimates obtained by the RFSCON2 would appear

to have a higher variance when compared to those obtained by the RFSCON1.

It is also of interest to compare the computation time of both algorithms. For this

single first order identification problem, the computation time per recursion could be

reduced from approximately 1.6 · 10−3s in the case of the RFSCON1, to 3.7 · 10−4s in

the case of the RFSCON2. This means that the latter algorithm appears to be four

117



4. Fast algorithms and coloured output noise

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−4
−2

0
2
4
6

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−2

0
2
4
6

 

 

true

FSCON1

RFSCON2

r ỹ
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Figure 4.8: Recursive estimates for rỹ(0) and rỹ(1) using the RFSCON1 and the
RFSCON2.

times faster than the RFSCON1.

4.3.5 Summary & discussion

The RFSCON1 makes use of a Newton algorithm to solve the variable projection sub-

problem for the determination of the input noise variance, recursively. Another approx-

imate Newton algorithm is applied, in order to determine the auto-covariance sequence

of the coloured output noise, where the approximate derivatives are, as in the case

of the YW-lin algorithm developed in Section 3.3.4, obtained by considering the lin-

earised Frisch equations. Computing the derivatives, however, is a computationally

expensive task and whilst other approaches for the recursive solution of the variable

projection problem will be discussed in Chapter 5, the solution leading to the RFSCON2

exploits the bilinear parametrisation structure of the problem. Thus, the variable pro-

jection problem is avoided and, by making use of additional simplifications reported in

(Söderström 2008), the RFSCON2 appears to be computationally more attractive than

its RFSCON1 counterpart. One remaining potential shortcoming of this fast algorithm

is, however, that the two LS problems of dimension nθ̄ and nā, respectively, are to be

solved in an offline manner at each recursion step (cf. (4.72)).

The convergence aspects of both algorithms remain a open field of research. Al-

though it is stated in (Ljung 1999, p. 335) that a multi-stage identification procedure

exploiting the bilinear parametrisation will lead to a local minima, a more thorough

analysis might be required and, as such, is identified as potential further work.

4.4 Concluding remarks

Novel algorithms based on the previously proposed recursive Frisch-YW algorithms

have been developed, in order to reduce the computation time per recursion. Whilst

the computational complexity of the RFS algorithms, which have been developed in
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Chapter 3, is of cubic order, the new approaches, denoted FRFS, only require O(n2
θ)

flops, where nθ is the number of model parameters to be identified. Therefore, the

fast FRFS algorithms might be considered as being more applicable in practical ap-

plications, especially when restrictions on the available computation power become

constraining factors. The computational savings have been achieved by introducing

additional approximations and by making use of the principle of stationary iterative

least squares. The improvement in terms of computation time, however, is accom-

panied with a reduction of the Frisch-character; a measure of how well the recursive

algorithm resembles the unique property the offline Frisch scheme. The estimates of

the fast algorithms do, however, appear to be very close to those of the RFS algo-

rithms. Consequently, the FRFS approaches appear to be an attractive alternative to

the RFS algorithms, if the Frisch-character of the estimates is not of importance. The

additional approximations which are introduced in order to derive the fast algorithm,

however, might also effect the convergence properties of the algorithm. It is noted that

this requires some more theoretical analysis and has been identified as a potential item

for further work.

In the second part of this chapter, two recursive algorithms for the Frisch scheme

in the case of coloured output noise have been developed based on their offline coun-

terparts. With respect to practical application, such an extension can be considered

to be of major importance, since the output noise usually aims to model measurement

noise as well as process disturbances. The first algorithm, which makes repeated use

of Newton’s method for the minimisation of the two separate cost functions, is rather

computationally demanding. The second algorithm is able to overcome this shortcom-

ing by exploiting the special structure of the problem. This reduces the estimation task

to three linear least squares problems, which can be solved efficiently at each time step,

leading to a recursive identification scheme. Whilst further numerical and theoretical

analyses for these algorithms may be required, both schemes appear to work well for

the simulation example considered.

The convergence and consistency aspects off all algorithms presented within this

Chapter have not yet been analysed. Consequently, there is scope for potential further

work.
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Lk . . . . . . . Recursive least squares gain

m . . . . . . . Model order

MSEk . . . Mean squared error

r(θ, σ) . . . Nonlinear least squares residual

Pk . . . . . . . Scaled covariance matrix obtained from recursive least squares

zk . . . . . . . Instrument vector

γk . . . . . . . Scaling factor, step size

ζk . . . . . . . Instrument vector

θ̂IVk . . . . . . Uncompensated instrumental variable estimate

θ̂k+ 1

2

. . . . Intermediate estimate of θ

ψ̂k . . . . . . . Gauss-Newton update direction corresponding to ϑ

ψ̂θ
k . . . . . . . Gauss-Newton update direction corresponding to θ

ψ̂θ
k . . . . . . . Gauss-Newton update direction corresponding to σ

Preliminary reading: Sections 2.2, 2.3, 2.4.2.

5.1 Introduction

The Frisch scheme which utilises the Yule-Walker (YW) model selection criterion

(Frisch-YW) essentially involves the solution of a set of nonlinear equations. These

consist of the bias compensated normal equations, the λmin-equation as well as the high-

order YW equations. Recent developments (Hong et al. 2007, Hong & Söderström 2008)

have shown, that the same set of nonlinear Frisch-YW equations can also be obtained

by considering an extended bias compensating least squares (EBCLS) approach (cf.

Section 2.4.2). The EBCLS method (Ekman 2005) is another recently developed EIV

identification technique, which allows the estimation of the model parameters as well as

the measurement noise variances by solving a nonlinear least squares (NLS) problem.

Rather than utilising the least squares (LS) normal equations, as used for the deter-

mination of the system parameter vector within the bias compensating least squares

technique (BCLS), it makes use of the instrumental variable (IV) approach to obtain

a set of overdetermined normal equations. The number and the type of instruments

are chosen such that there are sufficient equations to determine not only the param-

eter vector, but also the measurement noise variances. By choosing the instruments

in a particular way, the set of nonlinear Frisch-YW equations is obtained. Whilst the

underlying objective is still focused on the development of recursive Frisch scheme algo-

rithms, this chapter investigates approaches within the EBCLS framework, rather than

following a direct approach as in Chapters 3-4. The developed recursive algorithms,

however, are not restricted to the particular choice of instruments, which lead to the

Frisch-YW, but may also be applied to more general EBCLS cases. In particular, since

the Frisch-EM case (cf. Section 2.4.3) can also be interpreted as an EBCLS problem,

the results in this chapter could also be extended to this case. In contrast, a connection

between the Frisch-CM and the EBCLS is not known.

Section 5.2 states the particular EBCLS setup, which is equivalent to the Frisch-
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YW problem. Subsequently, recursive algorithms based on the bilinear parametrisation

principle are developed in Section 5.3, whilst Section 5.4 considers recursive variable

projection algorithms. Section 5.5 provides an extensive simulation study, which not

only analyses the algorithms developed within this chapter, but also provides a com-

parison with the recursive Frisch scheme algorithm from Chapters 3 and 4. Concluding

remarks are given in Section 5.6.

Part of the material presented within this chapter has been published in (Linden &

Burnham 2008b).

5.2 Equivalent EBCLS representation

It has been shown in (Hong et al. 2007, Hong & Söderström 2008) that it is possible

to reformulate the Frisch-YW equations (3.1) as an EBCLS problem. The equations

which are used within the Frisch-YW scheme can be summarised as

ξyϕθ = ry(0) − σỹ, (5.1a)

[Σϕ − Σϕ̃(σ)] θ = ξϕy, (5.1b)

Σζϕθ = ξζy, (5.1c)

where σ = [σỹ σũ]
T and the remaining entities are defined by (2.10)-(2.12). Indeed, this

corresponds to the EBCLS framework (see Section 2.4.2) with the particular choice of

instruments given by

zk =
[

yk ϕTk ζTk

]T
∈ R

nz (5.2)

where ϕk is the regression vector defined by (2.6c) whilst ζk is given by (2.50).

Remark 5.1 (Frisch-character of the EBCLS solution). The Frisch scheme equa-

tions (5.1) are equivalent to those used in Chapter 3 given by (3.1). The actual difference

between both representations is that the latter forces (3.1a) to hold exactly, which

is achieved by computing σ̂kỹ via the λmin equation (3.1b). This ensures the Frisch-

character of the solution, or stated differently, the singularity of Σϕ̄ − Σ ˜̄ϕ. Within the

EBCLS framework, this would imply that the estimate obtained via the NLS problem

(5.1) is solved in a way, such that (5.1a)-(5.1b) is exactly satisfied, whilst (5.1c), which

basically corresponds to the equations of the YW model selection criterion, needs only

to hold approximately. Whilst this might be achieved by an appropriate weighting

scheme for Equations (5.1), this is not considered within this thesis. Consequently, it

cannot be expected that the solution of the EBCLS problem will satisfy the Frisch-

character. This will be further investigated in the numerical example given in Section

5.5.
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Following the interpretation within the EBCLS framework, the Frisch-YW equations

(5.1) simplify to (cf. (2.33))

[Σzϕ − Σz̃ϕ̃(σ)] θ = ξzy − ξz̃ỹ(σ), (5.3)

where the compensating matrices (noting that nz = nθ+nζ+1) of this particular white

noise Frisch-YW case are given by

Σz̃ϕ̃(σ) =









0 0

σỹIna 0

0 σũInb

0 0









∈ R
nz×nθ , (5.4a)

ξz̃ỹ(σ) =






σỹ

0

0




 . (5.4b)

Utilising the notation used for the variable projection problem introduced in Section

2.3.2, the residual to be minimised is given by

r(θ, σ) = F (σ)θ − f(σ), (5.5)

where F (σ) and f(σ) are given by (2.35a)

F (σ) = Σzϕ − Σz̃ϕ̃(σ), (5.6a)

f(σ) = ξzy − ξz̃ỹ(σ). (5.6b)

In contrast to the more general EBCLS cases, where the input and output measurement

noises may be coloured, the resulting equations for the white noise Frisch-YW case are

not only linear in θ, but also linear in σ. This means, that (5.5) may be equivalently

expressed as

r(θ, σ) = G(θ)σ − g(θ), (5.7)

where it is straightforward to verify that

G(θ) =









1 0

−a 0

0 −b

0 0









, (5.8a)

g(θ) = ξzy − Σzϕθ. (5.8b)
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Such bilinear parametrisations are conceptually simpler than the more general case

with r(θ, σ) being separable in θ and σ. Whilst the latter scenario can effectively be

tackled via the variable projection approach as discussed in Section 2.3.2, the problem

in the bilinear parametrisation case reduces to a two-stage linear LS problem which

can be solved efficiently in an iterative/recursive manner (cf. p. 335 Ljung 1999).

As a first approach, a recursive two-step algorithm, which takes advantage of the

bilinear parametrisation, is developed. In order to reduce the complexity from cubic

to quadratic order, the recursive BCLS technique, which has already been used in

Chapter 3 for the implementation of the RFS algorithms (cf. Section 3.3.2), can be

applied. However, the recursive BCLS approach has to be modified in order to deal

with the set of overdetermined normal equations. A second approach considers the

recursive implementation of the more general variable projection method, for which a

Gauss-Newton algorithm is considered. Whilst such an approach might not be required

for the bilinear parametrisation case (as in the Frisch-YW case), it is of interest since

it can easily be extended to deal with more general EBCLS cases when r(θ, σ) is not

linear in σ.

As for the RFS approaches of Chapter 3, the following assumptions are stated.

AS1 The dynamic system is asymptotically stable, i.e. A(q−1) has all zeros inside the

unit circle.

AS2 All system modes are observable and controllable, i.e. A(q−1) and B(q−1) have

no common factors.

AS3 The polynomial degrees na and nb are known a priori with nb ≤ na.

AI1 The true input u0k
is a zero-mean ergodic process and is persistently exciting of

sufficiently high order.

AN1 The sequences ũk and ỹk are zero-mean, ergodic, white noises with unknown

variances, denoted σũ and σỹ, respectively, i.e.

σũδkl , E [ũkũl] , (5.9a)

σỹδkl , E [ỹkỹl] . (5.9b)

AN2 The sequences ũk and ỹk are mutually uncorrelated and also uncorrelated with

both u0k
and y0k

.

5.3 Bilinear parametrisation

This section considers a two-stage algorithm, in order to recursively solve the Frisch-

YW equations, by exploiting the bilinear parametrisation. The two resulting linear
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least squares problems

Fk(σ̂k−1)θ̂k = fk(σ̂k−1), (5.10a)

G(θ̂k)σ̂k = gk(θ̂k), (5.10b)

are solved alternately at each discrete-time instance k, where

Fk(σ̂k−1) = Σ̂k
zϕ − Σ̂k

z̃ϕ̃(σ̂k−1), (5.11a)

fk(σ̂k−1) = ξ̂kzy − ξ̂kz̃ỹ(σ̂k−1), (5.11b)

G(θ̂k) =

[

1 −âTk 0 0

0 0 −b̂Tk 0

]T

, (5.11c)

gk(θ̂k) = ξ̂kzy − Σ̂k
zϕθ̂k. (5.11d)

Note that the quantities Fk(σ̂k−1), fk(σ̂k−1), G(θ̂k) and gk(θ̂k) are time dependent

either due to the incorporated covariance elements which are updated as new data

arrives and/or since the current estimates of σ and θ are updated at each recursion1.

Whilst the covariance elements can be updated in the usual manner (cf. Appendix

B) via

Σ̂k
zϕ = (1 − γk)Σ̂

k−1
zϕ + γkzkϕ

T
k , (5.12a)

ξ̂kzy = (1 − γk)ξ̂
k−1
zϕ + γkzkyk, (5.12b)

where γk is a scaling factor, the identification problem essentially reduces to the solution

of two sets of linear equations (5.10) at each time instance. Consider equation (5.10b)

first. Due to the sparse structure of G(θ̂k) the left pseudo inverse can be computed

‘cheaply’ and is explicitly given by (see. Appendix F)

G†(θ̂k) =





1
1+âT

k âk

−âT
k

1+âT
k âk

0 0

0 0
−b̂Tk
b̂Tk b̂k

0



 . (5.13)

Note that only vector-vector multiplications are required, which is of linear complexity

only (cf. Table 2.1 on page 21). Thus, (5.10b) can be solved in a straightforward linear

LS manner and a direct computation of σ̂k is given by

σ̂k = G†
k(θ̂k)g(θ̂k). (5.14)

In order to obtain a solution of the overdetermined set of normal equations (5.10a),

several options are discussed in the following subsection.

1The quantity G does not require a subscript k, since it does not contain any covariance elements.
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5.3.1 Algorithms for overdetermined normal equations

In order to obtain θ̂k, an overdetermined set of normal equations given by (5.10a) is

required to be solved at each time instance. Several options are available and five such

possibilities are outlined below.

1. (LS) The LS method can be applied to solve (5.10a) in an offline manner at each

recursion, yielding the minimum norm solution

θ̂k = F †
k (σ̂k−1)fk(σ̂k−1). (5.15)

An advantage of this approach is that it leads to a robust implementation by

making use of well known and readily implemented routines (Lawson & Hanson

1995). Such an approach is feasible since the dimension of the problem is fixed, i.e.

the number of rows in (5.10a) do not grow with time. A potential drawback could

be that the computational costs could be too large for an online implementation.

The computational complexity of the LS algorithm is generally of cubic order,

which might forbid a practical implementation if the number of instruments nz is

large. This does, however, depend on the particular application, more specifically

the number of instruments, the sampling interval as well as the available hardware.

2. (TLS) The total least squares (TLS) method could be applied to estimate θ.

Using a Matlab-like notation (MathWorks 2007), the TLS estimate of θ is given

by

θ̂k =
1

V1,nθ+1
V2:nθ+1,nθ+1, (5.16)

where V is the matrix of right singular vectors obtained via the singular value

decomposition

[

fk(σ̂k−1) Fk(σ̂k−1)
]

= USV T . (5.17)

In (5.16), the quantity V1,nθ+1 denotes the first element of the last column of V

whilst V2:nθ+1,nθ+1 denotes the last column of V starting from 2 up to the last

row nθ + 1. The estimates of θ obtained via the LS and TLS differ only for short

sample lengths (i.e. for a finite number of observations), but their asymptotic

accuracy is identical2 as pointed out in (Söderström & Mahata 2002). There it

is concluded that the LS estimator appears to be more robust, whilst the TLS

estimator is computationally less demanding (Van Huffel & Vandewalle 1991).

3. (RLS) A direct application of the RLS algorithm would certainly be desirable,

2Note that this applies only for the overdetermined system of normal equations considered here.
For a general linear systems of equations it is not necessarily true that the LS and TLS estimates are
asymptotically equivalent.
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but it is not straightforward. This is due to the fact that the matrix Fk(σ̂k−1)

is not updated via a rank-one update, but Fk(σ̂k−1) − Fk−1(σ̂k−2) is generally of

full rank. This, coupled with the fact that the set of normal equations (5.10a) is

overdetermined, prevents the application of the matrix inversion lemma to give a

straightforward recursive algorithm. Note that recursive schemes based on matrix

factorisation updates (cf. Point 2 on page 86) also rely on the rank-one update,

hence are also not straightforward to apply.

4. (RBCLS) It is possible to make use of a more general form of the recursive bias

compensating least squares (RBCLS) procedure (see Section 3.3.2 and Appendix

A), which is essentially based on the stationary iterative LS principle (cf. Section

2.3.1). This means, that at each time instance k, the (uncompensated, hence

biased) IV estimate is calculated as

Σ̂k
zϕθ̂

IV
k = ξ̂kzy. (5.18)

Subsequently, the bias, which can be determined based on the current estimate

of input and output measurement noise variances, is removed at each time step

k. In order to recursively solve the overdetermined system of normal equations

(5.18), two different approaches of extended recursive least squares (ERLS) are

possible:

a) (ERLS1) One way to deal with an overdetermined system of equations has

been discussed in (Feng, Zhang, Zhang & Bao 2001). There, an extension of

the matrix inversion lemma has been proposed which can be utilised to derive

a recursive estimator3 for the overdetermined normal equations (5.18). Such

an algorithm, which is denoted ERLS1 (extended recursive least squares), is

considered in Section 5.3.2.

b) (ERLS2) A recursive algorithm for the overdetermined set of normal equa-

tions based on the (standard) matrix inversion lemma is given in (Friedlander

1984, Söderström & Stoica 1989). There, the problem is reformulated, such

that only the inversion of a 2 × 2 matrix is required. A detailed description

of the algorithm, which is here denoted ERLS2, is given in Appendix G.2.

Note that the usage of the RBCLS technique can cause divergence of the overall

algorithm as discussed in Section 3.6.4. Therefore, it remains to be evaluated if

the reduction in computational complexity is worth exploiting given the potential

deterioration of the convergence properties of the algorithm. This aspect is further

investigated in Section 5.5.

5. (Alternative iterative solvers) If nz is considered to be too large for a repeated

application of batch LS techniques and if a RBCLS approach is also not desired,

3See also Section 5.3.5 below.
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an alternative might be to use iterative solvers (Björck 1996, Ch. 7 ), such as the

conjugate gradient method for linear LS problems, in a recursive fashion. Such

an approach has been considered in (Chang & Wilson 2000, Björck 1997), but is

not further investigated within this thesis.

In the development of this chapter, the usage of the offline LS (Point 1) as well as

the RBCLS approaches (Point 4a) are considered.

5.3.2 Least squares based approach

Motivated by the foregoing discussion, the first algorithm presented in this section

solves the LS problems (5.10) in an offline manner at each time instance k and will

be utilised for future comparison purposes. The algorithm is denoted RBP1 (recursive

bilinear parametrisation) and is summarised as follows:

Algorithm 5.1 (RBP1).

1) Set j = nζ + nb, σ̂j = 0

2) For k = j + 1, ...

a) Update Σ̂k
zϕ and ξ̂kzy via (5.12)

b) θ̂k = F †
k (σ̂k−1)fk(σ̂k−1)

c) σ̂k = G†(θ̂k)gk(θ̂k)

It seems natural to initialise σ as the null vector, i.e. the algorithm starts with the

(biased) LS solution of θ which is subsequently improved during the following recursion

steps (provided σ is estimated appropriately). Note that Step 2b requires O(n3
z) flops

whilst Step 2c is only of order O(na).

Focus is now directed towards a recursive implementation of the overdetermined

BCLS problem (5.10a) based on a generalisation of the recursive bias compensation

technique (see Point 4a in Section 5.3.1).

5.3.3 Recursive bias compensating least squares approach

In order to develop a recursive algorithm based on the bilinear parametrisation, which

avoids the solution of the resulting LS problems in an offline manner, the approach used

in Section 3.3.2 is extended to deal with a set of overdetermined normal equations. This

will reduce the computational complexity from cubic to quadratic order. The general

case is summarised in the following Lemma.
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Lemma 5.1 (Recursive extended bias compensation). Let Σk and ξk denote a

general covariance matrix and covariance vector and let Σ̃k and ξ̃k denote the cor-

responding noise compensating terms. Given the overdetermined bias compensated

normal equations

(

Σk − Σ̃k

)

θ̂k = ξk − ξ̃k, (5.19)

a recursive extended bias compensating (REBC) estimator for θk may be expressed as

θ̂k = θ̂IV
k + Σ†

k

(

Σ̃kθ̂k−1 − ξ̃k

)

. (5.20)

Proof. Straightforward manipulations allow the re-arrangement of (5.19) as

θ̂k = Σ†
k

(

Σ̃kθ̂k + ξk − ξ̃k

)

. (5.21)

Thus, by acknowledging that Σ†
kξk is the (biased) IV solution θ̂IV

k , and by approximating

θ̂k with θ̂k−1, leads directly to (5.20).

Consequently, by applying Lemma 5.1 to (5.10a) gives the update equation for the

unbiased solution

θ̂k = θ̂IV
k + Σ̂k†

zϕ

(

Σ̂k−1
z̃ϕ̃ θ̂k−1 − ξ̂k−1

z̃ỹ

)

, (5.22)

where the compensation terms are given by

Σz̃ϕ̃(σ̂k) =









0 0

σ̂kỹIna 0

0 σ̂kũInb

0 0









, (5.23a)

ξz̃ỹ(σ̂k) =






σ̂kỹ
0

0




 . (5.23b)

It remains to determine the instrumental variable estimate θ̂IV
k recursively. Therefore,

the ERLS1 algorithm, as discussed in Point 4a in Section 5.3.1 is now considered.

ERLS1

The next task concerns the recursive computation of θ̂IV
k = Σ̂k†

zϕξ̂kzy. Since the normal

equations are overdetermined, i.e. Σ̂k
zϕ is rectangular with more rows than columns, the

matrix inversion lemma (Ljung 1999, p. 364) cannot be applied directly. However, an

extended version of the matrix inversion lemma for the Moore-Penrose pseudo inverse

(also denoted left pseudo inverse) has been reported in (Feng et al. 2001), which allows
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the formulation of a so-called extended RLS. Such an algorithm may be utilised to

recursively solve an overdetermined set of normal equations.

Lemma 5.2 (Matrix pseudo inversion lemma). Define A ∈ R
m×n with rank(A) =

n, m ≥ n as well as the vectors b ∈ Rm, c ∈ Rn. Furthermore introduce the following

assumptions:

1. The matrix A+ bcT is of full column rank and

2. R(A+ bcT ) = R(A),

where R(A) denotes the range of A. Then the left pseudo inverse of A + bcT is given

by

[A+ bcT ]† = A† −
A†bcTA†

1 + cTA†b
. (5.24)

Proof. Here, only a sketch of the proof is given. For more details, the reader is

referred to (Feng et al. 2001).

The post-multiplication of (5.24) with A + bcT yields the identity on both sides,

which shows that the right hand side of (5.24) is a left inverse of A+ bcT . In order to

show that this left inverse is the unique pseudo inverse, Assumption 2 is used.

The extended recursive least squares algorithm using the matrix pseudo inversion

lemma and utilising a scaled covariance matrix, such that Pk = Σ̂k†
zϕ, is given by (see

Appendix G for a detailed derivation)

θIV
k = θIV

k−1 + Lk
(
yk − ϕTk θ

IV
k−1

)
, (5.25a)

Lk =
Pk−1γkzk

1 − γk + ϕTk Pk−1γkzk
, (5.25b)

Pk =
1

1 − γk

(
Pk−1 − Lkϕ

T
k Pk−1

)
. (5.25c)

Note that the pseudo inverse in (5.22) can be replaced by Pk which yields

θ̂k = θ̂IV
k + Pk

(

Σ̂k−1
z̃ϕ̃ θ̂k−1 − ξ̂k−1

z̃ỹ

)

. (5.26)

The recursive bias compensating instrumental variable algorithm for overdetermined

normal equations, which is denoted here as REBC, can be summarised as follows.
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Algorithm 5.2 (REBC).

θ̂k = θ̂IV
k + Pk

(

Σ̂k−1
z̃ϕ̃ θ̂k−1 − ξ̂k−1

z̃ỹ

)

(5.27a)

θ̂IV
k = θ̂IV

k−1 + Lk

(

yk − ϕTk θ̂
IV
k−1

)

(5.27b)

Lk =
Pk−1γkzk

1 − γk + ϕTk Pk−1γkzk
(5.27c)

Pk =
1

1 − γk

(
Pk−1 − Lkϕ

T
k Pk−1

)
(5.27d)

The recursive two-stage algorithm based on the bilinear parametrisation, which

makes use of the REBC rule is denoted RBP2 and can be summarised as follows.

Algorithm 5.3 (RBP2).

1) Initialisation

2) For k = na + nb + 1, ...

a) Update Σ̂k
zϕ and ξ̂kzy via (5.12)

b) Determine θ̂k via Algorithm 5.2

c) σ̂k = G†
k(θ̂k)g(θ̂k) using (5.13)

Remark 5.2 (Relation to recursive EBCLS developed in (Ekman 2005)). A recursive

algorithm for the white noise EBCLS case has also been developed in (Ekman 2005).

However, this algorithm requires the inversion of a 2nθ × 2nθ matrix at each recursion

step. Another conceptual difference is that the algorithm proposed in (Ekman 2005)

propagates the bias compensated inverse covariance matrix (based on the current es-

timate σ̂k) at each time step, whereas it is the uncompensated Pk which is stored in

the RBP2 algorithm. This means that the RBP2 algorithm always utilises the latest

estimate of σ for the bias compensation in contrast to the algorithm in (Ekman 2005)

where the errors in σ are propagated.

5.3.4 Numerical examples

The appropriateness of the developed RBP1 and the RBP2 algorithms is investigated

in simulation for a particular system.
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Figure 5.1: Estimates of ϑ using RBP1 and RBP2 in comparison with RAFS for
Example 5.1.

Example 5.1. Consider an identical setup as in Section 3.3.6, i.e. the system given by

θ =
[

−1.5 0.7 1 0.5
]T
, (5.28a)

σ =
[

2.1 0.1
]T
, (5.28b)

with the input being a zero mean random process of unity variance. The RBP1 and

the RBP2 algorithms are utilised to estimate ϑ for N = 500 samples. The recursions

commence at k = nζ + nb = 8 (cf. the definition of ζk in (2.50)) and the estimates

of ϑ are initialised with null vectors for both algorithms. In addition, the pseudo-

inverse Pk for the REBC needs to be initialised in the case of RBP2. Here, Pk when

k = 8 is chosen to be initialised with the exact pseudoinverse of Σ̂k
zϕ. The results

of both recursive estimators are compared with those of the offline Frisch scheme,

namely with the RAFS algorithm (see Algorithm 3.1 on page 56). Figure 5.1 shows

the estimates evolving with time. It is observed that the estimates of σ obtained by

the RBP1 algorithms are very similar to those obtained by the RAFS. The estimates of

the parameter θ obtained by the RBP1 and RAFS are virtually identical for k ' 200.

The quality of the estimates obtained from the RBP2, in contrast, is rather poor. This

observation is further investigated in the next example.

Example 5.2. The simulation of Example 5.1 is repeated for N=5000 and the RBP1

and RBP2 algorithms are applied to estimate ϑ. However, two different variants of the

RBP2 algorithm are used: The first variant computes, as before, Pk using the matrix

pseudo inversion lemma, whilst a second variant, denoted here RBP2I computes Pk

exactly for the first 250 recursions, in order to achieve a more exact initialisation of the

pseudoinverse. The mean-square-error between the RAFS estimates and those obtained
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Figure 5.2: Mean square error for between RAFS and RBP1, RBP2, RBP2I evolving
with time for Example 5.2.

from the RBP1, RBP2 and RBP2I are, respectively, computed as

MSEk ,

∥
∥
∥ϑkRAFS − ϑ̂k

∥
∥
∥

2

2

nθ + 2
, (5.29)

where ϑkRAFS denotes the estimates of the RAFS. The values of MSEk evolving over

time are in shown in Figure 5.2. It is observed that the longer period of initialisation

can improve the performance in terms of MSEk for the RBP2 algorithm (from around

10−1 to approximately 10−3 with respect to the RAFS). However, the results of the

RBP1 appear to be superior with an average value around 10−7.

Examples 5.1 and 5.2 reveal an important observation which is captured in the following

remark.

Remark 5.3. The REBC approach for the overdetermined normal equations (Algorithm

5.2) appears to be sensitive with respect to its initialisation of the pseudo inverse. In

fact, some further numerical experiments reveal that the initialisation of Pk, the left

pseudo inverse of Σ̂k
zϕ, is of crucial importance in achieving a satisfactory operation of

the algorithm. This requirement may be considered as a major shortcoming that has

been observed for the REBC, hence the resulting RBP2 algorithm.

5.3.5 Comments on the matrix pseudo inversion lemma for recursive

estimation

A potential reason for the poor performance of the ERLS1 algorithm is that the second

assumption within Lemma 5.2 is not necessarily satisfied when applied to recursive

estimation. In this case, the right hand side of (5.24) is a left inverse of A + bcT , but

not the unique pseudo inverse (cf. Chapter 7 in Lawson & Hanson 1995) as illustrated

in the following example.
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Example 5.3. Let A, b and c be given by

A =

[

1

0

]

, b =

[

0

1

]

, c = 1, (5.30)

where the pseudo inverse of A is given by

A† =

(
[

1 0
]
[

1

0

])−1
[

1 0
]

=
[

1 0
]

. (5.31)

In addition, it holds

A+ bcT =

[

1

1

]

(5.32)

and

(
A+ bcT

)†
=

(
[

1 1
]
[

1

1

])−1
[

1 1
]

= 0.5
[

1 1
]

. (5.33)

In contrast, the right hand side of (5.24) gives

[

1 0
]

−

[

1 0
]
[

0

1

]
[

1 0
]

1 +
[

1 0
]
[

0

1

] =
[

1 0
]

6=
(
A+ bcT

)†
. (5.34)

Hence, when Assumption 2 within Lemma 5.2 is not satisfied, the REBC algorithm

does not use the unique pseudo inverse for the computation of the IV estimate θ̂IV
k .

The implications for the estimator are illustrated with the following example.

Example 5.4. Consider two equations in one unknown given by

y =

[

y1

y2

]

=

[

1

1

]

x+

[

e1

e2

]

, (5.35)

where x is the scalar parameter to be estimated, whilst e1 and e2 are zero mean inde-

pendent errors having the same variance. A left inverse of [1 1]T may be given by

H =
[

α 1 − α
]

, (5.36)

where α ∈ R can be chosen freely. This allows the formulation of an unbiased estimate

as

x̂ = Hy = x+ αe1 + (1 − α)e2. (5.37)
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However, due to the Gauss-Markov theorem, the best linear unbiased estimator occurs

when

H =

[

1

1

]†

= 0.5
[

1 1
]

. (5.38)

Consequently, when Assumption 2 of Lemma 5.2 is not satisfied, but (5.24) is still

used to update the left inverse, the estimate is no longer best in the minimum vari-

ance sense. Hence, although the ERLS1 algorithm is computationally simpler than the

ERLS2 algorithm, it does not solve the same problem and leads to a degraded statis-

tical behaviour. This implies that for the application considered here, it seems to be

advantageous to make use of the ERLS2 algorithm rather than the ERLS1, in order to

compute the IV estimate recursively.

5.4 Variable projection algorithm

This section considers an application of the variable projection algorithm to recur-

sively estimate ϑ. Recent work (Ekman 2005, Söderström et al. 2005) recommends

this algorithm not only for (offline) EBCLS problems, but also as an alternative for

the iterative BCLS implementations as used, for instance, in the bias eliminating least

squares (BELS) methods. Whilst an application of the variable projection seems to

appear unnecessary for solving the Frisch-YW identification problem due to the nature

of its bilinear parametrisation, it is its generalisability towards more complicated se-

tups, such as coloured noise cases, which makes this approach appealing. In fact, only

the computation of the Jacobian is to be modified, in order to apply this approach to

nonlinear problems which are not bilinear in the parameters, but still separable. In

particular, the approach could be utilised to obtain an alternative recursive algorithm

for the Frisch scheme identification problem in the coloured output noise case, which

has been considered in Chapter 4.

Since the nonlinear least squares problem (5.1) is separable (cf. Section 2.3.2), ϑ

can be estimated offline in a two-step manner using a variable projection algorithm

given as follows.

Algorithm 5.4 (Variable projection algorithm - offline case).

σ̂ = min
σ

∥
∥
∥

(

I − F (σ)F †(σ)
)

f(σ)
∥
∥
∥

2

2
(5.39a)

θ̂ = F †(σ̂)f(σ̂) (5.39b)

The minimisation problem in (5.39a) could be solved using any suitable optimisation
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routine. However, it is beneficial to take the particular structure of the problem into

account which can be realised, for instance, via a Gauss-Newton algorithm. This also

has the advantage of allowing a straightforward recursive implementation. A Gauss-

Newton algorithm for the variable projection problem is given in (Björck 1996) as

follows:

Algorithm 5.5 (Gauss-Newton variable projection algorithm). Let ϑ̂k =
[

θ̂Tk σ̂Tk

]T
be the current approximation.

1. Solve the linear sub-problem

θ̂k+ 1
2

= arg min
θk

‖F (σ̂k) θk − f(σ̂k)‖
2
2 (5.40)

and set ϑ̂k+ 1
2

=
[

θ̂T
k+ 1

2

σ̂Tk

]T
.

2. Compute the Gauss-Newton direction ψk at ϑ̂k+ 1
2
, i.e. solve

ψ̂k = arg min
ψk

∥
∥
∥J(ϑ̂k+ 1

2
)ψk + r(θ̂k+ 1

2
, σ̂k)

∥
∥
∥

2

2
, (5.41)

where J(ϑ̂k+ 1
2
) is the Jacobian matrix.

3. Take

ϑ̂k+1 = ϑ̂k+ 1
2
− γkψ̂k, (5.42)

where γk denotes the step size.

The Jacobian matrix in (5.41) is defined by

J(ϑ̂k+ 1
2
) ,

∂r(θ̂k+ 1
2
, σ̂k)

∂ϑ̂k+ 1
2

=

[

∂r(θ̂
k+1

2
,σ̂k)

∂θ̂
k+1

2

∂r(θ̂
k+ 1

2
,σ̂k)

∂σ̂k

]

, (5.43)

where

∂r(θ̂k+ 1
2
, σ̂k)

∂θ̂k+ 1
2

= F (σ̂k), (5.44a)

∂r(θ̂k+ 1
2
, σ̂k)

∂σk
=
∂F (σ̂k)

∂σk
θ̂k+ 1

2
−
∂f(σ̂k)

∂σ̂k
. (5.44b)
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Recall from (5.7) that in the Frisch-YW case, r(ϑ) is also linear in σ, i.e.

r(θ̂k+ 1
2
, σ̂k) = G(θ̂k+ 1

2
)σ̂k − g(θ̂k+ 1

2
) (5.45)

holds. This simplifies the computation of (5.44b) to

∂r(θ̂k+ 1
2
, σ̂k)

∂σk
= G(θ̂k+ 1

2
). (5.46)

Consequently, when the problem is bilinear in θ and σ, i.e. (5.5) and (5.7) hold, the

Jacobian in Step 2 simplifies to

J(ϑ̂k+ 1
2
) =

[

F (σ̂k) G(θ̂k+ 1
2
)
]

. (5.47)

As in Section 5.3, the problem reduces to solving two individual linear least squares

problems, which can be solved in different ways as pointed out in Section 5.3.1. Two

approaches are considered in this Section: The first proposed algorithm uses robust

batch LS techniques and is therefore of cubic complexity, i.e. O((nθ + 2)3). The

algorithm is denoted RVP1 (recursive variable projection) and summarised as follows:

Algorithm 5.6 (RVP1).

1) Set j = nζ + nb, σ̂j = 0

2) For k = j + 1, ...

a) Update Σ̂k
zϕ and ξ̂kzy via (5.12)

b) θ̂k+ 1
2

= F †(σ̂k)f(σ̂k)

c) ψ̂k = J†(ϑ̂k+ 1
2
)r(θ̂k+ 1

2
, σ̂k)

d) ϑ̂k+1 = ϑ̂k+ 1
2
− γkψ̂k

In order to reduce the computational complexity of the RVP1 algorithm, the re-

cursive implementation of the two linear LS problems based on a generalisation of

the recursive bias compensation technique and the matrix inversion lemma for pseudo

inverses, as in Section 5.3, is considered, leading to the second approach.

5.4.1 Update of θ̂k+ 1
2

Step 1 of Algorithm 5.5 can be solved via an extended bias-compensating linear least

squares approach (cf. Lemma 5.1 on page 128) for which a recursive algorithm has

been derived in Section 5.3 (Algorithm 5.2). The algorithm for the determination of

θ̂k+ 1
2

can be summarised as follows.
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Algorithm 5.7 (Update of θ̂
k+1

2

).

θ̂k+ 1
2

= θ̂IV
k+ 1

2

+ Pk

(

Σz̃ϕ̃θ̂k− 1
2
− ξz̃ỹ

)

(5.48a)

θ̂IV
k+ 1

2
= θ̂IV

k− 1
2

+ Lk

(

yk − ϕTk θ̂
IV
k− 1

2

)

(5.48b)

Lk =
Pk−1γkzk

1 − γk + ϕTk Pk−1γkzk
(5.48c)

Pk =
1

1 − γk

(
Pk−1 − Lkϕ

T
k Pk−1

)
(5.48d)

Next, the update of the Gauss-Newton update direction is considered.

5.4.2 Update of ψ̂k

Step 2 in Algorithm 5.5 can be expressed as

[

F (σ̂k) G(θ̂k+ 1
2
)
]
[

ψθ

ψσ

]

= r(θ̂k+ 1
2
, σ̂k), (5.49)

where ψθ and ψσ denote the Gauss-Newton directions corresponding to θ and σ, respec-

tively. A recursive solution of the linear LS problem (5.49) is, however, not straightfor-

ward: Since the matrix [F (σ̂k) G(θ̂k+1/2)] is not updated via a common rank-1 update,

the matrix (pseudo) inversion lemma is not applicable. To overcome this issue, an it-

erative two-step solution is proposed which first computes the solution for ψθ followed

by a solution for ψσ, i.e.

ψ̂θk = F †(σ̂k)
[

r(θ̂k+ 1
2
, σ̂k) −G(θ̂k+ 1

2
)ψ̂σk−1

]

, (5.50a)

ψ̂σk = G†(θ̂k+ 1
2
)
[

r(θ̂k+ 1
2
, σ̂k) − F (σ̂k)ψ̂

θ
k

]

. (5.50b)

For the determination of ψ̂θk the principle of stationary iterative LS methods (cf. Section

2.3.1) can be applied. From (5.50a), one obtains,

[

Σ̂k
zϕ − Σz̃ϕ̃(σ̂k)

]

ψ̂θk = r(θ̂k+ 1
2
, σ̂k) −G(θ̂k+ 1

2
)ψ̂σk−1, (5.51)

which gives rise to the recursive update

ψ̂θk = Pk

[

r(θ̂k+ 1
2
, σ̂k) −G(θ̂k+ 1

2
)ψ̂σk−1 + Σz̃ϕ̃(σ̂k)ψ

θ
k−1

]

, (5.52)

where Pk has already been computed in Algorithm 5.7. Due to the particular sparse

structure of G(θ̂k+ 1
2
), its pseudo inverse and hence ψ̂σk in (5.50b) can be computed in
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a straightforward manner as given in (5.13)

G†(θ̂k+ 1
2
) =








1
1+âT

k+ 1
2

â
k+ 1

2

−âT

k+ 1
2

1+âT

k+ 1
2

âk
0 0

0 0
−b̂T

k+ 1
2

b̂T
k+ 1

2

b̂
k+1

2

0







. (5.53)

The resulting algorithm is summarised as follows.

Algorithm 5.8 (Update of ψ̂k).

ψ̂k =
[

ψθT ψσT
]T

(5.54a)

ψ̂θk = Pk

[

r(θ̂k+ 1
2
, σ̂k) −G(θ̂k+ 1

2
)ψ̂σk−1 + Σz̃ϕ̃(σ̂k)ψ

θ
k−1

]

(5.54b)

ψ̂σk = G†(θ̂k+ 1
2
)
[

r(θ̂k+ 1
2
, σ̂k) − F (σ̂k)ψ̂

θ
k

]

(5.54c)

5.4.3 Algorithm summary

The recursive algorithm, denoted RVP2, can be summarised as follows.

Algorithm 5.9 (RVP2).

1) Initialisation

2) For k = na + nb + 1, ...

a) Update Σ̂k
zϕ and ξ̂kzy via (5.12)

b) Determine θ̂k+ 1
2

via Algorithm 5.7

c) Compute ψ̂k using Algorithm 5.8

d) Update ϑ̂k+1 = ϑ̂k+ 1
2
− γkψ̂k

Note that in contrast to the RVP1, Algorithm 5.9 is of only quadratic complexity.

The following example investigates, if the RVP2 algorithm can approximate the

estimates of the more computationally demanding RVP1 algorithm.

Example 5.5. Consider an identical setup as in Section 3.3.6, i.e. the system is given
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Figure 5.3: Estimates of ϑ using RVP1 and RVP2 for Example 5.5.

by

θ =
[

−1.5 0.7 1 0.5
]T
, (5.55a)

σ =
[

2.1 0.1
]T
, (5.55b)

with the input being a zero mean random process of unity variance. The signal-to-

noise ratio on input and output is given by 10dB and 10dB, respectively. The RVP1

and the RVP2 algorithms are utilised to estimate ϑ. During the first 100 recursions,

Pk within the RVP2 algorithm is computed exactly, rather than by making use of the

matrix pseudo inversion lemma. The estimates of both algorithms evolving over time

are shown in Figure 5.3 for N = 5000 samples. It is observed that the RVP2 algorithm

can successfully approximate the estimates obtained by the RVP1 algorithm. However,

the initialisation of Pk is, as already remarked in Section 5.3.4, crucial for the RVP2

algorithm to perform satisfactorily.

In the next section the four EBCLS-based algorithms which have been developed

in this chapter are compared with those developed in earlier chapters in terms of ro-

bustness, accuracy, Frisch-character as well as computation time.

5.5 Simulation studies

This section compares the recursive EBCLS algorithms of this chapter with the RFS

and FRFS approaches, which have been developed in Chapters 3 and 4, respectively.

For convenience, a brief description of all eight algorithms, which are compared in this

section, are listed in Table 5.1 together with the appropriate sections where the details

can be found. Three simulation examples are designed such that the following aspects

are investigated:

Computation time: For an online implementation it is necessary to gather infor-

mation about the computation time per recursion, consequently this aspect is
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Algorithm Description Section

RFSa
Gradient-based recursive Frisch-YW. 3.3

RFSb

FRFSa
Fast RFS algorithms. 4.2

FRFSb

RBP1
Recursive bilinear parametrisation. 5.3

RBP2

RVP1
Recursive variable projection. 5.4

RVP2

Table 5.1: Algorithms used within simulation.

investigated for an incrementally increasing model order.

Frisch-character & estimation accuracy: Whilst the RFS algorithms aim to de-

termine σỹ such that Σϕ̄0 is (approximately) singular, the EBCLS approaches do

not explicitly impose such a condition on the solution. It is therefore of inter-

est to investigate how ‘well’ the EBCLS based recursive algorithms satisfy this

singularity condition. To evaluate this property, a Monte-Carlo simulation is

performed, which, in addition, monitors the estimation accuracy of the various

algorithms. Note that the asymptotic accuracy of all eight algorithms is expected

to be similar4 (convergence provided) since the same underlying equations are

utilised (Hong et al. 2007, Hong & Söderström 2008).

Robustness & convergence: A simulation example is included to give some insight

into the robustness and convergence behaviour for a particular system. In an

attempt to quantify the results, the MSEs of the estimates are monitored in a

Monte-Carlo simulation for an increasing signal-to-noise ratios (SNRs) on input

and output, respectively.

Example 5.6 (Computation time). A similar setup as in Section 3.4.3 (page 77) and

Example 4.3 (page 104) is considered, where the computation times of the RAFS, RFS

and FRFS algorithms have been compared. For the considered algorithms, the com-

putation time per recursion for model orders ranging from n = 1, ..., 30 is presented

in Figure 5.4. The solid lines are utilised for algorithms which are of cubic complex-

ity, whilst the fast versions, which are of quadratic complexity, have dashed lines. It

is observed that the RFS algorithms are the most expensive algorithms in terms of

computation time per recursion. The slopes of the curves corresponding to the RBP1

and RVP1 indicates that these algorithms are of cubic complexity whereas the lowers

slope of the RBP2 and RVP2 approaches indicate the quadratic order of complexity.

This confirms the theoretical results obtained in this chapter (see Sections 5.3 and 5.4).

However, although of cubic complexity, the RBP1 is relatively fast and outperforms

4Note that the weighting is different.
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Figure 5.4: Computation time per single recursion with increasing model order n.

the other algorithms with respect to computing time for a model order less than ap-

proximately 17. For a model order greater than this threshold, the RBP2 algorithm

is the fastest. A similar behaviour is observed when comparing the RVP1 and RVP2

algorithms. For a low model order, the RVP1 is faster, whilst for n ' 17, the RVP2

requires less computation time. It is interesting to observe, that for the considered

range of model order, the RBP1, RBP2 and the RVP2 are all less computationally

demanding than the FRFS algorithms.

Example 5.7 (Frisch-character and estimation accuracy). Consider an identical setup

as in Section 3.3.6, i.e. the system given by

θ =
[

−1.5 0.7 1 0.5
]T
, (5.56a)

σ =
[

2.1 0.1
]T
, (5.56b)

with the input being a zero mean random process of unity variance. The system is

simulated for N = 1000 samples and 100 Monte-Carlo iterations. The estimates of

σũ and σỹ are projected into the intervals [0, σmax
ũ ] and [0, σmax

ỹ ], respectively. The

maximal admissible values for the input and output measurement noise variances are

chosen to be σmax
ũ = 2σũ and σmax

ỹ = 2σỹ. In addition, recall from Examples 5.1-5.5

that the RBP2 and the RVP2 algorithms require an accurate initialisation of the pseudo

inverse Pk. Therefore, these algorithms use the exact computation of Pk during the first

250 recursions (rather than making use of the matrix pseudo inversion lemma). The

Frisch-character is measured via F k2 as defined by (3.58), i.e. the smallest eigenvalue

of Σ̂k
ϕ0

= Σ̂k
ϕ − Σϕ̃(σ̂k). The average of F k2 for the last 100 samples, i.e. 901 ≤ k ≤ N ,
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Algorithm mean(F̄ ) std(F̄ ) mean(MSEN ) std(MSEN )

RFSa 4.41·10−6 1.65·10−6 7.19·10−3 9.61·10−3

RFSb 8.36·10−6 3.51·10−6 7.10·10−3 9.77·10−3

FRFSa 3.21·10−3 6.85·10−4 7.86·10−3 1.04·10−2

FRFSb 2.93·10−3 7.24·10−4 8.46·10−3 1.01·10−2

RBP1 1.61·10−4 5.65·10−4 7.43·10−3 1.00·10−2

RBP2 5.05·10−4 1.38·10−3 8.62·10−3 1.19·10−2

RVP1 8.02·10−4 3.90·10−3 7.58·10−3 1.04·10−2

RVP2 7.95·10−3 4.54·10−2 1.04·10−2 1.41·10−2

Table 5.2: Mean (mean(·)) and standard deviation (std(·)) of F̄ and MSEN for 100
Monte-Carlo runs.

given by

F̄ ,
1

100

1000∑

k=901

F k2 (5.57)

is computed for each algorithm and each Monte-Carlo run. In order to evaluate the

estimation accuracy of the individual algorithms, the accuracy of the final estimate θ̂N

is measured via the mean square error given by

MSEN =

∥
∥
∥ϑ− ϑ̂N

∥
∥
∥

2

2

nθ + 2
(5.58)

for each Monte-Carlo run. The means and standard deviations of F̄ and MSEN with

respect to the Monte-Carlo simulations for each algorithm are presented in Table 5.2.

Consideration is first given to the Frisch-character, as indicated by the measure F̄ . It

is observed, that the RFS algorithms, which both use the conjugate gradient subspace

tracking algorithm for the determination of σỹ, yield the best performance in terms

of Frisch-character. Comparing the results of these two algorithms, it is noteworthy

that the Frisch-character of the RFSb is worse (approximately double) than that of

the RFSa algorithm. At the first glance, this difference might appear surprising, since

both algorithms utilise the CG-RQ algorithm (cf. Algorithm 3.4 on page 61) to estimate

σỹ, which finally defines the Frisch-character. However, recall that the CG-RQ assumes

that the matrix Âk, hence σ̂kỹ , is varying slowly with time, as stated in Assumption AE1

(cf. Section 3.3.3). In addition, it has been observed in previous examples (cf. Section

3.3.6), that the estimate of σũ obtained from the RFSb (cf. Algorithm 3.6 on page 68)

appears to more erratic than that obtained from the RFSa. Consequently, Assumption

AE1 is ‘less satisfied’ in the RFSb case, which could explain the deterioration of Frisch-
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character which is observed in Table 5.2. The RBP approaches perform second best

in terms of Frisch-character, but exhibit a relatively high standard deviation, due to

several outliers5. The performances of the RVP1 algorithm would appear to be next

following the RBP, with the FRFS algorithms providing very similar jointly next best

results. It is noted that the RVP2 algorithm performs worst in terms of Frisch character.

For the estimation accuracy, it is observed that the values of the MSEN are similar

in all cases. This is an expected result, since all algorithms use the same underlying

equations.

Example 5.8 (Robustness & convergence). In order to compare the convergence prop-

erties of the eight algorithms, the system given in Example 5.1, where ϑ was given

by

θ =
[

−1.5 0.7 1 0.5
]T
, (5.59)

is simulated for different SNRs. The SNR on the input and output, which are denoted

SNRu and SNRy, respectively, are varied incrementally between 0dB and 20dB. For

each combination of SNRu and SNRy, 100 Monte-Carlo iterations are performed using

N = 500 samples. Otherwise, an identical setup as in Example 5.1 is used, in particular

the pseudoinverse within the RBP2 and RVP2 approaches is computed exactly during

the first 250 recursions. At each Monte-Carlo iteration, the estimation accuracy of

each algorithm measured by the MSEN defined in (5.58) is recorded. The mean value

with respect to the Monte-Carlo iterations of this quantity indicates, whether the given

algorithm is able to converge or not: A large value will be interpreted as divergence,

whilst a small mean value will be interpreted as convergence. In order to visualise the

results, a threshold is defined which declares the certain divergence of the algorithm

(values above this threshold are clipped). The value of this threshold is chosen to be

1/(nθ)||θ||
2
2 ≈ 0.12 (cf. (5.59)). The mean values of MSEN for all eight algorithms are

shown in Figure 5.5, where a light colour indicates a small average MSEN for a given

set of SNRu and SNRy, whilst a dark colour corresponds to a large average estimation

error (black corresponds to the threshold value 0.12).

It is observed that the two gradient-based Frisch scheme approaches (RFSa and

RFSb), which have been developed in Chapter 3, exhibit a similar region of convergence

for the particular system considered, indicated by the light area. Furthermore, it is

observed that the additional assumptions and approximations, which have been used

for the development of the fast algorithms FRFSa and FRFSb, lead to a reduced

convergence region. Again, the FRFSa and FRFSb yield a very similar performance.

An interesting fact is observed when comparing the RBP1 and RBP2: In terms of

convergence region, the RBP2 seems to be superior to the RBP1. This is a surprising

result, since the RBP2 aims to compute the RBP1 estimate in a fast manner, by

5Note that the outliers are in terms of Frisch-character and not in terms of estimation accuracy.
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all eight algorithms considered in Example 5.8 indicating the region of
convergence. A light colour denotes a small average MSEN , whilst a dark
colour corresponds to a large mean estimation error.
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introducing additional approximations. Whilst this potentially requires some further

investigations, it is believed that this result may be caused by the rather more favourable

initialisation of the RBP2 scheme. In addition, it is observed that the RVP2 clearly

has a reduced convergence region compared to the RVP1. Comparing all investigated

algorithms, it can be concluded that the RVP1 appears to yield the best convergence

properties, followed by the RFS algorithms. Finally, it is worth mentioning that these

simulations results cannot be interpreted as a convergence analysis, but are rather of

an indicative character. Techniques for a more rigourous mathematical analysis are

discussed in (Ljung & Söderström 1983, Kushner & Yin 2003) and are identified as

potential further work.

5.6 Concluding remarks

The equations of the Frisch scheme using the Yule-Walker (YW) model selection crite-

rion (Frisch-YW) have been interpreted in an extended bias compensating least squares

(EBCLS) framework. Two methods have been considered to solve the resulting EBCLS

system identification problem in a recursive manner:

1. Bilinear parametrisation approach.

2. Nonlinear separable least squares (also known as the variable projection method).

Acknowledging the fact that the EBCLS problem for the Frisch-YW case is bilinear in

the parameters allows the solution of the identification problem to be obtained in an

iterative two-step manner, which can easily be modified towards a recursive estimator.

At each recursion, two individual least squares (LS) problems are required to be solved.

A first algorithm, denoted RBP1 (recursive bilinear parametrisation), solves these LS

problems in an offline or batch manner. A second recursive algorithm based on the

bilinear parametrisation approach has been developed, which is denoted RBP2. This

algorithm aims to avoid the application of a batch LS at each recursion by means of a

recursive bias compensating least squares (RBCLS) approach; a technique which is well

known in the literature and which has also been used within the previously developed

RFS and FRFS algorithms. The use of the RBCLS is able to reduce the cubic complex-

ity of the RBP1 (which is due to the batch LS application at each iteration) towards

quadratic order. In order to achieve this, the RBCLS technique has been extended to

deal with overdetermined normal equations by making use of the extended RLS (ERLS)

which relies on the matrix pseudo inversion lemma. However, the RBCLS techniques

can suffer from convergence problems, hence reducing the convergence properties of

the overall RBP2 algorithm. In addition, it appears that the Moore-Penrose pseudo in-

verse, which is propagated within the ERLS, requires a highly accurate initialisation, in

order to ensure that the RBP2 and RVP2 perform satisfactorily. Consequently, whilst

providing reduced computational complexity, these issues could well represent major
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limitations of the RBP2 approach. In addition, a simulation example indicates that the

RBP2 fails to reduce the computation time in comparison to the RBP1 for low model

orders. Hence, the practical use of the RBP2 appears to be limited.

In addition to the bilinear parametrisation approaches, two algorithms have been

developed based on the variable projection method. Whilst the Frisch-YW problem is

a special case within the EBCLS framework, which can be solved by the conceptually

simpler bilinear parametrisation, using a variable projection allows more general setups,

such as coloured noise sequences. The developed algorithms within this framework

are based on a Gauss-Newton search to minimise the associated variable projection

cost function. This allows a straightforward modification for a recursive application

by updating the covariance matrices/vectors as new data arrives. As in the bilinear

parametrisation case, the problem reduces to two separate LS problems and as in the

RBP case, two algorithms have been proposed. The first algorithm is denoted RVP1

(recursive variable projection) and can be considered as being analogous to the RBP1,

since the LS problems are solved in an offline manner at each recursion. The second

algorithm by analogy, which corresponds to the RBP2, has been similarly denoted

RVP2. It also makes use of the RBCLS and, therefore, the same implications and

restrictions in terms of convergence and robustness apply.

The four algorithms which have been developed in this Chapter have been com-

pared with the previously derived RFS and FRFS algorithms (cf. Chapters 3 and

4) via Monte-Carlo simulations. The computation time, the Frisch-character, estima-

tion accuracy as well as an indication of convergence behaviour has been investigated.

Firstly, the absolute computation time per recursion has been compared for an increas-

ing model order. It has been found that the fast algorithms RBP2 and RVP2 are only

superior in terms of computation time for an increasing model order, whilst the LS

based approaches RBP1 and RVP1 are computationally less expensive for low model

orders. Within the overall comparison, however, the fast RBP2 and RVP2 approaches

are consistently faster than the FRFS approaches. For the Frisch-character, it has been

found that the EBCLS approaches produce performances that are similar to the FRFS

algorithms, whilst the RFS algorithms perform best. Finally, the region of convergence

has been determined for a given system. Here, it has been found that the RVP1 yields

the best performance followed by the RFS approaches. All algorithms, however, can fail

to converge in the case of extremely low signal-to-noise ratios. Whilst these simulation

results are required to be confirmed by mathematically sound convergence analyses, the

development of recursive algorithms with improved convergence properties is an area

of potential further work. In general, it can be concluded that the algorithms appear

to be characterised by a trade-off between computational complexity and satisfaction

of the Frisch-character. Within an overall comparison, albeit limited to a single system

setup, the RVP1 seems to provide an appropriate compromise between computation

time, Frisch-character and convergence properties.
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ek . . . . . . . . . . . . . . . . . . . . . Reformulated output noise

A, B, C, D, G, N . . . . . . System matrices of bilinear time-invariant state space representation

Aa
k . . . . . . . . . . . . . . . . . . . . Actual input dependent system matrix

Ad
k . . . . . . . . . . . . . . . . . . . . Design value for system matrix

Âk . . . . . . . . . . . . . . . . . . . . Estimate of system matrix

Kk . . . . . . . . . . . . . . . . . . . . Kalman gain

Mu, My . . . . . . . . . . . . . . . Filter performance indices for input and output, respectively

P0 . . . . . . . . . . . . . . . . . . . . . Covariance matrix of initial state vector

148



6. Errors-in-variables Kalman filtering for bilinear systems

Pk|k−1 . . . . . . . . . . . . . . . . . State estimation error covariance matrix

P k
u . . . . . . . . . . . . . . . . . . . . Estimation error variance of the input

P k
y . . . . . . . . . . . . . . . . . . . . Estimation error variance of the output

vk, v̄k, v∗k, v′k . . . . . . . . . . Reformulated process noise

wk . . . . . . . . . . . . . . . . . . . . Process noise

xk . . . . . . . . . . . . . . . . . . . . . System state vector

x̄0 . . . . . . . . . . . . . . . . . . . . . Mean of initial state vector

x̃k . . . . . . . . . . . . . . . . . . . . . State estimation error

x̂k|k−1 . . . . . . . . . . . . . . . . . One-step-ahead prediction of the state vector

zk . . . . . . . . . . . . . . . . . . . . . Reformulated system output

εk . . . . . . . . . . . . . . . . . . . . . Innovation

σũ, σỹ , σũỹ . . . . . . . . . . . . Variances and covariance of input and output noise sequences

σe . . . . . . . . . . . . . . . . . . . . . Variance of reformulated output noise

Σk
ε . . . . . . . . . . . . . . . . . . . . Innovation covariance matrix

σw . . . . . . . . . . . . . . . . . . . . Variance of process noise

σu0
, σy0

. . . . . . . . . . . . . . . Variance of noise-free input and noise-free output, respectively

σu, σy . . . . . . . . . . . . . . . . . Variance of measured input and measured output, respectively

Σk
v , Σk

v̄ , Σk
v∗ , Σk

v′ . . . . . . Auto-covariance matrix of reformulated process noise

Σk
ve, Σk

v̄e, Σk
v∗e, Σk

v′e . . . Cross-covariance matrix of reformulated process noise and reformulated

output noise

Σk
x . . . . . . . . . . . . . . . . . . . . Auto-covariance matrix of the state vector

Σk
xx̃ . . . . . . . . . . . . . . . . . . . Cross-covariance matrix of the state vector and state estimation error

ρ(A) . . . . . . . . . . . . . . . . . . . Spectral radius of matrix A

Preliminary reading: Sections 2.2, 2.5.1, 2.5.2, 2.5.3.

6.1 Introduction

The estimation of signals from noise corrupted measurements, usually termed filtering,

is a very active research area and modern references date back to the 1940s (see Ch.

1 in (Anderson & Moore 1979) for a historical development of filtering theory). The

estimation of unobserved states of a linear dynamic state space system has numerous

applications in automatic control, signal processing and many other areas. In the linear

Gaussian case, the optimal solution, in the minimum variance sense, is given by the

so-called Kalman filter (KF), which has been developed in (Kalman 1960). Recently,

Kalman filtering within an errors-in-variables (EIV) framework, that is not only the

output signals but also the inputs of a dynamical system are corrupted by additive

measurement noise, has been considered (Guidorzi et al. 2003, Diversi et al. 2005,

Markovsky & De Moor 2005). Essentially, EIV Kalman filtering provides, in addition

to the state and output estimates, an estimate of the noise-free system input if the

latter is unknown and only a noise corrupted measurement is available. Hence the

errors-in-variables Kalman filter (EIVKF) can be considered as a generalisation of the

KF which allows for a symmetric system description.

Whilst EIV filtering has only been considered for linear systems (cf. Section 2.5.2)

within the literature, this chapter addresses the EIV filtering problem for bilinear sys-

149



6. Errors-in-variables Kalman filtering for bilinear systems

tems, an appealing class of nonlinear systems. Bilinear system representations (cf.

Section 2.5.3) have successfully been applied in numerous areas such as engineering, so-

cioeconomics, chemistry and biology (Mohler 1991) since they are able to approximate

many dynamical processes. Hence, there is a natural interest and motivation to extend

the linear EIV filtering theory towards the bilinear case.

This chapter considers EIV Kalman filtering, i.e. the estimation of noise-free in-

puts and outputs when both quantities are subject to measurement noise, for a class of

bilinear discrete-time dynamical single-input single-output (SISO) systems. The SISO

restriction is adopted for convenience only, and the development within this chapter

can be extended to the multivariate case in a straightforward manner (cf. Remark 2.4).

Four suboptimal filtering approaches are considered and compared with a benchmark

filter whose design depends on the knowledge of the true input, which as a consequence

is an infeasible solution in practice. In addition, a connection between bilinear EIV sys-

tem representations and linear time-varying systems with stochastic parameters (also

known as multiplicative state noise systems) is established. A numerical example com-

pares the performance of the developed filters. Part of the material within this chapter

has been published in (Linden, Vinsonneau & Burnham 2007a).

6.2 Preliminaries

Assume that the input-output data is generated by a SISO bilinear EIV state space

system which is given, for k ≥ 0, by

xk+1 = Axk + Bu0k
+ Nu0k

xk + Gwk, x0 = x̄0, (6.1a)

y0k
= Cxk + Du0k

, (6.1b)

uk = u0k
+ ũk, (6.1c)

yk = y0k
+ ỹk, (6.1d)

where xk ∈ R
nx denotes the state vector and the system matrices A, B, C, D, G and N ,

are known, constant quantities of appropriate dimension, whilst uk and yk are assumed

to be scalars. The following assumptions are introduced.

AN7 The noise sequences ũk, ỹk and wk are assumed to be zero mean, white, inde-

pendent of u0k
and are characterised by the known covariance matrices

E

















x0

ũk

ỹk
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[

xT0 ũl ỹl wl

]









=









P0 0 0 0

0 σũ σũỹ 0

0 σũỹ σỹ 0

0 0 0 σw









δkl. (6.2)

The problem considered in this chapter can be summarised as follows.
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Problem 6.1 (EIV filtering for bilinear systems). Given the bilinear EIV system (6.1),

the covariance matrices defined in AN7 and an increasing sequence of measured pairs

of inputs and outputs {ui, yi}
k
i=1, determine, at each time step k, the estimates of the

noise-free inputs and outputs, denoted û0k
and ŷ0k

, respectively.

In order to proceed in a similar manner to the linear case, the system representation

(6.1) is transformed into

xk+1 = Axk + Buk + Nukxk − Bũk −N ũkxk + Gwk, x0 = x̄0, (6.3a)

zk = Cxk + ek, (6.3b)

where

zk = yk −Duk, (6.4a)

ek = ỹk −Dũk. (6.4b)

A natural approach would be to follow a similar strategy as in the non-EIV bilinear case

and to recast the problem, such that the standard KF can be applied (cf. Algorithm

2.2 on page 39). However, the problem is exacerbated by the additional term −N ũkxk

in (6.3a) which can be dealt in two different ways: the system can be interpreted as

having an uncertain system matrix or a state dependent noise term. This is discussed

in the following subsections.

6.2.1 Linear time varying system with uncertain system matrix

The first possibility is to interpret the bilinear EIV system (6.3) as a system with

time-varying but uncertain system matrix, i.e.

xk+1 = Aa
kxk + Buk + vk, (6.5a)

zk = Cxk + ek, (6.5b)

where the actual system matrix is defined by

Aa
k , A + Nuk −N ũk. (6.6)

As in the linear case (see (2.103a) and (2.103c)), the process noise and the output noise

sequences are given by

vk = Gwk − Bũk, (6.7a)

ek = ỹk −Dũk, (6.7b)

respectively. The superscript a for the system matrix Ak is introduced here in order

to distinguish between the actual matrix corresponding to the system which generates
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the data and the subsequently utilised design matrix corresponding to a model which

is used for Kalman filter design. Making use of different approximations of Aa
k leads to

suboptimal Kalman filters, which are developed in Section 6.4.1 and Section 6.4.2.

6.2.2 Linear system with state dependent noise

Within this framework, one can take two different (yet mathematically equivalent)

points of view. One possibility is to consider a linear time-invariant (LTI) system with

state dependent process noise depending on u0k
, i.e.

xk+1 = Axk + Buk + v∗k, (6.8a)

zk = Cxk + ek, (6.8b)

where

v∗k = Gwk − Bũk + Nxku0k
. (6.9)

The noise acting on the state is now dependent on the state and the unknown input.

Note that this interpretation of the bilinear EIV system requires that the input satisfies

the following assumption.

AI3 The true input u0k
is a stationary zero-mean ergodic process with variance σu0 .

The variance of the true input signal is either known a priori, or an estimate, denoted

σ̂u0, can be obtained from the data and the known variance of the input noise. A filter

within this framework is derived in Section 6.4.4.

Remark 6.1. System (6.8) is a bilinear system with stochastic inputs, which is fre-

quently referred to within the literature as a bilinear stochastic system. Such systems

have many practical applications (cf. Carravetta et al. 1997). Another name for these

systems is stochastic discrete-time systems with multiplicative noise, which can also be

viewed as systems with stochastic parameters (depending on the point of view which

is taken). Indeed, the filtering problem for such systems is addressed by making use

of the interpretation of state dependent noise systems, which has been given in (6.8a)-

(6.9). In the case of white stochastic system parameters, the optimal filter is discussed

in (De Koning 1984) where a direct application of the standard KF is proposed, after

the first- and second-order moments of the ‘reformulated’ non-stationary noise term v∗k
are determined. If the uncertainties are assumed to be bounded, robust filters can be

developed, as outlined in (Wang & Balakrishnan 2002). Further references within these

frameworks are given by (Yaz 1992, Geromel 1999).

Alternatively, by taking the second viewpoint, it is possible to consider the bilinear

EIV system as a LTV system with state dependent noise based on ũk rather than using
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u0k
as in (6.8a). This gives the system description

xk+1 = Ad
kxk + Buk + v̄k, (6.10a)

zk = Cxk + ek, (6.10b)

where

Ad
k = A + Nuk, (6.11a)

v̄k = Gwk −Bũk −Nxkũk. (6.11b)

The remainder of this chapter explores filtering techniques within both frameworks:

Sections 6.4.1-6.4.2 consider a LTV system, where the system matrix is approximated

in different ways, whereas Section 6.4.3 uses a LTV system with state dependent noise

given by v̄k. Section 6.4.4 considers a LTI system with state dependent noise term

given by v∗k. A benchmark filter that is not achievable in practice is given in Section

6.3.

6.3 A benchmark filter

As for the non-EIV case, the bilinear EIV state space system can be regarded as a

linear time varying system, where the system matrix depends on the unknown input

u0k
, i.e.

xk+1 = Aa
kxk + Buk + vk, (6.12a)

zk = Cxk + ek, (6.12b)

where

vk = Gwk − Bũk, (6.13a)

ek = ỹk −Dũk, (6.13b)

Aa
k = A + Nu0k

. (6.13c)

Clearly, if u0k
(hence the system matrix Aa

k) is known, one could design the EIVKF

as in the linear case since the first and second order statistics of vk and ek are readily

known and all conditions of standard Kalman filtering are fulfilled. The resulting

filter is denoted BEIVKF1 and can therefore be derived by applying the EIVKF (cf.

Algorithm 2.3 on page 42) using the state space model (6.12). This is achieved by

setting Ak = Aa
k, Bk = B, Ck = C, Dk = D, Gk = G, whilst the covariance matrices for
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the SISO case are given by (2.105)

Σk
v = Σv = GσwG

T + σũBB
T , (6.14a)

σke = σe = σỹ − σũỹD
T −Dσũỹ + σũDDT , (6.14b)

Σk
ve = Σve = BσũD

T −Bσũỹ. (6.14c)

Such a benchmark filter, which is mainly used for comparison purposes in the subse-

quent development, can be summarised as follows.

Algorithm 6.1 (BEIVKF1 - linear benchmark filter).

x̂k+1|k = Aa
kx̂k|k−1 + Buk +Kkεk (6.15a)

Kk =
[
Aa
kPk|k−1C

T + Σve

] [

Σk
ε

]−1
(6.15b)

Pk+1|k = Aa
kPk|k−1A

aT

k + Σv −KkΣ
k
εK

T
k (6.15c)

εk = zk − Cx̂k|k−1 (6.15d)

Σk
ε = CPk|k−1C

T + σe (6.15e)

ŷ0k
= yk −

[
σỹ − σũỹD

T
] [

Σk
ε

]−1
εk (6.15f)

û0k
= uk −

[
σũỹ − σũD

T
] [

Σk
ε

]−1
εk (6.15g)

The expected performances for the input and output estimates of the filter are given

by (2.108)

P ku = σkũ −
[

σkũỹ − σkũD
T
] [

Σk
ε

]−1 [

σkũỹ − σkũD
T
]T
, (6.16a)

P ky = σkỹ −
[

σkỹ − σk
T

ũỹD
T
] [

Σk
ε

]−1 [

σkỹ − σkũỹ
T
DT
]T
. (6.16b)

Due to the very nature of the EIV problem, however, the true input u0k
is not avail-

able to design the optimal EIVKF, which assumes that the true input is deterministic

and known. Therefore, suboptimal alternatives are to be explored in the subsequent

development. Firstly, however, to establish a benchmark a numerical example for the

BEIVKF1 is presented, which shows that the filter is working well under ideal condi-

tions.

154



6. Errors-in-variables Kalman filtering for bilinear systems

30 35 40 45 50 55 60

−0.5
0

0.5
1

 

 

30 35 40 45 50 55 60

−2
0
2
4
6

k

 

 

in
p
u
t

ou
tp

u
t

u0k

uk
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Figure 6.1: Comparison of noise-free, noisy and filtered signals using the BEIVKF1.

6.3.1 Numerical example

Consider a bilinear EIV system of the form (6.1) where the matrices are given by

A =

[

0 1

−0.2 0.3

]

, B =

[

0

1

]

, C =
[

0.9 4.05
]

,

D = −4.5, N =

[

0 0

0.2 0.5

]

, G =

[

1

0

]

, (6.17)

and where the noise sequences are Gaussian, zero mean and of variance and covariance

σw = 0.05, σũ = 0.1, σỹ = 2.5, σũỹ = 0.5, (6.18)

respectively. The noise-free input is chosen to be a zero mean, white Gaussian process

of variance σu0 = 0.1. This corresponds to a signal-to-noise ratio on input and output of

0dB and 5.5dB, respectively. The BEIVKF1 is applied to estimate the noise-free input

and output of the EIV system for N = 100 samples. The system is simulated with zero

initial conditions whilst the initial value of the state estimation error covariance matrix

is chosen to be the identity matrix.

An extract (corresponding to the time duration in samples 30-60) of the noisy, noise-

free and filtered input and output signals is presented in Figure 6.1. It is observed that

the noise-free input u0k
as well as the noise-free output y0k

can be estimated nearly

perfectly. Since it is difficult to read the magnitude of the estimation errors of input and

output from Figure 6.1, an extract of the estimation errors is shown in Figure 6.2. The

estimation error variances of input and output, which are computed via (6.16) are also

shown in Figure 6.2. It is observed that, in contrast to the LTI case, the error covariance

of the input and output estimates do not tend towards a constant value. This is an

expected feature since the bilinear system is considered to be a LTV system with input

dependent matrix Aa
k. Therefore, the state estimation error covariance matrix Pk|k−1

is a time varying quantity. This property is propagated to the innovations covariance
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Figure 6.2: An extract of the estimation error of input and output estimates and their
corresponding variances computed via (6.16).

Σk
ε , which finally results into time varying variances of input and output estimation

errors (cf. (6.16)).

In addition to the error variances, another convenient measure for the performance

of the EIV filter may be given by

Mu = 100
||u0 − u||2 − ||u0 − û0||2

||u0 − u||2
, (6.19a)

My = 100
||y0 − y||2 − ||y0 − ŷ0||2

||y0 − y||2
, (6.19b)

where the variables without time index (u, y, etc.) denote the corresponding sequence

from 1 to N , with N being the number of samples. These performance measures can be

considered as the ‘amount’ of noise in percentage, which is removed by the filter from

the noisy input and output signals, respectively. A negative value would indicate that

the filter is not working satisfactorily, i.e. that, on average, the noisy signal is ‘closer’

to the ‘true’ signal than its estimation. Note that the performance measures (6.19) are

purely of an academic nature, since u0 and y0 would not be known in practice. For the

given example the values of Mu and My are virtually identical and given by 90.7. This

means that about 90% of the noise can be removed from both the output and input

signals.

Remark 6.2. The results of the previous example might appear surprisingly good to

the reader, however, the conditions within the example are, for illustrative purposes,

carefully chosen: Firstly, the linear part of system (6.17) has a unity steady state gain,

which allows an approximately equal performance for input and output estimates to

be obtained. Furthermore, the variances of the noise sequences have quite a significant

impact on the filter performance. For example, when σũỹ in (6.18) is altered from

0.5 to 0.2 and the whole experiment is repeated, the filter performance, specified by

(6.19), degrades from approximately 90% to 35%. These aspects should be taken into

consideration, if the EIV filter is aimed to be applied to a practical system. Whilst the
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system within the current example is of a bilinear structure, similar experiences have

been made with the linear EIVKF, which has been reviewed in Section 2.5.2.

6.4 Development of suboptimal filters

6.4.1 Linear Kalman filter design using uk

Since u0k
is unknown, a pragmatic approach for the design of a linear Kalman filter can

then be taken by ignoring the uncertainty N ũk, which is acting on the actual system

matrix Aa
k = A + Nuk − N ũk. In the case of high signal to noise ratio on the input,

this might appear to be a reasonable choice. The corresponding system matrix for the

Kalman filter design is given by

Ad
k = A + Nuk, (6.20)

whilst the covariance matrices of the noise terms remains as presented in (6.14). Since

the signal model differs from the actual system, the corresponding KF, which is denoted

BEIVKF2, is inevitably suboptimal and can be summarised as follows.

Algorithm 6.2 (BEIVKF2 - linear suboptimal filter).

x̂k+1|k = Ad
kx̂k|k−1 + Buk + K̄kε̄k (6.21a)

K̄k =
[

Ad
kP̄k|k−1C

T + Σve

] [

Σk
ε̄

]−1
(6.21b)

P̄k+1|k = Ad
kP̄k|k−1A

dT

k + Σv − K̄kΣ
k
ε̄K̄

T
k (6.21c)

ε̄k = zk − Cx̂k|k−1 (6.21d)

Σk
ε̄ = CP̄k|k−1C

T + σe (6.21e)

ŷ0k
= yk −

[
σỹ − σũỹD

T
] [

Σk
ε̄

]−1
ε̄k (6.21f)

û0k
= uk −

[
σũỹ − σũD

T
] [

Σk
ε̄

]−1
ε̄k (6.21g)

Corresponding to (6.16), one obtains for the suboptimal filter

P̄ ku = σkũ −
[

σkũỹ − σkũD
T
] [

Σk
ε̄

]−1 [

σkũỹ − σkũD
T
]T
, (6.22a)

P̄ ky = σkỹ −
[

σkỹ − σk
T

ũỹD
T
] [

Σk
ε̄

]−1 [

σkỹ − σkũỹ
T
DT
]T
. (6.22b)

The uncertainty in the design matrix Ad
k, given by N ũk, can be interpreted as a sig-

nal model error. The fact that the signal model used for filtering is imperfect is quite

common for practical filter design (Anderson & Moore 1979, Jazwinski 1970), since
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almost always the model is only an approximation of an unknown real-world system.

In general, these model uncertainties can be due to identification errors, linearisation

and/or other approximations, whereas it arises here explicitly due to the input measure-

ment noise ũk. Since the model used for filter design differs from the model description

(6.1), the corresponding KF is no longer the minimum variance estimator, nor is P̄k+1|k

the estimation error covariance matrix (Jazwinski 1970). This means that P̄k+1|k pro-

vides ‘false’ information about the actual quality of the state estimates, hence in the

case of the EIV configuration, about the quality of the estimates of the noise-free in-

puts and outputs (which are computed based on P̄k+1|k). In the worst case, this may

even lead to divergence of the filter. However, it is possible to analyse the qualitative

effects of such model errors as outlined in (Jazwinski 1970). For the BEIVKF2, such

an analysis is carried out in the following subsection.

Analysis of filter performance

The degradation of the filter performance is now analysed following the approach given

in (Jazwinski 1970, p. 244). In order to proceed, an additional assumption is required.

AS4 The bilinearity N is chosen such that y0k
is zero mean.

Note that in the case of bilinear systems the zero mean property of the output, which

is stated by AS4, is not guaranteed by choosing a zero mean input, as in the linear

case (Pearson 1999). Assumption AS4 ensures that the (unconditional) mean of the

state is zero, a property which will be exploited in the subsequent development.

Recall that the actual system is defined by

xk+1 = Aa
kxk + Buk + vk, (6.23a)

zk = Cxk + ek, (6.23b)

whereas the model for filter design is given by

x̄k+1 = Ad
kx̄k + Buk + vk, (6.24a)

z̄k = Cx̄k + ek, (6.24b)

where the bar-notation is used to distinguish between the state and output of the system

and the design model. The corresponding KF is given by (6.15a)-(6.15e). Note that K̄k

is not the optimal Kalman gain, nor is P̄k+1|k the estimation error covariance matrix

(as outlined above), since the model differs from the actual system. Consequently,

(6.15a)-(6.15e) is not the minimum variance filter for (6.23). Using Aa
k = A + Nu0k

,
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the actual estimation error is given by

x̃k+1 , xk+1 − x̂k+1|k (6.25)

= Aa
kxk + Buk + vk −

[

Ad
kx̂k|k−1 + Buk + K̄k

[
zk − Cx̂k|k−1

]]

= Aa
kxk + Gwk − Bũk −Aa

kx̂k|k−1 −N ũkx̂k|k−1 − K̄k [Cx̃k + ek]

=
[
A− K̄kC

]
x̃k + Nu0k

x̃k + Gwk −N ũkxk + N ũkx̃k − K̄kỹk +
[
K̄kD − B

]
ũk.

The third equality makes use of (6.23b), whilst the fourth equality utilises (6.13a) and

(6.4b). A measure for the filter performance is then given by the actual estimation

error covariance matrix, which is given by

Pk+1|k , E
[
x̃k+1x̃

T
k+1

]
. (6.26)

Due to the mutual independence of x̃k, wk, ũk and ỹk, and since ũk is zero mean as

well as independent of xk, the estimation error covariance matrix is given by

Pk+1|k =
[
A− K̄kC

]
Pk|k−1

[
A− K̄kC

]T
+ Nσu0Pk|k−1N

T + GσwG
T

+ NσũΣ
k
xN

T −NσũΣ
k
xx̃N

T

−NσũΣ
k
xx̃N

T + NσũPk|k−1N
T

+ K̄kσỹK̄
T
k − K̄kσũỹ

[
K̄kD − B

]T

−
[
K̄kD − B

]
σũỹK̄

T
k +

[
K̄kD − B

]
σũ
[
K̄kD − B

]T
, (6.27)

where

Σk
x , E

[
xkx

T
k

]
, (6.28a)

Σk
xx̃ , E

[
xkx̃

T
k

]
. (6.28b)

Note that for the computation of (6.27), the property of zero mean input and output as

well as zero mean state (unconditional) and state estimation error has been utilised (see

AS4). From (6.1a) and (6.25), recursive expressions of Σk
x and Σk

xx̃ can be obtained as

Σk+1
x = AΣk

xA
T + Bσu0B

T + Nσu0Σ
k
xN

T + GσwG
T , (6.29a)

Σ0
x = P0 + x̄0x̄

T
0 (6.29b)

and

Σk+1
xx̃ = AΣk

xx̃

[
A− K̄kC

]T
+ Nσu0Σ

k
xx̃N

T + GσwG
T , (6.30a)

Σ0
xx̃ = P0, (6.30b)
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respectively. Finally, if not known a priori, the second order moments of the noise-free

input and noise-free output can be obtained via

σu0 , E
[
u2

0k

]
= E

[
u2
k − 2ukũk + ũ2

k

]
= σu − σũ, (6.31a)

σy0 , E
[
y2
0k

]
= E

[
y2
k − 2ykỹk + ỹ2

k

]
= σy − σỹ, (6.31b)

with E[u2
k] = σu and E[y2

k] = σy. The latter quantities can be estimated recursively

from the available measurements as

σ̂ku = σ̂k−1
u +

1

k

[

u2
k − σ̂k−1

u

]

, (6.32)

σ̂ky = σ̂k−1
y +

1

k

[

y2
k − σ̂k−1

y

]

. (6.33)

By making use of (6.14) and (6.31), Equation (6.27) can be further simplified which

finally gives

Pk+1|k =
[
A− K̄kC

]
Pk|k−1

[
A− K̄kC

]T
+ Σv + K̄kσeK̄

T
k − ΣveK̄

T
k − K̄kΣ

T
ve

+ NσuPk|k−1N
T + NσũΣ

k
xN

T − 2NσũΣ
k
xx̃N

T . (6.34)

In addition, by introducing the actual variance of the innovations as

Σk
ε = CPk|k−1C

T + σe, (6.35)

the actual variances of the input and the output estimation error (in contrast to the

‘false’ quantities (6.22)) are given by

P ku = σkũ −
[

σkũỹ − σkũD
T
] [

Σk
ε

]−1 [

σkũỹ − σkũD
T
]T
, (6.36a)

P ky = σkỹ −
[

σkỹ − σk
T

ũỹD
T
] [

Σk
ε

]−1 [

σkỹ − σkũỹ
T
DT
]T
. (6.36b)

The values of Pk+1|k, P
k
u and P ky indicate how satisfactorily the filter is performing,

which can be utilised in practice to make a decision on whether or not to apply the

filter.

There exist, however, alternative approaches to resolve the bilinear EIV filtering

problem, some of which are addressed in the following subsections. Before proceeding,

a numerical simulation is provided, which aims to validate the preceding error analysis.

A comparison of the filter performance is postponed until Section 6.5, where not only

the BEIVKF2, but also the other filters, which are developed within Sections 6.4.2,

6.4.3 and 6.4.4 are compared with the BEIVKF1.
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Figure 6.3: Comparison of (‘false’) error covariance matrix P̄k|k−1 computed by the

BEIVKF2 with the actual value of Pk|k−1 and a sample estimate P̂k.

Numerical example

Consider the setup given in Section 6.3.1. The suboptimal BEIVKF2 is applied to

estimate the system state vector and the noise-free input and noise-free output. The

(‘false’) error covariance matrix P̄k|k−1 (6.21c) is compared with the actual error covari-

ance matrix Pk|k−1, which can be computed by (6.34). In order to validate the results,

these quantities could be compared with a sample estimate of the error covariance

matrix, which is obtained via

P̂k ,
1

k

k∑

i=1

x̃ix̃
T
i . (6.37)

It is noted, however, that the computation of P̂k assumes ergodicity and stationarity

of x̃k, which cannot be guaranteed due to the time varying nature of the bilinear state

space system. The values of P̂k are therefore only of an indicative character and can be

regarded as a rough approximation only. The results for a particular realisation using

N = 500 samples are displayed in Figure 6.3. It is observed that the estimation error

covariance computed by the BEIVKF2 appears to be over optimistic: Considering the

diagonal elements P11 and P22, the actual values corresponding to Pk|k−1 are larger

than those of P̄k|k−1, which is computed by the BEIVKF2. The values of Pk|k−1 seem
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to be in broad agreement with those of the sample covariance P̂k, which appears to

underpin the theoretical results obtained in this section. The peaks which are observed

around a value of k = 230, might be due to the fact that the stability assumption of the

bilinear system (AI4) is violated, which means that the BEIVKF2 becomes temporarily

unstable (recall that the input is drawn from a zero mean Gaussian distribution).

It can be concluded that the BEIVKF2 algorithm provides false information about

the state estimation accuracy due to the uncertainty in the model, which is used for

the Kalman filter design (and which is basically due to the noise on the input). Note

that this also applies to the error covariance matrices of the noise-free input and output

estimates P̄ ku and P̄ ky , given in (6.22), since these quantities are dependent on P̄k|k−1.

6.4.2 Nonlinear Kalman filter design using û0k

Since the filtered input û0k
at time k can be evaluated before the Kalman recursions

(i.e. the computation of x̂k|k−1, Pk|k−1 and Kk) take place, it appears to be most

natural to utilise û0k
in order to (hopefully) better approximate Aa

k in (6.15a)-(6.15c).

Such a cross-coupling of the estimate and filter design is commonly used within the

extended Kalman filter (EKF). This leads to the signal model

x̄k+1 = Âkx̄k + Buk + vk, (6.38a)

z̄k = Cx̄k + ek, (6.38b)

where

vk = Gwk − Bũk, (6.39a)

ek = ỹk −Dũk, (6.39b)

Âk = A + N û0k
, (6.39c)

and where the corresponding covariance matrices are given by (6.14). The correspond-

ing EIVKF, which is denoted BEIVKF3, is obtained by substituting Aa
k ≈ Âk in the

BEIVKF1 algorithm, and can be summarised as follows.

Algorithm 6.3 (BEIVKF3).

x̂k+1|k = Âkx̂k|k−1 + Buk + K̄kε̄k (6.40a)

K̄k =
[

ÂkP̄k|k−1C
T + Σve

] [

Σk
ε̄

]−1
(6.40b)

P̄k+1|k = ÂkP̄k|k−1Â
T
k + Σv − K̄kΣ

k
ε̄K̄

T
k (6.40c)

ε̄k = zk − Cx̂k|k−1 (6.40d)

Σk
ε̄ = CP̄k|k−1C

T + σe (6.40e)
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ŷ0k
= yk −

[
σỹ − σũỹD

T
] [

Σk
ε̄

]−1
ε̄k (6.40f)

û0k
= uk −

[
σũỹ − σũD

T
] [

Σk
ε̄

]−1
ε̄k (6.40g)

Âk = A + N û0k
(6.40h)

Remark 6.3 (Error analysis). Whilst for the BEIVKF2, the uncertainty in the system

matrix (6.20) is characterised by the input measurement noise ũk with a priori known

covariance σũ, the uncertainty in Âk can be quantified by the estimation error u0k
−û0k

,

hence ultimately by the state estimation error x̃k. As in the case of the BEIVKF2

algorithm, the error covariance matrix produced by the BEIVKF3 provides incorrect

information about the actual filter performance. Hence, one could perform an error

analysis as for the BEIVKF2. This leads, however, to a rather complex expression for

the actual estimation error covariance matrix which also involves higher order moments

of the state estimation error. An expression for the state estimation error is given in

Appendix I. Whilst a thorough analysis is identified as potential further work, it is not

considered within this thesis.

6.4.3 Nonlinear Kalman filter design using x̂k|k−1

Whilst in Section 6.4.2 the estimate of the noise-free input has been cross-coupled with

the design of the BEIVKF, a cross-coupling of the current state estimate and BEIVKF

design seems also possible. Therefore, the bilinear EIV system (6.3) is interpreted as a

linear time varying system with known system matrix and state dependent noise, given

by

xk+1 = Ad
kxk + Buk + v̄k, (6.41a)

zk = Cxk + ek, (6.41b)

where

Ad
k = A + Nuk, (6.42a)

ek = ỹk −Dũk, (6.42b)

v̄k = Gwk −Bũk −Nxkũk. (6.42c)

The state-dependent noise term v̄k can be re-expressed as

v̄k = Gakv
′
k, (6.43)
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with

Gak ,
[

G B + Nxk

]

, (6.44a)

v′k ,

[

wk

−ũk

]

, (6.44b)

where Gak is now viewed as a state-dependent, hence uncertain, matrix. It seems natural

to utilise the approximation

Gdk =
[

G B + N x̂k|k−1

]

(6.45)

as the design matrix for the BEIVKF, which is assumed to be known at time k. The

covariances of the approximated state noise are readily given by

Σk
v̄ = GdkE

[

v′kv
′
k
T
]

Gdk
T

= Gdk

[

σw 0

0 σũ

]

Gdk
T
, (6.46a)

Σk
v̄e = GdkE

[
v′ke

T
k

]
= Gdk

[

0

σũD
T − σũỹ

]

, (6.46b)

and a KF can be applied. Note that such an approach could be interpreted as an EKF

(Anderson & Moore 1979, cf. p. 194), where Gak is approximated by zero order Taylor

approximation around the latest state estimate x̂k|k−1 (i.e. xk is simply replaced by

x̂k|k−1). The resulting filter, which is denoted BEIVKF4, is suboptimal and the filter

equations are nonlinear in x̂k|k−1. The BEIVKF4 algorithm can be summarised as

follows.

Algorithm 6.4 (BEIVKF4).

x̂k+1|k = Ad
kx̂k|k−1 + Buk + K̄kε̄k (6.47a)

K̄k =
[

Ad
kP̄k|k−1C

T + Σk
v̄e

] [

Σk
ε̄

]−1
(6.47b)

P̄k+1|k = Ad
kP̄k|k−1A

dT

k + Σk
v̄ − K̄kΣ

k
ε̄K̄

T
k (6.47c)

ε̄k = zk − Cx̂k|k−1 (6.47d)

Σk
ε̄ = CP̄k|k−1C

T + σe (6.47e)

ŷ0k
= yk −

[
σỹ − σũỹD

T
] [

Σk
ε̄

]−1
ε̄k (6.47f)

û0k
= uk −

[
σũỹ − σũD

T
] [

Σk
ε̄

]−1
ε̄k (6.47g)

Σk
v̄ =

[

G B + N x̂k|k−1

]
[

σw 0

0 σũ

]
[

G B + N x̂k|k−1

]T
(6.47h)

Σk
v̄e =

[

G B + N x̂k|k−1

] [

0 σũD − σũỹ

]T
(6.47i)
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6.4.4 Kalman filter for state dependent noise system

In (De Koning 1984), the optimal state estimator in the minimum variance sense is

derived for linear discrete-time systems where the system matrices contain stochastic

parameters which are statistically independent with respect to time. Basically, the

optimal filter is obtained by considering the system as a linear system with deterministic

matrices and state-dependent noise terms, which can be replaced by a process having

the same first- and second order properties. This means that if the covariance matrix

of the state dependent noise term can be computed (and if it satisfies the zero mean

condition), the optimal filter can be derived by applying standard linear estimation

theory. Although the setup considered in (De Koning 1984) is slightly different to the

bilinear EIV setup (since it assumes that the disturbances in the system matrices are

uncorrelated with the noise acting on the states), the approach can be used to address

the bilinear EIV filtering problem.

The bilinear EIV system is expressed as (6.8a)

xk+1 = Axk + Buk + v∗k, (6.48a)

zk = Cxk + ek, (6.48b)

with

ek = ỹk −Dũk, (6.49a)

v∗k = Gwk − Bũk + Nxku0k
. (6.49b)

Whilst σe is given in (6.14b), the covariance matrix of the state dependent noise term

can be computed as

Σk
v∗ , E

[

v∗kv
∗
k
T
]

= E
[

[Gwk − Bũk + Nxku0k
] [Gwk − Bũk + Nxku0k

]T
]

= GσwG
T + BσũB

T + Nσu0Σ
k
xN

T , (6.50)

where the property of zero (unconditional) mean of the state has been exploited. Note

that the term Σk
x has already been computed for the error analysis of the BEIVKF2

algorithm given in (6.29) and that σu0 can be computed using (6.31), if it is not known

a priori. It remains to compute the quantity Σk
v∗e which is given by

Σk
v∗e , E [v∗kek]

= E
[

[Gwk − Bũk + Nxku0k
] [ỹk −Dũk]

T
]

= BσũD
T −Bσũỹ, (6.51)

where the zero mean property of the state has been exploited. Note that (6.51) is
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identical to Σve given in (6.14c). Since all conditions for the application of the KF are

satisfied, the optimal linear filter for state dependent noise can be given as follows.

Algorithm 6.5 (BEIVKF5).

x̂k+1|k = Ax̂k|k−1 + Buk +Kkεk (6.52a)

Kk =
[
APk|k−1C

T + Σve

] [

Σk
ε

]−1
(6.52b)

Pk+1|k = APk|k−1A
T + Σk

v∗ −KkΣ
k
εK

T
k (6.52c)

εk = zk − Cx̂k|k−1 (6.52d)

Σk
ε = CPk|k−1C

T + σe (6.52e)

ŷ0k
= yk −

[
σỹ − σũỹD

T
] [

Σk
ε

]−1
εk (6.52f)

û0k
= uk −

[
σũỹ − σũD

T
] [

Σk
ε

]−1
εk (6.52g)

Σk
v∗ = GσwG

T + BσũB
T + Nσu0Σ

k
xN

T (6.52h)

Σk+1
x = AΣk

xA
T + Bσu0B

T + Nσu0Σ
k
xN

T + GσwG
T (6.52i)

Remark 6.4 (Optimality of the BEIVKF5). The BEIVKF5 is the optimal filter if the

true input u0k
is considered to be process noise with variance σu0 . However, since

the input is measured, there is more available information about u0k
than its first and

second order moments only. This means whilst being optimal if only the first and

second order moments of u0k
are utilised, the BEIVKF5 does not fully exploit the

knowledge of the measurements uk, in order to estimate the state of the bilinear EIV

system. Therefore, the BEIVKF5 is assumed to perform suboptimally when applied to

the bilinear EIV filtering problem.

6.5 Numerical example

Consider the setup given in Section 6.3.1. The system is simulated in 100 Monte-Carlo

simulations, each comprising N = 1000 data samples. All five filters are applied to

estimate the noise-free input and output signals. For each Monte-Carlo run, the mean

values of P ku , P ky and/or P̄ ku , P̄ ky are stored. In addition, measures for the variances of

the estimation errors are estimated from the data as

P̂u =
1

800

1000∑

i=201

(u0k
− û0k

)2 , (6.53a)

P̂y =
1

800

1000∑

i=201

(y0k
− ŷ0k

)2 , (6.53b)
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Figure 6.4: Monte-Carlo mean values of the estimation error variances for all five
filters.

and stored for each Monte-Carlo run. The corresponding mean values and standard

deviations of P ku , P ky , P̄ ku P̄ ky , P̂u and P̂y for the five filters are given in Table 6.1.

The mean values are also illustrated in Figure 6.4. It is observed that the BEIVKF1

Filter mean(P̂u) mean(Pu) mean(P̄u)

BEIVKF1 8.14·10−4 ± 4.63·10−5 8.11·10−4 ± 5.44·10−19 -

BEIVKF2 2.88·10−3 ± 1.59·10−4 2.90·10−3 ± 1.58·10−4 9.39·10−4 ± 1.24·10−5

BEIVKF3 8.17·10−4 ± 4.91·10−5 - 8.11·10−4 ± 7.28·10−7

BEIVKF4 8.27·10−4 ± 5.09·10−5 - 9.59·10−4 ± 1.86·10−5

BEIVKF5 2.53·10−3 ± 1.14·10−4 2.67·10−3 ± 2.44·10−4 -

Filter mean(P̂y) mean(Py) mean(P̄y)

BEIVKF1 2.03·10−2 ± 1.57·10−3 2.05·10−2 ± 5.58·10−17 -

BEIVKF2 7.19·10−2 ± 9.80·10−3 7.25·10−2 ± 3.95·10−3 2.35·10−2 ± 3.10·10−4

BEIVKF3 2.04·10−2 ± 1.23·10−3 - 2.03·10−2 ± 1.82·10−5

BEIVKF4 2.07·10−2 ± 1.27·10−3 - 2.40·10−2 ± 4.65·10−4

BEIVKF5 6.32·10−2 ± 2.86·10−3 6.68·10−2 ± 6.11·10−3 -

Table 6.1: Mean and standard deviation of Monte-Carlo results for all five filters.

filter exhibits the smallest estimation error variance. The variances determined by this

filter (Pu and Py) seem to be in accordance with the sample variances P̂u, P̂y. The

pragmatic BEIVKF2 approach appears to perform worst for the given example. As

already observed for the state estimation error in Section 6.4.1, the variances of the

input and output estimation errors determined by the BEIVKF2, which are P̄u and P̄y,

provide false information. The latter quantities are too optimistic whereas the actual

variances, which have been derived in Section 6.4.1, are larger. The actual variances

Pu and Py are in accordance with the sample estimates P̂u, P̂y. The two nonlinear

filters BEIVKF3 and BEIVKF4 perform best, both obtain a performance very close to

the benchmark filter BEIVKF1. Consequently, these filters can be regarded as quasi-
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optimal for the setup considered. In addition, it should be noted here that the ‘false’

variances P̄u and P̄y, which are computed by the filters appear to be close to the sample

estimates. Note that the actual variances Pu and Py are not provided for these cases

since an error analysis has not been carried out. The BEIVKF5 performance is slightly

superior to that of the BEIVKF2, however, it is outperformed by the other filters.

Whilst the BEIVKF5 is optimal for state dependent noise systems, it is only subop-

timal for the filtering of bilinear EIV systems. This may appear somewhat intuitive

by realising that the BEIVKF5 only makes use of the mean and variance of u0k
(cf.

Remark 6.4), whereas the optimal filter requires the exact value of the system input.

The BEIVKF3, in contrast, utilises the conditional mean estimate of the input which,

provided convergence occurs, can yield superior filtering results.

Finally, the performance indices defined in (6.19) are assessed. Their values are

stored for each Monte-Carlo iteration and the corresponding mean values and stan-

dard deviations are given in Table 6.2. The results appear to be in alignment with

Filter mean(Mu) mean(My)

BEIVKF1 91.00 ± 0.30 91.00 ± 0.30

BEIVKF2 83.19 ± 1.04 83.19 ± 1.04

BEIVKF3 90.99 ± 0.32 90.99 ± 0.32

BEIVKF4 90.90 ± 0.33 90.90 ± 0.33

BEIVKF5 84.14 ± 0.47 84.14 ± 0.47

Table 6.2: Monte-Carlo mean and standard deviations of the filter performance in-
dices; removed noise in percentage.

those obtained for the variances of the estimation errors: The BEIVKF1 performs best

followed by the BEIVKF3 and BEIVKF4. The BEIVKF2 and BEIVKF5 remove the

least amount of noise from the input and output signals, where the latter appears to be

slightly superior. The standard deviations of the BEIVKF2 are quite large in compar-

ison to the other algorithms. As pointed out in Section 6.4.1, this is likely to be due to

the fact that the stability condition of the bilinear system is not satisfied at all times.

The fact that the values for Mu and My are identical for each filter is not a general

property, but is rather a peculiarity of the particular simulation setup.

6.6 Overview & discussion

The different approaches for bilinear EIV filtering are captured in Table 6.3. Further

approaches are feasible by coupling the bilinearity with the input matrix B, which allows

other suboptimal filters to be derived. The problem formulation is, however, similar

to the settings discussed within this chapter. In addition, it might appear tempting

to deal with (6.41)-(6.42) as a state dependent noise system. That is, to compute the

covariance matrix of the state dependent noise v̄k, whilst considering an LTV system
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Filter
System Model for KF design

System matrix State noise System matrix State noise

BEIVKF1 A + Nu0k
Gwk − Bũk Aa

k = A + Nu0k
Gwk −Bũk

BEIVKF2 A + Nu0k
Gwk − Bũk Ad

k = A + Nuk Gwk −Bũk

BEIVKF3 A + Nu0k
Gwk − Bũk Âk = A + N û0k

Gwk −Bũk

BEIVKF4 A + Nuk Gwk − Bũk −N ũkxk Ad
k = A + Nuk Gwk −Bũk −N ũkx̂k|k−1

BEIVKF5 A Gwk − Bũk + Nxku0k
A Gwk −Bũk + Nxku0k

Table 6.3: Different interpretation of bilinear EIV system and model for KF design
used in various filters.

with Ad
k = A + Nuk. The covariance matrix Σk

v̄ in this case, however, depends on the

(unconditional) mean of the state, which, in turn, depends on the unknown input u0k
.

This prevents, of course, the optimal filter within a state dependent noise setting to be

derived.

A fact which has not been discussed so far, is the choice of admissible input signals.

If the bilinear system is interpreted as a LTV system, the system matrix, hence the

equivalent poles of the system, are a function of the input u0k
. In order to ensure

stability of the system, the input is to be chosen, such that the poles of the correspond-

ing LTV system remain within the unit circle at all times. Therefore, when dealing

with bilinear systems, the input is usually assumed to be bounded, in order to ensure

stability. Note that this disqualifies the choice of a Gaussian input signal.

The choice of a bounded input also has implications for the distribution of the state,

hence for the performance of the filters. If the true input is not a known deterministic

signal, this will generally yield a non-Gaussian distribution for the state. Hence, there

will be nonlinear filters which achieve superior performance. Depending on the nature

of the input (as well as the nature of the noise sequences and the initial state) it might

be beneficial to consider nonlinear filtering approaches within a Bayesian framework,

to address the bilinear EIV filtering problem. This, as well as the extension towards

more general nonlinear system representations, might be an interesting area of further

work.

Following the interpretation of the bilinear EIV system as a linear system with state

dependent noise, the development of robust bilinear EIV filters within the H∞ frame-

work also appears to be an area of potential further work (cf. Wang & Balakrishnan

2002, Wang & Qiao 2002).

6.7 Concluding remarks

The errors-in-variables (EIV) filtering problem, i.e. the estimation of noise-free input

and output sequences based on noisy measurements has been considered for a class of

bilinear systems. By using similar techniques as for the filtering of linear EIV systems

and bilinear (non-EIV) systems, it has been shown that the optimal filter, in the min-

imum variance sense, requires the input signal to be an exactly known deterministic
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quantity, hence it is infeasible in the bilinear EIV case. Consequently, attention has

been focused on the development of feasible suboptimal filtering approaches. Different

Kalman filter design strategies are possible, by interpreting the bilinear EIV system

from different viewpoints. These are:

1. Linear time-varying system with uncertain system matrix.

2. Linear time-varying system with state dependent noise.

3. Linear time-invariant system with noise dependent on the state as well as the

true input.

Using the first interpretation leads to the development of one linear and one nonlinear

suboptimal EIV Kalman filter (EIVKF). The linear filter simply utilises the measured

input for the filter design, whilst the nonlinear filter uses the conditional mean estimate

of the input. For the linear filter, an error analysis is carried out. This allows for a

qualitative assessment of the deterioration of filter performance, and could be utilised

to make a decision on whether to apply the filter in practice or not. The second point of

view yields a nonlinear filter which can be considered to be a straightforward application

of the extended Kalman filter (EKF), which uses the most recent state estimate for the

design of the Kalman filter equations. The third interpretation allows the application

of a Kalman filter for a system with stochastic parameters, which are also known

within the literature as stochastic systems with multiplicative noise. A simulation

study, which compares the different filters for a particular scenario, has shown that

the nonlinear filters achieve promising performances. Indeed, at least in the particular

setup considered, the nonlinear filters are found to exhibit performances which are very

close to the that of the benchmark filter and could therefore be considered as being

quasi-optimal. The linear filters exhibit an inferior performance in simulation, however,

they might be superior in other situations. Whilst further analysis might be necessary,

the proposed algorithms for the bilinear EIV filtering problem allow the user to select

a filter which is most suitable for a particular problem at hand.
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Nomenclature

A0, B0, C0, D0, G . . . . . . System matrices

A(θ), B(θ), C(θ), D(θ) . Model matrices (general)

Ak, Bk, Ck, Dk . . . . . . . . Model matrices (depending on θ̂k)

ek . . . . . . . . . . . . . . . . . . . . . Reformulated output noise

F (θ, x, u) . . . . . . . . . . . . . . Jacobian

Fk . . . . . . . . . . . . . . . . . . . . . Jacobian (depending on θ̂k)

H(θ, x, u) . . . . . . . . . . . . . . Jacobian

Hk . . . . . . . . . . . . . . . . . . . . Jacobian (depending on θ̂k)

J(θ, S−1, ε) . . . . . . . . . . . . Jacobian

Kk, Kk(θ) . . . . . . . . . . . . . Kalman gain

K
(i)

k . . . . . . . . . . . . . . . . . . Derivative of Kk(θ) with respect to θi

Lk . . . . . . . . . . . . . . . . . . . . . Gain for JEKF parameter estimator

Mu, My . . . . . . . . . . . . . . . Filter performance indices for input and output, respectively

Pk|k−1, Pk|k−1(θ) . . . . . . Error covariance matrix of Kalman filter

P
(i)
k . . . . . . . . . . . . . . . . . . . Derivative of Pk|k−1(θ) with respect to θi

P1k
, P2k

, P3k
. . . . . . . . . . Covariance matrices of joint Kalman filter for state and parameter estima-

tion

Rk . . . . . . . . . . . . . . . . . . . . Approximate Hessian

Sk, Sk(θ) . . . . . . . . . . . . . . Innovations covariance matrix

S
(i)
k . . . . . . . . . . . . . . . . . . . Derivative of Sk(θ) with respect to θi

T (θ), Tk . . . . . . . . . . . . . . . Auxiliary matrix

u∗
0k

. . . . . . . . . . . . . . . . . . . . Intermediate estimate of u0k

vk . . . . . . . . . . . . . . . . . . . . . Reformulated process noise

V (θ) . . . . . . . . . . . . . . . . . . . Prediction error method cost function

V̆ (θ) . . . . . . . . . . . . . . . . . . Cost function corresponding to modified predictor y̆k(θ)

Vǫ(θ) . . . . . . . . . . . . . . . . . . Cost function corresponding to symmetric innovation ǫk(θ)

wk . . . . . . . . . . . . . . . . . . . . Process noise

Wk, Wk(θ) . . . . . . . . . . . . Jacobian of x̂k|k−1(θ)

W̆k, W̆k(θ) . . . . . . . . . . . . Jacobian of x̂k|k−1(θ) corresponding to modified predictor y̆k(θ)

xk . . . . . . . . . . . . . . . . . . . . . System state

x̂k|k−1, x̂k|k−1(θ) . . . . . . System state estimate

y̆k, y̆k(θ) . . . . . . . . . . . . . . Modified predictor

δkl . . . . . . . . . . . . . . . . . . . . Kronecker delta function

εk, εk(θ) . . . . . . . . . . . . . . . Innovation

ε̆k, ε̆k(θ) . . . . . . . . . . . . . . . Innovation corresponding to modified predictor y̆k(θ)

ǫk, ǫk(θ) . . . . . . . . . . . . . . . Symmetric innovation

ηk(θ), ηk . . . . . . . . . . . . . . Negative gradient of symmetric innovation ǫk(θ)

Λ . . . . . . . . . . . . . . . . . . . . . . Weighting matrix

Σe(θ), Σv(θ), Σve(θ) . . . Noise covariance matrices (general)

Σk
e , Σk

v , Σk
ve . . . . . . . . . . . Noise covariance matrices (depending on θ̂k)

ψk, ψk(θ) . . . . . . . . . . . . . . Gradient of predictor

Preliminary reading: Sections 2.2, 2.4.5, 2.5.1, 2.5.2, 2.5.4.
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7.1 Introduction

This chapter explores novel avenues to combine errors-in-variables (EIV) filtering, i.e.

the estimation of noise-free input and output signals, with EIV system identification

techniques. As a starting point, an EIV extended Kalman filter for joint state and

parameter estimation (JEKF) is developed, which is able to estimate the system states,

the system parameters as well as the noise-free inputs and noise-free outputs of an EIV

system. The system parameters obtained, however, appear to be biased in the presence

of input measurement noise. This is due to the fact, that the parameter estimator

obtained from the JEKF is closely related to the recursive prediction error method

(RPEM), which is known to yield biased estimates when applied directly to identify

an EIV system. In order to further investigate the JEKF approach, the ‘true’ RPEM

method is derived when applied to an EIV state space system. This, in turn, leads

to the proposal for a modification of the JEKF as well as the RPEM approach, in

order to reduce the bias within an EIV setup. Finally, a novel identification method

for EIV state space systems is developed, by introducing a predictor which accounts

for the symmetry of the EIV framework and whose resulting cost function minimises

the distance between the noisy inputs and outputs and their filtered counterparts. A

recursive implementation based on the standard RPEM technique is also developed and

analysed in simulation.

Section 7.2 introduces the setup and assumptions. Section 7.3 derives the JEKF

for the EIV case. The development of this section has also been published in (Linden,

Vinsonneau & Burnham 2007c). Section 7.4 provides a detailed derivation of the RPEM

when applied to an EIV system, whilst Section 7.5 derives the novel identification

technique based on symmetric innovations. Concluding remarks are given in Section

7.6.

7.2 Preliminaries

Consider the linear time-invariant (LTI) EIV state-space system given by

xk+1 = A0xk + B0u0k
+ Gwk, (7.1a)

y0k
= C0xk + D0u0k

, (7.1b)

uk = u0k
+ ũk, (7.1c)

yk = y0k
+ ỹk, (7.1d)

where xk ∈ R
nx denotes the state vector of the system, yk ∈ R

ny the measured output,

uk ∈ R
nu the measured input and A0, B0, C0, D0 and G are matrices of appropriate

dimensions1. The initial state x0 is assumed to be a random vector with mean x̄0 and

1Without loss of generality, and for convenience only, it is assumed that the matrix G is known.
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covariance matrix P0. In addition the following assumption is introduced.

AN6b The noise sequences ũk, ỹk and wk are assumed to be stationary, zero mean,

white, independent of u0k
and are characterised by the known covariance matrices

E

















x0

ũk

ỹk

wk









[

xT0 ũTl ỹTl wl

]









=









P0 0 0 0

0 Σũ Σũỹ 0

0 ΣT
ũỹ Σỹ 0

0 0 0 Σw









δkl. (7.2)

The model corresponding to (7.1) is given by

xk+1(θ) = A(θ)xk(θ) + B(θ)u0k
+ Gwk, (7.3a)

y0k
= C(θ)xk(θ) + D(θ)u0k

, (7.3b)

uk = u0k
+ ũk, (7.3c)

yk = y0k
+ ỹk, (7.3d)

where θ denotes the parameter vector. Using similar techniques as in Section 2.5.2,

(7.3) can be re-expressed as

xk+1(θ) = A(θ)xk(θ) + B(θ)uk + vk(θ), (7.4a)

yk = C(θ)xk(θ) + D(θ)uk + ek(θ), (7.4b)

where

vk(θ) = Gwk − B(θ)ũk, (7.5a)

ek(θ) = ỹk −D(θ)ũk. (7.5b)

The noise covariance matrices corresponding to (7.5) are given by

Σv(θ) = GΣwG
T + B(θ)ΣũB

T (θ), (7.6a)

Σe(θ) = Σỹ − Σũỹ
TDT (θ) −D(θ)Σũỹ + D(θ)ΣũD

T (θ), (7.6b)

Σve(θ) = B(θ)ΣũD
T (θ) − B(θ)Σũỹ. (7.6c)

Note that the noise sequences, hence their covariance matrices, are dependent on θ.

7.3 Application of the JEKF to the EIV system

7.3.1 Direct application of the JEKF

Using equation (7.4), an application of the JEKF, which has been given in Section 2.5.4,

appears to be straightforward, by simply replacing zk with yk. The only difference to
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the case considered in Section 2.5.4 is that the process and output noise sequences

are functions of the unknown parameter vector θ. For the application of the EKF,

this is not a burden, since a Taylor expansion of vk(θ) and ek(θ) around θ̂k (cf. p.

194-195 in Anderson & Moore 1979) yields vk(θ̂) and ek(θ̂), i.e. θ is simply replaced

by its most recent estimate. As a consequence, the corresponding covariance matrices

depend on θ̂k and are readily given by Σv(θ̂k), Σe(θ̂k) and Σve(θ̂k). After these minor

modifications, the JEKF given in Algorithm 2.4 can be directly applied to the EIV

state space representation (7.4). The corresponding algorithm, which is denoted EIV-

JEKF1, can be summarised as follows (cf. Algorithm 2.4 on page 46).

Algorithm 7.1 (EIV-JEKF1).

εk = yk − Ckx̂k|k−1 −Dkuk (7.7a)

Sk = CkP1k
CTk + CkP2k

HT
k +HkP

T
2k
CTk +HkP3k

HT
k + Σk

e (7.7b)

Kk = [AkP1k
CTk + FkP

T
2k
CTk + AkP2k

HT
k + FkP3k

HT
k + Σk

ve]S
−1
k (7.7c)

x̂k+1|k = Akx̂k|k−1 + Bkuk +Kkεk (7.7d)

Lk =
[
P T2k

CTk + P3k
HT
k

]
S−1
k (7.7e)

θ̂k+1 = θ̂k + Lkεk (7.7f)

P1k+1
= AkP1k

AT
k + AkP2k

F Tk + FkP
T
2k
AT
k + FkP3k

F Tk −KkSkK
T
k + Σk

v (7.7g)

P2k+1
= AkP2k

+ FkP3k
−KkSkL

T
k (7.7h)

P3k+1
= P3k

− LkSkL
T
k + Σd (7.7i)

ŷ0k
= yk −

[
Σỹ − Σũỹ

TDT
k

]
S−1
k εk (7.7j)

û0k
= uk −

[
Σũỹ − ΣũD

T
k

]
S−1
k εk (7.7k)

As before, the Jacobians are obtained via

Fk = F (θ̂k, x̂k|k−1, uk) ∈ R
nx×nθ , (7.8a)

Hk = H(θ̂k, x̂k|k−1, uk) ∈ R
ny×nθ , (7.8b)

where (cf. (2.119))

F (θ̂, x, u) =
∂

∂θ
[A(θ)x+ B(θ)u]

∣
∣
θ=θ̂

, (7.9a)

H(θ̂, x, u) =
∂

∂θ
[C(θ)x+ D(θ)u]

∣
∣
θ=θ̂

. (7.9b)

In addition, the convenient notation

Ak , A(θ̂k), Bk , B(θ̂k), Ck , C(θ̂k), Dk , D(θ̂k), (7.10)
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and

Σk
v , Σv(θ̂k), Σk

e , Σe(θ̂k), Σk
ve , Σve(θ̂k), x̂k|k−1 , x̂k|k−1(θ̂k), (7.11)

has been used. Note that the innovations covariance matrix is given by Sk in the JEKF

case (whilst it was denoted Σk
ε given by (2.106c) for the linear case). As outlined

in Section 2.5.4, variations in the parameters to be estimated can be dealt with by

specifying a corresponding error covariance matrix Σd, which is added to P3k
. The

only novelty in Algorithm 7.1 with respect to the non-EIV version is the additional

estimation of ŷ0k
and û0k

for which the error covariance matrices are given by (cf.

(2.108))

P ku = Σũ −
[
Σũỹ − ΣũD

T
k

]
S−1
k

[
Σũỹ − ΣũD

T
k

]T
, (7.12a)

P ky = Σỹ −
[
Σỹ − ΣT

ũỹD
T
k

]
S−1
k

[
Σỹ − Σũỹ

TDT
k

]T
. (7.12b)

It has been shown that an EKF for joint state and parameter estimation can be

obtained in a straightforward manner when applied to an EIV state space system.

However, there is one ‘hitch’ with the previously derived algorithm. Recall that the

JEKF consists effectively of a state estimator which is cross-coupled with a parameter

estimator, whose structure is inspired by the EKF. The cross-coupling means that the

state estimator uses the most recent parameter estimates provided by the parameter

estimator, which, in turn uses the most recent state estimate to arrive at the updated

parameter estimates. As pointed out in (Ljung 1979), the EKF parameter estimator

(cf. Section 2.5.4) is closely related to a recursive prediction error method (RPEM)

assuming a constant model. However, it is pointed out in (Söderström 1981), that a

direct application of the prediction error method (PEM) to an EIV problem does not

yield consistent estimates, since the corresponding cost function is not minimised for

the true parameters if the presence of the input noise is neglected. This leads to the

following proposition.

Conjecture 7.1. The parameter estimates of the EIV-JEKF1 algorithm are biased.

A consequence of this conjecture is that, due to the cross-coupling, the performance of

the state estimator will suffer as well, since, even in the asymptotic case, a systematic

mismatch between the system and the model used for filtering will remain. Since the

input and output estimates are based on the state estimates, the quality of the former

will be affected, too. To avoid any ambiguities, the bias mentioned in Proposition 7.1

is not assumed to be due to the missing cross-coupling term [∂K(θ)/∂θ]εk, which can

be a source of bias and divergence in the non-EIV case (cf. Section 2.5.4), but due

to the EIV nature of the problem. This implies that Proposition 7.1 still holds when

an innovations representation would be utilised to derive the EIV-JEKF1 equations,

which ensures consistency in a non-EIV setting. In order to substantiate Proposition
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7.1, the following example is considered.

7.3.2 Numerical example

Consider an EIV LTI single-input single-output (SISO) dynamical system which is

defined by

y0k
= −a1y0k−1

− a2y0k−2
+ b0u0k

+ b1u0k−1
, (7.13a)

uk = u0k
+ ũk, (7.13b)

yk = y0k
+ ỹk, (7.13c)

with parameter vector2

θ =
[

a1 a2 b0 b1

]T
=
[

−0.3 0.2 −4.5 5.4
]T
. (7.14)

A possible state space realisation is given by

A(θ) =

[

0 1

−a2 −a1

]

, B(θ) =

[

0

1

]

,

C(θ) =
[

−a2b0 b1 − a1b0

]

, D(θ) = b0. (7.15)

The covariance matrix of the input and output measurement noise sequences is given

by

E











ũk

ỹk

wk






[

ũl ỹl wl

]




 =






0.2 0.8 0

0.8 5 0

0 0 0.1




 δkl, (7.16)

which corresponds to a signal-to-noise ratio of 15dB and 21dB for the input and output,

respectively. The matrix G is set to G = [1 0]T , which means that only the first element

of the state is affected by process noise. The input is chosen to be a Gaussian zero

mean random sequence of unity variance. The Jacobians are given by

Fk = F (θ̂k, x̂k|k−1, uk)

=
∂

∂θ

[
A(θ)x̂k|k−1 + B(θ)uk

] ∣
∣
θ=θ̂

=
∂

∂θ

[

x̂2
k|k−1

−a2x̂
1
k|k−1 − a1x̂

2
k|k−1 + uk

]∣
∣
∣
∣
∣
θ=θ̂k

=

[

0 0 0 0

−x̂2
k|k−1 −x̂1

k|k−1 0 0

]

, (7.17)

2This is an arbitrarily chosen non-minimum phase system. It is actually the system studied in
Chapter 6 with the bilinear term omitted.

177



7. Errors-in-variables filtering for parameter estimation

0 200 400 600 800 1000

−0.4

−0.2

0

0.2

0 200 400 600 800 1000
0.1

0.2

0.3

0.4

0.5

 

 

0 200 400 600 800 1000
−6

−5

−4

−3

−2

0 200 400 600 800 1000
3

4

5

true

EIV−JEKF1
â
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Figure 7.1: Parameter estimates obtained by the EIV-JEKF1 algorithm.

and

Hk = H(θ̂k, x̂k|k−1, uk)

=
∂

∂θ

[
C(θ)x̂k|k−1 + D(θ)uk

] ∣
∣
θ=θ̂

=
∂

∂θ

(

−a2b0x̂
1
k|k−1 + b1x̂

2
k|k−1 − a1b0x̂

2
k|k−1 + b0uk

)∣
∣
∣
θ=θ̂k

=
[

−bk0x̂
2
k|k−1, −bk0x̂

1
k|k−1, (−ak2x̂

1
k|k−1 − ak1x̂

2
k|k−1 + uk), x̂2

k|k−1

]

, (7.18)

where x̂nk|k−1 denotes the nth state estimate. The EIV-JEKF1 algorithm is utilised to

estimate the states, the parameters as well as the noise-free input and noise-free output

of the system. The filter is initialised with

θ̂0 =
[

−0.5 0.4 −3.1 3.4
]T
, P0 = 100I, x0 = 0. (7.19)

In addition, a projection facility is utilised, in order to ensure that all eigenvalues of

Ak−KkCk lie strictly within the unit circle (see Section 2.5.4). The parameter estimates

obtained by the EIV-JEKF1 algorithm for N = 1000 samples are shown in Figure 7.1.

It is observed that whilst a1 and a2 appear to be estimated without (or with very little)

bias, the parameters b0 and b1 are notably biased. Although this single realisation can

only be considered to be of an indicative character, it seems to underpin Proposition

7.1.

For completeness, consider the filter performance with regard to obtaining filtered

178



7. Errors-in-variables filtering for parameter estimation

input and output signals, given by (6.19)

Mu = 100
||u0 − u||2 − ||u0 − û0||2

||u0 − u||2
, (7.20a)

My = 100
||y0 − y||2 − ||y0 − ŷ0||2

||y0 − y||2
, (7.20b)

which can be interpreted as the amount of noise, expressed as a percentage, which is

removed, respectively, from the noisy input and output signals. Note that the variables

without time index (u, y, etc. in (7.20)) denote the corresponding sequences from 1 to

N . For this particular example, the values for My and My are found to be 41% and

49%, respectively. Consequently, the filter is able to filter the input and output of the

EIV system, although the estimated model parameters, which are utilised to arrive at

the filtered input and output signals, are biased.

7.3.3 Modified JEKF design

The previous example indicates that the parameter estimator of the EIV-JEKF1 algo-

rithm yields biased estimates. If the true input was available, it would be possible to

design a modified parameter estimator based on the EIV-JEKF1, such that the bias in

the estimates is reduced. Whilst an explanation and further discussion is postponed

until Section 7.4, this conjecture is captured in the following proposition.

Proposition 7.1. If the Jacobian Hk (cf. (7.8b)) within the EIV-JEKF1 algorithm is

replaced by H(θ̂k, x̂k|k−1, u0k
), where the noise-free input is utilised rather than its

noisy measurement, the accordingly modified EIV-JEKF algorithm is able to provide

estimates with reduced bias.

Although the difference with respect to Algorithm 7.1 is trivial, the algorithm, which

is denoted EIV-JEKF2, is, for completeness, summarised as follows.

Algorithm 7.2 (EIV-JEKF2).

εk = yk − Ckx̂k|k−1 −Dkuk (7.21a)

Hk = H(θ̂k, x̂k|k−1, u0k
) (7.21b)

Sk = CkP1k
CTk + CkP2k

HT
k +HkP

T
2k
CTk +HkP3k

HT
k + Σk

e (7.21c)

Kk = [AkP1k
CTk + FkP

T
2k
CTk + AkP2k

HT
k + FkP3k

HT
k + Σk

ve]S
−1
k (7.21d)

x̂k+1|k = Akx̂k|k−1 + Bkuk +Kkεk (7.21e)

Lk =
[
P T2k

CTk + P3k
HT
k

]
S−1
k (7.21f)

θ̂k+1 = θ̂k + Lkεk (7.21g)

P1k+1
= AkP1k

AT
k + AkP2k

F Tk + FkP
T
2k
AT
k + FkP3k

F Tk −KkSkK
T
k + Σk

v (7.21h)
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P2k+1
= AkP2k

+ FkP3k
−KkSkL

T
k (7.21i)

P3k+1
= P3k

− LkSkL
T
k + Σd (7.21j)

ŷ0k
= yk −

[
Σỹ − Σũỹ

TDT
k

]
S−1
k εk (7.21k)

û0k
= uk −

[
Σũỹ − ΣũD

T
k

]
S−1
k εk (7.21l)

Note that Fk still uses the noisy input uk, as defined in (7.8a). Although not feasible

in practice, this algorithm is considered here as a benchmark for comparison purposes

in order to evaluate the subsequently developed algorithms. Furthermore, since the

unknown input is estimated within the EIV-JEKF, it appears to be a most natural

choice to use this estimate rather than the impractical u0k
within the linearised model,

i.e. to cross-couple the input estimation with the parameter estimation. This implies

the usage of the Jacobians computed via

Fk = F (θ̂k, x̂k|k−1, uk), (7.22a)

Hk = H(θ̂k, x̂k|k−1, û0k
), (7.22b)

where u0k
is approximated via û0k

for the determination of the Jacobian Hk. Recall

that the input estimate is given by

û0k
= uk −

[
Σũỹ − ΣũD

T
k

]
S−1
k εk. (7.23)

Whilst Dk and εk can be computed before the Jacobians are evaluated, the innovations

covariance Sk depends on Hk (see (7.21c)). It seems natural, however, to compute an

intermediate estimate of u0k
by making use of the approximation Sk ≈ Sk−1. The

corresponding estimate is denoted û∗0k
and the accordingly modified filter, which is

denoted EIV-JEKF3, can be summarised as follows.

Algorithm 7.3 (EIV-JEKF3).

εk = yk − Ckx̂k|k−1 −Dkuk (7.24a)

û∗0k
= uk −

[
Σũỹ − ΣũD

T
k

]
S−1
k−1εk (7.24b)

Hk = H(θ̂k, x̂k|k−1, û
∗
0k

) (7.24c)

Sk = CkP1k
CTk + CkP2k

HT
k +HkP

T
2k
CTk +HkP3k

HT
k + Σk

e (7.24d)

Kk = [AkP1k
CTk + FkP

T
2k
CTk + AkP2k

HT
k + FkP3k

HT
k + Σk

ve]S
−1
k (7.24e)

x̂k+1|k = Akx̂k|k−1 + Bkuk +Kkεk (7.24f)

Lk =
[
P T2k

CTk + P3k
HT
k

]
S−1
k (7.24g)

180



7. Errors-in-variables filtering for parameter estimation

0 200 400 600 800 1000

−0.4

−0.2

0

0.2

0 200 400 600 800 1000
0.1

0.2

0.3

0.4

0.5

 

 

0 200 400 600 800 1000
−6

−5

−4

−3

−2

0 200 400 600 800 1000
3

4

5

true

EIV−JEKF1

EIV−JEKF2

EIV−JEKF3â
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Figure 7.2: Parameter estimates obtained by the EIV-JEKF1, EIV-JEKF2 and EIV-
JEKF3 algorithms.

θ̂k+1 = θ̂k + Lkεk (7.24h)

P1k+1
= AkP1k

AT
k + AkP2k

F Tk + FkP
T
2k
AT
k + FkP3k

F Tk −KkSkK
T
k + Σk

v (7.24i)

P2k+1
= AkP2k

+ FkP3k
−KkSkL

T
k (7.24j)

P3k+1
= P3k

− LkSkL
T
k + Σd (7.24k)

ŷ0k
= yk −

[
Σỹ − Σũỹ

TDT
k

]
S−1
k εk (7.24l)

û0k
= uk −

[
Σũỹ − ΣũD

T
k

]
S−1
k εk (7.24m)

In order to substantiate Proposition 7.1 and in order to compare the EIV-JEKF2-3

algorithms with the previously proposed EIV-JEKF1 algorithm, the following example

is considered.

7.3.4 Numerical example

Consider an identical setup as in Section 7.3.2. The experiment is repeated and the

three EIV-JEKF filters are applied to estimate the states, the parameters and the noise-

free input and noise-free output of the system. The parameter estimates obtained by

the three filters are shown in Figure 7.2. It is observed that the values of the estimates

for a1 and a2 are very similar and close to the true values for all three filters. For the

estimates of b0 and b1, however, it is observed that the values obtained by the EIV-

JEKF2 seem to compensate for the bias, which is obtained when the EIV-JEKF1 is

applied. This appears to underpin the statement given in Proposition 7.1. In addition,

if u0k
is approximated by û∗0k

for the design of the JacobianHk as it is realised within the
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EIV-JEKF3, the bias appears to be reduced as well. However, perhaps not surprisingly,

the results seem to be slightly inferior to those obtained by the EIV-JEKF2. This might

be an expected result due to the inevitable estimation error of the noise-free input.

So far, no justification has been given, as to why the utilisation of the true input

for the design of Hk should result in a reduction of the bias within the EIV-JEKF

algorithm. This is addressed in the following section by analysing the ‘true’ RPEM

when applied to the EIV state space system.

7.4 RPEM method for EIV identification

In order to provide a thorough analysis of the JEKF algorithms in the EIV framework,

it is necessary to derive the corresponding RPEM. This will give the necessary insight

to understand what role the choice of the true input signal plays within the Jacobian

Hk and lays the foundation for the development of novel RPEM based methods for

EIV system identification. This section derives the RPEM method for a general EIV

state space representation which is, apart from minor adjustments, analogous to that

presented in (Ljung & Söderström 1983, Appendix 3.B).

7.4.1 Derivation of the RPEM for the EIV case

Consider the EIV state space model given by (7.4)-(7.5)

xk+1(θ) = A(θ)xk(θ) + B(θ)uk + vk(θ), (7.25a)

yk = C(θ)xk(θ) + D(θ)uk + ek(θ), (7.25b)

vk(θ) = wk − B(θ)ũk, (7.25c)

ek(θ) = ỹk −D(θ)ũk. (7.25d)

The minimum variance estimates of the state, noise-free input and noise-free output is

given by the EIVKF given in Algorithm 2.3, where Σk
ε is replaced by Sk(θ)

x̂k+1|k(θ) = A(θ)x̂k|k−1(θ) + B(θ)uk +Kk(θ)εk(θ), (7.26a)

εk(θ) = yk − C(θ)x̂k|k−1(θ) −D(θ)uk, (7.26b)

Sk(θ) = C(θ)Pk|k−1(θ)C
T (θ) + Σe(θ), (7.26c)

Kk(θ) =
[
A(θ)Pk|k−1(θ)C

T (θ) + Σve(θ)
]
S−1
k (θ), (7.26d)

Pk+1|k(θ) = A(θ)Pk|k−1(θ)A
T (θ) + Σv(θ) −Kk(θ)Sk(θ)K

T
k (θ), (7.26e)

ŷ0k
(θ) = yk −

[
Σỹ − Σũỹ

TDT (θ)
]
S−1
k (θ)εk(θ), (7.26f)

û0k
(θ) = uk −

[
Σũỹ − ΣũD

T (θ)
]
S−1
k (θ)εk(θ). (7.26g)
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The application of the standard PEM usually aims to minimise a cost function which

is quadratic in the innovation εk(θ), i.e.

V (θ) =
1

2
εTk (θ)Λ−1εk(θ), (7.27)

where Λ−1 is a general weighting matrix, whose optimal choice is given by the innova-

tions covariance matrix.

In order to minimise V (θ), its gradient with respect to θ is required. Therefore,

define

ψTk (θ) ,
d

dθ

[
C(θ)x̂k|k−1(θ) + D(θ)uk

]
∈ R

ny×nθ , (7.28)

Wk(θ) ,
d

dθ
x̂k|k−1(θ) ∈ R

nx×nθ , (7.29)

as being the gradient of the one-step-ahead prediction of yk and the gradient of the

state estimate, respectively. Note that (7.28) contains the derivatives of a matrix with

respect to a vector (dC(θ)/dθ). Such a quantity will be a tensor, i.e. having three

indices (the first two indices give the row and the column of C(θ), whilst the third index

corresponds to the ith element of θ). As proposed in (Ljung & Söderström 1983), the

following matrices are introduced to avoid such a complex notation. Therefore define

F (θ̂, x, u) ,
∂

∂θ
[A(θ)x+ B(θ)u]

∣
∣
θ=θ̂

∈ R
nx×nθ , (7.30a)

H(θ̂, x, u) ,
∂

∂θ
[C(θ)x+ D(θ)u]

∣
∣
θ=θ̂

∈ R
ny×nθ . (7.30b)

This means that F (θ̂, x, u) is a matrix where the ith column is given by

∂

∂θi
[A(θ)]x+

∂

∂θi
[B(θ)]u. (7.31)

This holds analogously for H(θ̂, x, u). By applying the product rule and using (7.29)

as well as (7.30b), but replacing d/d(θ) by ∂/∂(θ) implying partial differentiation,

Equation (7.28) becomes

ψTk (θ) =
d

dθ
[C(θ)] x̂k|k−1(θ) + C(θ)

d

dθ

[
x̂k|k−1(θ)

]
+

d

dθ
[D(θ)]uk

= C(θ)Wk(θ) +H(θ, x̂k|k−1(θ), uk). (7.32)

Also note that the gradient of the innovation is given by

d

dθ
εk(θ) =

d

dθ

[
yk − C(θ)x̂k|k−1(θ) −D(θ)uk

]

= −ψTk (θ). (7.33)

The immediate objective is now to derive a recursive expression for Wk(θ), which is
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obtained by differentiating (7.26a). This yields

Wk+1(θ) =
d

dθ
[A(θ)] x̂k|k−1(θ) + A(θ)Wk(θ) +

d

dθ
[B(θ)]uk

+
d

dθ
[Kk(θ)] εk(θ) +Kk(θ)

d

dθ
[εk(θ)] , (7.34)

and by making use of (7.30a), (7.30b), (7.32) and (7.33), it holds

Wk+1(θ) = [A(θ) −Kk(θ)C(θ)]Wk(θ) + F (θ, x̂k|k−1(θ), uk)

+
d

dθ
[Kk(θ)] εk(θ) −Kk(θ)H(θ, x̂k|k−1(θ), uk). (7.35)

In order to obtain the gradient of V (θ), it remains now to find an expression of

dK(θ)/d(θ) within (7.35), which is obtained by differentiating (7.26c)-(7.26e). There-

fore, introduce the notation

K
(i)
k ,

d

dθi
Kk(θ), (7.36a)

S
(i)
k ,

d

dθi
Sk(θ), (7.36b)

P
(i)
k ,

d

dθi
Pk|k−1(θ). (7.36c)

Also introduce Pk, Sk and Kk which are obtained via (7.26c)-(7.26e) with θ being

replaced by θ̂k. Taking the derivative of (7.26c)-(7.26e) with respect to each element

of θ individually and evaluating it at the most recent estimate θ̂k, yields

K
(i)
k =

[

∂

∂θi
[A(θ)]Pk|k−1C

T
k + AkP

(i)
k CTk

+ AkPk|k−1
∂

∂θi

[
CT (θ)

]
+

∂

∂θi
[Σve(θ)]

]∣
∣
∣
∣
∣
θ=θ̂k

S−1
k −KkS

(i)
k S−1

k , (7.37)

S
(i)
k =

[
∂

∂θi
[C(θ)]Pk|k−1C

T
k + CkP

(i)
k CTk + CkPk|k−1

∂

∂θi

[
CT (θ)

]
+

∂

∂θi
[Σe(θ)]

]
∣
∣
∣
∣
∣
θ=θ̂k

,

(7.38)

and

P
(i)
k+1 =

[

∂

∂θi
[A(θ)]Pk|k−1A

T
k + AkP

(i)
k AT

k + AkPk|k−1
∂

∂θi

[
AT (θ)

]
+

∂

∂θi
[Σv(θ)]

− K
(i)
k SkK

T
k −KkS

(i)
k KT

k −KkSk

[

K
(i)
k

]T
]∣
∣
∣
∣
∣
θ=θ̂k

. (7.39)

Note that the convenient notation (7.10) has been used within (7.37)-(7.39). Recall
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that the error covariance matrices for the EIV case are given by

Σv(θ) = GΣwG
T + B(θ)ΣũB

T (θ), (7.40a)

Σe(θ) = Σỹ − Σũỹ
TDT (θ) −D(θ)Σũỹ + D(θ)ΣũD

T (θ), (7.40b)

Σve(θ) = B(θ)ΣũD
T (θ) − B(θ)Σũỹ. (7.40c)

Their derivatives with respect to θi, which are required within (7.37)-(7.39), are there-

fore given by

∂

∂θi
Σv(θ) =

∂

∂θi
[B(θ)] ΣũB

T
k + BkΣũ

∂

∂θi

[
BT (θ)

]
, (7.41a)

∂

∂θi
Σe(θ) = −Σũỹ

T ∂

∂θi

[
DT (θ)

]
−

∂

∂θi
[D(θ)] Σũỹ

+
∂

∂θi
[D(θ)] ΣũD

T
k + DkΣũ

∂

∂θi

[
DT (θ)

]
, (7.41b)

∂

∂θi
Σve(θ) =

∂

∂θi
[B(θ)] ΣũD

T
k + BkΣũ

∂

∂θi

[
DT (θ)

]
−

∂

∂θi
[B(θ)] Σũỹ. (7.41c)

Finally, by setting dK(θ)/dθ in (7.35) to Kk, whose ith column is given by K
(i)
k , it is

possible to compute the gradient of V (θ) by

d

dθ
V (θ) = −ψk(θ)Λ

−1εk(θ), (7.42)

where ψk(θ) can now be computed in a recursive way. The minimisation of V (θ) can

be carried out via an iterative Newton method, where it is iterated once as new data

arrives. This gives the recursive scheme

θ̂k = θ̂k−1 + γkR
−1
k ψk(θ)Λ

−1εk(θ), (7.43)

where R is the Hessian (second derivative of V (θ)). If the latter is approximated

via ψk(θ)Λ
−1ψTk (θ) for which a recursive expression is obtained in a straightforward

manner, a Gauss-Newton algorithm is obtained. The scalar γk is a normalising gain,

which is set to 1/k in the case of no adaptivity, or which becomes 1 − λ in the case of

exponential data weighting, where λ denotes the forgetting factor.

7.4.2 Direct application of the RPEM

If the weighting matrix Λ is chosen as the identity matrix, a direct application of the

RPEM to the EIV state space system in general form can be summarised as follows.

Algorithm 7.4 (EIV-RPEM1).

εk = yk − Ck−1x̂k|k−1 −Dk−1uk (7.44a)
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ψk = W T
k C

T
k−1 +HT (θ̂k−1, x̂k|k−1, uk) (7.44b)

Rk = Rk−1 + γk
[
ψkψ

T
k −Rk−1

]
(7.44c)

θ̂k = θ̂k−1 + γkR
−1
k ψkεk (7.44d)

Sk = CkPk|k−1C
T
k + Σk

e (7.44e)

Kk =
[

AkPk|k−1C
T
k + Σk

ve

]

S−1
k (7.44f)

x̂k+1|k = Akx̂k|k−1 + Bkuk +Kkεk (7.44g)

Pk+1|k = AkPk|k−1A
T
k + Σk

v −KkSkK
T
k (7.44h)

Wk+1 = [Ak −KkCk]Wk + F (θ̂k, x̂k|k−1, uk) + Kk −KkH(θ̂k, x̂k|k−1, uk) (7.44i)

7.4.3 Relationship between JEKF and RPEM in the EIV framework

Recall from Section 2.5.4 that in a non-EIV setting, the major difference between

the JEKF and the RPEM was the absence of the cross-coupling term Kk for the

computation of the gradient in the former case. By including, in one way or another,

an approximation of this term into the gradient computation of the JEKF, a consistent

parameter estimator can be obtained (Ljung 1979). In particular, when applied to

an EIV system, the JEKF can still be interpreted as a RPEM, where the term Kk is

absent in the JEKF case. Hence, Algorithm 7.4 corresponds to Algorithm 7.1, where

the latter uses a slightly modified gradient. However, the introduction of the term

Kk into the gradient computation does not overcome the bias problem of the EIV-

JEKF1 algorithm, which has been observed in Section 7.3.2. Indeed, it is shown in

(Söderström 1981) (although for the case of offline PEM and by utilising a predictor

based on a transfer function representation of the system) that the PEM cost function is

not minimised for the true parameter values, which generally leads to biased estimates,

if the PEM is directly applied to an EIV system.

Since the usage of u0k
within the Jacobian design of the JEKF can yield unbiased

parameter estimates as illustrated in Section 7.3.4, it would be of interest to ascer-

tain which predictor would yield an accordingly modified gradient within the PEM

framework. Or stated differently, what cost function is minimised by the parameter

estimator obtained by the JEKF applied to the EIV state space system, when u0k
is

used to compute Hk. Let the result be captured in the following lemma.

Lemma 7.1. The parameter estimator, which is obtained from the JEKF applied to

the EIV state space system, when the Jacobian Hk is computed as H(θ, x̂k|k−1(θ), u0k
),

i.e. the EIV-JEKF2 given in Algorithm 7.2, corresponds to the application of a RPEM,

where the predictor is chosen as

y̆k(θ) = C(θ)x̂k|k−1(θ) + D(θ)u0k
. (7.45)
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The corresponding prediction error is then given by

ε̆k(θ) = yk − y̆k

= yk − C(θ)x̂k|k−1(θ) −D(θ)u0k
. (7.46)

The cost function minimised by the RPEM (with Λ chosen as the identity matrix) is

given by

V̆ (θ) =
1

2
ε̆k(θ)

T ε̆k(θ). (7.47)

Proof. Consider Wk+1(θ) in (7.35), where H(θ, x̂k|k−1(θ), uk) is replaced with

H(θ, x̂k|k−1(θ), u0k
). Introducing W̆k+1(θ) as the quantity which usesH(θ, x̂k|k−1(θ), u0k

)

yields

W̆k+1(θ) = [A(θ) −Kk(θ)C(θ)] W̆k(θ) + F (θ, x̂k|k−1(θ), uk)

+
d

dθ
[Kk(θ)] εk(θ) −Kk(θ)H(θ, x̂k|k−1(θ), u0k

)

=
d

dθ
[A(θ)] x̂k|k−1(θ) + A(θ)W̆k(θ) +

d

dθ
[B(θ)]uk +

d

dθ
[Kk(θ)] εk(θ)

+Kk(θ)

[

−
d

dθ
[C(θ)] x̂k|k−1(θ) − C(θ)W̆k(θ) −

d

dθ
[D(θ)]u0k

]

. (7.48)

Also consider the gradient (7.32) of the predictor given by (7.45), whereH(θ, x̂k|k−1(θ), uk)

is again replaced with H(θ, x̂k|k−1(θ), u0k
). This gives

ψ̆Tk (θ) = C(θ)W̆k(θ) +H(θ, x̂k|k−1(θ), u0k
)

=
d

dθ
[C(θ)] x̂k|k−1(θ) + C(θ)

d

dθ

[
x̂k|k−1(θ)

]
+

d

dθ
[D(θ)]u0k

. (7.49)

A comparison of (7.48) with (7.34) as well as (7.49) with (7.32) shows that the Jacobian

H(θ, x̂k|k−1(θ), u0k
) within the JEKF is a result of choosing the prediction error as

ε̆k(θ) = yk − C(θ)x̂k|k−1(θ) −D(θ)u0k
. (7.50)

This corresponds to choosing the predictor (7.45) with the gradient

ψ̆Tk = C(θ)W̆k(θ) +H(θ, x̂k|k−1(θ), u0k
). (7.51)

Based on Lemma 7.1, it is possible to design two RPEM algorithms, analogously to

the EIV-JEKF2 and EIV-JEKF3 algorithms. This development is considered in the

following subsections.
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7.4.4 Predictor design using u0k

As a benchmark, the RPEM with the predictor chosen as y̆k given in (7.45) which cor-

responds to a gradient given by (7.51) is derived3, where u0k
is assumed to be available

for the predictor design or, equivalently for the design of the Jacobian Hk. Of course,

such an estimator is not feasible in practice, but it will serve for comparison purposes

with the subsequently developed algorithms. The algorithm can be summarised as

follows.

Algorithm 7.5 (EIV-RPEM2).

εk = yk − Ck−1x̂k|k−1 −Dk−1uk (7.52a)

ψ̆k = W̆ T
k C

T
k−1 +HT (θ̂k−1, x̂k|k−1, u0k

) (7.52b)

Rk = Rk−1 + γk

[

ψ̆kψ̆
T
k −Rk−1

]

(7.52c)

θ̂k = θ̂k−1 + γkR
−1
k ψ̆kε̆k (7.52d)

Sk = CkPk|k−1C
T
k + Σk

e (7.52e)

Kk =
[

AkPk|k−1C
T
k + Σk

ve

]

S−1
k (7.52f)

x̂k+1|k = Akx̂k|k−1 + Bkuk +Kkεk (7.52g)

Pk+1|k = AkPk|k−1A
T
k + Σk

v −KkSkK
T
k (7.52h)

W̆k+1 = [Ak −KkCk] W̆k + F (θ̂k, x̂k|k−1, uk) + Kk −KkH(θ̂k, x̂k|k−1, u0k
) (7.52i)

Note that the Kalman filter still operates with the actual innovation εk (rather

than ε̆k), since only the computation of the gradient which is used for the parameter

estimator is based on the predictor y̆k.

7.4.5 Predictor design using û0k

This estimator corresponds to the EIV-JEKF3 which has been given in Algorithm 7.3.

It is obtained by simply replacing u0k
with its estimate û0k

for the design of the Jacobian

Hk. For completeness, the algorithm, denoted EIV-RPEM3, is summarised as follows.

Algorithm 7.6 (EIV-RPEM3).

εk = yk − Ck−1x̂k|k−1 −Dk−1uk (7.53a)

û0k
= uk −

[
Σũỹ − ΣũD

T
k

]
S−1
k−1εk (7.53b)

3The dependency on θ is again dropped in the subsequent development for ease of notation.
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Figure 7.3: Parameter estimates obtained by the EIV-RPEM1, EIV-RPEM2 and
EIV-RPEM3 algorithms.

ψ̆k = W̆ T
k C

T
k−1 +HT (θ̂k−1, x̂k|k−1, û0k

) (7.53c)

Rk = Rk−1 + γk

[

ψ̆kψ̆
T
k −Rk−1

]

(7.53d)

θ̂k = θ̂k−1 + γkR
−1
k ψ̆kε̆k (7.53e)

Sk = CkPk|k−1C
T
k + Σk

e (7.53f)

Kk =
[

AkPk|k−1C
T
k + Σk

ve

]

S−1
k (7.53g)

x̂k+1|k = Akx̂k|k−1 + Bkuk +Kkεk (7.53h)

Pk+1|k = AkPk|k−1A
T
k + Σk

v −KkSkK
T
k (7.53i)

W̆k+1 = [Ak −KkCk] W̆k + F (θ̂k, x̂k|k−1, uk) + Kk −KkH(θ̂k, x̂k|k−1, û0k
)

(7.53j)

The following subsection compares the three EIV-RPEM algorithms in a numerical

example.

7.4.6 Numerical example

Consider an identical setup as in Section 7.3.2. The experiment is repeated and the

three EIV-RPEM algorithms are applied to estimate the parameters of the EIV system.

The resulting parameter estimates are shown in Figure 7.3. The main observation is

that the estimates provided by the EIV-RPEM1, EIV-RPEM2 and EIV-RPEM3 are

virtually identical to those obtained by their counterparts EIV-JEKF1, EIV-JEKF2

and EIV-JEKF3, respectively (cf. Figure 7.2). This emphasises the close relationship
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between the parameter estimators obtained from the JEKF approach and the those

obtained from the prediction error framework. In addition, this shows that the appli-

cation of the RPEM applied to an EIV system can yield a reduced bias in the estimates,

if the predictor is modified appropriately.

Remark 7.1. In the above example, the modified EIV-RPEM algorithms were able to

compensate for the bias almost perfectly. The success of this method, however, depends

on the quality of the noise-free input estimate. As it has been pointed out in Remark

6.2, the filter performance of the EIVKF can strongly depend on the particular system

under consideration4. Furthermore, the feedthrough term of the system which has been

considered in this example is rather dominant. It might be reasonable to assume that

the bias reduction will be less efficient, if a system is chosen, where the b0 term is less

significant. In the extreme case, i.e. in the absence of a feedthrough term (D = 0), the

Jacobian Hk does not depend on the input and the modified EIV-RPEM algorithms

are reduced to the standard RPEM. This means that no bias reduction is possible if

D = 0, which somewhat limits this approach.

7.5 A symmetric RPEM identification method

Although it has been shown that a modified predictor given by (7.45) can reduce the

bias problem associated with the RPEM when applied for EIV system identification, it

does not, however, reflect the symmetry of the EIV framework. This section introduces

a further predictor, which allows the design of a cost function which minimises the

distance between the measured input and output sequences and the corresponding

filtered inputs and outputs, which are computed by the EIVKF.

7.5.1 Non-recursive case

The development considers first an offline or non-recursive case, where the parameter

estimate is obtained by minimising a suitable cost function via a standard optimisation

technique.

Define the symmetric innovation as

ǫk(θ) ,

[

yk − ŷ0k
(θ)

uk − û0k
(θ)

]

∈ R
ny+nu , (7.54)

where the estimates are computed via the EIVKF given in Algorithm 2.3 on page 42.

It is then possible to design a quadratic cost function given by

Vǫ(θ) =
1

2
E
[
ǫTk (θ)Λ−1ǫk(θ)

]
, (7.55)

4Note that Chapter 6 considers a bilinear system setup. The observations stated in Remark 6.2,
however, also apply for the linear case.
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which accounts for the symmetry of the EIV framework. Whilst the development of a

recursive implementation is postponed until Section 7.5.3, Vǫ(θ) can be minimised via

an appropriate optimisation routine yielding parameter estimation scheme for offline

identification. In this case the parameters are obtained via

θ̂ = arg min
θ

Vǫ(θ), (7.56)

and where the filtered inputs and outputs are computed using the EIVKF algorithm

given in (7.26). For completeness, the algorithm is summarised here as follows.

Algorithm 7.7 (PEM-SYM).

θ̂ = arg min
θ

Vǫ(θ) (7.57a)

x̂k+1|k(θ) = A(θ)x̂k|k−1(θ) + B(θ)uk +Kk(θ)εk(θ) (7.57b)

εk(θ) = yk − C(θ)x̂k|k−1(θ) −D(θ)uk (7.57c)

Sk(θ) = C(θ)Pk|k−1(θ)C
T (θ) + Σe(θ) (7.57d)

Kk(θ) =
[
A(θ)Pk|k−1(θ)C

T (θ) + Σve(θ)
]
S−1
k (θ) (7.57e)

Pk+1|k(θ) = A(θ)Pk|k−1(θ)A
T (θ) + Σv(θ) −Kk(θ)Sk(θ)K

T
k (θ) (7.57f)

ŷ0k
(θ) = yk −

[
Σỹ − Σũỹ

TDT (θ)
]
S−1
k (θ)εk(θ) (7.57g)

û0k
(θ) = uk −

[
Σũỹ − ΣũD

T (θ)
]
S−1
k (θ)εk(θ) (7.57h)

ǫk(θ) =
[

yTk − ŷT0k
(θ) uTk − ûT0k

(θ)
]T

(7.57i)

The optimisation procedure to solve (7.57a) is generally computationally expensive,

since the Kalman filter has to be applied (i.e. a Riccati equation must be solved) at

each iteration, in order to obtain the symmetric innovations.

Remark 7.2. The symmetric innovation (7.57i) within the PEM-SYM algorithm is ob-

tained via the EIVKF, which is in one-step-ahead predictor form. In the offline case,

it would appear natural to assume that superior results could be obtained by making

use of fixed-interval smoothing, rather than using the one-step-ahead predictor. This

means that the optimal input and output estimate at time k does not only use the

data up to time k (as in the prediction case), but makes use of the whole batch of

available data up to time N . Using well known techniques (Anderson & Moore 1979,

Section 7.4), an EIV fixed interval smoother can be derived in a straightforward man-

ner. However, this idea is not pursued further within this thesis, but could be further

work.

Note that, for comparison purposes, a similar algorithm to the PEM-SYM could

be defined which minimises the squared innovations εk(θ) (as in the standard PEM
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framework) rather than ǫk(θ). For completeness, such an algorithm is summarised here

as follows.

Algorithm 7.8 (PEM).

θ̂ = arg min
θ

V (θ) (7.58a)

x̂k+1|k(θ) = A(θ)x̂k|k−1(θ) + B(θ)uk +Kk(θ)εk(θ) (7.58b)

εk(θ) = yk − C(θ)x̂k|k−1(θ) −D(θ)uk (7.58c)

Sk(θ) = C(θ)Pk|k−1(θ)C
T (θ) + Σe(θ) (7.58d)

Kk(θ) =
[
A(θ)Pk|k−1(θ)C

T (θ) + Σve(θ)
]
S−1
k (θ) (7.58e)

Pk+1|k(θ) = A(θ)Pk|k−1(θ)A
T (θ) + Σv(θ) −Kk(θ)Sk(θ)K

T
k (θ) (7.58f)

Note that V (θ) is given by (7.27). Both algorithms are compared in the following

example.

Example 7.1. Consider a similar setup as in Section 7.3.2, where the parameter vector

is given by

θ =
[

−0.3 0.2 −4.5 5.4
]T
. (7.59)

For this example, a reduced noise environment is utilised, such that the covariance

matrix of the noise sequences is given by

E











ũk

ỹk
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0 0 0




 δkl. (7.60)

Algorithms 7.7 and 7.8 are applied to estimate θ using N = 500 samples for 100 Monte-

Carlo iterations. The fminsearch (Nelder-Mead Simplex Method) routine of Matlab is

utilised to minimise Vǫ(θ) and V (θ), where the initial value of θ̂ is chosen to be the null

vector. The initial values P0 and x0 for the EIVKF are set as in (7.19). The mean and

standard deviations of the estimates obtained are given in Table 7.1. It is observed that

by making use of Algorithm 7.8, the parameters, particularly b0 and b1, are notably

biased. This is an expected result, since in this case the PEM is directly applied to the

EIV identification problem, which is known to yield biased estimates. By contrast, in

the case of the symmetric innovations approach given by Algorithm 7.7, the parameters

are estimated quite accurately with low standard deviations, being comparable for both

approaches. Hence, it would appear that minimising the symmetric innovations could

yield unbiased parameter estimates within an EIV setup.
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Algorithm 7.7 Algorithm 7.8

â1 −2.96·10−1 ± 2.78·10−2 −3.13·10−1 ± 2.62·10−2

â2 2.01·10−1 ± 2.41·10−2 2.06·10−1 ± 2.33·10−2

b̂0 −4.51 ± 1.33·10−1 −3.62 ± 1.18·10−1

b̂1 5.38 ± 1.46·10−1 4.80 ± 1.24·10−1

Table 7.1: Mean and standard deviation of parameter estimates for 100 Monte-Carlo
iterations, comparing Algorithm 7.7 and Algorithm 7.8.

7.5.2 Analogy to Joint Output method

The PEM-SYM method given in Algorithm 7.7 strongly resembles the so called joint

output method5 (cf. Section 2.4.5), an EIV identification technique which has been

proposed in (Söderström 1981). In this approach, the EIV system is reformulated as

a multivariate state space system which is driven by three independent noise sources.

Since the states contain the noise-free inputs and outputs, it is possible to estimate

these quantities by means of a standard KF. For clarity, let such a KF applied to the

multivariate state space system be denoted EIVKF-JO in the subsequent discussion.

Indeed, the EIVKF-JO could be regarded as an alternative to the EIV filtering ap-

proaches that have been discussed so far within this thesis and which are based on

the development described in (Diversi et al. 2005) and (Markovsky & De Moor 2005).

In contrast to the EIV filters discussed in Section 2.5.2, the EIVKF-JO neither re-

lies on the existence of a feedthrough term D nor on the cross-correlation between ũk

and ỹk, which is believed to be one of the shortcomings of the EIVKF (cf. Remark

2.3). However, the EIVKF-JO is only able to estimate the noise-free input, since the

latter is assumed to be described by an auto-regressive moving average process which

is driven by white noise, i.e. u0k
is assumed to be characterised by a rational spec-

trum (Söderström et al. 2002). Consequently, it might be beneficial to prefer either

an EIVKF or an EIVKF-JO in order to filter the input and output of an EIV system,

which can subsequently be utilised for the purpose of system identification. A preferred

choice would certainly depend on the underlying assumption for the system and noise

sequences.

Returning to the discussion comparing of the joint output method with the PEM-

SYM, it is clear that the main distinction lies in the utilisation of the different EIV

filters, which exploit differing assumptions to estimate u0k
and y0k

. A more detailed

comparison of both identification techniques would be quite interesting and is identified

as an avenue for potential further work.

5Within the literature (Söderström et al. 2002), estimators based on the joint output method are
also termed maximum likelihood or prediction error approach, depending on the chosen cost function.
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7.5.3 Recursive case

It is also possible to minimise Vǫ(θ) in a recursive manner, using the Gauss-Newton

approach as outlined in Section 7.4. Indeed, only minor adjustment of the previously

developed RPEM algorithms is required in order to derive a symmetric RPEM for the

EIV state space system.

Recall from (7.57g)-(7.57h) that the symmetric innovation (7.54) can be re-expressed

as

ǫk(θ) =

[

Σỹ − ΣT
ũỹD

T (θ)

Σũỹ − ΣũD
T (θ)

]

S−1
k (θ)εk(θ)

= T (θ)S−1
k (θ)εk(θ), (7.61)

where

T (θ) ,

[

Σỹ ΣT
ũỹ

Σũỹ Σũ

][

I

−DT (θ)

]

∈ R
(ny+nu)×ny . (7.62)

It is then possible to minimise the quadratic cost function Vǫ(θ) using a Gauss-Newton

approach as outlined in Section 7.4.1. Therefore, define the gradient of the symmetric

innovation as

−ηTk (θ) ,
d

dθ
ǫk(θ) ∈ R

(nu+ny)×nθ , (7.63)

which, by making use of the product rule, can be computed as

−ηTk (θ) = J(θ, S−1
k (θ)εk(θ)) − T (θ)S−1

k (θ)SkS
−1
k (θ)εk(θ) − T (θ)S−1

k (θ)ψTk (θ), (7.64)

with the ith column of Sk being given by (7.38) and where

J(θ̂k, S
−1, ε) ,

d

dθ

[
T (θ)S−1ε

]∣
∣
θ=θ̂k

R
(ny+nu)×nθ , (7.65)

is defined in a similar manner to (7.30). Consequently, the gradient of the cost function

becomes

d

dθ
Vǫ(θ) = −ηk(θ)Λ

−1ǫk(θ). (7.66)

Note from (7.64) that ηk(θ) depends on ψk(θ) which can be computed in a recursive

fashion as outlined in Section 7.4.1. Therefore, a recursive algorithm is obtained by

taking Algorithm 7.4 and modifying the computation of Rk and θ̂k in accordance with

the modified gradient (7.66). By choosing Λ = I, the symmetric algorithm, which is

denoted RPEM-SYM, can be summarised as follows.
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Algorithm 7.9 (RPEM-SYM).

εk = yk − Ck−1x̂k|k−1 −Dk−1uk (7.67a)

ψk = W T
k C

T
k−1 +HT (θ̂k−1, x̂k|k−1, uk) (7.67b)

ηk = Tk−1S
−1
k−1Sk−1S

−1
k−1εk + Tk−1S

−1
k−1ψ

T
k − J(θ̂k−1, Sk−1, εk) (7.67c)

Rk = Rk−1 + γk
[
ηkη

T
k −Rk−1

]
(7.67d)

ŷ0k
(θ) = yk −

[
Σỹ − Σũỹ

TDT
k−1(θ)

]
S−1
k−1εk (7.67e)

û0k
(θ) = uk −

[
Σũỹ − ΣũD

T
k−1(θ)

]
S−1
k−1εk (7.67f)

ǫk(θ) =
[

yTk − ŷT0k
uTk − ûT0k

]T
(7.67g)

θ̂k = θ̂k−1 + γkR
−1
k ηkǫk (7.67h)

Sk = CkPk|k−1C
T
k + Σk

e (7.67i)

Kk =
[

AkPk|k−1C
T
k + Σk

ve

]

S−1
k (7.67j)

x̂k+1|k = Akx̂k|k−1 + Bkuk +Kkεk (7.67k)

Pk+1|k = AkPk|k−1A
T
k + Σk

v −KkSkK
T
k (7.67l)

Wk+1 = [Ak −KkCk]Wk + F (θ̂k, x̂k|k−1, uk) + Kk −KkH(θ̂k, x̂k|k−1, uk)

(7.67m)

Here, the convenient notation

ηk = ηk(θ̂k), (7.68a)

Tk = T (θ̂k), (7.68b)

has been used. The performance of the algorithm is investigated in the following

example.

Example 7.2. In order to compare the RPEM-SYM algorithm with the EIV-RPEM1

approach, consider a similar setup as in Example 7.1, i.e.

θ =
[

−0.3 0.2 −4.5 5.4
]T

(7.69)

and

E
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 δkl (7.70)

are chosen. The signal-to-noise ratio on the input and output is, respectively, given by
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Figure 7.4: Estimates obtained from the RPEM-SYM in comparison to those ob-
tained from the EIV-RPEM1.

29.7dB and 28.3dB. The symmetric algorithm RPEM-SYM is compared to the EIV-

RPEM1 algorithm (cf. page 185) for N = 5000 samples. Both algorithms are initialised

with

θ̂0 = 0, P0 = 100I, x0 = 0, R0 = 0.1I W0 = 0. (7.71)

In addition, a projection facility is utilised, in order to ensure that all eigenvalues of

Ak−KkCk lie strictly within the unit circle. The estimates obtained for both algorithms

are given in Figure 7.4. It is observed that the convergence rate of the EIV-RPEM1

is rather slow and the estimates for b0 appear to be biased. The results obtained from

the RPEM-SYM, in contrast, show a rapid convergence rate and it seems that the

algorithm can successfully compensate for the bias in the estimates.

Remark 7.3. The results obtained in Example 7.2 appear to be very promising, how-

ever, the simulation setup has been chosen with care. If lower signal-to-noise ratios

are chosen, e.g. as in Section 7.3.2, it appears to be difficult to obtain satisfactory

results when applying the RPEM-SYM algorithm. A potential reason for this could be

that a careful initialisation of the recursive scheme is necessary and/or that a step size

reduction might be required.

7.6 Concluding remarks

The extended Kalman filter for joint state and parameter estimation (JEKF) has been

derived to estimate the states, the parameters as well as the noise-free inputs and out-

puts of an errors-in-variables (EIV) state space system. A simulation has revealed,

however, that the parameter estimates obtained are biased. Since the parameter es-

timator, which is obtained by applying the JEKF, can be interpreted as a recursive
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Alg. Name Description

7.1 EIV-JEKF1 Direct application of the JEKF for EIV state space systems. Produces biased
parameter estimates in presence of input noise.

7.2 EIV-JEKF2 Modified JEKF algorithm. Utilises u0k
for design of Jacobian Hk. Can

reduce the bias in parameter estimates.

7.3 EIV-JEKF3 Modified JEKF algorithm. Utilises û0k
for design of Jacobian Hk. Can

reduce the bias in parameter estimates.

7.4 EIV-RPEM1 ‘True’ RPEM applied to an EIV state space system. Produces biased pa-
rameter estimates in presence of input noise.

7.5 EIV-RPEM2 Modified predictor. Analogue to EIV-JEKF2. Utilises u0k
for design of

Jacobian Hk. Can reduce the bias in parameter estimates.

7.6 EIV-RPEM3 Modified predictor. Analogue to EIV-JEKF3. Utilises û0k
for design of

Jacobian Hk. Can reduce the bias in parameter estimates.

7.7 PEM-SYM Offline PEM technique, minimising quadratic cost function of symmetrically
defined innovations.

7.8 PEM ‘True’ (offline) PEM applied to an EIV state space system. Produces biased
parameter estimates in presence of input noise.

7.9 RPEM-SYM Recursive implementation of PEM-SYM algorithm.

Table 7.2: Overview of developed algorithms for Chapter 7 (Alg. stands for Algo-
rithm).

prediction error method (RPEM), this is not a surprising result, since it is known

within the literature, that a direct application of the prediction error method (PEM)

to the EIV case does not yield consistent estimates. Making use of the filtered input for

the design of the Jacobians which are used within the JEKF design yields a modified

version of the JEKF. Using this algorithm, it is possible to, at least partly, compensate

for the resulting bias in the estimates. By deriving the ‘true’ RPEM for the EIV state

space system and using these results to analyse the modified JEKF procedure, it is

revealed that the usage of the filtered input in the Jacobian design corresponds to a

modified predictor, which is able to reduce the bias of the EIV system parameters in

the presence of a feedthrough term. Whilst this modified predictor is able to reduce

the bias in the estimates, it does not account for the symmetric structure of the EIV

framework. Consequently, a novel algorithm is developed, which uses the filtered in-

puts and outputs to define symmetric innovations. The corresponding predictor then

allows the design of a symmetric (non-recursive) PEM, which resembles the joint out-

put method, a well known EIV identification technique. Moreover, an algorithm for

recursively solving the identification problem, which is based on the RPEM design, is

also developed. An overview of the algorithms, which have been developed within this

Chapter, is provided in Table 7.2.

The thread which has been followed throughout this chapter, i.e. the idea of com-

bining filtering and estimation, is certainly not novel, but a common approach within

the system identification literature (cf. e.g. Ljung 1999, Young 1984, Young et al. 2001).

Filtering the data explicitly or implicitly (as realised in the joint output method) can be
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utilised in order to affect the asymptotic bias in the parameter estimates. The novelty

within this chapter is that usage of the EIVKF has been made in order to filter the

inputs and outputs. Consequently, the limitations regarding the EIVKF, as mentioned

in Remark 2.3, also apply for the algorithms of this chapter, which has been discussed

in Remark 7.1. Therefore, it would be of interest to investigate, under which exact

requirements the EIVKF can provide reasonable estimates. With ‘reasonable’, it is

meant, that the EIVKF is, on average, able to effectively remove noise from the mea-

sured inputs and outputs, as indicated by a positive value of the performance criteria

(7.20). In addition, an EIV fixed interval smoother could yield superior results with

respect to the one-step-ahead predictor, which is utilised by the EIVKF considered in

this thesis. These aspects are deemed to be interesting avenues for potential further

work. In addition, the convergence and consistency properties of the developed algo-

rithms have not yet been investigated. For potential practical applications, however,

such an analysis is of major interest and can also identified as potential future work.

This also applies to the relationship between the new PEM-SYM algorithm and the

joint output method, which has been discussed, but requires a more thorough analysis

which is also identified as potential further work.
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Chapter 8

Conclusions & further work

8.1 Conclusions

Prompted by a desire to exploit the errors-in-variables system identification and filtering

approaches to encompass online realisation of the techniques, this thesis has focused

attention on the development of pragmatically applicable algorithms for potential online

implementation. As outlined in Chapter 1, there are two main threads, namely:

1. Errors-in-variables identification, where the emphasis has been focused on the de-

velopment of recursive algorithms to realise the Frisch scheme, as well as exploit-

ing the similarities to the extended bias compensating least squares framework.

2. Errors-in-variables filtering where the emphasis is aimed at developing recursive

algorithms for reconstructing the noise-free input and noise-free output signals,

which may be subsequently utilised for errors-in-variables identification.

The development of the algorithms within this thesis is considered to be timely in

that there exists significant immediate potential for deployment in a range of indus-

trial/commercial settings where models with inherently unbiased parameters can be

utilised to advantage.

This Chapter summarises the main outcomes of the research documented in this

thesis. The two threads of research are separately discussed in Sections 8.1.1 and 8.1.2,

with reference to the chapters where details can be found. The main contributions are

summarised in descending order of significance in Section 8.1.3. Finally, avenues for

further work, as identified throughout the thesis, are summarised and listed in Section

8.2 in order of importance in the context of this work.

8.1.1 Recursive Frisch scheme identification

Algorithms to recursively approximate the Frisch scheme estimates of linear time-in-

variant single-input single-output dynamic errors-in-variables systems have been devel-

oped. The estimates of the model parameters and the input/output measurement noise
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variances are updated via gradient-based techniques, which are developed based on the

offline Frisch scheme equations for the white noise case. Two novel recursive algorithms

have been proposed in Chapter 3, which allow the update of a Frisch scheme model

as new data becomes available. This extends the applicability of the Frisch scheme

towards cases, which often rely on an online implementation, such as fault detection,

adaptive signal processing and adaptive errors-in-variables filtering. It has been shown

that the recursive algorithms can successfully approximate the offline Frisch scheme

solution and even retain the Frisch-character, the unique feature of the Frisch scheme.

A detailed analysis of the computational complexity of the developed algorithms has

been carried out. This has prompted, in Chapter 4, the development of two additional

fast recursive Frisch scheme algorithms, which reduce the computational complexity

from cubic to second order. The development of the fast algorithms further increases

the applicability range of the recursive Frisch scheme algorithms towards cases where

only limited computational resources are available and the use of complex algorithm

implementations is prohibitive.

In addition to the development of recursive approaches based on the offline Frisch

scheme, recursive algorithms for the extended bias compensating least squares identi-

fication problem have also been developed in Chapter 5 for the white noise case. Since

the Frisch scheme using the Yule-Walker model selection criterion can be interpreted

within this framework, the developed algorithms provide an alternative to the recursive

methods based on the offline Frisch scheme, hence enriching the portfolio of available

algorithms. A bilinear parametrisation concept has been exploited to derive a type of

recursive algorithm based on a two-step estimation approach leading to a computation-

ally attractive implementation. Moreover, a recursive implementation of the variable

projection method, which is also known as the nonlinear separable least squares tech-

nique, has been considered. This not only yields numerically sound algorithms for

the identification problem, but also allows the generalisability towards more complex

bias compensating settings, such as the coloured output noise case. Thus, the algo-

rithms developed within this framework, find wider applicability beyond the scope of

the identification via the Frisch scheme approach. In addition, an extensive simulation

study has provided a detailed comparison between the recursive algorithms developed

within the extended bias compensation framework and those based on the offline Frisch

scheme.

As well as the case of white output noise, a modified scenario whereby the output

noise is correlated in time (that is coloured output noise), a setup which is likely

to be more realistic in many practical applications, has been considered. Two novel

recursive algorithms have been proposed in Chapter 4, which have been developed

from existing offline identification schemes. Whilst the first algorithm follows a basic

approach involving the application of Newton’s method, the second algorithm leads to

a more straightforward and less computationally demanding scheme, which exploits the
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special structure of the underlying problem.

8.1.2 Errors-in-variables filtering

The theory of errors-in-variables Kalman filtering, which has only been considered for

linear systems within the literature, has been extended in Chapter 6 to encompass

a class of bilinear systems, an appealing and commonly utilised subset of nonlinear

systems. The significance of this contribution is twofold: Firstly, it can be considered

as a piece of pioneering work of extending the theory of errors-in-variables filtering

towards more practically oriented, yet correspondingly more sophisticated nonlinear

system structures. Since bilinear systems are closely related to linear systems, it appears

to be a most natural step to begin such an extension with this relatively simple class

of nonlinear systems. Secondly, since bilinear models are widely used within numerous

versatile areas, this contribution also lays the foundation for a practical application

of errors-in-variables filtering to the wider realm of real-world problems. Whilst the

optimal algorithm is shown to be infeasible in the bilinear errors-in-variables case,

the outcome of this work is that of a collection of four suboptimal algorithms from

which a user can choose the most suitable filter structure depending on the underlying

application. Due to the close relationship of bilinear and linear systems, the developed

filters are all based on the well known Kalman filter theory, hence they are relatively

easy to understand and to apply.

In addition to the bilinear errors-in-variables problem, Chapter 7 considers the

idea of combining (linear) errors-in-variables filtering and system identification, i.e. to

utilise the filtered inputs and outputs within the identification algorithm, in order to

reduce and eventually overcome the asymptotic bias of otherwise inconsistent estima-

tors. Whilst filtering for identification is commonly used within the literature to affect

the bias distribution of the estimates, the usage of the errors-in-variables Kalman filter

for this purpose has, to the author’s knowledge, not yet been considered. The basis

for the system identification procedure has been the recursive prediction error method

(either in approximate form given by the extended Kalman filter for joint state and

parameter estimation, or in its ‘true’/direct form), which is known to yield biased es-

timates in the presence of input measurement noise. A modified predictor has been

derived, which is shown (via simulation) to radically reduce the bias in the parame-

ter estimates of an errors-in-variables state space system. The chapter culminates, by

proposing a modified symmetric predictor, which can be implemented in an offline or

online manner. In addition, a Monte-Carlo simulation has indicated that the technique

may yield unbiased estimates. Finally, the similarities to the joint output method have

been discussed. The outcome is thus a novel errors-in-variables identification technique,

which provides a basis for discussion and eventual future research.
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8.1.3 Contributions in descending order of significance

A summary of the developments within this thesis are given as follows in a descending

order with respect to their considered significance.

1. Recursive algorithms based on the offline Frisch scheme using the Yule-Walker

model selection criterion have been developed (Chapter 3).

2. A symmetric prediction error method for errors-in-variables identification which

utilises errors-in-variables filtering techniques has been proposed (Chapter 7).

3. Based on the proposed recursive Frisch scheme algorithms, computationally less

expensive procedures have been developed (Chapter 4).

4. Algorithms for bilinear errors-in-variables filtering have been developed (Chapter

6).

5. Recursive algorithms for the extended bias compensating least squares approach

have been proposed (Chapter 5).

6. Recursive Frisch scheme algorithms for the coloured output noise case have been

proposed (Chapter 4).

8.2 Further work

The developments within this thesis have identified several topics for potential further

work.

In the time available, it did not prove possible to include any real world examples,

although several were considered. There is an urgent requirement, therefore, to

evaluate all of the proposed algorithms on some real application data. Work in

this regard is proceeding and will be reported in future publications.

As regards further algorithmic developments, additional research on the recursive Frisch

scheme should include:

• The development of alternative algorithms to replace the recursive bias compen-

sating least squares technique for the computation of the parameter vector. In

particular, the use of matrix factorisations could be an interesting direction.

• The use of other subspace tracking algorithms rather than the conjugate gradient

method might provide attractive alternatives.

• An extension of the developed recursive Frisch scheme algorithms when use is

made of the covariance match criterion is possible and is an interesting aspect for

further work.
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• A thorough mathematical analysis of the convergence and consistency aspects of

(some of) the developed algorithms would be desirable and could provide another

interesting topic of further work.

• All of the recursive algorithms should be considered from the point of view of time

variable parameter estimation since this is one of the major reasons for exploiting

recursive algorithms. In addition to simple exponential data weighting of the kind

considered in Appendix B, more sophisticated and flexible optimal approaches

need to be evaluated, as discussed for example in (Young 1999, Young 2000,

Young 2002). These include stochastic modelling of the parameter variations and

optimisation of the associated hyper-parameters, as well as the implementation

of recursive fixed interval smoothing to allow for improved offline estimation and

the removal of the estimation lag that affects online ’filtering’ recursions.

For the errors-in-variables filtering, the following aspects are considered to provide

topics for potential further work:

• The development of robust errors-in-variables filters for bilinear systems could be

a topic of interest.

• The extension of errors-in-variables filtering techniques towards more general non-

linear systems, other than bilinear, might be desirable. Within this context,

Bayesian approaches for bilinear errors-in-variables filtering might lead to im-

proved performance for the non-Gaussian case.

• The theory of (linear) errors-in-variables filtering techniques could be extended to

deal with stochastic parameters or coloured noise setups which would be another

direction for further work.

• An investigation of the relationship between errors-in-variables Kalman filtering

and classical Kalman filters, which can estimate the noise-free input when the

latter is described by a rational spectrum, would be illustrative. In particular,

it would be interesting to develop the optimal filter for the case when the input

has a rational spectrum and, in addition, when a feedthrough term and/or cross-

correlation between the input and output measurement noise is present (which

forms the basis for the errors-in-variables Kalman filter).

• In connection with the previous point, a detailed comparison of the joint output

method and symmetric prediction error method would be of interest. In addition,

a convergence and consistency analysis for the latter would also be desirable.

• Rather than the Kalman filter in one-step ahead prediction form, a fixed inter-

val smoother could be used for the symmetric prediction error method in the

offline case. This is likely to give some improvement with respect to estimation

performance and is, therefore, of potential interest.

203



Appendices

204



Appendix A

RBCLS derivation

Equation (2.1) can be rewritten as

A(q−1)yi −B(q−1)ui = A(q−1)ỹi −B(q−1)ũi , ei, (A.1)

where the residual ei is the difference of two moving average processes. This allows the

formulation of a linear regression problem

yi = ϕTi θ + ei (A.2)

and the application of the least squares (LS) estimator. It is well known that the LS

estimate

θ̂LS
k =

[
k∑

i=1

ϕiϕ
T
i

]−1 k∑

i=1

ϕiyi (A.3)

is asymptotically biased in the presence of measurement noise. An explicit expression

for the bias can be obtained by substituting (A.2) in (A.3) which yields

θ̂LS
k = θ +

[
k∑

i=1

ϕiϕ
T
i

]−1 k∑

i=1

ϕiei. (A.4)

Making use of the fact that ei = −ϕ̃Ti θ + ỹi, and dividing by k it follows that

1

k

k∑

i=1

ϕiϕ
T
i

(

θ̂LS
k − θ

)

= −
1

k

k∑

i=1

ϕiϕ̃iθ +
1

k

k∑

i=1

ϕiỹi, (A.5)

which becomes, in the asymptotic case, i.e. for k → ∞

Σϕ

(
θLS − θ

)
= −

[

σỹIna 0

0 σũInb

]

θ (A.6)
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A. RBCLS derivation

or, equivalently,

θ = θLS + Σ−1
ϕ

[

σỹIna 0

0 σũInb

]

θ, (A.7)

where Σϕ is obtained by deleting the first row and column of Σϕ̄.

Equation (A.7) gives rise to a recursive form and, if the noise variances are known

(or estimated), it is possible to apply the RLS estimator and compensate for the bias

at each time step k. This gives the update equation

θ̂k = θ̂LS
k +

[

Σ̂k
ϕ

]−1
Σϕ̃(σ̂k)θ̂k−1 (A.8)

with the noise compensation matrix

Σϕ̃(σ̂k) =

[

σ̂kỹIna 0

0 σ̂kũInb

]

. (A.9)
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Appendix B

Recursive update of covariance

matrices

This appendix reviews the recursive update equation for covariance matrix estimates

for both, equally and exponentially weighted data.

B.1 Equally weighted data

A commonly used estimator for a covariance matrix of two general vectors ai and bi is

defined by

Σ̂k
ab ,

1

k

k∑

i=1

aib
T
i . (B.1)

A recursive version of this estimator is given by

Σ̂k
ab =

1

k

[
k−1∑

i=1

aib
T
i + akb

T
k

]

, (B.2)

=
1

k

[

(k − 1)Σ̂k−1
ab + akb

T
k

]

, (B.3)

= Σ̂k−1
ab +

1

k

[

akb
T
k − Σ̂k−1

ab

]

. (B.4)

B.2 Exponentially weighted data

In order to allow an algorithm to be adaptive, an exponential form of data weight-

ing may be utilised (Ljung 1999, Sec. 11.2). This can be realised by giving the ith

measurement at time k the weighting βki , which satisfies the properties

βki = λkβ
k−1
i for 0 ≤ i < k − 1, (B.5)

βkk = 1, (B.6)
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B. Recursive update of covariance matrices

where 0 < λk ≤ 1 is a potentially time-varying forgetting factor. The properties of the

weighting leads to the recursive relation

k∑

i=1

βikaib
T
i =

k−1∑

i=1

βikaib
T
i + akb

T
k , (B.7)

= λk

k−1∑

i=1

βik−1aib
T
i + akb

T
k . (B.8)

Due to the individual weighting of each summand in (B.7), the accordingly weighted

covariance matrix estimate cannot simply use the scaling 1/k as is (B.1). Instead, a

weighted arithmetic mean is to be computed which is given by

Σ̄k
ab = γk

k∑

i=1

βikaib
T
i , (B.9)

where γk denotes a normalising gain given by

γk =
1

∑k
i=1 β

k
i

. (B.10)

Note that in the case of no adaptivity, i.e. λk = 1 for all k, the data weighting becomes

βki = 1 for all 0 ≤ i < k which results in γk = 1/k. In this case (B.9) becomes (B.1), i.e.

the standard estimator for covariance matrices. Using (B.8) and (B.9), the recursive

update of the Σ̄k
ab is given by

Σ̄k
ab = γk

k∑

i=1

βikaib
T
i , (B.11)

= γk

[

λk

k−1∑

i=1

βik−1aib
T
i + akb

T
k

]

, (B.12)

= γk

[

λk
1

γk−1
Σ̄k−1
ab + akb

T
k

]

. (B.13)

Exploiting the fact that the normalising gain satisfies the recursive relationship

λk
γk−1

=
1

γk
− 1, (B.14)

equation (B.13) simplifies to

Σ̄k
ab = Σ̄k−1

ab + γk

[

akb
T
k − Σ̄k−1

ab

]

. (B.15)
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Appendix C

Linearisation of the Frisch

scheme equations

This appendix reviews the linearisation of the Frisch scheme equations as outlined in

(Söderström 2007a). Dropping the time index for the ease of notation, recall that the

basic Frisch equations are given by

(

Σ̂ϕ − Σϕ̃(σ̂)
)

θ̂ = ξ̂ϕy, (C.1a)

σ̂ỹ = λmin

(

Σ̂ϕ̄y − Σ̂ϕ̄yϕu

[

Σ̂ϕu − σ̂ũInb

]−1
Σ̂ϕuϕ̄y

)

. (C.1b)

The linearisation is carried out around the value

ϑ∗ ,






θ∗

σ∗ỹ
σ∗ũ




 . (C.2)

C.1 Linearisation of θ-equation

From (C.1a), one obtains

θ̂ − θ∗ =
(

Σ̂ϕ − Σϕ̃(σ̂)
)−1

ξ̂ϕy − θ∗

=
(

Σ̂ϕ − Σϕ̃(σ̂)
)−1

(

ξ̂ϕy −

(

Σ̂ϕ −

[

σ̂ỹIna 0

0 σ̂ũInb

])

θ∗

)

≈
(

Σ̂ϕ − Σϕ̃(σ∗)
)−1

(

ξ̂ϕy − Σ̂ϕθ
∗ +

[

σ̂ỹa
∗

σ̂ũb
∗

])

, (C.3)
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C. Linearisation of the Frisch scheme equations

where it is assumed that ϑ̂ is close to the point of linearisation ϑ∗, in order to allow for

the approximation

(

Σ̂ϕ − Σϕ̃(σ̂)
)−1

≈
(

Σ̂ϕ − Σϕ̃(σ∗)
)−1

. (C.4)

Further modification of (C.3) gives

θ̂ − θ∗ =
(

Σ̂ϕ − Σϕ̃(σ∗)
)−1

(

1

k

k∑

i=1

ϕiyi −
1

k

k∑

i=1

ϕiϕ
T
i θ

∗ +

[

σ̂ỹa
∗

σ̂ũb
∗

])

=
(

Σ̂ϕ − Σϕ̃(σ∗)
)−1

(

1

k

k∑

i=1

ϕi
(
yi − ϕTi θ

∗
)

+

[

σ̂ỹa
∗

σ̂ũb
∗

]

+

[

σ∗ỹa
∗

σ∗ũb
∗

]

−

[

σ∗ỹa
∗

σ∗ũb
∗

])

=
(

Σ̂ϕ − Σϕ̃(σ∗)
)−1

(

1

k

k∑

i=1

ϕiε(θ
∗) +

[

(σ̂ỹ − σ∗ỹ)a
∗

(σ̂ũ − σ∗ũ)b
∗

]

+

[

σ∗ỹa
∗

σ∗ũb
∗

])

, (C.5)

which yields the linearisation result given in (Söderström 2007a) given by

(

Σ̂ϕ − Σϕ̃(σ∗)
)(

θ̂ − θ∗
)

−

[

a∗

0

]

(σ̂ỹ − σ∗ỹ) −

[

0

b∗

]

(σ̂ũ − σ∗ũ) =

1

k

k∑

i=1

ϕiε(θ
∗) +

[

σ∗ỹa
∗

σ∗ũb
∗

]

. (C.6)

C.1.1 Sensitivity derivatives

From (C.3) it is straightforward to compute

∂θ̂

∂σ̂ũ
≈
(

Σ̂ϕ − Σϕ̃(σ∗)
)−1

[

0

b∗

]

, (C.7a)

∂θ̂

∂σ̂ỹ
≈
(

Σ̂ϕ − Σϕ̃(σ∗)
)−1

[

a∗

0

]

. (C.7b)

C.2 Linearisation of λmin-equation

The idea is to linearise the λmin-equation around ϑ∗ using perturbation theory.

Assume that ϑ∗ satisfies the compensated normal equations

[

Σ̂ϕ̄y − Σϕ̃y(σ
∗
ỹ) Σ̂ϕ̄yϕu

Σ̂ϕuϕ̄y Σ̂ϕu − Σϕ̃y(σ
∗
ũ)

][

ā∗

b∗

]

= 0 (C.8)

which are rewritten for ease of notation as

[

A− σ∗ỹIna C

CT D∗

] [

ā∗

b∗

]

= 0. (C.9)
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C. Linearisation of the Frisch scheme equations

Similarly, introduce

[

A− σ̂ỹIna C

CT D̂

][

ˆ̄a

b̂

]

= 0. (C.10)

Note that σ∗ỹ and σ̂ỹ are obtained via

σ∗ỹ = λmin (B∗) , (C.11a)

σ̂ỹ = λmin

(

B̂
)

, (C.11b)

where

B∗ = A− CD−1
∗ CT , (C.12a)

B̂ = A− CD̂−1CT . (C.12b)

Now, the result of perturbation theory states that

λmin(B̂) = λmin(B∗ + ∆B) ≈ λmin(B∗) +
āT∗ ∆Bā∗
āT∗ ā∗

, (C.13)

where

∆B = B̂ −B∗ = C
(

D−1
∗ − D̂−1

)

CT . (C.14)

Consequently, one can write

σ̂ỹ − σ∗ỹ ≈ λmin(B∗) +
āT∗ ∆Bā∗
āT∗ ā∗

− λmin(B∗)

=
āT∗
āT∗ ā∗

(∆B) ā∗. (C.15)

Expanding ∆B as

∆B = CD−1
∗ CT − CD̂−1CT

= CD−1
∗

(

D̂ −D∗

)

D̂−1CT (C.16)

and introducing

D̂ = D̄ − σ̂ũInb
, (C.17a)

D∗ = D̄ − σ∗ũInb
, (C.17b)

gives

D̂ −D∗ = D̄ − σ̂ũInb
− D̄ + σ∗ũInb

= σ∗ũInb
− σ̂ũInb

, (C.18)
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C. Linearisation of the Frisch scheme equations

and Equation (C.15) becomes

āT∗ ā∗
(
σ̂ỹ − σ∗ỹ

)
≈ −āT∗ CD

−1
∗ (σ̂ũ − σ∗ũ) D̂

−1CT ā∗. (C.19)

From the lower part of (C.9), one obtains

b∗ = −D−1
∗ CTa∗, (C.20)

and by assuming that b∗ ≈ D̂−1CTa∗, (C.19) becomes

āT∗ ā∗
(
σ̂ỹ − σ∗ỹ

)
≈ −bT∗ b∗ (σ̂ũ − σ∗ũ) . (C.21)

C.2.1 Sensitivity derivatives

From (C.21) it is straightforward to compute

dσ̂ỹ
dσ̂ũ

≈ −
bT∗ b∗
āT∗ ā∗

. (C.22)
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Appendix D

Derivatives for RFSCON1

D.1 First order derivative of V k
1

Denoting (·)′ the derivative w.r.t. σ̂kũ and introducing

fk , GTk ξ̂
k
δy, Fk , GTkGk, (D.1)

it holds that

f ′k = −

[

0

ξ̂kϕuy

]

, (D.2a)

F ′
k =

[

0 Σ̂k
ϕuϕy

T

Σ̂k
ϕuϕy

2σ̂k−1
ũ Inb

− 2Σ̂k
ϕu

]

, (D.2b)

F−1
k

′
= −F−1

k F ′
kF

−1
k (D.2c)

and the first order derivative is given by

V k′
1 = −

(
fTk F

−1
k fk

)′

= − f ′k
T
F−1
k fk − fTk F−1

k

′
fk − fTk F

−1
k f ′k. (D.3)

D.2 Second order derivative of V k
1

Utilising the product rule, the second order derivative is given by

V k′′
1 = − f ′k

T
F−1
k

′
fk − f ′k

T
F−1
k f ′k

− f ′k
T
F−1
k

′
fk − fTk F−1

k

′′
fk − fTk F−1

k

′
f ′k

− f ′k
T
F−1
k f ′k − fTk F−1

k

′
f ′k

= −2 f ′k
T
F−1
k

′
fk − 2 f ′k

T
F−1
k f ′k

− fTk F−1
k

′′
fk − 2fTk F−1

k

′
f ′k (D.4)
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with

F−1
k

′′
= − F−1

k

′
F ′
kF

−1
k − F−1

k F ′′
k F

−1
k − F−1

k F ′
k F

−1
k

′
, (D.5a)

F ′′
k =

[

0 0

0 2Inb

]

. (D.5b)

D.3 Derivative of ς̂k

The idea is to linearise the Frisch equation (2.82) using perturbation theory (as in

Appendix C.2), in order to approximate the derivative of ς̂k w.r.t. αk. The derivation

here is conceptually similar to that given in Appendix II.B of (Söderström 2007a), but

with the linearisation carried out around ϑ̂k−1 rather than the true parameters ϑ0.

Assume that at time instance k−1, ϑ̂k−1 satisfies the extended compensated normal

equations

[

Σ̂k−1
ϕ̄y

− Σ̂k−1
ϕ̃y

Σ̂k−1
ϕ̄yϕu

Σ̂k−1
ϕuϕ̄y

Σ̂k−1
ϕu

− σ̂k−1
ũ Inb

][

ˆ̄ak−1

b̂k−1

]

= 0 (D.6)

which are rewritten for ease of notation as

[

A − B C

CT D − σ̂k−1
ũ I

] [

a

b

]

= 0. (D.7)

Similarly, introduce the notation at time instance k as

[

A − B C

CT D − σ̂kũI

][

a

b

]

= 0. (D.8)

Let σ̂kũ denote the estimate obtained via (2.75). Alternatively, if Σ̂k
ϕ̃y

is known, the

input measurement noise could be obtained using (2.82) and denote this quantity ςk.

Using perturbation theory for eigenvalues yields

ςk = λmin {Bk(αk)} = λmin {Bk−1(αk−1) + ∆Bk}

≈ ςk−1 +
bT∆Bkb

bTb
, (D.9)

where the perturbation is given by (cf. (2.83))

∆Bk = Bk(αk) −Bk−1(αk−1)

= D − C
T [A − B]−1

C − D + CT [A − B]−1
C

= D − C
T
F

−1
C − D + CTF−1C (D.10)
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with F , [A − B] and F , [A − B]. Substituting (D.10) in (D.9) yields

ςk − ςk−1 ≈
bT

bTb

(
D − D + CTF−1C − C

T
F

−1
C
)
b

=
bT

bTb
(D − D) b +

bTXb

bTb
, (D.11)

where X can be expressed as

X = CTF−1C − C
T
F

−1
C

+ CTF −1
C − CTF −1

C

+ CTF−1
C − CTF−1

C

=
(
CT − C

T
)
F

−1
C + CTF−1 (C − C)

− CTF−1 (F − F )F −1
C (D.12)

and by combining (D.11) and (D.12), it holds that

bTb

(

ςk − ςk−1
)

≈ bT (D − D) b

+ bT
(
CT − C

T
)
F

−1
Cb

+ bTCTF−1 (C − C) b

− bTCTF−1 (F − F )F −1
Cb. (D.13)

Now, the first row of (D.7) gives

a = −F−1Cb (D.14)

and by assuming that F −1Cb ≈ −a, (D.13) finally simplifies to

bTb

(

ςk − ςk−1
)

≈ bT (D − D) b

− bT
(
CT − C

T
)
a

− aT (C − C) b

− aT (F − F ) a, (D.15)

where F is the only element depending on αk. Therefore,

dςk

dαk
≈

d

dαk

(
aT (A − B) a

bTb

)

= −
aT dB

dαk
a

bTb
(D.16)

or equivalently

d

dαk
λmin {Bk(αk)} ≈ −

ˆ̄aTk−1

b̂Tk−1b̂k−1

d

dαk
Σ̂k

˜̄ϕy
ˆ̄ak−1. (D.17)
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Since Σk
˜̄ϕy

consists of the quantities r̂kỹ (0), ..., r̂
k
ỹ (na), it remains to determine

d

dαk
ρ̂ky =

[
d
dαk

r̂kỹ(0) · · · d
dαk

r̂kỹ(na)
]T

(D.18)

which, due to (2.81), is given by

d

dαk
ρ̂ky = N(Hk). (D.19)
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Appendix E

Recursive bias compensation of

the IV estimator

In order to obtain an explicit expression for the bias, the linear regression formulation

yi = ϕTi θ + ei (E.1)

is substituted in (4.46) which gives

θ̂IV
k =

[

1

k

k∑

i=1

δ∗i ϕ
T
i

]−1
1

k

k∑

i=1

δ∗i
(
ϕTi θ + ei

)

= θ +

[

1

k

k∑

i=1

δ∗i ϕ
T
i

]−1
1

k

k∑

i=1

δ∗i ei (E.2)

By substituting ei = −ϕ̃iθ + ỹi it follows that

θ̂IV
k = θ +

[

1

k

k∑

i=1

δiϕ
T
i

]−1
1

k

k∑

i=1

δ∗i ỹi −

[

1

k

k∑

i=1

δ∗i ϕ
T
i

]−1
1

k

k∑

i=1

δ∗i ϕ̃
T
i θ. (E.3)

The vector δ∗i is uncorrelated with ỹi which means that the middle part of the sum in

(E.3) diminishes in the asymptotic case, whereas

lim
k→∞

1

k

k∑

i=1

[

ϕui

ζ∗i

]
[

ϕ̃Tyi
ϕ̃Tui

]T
=

[

0 σũInb

0 0

]

, (E.4)

where ζ∗i is obtained by deleting the last entry of ζi. Consequently, for k → ∞ (E.3)

becomes

θIV = θ − σũΣ
−1
δϕJ

∗θ, (E.5)
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where J∗ is obtained by deleting the last row of J in (2.71). Equation (E.5) gives rise

to the recursive bias compensation update equation for θ̂k

θ̂k = θ̂IV
k + σ̂kũ

[

Σ̂k
δϕ

]−1
J∗θ̂k−1, (E.6)

where the uncompensated parameter estimate θ̂IV
k can be recursively computed via a

recursive IV (RIV) algorithm (Ljung 1999, p. 369) given by

θ̂IV
k = θ̂IV

k−1 + Lk

[

yk − ϕTk θ̂
IV
k−1

]

, (E.7a)

Lk =
Pk−1δ

∗
k

1−γk
γk

+ ϕTk Pk−1δ
∗
k

, (E.7b)

Pk =
1

1 − γk

[

Pk−1 −
Pk−1δ

∗
kϕ

T
k Pk−1

1−γk
γk

+ ϕTk Pk−1δ
∗
k

]

. (E.7c)

with the only difference being that Pk is scaled such that

[

Σ̂k
δϕ

]−1
= Pk. (E.8)
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Appendix F

Left pseudo inverse of Gk(θ̂k)

Recall that

G(θ̂k) =









1 0

−âk 0

0 −b̂k

0 0









. (F.1)

Then

GT (θ̂k)G(θ̂k) =

[

1 −âTk 0 0

0 0 −b̂Tk 0

]









1 0

−âk 0

0 −b̂k

0 0









=

[

1 + âTk âk 0

0 b̂Tk b̂k

]

, (F.2)

and

[

GT (θ̂k)G(θ̂k)
]−1

=





(
1 + âTk âk

)−1
0

0
(

b̂Tk b̂k

)−1



 , (F.3)

which yields the left pseudo inverse of Gk(θ̂k) as

G†(θ̂k) =
[

GT (θ̂k)G(θ̂k)
]−1

G(θ̂k)
T

=





(
1 + âTk âk

)−1
0

0
(

b̂Tk b̂k

)−1





[

1 −âTk 0 0

0 0 −b̂Tk 0

]

=





(
1 + âTk âk

)−1
−âTk

(
1 + âTk âk

)−1
0 0

0 0 −b̂Tk

(

b̂Tk b̂k

)−1
0



 . (F.4)
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Appendix G

Recursive algorithms for

overdetermined normal equations

G.1 ERLS1

The first algorithm makes use of the matrix inversion lemma for pseudo inverses (Feng

et al. 2001) and is denoted ERLS1.

G.1.1 Recursive update of pseudo inverse

Recall that the pseudo matrix inversion lemma is given by (5.24)

[A+ bcT ]† = A† −
A†bcTA†

1 + cTA†b
. (G.1)

The update for the weighted arithmetic mean Σ̂k
zϕ is given by (cf. Appendix B)

Σ̂k
zϕ = (1 − γk)Σ̂

k−1
zϕ

︸ ︷︷ ︸

A

+ γkzk
︸︷︷︸

b

ϕTk
︸︷︷︸

cT

. (G.2)

Defining

Pk ,
[

Σ̂k
zϕ

]†
, (G.3)

the application of the pseudo matrix inversion lemma yields

Pk =
1

1 − γk
Pk−1 −

1
1−γk

Pk−1γkzkϕ
T
k

1
1−γk

Pk−1

1 + ϕTk
1

1−γk
Pk−1γkzk

=
1

1 − γk

(

Pk−1 −
Pk−1γkzkϕ

T
k Pk−1

1 − γk + ϕTk Pk−1γkzk

)

=
1

1 − γk

(
Pk−1 − Lkϕ

T
k Pk−1

)
, (G.4)
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where

Lk ,
Pk−1γkzk

1 − γk + ϕTk Pk−1γkzk
. (G.5)

G.1.2 Recursive update of θIVk

The recursive update of the parameter vector is given by

θIV
k = Pk ξ̂

k
zy

=
1

1 − γk

(
Pk−1 − Lkϕ

T
k Pk−1

) [

(1 − γk)ξ̂
k−1
zϕ + γkzkyk

]

= θIV
k−1 − Lkϕ

T
k θ

IV
k−1 +

γk
1 − γk

Pk−1zkyk −
γk

1 − γk
Lkϕ

T
k Pk−1zkyk

= θIV
k−1 − Lkϕ

T
k θ

IV
k−1 +

(
γk

1 − γk
Pk−1zk −

γk
1 − γk

Lkϕ
T
k Pk−1zk

)

yk, (G.6)

and since

γk
1 − γk

Pk−1zk −
γk

1 − γk
Lkϕ

T
k Pk−1zk

=
γk

1 − γk

(

Pk−1zk −
Pk−1γkzkϕ

T
k Pk−1zk

1 − γk + ϕTk Pk−1γkzk

)

=
γk

1 − γk

(

Pk−1zk
(
1 − γk + ϕTk Pk−1γkzk

)

1 − γk + ϕTk Pk−1γkzk
−

Pk−1γkzkϕ
T
k Pk−1zk

1 − γk + ϕTk Pk−1γkzk

)

=
γk

1 − γk

(
Pk−1zk (1 − γk)

1 − γk + ϕTk Pk−1γkzk

)

=
1

1 − γk

(
γkPk−1zk

1 − γk + ϕTk Pk−1γkzk
−

γkPk−1zkγk

1 − γk + ϕTk Pk−1γkzk

)

=
1

1 − γk
(Lk − γLk)

=
1 − γk
1 − γk

Lk

=Lk, (G.7)

(G.6) simplifies to

θIV
k = θIV

k−1 − Lkϕ
T
k θ

IV
k−1 + Lkyk

= θIV
k−1 + Lk

(
yk − ϕTk θ

IV
k−1

)
. (G.8)

The extended recursive least squares algorithm, denoted ERLS1, can be summarised

as follows.
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Algorithm G.1 (ERLS1).

θIV
k = θIV

k−1 + Lk
(
yk − ϕTk θ

IV
k−1

)
(G.9a)

Lk =
Pk−1γkzk

1 − γk + ϕTk Pk−1γkzk
(G.9b)

Pk =
1

1 − γk

(
Pk−1 − Lkϕ

T
k Pk−1

)
(G.9c)

G.2 ERLS2

The second algorithm uses the standard matrix inversion lemma applied to a reformu-

lated problem, which reduces the dimension of matrix to be inverted to a fixed size of

2 × 2. This method is given in (Söderström & Stoica 1989).

Consider the overdetermined system of normal equations

Σk
zϕθ = ξkzy, (G.10)

for which the least squares solution is given by

θ̂k = Σk†
zϕξ

k
zy =

[

ΣkT

zϕΣk
zϕ

]−1
ΣkT

zϕξ
k
zy = PkΣ

kT

zϕξ
k
zy. (G.11)

where

Pk ,
[

ΣkT

zϕΣk
zϕ

]−1
. (G.12)

A recursive expression for θ̂k is then given by

θ̂k = θ̂k−1 + PkΣ
kT

zϕ

[

ξkzy − Σk
zϕθ̂k−1

]

. (G.13)

It follows that

ΣkT

zϕ

[

ξkzy − Σk
zϕθ̂k−1

]

=
[

Σk−1T

zϕ + ϕkz
T
k

] [

ξk−1
zy + zkyk −

(

Σk−1
zϕ + zkϕ

T
k

)

θ̂k−1

]

= Σk−1T

zϕ

(

ξk−1
zy − Σk−1

zϕ θ̂k−1

)

+ Σk−1T

zϕ zk

(

yk − ϕTk θ̂k−1

)

+ ϕkz
T
k

[

ξk−1
zy − Σk−1

zϕ θ̂k−1 + zk

(

yk − ϕTk θ̂k−1

)]

. (G.14)

222



G. Recursive algorithms for overdetermined normal equations

Noting that ξk−1
zy − Σk−1

zϕ θ̂k−1 = 0, (G.14) can be re-expressed as

ΣkT

zϕ

[

ξkzy − Σk
zϕθ̂k−1

]

=
[

ϕk, Σk−1T

zϕ zk + ϕkz
T
k zk

]
[

zTk

(

ξk−1
zy − Σk−1

zϕ θ̂k−1

)

yk − ϕTk θ̂k−1

]

=
[

Σk−1T

zϕ zk, ϕk

]
[

0 1

1zTk zk

]([

zTk ξ
k−1
zy

yk

]

−

[

wTk
ϕtk

]

θ̂k−1

)

= φΛ−1
k

(

vk − φTk θ̂k−1

)

, (G.15)

where

wk , Σk−1T

zϕ zk, (G.16a)

φk ,
[

wk ϕk

]

, (G.16b)

Λ−1
k ,

[

0 1

1 zTk zk

]

, (G.16c)

vk ,

[

zTk ξ
k−1
zy

yk

]

. (G.16d)

Using (G.15), it holds

P−1
k =

(

Σk−1T

zϕ + ϕkz
T
k

)(

Σk−1
zϕ + zkϕ

T
k

)

= P−1
k−1 + ϕkw

T
k + wkϕ

T
k + ϕkz

T
k zkϕ

T
k

= P−1
k−1 +

[

wk ϕk

]
[

0 1

1 zTk zk

][

wTk
ϕTk

]

= P−1
k−1 + φΛ−1

k φTk , (G.17)

which allows an application of the (standard) matrix inversion lemma giving

Pk = Pk−1 − Pk−1φk
(
Λk + φTk Pk−1φk

)−1
φTk Pk−1, (G.18)

and

Pkφk = Pk−1φk
(
Λk + φTk Pk−1φk

)−1
Λk. (G.19)

The ERLS2 algorithm can be summarised as follows.

223



G. Recursive algorithms for overdetermined normal equations

Algorithm G.2 (ERLS2).

θ̂k = θ̂k−1 + Lk

(

vk − φθ̂k−1

)

(G.20a)

Lk = Pk−1φk
(
Λk + φTk Pk−1φk

)−1
(G.20b)

Pk = Pk−1 − Lkφ
T
k Pk−1 (G.20c)

wk = Σk−1T

zϕ zk (G.20d)

φk =
[

wk ϕk

]

(G.20e)

Λk =

[

−zTk zk 1

1 0

]

(G.20f)

vk =

[

zTk ξ
k−1
zy

yk

]

(G.20g)
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Appendix H

Derivation of the Kalman filter

for bilinear systems

The single phase Kalman filter (one-step prediction problem giving x̂k+1|k) is derived

for a bilinear discrete-time system based on an innovations approach. As outlined in

(Favoreel et al. 1999), a bilinear system can be regarded as a time-varying linear system,

hence, the derivation follows the approach given in (Anderson & Moore 1979, Sec. 5.4).

H.1 Preliminaries

For k ≥ 0, let the bilinear system be given by

xk+1 = Akxk +Bkuk +Nkukxk +Gkvk, (H.1a)

zk = Ckxk +Dkuk + ek, (H.1b)

where xk is the state vector, uk the system input, zk the measured system output and

vk and ek are state noise and output noise, respectively. The system matrices Ak, Bk,

Ck, Dk, Gk and Nk depend on the time instance k and are of appropriate dimensions.

Additionally, the following assumptions hold:

AI2 The system input uk is known exactly.

AN3 The noise sequences vk and ek are zero mean, white, and satisfy

E

[[

vk

ek

]
[

vTl eTl

]
]

=

[

Σk
v Σk

ve

ΣkT

ve Σk
e

]

δkl. (H.2)

AN4 The initial state x0 has the mean x̄0 with covariance matrix P0. In addition, x0

is independent of
[

vTk eTk

]T
for all k.

AN5 The quantities x0, vk and ek are jointly Gaussian.
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H. Derivation of the Kalman filter for bilinear systems

Basically, there are two different approaches to tackle the problem: The first one

is to exploit Assumption AN5 and derive the optimal minimum variance (conditional

mean) estimator x̂k|k−1 = E[xk|Zk−1], where E[·] denotes the expected value operator

and Zk = {z0, z1, ..., zk}. In this case, the corresponding covariance matrix Pk|k−1 is

both, conditional and unconditional. Alternatively, one can drop AN5 and seek the

linear minimum variance estimator x̂k|k−1 = E∗[xk|Zk−1], (which is not an expectation)

where the associated covariance matrix Pk|k−1 is unconditional (cf. (Anderson & Moore

1979, Sec. 5.2) for more details). Here, the first approach is followed.

H.2 Evolution of the conditional mean x̂k|k−1

The objective is to find

x̂k|k−1 = E[xk|Zk−1] = E[xk|Z̃k−1], (H.3)

where Z̃k−1 is the sequence of innovations z̃0, z̃1, ..., z̃k−1, with

z̃k = zk − E[zk|Zk−1] = zk − E[zk|Z̃k−1]

= zk − Ckx̂k|k−1 −Dkuk

= Ckxk +Dkuk + ek − Ckx̂k|k−1 −Dkuk

= Ckx̃k + ek, (H.4)

and

x̃k = xk − x̂k|k−1 (H.5)

denotes the state prediction error with associated error covariance matrix

Pk|k−1 = E[x̃kx̃
T
k ]. (H.6)

Since the innovations are independent, one can write for (H.3) (Anderson & Moore 1979,

Theorem 2.4, p. 94)

x̂k+1|k = E[xk+1|z̃0, ..., z̃k] = E[xk+1|z̃k] + E[xk+1|z̃0, ..., z̃k−1] − E[xk+1], (H.7)

and due to the fact that xk+1 and z̃k are jointly Gaussian, one can write for the first

term (Anderson & Moore 1979, Theorem 2.1, p. 93)

E[xk+1|z̃k] = E[xk+1] + cov(xk+1, z̃k) [cov(z̃k, z̃k)]
−1 z̃k. (H.8)

Restricting attention the the first covariance term in (H.8), one obtains utilising
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H. Derivation of the Kalman filter for bilinear systems

(H.4)

cov(xk+1, z̃k) = E
[
xkz̃

T
k

]

= E
[

[Akxk +Bkuk +Nkukxk +Gkvk] [Ckx̃k + ek]
T
]

. (H.9)

By exploiting the independence of the various variables and since uk is known and x̃k,

hence Ckx̃k, has zero mean, one obtains

cov(xk+1, z̃k) = E
[
Akxkx̃

T
kC

T
k

]
+ E

[
Nkukxkx̃

T
kC

T
k

]
+ E

[
Gkvke

T
k

]

= AkE
[
x̃kx̃

T
k

]
CTk +AkE

[
x̂k|k−1x̃

T
k

]
CTk

+NkukE
[
x̃kx̃

T
k

]
CTk +NkukE

[
x̂k|k−1x̃

T
k

]
CTk +GkΣ

k
ve. (H.10)

The quantity E
[
x̂k|k−1x̃

T
k

]
is equal to zero, since “x̃k is the error in projecting xk onto

the subspace generated by zk−1, zk−2, ... and is, therefore, orthogonal to that subspace,

while x̂k|k−1 is a member of it” (Anderson & Moore 1979, p. 106). This gives

cov(xk+1, z̃k) = AkPk|k−1C
T
k +NkukPk|k−1C

T
k +GkΣ

k
ve. (H.11)

The second covariance term in (H.8) is given by

cov(z̃k, z̃k) = E
[
z̃kz̃

T
k

]

= E [Ckx̃k + ek] [Ckx̃k + ek]
T

= CkPk|k−1C
T
k + Σk

e . (H.12)

Therefore, (H.8) becomes

E[xk+1|z̃k] = E[xk+1] +
[

AkPk|k−1C
T
k +NkukPk|k−1C

T
k +GkΣ

k
ve

]

×
[

CkPk|k−1C
T
k + Σk

e

]−1
z̃k. (H.13)

In order to determine the prediction of the state, it remains to determine the second

term in (H.7), which is given by

E[xk+1|Z̃k−1] = E[Akxk +Bkuk +Nkukxk +Gkvk|Z̃k−1], (H.14)

and due to the independence of vk and Z̃k−1 and the fact that uk is known, one obtains

E[xk+1|Z̃k−1] = Akx̂k|k−1 +Bkuk +Nkukx̂k|k−1. (H.15)
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Hence, the state prediction of (H.7) becomes

x̂k+1|k = E[xk+1] +
[

AkPk|k−1C
T
k +NkukPk|k−1C

T
k +GkΣ

k
ve

] [

CkPk|k−1C
T
k + Σk

e

]−1
z̃k

+Akx̂k|k−1 +Bkuk +Nkukx̂k|k−1 − E[xk+1], (H.16)

which is equivalent to

x̂k+1|k = Akx̂k|k−1 +Bkuk +Nkukx̂k|k−1 +Kk

[
zk − Ckx̂k|k−1 −Dkuk

]
, (H.17a)

Kk =
[

AkPk|k−1C
T
k +NkukPk|k−1C

T
k +GkΣ

k
ve

] [

CkPk|k−1C
T
k + Σk

e

]−1
. (H.17b)

H.3 Evolution of the covariance matrix

The state estimation error is given by

x̃k+1 = xk+1 − x̂k+1|k

= Akxk +Bkuk +Nkukxk +Gkvk −Akx̂k|k−1 −Bkuk −Nkukx̂k|k−1 −Kkz̃k

= Akx̃k +Nkukx̃k +Gkvk −Kk [Ckx̃k + ek]

= [Ak +Nkuk −KkCk] x̃k +Gkvk −Kkek, (H.18)

and consequently, since x̃k, vk and ek are mutually independent, the corresponding

covariance matrix is

Pk+1|k = E
[
x̃k+1x̃

T
k+1

]

= [Ak +Nkuk −KkCk]Pk|k−1

[
ATk + uTkN

T
k − CTk K

T
k

]

+GkΣ
k
vG

T
k −GkΣ

k
veK

T
k −KkΣ

k
ve
T
GTk +KkΣ

k
eK

T
k

= [Ak +Nkuk −KkCk]Pk|k−1

[
ATk + uTkN

T
k − CTk K

T
k

]

+
[

Gk −Kk

]
[

Σk
v Σk

ve

Σk
ve
T

Σk
e

][

GTk
−KT

k

]

. (H.19)

Alternative formulation In the literature, the Kalman filter covariance matrix fre-

quently occurs in a slightly different form, which is obtained by replacing the Kalman

gain Kk into (H.19). This gives

Pk+1|k = [Ak +Nkuk −KkCk]Pk|k−1

[
ATk + uTkN

T
k − CTk K

T
k

]

+GkΣ
k
vG

T
k −GkΣ

k
veK

T
k −KkΣ

k
ve
T
GTk +KkΣ

k
eK

T
k

= AkPk|k−1A
T
k +AkPk|k−1u

T
kN

T
k −AkPk|k−1C

T
k K

T
k

+NkukPk|k−1A
T
k +NkukPk|k−1u

T
kN

T
k −NkukPk|k−1C

T
k K

T
k

−KkCkPk|k−1A
T
k −KkCkPk|k−1u

T
kN

T
k +KkCkPk|k−1C

T
k K

T
k

+GkΣ
k
vG

T
k −GkΣ

k
veK

T
k −KkΣ

k
ve
T
GTk +KkΣ

k
eK

T
k
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= AkPk|k−1A
T
k +NkukPk|k−1u

T
kN

T
k +GkΣ

k
vG

T
k

−
[

AkPk|k−1C
T
k +NkukPk|k−1C

T
k +GkΣ

k
ve

]

KT
k

−Kk

[

CkPk|k−1A
T
k + CkPk|k−1u

T
kN

T
k + Σk

ve
T
GTk

]

+Kk

[

CkPk|k−1C
T
k + Σk

e

]

KT
k . (H.20)

Notice, that by utilising the Kalman gain equation (H.17b), it is seen that the last

three terms of the sum in (H.20) are, apart form their sign, identical to

[

AkPk|k−1C
T
k +NkukPk|k−1C

T
k +GkΣ

k
ve

] [

CkPk|k−1C
T
k + Σk

e

]−1

×
[

CkPk|k−1A
T
k + CkPk|k−1u

T
kN

T
k + Σk

ve
T
GTk

]

, (H.21)

hence, (H.20) simplifies to

Pk+1|k = AkPk|k−1A
T
k +NkukPk|k−1u

T
kN

T
k +GkΣ

k
vG

T
k

−Kk

[

CkPk|k−1C
T
k + Σk

e

]

KT
k . (H.22)

H.4 Summary

The single-phase Kalman filter for the bilinear case (BKF) is given by the following

algorithm.

Algorithm H.1 (BKF).

x̂k+1|k = Akx̂k|k−1 +Bkuk +Nkukx̂k|k−1 +Kk

[
zk − Ckx̂k|k−1 −Dkuk

]
(H.23a)

Kk =
[

AkPk|k−1C
T
k +NkukPk|k−1C

T
k +GkΣ

k
ve

] [

CkPk|k−1C
T
k + Σk

e

]−1

(H.23b)

Pk+1|k = AkPk|k−1A
T
k +NkukPk|k−1u

T
kN

T
k +GkΣ

k
vG

T
k

−Kk

[

CkPk|k−1C
T
k + Σk

e

]

KT
k (H.23c)

Note, that this is identical to the standard Kalman filter where the transition matrix

is replaced by Āk = Ak +Nkuk.
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Appendix I

Actual estimation error for the

BEIVKF3

Defining the error in the input estimate as

ũ0k
, u0k

− û0k

= −ũk +
[
σũỹ − σũD

T
] [

Σk
ε

]−1 [
zk − Cx̂k|k−1

]

= −ũk +Hu

[

Σk
ε

]−1
[Cx̃k + ek] , (I.1)

where

Hu , σũỹ − σũD
T (I.2)

is used for ease of notation. Using û0k
= u0k

− ũ0k
, the actual state estimation error is

given by

x̃k+1 = xk+1 − x̂k+1|k

= Aa
kxk + Buk + vk −

[

Âkx̂k|k−1 + Buk + K̄k

[
zk − Cx̂k|k−1

]]

= Aa
kxk + Gwk − Bũk −Aa

kx̂k|k−1 −N ũ0k
x̂k|k−1 − K̄k [Cx̃k + ek]

=
[
A− K̄kC

]
x̃k + Nu0k

x̃k + Gwk − K̄kỹk +
[
K̄kD − B

]
ũk −N ũ0k

x̂k|k−1, (I.3)
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where

N ũ0k
x̂k|k−1 = N

[

−ũk +Hu

[

Σk
ε

]−1
[Cx̃k + ek]

]

[xk − x̃k]

=

[

−N ũk + NHu

[

Σk
ε

]−1
Cx̃k + NHu

[

Σk
ε

]−1
ek

]

[xk − x̃k]

= −N ũkxk + NHu

[

Σk
ε

]−1
Cx̃kxk + NHu

[

Σk
ε

]−1
ekxk

+ N ũkx̃k −NHu

[

Σk
ε

]−1
Cx̃kx̃k −NHu

[

Σk
ε

]−1
ekx̃k. (I.4)
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Appendix J

Derivation of the JEKF

This appendix reviews the development of the extended Kalman filter for joint state

and parameter estimation given in (Ljung 1979). First, the extended Kalman filter

is reviewed followed by its application for joint parameter estimation. Finally, by

introducing appropriate block matrices, the expression given in (2.117) is obtained.

J.1 Extended Kalman filter

The extended Kalman filter (EKF) is probably the most widely used tool to estimate

the states of a nonlinear state space system. The key idea is to linearise the state space

equations at each time instance and to apply linear Kalman filter theory.

Let the discrete-time nonlinear state space system be given by

ηk+1 = qk(ηk, uk) + v̄k(ηk), (J.1a)

zk = rk(ηk, uk) + ek(ηk), (J.1b)

where ηk is the state vector, zk the system output, and where qk and rk denote non-

linear functions, whilst process noise and output noise are denoted v̄k(ηk) and ek(ηk),

respectively. Note that, in contrast to the scenario considered in (Ljung 1979), here the

noise sequences are functions of the unknown state. This generalisation is introduced

for the application to the EIV case, where the process and output noise are, depend-

ing on the chosen parametrisation, functions of the parameter vector to be estimated.

One possibility to estimate the state based on the observations up to time k, which is

denoted η̂k+1, is the EKF which is summarised as follows (Ljung 1979).
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Algorithm J.1 (EKF).

η̂k+1 = qk (η̂k, uk) +Nk [zk − rk (η̂k, uk)] (J.2a)

Nk =
[
Qk(η̂k, uk)PkR

T
k (η̂k, uk) + Σv̄e(η̂k)

]

×
[
Rk(η̂k, uk)PkR

T
k (η̂k, uk) + Σe(η̂k)

]−1
(J.2b)

Pk+1 = Qk(η̂k, uk)PkQ
T
k (η̂k, uk) + Σv̄(η̂k)

−Nk

[
Σe(η̂k) +Rk(η̂k, uk)PkR

T
k (η̂k, uk)

]
NT
k (J.2c)

The Jacobians in Algorithm J.1 are given by

Qk(η̂k, uk) =
∂

∂η
qk(ηk, uk)

∣
∣
∣
∣
η=η̂k

, (J.3a)

Rk(η̂k, uk) =
∂

∂η
rk(ηk, uk)

∣
∣
∣
∣
η=η̂k

, (J.3b)

whilst the covariance matrices are defined by

Σv̄(ηk) = E
[
v̄k(ηk)v̄

T
l (ηk)

]
δkl, (J.4)

Σe(ηk) = E
[
ek(ηk)e

T
l (ηk)

]
δkl, (J.5)

Σv̄e(ηk) = E
[
v̄k(ηk)e

T
l (ηk)

]
δkl. (J.6)

J.2 Application of the EKF for joint state and parameter

estimation

Consider the nonlinear system (2.114) which can be brought into the form of (J.1) by

defining

ηk =

[

xk

θk

]

, (J.7a)

qk(ηk, uk) =

[

A(θk)xk +B(θk)uk

θk

]

, (J.7b)

rk(ηk, uk) = C(θk)xk +D(θk)uk, (J.7c)

v̄k =

[

vk

dk

]

. (J.7d)
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Hence, the EKF given by (J.2) can be applied to estimate the states and parameters

of (2.114). The Jacobians for this case become

Qk(η̂k, uk) =

[

Ak Fk

0 I

]

, (J.8a)

Rk(η̂k, uk) =
[

Ck Hk

]

, (J.8b)

where

Fk = F (θ̂k, x̂k|k−1, uk), (J.9a)

Hk = H(θ̂k, x̂k|k−1, uk), (J.9b)

with F and H being defined by (2.119)

F (θ̂, x, u) =
∂

∂θ
[A(θ)x+B(θ)u]

∣
∣
θ=θ̂

, (J.10a)

H(θ̂, x, u) =
∂

∂θ
[C(θ)x+D(θ)u]

∣
∣
θ=θ̂

. (J.10b)

The noise covariance matrices are given by

Σv̄ =

[

Σv 0

0 Σd

]

, (J.11a)

Σv̄e =

[

Σve

0

]

, (J.11b)

whereas the initial state and its corresponding error covariance matrix are given by

η̂0 =

[

0

θ̂0

]

, (J.12a)

P0 =

[

P10 0

0 P30

]

. (J.12b)

The quantities θ̂0 and P30 represent a priori knowledge of the parameter estimates, see

(Sayed & Kailath 1994a, Sayed & Kailath 1994b) for a detailed treatment.
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J.3 Block form

Introducing the natural block structure

Nk ,

[

Kk

Lk

]

, (J.13a)

Pk ,

[

P1k
P2k

P T2k
P3k

]

, (J.13b)

equation (J.2a) becomes

[

x̂k+1|k

θ̂k+1

]

=

[

Akx̂k|k−1 +Bkuk

θ̂k

]

+

[

Kk

Lk

]

[
zk − Ckx̂k|k−1 −Dkuk

]
, (J.14)

which clearly corresponds to (2.117a) and (2.117b). By introducing

Sk , Rk(η̂k, uk)PkR
T
k (η̂k, uk) + Σe

=
[

Ck Hk

]
[

P1k
P2k

P T2k
P3k

]
[

Ck Hk

]T
+ Σe

= CkP1k
CTk +HkP

T
2k
CTk + CkP2k

HT
k +HkP3k

HT
k + Σe, (J.15)

equation (J.2b) becomes

[

Kk

Lk

]

=

[[

Ak Fk

0 I

][

P1k
P2k

P T2k
P3k

]
[

Ck Hk

]T
+ Σv̄e

]

S−1
k , (J.16)

which yields (2.117c) and (2.117e). Finally, Pk+1 becomes in block form

[

P1k
P2k

P T2k
P3k

]

=

[

Ak Fk

0 I

] [

P1k
P2k

P T2k
P3k

] [

Ak Fk

0 I

]T

+

[

Σv 0

0 Σd

]

−

[

Kk

Lk

]

Sk

[

Kk

Lk

]T

,

=

[

AkP1k
ATk + FkP

T
2k
F Tk +AkP2k

F Tk + FkP3k
ATk AkP2k

+ FkP3k

P T2k
ATk + P3k

F Tk P3k

]

+

[

Σv 0

0 Σd

]

−

[

KkSkK
T
k KkSkL

T
k

LkSkK
T
k LkSkL

T
k

]

(J.17)

from which (2.117f)-(2.117h) are obtained.
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Appendix K

Assumptions

This appendix serves as a reference book for the various assumptions which have been

used within this thesis and which are scattered throughout the chapters.

System assumptions:

AS1 The dynamic system is asymptotically stable, i.e. A(q−1) has all zeros inside

the unit circle.

AS2 All system modes are observable and controllable, i.e. A(q−1) and B(q−1)

have no common factors.

AS3 The polynomial degrees na and nb are known a priori with nb ≤ na.

AS4 The bilinearity N is chosen such that y0k
is zero mean.

AS5 The polynomials A(q−1) and B(q−1) are of the same order, i.e. n , na = nb,

whilst the polynomials C(q−1) and D(q−1) are chosen such that nc = nd−1.

Input assumptions:

AI1 The true input u0k
is a zero-mean ergodic process and is persistently exciting

of sufficiently high order.

AI2 The system input uk is known exactly.

AI3 The true input u0k
is a stationary zero-mean ergodic process with variance

σu0 .

AI4 The system input uk behaves in a manner, such that the bilinear system

whose dynamics are characterised by the state transition matrix A+Nuk is

stable.
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AI5 The noise-free system input u0k
has a rational spectrum, i.e. it can be

described as an ARMA process of the form

D(q−1)u0k
= C(q−1)fk, (K.1)

where fk is a white noise zero mean random process and the polynomials

C(q−1) and D(q−1) are defined, respectively, by

C(q−1) , 1 + c1q
−1 + · · · + cncq

−nc, (K.2a)

D(q−1) , 1 + d1q
−1 + · · · + dnd

q−nd. (K.2b)

Noise assumptions:

AN1 The sequences ũk and ỹk are zero-mean, ergodic, white noises with un-

known variances, denoted σũ and σỹ, respectively, i.e.

σũδkl , E [ũkũl] , (K.3a)

σỹδkl , E [ỹkỹl] . (K.3b)

AN1a The sequence ũk is a zero-mean, ergodic, white noise process with un-

known variance σũ.

AN1b The sequence ỹk is a zero-mean, ergodic noise process with unknown

auto-covariance sequence {rỹ(0), rỹ(1), · · · }.

AN2 The sequences ũk and ỹk are mutually uncorrelated and also uncorrelated

with both u0k
and y0k

.

AN3 The noise sequences vk and ek are zero mean, white, and satisfy

E

[[

vk

ek

]
[

vTl eTl

]
]

=

[

Σk
v Σk

ve

ΣkT

ve Σk
e

]

δkl. (K.4)

AN4 The initial state x0 has the mean x̄0 with covariance matrix P0. In addition,

x0 is independent of
[

vTk eTk

]T
for all k.

AN5 The quantities x0, vk and ek are jointly Gaussian.

AN6a The noise sequences ũk, ỹk and wk are assumed to be zero mean, white,

independent of u0k
and are characterised by the known covariance matrices

E

















x0

ũk

ỹk

wk









[

xT0 ũTl ỹTl wl

]









=









P0 0 0 0

0 Σk
ũ Σk

ũỹ 0

0 ΣkT

ũỹ Σk
ỹ 0

0 0 0 Σk
w









δkl. (K.5)
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AN6b The noise sequences ũk, ỹk and wk are assumed to be stationary, zero

mean, white, independent of u0k
and are characterised by the known covari-

ance matrices

E

















x0

ũk

ỹk

wk









[

xT0 ũTl ỹTl wl

]









=









P0 0 0 0

0 Σũ Σũỹ 0

0 ΣT
ũỹ Σỹ 0

0 0 0 Σw









δkl. (K.6)

AN7 The noise sequences ũk, ỹk and wk are assumed to be zero mean, white,

independent of u0k
and are characterised by the known covariance matrices

E

















x0

ũk

ỹk

wk









[

xT0 ũl ỹl wl

]









=









P0 0 0 0

0 σũ σũỹ 0

0 σũỹ σỹ 0

0 0 0 σw









δkl. (K.7)

Estimator assumptions:

AE1 The estimate of the input measurement noise variance σ̂kũ ‘varies slowly’

with time.

AE2 The dimension of the instrument vector ζk is na + nb + 1.

238



References

Anderson, B. D. O. & Moore, J. B. (1979), Optimal Filtering, Prentice-Hall, Englewood

Cliffs, New Jersey.

Arulampalam, M. S., Maskella, S., Gordon, N. & Clapp, T. (2002), ‘A tutorial on

particle filters for online nonlinear/non-Gaussian Bayesian tracking’, IEEE Trans.

on Signal Proc. 50(2), 174–188.

Beghelli, S., Guidorzi, R. P. & Soverini, U. (1990), ‘The Frisch scheme in dynamic

system identification’, Automatica 26(1), 171–176.
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Stoica, P. & Söderström, T. (1982), ‘Bias correction in least squares system identifica-

tion’, Int. J. Control 35(3), 449–457.
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