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Abstract:We analyzed the noise characteristics of 112 con-
tinuously operating GPS stations in eastern North Amer-
ica using the Spectral Analysis and the Maximum Likeli-
hood Estimation (MLE) methods. Results of both methods
show that the combination ofwhite plus flicker noise is the
best model for describing the stochastic part of the posi-
tion time series. We explored this further using the MLE
in the time domain by testing noise models of (a) power-
law, (b)white, (c)white plus flicker, (d)white plus random-
walk, and (e) white plus flicker plus random-walk. The re-
sults show that amplitudes of all noise models are small-
est in the north direction and largest in the vertical direc-
tion. While amplitudes of white noise model in (c–e) are
almost equal across the study area, they are prevailed by
the flicker and Random-walk noise for all directions. As-
suming flicker noise model increases uncertainties of the
estimated velocities by a factor of 5–38 compared to the
white noise model.

Keywords: Eastern North America; GPS Time Series; Max-
imum Likelihood Estimation; Noise Analysis; Spectral
Analysis;

1 Introduction
Over the years, velocities of continuously operating GPS
(CGPS) stations estimated from their position time series
have been widely used for quantifying and explaining
the earth’s surface deformation. Position time series are,
however, are contaminated by both random and time-
correlatednoise that hinders the accurate estimationof ve-

*Corresponding Author: M. A. Goudarzi: Department of Ge-
omatics Sciences, Louis-Jacques-Casault Building, Laval Uni-
versity, Quebec (QC), G1V 0A6, Canada; Email: mohammad-
ali.goudarzi.1@ulaval.ca; Tel: +1 418 656 2530; Fax: +1 418 656 7411
M. Cocard, R. Santerre: Department of Geomatics Sciences, Louis-
Jacques-Casault Building, Laval University, Quebec (QC), G1V 0A6,
Canada

locities and their uncertainties. Therefore, identifying the
noise characteristics in the position time series is a pri-
mary challenge. A position time series, however, can be re-
garded as a signal with deterministic and stochastic parts.
Although the deterministic part is nonstationary in na-
ture, it can be well estimated using advanced methods in
the time-frequency domain such as S transformation filter-
ing George et al. (2011), and principal component Tiampo
et al. (2012). This becomes especially crucial for regions
where the signal to noise ratio is small, e.g., intraplate ar-
eas affected by the glacial isostatic adjustment (GIA), or
for realization of reference frames. The stochastic part is
considered as observational noise and can be described by
different noise models.

The noise behavior of the position time series should
be known a priori or can be estimated from the noise it-
self to estimate the uncertainties of velocities of a CGPS
station reliably. The power-law process Strang and Borre
(1997, p. 523) can describe a common statistical model for
many types of geophysical signals. The power spectrum P
of a stochastic process in a onedimensional time- or space-
domain has the form of Williams (2003):

P (f ) = P0
(︀
f /f0

)︀κ (1)

where f is the spatial or temporal frequency, P0 and f0 are
normalizing constants, and κ is the spectral index Man-
delbrot and Van Ness (1968) that can take any real num-
ber. However, natural processes are characterized by neg-
ative indices due to the fact that they have more power in
lower frequencies Kenyeres and Bruyninx (2009). In geo-
physical phenomena, the spectral index ranges from −3 to
+1 Agnew (1992) and is typically divided to the fractional
Brownianmotionwith −3 < κ < −1, and fractional Gaussian
with −1 < κ < +1 Mandelbrot (1977). Noise processes in the
latter interval are stationary or independent of time, while
they are nonstationary in the former one. Smaller κ indi-
cates more correlation in time and more relative power for
signals with longer periods. Integer spectral indices in this
range are of special importance and have specific names:
κ = 0 is equivalent to white noise (WH), κ = −1 is called
flicker noise (FK), and κ = −2 is named Brownianmotion or
random-walk noise (RW) Kenyeres and Bruyninx (2009);
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Figure 1: Noise spectrum in geophysical phenomena.

Williams (2003). Figure 1 illustrates the noise spectrum
and the associated names to the integer values.

The spectral index is a good indicator for characteriz-
ing the source of the noise. White noise is generally asso-
ciated with the GPS hardware noise and measurement er-
rors. It is frequency-independent and contains no or little
geophysical information Nistor and Buda (2014). Flicker
noise is commonly observed in dynamic processes, e.g.,
variability of sunspots and the wobble motion of earth
about its axis. It is regionally uniformKlos et al. (2014) and
can be reduced along with white noise using regional fil-
tering, e.g., common-mode error (CME) filtering described
by Wdowinski et al. (1997) by a factor of 2–3 Dong et al.
(2006); Williams et al. (2004). Random-walk means that
the expected position of the station monument increases
as the square-root of time with respect to its initial posi-
tion Beavan (2005) that indicates a nontectonic motion of
the station. The effect of white noise can be reduced by in-
creasing the number of observations and averaging, how-
ever, this method is less useful for time-correlated noise
and useless for random-walk noise Mao et al. (1999).

There are several evidences for the stochastic part of
the CGPS position time series that show measurements
are statistically correlated in time rather than simply inde-
pendent observations Beavan (2005); Lidberg et al. (2010);
Mao et al. (1999); Zhang et al. (1997). They show that the
uncertainty of velocity estimated by fitting a linear trend to
the position time series using the least-squares method is
directly affected by the assumednoisemodel, and discard-
ing the temporal correlation in the data underestimates
uncertainty of the estimated velocities by a factor of 5 or
more. The temporal correlation is explicitly expressed in
the covariance matrix of the data itself Langbein (2008),
which is used along with the function to fit the position
time series in the least-squares method.

The overall purpose of this paper is to identify the best
noise model in the power-law process that can character-

ize the CGPS stations of eastern North America. The ana-
lyzed time series are 9 years long on average with up to
14.5 years of data, enabling an accurate assessment of long
period time-correlated noise for most of the stations. We
used the spectral analysis and themaximum likelihood es-
timation methods to derive the spectral indices of noise in
the position time series and compared the results. As a ser-
vice to readers, we also study stability of the CGPS stations
and identify stations with instable monuments, which are
not proper for geodynamic studies. This paper is organized
as follows. Section 2 briefly presents the geological setting
of the study area where the CGPS stations are located. The
details of the selected CGPS stations and their data set are
introduced in Section 3. The methods for data processing
and analysis are explained in Section 4. The results are
then discussed and compared in Section 5. The results of
this study are finally summarized in the last section.

2 Region of study
The interior part of the North American tectonic plate is
subject to the glacial isostatic adjustment (GIA) and the
intraplate tectonic activities. The GIA mainly causes a ver-
tical deformation that affects most of the Canadian land-
mass in the form of uplift and the northeastern part of
the United States in the form of subsidence. Horizontal ve-
locities, as a secondary impact of the GIA, are typically
directed radially outward from regions of highest uplift
and inward to the regions of maximum subsidence, but
have very smaller rates than vertical velocities Henton
et al. (2006). Several evidences from geodetic measure-
ments Lambert et al. (2001); Park et al. (2002); Sella et al.
(2004) and non-geodetic observations Lavoie et al. (2012)
confirm the existence of these phenomena in central and
eastern North America. Large earthquakes within the sta-
ble plate interiors indicate intraplate seismic activities in
this region. Although eastern Canada has a relatively low
rate of earthquake activity compared to the west of the
country, it is still characterized by many intraplate earth-
quake patterns from zones with significant earthquakes to
zones with very little background seismicity Adams and
Basham (1991). This shows vulnerability of the whole re-
gion to seismic hazard, particularly in the large urban cen-
ters of Quebec City, Montreal and Ottawa.

The earth’s surface deformation of eastern Canada has
been already studied by some researchers using GPS data.
Among them, Mazzotti et al. (2005) studied the seismic
region of the Lower Saint Lawrence River valley (SLRV)
using observations of 16 GPS stations from the Canadian
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Figure 2: Spatial distribution of the selected CGPS stations. Stations have highest spatial density over the Saint Lawrence River valley, and
are shown with a larger scale in the lower-left inset.

base network (CBN). George et al. (2011) have quantified
the GIA in eastern Canada using observations of 39 CGPS
stations.Williams (2003) constrained thepattern andmag-
nitude of the regional crustal deformation using a sub-
set of 43 CGPS stations. Despite other regions like South-
ern California and Southern Nevada Langbein (2008);
Tiampo et al. (2004); Wdowinski et al. (1997); Zhang et al.
(1997), Fennoscandia, and Central Europe Bergstrand et
al. (2007); Johansson et al. (2002); Kenyeres and Bruyn-
inx (2009), to the best of our knowledge, there is neither
a study about noise behavior of CGPS stations in east-
ern Canada nor about physical stability of their monu-
ments. This is of special importance because, (a) the in-
traplate tectonic signal, which is the main cause of defor-
mation has a very low rate, and (b) many CGPS stations
are not principally constructed for geodynamic studies, in
this region. In other words, no CGPS network has been
established in the area with the primary goal of monitor-
ing intraplate tectonic activities like BIFROST network in
Fennoscandia Lidberg et al. (2010). Therefore, it is very
important to identify instable CGPS stations and exclude
them from further studies on deformation such as strain
analysis.

3 GPS network and observations
We selected 112 CGPS stations in the study region with
more than one year continuous observations. The selected
network comprises 25 CGPS stations from the network
of the Ministry of Energy and Natural Resources of Que-
bec (MERN) MERNQ (2014), 32 CGPS stations from the
Canadian Active Control System (CACS) NRCan (2014),
46 CGPS stations from the American Continuously Oper-
ating Reference Station (CORS) NGS (2014a), 4 CGPS sta-
tions from the US National Geodetic Survey (NGS) NGS
(2014b), 2 CGPS stations from the Jet Propulsion Labo-
ratory (JPL) JPL (2014), 2 CGPS stations from University
of New Brunswick GGE (2014), and 1 CGPS stations from
Laval University SCG (2014), listed in Table 1. In this ta-
ble, 28 stations belong to the International GNSS Service
(IGS) Dow et al. (2009) 16 of them designated as reference
frame stations, and 7 stations are decommissioned. How-
ever, we prefer to keep them because of having long obser-
vational period. Figure 2 shows the spatial distribution of
the selected CGPS stations.
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All of the stations are equipped with dual frequency
GPS receivers with geodetic class antenna. There is, how-
ever, a great variety of monuments ranging from geodetic-
quality concrete pillars anchored to bedrock to non-
geodetic stations mounted on top of buildings. We select
the data time span of 14.5 years from January 2000 to
June 2014, with 4 stations with one to three years, 15 sta-
tions with three to five years, 52 stations with five to ten
years and 41 stations with more than ten years of observa-
tions. The 2000 and later period used here is a convenient
one. The complete observation map of all selected CGPS
stations is provided in Fig. A.1.

4 Methods and data analysis

4.1 GPS data processing and velocity field

We processed CGPS observations using the automatic
processing engine (BPE) of the BERNESE GNSS software
(BSW) version 5.0 Dach et al. (2007) on the Regard Labo-
ratory Computer Cluster of our Center for Research in Geo-
matics (CRG) CRG (2015) along with IGS precise orbits and
earth rotation parameters as well as satellites’ clock er-
rors. The details of the GPS data processing is the same as
in Goudarzi et al. (2015). We aligned the daily network po-
sition adjustments to the definition of ITRF 2008 Altamimi
et al. (2011) by constraining the position of the following
22 IGS stations to their official values by means of a seven-
parameter Helmert transformation: ALGO, BAKE, BARH,
CAGS, CHUR, DUBO, EPRT, FLIN, GODE, HLFX, HNPT,
KUUJ, NAIN, NLIB, NRC1, PICL, QIKI, SASK, SCH2, STJO,
UNB1, andWES2. These stations have relatively longer pe-
riod of observationwith average ofmore than 12 yearswith
16 stations designated as the ITRF stations.

The final results are daily earth-centered earth-fixed
(ECEF) Cartesian coordinates of stations and their covari-
ancematrices in ITRF 2008.We converted the daily coordi-
nate variations and covariancematrices to the local geode-
tic (LG) coordinate system using:

∆x(LG)i =

⎡⎢⎣∆n∆e
∆u

⎤⎥⎦
(LG)

i

= Rk ∆x(
ECEF)
i (2)

=

⎡⎢⎣− sinφ cos λ − sinφ sin λ cosφ
− sin λ cos λ 0

cosφ cos λ cosφ sin λ sinφ

⎤⎥⎦
k

⎡⎢⎣∆x∆y
∆z

⎤⎥⎦
(ECEF)

i

and ∑︁(LG)

i
= Jk

∑︁(ECEF)

i
JTk (3)

= Rk
∑︁(ECEF)

i
RTk

respectively, where ∆xi is the vector of differential coordi-
nates with respect to the reference epoch and

∑︀
i is the

covariance matrix at epoch i in the corresponding refer-
ence system, Rk is the rotation matrix and Jk is the Jaco-
bian matrix of the rotation matrix for station k, φ and λ
are the geodetic latitude and longitude of station k. Here,
we assume the center of the LG coordinates system on
the station and take coordinates of each station at epoch
t0 = 2000.0 to calculate Rk and ∆ xi.

Using the transformed daily coordinates, we formed
theposition time series andestimated velocities of stations
using the following compoundmodel Lidberg et al. (2010);
Nikolaidis (2002) implemented in our CGPS time series
analysis software called GITSA Goudarzi et al. (2013):

y(ti) = a + b ti (4)
+ c sin(2πti) + d cos(2πti) + e sin(4πti) + f cos(4πti)

+
nj∑︁
k=1

jk H
(︀
ti − tjk

)︀
+ vi

where ti for i = 1, 2, . . .,N are the daily solution epochs
in the unit of year, a is the station position, b is the
linear velocity, c and d are the annul and e and f are
the semi-annual amplitudes of sine and cosine func-
tions. The next term models any number of jump nj
with the magnitude of jk in the position time series oc-
curred at epoch tjk (assumed known) using the Heaviside
step function H (x) Abramowitz and Stegun (1972). The
last term vi denotes the measurement errors. Assuming
x = [a b c d e f j]T as the vector of unknown parame-
ters, we can rewrite Eq. (4) for all the epochs of a single
position time series as:

y = Ax + v (5)

where y is the observation vector of daily solutions, A is
the design matrix of observations as:
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A =

⎡⎢⎢⎢⎣
1 t1 sin(2πt1) cos(2πt1) sin(4πt1) cos(4πt1) H

(︀
t1 − tj1

)︀
· · · H

(︁
t1 − tjnj

)︁
...

...
...

...
...

...
...

. . .
...

1 tN sin(2πtN) cos(2πtN) sin(4πtN) cos(4πtN) H
(︀
tN − tj1

)︀
· · · H

(︁
tN − tjnj

)︁
⎤⎥⎥⎥⎦
N× (6 + nj)

and v is the vector of vi. The model in Eq. (5) is linear with respect to coefficients and therefore can be solved using the
weighted linear least-squares method Mikhail and Ackermann (1976) as:

x̂ =
(︁
ATC−1y A

)︁−1
ATC−1y y (6)

Cx̂ =
(︁
ATC−1y A

)︁−1
Qx̂ = σ̂

−2
0 · Cx̂

v̂ = y − Ax̂

where x̂ is the vector of estimated parameters and Cy is the covariance matrix of the observations. Cx̂ and Qx̂ are the
covariance and cofactor matrices of estimated parameters, respectively, and σ̂0 is the reference variance. v̂ is the vector
of postfit residuals. It should be emphasized that this method can be used when the designmatrix A is deterministic. In
the case of a random design matrix, the total least-squares method Fang (2013); Schaffrin and Wieser (2008) provides
more accurate estimations. Equation (5)may also be solvedusing theQRmethodRice (2006, p. 593) that avoids rounding
error, which tends to increase in Eq. (6).

We identified outliers using median and interquartile range (IQR) statistics Lidberg et al. (2010) that describe the
central value and spread of the data with the following condition Nikolaidis (2002):⃒⃒

v̂i −median
(︀
v̂i−w/2, v̂i+w/2

)︀⃒⃒
> n × IQR

(︀
v̂i−w/2, v̂i+w/2

)︀
(7)

where the median and the IQR functions are applied on the obtained postfit residuals within the window size of w, and
n is an integer factor for setting the level of rejection. We set the window length of one year equals to the longest signal
period in Eq. (4). A value of n equals to 3 was used for outlier detection Beavan (2005). In this way, maximum 6.5% of
data (for station CAGS) was removed after several iterations. The number of cleaning steps and percentage of cleaned
epochs are presented in Table 1. The output of this section is the linear velocity of stations and their uncertainties along
with the postfit residuals, which will be used for the noise analysis.

4.2 Estimating spectral indices

We estimated spectral indices of postfit residuals using the methods of spectral analysis in the frequency domain and
maximum likelihood estimation (MLE) in the timedomain in order to study the effect of temporal correlation in the CGPS
position time series. In principle, it is possible to fit the power-law function given in Eq. (1) to a periodogram obtained
by a Fast Fourier Transformation (FFT) and estimate P0 and κ. FFT-based methods require evenly-spaced time series,
but CGPS position time series are generally subject to gaps due either to the receiver malfunctioning or outlier removal.
Using interpolation methods introduces several artifacts to the data in both time and frequency domains, especially
when the gap is large Press et al. (1992). Therefore, we use the Lomb-Scargle algorithm to calculate the periodogram of
postfit residuals per station per position direction Scargle (1989, 1982, 1981); Schulz and Stattegger (1997). The method
has the advantage of evaluating the data of the time series only at measured epochs as well as quantitative significance
testing of the results. The normalized Lomb-Scargle periodogram P of a time series y (ti) for i = 1, 2,. . ., N is estimated
by Mao et al. (1999); Trauth (2010, p. 136):

P (2πf ) = 1
2σ2

⎛⎜⎜⎜⎜⎝
[︂ N∑︀
i=1

(yi − ȳ) cos 2πf (ti − τ)
]︂2

N∑︀
i=1

cos2 2πf (ti − τ)
+

[︂ N∑︀
i=1

(yi − ȳ) sin 2πf (ti − τ)
]︂2

N∑︀
i=1

sin2 2πf (ti − τ)

⎞⎟⎟⎟⎟⎠ (8)
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where ȳ and σ2 are arithmetic mean and variance of the data in the time series, respectively, and 2πf > 0. The constant
τ corresponds to the time lag that makes the periodogram independent of shifting ti’s by any constant amount, and is
defined as Zhang et al. (1997):

tan (4πfτ) =

N∑︀
i=1

sin 4πf ti

N∑︀
i=1

cos 4πf ti
(9)

The periodogram is calculated in the range of the Nyquist frequency, and the resolution of the frequency axis depends
on the over-sampling parameter. Then, the power of noise is plotted in dB using logarithm function of base 10 as:

P (f ) = 10 × log10
(︀
Pν/fs

)︀
(10)

where Pν is the power spectrum of the postfit residuals estimated from Eq. (8) and fs is the sampling frequency with the
unit of day−1. Then, the spectral index of a power-law process can be estimated in the log-log space using Nikolaidis
(2002):

κ = P (f )
10 × log10 (f )

(11)

In practice, especially when the time series is long enough, the spectral index is estimated by fitting a straight line
only to the data within the range of frequencies where the power spectra are well approximated Zhang et al. (1997). This
prevents the predominance of white noise at high frequencies and decreases the impact of outliers at lower frequencies.
For short time series, however, it is preferred to use thewhole length of spectra and estimate the spectral indices directly
from Eq. (1) using a non-linear least-squares method, e.g., explained by Mao et al. (1999).

The best noise model in the MLE method is the one that maximizes its probability function Teferle et al. (2008) by
adjusting the covariance matrix of the data as:

ln
[︀
lik

(︀
v̂, C

)︀]︀
= −12

[︁
ln (detC) + v̂TC−1v̂ + N ln (2π)

]︁
(12)

where ln is the natural logarithm function, lik is the likelihood function, det is the determinant of the matrix, C is the
fully populated data covariance matrix that directly impacts uncertainties of the estimated parameters in Eq. (6), N is
number of epochs in the position time series, and v̂ is the same as in Eq. (6). Matrix C can represent different forms of
Gaussian stochastic noise Williams et al. (2004), e.g., white, power-law, first-order Gauss Markov or their multitude of
combinations. In this research,C is taken as combination of white and power-law noise with amplitudes of aw and bκ≠0,
respectively:

C = a2wI + b2κJκ (13)

where I is the identity matrix and Jκ is the covariancematrix for the appropriate colored noise model, both of them have
a size of N × N. The identity matrix resembles the time-invariant of the noise process, while Jκ is the time-dependent
covariancematrix of the power-law noise. Williams (2003) explains that the covariancematrix for power-law noise with
any spectral index −3 < κ < 1 can be obtained by amethod described by Johnson andWyatt (1994) using a transformation
matrix describedbyHosking (1981). Flicker and random-walknoise are special cases of thepower-lawnoise processwith
κ = −1 and −2, respectively. For flicker noise, Zhang et al. (1997) have approximated the covariance matrix J−1 as:

jkl =

⎧⎨⎩
(︀3
4
)︀2 × 2, tk = tl(︀3

4
)︀2 × (︁2 − log|tk−tl|/ log 2+2

12

)︁
, tk = ̸ tl

(14)
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for most space geodetic time series (|tk − tl| ≪ 222). This
also defines the scale of flicker noise. For random-walk
noise, the covariance matrix J−2 can be expressed as John-
son and Wyatt (1994); Mao et al. (1999):

J−2 =

⎡⎢⎢⎢⎢⎣
∆t1 ∆t1 · · · ∆t1
∆t1 ∆t2 · · · ∆t2
...

...
. . .

...
∆t1 ∆t2 · · · ∆tN

⎤⎥⎥⎥⎥⎦
N×N

(15)

where ∆ti = ti − t0.
The spectral analysis is generally much faster than

the MLE and can be used to quickly determine the pre-
dominant noise in the position time series or to test the
results of the MLE as an independent source. Neverthe-
less, it has the following disadvantages: (a) the number of
noise models that can be examined using this method is
limited Williams (2008), and (b) spectral indices are not
necessarily estimated accurately Beran (1994); Mao et al.
(1999); Zhang et al. (1997). Some researchers such as Lang-
bein and Johnson (1997); Zhang et al. (1997) andMao et al.
(1999) have used both the spectral analysis and the MLE
methods. However, Langbein (2004) and Williams et al.
(2004) prefer to use the MLE primarily because, (a) it can
simultaneously estimate the noise structure together with
the parameters of a time-dependent model of the data,
(b) it does not require evenly spaced data, and (c) esti-
mates spectral indices with less bias compared to power
spectral methods. In contrast, the MLE has the disadvan-
tage of being computationally time consuming Langbein
(2004). In this research, we employed both methods: the
spectral analysis to estimate the spectral index of noise,
and the MLE to characterize the amplitudes of different
noise models in the stochastic part of the position time se-
ries with integer spectral indices.

5 Results and discussion

5.1 Spectral indices

We estimated spectral indices of the power-law noise from
postfit residuals after removing linear, annual, and semi-
annual signals as well as probable jumps in the position
time series usingEq. (4) and cleaningoutliers usingEq. (7).
Thus, estimated indices in both methods are based on
identical position time series and editing results.

5.1.1 Spectral analysis

We estimated the power spectra of postfit residuals using
Eq. (8) for three position directions of each individual sta-
tion with our GITSA software Goudarzi et al. (2013). Fig-
ure 3 shows a typical example of the estimatedpower spec-
tra for station SCH2 with more than 14 years of data. In
this figure, the noise power is nearly constant for up to
~10 days (the crossover period) and increases for longer
periods afterward. This implies predominance of tempo-
rally uncorrelated or white noise to the right at high fre-
quencies and temporally correlated or colored noise to the
left for low frequencies. The high variation in the power
spectra for longer periods is due to small number of epochs
or the short length of position time series, which is not suf-
ficiently long to be estimated reliably. The frequency that
this variation starts at is higher for shorter time series (e.g.,
GAS2, GODR, and MEGR) and lower for longer time series
(e.g., ALGO, ATRI, BLKV, and CAGS). The figure also shows
that even though the power of colored noise is underes-
timated at lower frequencies as a result of removing the
linear trend and seasonal variations, in general, it is still
higher than the power of white noise Langbein and John-
son (1997). This is critical since it highly affects the esti-
mated slope of the power spectrum or the spectral index.
The colored noise would be stronger in presence of linear
and seasonal termsKenyeres andBruyninx (2009). Captur-
ing the lowest-frequency part of the spectrum is difficult in
this method Nistor and Buda (2014) and explains the pos-
itive spectral indices in Table 2.

The spectral index is the slope of the best fitted line
in a least-squares sense to the power spectrum data. How-
ever, the estimationprocess is very sensitive to the selected
frequency band especially at higher frequencies where
there are farmore data toweight the linear regression com-
pared with the lower frequencies. To avoid biasing the es-
timated indices, we selected data points with frequencies
smaller than 1/15 day−1. The reason for this choice is the
predominance of white noise at high frequencies and a
surge of power at the period of ~2 weeks for all the time
series. Other surges of power at the periods of ~1 year,
~6 months, and ~9 days are also observed in almost all
power spectra. This phenomenon is due primarily to the
under-sampling residual semi-diurnal and diurnal crustal
tide signatures that causes aliased periodic signals with
respect to the discrete 24 hour GPS solution strategy, and
secondarily to the longer repeat period of the satellite or-
bits than the Nyquist period of the semi-diurnal and diur-
nal tidal signatures, as explained by Penna and Stewart
(2003). Figure 4A represents histogram of the estimated
spectral indices while their numerical values and uncer-
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Figure 3: The Lomb-Scargle periodogram and the estimated spectral indices for station SCH2.

tainties can be found in Table 2. Estimated uncertainties
are formal standard errors obtained from the linear regres-
sion and therefore are optimistic. Spectral indices range
between −1.12 and 0.58 for the north, −1.25 and 0.11 for
the east, and −0.98 and 0.36 for the up direction. Their
weightedmeans are −0.66 for the north, −0.64 for the east,
and −0.55 for the up direction, indicating no significant
difference in the spectral character of the noise among in-
dividual directions. They are equivalent to the fractional
Gaussian part of the noise spectrumand indicate predomi-
nance ofwhite plus flicker noise in the position time series.

The weighted mean for all direction is −0.62. Furthermore,
histogram of spectral indices shows the highest frequen-
cies at −0.75 for the north and the east directions, while it
is shifted to −0.50 for the up direction demonstrating that
the flicker noise is stronger in the north and the east direc-
tions compared to the up direction.

All power spectra were stacked to estimate a common
power index for all stations. The resulted spectrum was
then smoothed by a moving average filter with different
window lengths of 7, 11, and 21 days. Figure A.2 shows
the resulted spectrum for the window length of 11 days.

Brought to you by | Bibliotheque de l'Universite Laval
Authenticated

Download Date | 9/8/15 4:29 PM



Noise behavior in CGPS position time series | 131

Figure 4: Histogram of the spectral indices estimated by (A) the spectral analysis, and (B) the Maximum Likelihood Estimation methods.

Although increasing the length of window makes the fil-
tered spectrum smoother, surges of power at the above-
mentioned specific periods become sharper. Spectral in-
dices were estimated as −0.74, −0.72 and −0.61 for the
north, east and up directions, respectively from the com-
mon power spectrum in the sameway as for the individual
spectra.

5.1.2 Maximum Likelihood Estimation

In order to consider a wider range of the power-law pro-
cess, the spectral indices were estimated using the MLE
method instead of constraining them to integers. We as-
sumed the following power-law (PL) noise model:

C = b2PL= ̸0JPL (16)

and estimated spectral indices and noise amplitudes per
station per direction for all stations using the CATS soft-
wareWilliams (2008). The reasons for choosing thismodel
have been discussed in Williams et al. (2004).

Table 2 gives the numerical values of the estimated
spectral indices, and Fig. 4B represents them in the form
of a histogram. Spectral indices range from −1.70 to −0.53
for the north, from −1.81 to −0.54 for the east and from
−1.96 to −0.54 for the up direction. The weighted averages

are −1.06 for the north, −1.10 for the east, and −1.18 for
the up direction. Similar to the spectral analysis, the spec-
tral characteristic of the noise is not significantly different
among individual directions. The estimated ranges are be-
tween the fractional Gaussian and the fractional random-
walk part of the noise spectrum (Fig. 1). Figure 4B shows
that the estimated spectral indices for most of the stations
are around −1 in all directions. This indicates prevalence
of flicker noise model in the position time series. While re-
sults of both methods are in agreement, spectral indices
obtained from theMLE are larger than those of the spectral
analysis. This is primarily because in the PL noise model,
spectral indices are left free to be estimated by maximiz-
ing the likelihood function that can bias the results to a
value corresponding to the strongest noise model in the
time series. Furthermore, spectral indices can be under-
estimated in the spectral analysis (a) for short time se-
ries Mao et al. (1999), and (b) as a result of decreasing rel-
ative power at lower frequencies due to removing trends,
which have long periods (e.g., secular, annual and semi-
annual trends) especially for shorter time series. In Ta-
ble 2, stations with positive spectral indices estimated by
spectral analysis (MEGR, GODR, GAS2, LONG, HDIL, and
ACSO) have shortest lengths among all the position time
series. Due to this fact, we do not calculate covariancema-
trices and consequently do not estimate velocities for this
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Figure 5: (A-E) Graphical representation of the estimated noise amplitudes in different models, (F) correlation of white noise versus flicker
noise amplitudes for all stations except LOZ1.

noisemodel. Figure 5A represents the estimated noise am-
plitudes in thismodel. This figure shows that the noise am-
plitudes for the up direction are about 3–4 times (in aver-
age) larger than those of north and east directions indicat-
ing higher level of noise in the up direction. Amplitudes
range between 3.0 and 31.2 mm yrκ/4 (with the average of

9.3 mm yrκ/4) for the north, 4.1 and 41.9 mm yrκ/4 (with
the average of 10.4 mm yrκ/4) for the east, and 12.7 and
128.9 mm yrκ/4 (with the average of 38.9 mm yrκ/4) for the
up direction.

We also fixed spectral indices to integer values in [−2,
0] and tested the following combination of noisemodels in
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order to know what is the best describing noise model for
the stochastic part of the position time series: white (WH),
white plus flicker (WH+FL =WF), white plus random-walk
(WH+RW =WR) and white plus flicker plus random-walk
(WH+FK+RW =WFR). The advantages of assuming a spe-
cific type of noise model for all the time series have been
discussed inWilliams et al. (2004). Among them is the eas-
ier comparison of the noise characteristics of the time se-
ries when a parameter or noise model is held fixed. The
best model in this concept is the one with maximum like-
lihood values. Following this assumption, we can expand
the covariancematrix in Eq. (13) for the postulatedmodels,
respectively as:

CWH = a2WHI (17)

CWF = a2W I + b2FKJFK (18)

CWR = a2W I + b2RW JRW (19)

CWFR = a2W I + b2FKJFK + b2RW JRW (20)

with the same coefficients as in Eq. (13) where the sub-
scripts denote the corresponding noise model.

The MLE values and the noise amplitudes were
estimated from the postfit residuals using CATS soft-
wareWilliams (2008) per station per direction for all noise
models. The MLE values were used to compare the mod-
els and choose the one that describes the best noise. Fig-
ure A.3 displays the result of comparison in terms of MLE
differences, giving 6 comparisons. In other similar studies,
all MLE values (in the case of few stations) or their sum-
mary (in the caseof largenumber of stations, e.g.,Williams
et al. (2004)) are provided in a table format, but we pre-
ferred to present MLE differences graphically that makes
it easier to compare different models especially when the
number of CGPS stations is large. Thefigure showsWHand
WF noise models have the minimum and the maximum
MLE values, respectively, except in SASK where the WFR
noise model is dominant. Therefore, WF is clearly the best
noise model for describing the position time series. The
WR noise model has the third rank among models. At sta-
tions where the difference between WH and WF, WR and
WFR noise models is minimum (i.e., GODR, LONG, MEGR,
MEOW, PIER, and SRBK), the length of time series is short.

The estimated noise amplitudes of the fourmodels are
represented in Fig. 5B–E. Overall, the noise amplitudes for
the up direction are about 3–4 times (in average) larger
than those of north and east directions indicating higher
level of noise in the up direction. The nearly equal mag-
nitude of north and east noise amplitudes is a good indi-

cator of essentially complete and successful phase ambi-
guity resolution Williams et al. (2004). The vertical direc-
tion of LOZ1 has the highest white and flicker noise ampli-
tudes,whichmay be related tomultipath and lack of direct
sight to GPS satellites due to deep canopy shadow Sigrist
et al. (1999). This station has been decommissioned since
August 16, 2013 (Fig. A.1). However, due to having a good
monument, its random-walk noise amplitude is low. The
large random-walk noise amplitude of SASK in the up di-
rection can be attributed to the monument instability of
the station (Section 5.3). A meaningful correlation is ob-
served betweenmagnitudes of white and flicker noise am-
plitudes, shown in Fig. 5F. In this figure, R2 is the coeffi-
cient of determination and shows how well the regression
fits the data. The figure displays that not only there is a
good correlation for individual directions, there is also a
good overall correlation among all directions. The range
of estimated noise amplitudes are summarized in Table 3.

We constructed the covariancematrices of theWF and
the WFR noise models in Eq. (18) and Eq. (20) using the
estimated noise amplitudes and approximated covariance
matrices in Eq. (14) and Eq. (15), and calculated the un-
certainties of the stations’ velocities. The estimated un-
certainties are shown in Table 2 in details and are sum-
marized in Table 3. In the WH noise model, the informa-
tion in the stochastic part of the position time series is
discarded. Therefore, the estimated velocity uncertainties
σâ have smallest values among noise models due to the
fact that they depend on the amplitude of the WH noise
aWH , number of epochs N and the length of time series T
as Zhang et al. (1997):

σ2â(WH) ≃
12a2

∆T2
(︀
N3 − N

)︀ (21)

for large N. The average of the WH noise amplitudes is
at the level of ~2.5 mm for the horizontal and ~7.9 mm
for the vertical directions, while the average of the esti-
mated uncertainties is ~0.04mm/yr for the horizontal and
~0.14 mm/yr for the vertical velocities. In theWF andWFR
noise models, the flicker noise is stronger than other types
of noise while the level of white noise is the same all over
the study area.

The velocity uncertainty σâ is estimated as Bos et al.
(2008):

σ2â(FK) ≃
8 b2−1

π ∆T3/2
(︀
N2 − N

)︀ (22)
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for the flicker noise, and as Williams (2003); Zhang et al.
(1997):

σ2â(RW)
≃ b2−2
∆T (N − 1)

= b
2
−2
T (23)

for the random-walk noise, when N ≥ 2. In both models,
the average of the flicker noise amplitude is at the level
of ~8 mm yr−0.25 for the horizontal and ~26 mm yr−0.25

for the vertical directions. This is while the average of the
estimated uncertainties in the WF noise model is at the
level of ~0.5 mm/yr for the horizontal and ~1.8 mm/yr for
the vertical velocities. In the WFR noise model, the aver-
age of the random-walk noise amplitude is at the level of
~0.5 mm yr−0.5 for the horizontal and ~1.4 mm yr−0.5 for
the vertical directions, while the average of the estimated
uncertainties in the WFR noise model is at the level of
~1.5mm/yr for the horizontal and ~4.4mm/yr for the verti-
cal velocities. Velocity uncertainties obtained from theWF
noise model have increased by a factor of 5 for MNDN and
38 for DUBO stations, compared with those obtained from
the WH noise model. For most of the stations, velocity un-
certainties in the east direction increased more compared
with the other directions for the same station.

5.2 Spatial correlation of estimated
amplitudes

We analyzed spatial distribution of flicker noise ampli-
tudes across our CGPS network. The network extends 31∘N
in latitude (36∘N–67∘N) and 54∘W in longitude (52∘W–
106∘W). Stations are neither evenly distributed in latitude
nor longitude, however, most of the stations are located
in the SLRV area (Fig. 2) between 40∘N–50∘N and 65∘ W–
85∘W.

Figure 6 represents flicker noise amplitudes for the
north, east and up directions as a function of stations’ lat-
itude and longitude. The relationship is approximated by
a best fitting quadratic trend obtained from the weighted
least-squares method for each graph. The figure shows
that the level of noise in the vertical direction is 2 to 5 times
larger than those in horizontal directions. Furthermore, it
shows that estimated amplitudes are spatially correlated
in both latitude and longitude directions, despite the rel-
atively low values of R2 and small numbers of CGPS sta-
tions at higher latitudes. The noise behavior in the latitude
direction is, however, slightly different with the longitude
direction. While in the former direction, the noise ampli-
tude is larger in higher latitudes and decreases in lower
latitudes for horizontal directions, it is minimum at mid-
latitudes and maximum at lower and higher latitudes for
the latter direction. In the longitude direction, the noise

amplitude is minimum for all components over the area
where CGPS stations are aggregated. The coefficient of de-
termination is 3–4 times larger in this direction for all com-
ponents.

The fact that the noise amplitude is latitude depen-
dent in global solutions was already shown in the litera-
ture. Mao et al. (1999) found significantly higher levels of
white noise in the vertical direction of the tropical stations.
Williams et al. (2004) showed that both white and flicker
noise components have latitude dependency in their am-
plitudes and are maximum at the equator, however, the
flicker noise is not as convincingly as the white noise. The
latitude dependency was also observed by Williams and
Willis (2006) in the weekly station coordinate time series
of DORIS observations, which is best described by a com-
bination of variable white noise plus flicker noise. In this
case, while the variable white noise shows dependency on
station latitude and the number of satellites used in the so-
lution, the flicker noise amplitude does not show depen-
dency on latitude. The regional correlations are attributed
tomismodelingdue to troposphericwater vaporDixonand
Kornreich Wolf (1990), the first-order ionospheric phase
advance and group delay Montillet et al. (2013) and the
near polar satellites’ orbit in the case of the DORIS time
series Williams and Willis (2006).

The difference between our regional scale results and
global scale solutions is related to the GPS data process-
ing method. As stated earlier, even if not completely un-
derstood, the noise in the CGPS time series is normally at-
tributed to imperfections of the models used in the data
processing. In the differential processing methods, many
known or unknown errors are completely eliminated (e.g.,
satellites clock error) or greatly reduced (e.g., ionospheric
and tropospheric errors), especially for not far away sta-
tions Xu (2007, p. 108). Therefore, the noise is significantly
reduced over the central part of the network due to many
short baselines that are formed in the double-difference
data processing method. However, other sources of error
such as known random atmospheric effects could domi-
nate the error budget due to longer interstation spacing in
regional GPS networks Williams et al. (2004).

5.3 Stability of monuments

One of the objectives behind this study, as stated in Sec-
tion 1, is to evaluate the stability of different types of mon-
uments of the CGPS network. Although we are generally
interested to know the velocity of the earth’s crust units,
what is actually measured is the displacement of a monu-
ment on or just below the earth’s surface. The monument
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140 | M. A. Goudarzi et al.

Figure 6: Flicker noise amplitudes as a function of (A) station latitude, and (B) station longitude for the north (n), east (e) and up (u) direc-
tions as well as their one-sigma uncertainties and the quadratic trend in the least-squares sense.

noise resulted from nontectonic movement of the monu-
ment has been identified as an important source of noise in
many geodetic data sets Johnson and Agnew (1995); Lang-
bein et al. (1995), and has been proven to be a random-
walk process Langbein and Johnson (1997). Therefore, we
applied theWFR noise model to estimate the amplitude of
the random-walk noise. While it is zero for most of them,
fewmillimeters of random-walk amplitude is observed for
some stations as presented in Table 4 that is attributed

to the physical instability in the monuments of CGPS sta-
tions. The evidence for this is discussed in Beavan (2005).
Figure 7 shows the spatial distribution of the stations with
non-zero random-walk amplitude. The high values of the
random-walk amplitude in station SASK for north and up
directions are noticeable in Table 4.

The amplitude of random-walk noise is zero for other
stations not listed in Table 4. However, this does not im-
ply the lack of random-walk noise in these stations due
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Table 4: Random-walk noise amplitude and minimum length of time series necessary to detect the corresponding noise amplitude.

No. Station RW (mm yr−0.5) Len. (yr) Estimated len. (yr)
North East Up North East Up

1 ANNE* 0.00 0.66 0.00 8.73 - 9.2 -
2 COVX* 0.00 0.20 0.00 12.42 - 100.0 -
3 GEOG 0.88 0.00 0.00 6.79 5.2 - -
4 HLFX* 0.00 0.00 0.53 11.53 - 14.2 -
5 HULL* 0.79 0.63 0.00 7.32 6.4 10.1 -
6 LATU 0.00 0.00 0.86 7.49 - - 5.4
7 MCHN 2.35 1.43 0.00 4.49 0.7 2.0 -
8 PMTL 0.00 6.17 0.00 6.2 - 0.1 -
9 ROSS 0.00 8.14 0.00 8.99 - 0.1 -
10 ROUY* 0.00 0.62 0.00 13.48 10.4 -
11 SASK 45.10 0.00 156.15 11.15 ~0 - ~0
12 YWG1 2.23 0.00 0.00 6.18 0.8 - -

Figure 7: Spatial distribution of the stations with non-zero random-walk amplitude. The scale for SASK is 1/20.

to the fact that, in general, the amplitude of the random-
walk noise in the geodetic quality monuments is less than
0.5 mm yr−0.5 King and Williams (2009) and can be un-
derestimated (a) when it has considerably lower magni-
tude compared with flicker or white noises Klos et al.
(2014), or (b) when the length of time series is short. This
problem in the MLE has been reported by Zhang et al.
(1997). Dmitrieva and Segall (2015) discuss that the MLE
fails to detect random-walk noise if its magnitude (e.g.,
0.38 mm yr−0.5) is significantly lower than flicker noise

(e.g., 2 mm yr−0.25). They developed a network noise es-
timator to detect the colored noise properties of CGPS
position time series in regions of low deformation rates
in which all stations are processed simultaneously by a
Kalman filter and using the MLE to solve for the best fit-
ting variance parameters in the noise model. This fact is,
however, contrary in the literature. Langbein and John-
son (1997) has evaluated accuracy of the MLE using two
synthetic time series containing the white noise of 1 mm
and the random-walk noise of 0.5, 1.5 and 4.0 mm yr−0.5.
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Their results show accurate measure of both noise compo-
nents and uncertainties by the MLE. Williams et al. (2004)
have tested the MLE on synthetic time series with different
lengths. They conclude that the accuracy of the estimated
spectral indices depends on the ratio of the colored noise
and the white noise amplitudes, the length of time series,
and a trade-off between the trend due to tectonic motion
and the trend due to the noise in the time series.

Williams et al. (2004) state that to detect a random-
walk noise in a monument with an amplitude of about
0.4 mm yr−0.5, the position time series would have to be
30 years long. This is equivalent to detecting a typical dis-
placement of 2 mm, reliably. In this way, we calculated
the minimum length of time series for stations in Table 4
that is necessary for detecting the corresponding random-
walk noise. Stations with an asterisk have shorter time
series than the calculated length. Therefore, the detected
random-walk noise is not reliable enough to rule out these
stations.

6 Conclusion
We analyzed the noise behavior of 112 CGPS stations in
eastern North America using the spectral analysis and
the MLE methods. Both methods showed prevalence of
the white plus flicker noise in the position time series.
The noise amplitude is highest in the up and lowest in
the north direction for all tested models. Velocity uncer-
tainties were estimated for WH, WF and WFR noise mod-
els using the MLE method. They are smaller or underes-
timated in the WH noise model due to the fact that the
time-dependent characteristics of the position time series
are neglected. Velocity uncertainties in the WF and WFR
noisemodels are the same formost of the stations, but they
are all increased by a factor of 5–38 compared to the WH
noise model. The largest uncertainties are obtained from
the WFR noise model. We found 7 stations with few mil-
limeters of random-walk amplitude attributed to the phys-
ical instability in theirmonuments. Undetectable random-
walk noise at the other stations does not necessarily indi-
cate a perfect stability, but longer time series are required
to accurately assess this type of noise.

Acknowledgement: In addition to the software already
mentioned in the text, we also used: MATLAB for numer-
ical calculations, Quantum GIS software QGIS (2015) for
spatial analysis, and GIMP and Inkscape for preparing fig-
ures.
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Appendix

Figure A.1: Data map of CGPS observations.
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Figure A.2: The common power spectrum for all CGPS stations filtered with the window length of 11 days.
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Figure A.3: Comparison of different noise models according to the Maximum Likelihood Estimation values.
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