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Abstract

Simultaneous Localization And Mapping (SLAM) stands as one of the core techniques

used by robots for autonomous navigation. Cameras combining Red-Green-Blue (RGB)

color information and depth (D) information are called RGB-D cameras or depth cam-

eras. RGB-D cameras can provide rich information for indoor mobile robot navigation.

Microsoft’s Kinect device, a representative low cost RGB-D camera product, has attracted

tremendous attention from researchers in recent years, for its relatively high quality of

depth measurement. By analyzing the multi-data stream of both color and depth, better

3D plane detectors, local shape registration techniques can be designed to improve the

quality of mobile robot navigation.

In the first part of this work, models of the Kinect’s cameras and projector are es-

tablished, which can be applied for calibration and characterization of the Kinect device.

Experiments show both variable depth resolution and Kinect’s own optical noises in depth

values calculation. Based on Kinect’s models and characterization, this project implements

an optimized 3D matching system for SLAM, from processing of RGB-D data to further

algorithms design. The developed system includes the following parts: (1) raw data pre-

processing and de-noising, improving the quality of integrated environment depth maps.

(2) 3D planes surfaces detection and fitting with RANSAC algorithms; also providing ap-

plications and illustrative examples about multi-scale-multi-planes detections algorithms

which designed for common indoor environment. The proposed approach is validated on

scene and object reconstruction. RGB-D features matching under uncertainty and noise

in a large scale of data, forms the basis of future application in mobile robot naviga-

tion. Experimental results have shown that system performance improvement is valid and

feasible.
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Chapter 1

Introduction

This chapter introduces Simultaneous Localization And Mapping (SLAM) and RGB-

Depth cameras first. Following this, the interpretation of RGBD camera is given, which

mostly concentrate on Kinect sensor, a popuilar representative RGB-D camera product.

This chapter compares Microsoft’s Kinect and other products, shows Kinect’s limitation

and advantage as vision sensor. Beyond this, the purpose of SLAM system are clarified.

Challenges of using Kinect in SLAM are also specified, listed with some detailed hypoth-

esis. At the end of this chapter, it would illustrate the whole structure of this thesis and

contributions.

1.1 Background and Context

In this section, it includes basic understanding of SLAM theory and related sensor intro-

duction, which construct the essential and preponderant hardware part of the SLAM 3D

vision system. It clarified the proposed project and its challenging scenario.

1.1.1 Simultaneous localization and Mapping

For all the autonomous vehicles and mobile robots, environment recognition is one of the

fundamental abilities. No matter what kind of robots or the environment, the problem of

passing on information between each other is always a mission. To accomplish the typical

mission like moving around and returning to the initial position, there are two problems:

mapping and self-localization. In the absence of an a priori map of the environment, the

robot is facing a kind of ”chicken and egg problem” [26]: a map is needed to localize the

robot while a pose estimate is needed to build a map. The difficulty of the problems come
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Chapter 1: Introduction

from unavoidable noise. Both the environment observations and pose estimations through

noisy sensors lead to the accumulation of errors.

Since the two problems are intimately tied together [6], the approaches to solve the

problems simultaneously are named as Simultaneous localization and Mapping (SLAM).

As a technique studied for decades, SLAM not only sets the basic problems for mobile

robot navigation, also becomes an essential standard to evaluate if a mobile robot is

autonomous. Good SLAM solutions are executed by robots and autonomous vehicles to

build up a map within an unknown environment (without a priori knowledge), while at

the same time keeping track of their current location.

1.1.2 Visual Sensor and RGB-Depth Camera

With the SLAM research developed to focus on estimating the variable values of the robot

pose and feature locations, feature selections and relative measures estimations become

important. In 1990s, different computer vision techniques have been introduced to SLAM,

offering numerous advantages. Visual sensing like stereo systems and monocular cameras

provide new approaches in SLAM, by detecting the features in images and matching feature

correspondences to track the landmarks in the maps.

3D visual feature detection and matching make the data association better assigned,

upgrade the feature-based SLAM approaches. Visual SLAM approaches, in contrast to

laser-based SLAM, focus on features and have more benefits to deal with complex envi-

ronment data. As a middle level, features can be easily distinguished from environment

objects level, also can be constantly observed to some extent. It seem to be an ideal

engineering strategy to facilitate SLAM.

Meanwhile, kinds of sensors are developed with time to achieve the full 3D mapping

information: such as laser, sonar, infra-red sensors. Early laser range finder and sonar

give the robots touching capability. A new 3D sensing system with depth-scanners and

visual cameras gives the robots both touching and visual recognition capabilities.

However, professional systems embarking these sensors are expensive. In recent years,

the novel 3D sensing systems: RGB-Depth (RGB-D) cameras become popular. RGB-D

cameras rely on either structured light patterns combined with stereo sensing or time-of-

flight laser sensing to generate depth estimates that can be associated with RGB pixels [18].

2



1.1 Background and Context

1.1.3 Kinect Sensor

Until November 2010, Kinect sensor for the Microsoft XBox 360 game system was launched

at the price under 120 pounds. As a highly integrated RGB-D camera device, Kinect sensor

has three optical components:

1. one RGB camera;

2. one IR camera (depth sensor);

3. the infra-red projector.

It not only has the low cost advantage, but also with proper resolution and accuracy.

Using Kinect as the robots’ sensors, it offers 3D information which would be helpful for

the landmarks recognition.

Figure 1.1 is the composition of Kinect device.

Figure 1.1: Kinect consists of Infra-red (IR) projector, IR camera and RGB camera

Here listed several RGB-D cameras products: Mesa Imaging SwissRanger 4000 (SR4000),

PMDTechnologies CamCube 2.0, and PrimeSense Depth Camera (Kinect). Kinect has the

low cost with proper resolution and other parameters.

Table 1.1: Main technical specification of three RGB-D cameras: Mesa Imaging Swiss-

Ranger 4000 (SR4000), PMDTechnologies CamCube 2.0, and Kinect

Product Name Technique Range Resolution

SR4000 ToF 5-8 meters 176 x 144 pixels

CamCube 2.0 ToF 7 meters 204 x 204 pixels

Kinect structured light 0.6m - 4.6m at least 640 x 480 pixels

The Kinect device provides usual RGB images at a resolution of 640*480 pixels. In

contrast to a ToF camera, the Kinect depth sensor outputs a 11-bit depth data at the rate

of 30Hz. Kinect is a RGB-D cameras, and its depth image is produced with Primesense’s

3



Chapter 1: Introduction

Table 1.2: Main technical specification of three RGB-D cameras: Mesa Imaging Swiss-

Ranger 4000 (SR4000), PMDTechnologies CamCube 2.0, and Kinect (cont)

Product Name Throughput Costs

SR4000 54 fps $9,000

CamCube 2.0 25 fps $12,000

Kinect 30 fps $150

patented Light Coding technology. Primesense has more than 3 patents on the depth image

creating process. Light Coding is newly developed around 2008 for range measurement.

It is real-time and different from the time-of-flight method. As an active stereo approach,

it applies projected speckle patterns and special coding/decoding techniques.

Figure 1.2 is the profile of Kinect’s sensors.

Figure 1.2: Kinect sensor profile

The IR laser projector emits a known noisy pattern of structured IR light at 830 nm.

Known pseudo-random pattern of dots are captured by the IR camera and then compared

to the original calibrated pattern. So the device has both the IR projector and the IR

camera separated by the baseline distance. Any disturbances are known to be variations

in the surface and can be detected as closer or further away. The original IR image

source showed the captured IR speckle pattern projected by the infra-red projector. By

measuring the disparity between a number of dots and internal calculation, the depth

images are formulated. The field of view in the system is 58 degrees horizontal, 45 degrees

vertical, 70 degrees diagonal.

The RGB camera shares the same 30Hz operating frequency. To enable high resolution

mode, the Kinect can be switched to running at 15 frames per second (fps), which in

reality is more like 10 fps at 1280x1024 pixels. The camera itself possesses an excellent set
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of features including automatic white balancing, black reference, flicker avoidance, color

saturation, and defect correction[24].

After the Kinect device was released to market in 2010, it achieved success for the rapid

market acceptance. Kinect was soon hacked for not only gaming and home entertainment

applications but also other research fields. Then Microsoft company delivered the SDK

source for developers. Soon the Kinect became the most popular depth sensor worldwide.

Several other RGB-D cameras products are in the same family branches with the orig-

inal Kinect device. For example, Microsoft’s Kinect for Windows Version1 and Version2

are based on the same technology as Kinect for Xbox. The Windows software development

kit supports PC drivers and integrated with more API inside. PrimeSense Carmine 1.08,

and ASUS Xtion Live device are also close relatives of Kinect. These two devices can be

used the same way as Microsoft Kinect sensor. They have better RGB image quality, but

does not work with USB controllers, which make them less popular than Kinects.

1.1.4 RGB-Depth SLAM

From the year of 2011, research about new Kinect device using in SLAM problem obtains

more attention. Until 2014, scholars and research group have developed a new research

sub-field of vision feature SLAM, called RGB-D SLAM. The main topics focus on how to

apply new sensors like Kinect in SLAM solution. With new technology and new depth

vision sensor coming out every year, more and more research groups start to discuss on

characterization study and agile application. Indeed, in SLAM problem, sensors’ selection

and installation methods are essential to robot’s observation. It affects the difficulty of

every kinds of SLAM problem. For example, study of laser scanner pays more attention

on measurements and odometry data, while vision based SLAM pays more attention on

visual landmark extraction. Due to kinect’s basic feature as sensor, RGB-D SLAM used to

deal with indoor environment, which develop itself on both sides: data measurements and

key visual features extraction and registration. Besides, improving traditional and new

sensor data processing method is another topic, for instance the raw depth data processing

methods and application in RGB-D SLAM sub-field.
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1.2 Summary

With the choice of Kinect sensor, the RGB-Depth SLAM system project just proposes the

research on these topics. The aim is to introduce and build a system with usual instances

to deal with indoor environment SLAM, locally and globally improving the estimation

accuracy and robustness.

Kinect’s significant advantage as low cost with proper resolution, which have been

discussed in Section 1.1.3. There are some other reasons leading the project to the choice

of Kinect.

(1) High quality of device drivers and technique support, which make the sensor itself

an reliable hardware in the whole system. Stable work are always expected in combined

systems and Kinect can cooperate with various hardware models.

(2) Proper size and standard USB controllers for data uploading.

(3) Extension features recognition capabilities, such as full-body 3D motion capture,

voice recognition.

Due to its design, applying Kinect sensor approach has several problems which need

to be considered while assembling the measurement system. Here listed three of them:

(a) The constant wavelength can be floating in a very small scale with variations in tem-

perature and power.

(b) The detected distance is limited by the projector strength and field of view.

(c) Some other light sources such as sunlight may interfere the performance of Kinect IR

projector.

Other Kinect’s characterization detail will be discussed in Chapter 3.

The main goal of this project is to improve the quality of mapping in SLAM approaches

by developing better measuring accuracy and designing better matching algorithms. The

content of mapping is defined as two parts: the color and the shape (depth) information

from Kinect. To achieve the goal, it needs the following preparation: system calibra-

tion, multi-perspective characterization analysis and data accuracy evaluation. Building

the colored point clouds in real-time is the next step. Then the key task would be al-

gorithms designed to extract proper 3D visual features from colored point clouds, multi

planes for examples. Multi-frame 3D point clouds can be compared with each other for

feature matching and evaluating. Furthermore, an optimized correspondence result could

6



1.2 Summary

be obtained by using the Iterative Closest Points (ICP) algorithm. All these hypothesis

makes the estimating of pose more accurate and improve the quality of SLAM.

The remainder of this thesis is divided into the following six chapters:

Chapter 2 shows a review of the literature on SLAM problems, Kinect sensor and RGB-

D SLAM related work in this field. Several tools used in the project are also reviewed

in it.

Chapter 3 builds models of the Kinect’s cameras and projector, standard calibration

and characterization of the Kinect device.

Chapter 4 shows raw data preprocessing and refinement, 3D planes surfaces detection

and fitting with RANSAC and Hough Transform algorithms, discuss on multi-scale-

multi-planes problem solutions.

Chapter 5 summarises the system work in this research project. Furthermore, it con-

cludes with experience obtained from the whole research. Finally, it presents several

looking-forward suggestions for future work.
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Chapter 2

Literature Review

This chapter reviews the literature relating to the research project. Firstly it presents

SLAM problem in detail. This part shows the broad knowledge and mathematical mod-

elling methods. Due to the research focus on implementation and solution, the basic theory

of SLAM is mentioned only in this chapter. Following this section, studies about Kinect as

an novel sensor which adopted in many research sub-field are listed. To scope the project’s

research topic, next section reviews from visual features extraction to cutting-edge RGB-D

SLAM technique and literature in recent years. Last but not least, tools applied in this

research are described as well.

2.1 Simultaneous Localization And Mapping

2.1.1 Early works on SLAM solutions

The Simultaneous Localization And Mapping (SLAM) problem was first formulated by

several researchers including Jim Crowley, Peter Cheeseman and Durrant-Whyte in 1980s

[52], [12]. SLAM problem is for a mobile robot in an unknown environment. It needs

to build a consistent map while simultaneously navigating the robot using the map. In

the research field to study the relations between robots and environment, SLAM was

created as a new concept, more than normal algorithm. On the other hand, wide variety

of robots lead to the situation that hardware platforms operate SLAM in many different

ways. Since the SLAM problem was presented to challenge the researchers, many related

research communities (Automation, Robotics, Artificial Intelligence and extra) started the

pursuit to solve the problem. A successful solution of the SLAM problem can be highly

valued, because it implements a method to make a robot truly autonomous.
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Chapter 2: Literature Review

There are several early significant developments in SLAM research. In the year of

1987, Smith and Cheesman [52] built the stochastic map, and presented a general solution

for estimating uncertain spatial relationships using the map. In another article published

in 1990 [51], they made accurate quantitative estimates of nominal relationships and co-

variance between relative locations of objects, using a robot as example. No complex

estimated moments is the only limitation.

Meanwhile, Leonard and Durrant-Whyte [12] described the geometric uncertainty for

robotics, also focused on the invariant relations between geometric objects represented by

geometric features. Both of two research results show the correlation between estimates

of the location of objects in a map, and correlations would grow with observations.

Leonard and Durrant-Whyte [28] considered mobile robot navigation to be a problem of

tracking geometric features (targets) which are present in the environment. After previous

research to investigate mapping and localization separately, they offered a method and

sensing strategy to solve the correlation problem with multiple sonar sensors. Compared

with the early SLAM solutions (Table 2.1), Leonard and Durrant-Whyte’s solution is

forward-looking, also affects later development.

Table 2.1: Comparison of early works on SLAM solutions

Solution Year Method Implementation

Smith, Self and

Cheeseman’s

1987 stochastic map, using extended

Kalman filter (EKF) algorithm

simulation

Moutarlier and

Chatila’s [32]

1989 framework similar to stochastic

map, colored and correlated noise

accommodated

2D laser sensor

Leonard and

Durrant-Whyte’s

1991 multi-target tracking framework,

consider data association uncer-

tainty and environment dynamics

multiple sonar

sensors

As seen from Table 2.1, SLAM solutions become prosperous before 1995. We make a

number of typical observations:

1. Implementation is important for SLAM. When researchers consider engineering

implement, the stochastic map is difficult in terms of computational complexity.

2. SLAM models needs modification. Noisy sensors will accumulate errors and affects
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the results. As Leonard and Durrant-Whyte said, ”To achieve genuine long-term auton-

omy, it is not enough just to represent uncertainty; we need to reduce uncertainty.” [28]

It becomes one of the main missions in later development.

3. SLAM is an open problem. Not only data association uncertainty, environment

dynamics, and computational complexity are considered, more and more functionalities is

introduced to add value to the SLAM solution.

4. To achieve SLAM, the hardware must be considered, for example the mobile robots

platform and range measurement device (sensor).

The most common formulation is using the extended Kalman filter (EKF) to solve the

SLAM problem, which was first applied by Smith and Cheeseman [51]. The basic Kalman

Filter algorithm is the optimal estimator for a linear system with Gaussian noise. There

are also other probabilistic approaches, such as FastSLAM algorithm solution. The EKF

is simply an extension of the basic Kalman Filter algorithm to non-linear systems. The

estimates made by the Kalman Filter are procedures of optimization. There are four kinds

of problem which the EKF-SLAM has to face:

1. the individual landmark variances convergence.

2. computational effort.

3. data association.

4. non-linearity.

Since this project is about the improving SLAM with RGB-D Cameras, the field review

is concentrated in a small region. Though the other three problems are also essential and

been studied a lot, the project mainly focus on the data association problem.

2.1.2 15 years development of SLAM solutions

Since 1998, researchers have made great contributions to SLAM in many sub-fields. With

better understanding of SLAM problem, the goal is becoming to develop efficient and

robust SLAM solutions. In 2001, Durrant-Whyte and Csorba [11] proved that estimation

errors reduces to the point where the landmarks have the precise relative locations. For

more and more observation data fused, the data association problem become critical.

Under certain conditions, for example a robot returns to a place and re-observe landmarks

during mapping, it is difficult because the targets features are complex and represented

as multi-viewpoints. It is called the loop-closure problem, shown as Figure 2.1.

The pose estimation errors accumulate after a long loop, while the robot already
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Figure 2.1: The loop-closure problem for any mobile robots. The dotted circles represent

the pose estimation. The circles expand because of the accumulating errors, which lead

to more uncertainty and failure of return to the start position

mapped the environment and went back to the original point. With the new associ-

ated data to remap the same location, it may cause catastrophic failure if the loop can

not be detected. On the other hand, if the correct long loop is detected, it will reduce the

uncertainty. The difficulty of loop-closure problem will rise while the size of the environ-

ment grows. It seems manageable for indoor environments. Since outdoor navigation tend

to the GPS approaches, SLAM is always popular in the domain of indoor navigation.

Even for the indoor environment, modelling could be complex if all the real world

factors are considered. The assumption that stationary environment is basic, and all the

other objects’ motion except the mobile robot would be treated as noise. In 1998, Thrun,

Burgard and Fox [54] raised the assumption that a robot observes a series of landmarks

while moving, also built map-likelihood-function to value the estimation efficiency. Their

E-M Mapping could be the general method: estimate the path of the robot, given current

map first, then estimate the map, given current path. Though it faces high computa-

tional costs, the model based on landmarks could be a different choice since many other

researchers more depend on the range sensors.

There are two groups of methods:

1. SLAM with range-only sensors;
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Figure 2.2: Range sensors and Bearing sensors observe a landmark location from multiple

points

2. SLAM with range-bearing sensors.

The range-only sensors are two kinds: Ultra-Wide-Band devices and GPS system.

They rely on a set of artificial beacons distributed throughout the environment. The more

common range-bearing SLAM method uses sensors with both range and bearing. The

difference is the weight. One kind of sensors focus on the range, which can measure long

distance and large area, for example sonar sensors. Sonar scanning is fast but with low

accuracy. Another example is laser scanning, which is accurate but slow. They usually

need multiple observations to estimate a landmark location (Figure 2.2). As an alternative,

sensors focusing on the bearing often use cameras and provide more informations about the

environment, like high resolution images. Since cameras are cheaper than range sensors,

they are widely implemented in robot platforms. Several scholars try to solve the landmark

initialization problem and other problems they have to face when introducing cameras to

improve SLAM solution [1], [27].

The selection of landmarks also affects the results. In early studies, the landmarks

could be described simply as points, lines. In general, the mapping could be 2D or 3D.

In this project, it only addresses the 3D SLAM which build a volumetric environment

map. Comparing with two dimensions SLAM, three dimensions SLAM implementations

need more complex feature modeling. It is almost impossible to get high resolution and

accurate 3D features with only single range-bearing sensors.

With more and more studies of vision applied in SLAM, the pioneering scholars estab-

lish the foundation of a new research subject of vision-based SLAM. One famous research

group was led by David Lowe. Se and Lowe use scale invariant features for mapping,

and their approach can bear the long trips of the closure loop because of its independent
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feature recognition efficiency. [49], [48] It is the first time for the robot to recognize its

location anywhere in the map without prior knowledge of its position.

Another paper as the milestone of vision-based SLAM was published by Andrew J.

Davison in 2003. [8] He made an assumption that the observed rigid image feature is

moving just because of the camera movement. By comparing frame-to-frame motion, the

camera positions and 3D features locations estimation would be repeated to provide the

real-time operation.

With the basic ideas of vision-base SLAM, all kinds of implementation come out in

the following years. Marcus et al. [53] improves the accuracy of the 3D features using two

cheap unsynchronized cameras and focusing on the stereo matching methods. Newman

et al. [34] combine laser scanner and camera together to build the 3D laser-vision SLAM

system, and obtain a 3D scan of the outdoor urban environment.

Until now, SLAM problem is still hard and not yet fully solved. However, all improve-

ments around probabilistic methods, varied sensors and vision features tend to make the

SLAM solution working better.

2.2 RGB-D Cameras and the Kinect

As mentioned above, the varied sensors for SLAM implementation improve with time.

Since the vision cameras were introduced to the research of object tracking, there is a huge

body of work in the area. When comparing 3D scene with 2D images, much information

about the shape and geometric feature are needed to be considered. In some recent works,

3D layout or depths have been applied for improving object detection. [45], [46] The usual

source to achieve 3D is monocular/binocular 2D image or a stereo video respectively. This

could possibly lead to the result that 3D data can not be measuring accurately enough.

In recent years, as the novel 3D sensing systems, RGB-Depth (RGB-D) cameras is of

crucial importance. RGB-D cameras rely on either structured light patterns combined

with stereo sensing or time-of-flight laser sensing to generate depth estimates that can be

associated with RGB pixels. RGB-D style cameras make use of both shape features and

visual features for the object detection. In 2008 Workshop on Multi-camera and Multi-

modal Sensor Fusion, Gould et al [16] produced a multi-model object detector with the

2D object detector and 3D information from a depth sensor. Later in 2011, Lai et al. [25]

took the advantage of the new depth cameras, combined color-based and depth-based

recognition together for object classification.
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Rusu and Cousins presented their initiatives in the areas of point cloud perception:

PCL (Point Cloud Library). The library contains algorithms for filtering, feature esti-

mation, surface reconstruction, registration and segmentation. They used Kinect as the

hardware platform expected that the Kinect and PCL working together would bring an

easy 3D vision solution for most robots in the future [43].

2.3 Registration and Feature Extraction

All the modelling and calibration are inevitable preparation for creating the 3D point

clouds. Comparing with 2D images, 3D point clouds are the materials for object recog-

nition in 3D scenes. Since every detected point has its own coordinates (X,Y,Z), the

collection of these unconnected 3D points is called a point cloud. Because of the lack of

connectivity, it can be displayed that the points are floating in space as clouds. Normally,

3D point clouds contain position information. Considering the application of Kinect with

both RGB camera and depth camera, every point also contains color information. Once

the Kinect is calibrated, 3D point clouds is the most efficient and straightforward repre-

sentation for the captured data. In this project, 3D point clouds are primitive data to be

processed. On one hand, clusters of points are used for surface reconstruction to produce

a mesh model; on the other hand, two datasets of point clouds could be aligned, known

as performing registration in 3D.

Registration is a fundamental concept in computer vision, which can be defined as

aligning two data sets taken from different coordinate systems. The data sets are point

clouds in 3D, and the amount of raw data is much bigger than 2D images. It is important

to find the rigid transformation which aligns pairs of 3D data. The process is described

as looking for the translation and rotation of a target data set that produces maximum

overlap with a reference data set. For this matching problem, there are two general

approaches for 3D registration: point matching and feature matching.

Point matching tries to establish correspondences between two spatial points clouds

directly. The unknown correspondences between the point sets make it a difficult mis-

sion. A popular approach, Iterative Closest Point (ICP) algorithm, is created to solve

the problem. Besl and Mckay introduced the ICP algorithm early in 1992 [4]. In 1994,

Zhang [58] proposed another ICP algorithm with improvements over the algorithm of Besl

and Mckay’s. The improvement on computation speed and dynamically picked maximum

length strategy make the quality of registration better. The algorithm is widely used for
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Figure 2.3: The ICP algorithm procedures. Iteratively refine transformation by repeatedly

generating of corresponding points pairs

registering 3D models. ICP has become well-known because of its simplicity and easy

to operate. There is one requirement that two data sets to be registered are already

coarsely aligned. It means the initial estimate need to be reasonably good. In that case

the algorithm would converge relatively quickly.

The ICP algorithm goes as following steps. Here C d denotes a point cloud which is

to be registered, and moved to model point cloud with a static position, C m:

1. Select control points in the point cloud data set C d. For all these selected points

d in C d, find the closest neighbour points m in Cm (called correspondence).

2. Calculate the optimal transformation between two point sets based on the cur-

rent correspondence. The rigid transformation contains an orthogonal rotation R and a

translation t. The optimal transformation minimizes the squared distances between the

neighbouring pairs(enumerated with i):

3. Apply the transformation to Cd (Transform the points).

4. Repeat until the algorithm has converged or till a desired result has been obtained.

It is the naive way to perform registration, and it apparently works well in most

cases. However the presented original form of ICP algorithm has several limitations.

ICP algorithm requires a good initial alignment, which is a basic requirement of this

approach. Since it is regarded as an optimization problem, sensitive to random noise and

local minimum trap are the problems. Basic ICP algorithms converge too slow, which

brings out the speed problem.

In the years of 1990s, many variants of ICP have been proposed, affecting all phases
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of the algorithm from the selection and matching of points to the minimization strategy

[42]. Rusinkiewicz and Levoy from Stanford University write a review to summarize

the class of ICP algorithms in 2001. The paper foucuses mainly on the convergence

characteristics (speed, accuracy of the final answer, robustness to difficult geometry) of

these ICP Variants. Rusinkiewicz and Levoy discuss the variants of ICP which affect all

phases of the algorithm. They classify these variants, and evaluate their effects. Also in

the paper, they proposed a combination of ICP variants optimized for high speed. The

following lists summarize these variants as six stages of the ICP algorithm:

1. Selection of point. (four instances: using all points, using points from uniform

sub-sampling, using random sampling, selection of points with high intensity gradient.)

2. Matching of point. (find the closest point in the other mesh, acceleration of the

basic method)

3. Weighting of pairs. (constant weight, assigning lower weight with greater point-to-

point distances)

4. Rejecting certain pairs based on looking at each pair individually or considering

the entire set of pairs. (rejection of corresponding points more than a given distance,

rejection of worst n% of pairs based on point-to-point distance, rejection of pairs that are

not consistent with neighbouring pairs, rejection of pairs containing point on boundaries)

5&6. Error metric and minimization. (sum of squared distance between corresponding

points, sum of squared distance of point to plane)

The listed stages provide ways which can improve the performance of original ICP

algorithms. With the development of 3D scanning techniques, more and more factors

need to be considered. For example, the point clouds built from RGB-D sensors data

contain the color and shape information of a target. For registration of these textured 3D

data, accurate alignment of both shape and texture is required. It can be accomplished

by adding a measure of color difference to the Euclidean distance metric.

Another trend is to accelerate the ICP matching speed. Closest point searching is the

most time consuming step of the ICP algorithm. Various fast ICP algorithms proposed in

recent years are about 3 times faster than the old ICP algorithm. Meanwhile the average

mean squared error is acceptable with the high speed searching. Fast ICP algorithms also

benefit from the computing hardware development, which lead to real-time registration

[14].

When considering the application of point clouds registration in Simultaneous Local-
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ization and Mapping, coarsely aligned target data sets are not ensured, especially facing

the loop-closure problem. In this situation, only point matching is not enough to achieve

correct registration. Visual feature matching approach would assume responsibility of

establishing spatial relations from the sensors data. Vision-based SLAM used to obtain

feature matches between images as the robot changes position, however this 2D registra-

tion technique cannot deal with 3D motion directly. RGB-D cameras make it possible to

create a dense point cloud spans the entire indoor environment. Feature matching here is

about point cloud features.

Feature matching is to find correspondences between singular points, edges and sur-

faces. The feature-based registration algorithm seems similar to ICP algorithm in this

way. It also searches for matched pairs between two input point clouds, then finds the

rigid transformation which minimizes the sum of squared distance between them. Feature

matching, like its name, aims to find correspondents by using detection and matching of

invariant features. feature points (interest points), often have good invariant properties

even viewpoint of the scene is changed. Furthermore the features have to be extracted

without spending large amount of computation.

Visual feature matching algorithm calls for four steps:

1. Detect invariant features in the 3D scenes from which the point clouds obtain their

shape and color information. A 3D feature detector identifies a set of 3D point clouds

locations presenting rich visual information and whose spatial location is well defined.

2. Extract two sets of feature-descriptors from the point clouds and match them against

each other.

3. Extract a set of matched pairs by corresponding the location of each feature to the

point in the point cloud which it registers to. This is the matching procedure.

4. Find the rigid transformation which minimizes the squared distance between the

matched pairs in 3D scenes.

The algorithm has similar steps as the ICP algorithm. However, it no longer require

points which have already been coarsely aligned. The original dependent data source

coming from Kinect sensors is fine. By the way, if a feature matching does not result

in a perfect registration, the processed point clouds data can be good materials for ICP

optimization for further registration. Only by combining the two matching approaches,

the point clouds registration results can be better.

Interest point detection is an important processing step involved in 3D registration al-
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gorithms. In the fields of shape characterization, recognition, and retrieval, feature points

provide local features that are invariant to rotation, scaling and many other transforma-

tions of 3D objects. A number of different feature detection methods have been developed.

The 2D Harris detector relies on first order derivatives of the image intensities. It

is based on the second order moment matrix (or squared gradient matrix) [17]. Though

some researchers developed the Harris detector in 3D forms, basically Harris detector

produces an easy measure of corners, employed as a filter to order the key points [40]. It

is the similar to the situation of the Hessian detector. The Hessian detector is a second

order filter. The corner strength is here the negative determinant of the matrix of second

order derivatives. 3D approach is partially motivated by 2D detector literatures. Instead

of pixels on images, 3D approach compares each voxel with its scale space neighbors.

Meanwhile the 2*2 matrix equation turns into 3*3 matrix equation. Another detector is

affine-invariant versions of the previous two detectors. The affine rectification process is

an iterative warping method that reduces the feature’s second-order moment matrix to

have identical eigenvalues.

Previous 3D feature descriptors include shape contexts [3] and spin images. The spin-

image is the projection of the relative position of 3D points that lie on the surface to a 2D

space where some of the 3D metric information is preserved [20]. A roughly explanation of

this method: first relating the neighboring points of a feature to the normal vector of the

feature, then recording three dimensional information into a 2D histogram. The problem

with spin images is that information is lost in the projection to 2D. Similarly the shape

contexts method describes local shape by partitioning the volume around a key point into

spatial bins and then counting the number of 3D points in each bin. Both methods have

some robustness to rotation and sensitive to small changes in the surface. The weakness

is that neither of the transforms are invariant to scale.

Most recently developed 3D feature descriptors get their inspiration from the widely

used 2D descriptor, Scale Invariant Feature Transform (SIFT) [29]. The SIFT descriptor

is a 3D histogram of image intensity gradients, made to be invariant to image scaling,

rotation and change in illumination and 3D camera viewpoint. The features are highly

distinctive, effectively reducing the probability of disruption by occlusion, clutter or noise.

Local feature descriptors depends on the choice of key points locations. It is not hard to

locate suitable key points in 2D images, for example the corner points with intensely change

in gradient. In 3D point clouds, the key points need to satisfy more complicated condition.
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Figure 2.4: Illustration of the detection of 3D SURF features. The shape (a) is voxelized

into the cube grid (b). 3D SURF features are detected and back- projected to the shape

(c). where detected features are represented as spheres and with the radius illustrating

the feature scale [22]

It requires that surfaces about key points have high spatial gradients in all the three

directions. 2D SIFT’s success owes to the image gradient orientations as basic descriptive

element. Its 3D generalizations follow this idea and choose the principal direction or

surface normal direction where surfaces intensity change with highest speed [15].

Speeded Up Robust Feature (SURF) is another robust local feature detector partly

inspired by the SIFT descriptor [2]. As a solution to detect and describe invariant features

in input scenes, it is easier to use in implementations because it is available in OpenCV.

In 2010, Knopp et al. [22] represent their innovative local descriptor as a 3D extension to

SURF. The extraction of the 3D features and combination with the probabilistic Hough

voting framework works well for 3D shape class recognition. It performs faster than SIFT

and gives an extra option to the user. One weakness of SURF is that it dose not support

color images and 3D scenes. The point clouds can be supplied to the algorithm in gray

scale.

Another representation of new feature matching algorithms was developed by Mian

et al [30]. This tensor base representation performs by mapping the 3D points onto

the 2D retinal plane of the sensor and performing a 2D Delaunay triangulation over the

mapped points. After triangulation, the points are mapped back to the 3D space. Unlike

the spin images to reduce the dimensionality and describe surfaces in 2D, it creates a

3D tensor by recording a 3D histogram of intersecting surface areas. Due to coordinate
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system instabilities, the method can not describe rotation invariant features along all

three dimensions. In further development it tends to create a descriptor with both tensor

representation basis and rotation invariance technique from SIFT.

Once the feature description process has been completed for two point clouds, corre-

spondence by matching feature descriptors from each data set are discovered. A series of

correspondences represented by feature pairs can help to compute a transformation, then

to align the features of the two data sets. Not only several feature description algorithms

can be combined together for the alignment, but also the point matching ICP algorithm

carries on the fine registration to eliminate error and optimize results.

2.4 Using the Kinect for SLAM

Many groups studied the RGB-D data to build 3D point clouds for different purposes.

Some of them employ the data for object classification, labeling and augmented reality [24].

Some of the groups just conduct Kinect as an easy human-computer interaction method

for education and business presentations. Of course, there are a large part of research

work relating the robot SLAM problems.

The Kinect could improve a SLAM algorithm in these ways:

1. With the depth information in every RGB pixel, it is no longer necessary to make

a guess on the distance of an observed feature;

2. The estimation of feature positions can achieve a more accurate estimate because

of direct 3D measurement;

3. It creates entire dense point cloud moving with the robots, not just sparse features.

There are many ways to use the Kinect for SLAM. There are surveys for several of

them in this section.

–RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments

[18]

This paper presents the general 3D mapping procedure for indoor environments us-

ing Kinect. It shows that RGB-D camera can capture rich information such as usual

sparse feature and dense point clouds. The algorithm uses rich visual features for the

frame-to-frame alignment.The core framework is a novel ICP variant called RGBD-ICP,

which not only extract sparse visual features, also associate features with their depth val-

ues to generate feature points in 3D. If the SIFT visual features are presented enough,

the ICP loop would not match frames with pose information. If visual features are not
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Figure 2.5: Overview of RGB-D Mapping. The algorithm uses both sparse visual features

and dense point clouds for frame-to-frame alignment and loop closure detection.

enough, point-to-plane ICP procedure would generate more accurate alignments. There

is a weighting value between the SIFT and dense point components. The implementation

extracts features in 150 ms, runs RANSAC in 80 ms, and runs dense ICP in an average of

500 ms. The paper brings a novel algorithm for frame matching and loop closure detection

with integration of depth and color information. It proves robot navigation with rich 3D

maps can be built with inexpensive RGB-D cameras. Besides, the paper points out their

shortcomings that the RGB-D mapping implementation is not real-time. It shows the

limits of RGB-D cameras: small field of view and less depth precision, but doesn’t give

solutions to improve the basic performance of Kinect device. After all, it is the first paper

talking about Kinect application in SLAM.

–Real-time 3D visual SLAM with a hand-held RGB-D camera [13]

The Germany research groups brought out their RGB-D SLAM system in 2011. The

four steps procedure is similar to the last paper. The difference is that they applies SURF

features from the color images instead of SIFT features. The depth images are evaluated

to obtain the 3D correspondences between frames, and lead to the pose refinement. The

ICP algorithm and further pose graph optimization would output a colored point cloud.

The experiments are moving Kinect slowly around the target object and acquiring about

12 RGB-D frames. The advantage of their approach is that it is totally open source and

supported by the ROS (Robot Operating System) organization. However, it also shows

two weakness: 1. The hand-held camera doesn’t have to solve the problem of automatic

view point selection; 2. They haven’t evaluate the system with ground truth information.

If put the two papers together, it shows the basic process of how to use Kinect as sensors

to improve SLAM solutions.

–KinectFusion: Real-Time Dense Surface Mapping and Tracking [33]

This paper was firstly presented in the ACM SIGGRAPH 2011 Talk. The work was

performed at Microsoft Research. Their detailed method builds ’the first system permits
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Figure 2.6: The four processing steps of ROS approach

real-time, dense volumetric reconstruction of complex room-sized scenes’ using a hand-

hold Kinect device. As the successor of the real-time SLAM with a monocular camera in

small workspaces, the KinectFusion method is more powerful with both monocular camera

and dense optical flow matching for depth features mapping. The attracting part of the

method is its system work-flow. When processing of depth measurement, pose estimation

and reconstruction is repeated, the result of 3D point clouds is not just simple matching

together. The alignment between looping closure frames is clearly better and reconstruc-

tion artefacts reduced. One of the key concepts in the real-time tracking and mapping

system, is fast surface fusion and accurate tracking of the camera pose. The parallel al-

gorithms and the GPU hardware work together to create the real-time GPU based ICP,

which extract great advantage for the system. The idea and implementation of this paper

is cutting-edge. It shows the Kinect’s potential in mapping for medium and small sized

room. The mapping of large scale area facing some additional challenges which is not yet

solved.

–Range Sensor Based Model Construction by Sparse Surface Adjustment [41]

Improving SLAM solution can be achieved by reducing inconsistencies and the overall

uncertainty in maps. This novel approach focuses on the key points of reconstruction of

environments or objects with range data. Under the assumption that each range measure-

ment is rigid, the graph structure can be refined by recomputing the data associations.

The object surface model and RGB-D cameras model are the core conceptions for the

improving, which are demonstrated by several experimental results. This paper provides

some subtle designs for the modeling of given range data and also help to improve the

SLAM.

–Realtime Visual and Point Cloud SLAM [14]
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The 30Hz high frame rate of Kinect devices is not fully exploited. In 2011 Fioraio

and Konolige presented their technique for fast registration. The algorithm for Visual-

based SLAM perform real time and generalized ICP on dense range images. Overall global

alignment using both depth and visual matching features in a uniform framework. The

experiment in this paper proves ICP and visual feature matching fail separately, and only

the combination of the two leads to a correct solution. Besides, the ICP method partly

solves the depth data noisy problem for Kinect sensor.

–Adaptive Data Confidence Using Cyclical Gaits On A Modular Snake Robot [31]

This paper is giving an example about using Kinect in an implementation of 6-DOF

SLAM. Its constructive ideas of how to setup the RGB-D SLAM code package in a robot

operating system is helpful. The method it uses is the same SURF feature detector which

talked before in [28]. However, the experiments lead to some new concepts which need to

be considered. For example the motion design of robot with Kinect as its sensor, and the

hardware platform preferences for the SLAM mission.

–Using Depth in Visual Simultaneous Localization and Mapping [47]

In recent years, visual-based SLAM task can be divided into two parts: estimating

transforms between frames and optimizing the pose graphs. Scherer et al presented their

novel approach which doesn’t rely on the measurement of all pixel positions in the depth

images. Since depth measurements from the very first RGB-D frame are used to initialize

the map at the correct scale, the error also accumulates if only using the depth mea-

surements. in order to minimize the re-projection error, the paper presents a method to

optimize both camera poses and 3D points. Specially, by adding depth constraints to the

bundle adjustment, the SLAM accuracy could be improved. The authors made a rigorous

study about the depth errors modelling, and raised the convinced results and solutions.

The Kinect is useful in SLAM improving, while there are still a number of hard problems.

Using RGB-D cameras in SLAM is not just deploying a sensor, but also making the device

work more reliably for the robot navigation.

Besides the above research work, there are some other applications. For example,

Nicolas’s RGBDemo, contribute a lot to the calibration and visualization of Kinect output.

The projects of MRPT(Mobile Robot Programming Toolkit), also provide open-source

technical support for the Kinect developers.
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2.5 State of Art

Looking over Kinect related works between 2011 and 2014, these methods with leading

progress are mostly basic combination of popular vision algorithms and this new sensor.

They have the advantages of quick engineering implementation and 2D to 3D data pro-

cessing skills, which makes researchers easy to understand and applied into more wider

areas. In SLAM research field, community groups produce and improve these state-of-art

systems over years and years:

1. MonoSLAM

2. PTAM (The Parallel Tracking and Mapping algorithm)

3. FAB-MAP [7]

4. DTAM (Dense tracking and mapping in real-time)

5. KinectFusion [33]

Gaps in current knowledge are following:

1. Kinect camera calibration and metrics characters are needed to improve the mod-

elling for following algorithms results.

2. In different types of environments, make improvement of the algorithms’ robustness

and adaptability

The research focuses on these two areas: modelling and flexible algorithms. The target

is to find state of art algorithms/methods in particular defined environment, with prop-

erly calibrated Kinect cameras. Dealing with modelling and algorithms is an exploration

and exploitation procedure. The following chapters separately discuss two faces of this

dilemma, also show understanding of the optimised choices between proper modelling and

developing algorithms.

2.6 Summary

The chapter reviews literature of SLAM problem theory, Kinect sensors, RGB-D SLAM

systems and visual features extraction methods.
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Chapter 3

Kinect Calibration and

Characterization

In this chapter it shows modelling of Kinect cameras first. Secondly, standard stereo cam-

eras calibration method for Kinect is presented. Debate about Kinect’s characterization

and errors is displayed following the calibration. With the results and analysis, integrated

de-noising and filters are listed at last.

3.1 Stereo Cameras Calibration

All of the IR camera, RGB camera, and IR projector need calibration, in order to create 3D

point cloud correctly. Actually, the RGB camera and IR camera can not be highly trust in

SLAM research unless they are calibrated. The RGB camera follows the restricted single

view geometry and standard calibration procedure, to obtain its intrinsics parameters.

Meanwhile the pair of IR camera and IR projector perform as similar system of stereo

cameras. The project starts with building the camera and projector models, applying the

most specialized and simplest camera model: the basic pinhole model, which is shown in

Figure 3.1 .

The transformation from the physical 3-dimensional world with coordinates (X,Y,Z)

to the points in the image plane with coordinates (x,y) should be classified as central pro-

jective transform. Any defined point P in real space has 3D coordinates P = (X,Y, Z)T ,

projected onto an image plane and represented by a point x = (x, y)T . The homogeneous

coordinates are given as (x, y, 1)T . From properties of these similar triangles,

x =
fxX

Z
, y =

fyY

Z
(3.1)
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Figure 3.1: Basic camera pinhole model

Figure 3.2: Specific camera models for the Kinect sensor. The pair of IR projector and

IR camera combine a system of stereo cameras. An object’s depth can be detected with

the calibrated system
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At the IR camera image plane

−→x ir = MirX (3.2)

Here Mir is named camera projection matrix, contains the rotation and translation value.

Mir = Kir[I|O] (3.3)

Similarly at the projector plane,

−→x p = MpX = Kp[R|t] (3.4)

Since the projector and camera are strictly parallel (which testified by experiments),

I,R both equal to identity matrices. While the distance between the projector and IR

camera is defined as S,

t =


0

0

0

 , O =


S

0

0

 (3.5)

According to the assumed camera model, IR camera intrinsic parameter matrix

Kir =


fx 0 x0

0 fy y0

0 0 1

 (3.6)

Because of the lack of information about the projector, here it is assumed the projector

and camera have the same focal length f and optical center. It means both the image

planes are at the same XY plane.

Kir = Kp =


fx 0 x0

0 fy y0

0 0 1

 (3.7)

−→xir = Kir[I|O]X =


fx 0 x0 S

0 fy y0 0

0 0 1 0



X

Y

Z

1

 =


fx(X + S) + x0Z

fyY + y0Z

Z

 (3.8)

−→xp = Kp[R|t]X =


fx 0 x0 0

0 fy y0 0

0 0 1 0



X

Y

Z

1

 =


fxX + x0Z

fyY + y0Z

Z

 (3.9)
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Dividing by Z, then based on the assumption the projector image plane shares the

same focal distance as the IR image plane, disparity (in pixels) between projector and

camera can be defined:

d =


fxS
Z

0

0

 , Z =
fxS

d
(3.10)

For each real world point at different depth distance, there will be a corresponded

disparity at the x-axis of the image plane. X and Y are easy to calculate with the Z-

coordinate value. For IR camera,

X =
(xir − x0)Z

fx
− S, Y =

(yir − y0)Z
fy

(3.11)

The disparity is always the key point of all the depth sensor procedure. In some way,

this ideal camera model can be recreated to investigate the phenomena of structured infra-

red light and the procedure to measure depth. The main motivation behind the techniques

is to acquire a depth map. For two corresponding images, comparing the disparity of every

point on the image can create such a map. If the reference images are fixed and accurate

in real world, all other images only have to consider one auxiliary variable quantity:

∆ = dobj − dref =
fxS

Zobj
− fxS

Zref
(3.12)

Then the depth could be captured by measuring in pixels on image.

The Kinect has an image reference of what the pattern looks like from the cameras

viewpoint, when all points in the surface refer to a certain, known distance. This is based

on the Primesense’s Patent ’Depth Mapping Using Projected Patterns’. By comparing

the horizontal position of a point in the captured image to its corresponding horizontal

position in the reference image, a binocular disparity can be extracted, which in turn can

lead to the depth of the pixel by calculation.

Kinect only offers the disparity value as 11-bit number: 0-2047. It creates the 640x480

array. The Kinect itself actually does not calculate the depth, so the formulas between

the disparity value and the real world depth distance should be estimated or established.

∆ =
fxS

Zobj
− fxS

Zref
, Zobj =

fxSZref

fxS + Zref∆
=

Zref

1 +
Zref

fxS
∆

(3.13)
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3.1 Stereo Cameras Calibration

Figure 3.3: Known pseudo-random pattern of dots, corresponded disparity appears while

the object’s moving in Z-axis, changing the depth distance to the Kinect

The relation between the disparity value ∆ and the depth zobj is modelled using the

equation:

zobj =
1

α(∆− β)
(3.14)

where α and β are part of the depth camera intrinsic parameters to be calibrated.

Since the Kinect’s first release in 2010, this low-cost depth camera has been fully

studied. The field of calibration is pushed forward by practitioners, working on real-

world engineering problems. As one of the core technologies, depth detecting mechanism

attracts lots of research groups’ attention. By modelling the cameras and calibrating the

parameters, it is easier to understand how the depth detecting system works. The basic

mathematical model mentioned above is used by most groups. However, there are different

methods dealing with the model for calibration.

Smisek et al. presented their Kinect geometrical model in 2011 [50]. It only gives the

depth distance results without proving, but the simple model focuses on the application,

and associates the geometry of both IR camera and RGB camera, which is more helpful

for data processing and registration of original images. When talking about calibration,

the estimated distortions effects of both Kinect cameras are considered in order to increase

the accuracy of 3D measurement.
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Figure 3.4: Schematic representation of depth-disparity relation

In the modeling part it introduces the disparity d in Equation 3.10. This disparity is

presented in ROS’s technical website written by Konolige and Mihelich [23]. They firstly

point out Kinect uses disparity offset in pixels from a calibrated reference image to evaluate

infrared image. It is the way to transform the structured light pattern into depth value.

In 2012, Khoshelham brought out an novel investigation of the geometric quality of

depth data obtained by the Kinect sensor [21]. The similar mathematical model in his

article is directly created with the assumption of reference plane. The mathematical model

equation

Zobj =
fxSZref

fxS + Zrefd
=

Zref

1 +
Zref

fxS
d

(3.15)

can be explained by Figure 3.4. Furthermore, author listed the the calibration parame-

ters involved in this mathematical model. Besides the parameters from standard camera

calibration, the base line length S and distance to the reference plane Zobj also need

calibration. This observation hits the difficulty of Kinect calibration but with no more

formulation.

3.2 Characterization of Kinect

Recognised information of cameras calibration parameters is essential for generating ac-

curate coloured point cloud. Only after calibration, cameras can be adapt to real world

measurements. The first part of contribution is about Kinect’s cameras calibration. Based

on the theory of camera calibration and 3D reconstruction, the project chooses a procedure
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3.2 Characterization of Kinect

Figure 3.5: Click the corner points on chessboard grid and calibrate the RGB camera

automatically

Figure 3.6: Interface of Matlab Camera Calibration Toolbox

to simply calibrate the Kinect’s RGB camera with practicality. It has extended research

line about chessboard pattern calibration using ’Matlab Camera Calibration Toolbox’.

Calibration object is a chessboard, shown in Figure 3.6.

There are some reasonable benefits with chessboard pattern. It is a plane with corner

points easily to identify and extract uniquely. When the Kinect is fixed, the chessboard

is held in various poses in front of the camera, trying to cover as much of camera’s field

of view with these different poses. Corner points of the calibration object are determined

up to sub-pixel accuracy using an automatic corner feature detector. Pictures taken in

different orientation will prevent a bad estimate of the various parameters.

Instead of OpenCV calibration functions, this project applies Matlab Camera Cali-

bration Toolbox, because its procedures satisfy the challenge with practicality. Followed

with each step to the end: loading calibration images, extracting image corners, running

the main calibration engine, displaying the results, the intrinsic parameters data of RGB

camera showes as:

1. Focal length: fc = [ 550.307202370897240 ; 548.427979065932850 ];

2. Principal point: cc = [ 325.009050692525650 ; 255.963736813278590 ];
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The focal length in pixels is stored in the 2x1 vector fc, which results from the imple-

mentation of the famous camera calibration method [59].

The principal point cc is often hard to derived directly and estimated reliably. It is

known to be one of the most difficult part of the native perspective projection model to

estimate (ignoring lens distortions). In this case, it is sometimes better (and recommended)

to set the principal point at the center of the image (cc = [(nx-1)/2;(ny-1)/2]) and not

estimate it further.

3. Skew coefficient: alpha c = 0.000000000000000 (unit in degrees);

4. Distortion coefficients: kc = [ 0.198605423329255 ; -0.459285830195762 ; -0.008656507034746

; 0.001113169340110 ; 0.000000000000000 ];

Image size: nx = 640; ny = 480; From the CMOS sensor size and 640*480 resolution

frame, derived pixel size equals 9.3µm.

Table 3.1: Color camera internals

Color internals

fcx fcy uc0 vc0 k1 k2 k3 k4

550.30720 548.42798 325.00905 255.963737 0.198605 -0.45929 -0.00866 0.00111

Nicolas Burrus [39] provide the software toolbox (Kinect RGBDemo v0.6.1.), which

doesn’t grab IR images, only RGB images and RGB cameras calibration file. Applying this

method , factory calibration results of the same kinect are saved in ROS calibration files:

calibration.yml. Here showes the Intrinsic matrix and distortion coefficients for Kinect

RGB camera:

1. RGB camera matrix:


528.0144043 0.00000000 320

0.00000000 528.0144043 267

0.00000000 0.00000000 1.00000000



2. RGB camera distortion coefficients:



0

0

0

0

0


3. shift offset: 1090

4. projector depth baseline: 0.07500

These parameters are written from the original calibration of Kinects.
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This project also performs demonstrating RGBDemo to refine these original calibra-

tion. Actually, it is not the unique method to manually calibrate if applying OpenNI. An

alternative line of calibration research also has extended. It has pretty good default pa-

rameter to align to color and depth images. OpenNI comes with a predefined calibration

stored in the firmware that can directly output aligned depth and color images with a

virtual constant focal length. Most applications will be happy with this calibration and

require no more any additional steps. However, some computer vision applications such

as robotics might require a more accurate calibration.

The factory calibration results are not that accurate enough in these scenarios. They

are stored onboard, managed by OpenNI for images un-distortion, and for registering the

depth images (taken by the IR camera) to the RGB images. Therefore, the depth images

in datasets are re-projected into the frame of the color camera, which means that there is

a 1:1 correspondence between pixels in the depth map and the color image. The function

in OpenNI would operate the alignment to produce both images from the perspective of

the RGB camera.

Considering the cameras modelling part above, IR camera’s calibration can be accom-

plished as the same way theoretically. If executing the same camera calibration, it needs

to capture images of a chessboard pattern from IR camera like RGB camera. When cap-

turing images from the IR camera, a creative thinking is to block the projector for good

corner detection in chessboard images. Otherwise, the corner detection may fail. Here are

two figures of the IR images : One is the original with dot patterns; the other is after the

blocking of projector.

When calibrating the images with no emitting light from projector, the remaining

difficulty with the objective comes from not enough lighting sources in environment. If

there is a light to emit IR rays, the result will be better. Matlab Camera Calibration

Toolbox has the ability to deal with light intensity enhanced images. Considering about

the scale factor due to image capture problem, the refined results in this way of calibration

is shown below:

1. Focal Length: fc = [ 593.58503 589.29362 ] [ 3.30435 3.17770 ]

2. Principal point: cc = [ 321.52359 238.12760 ] [ 4.04813 4.56828 ]

3. Skew: alpha c = [ 0.00000 ] [ 0.00000 ] = angle of pixel axes = 90.00000 0.00000

degrees

4. Distortion: kc = [ -0.11740 0.33334 -0.00222 -0.00007 0.00000 ] [ 0.01311 0.05507
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Figure 3.7: Calibration of the IR camera: (a). chessboard pattern images with dot patterns

and cannot finish corner detection; (b). after blocking the projector, capture the images

for corner detection and calibration

0.00158 0.00141 0.00000 ]

5. Pixel error: err = [ 0.56907 0.46819 ]

It showes that pixel error is less than one pixel. Similar results can be derived from

repeating experiments, as proposed calibration scheme in this project.

Table 3.2: IR camera internals

IR internals

fix fiy ui0 vi0 k1 k2 k3 k4

593.58503 589.29362 321.52359 238.12760 -0.11740 0.33334 -0.00222 -0.00007

After calibration, all the intrinsic camera matrices of IR camera, RGB camera, and

distortion parameters are catalogued. Keeping the chessboard constant and capture both

RGB and IR images together repeatedly, extrinsic parameters as relative R and T Matrix

can be computed:

1. relative R matrix:


0.99999985 0.00048633 0.00008552

0.00047829 0.99999986 0.00008296

0.00007645 0.00008311 0.99999941



2. relative T matrix:


0.00061669

0.00053755

0.00021411


36



3.2 Characterization of Kinect

3.2.1 Depth Data and Disparity

The following part debates on depth data and disparity. In Equation 3.14, it describes

the depth distance of target, which is only related with disparity and intrinsic parameters.

The relation between the disparity value ∆ and the depth zd is modelled by performing

the equation:

zd =
1

α(∆− β)
(3.16)

Where α and β are part of the depth camera intrinsic parameters to be calibrated.

As introduced in Chapter 2, Kinect sensor only outputs 11-bit depth data, counted as

0-2047 different values. The values are not distributed uniformly. There are more values

from 50cm to 200cm, less values out of 5 meters. Of course, Kinect’s depth measurement

as a function of distance does not scale to be linear. From original disparity data, it asks

for a formulas estimation to transform these discrete values to real world depth values.

Here list three modelling results of the estimated formulas, which need to contrast and

analyse both empirically and theoretically:

1). OpenNI provides the Function Formulas in “Depth Generator”.

2). RGBDemo’s operation result: Depth calibration was determined experimentally,

by measuring the reading of the center pixel in the depth image, and dealing a regression

on the data. From their data, a basic first order approximation for converting the raw

11-bit disparity value to a depth value in centimeters is:

zd =
100

−0.0030711016 ∗ rD + 3.3309495161
(3.17)

Here rD represents raw disparity, equals ∆. This approximation of centre pixel is

approximately 10 cm off at 4 m away, and less than 2 cm off within 2.5 m.

3). A better approximation is given by Stephane Magnenat (Open Kinect Google

Group) in meters:

Zd = 0.1236 ∗ tan(rD/2842.5 + 1.1863) (3.18)

Adding a final offset term of -0.037 centers the original data. The approximation has

a sum squared difference of 0.33 cm while the 1/x approximation is about 1.7 cm in the

centre pixel.

In this project it implements RGBDemo function to transform raw disparity data to

real world depth. By computing the depth-value volume of 640*480 matrix data (saved
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as YML file, independent with RGB volumes), the depth images after calibration can be

achieved, seen as Figure 3.11. It is displayed as gray scale, which is different from usual

Kinect’s depth images used in entertainment. Kinect’s depth images applied in enter-

tainment performance is achieved by Microsoft’s SDK, only calibrated after manufactured

(factory calibration). However, since the formulas is given as experiments, it requires as-

sess effectiveness of whole concepts. Formulas can be modified with this project’s results

in further experiments and data sets.

The statistics of calibration results are detailed in Section 3.2.2. Only with these

repeatable results, the method demonstrated in this part can be assessed to be reliable.

After all these modelling, calibration, and transforming sensor data to measure real

world depth, the parameters to create 3D point cloud are ready. This procedure is called

modelling and data pre-processing. During it, the errors come mainly from following

aspects:

1). Optical system modeling errors, which shown as camera intrinsic and internal

values calibrated;

2). Calibration method system errors, which explained as bias and variance, using

standard deviation of relative error, a method for evaluation of uncertainty. Calibration

accuracy versus depth camera noise level, versus number of model planes, and versus

correct noise model.

3). Disparity value to real depth modelling errors, as Equation 3.12. When ∆ is

smaller, it means Kinect is more accurate. It derives a conclusion that Kinect’s accuracy

is a quadratic function related to the distance. The result is also shown in following Kinect

characterization section.

Except Kinect device’s system error, these errors added while our procedure of creat-

ing the 3D point cloud should be reduced with further methods, such as refined modelling

with factors talked in Primesense’s patent (Depth-varying light fields for three dimen-

sional sensing). More reliable calibration, and subdivided fitting curve for disparity data

transforming are needed.

3.2.2 Characterization of Kinect system

In this sub-section, It discusses the work of data understanding of the created 3D point

clouds. First, it chooses a flat plane as the most simple target object. The white board is

chosen as experiment object, shown in Figure 3.8.
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Figure 3.8: Choosing flat whiteboard and curved pillar as target object for error analysis
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The series of experiments are designed to examine Kinect’s performance at different

distance to a flat board: Capturing 100 frames data at fixed distances to white board.

Since Kinect’s independent performance in different distance, there should be at least 8

series: at 50cm, 100cm, 150cm, 200cm, 250cm, 300cm, 400cm, 500cm. It also contains 2

special series like 40cm and 800cm.

After data capturing, the next step is to calculate random errors at chosen position

pixels. In a small group test of only 15 images, the mean-square deviation is 0.00184.

That’s an example of the whole experiments.

In order to make the experiments reliable, the pixels choosing in images would be

agglomerated in four small size rectangles (80*60), at left-top, right-top, left-bottom and

right-bottom positions of the whole images. To evaluate the system errors during 3D point

clouds generation, the rectangles part organised in point clouds will compare with ground

truth–real ones measured and drawn on images.

During the experiments, there are some other characterization of Kinect which are

observed. One kind of them is about pixels, such as ’Flying pixels’, or CDT (common

distance transform). It appears especially at object boundaries. Others are low pixel

resolution, individual pixels depth feasible measurement problem.

On the other hand, the rigid model of IR camera and IR projector effect some of the

characterization of the Kinect system. Here is one example of the shadow effect. As Figure

3.11 shows, none of IR dots could ever reach the objects behind the obstacle. They’re stuck

in the closer obstacle’s IR shadow. Since the Kinect can’t see through or around objects,

where the unobserved side of the object is hallucinated. There will always be blanks of the

scene that are occluded or blocked from view without any depth data. The IR camera is

in a small distance, however be able to show the shadow on IR image. This phenomenon is

called occlusion. Which parts of the scene will be occluded is determined by the position

and angle of the Kinect relative to the objects in the scene.

Following section demonstrates another experiments achievements: object as the pillar

in an indoor environment, like corridor of the building. This clusters of experiments are

designed to detect curves in 3D point clouds. It is similar to the last series of experiments,

however has different ground truth measurement. Instead of plane fitting, curve surface

fitting with 3D point clouds is an alternative line of extended research.

In this section, the completed work includes Kinect’s system characterization analysis,

and pre-processing for 3D plane fitting. First, the sample target chosen is a flat plane
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Figure 3.9: Example: depth value of pixels at the same position of the images, 15 frames,

150cm distance

Figure 3.10: The obstacle and multi-view fields disparity lead to the shadow effect
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Figure 3.11: Choosing flat box as target object for error analysis

surface. As presented, the board in usual office is chosen as experiment object, shown in

Figure 3.12:

The series of experiments are designed to detect Kinect’s performance at different

distance to a planar surface of box: Capturing 100 frames data at fixed distances to the

box. Because of Kinect’s independent performance in different distance, there should be

at least 7 series: at 50cm, 100cm, 150cm, 200cm, 250cm, 300cm, 400cm, and also try 2

special series like 40cm and 800cm.

To calculate random errors at specific position pixels, the result can be extrapolated

by Matlab funtion. For instance, in a group test of 100 frames of images, which shown on

Figure 3.14. That’s an example of the whole experiments.

In order to make the experiments reliable, the chosen pixels anchored in images would

be agglomerated in three small size rectangles of the whole images: 1. in center positions

2. left border positions 3. right border positions

To investigate the system errors during 3D point clouds generation, the rectangles

part created in point clouds will be quantitatively compared with ground truth–real ones

measured and drawn on images.

The next step of experiments is about the same point in center and same point at

border, still take the series of 7 distance, 100 frames, only added a third point with fixed

deviation for further study. Seen as Figure 3.13:

During the experiments, some characterization of Kinect which have been observed:

(1). About pixels, such as ’Flying pixels’, especially at object boundaries. The inner

and outside cannot be easily classified. This is also called common distance transform

(CDT).
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Figure 3.12: Series of experiments of Kinect’s performance at different distance to a flat

plane, seven groups of point clouds in an overlapping phase

Figure 3.13: Example: depth value of pixels at same position of 100 frames images, fixed

distance: 0.5m, yellow-left, purple-center, blue-right
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Figure 3.14: Specified of small size rectangles at one frame image, fixed distance: 2.5m

(2). Low pixel resolution at nearer distance (0-50cm), and with increasing distance

the resolution gets better, at about 2 meter to the best. Then the resolution gets worse

with increasing distance, until can not be recognized (more than 500cm).

(3). Individual pixels get different depth measurements, however they just ”jump”

(transform) between very small deviation–only two values which created by Kinect’s work-

ing methods.

(4). The border data is more feasible than center data, because much more noise at

the border while vision signal imputing.

A result can be derived for Kinect that always see the different resolution at different

distance, and design algorithms based on these error analysis. Beyonds, the jump between

CDT feature of Kinect could help to modify some detailed rules while 3D feature detection.

Citing point clouds at object’s center to detect distance feedback with better accuracy,

while border data requires to be reconstructed for other application. The significance of

”Calibration and Characterization of Kinect” is obvious. Based on the controllable error

in different range, it is able to design reliable feature extraction algorithms with proper

threshold value.

Modelling errors is already discussed in Section 3.1. Here are the comparisons between

applied method calibration result and factory method calibration result (same center point,

different methods), shown in Figure3.16 and 3.17:

Obviously presented from the quantitative results,the project’s method calibration runs

better than factory method dose evaluated by systematic error.
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Figure 3.15: Detection of same point on plane at different distance, from 50cm to 400cm;

green line-center point, blue line-border point, red line-with added deviation
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Figure 3.16: Statistics of this project’s method calibration results: Center point systematic

error with distances range from 0.5m to 4m

Figure 3.17: Statistics of factory method calibration result: Center point systematic error

with distances range from 0.5m to 4m
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Table 3.3: Standard Deviation of three pixels at the same position of the BOX, at different

distance observed by Kinect

truth-value-box (cm) border pixel (cm) standard deviation center pixel (cm) standard deviation

50 50.168 0.00010576 50.64 0.000042002

100 100.9 0.00048475 99.7 0

150 151.21 0.000013336 150.25 0.003683

200 200.04 0.0055311 200.36 0.00068401

250 251.81 0.05926 253.2 0

300 303.93 0.040528 305.06 0.010286

350 359.52 0.042676 359.78 0.03992

400 417.12 0.13565 413.71 0.036342

When applied the least square fit and get the quadratic function, it can be com-

pared with other methods discussed before. The results shows in Figue 3.18: Compar-

ing with ideal depth measurement, both methods have bias. From 0 to 2 meters, both

methods share similar performance. However, with increasing of the view distances, this

project’s calibration method performs less variance and bias than factory method does.

This project’s calibration method would lead to better performance facing large indoor

room robot navigation.

The calibration results are reliable. The improved calibration method applied is indis-

pensable, if Kinect sensor operates in navigation applications.

Another group of comparison shown in Figure 3.16 and 3.19. They are both this

project’s method calibration results. The difference is Figure 3.16 shows center point and

Figure 3.19 shows border point.

All of the experiment data can be drawn in a scatter map shown in Figure 3.20:

3.2.3 Denoising and Filters

When simple 3D features such as planar surfaces process with fitting and segmentation

with each other in point clouds, the modelled depth noises are quadratic with respect to

depth, also tested by Nguyen et al [35]. The original point depth value distribution with

such noises affects the RANSAC-based methods while counting of outliers. Since it is

difficult to consider the noise factors into the planar surface point distribution. To cope
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Figure 3.18: bias and variance comparison among ground truth and two calibration meth-

ods: this project’s implementation and factory method

Figure 3.19: Statistics of this project’s method calibration results: Border point systematic

error with distances range from 0.87m to 4.37m
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Table 3.4: Standard Deviation of three pixels at the same position of the WALL, at

different distance observed by Kinect

truth-value-wall (cm) pixel 3 added (cm) standard deviation

86.75 87.425 0.00013875

136.75 137.17 0.00095814

186.75 189.4 0.00068299

236.75 240.65 0.006871

286.75 289.2 0.0056678

336.75 347.39 0.088004

386.75 398.52 0.090516

436.75 450.77 0.093182

with this scenario, it leads to another solution just to reduce the noises (pre-processing).

Thus, before plane fitting, another step of filter smoothing is essential. Methods are these

three: normal median filter, bilateral filter and moving least squares fitting.

By using the Kinect performance curve that correlates depth and noises, normal fil-

tering can not simply average away noise values corrupted center and nearby pixels. It is

due to the ’edges’ coming from depth, which can be seen as self-blurred by linear low-pass

filtering. In this case, Bilateral filtering seems to achieve a simple, non-iterative scheme

for edge-preserving smoothing [38]. It is widely applied in computer vision and computer

graphics.

From the sources of RGB image and depth image, the bilateral filter is designed as

following:

I ′p =
Σr∈Nf(p− r) ∗ g(Ip− Ir) ∗ Ir

Σp∈Nf(p− r) ∗ g(Ip− Ir)
(3.19)

In Equation 3.19, p is the current point, r is a point in the kernel N around p, and Ip

is the intensity of the point. Functions f and g respectively measure Gaussian-weighted

geometric distances, and RGB color similarity. Intuitively as design, the bilateral filter

tends to smooth more when neighbouring points are similar, and smooth less when there

are value jumps.

Even when considering the characterization of Kinect, missing information and error

segments of the scene still exist. By applying bilateral filter, the rendering result of
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Figure 3.20: Scatter map of experiment data streams

every scene seems better. However, it rewrites the raw value output from Kinect ’s data

collection. As a result, de-noising using moving least squares fitting methods are proper

than bilateral filter at the situation of key point collection, which the method is discussed

in Chapter 4. The project pre-processing method is apt to choosing moving least squares

fitting.

3.3 Summary

To build the system, the first concern is understanding the basic structure of Kinect

sensors and modelling the RGB-D cameras. As a new type of RGB-Depth cameras,

Kinect has its own characterization. Though the basic parameters given by the Primesense

company, the sensors requires to be calibrated before its implementation in SLAM. The

proposed work contains the progressively objective: modeling and calibration of all the

RGB camera, IR camera and IR projector. In the assumption that IR camera and IR

projector combine a system of stereo cameras, the pinhole model is also adoptable. The

specific factors affect the modelling validity can be added later, guided by the Primesense’s

prototype. Calibration of all these optical components are proved absolutely necessary.

Furthermore, the relation between depth detection mechanism and speckle pattern emitted

by IR projector is explained by equations during the modelling and system calibration. By

using Kinect’s special speckle pattern and normal calibration theory, the project makes
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a hypothesis that repeatable approaches of Kinect calibration can be quick, efficient and

accurate enough.

To test the hypothesis, many calibration methods are introduced. The performance

of IR projector presents a special case comparing with normal camera system. Thus it

would be helpful to modelling and calibration by quantifying the speckle pattern dis-

parities with the depth data given by the sensors. Designed methods combining normal

calibration methods and modification for Kinect sensors are valued by repeatable experi-

ments. If the modelling and calibration is correct, it will increase the depth data accuracy.

These appraised approaches achieve reasonable point clouds comparing with automatic

calibration. While automatic calibration method only scales to Kinect’s entertainment

application, now it is improved and can be performed in SLAM and robot navigation.

The further experiments are designed as comparing the real objects and the point clouds

re-projection with calibration parameters.

The chapter presented both theoretical and experimental analysis of the geometric

quality of Kinect’s depth data. From the results of calibration and error analysis the

following main conclusions can be drawn:

- To eliminate misalignments between the colour and depth data, accurate modeling

and stereo calibration of the IR camera and the RGB camera is necessary;

- The systematic error of depth measurements increases quadratically with increasing

distance from the sensor;

- Noises and ramdom error increases at object’s edge area, denosing methods are

needed;

- Comparing original calibration method, quick and reliable calibration method in this

project can improve the performance of Kinect sensor in mobile robot navigation.
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3D plane fitting algorithms design

This chapter starts with software outlook overview based on the study about Kinect sensor

itself. Secondly, Method and algorithms for 3D plane fitting are presented, both RANSAC

and Hough Transform method. The design of the algorithms and results are shown as the

final part in this chapter.

4.1 Software Missions Overview

4.1.1 Understanding the nature of Kinect sensors data

Following the discussion in third Chapter’s summary, the overall accuracy of the system

depends on a variety of factors. During appraising of different approaches, the depth data

and color data measured by the Kinect offer with more information, which can be argued

for further implementation. During 3D features proposed for object recognition, it is

significant to distinguish the systematic error coming from the modelling and calibration,

and the random error which describes the characterization of Kinect. By Repeating the

experiments the project manages to solve this problem. Except that, official claimed

resolution and accuracy of the Kinect device can help to judge if the 3D object recognition

(such as planes) are correct.

Experiments to detect real world objects are classified as two or three kinds. Some

combine intensity images with depth for object recognition while some others focus on

2D/3D hybrid approaches. For this project, it is better to define the problem from easy

geometry objects, then upgrading to complex environment step by step. The first challenge

is to detect flat plane from several distances with fixed intervals. Another issue is about

the curve detection and re-projection, which can pick a round cup or cylinder pillar as
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Figure 4.1: Loop closure matching frames, real pictures and graphs

target object.

4.1.2 Designing feature extraction and registration algorithms

After the building of 3D point clouds and its accuracy for SLAM application justified, the

next step is to apply the original data source and design algorithms operating for robot

navigation. The aims are set to define the mapping content, build the maps in avoid

of problems such as Loop Closure problem which shown in Figure 4.1, and evaluate the

quality of maps. There are three key requirements during we consider the target of SLAM

problems and plane fitting challenge.

1. The feature extraction has to be real-time and robust. It requires that the ICP

registration algorithm operates in a high speed.

2. Develop better algorithms to solve the Loop Closure problem. This target is pri-

mary in SLAM solution and there are many proposal plans. The point clouds with position

information and color images with texture features combines with proper weights is impor-

tant. Besides, no easy and universal methods exist to meet varying, novel requirements.

A specific method to apply the depth data source of Kinect for this project’s platform

is the key point. With the algorithm study, some rules to extract the key interesting

points in point clouds are established. 3D point clouds feature detection, description and

matching is a new developed field, especially for applications like Kinect using in SLAM.

Applying the 2D image features algorithms for reference would provide some novel ideas
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Figure 4.2: Before Kinect’s 3D point clouds scenes, 2D SURF without threshold control

takes samples of interest points

to 3D research area.

3. To cope with the large sized data coming from the sensors, preprocessing is essential.

The organization of software and hardware source brings out the efficiency problem of using

point clouds. It affects the results SLAM solution to an extent.

As reviewed in the Chapter 2, new feature detectors and descriptors are normally cre-

ated as varieties of classic approaches. The domain of our project scopes mainly to the

3D feature extraction methods. The aim is to evaluate if novel designed detection and

description methods can deal with Kinect’s 3D point clouds scenes. The improvement is

focused on both speed and accuracy. By using spin images and concepts from SIFT, new

designed descriptors need to satisfy the standard that feature invariant in scale and in

rotation. To test the algorithms’ efficiency, it can be put in to a benchmark and compete

with exist algorithms. There are lots of benchmark data for the algorithm efficiency testi-

fying. For the distinctive data of Kinect sensors, benchmarks are need to be constructed

by large amount of scanning work.

For instance, Speeded Up Robust Features descriptor(SURF), which is similar to SIFT,

increasing robustness and decrease computation time. research in 2D SIFT and SURF are

maturely developed. By applying SURF algorithm first to take samples of the interest

points, which will be benefit for accurate interest point registration and fitting in 3D

point clouds. With proper control in threshold, the picked out points of interests are more

reliable, shown in Figure 4.2 and Figure 4.3.

Except of the efficiency debate, the algorithms still have to run through a series of

tests.

1. How do the ICP algorithms operate when it faces the Kinect sensors’ noises. Light
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Figure 4.3: Before Kinect’s 3D point clouds scenes, 2D SURF with threshold control takes

samples of interest points

reflection phenomena and luminous source placed in the scene are one kind of noises, while

another kind of noises come from movable objects like walking people during mapping.

2. How to deal with the content of maps? In indoor environment scenarios, data can be

recognised and classified to save more spaces. It needs the background knowledge, such as

ground surface recognition. Data formatting is important considering the computability.

Data formatting simplification may speed up the whole procedure if chosen properly. It

requires different types of compressed data formatting evaluation.

3. The implementation of a simple mobile robot system with Kinect sensors. Creating

a prototype, examine the whole project with real environment ground truth is significant

for evaluating the quality of maps building.

4.1.3 Introducing multi-objective optimal searching methods to regis-

tration

For the designed feature extraction methods and matching algorithms in Kinect’s 3D point

clouds scenes, optimal association and management of these approaches would provide

better results. It is common to use more than one feature, for example to apply 2D image

feature and 3D point clouds feature together for registration, which presented in Figure 4.2

and Figure 4.3. Other strategies include combining shape-valued feature and color-valued

feature together, real-time feature and feature with prior knowledge restriction together,

etc.

This project makes a hypothesis that registration combining the proper features to-

gether would improve the quality and accuracy of the 3D point clouds by using the opti-

mization of a multi-objective method. To determine whether it successes or not, experi-
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ments are designed as four sets:

1. Registration with one single feature, like only color; In experiment it applies poster

on wall;

2. Registration with another single feature, like only depth; In experiment it applies

white bookshelf;

3. Registration with both features in separate methods; In experiments it applies the

whole side of room;

4. Registration with both features in an optimized method considering both objectives’

searching; In experiments it applies the same side of room.

Poster is rich in color feature, however poor in depth feature. Bookshelf is rich in depth

feature, however rich in color feature. Approaches only one feature or separate methods

can not cope with complex environment with all kinds of objects. The experiment also

should evaluate the result from many other aspects: results accuracy, robust with different

environment, processing time consumes and source consuming.

Considering ICP algorithms, it relates with searching and optimization by its nature.

A hypothesis that introducing non-linear optimization method into ICP would improve

its performance in 3D point clouds matching is also listed as the objective in this stage.

Multiple view geometry in computer vision and standard calibration are supporting

the studies of camera modelling and calibration. For registration part, the class of ICP

algorithms are the most important techniques to be used. When dealing with feature

matching, referenced ORB, SIFT, SURF, Spin images methods provide novel ideas. Fur-

ther, combination of algorithms and multi-target optimization would make the designing

more flexible and robust.

Multi-objective optimization(i.e., Newton-Raphson method, stochastic searching opti-

mization, non-linear programming) are widely applied in algorithms similar to Convolu-

tional Neural Networks (CNNs). Feature engineering is apt to understanding 3D point

clouds as multi-objective clusters, while SLAM and geometry methods are apt to accurate

matrices and transform computation. To summarise the trend, supervised learning helps

SLAM systems geometrically understand the environment immediate and build associa-

tions across distinct object instances.

With the introduction and simple experiment of the project’s hypothesis, challeng-

ing ideas emerge themselves and are not that hard to understand in simple scenarios.

In the same way, the project choose a simple planar surface object for example during
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demonstration on algorithms.

4.2 Planar Surface Fitting Methods

For Kinect’s computational geometry and feature detection in maps, planar surface recog-

nition and fitting is an essential and basic task to deal with 3D point clouds. With the data

provided by Kinect sensor, clouds of 3D points are scattered in the space. During plane

construction process, good estimation is significant to give a planar form (x, y, f(x, y)).

Its estimated normals which represent the surface form, can be valued as the key point,

deciding whether the estimation is good or not. ”In surface reconstruction, the quality

of the approximation of the output surface depends on how well the estimated normals

approximate the true normals of the sampled surface” [10]. The fitting of plane is kind of

a local normal (planar form) estimation, then proper scales of point clouds segmentation

and classification.

In real world, 2D fitting is about linear form, while in 3D is about plane fitting. The

study of 3D plane fitting can be tracked back to the year around 1990. Researchers started

to notice the scattered data on a special domain, which the plain model is just the planar

surface domain. Hoppe et al. of University of Washington developed an algorithm for 3D

surface construction with or without boundary, using a set of unorganized points on or

near the surface. The paper not only gave the popular methods for fitting, also termed

closed surface, bordered surface and simplicity surface [19]. The famous methods for plane

fitting includes fundamental Least Squares (LS) method, Principal Component Analysis

(PCA) and RANdom Sample And Consensus (RANSAC) algorithm.

As the important steps of estimation point segmentation, there are two problems which

need to be considered while methods designing: how to define outliers and how to reduce

sensitivity of outliers comparing with points in the plane form. The Least Squares (LS)

method is simple to understand: with every (xi, yi, zi) in a sample set, the characters of

A,B, and C can determine the plane z = Ax+By+ c, while the sum of the squared errors

of ′Axi +Byi +C − z′i is minimized. To solve to gradient linear equations, the characters

are easily found.

It is easy to find the solution of LS method too sensitive to outliers and make itself

not reliable. Followed that the Principal Component Analysis (PCA) faces the similar

problem. PCA is a statistical technique that is typically used to identify a small set of

mutually orthogonal variables which explain most of the underlying covariance structure of
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Figure 4.4: Least Squares method for 3D plane fitting

a dataset. [36] As an old powerful tool in exploratory data analysis and making predictive

models, the 3D-PCA version is just proper for planar surface construction. However,

due to the affection from observation, it is still not robust. Many kinds of PCA related

approaches are developed, and further optimization is kept on.

RANSAC is an abbreviation for ”RANdom SAmple Consensus”. The algorithm was

first published by Fischler and Bolles. As an iterative method to estimate parameters of a

mathematical model from a set of observed data which contains outliers, the probability for

reasonable result increases with more iterations are proceeded. Because of the iteration,

”RANSAC is very efficient in detecting large planes in noisy point clouds but very slow

to detect small planes in large point clouds”. [9]. Usually for Kinect’s application on

SLAM, the situation is that planar surfaces take outright majority of the compositions.

Large noisy planes like ground and wall are easy to detect using RANSAC. However, when

facing small open style objects, the weakness of computation complexity is kinds of fatal.

For other methods, there are still some ideas, such as region growing and Hough

Transform algorithms. Hough transform method is wildly used in 2D for shapes (line,

circle) detection. While target is to focus on the detection of planes in 3D point clouds.

Hough transform can be used for the detection of 3D objects in point clouds. The

extension of classical Hough transform for plane detection is quite straightforward. Surface

detection using Hough Transform in 3D just likes line detection in 2D, simply adds another

variance to the Equation 4.1.

ρ = xcos[θ]sin[φ] + ysin[θ]sin[φ] + zcos[φ]; θ ∈ [0, 360), φ ∈ [−90, 90] (4.1)
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For example, in N-point point-cloud, every point is voted in m[θ]∗n[φ] bins. To run 3D

Hough Transforms, it needs total voting N ∗m[θ]∗n[φ] times. Thus computing complexity

of standard 3D Hough Transform is huge. Algorithm runs slow with less efficiency. The

designed histogram algorithm does not calculate the complete Hough Transform for all

points. The randomized selection three points method leads to a proper Randomized

Hough Transform (RHT) method [5]. The designed method cleans data first, pre-processes

data by getting lower resolution of the point clouds. Then it randomly selects groups of

three non-collinear points. Three points counts one single vote to the plane detection

cells. This strategy significantly reduces the voting cost. Except that, for multi-plane

situation, such as different depths, RHT can complete the estimation in one iteration and

save storage for the planes.

For all these methods, learning to transferring them to cope with Kinect sensor im-

plementation is important. In Kinect 3D point clouds scenarios, border and edge data,

even though blur, still can be calculated with multi-plane clustering. Setting threshold

of peak voting detection will recognise large planes like ground and walls fast. Applying

with knowledge background of objects and environment, algorithms can be improved in

speed and robustness.

When considering with the standard organization of this algorithm, it always turns

the target-problem-framework into three steps, which repeated in an iterative. For planar

surface fitting, RANSAC is applied to identify each points in the sensor dataset, recognize

that if a point belongs to a plane and give the parameters estimation.

1. The first step is to describe the plane model function and find the minimal sample

sets. Three points not in a line can define a plane. Data collection starts with randomly

selecting three points from the dataset.

2. The second step is to compute the plane model parameters, by the selected points

coordinates in a minimal sample set. Actually, this minimal sampling method is where

RANSAC is different to other approaches. For example Least Squares method, the esti-

mation of plane function parameters have to use all the data available.

3. In the third step, it is needed to check the consensus set of a plane, which contains

as more proper points as it defines. During the iterations, a final consensus set is resulted

and compared to a new set. The optimization simply count the inliers amounts and return

to a better performed consensus set. The iteration threshold also depends on the dataset

which is found to contain most inliers elements.
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RANSAC can be sensitive to the choice of the correct noise threshold, which makes

the data distribution important while selection step. It would be highly valued if the

algorithms is designed for special application or special sensors, as an example work by

Sanchez and Zakhor [44]. Looking for a optimized solution for Kinect sensor and SLAM

application, is the goal of this project.

4.3 Improved RANSAC Algorithms and Experiments

As mentioned before in introduction, RANSAC and Hough Transforms are two of the

most popular methods for planes in point clouds construction and identification. With

development of 3D point clouds, many applications developed in the new research area in

last decades [56], [57], [36].

The algorithm design of RANSAC for 3D planar surface fitting is implemented with

help from the Point Cloud Library (PCL) [43]. In PCL, many open source point cloud

processing modules such as pcl-segmentation and pcl-sample-consensus make the

fitting and segmentation easier. When given sampled representation from Kinect, the

whole frame or part of frame is observed as an unorganized point cloud. Since the dealing

with whole clusters may become too slow, this project only make a part of the planar board

as input. After the RANSAC algorithm, the largest amount of inliers datasets would be all

considered for the equation of this target plane. An added changeable deviation threshold

can control the speed if there’s high accuracy requirement.

That’s the first step of the experiment. In Table 4.1, a dataset of 1784 points of one

board, several frames results are showed (dataset also showed in Figure 4.5).

Evaluation of this experiment is simply managed by Confusion Matrix, a special kind

of contingency table, with two dimensions. Since the target plane is perfect designed as

plane ground truth(at least in accuracy of mm level), the table would be easier to draw.

All of the 1784 points consturcted the true data, means there is no false data in this

experiment. Here iinlier points are the real positive cases in the data (TP), while outliner

points are the real negative cases in the data (TN). false positive cases (FP) and false

negative cases (FN) equal to 0. The percent of TP points in 1784 points is defined as

accuracy (ACC).

If sensor accuracy accepted in coarse level (the threshold is set as 5cm), fixed board with

distance around 1.8 meters would always feedback the same result. The only difference

is amount of the inliers. It is due to a few of points jumping affected by speckle pattern
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across different frames.

However if setting the sensor accuracy upgrading to more accuracy fitting, such as

1cm threshold, RANSAC output datasets cover the entire target surfaces shows not such

consistent across frames. Because of the edge shadow effect, and the non-depth blanks

segmentation due to single frame detection, the same plane in real world may result with

little different.

From this experiment, the top acceptable value of accuracy (ACC) is around 98.5%.

Further experiments coping with planes and other objects, there will be false positive (FP)

and false negative (FN) data in the sets. For example, to detect a desktop surface with

several books and cup on board. Then ACC and other evaluation index of Confusion

Matrix will present more aspects about RANSAC algorithms operation.

Compared with percentage result, it displays that if threshold is too large, as 5cm.

Then all the hypotheses sampled dataset tend to be ranked equally. On the other hand,

when the noise threshold is too small, the estimated parameters tend to become unstable.

RANSAC method’s sensitive to the choice of the correct noise threshold [55], and better

adjusted threshold would show a balance in both accuracy and speed for this application.

Even though setting the same threshold, RANSAC runs on different frames data results

different amount of inlier points. It depends on border points with unreliable values.

Sometimes border points even feed back with no depth value (shown as black in Figure

4.5 and 0mm in depth). It is believed that these flexible points make the RANSAC results

different with same threshold.

Figure 4.5: Dataset of 1784 points of one planar board, pick up in a 3D software screen

For frames containing more than one planes, RANSAC can still get the right segmenta-
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Table 4.1: Statistics of different frames about RANSAC processed dataset

Frame Number Threshold of RANSAC Amount of Inlier Points Percent

Frame 1 1cm 1706 95.6%

Frame 2 1cm 1687 94.6%

Frame 3 1cm 1712 96.0%

Frame 4 1cm 1660 93.0%

Frame 5 1cm 1677 93.9%

Frame 6 5cm 1757 98.5%

Frame 7 5cm 1762 98.8%

Frame 8 5cm 1748 98.0%

Frame 9 5cm 1747 98.0%

Frame 10 5cm 1755 98.3%

tion for each, but with the amount of inlier points reduced below 90%. Datasets at border

regions are always contained by noises, which need pre-progress filtering. In a coarse level,

the algorithms could compute the overlap part between two planes and do simple dataset

operation. Meanwhile, the basic procedure could be improved from several aspects. For

example, the estimated area of planes decides the selection of points. If choosing the

points as a previous set rule, it will avoid large amounts of useless groups, for example in

a line, too compact or too scattered. With the sections divided, the group of three points

in a line can be perfectly avoid. To check if the plane is a local one, make sure the group

of points will never be selected again, there can be an iteration inside the divided section.

Hough transforms are a well-known cluster algorithm of image transforms with history,

which can identify parametrized objects of a certain class. For Hough transform, it is more

like a histogram principle, which can put every possible plane features into the bins, and

calculate the majority. In this method, the planes of different range can be found together,

if the threshold is set properly. However, during the experiments, even the ideal plane may

arrive to a doubtable answer because of the sensitivity to the threshold. Here we assume

the phenomena come from the affection of Kinect’s characterization itself, for intermittent

value distribution.

To combine those algorithms together, it requires some support processes. The de-

signed structure is about detection of planes with Randomized Hough Transform, and use
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Figure 4.6: Coarse and fine resolution fitting algorithm combined with both RHT and

RANSAC

RANSAC with shape background knowledge to do the iteration and give the estimation of

planes, finally by Least Squares method to obtain an plane with better accuracy. Consid-

ering the Kinect’s characterization–resolution change with distance, the plane detection

may lead to a faster way if getting the histogram also changeable with resolution. Make

the Hough Space suit to two or three level of resolution, may properly work for Kinect

sensor data. To implicate the multi-resolution plane, other methods such as interpolation,

Bayesian approaches, and filter methods may help to achieve this goal.

The coarse and fine resolution fitting algorithm combining both RHT and RANSAC

is the target. The concept of coarse-fine strategy has several advantages over a single

resolution segmentation [37]. For Hough Transform, the advantage of detecting multi-

planes would improve the efficiency for whole frame segmentation. Large planes such as

ground and walls are quickly separated. Then the RANSAC for high resolution and high

accuracy algorithm would run on the bases of exist planes and precise compute the function

expression of each plane. With this method, which only sensitive to planar surfaces in

a point cloud dataset, an elemental feature detection method for Kinect makes the most

common features in real world segmented. For complex features in high level, non-planar

segments need some other feature extraction methods.
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Figure 4.7: Multi-planes extracted from office 3D point clouds

4.4 Summary

In this chapter, this project mainly discuss about 3D plane fitting problem. Based on the

controllable error in different range, we can design reasonable feature extraction algorithms

with proper threshold value. The input stream data as raw RGB-images, go through com-

bined algorithms, which include pose estimation by RANSAC and pose graph improving

by Hough Transform, output as coloured 3D point cloud models.

There are 5 conclusions retrieved from the results:

1. From the points cloud data collected in office environment, most objects are shown

as plane surfaces, which can be segmented by planes detection algorithms.

2. Hough Transforms and RANSAC can be implemented to detect multi-planes in

point clouds separately. Improved algorithms are able to solve even more complicated

figures, such as bookshelf environment.

3. However, during the experiments, the ideal plane such as whiteboard may lead

to an unreliable answer because of the sensitivity to the threshold. Here it is assumed

the phenomena come from the affection of Kinects characterization itself, for sparse value

distribution. The analysis is missing.

4. The designed structure contains detection of planes with Randomized Hough Trans-

form, and RANSAC with shape background knowledge to run the iteration and gain

the estimation of planes, finally applying Least Squares method to obtain an plane with

better accuracy. The structured algorithms are successfully implemented in three parts

separately. Combined algorithms test and results evaluation are needed.

5. It is a novel method of combination of two algorithms together for plane detection.

After data cleaning, fast RHT with peak thresholds works well for multi-planes. Many
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installed parameters are not generalized perfect for all kinds of environments like different

scales of planes together. System robustness evaluation part should be added, such as

example explanation, and algorithms results comparison with ground truth.
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Chapter 5

Conclusion and Future Work

This chapter starts with conclusions of the whole thesis. It lists what has been done and

some reflection on understanding of RGB-Depth cameras. Secondly, contributions and

achieved results are shown, both from modelling and algorithms. The final part talks

about future work and trend.

5.1 Conclusion

The thesis aims to prove the hypothesis that Kinect can be applied in SLAM field in an

indoor environment.

After overview the SLAM theories and their development, this thesis raise a project to

build a system of sensors (hardware) and algorithms (software) together implementation

for SLAM.

1. The project’s key issue is Kinect: Study of its characterization and modelling the

cameras sensor. The study makes it an clear answer that: After modelling and calibration,

Kinect can be used in navigation as visual cameras systems, with plus range information.

Although this project’s model shares the same idea of pinhole models, this design from

modelling to calibration has differences and advantages. By analysing the distribution

of systematic error, it shows a clear procedure of calibration and evaluation method for

Kinect and other similar commodity depth cameras. It proves that depth cameras like

Kinect, the noise level is a quadratic function of the depth. It also discusses solution about

raw data preprocessing and de-noising, improving the quality of rebuilt environment depth

maps.

What the project pursues is a better modelling of the general depth transform mech-
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anism, and a better understanding of the depth cameras’ noise model. It results a proper

accurate model for kinect depth value, also a quick application method of depth cameras

devices.

2. Designing and combination of algorithms can in a degree improve Kinect perfor-

mance during coarse and refined 3D registration of pairs of images. Feature matching in

single plane and multi-planes are solved as cluster problem using RANSAC and Hough

Transforms together. The combination shows better performance of Kinect than 2D SURF

detection and recognition, and better than two separate algorithms in complex environ-

ments.

The proposed novel algorithms learns to generate threshold parameter and align them

jointly. By employing RHT and RANSAC, multi-planes can be accurately segmented in

large scale. The number of planes wanted in one frame can be pre-set. It also combines

shape knowledge and dropout sub-sampling methods to speed up the algorithms. Though

facing different environment, the whole pipeline still works if threshold and parameters

set correctly.

3. Further conclusion is about understanding of building systems: which includes

6 valuable poles: modelling, structure or pipelines, data, algorithms, experiments and

evaluation results.

5.2 Future Work

System building is not only pieces of work piled together, but also combination and glued

in logic. The reliable and robustness of projected Kinect SLAM system needs more ex-

periments and evaluation.

Further more, improvement of sensor-environment adaptation: in complex environ-

ments there are more curve surfaces and non-rigid surfaces to deal with. Also an empty

room (for example only with white walls) needs more basic geographic features to be

detected and applied for navigation.

In recent years, as Deep Learning develops, unsupervised calibration method become

possible. In the future, end-to-end learning and transfer learning would recreate Robot’s

SLAM. An even general methods of indoor environment SLAM can be quickly solved by

real-time system. As people define features, rewards and adoptions, modelling parts would

efficiently build a learning system and optimize itself to the target. During 2015 and 2016,

there are already some innovative papers in this area coming to the research community,
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and some implementations to the engineering world.

Another looking forward section is about semantic recognition. Integrating semantic

information into SLAM is more and more popular in 2D and 3D. There was a lot of

interest in incorporating semantics into todays top-performing SLAM systems. One day

in the future, the new video SLAM-Convnets like ConvNets database benchmark would

be widely used.

The next level of application is not only robots, but auto-mobiles. Actually this tech-

nology of navigation has been developed for several years. Drones are also nice platforms

for RGB-depth cameras, and the piloting is a challenging device-environment interaction.
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