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ABSTRACT 

Five modules have been developed to incorporate an LQG-control algorithm into PRI­
~1AL (Package for Real time lnteractive \.lodeling Analysis and Learning). This LQG­
algorithm can be seperated into two independent sub-problems. Optima} state estimation 
and optimal state feedback. 
:\1ost of the effort bas been put into developing 4 modules that can be used to design and 
test a steady-state Kalman filter. This Kalman filter is the best linear estimator for a sys­
tem that can be described by a linear statespace model with Gaussian white noise distur­
bances. The 4 modules are: KALSIM. a module that simulates a stochastic state space 
model. KALMAJ\. a module that calculates the Kalman filter. KALEST. a module that 
estimates the state vector for a steebastic state space model using a Kalman gain matrix 
and WTEST. a module that tests a signa! on being zero mean white noise. A Kalman filter 
is functioning optimally when the residual vector (the difference between the predicted 
and real measurement) is zero mean white noise and the by KALMAN predicted varianee 
is equal to the by SIMEST observed one. For cases of a sub-optima! Kalman filter. several 
approaches to adaptive filtering have been considered. The most promising one uses the 
autocorrelation function of the residuals to obtain better estimates for the noise com­
ponents and the Kalman gain matrix. A simple SISO system is used to demonstrate the set 
of modules and the adaptive filtering approach. 
The st..eady-state solution to the optima! state feedback matrix is obtained by solving the 
algebraic Riccati equation. This. numerically troublesome equation. is solved by obtaining 
the stabie and unstable eigenvalues and eigenveetors of the corresponding Euler-Lagrange 
equation. The algorithm basically solves a generalized eigenvalue problem. 
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CHAPTER 1 

INTRODUCTION 

l.I. OPTIMAL CONTROL AND STATE ESTIMATION 

Optima} control and state estimation are two closely related subjects but are two 
completely independent problems. This may seem to be a paradox. but when we look 
closer at what is meant by this remark it describes how a LQG (Linear Quadratic Gaus­
sian) algorithm has been implemented. 

l.I. I. THE LQG ALGORITHM 

A LQG algorithm calculates an optima} feedback matrix L: 

1.1 

Ut is the input vector at instant k. it the estimate of the state variabie Xt obtained by the 
Kalman filter. 
L is optimal in the sense that it minimizes a quadratic cost function of the form: 

00 

J = E { I: [x[Ext + 2u[Mxt + u[ Fut ]} 1.2 
k =0 

with E a positive semi-definite symmetrie matrix. M positive semidefinite and F positive 
definite symmetrie. 

The system itself can be represented by a linear model corrupted by Gaussian white noise 
processes. The idea is to extract from the available input and output data an optimal esti­
mate of the state i of the system. Optimal in the sense that it perfarms better than any 
other algorithm and minimizes a eertaio cost function. Laterit will be discu5sed what kind 
of cost functions are minimized. 
The estimation problem (estimating the state variable) and the control problem (calculat­
ing the feedback matrix) are two completely independent problems in the sense that the 
feedback can be performed using the optima} estimate of state. which can be calculated 
separately from the feedback matrix. Tagether the two methods provide us with a power­
ful metbod for cantrolling a process that can be modeled by a linear model corrupted by 
independent Gaussian white noise processes. These assumptions do in no way restraio the 
practical use of the metbod as will be discussed in (ch.2.2). Since the two problems are 
completely independent we will first pay attention to estimation problems in general and 
to the Kalman filter as an optima I linear estima tor in special. How to sol ve ( 1.2) resulting 
in a solution for L will be discussed in the chapter about optima} control and the Riccati 
equation. 
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1.1.2. STATE ESTIMATION, A MATHEMATICAL TOOL 

All applications in PRI\1AL calculate "black box" models from available input and 
output data. In this case state variables are just mathematica} tools to model a process. 
Since there is a \vide variety of mathematica] tools and theory available for state estima­
tion and state feedback we will use the concept of state variables even if they have no 
physical realit:-v·. 

1.1.3. FINAL REMARKS 

Since the strength of a control application is determined by the weakest component. 
it is important to put a lot of effort into developing a package that can design a Kalman 
filter and test and evaluate its performance and that can adapt the filter in case of sub­
optima! behaviour. The second step. the implementation of the optima} feedback matrix 
has therefore been restricted to the algorithm for solving the Riccati equation. There are no 
results that show a control routine "in action" but there are results showing how to design 
an optima! 1\.alman filter and how to evaluate its performance. 



CHAPTER 2 

INTRODUCTION 
TO STOCHASTIC MODELS 
AND ESTIMATION 

2.1. STOCHASTIC MODELS 

Most of tbe techniques for designing optimal controllers are based upon deterministic 
models. However. these models are not always succesful in a noisy or uncertain environ­
ment. Tbere are tbree reasons wby we should consider stochastic models. 

(1) Deterministic models are never perfect. The purpose of a model is to represent cer­
tain characteristics of the reality. Sometimes it is not possible to derive a complete 
model. since this would require a model with inifinite variables. Therefore. for practi­
caland computational reasons. the model must be an approximation. 

(2) Tbere are stochastic disturbances. Noise processes and uncertainties in the model 
introduce a random component. 

(3) Sensors do not provide perfect and complete data about tbe system. Sensors introduce 
their own dynamics and distortions in tbe measurements. Somelimes it is not possible 
to measure a variabie directly. 

Since we are interested in developing an optima} controller for a system. corrupted with 
noise and uncertainties. we are left with the following tasks: 

(1) To develop a system model that accounts forthese uncertainties and disturbances in 
a direct but practical way. 

(2) To estimate the quantities of interest. 

(3) To control the system in an optima] sense. 

We will develop a stochastic model tbat accounts for uncertainties and disturbances 
in such a way tbat it can be used in practice. 

2.1.1. THE STOCHASTIC SYSTEM MODEL 

A potentially powerful and useful model is a discrete linear state equation: 

2.1a 

2.1b 

This model is an extension to the deterministic state space model. obtained by adding a 
noise process nk to the dynamics equation and mk to tbe output equation. If we would 
like to evaluate the probability function for Xt and for Yt in a practical way. we will 
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have to restriet the inputs to the ones obtained from Gauss-Markov processes. Fora Mar­
kov process. the probability function at time-instant k completely determines the proba­
bility function at instants larger than k. In the context of linear models. it can be shown 
that the Markov assumption is equivalent to staling that the random process n 4 and mA 
are expressible as the outputs of linear models. called shaping filters. driven by white 
noises and deterministic inputs only. 
Since a Gaussian probability function is completetely determined by the mean and vari­
ance. and since linear operations on Gaussian processes result in Gaussian processes. we 
only have to propagate in time the first lwo moments to obtain a propagation of the com­
plete probability function. 
The model is thus reduced to a linear model of a physical system driven by deterministic 
inputs. white Gaussian noises and Gauss-Markov processes. Consequently. one can consider 
the original model and the necessary shaping filters as a single "augmented" linear system 
driven only by white Gaussian noises and deterministic inputs. 

The model can thus be restricted to: 

x~.: +l = ÁXJ,: + Bu~.: + Gw~.: 2.2a 

2.2b 

where XJ.: is now the augmented system state and Wt and V~.: are white Gaussian noises. 
assumed to be independent of each other (fig. 2.1). 

r-----------------, 
I 

I I I 
De1erministic I I 

controls I I 

: I 
I 

I 
Linear I White Gaussian I 

noises I modelor : Outputs 

I physical I 
Gauss~~ I I 
Markov 

system 
I White Gaussian I 

I Shaping I 
noises processes I 

filters I 
I llinear) I 
I I 
I I 

I 
I L--------------------J 

Fig. 2.1 
The augmenteel system 

We will now give an overview of estimation problems and the purpose of the KAl­
man filter. 
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2.2. INTRODUCTION TO ESTIMA TION PROBLEMS 

A general estimation problem can be posed in the following manner. Given some 
quantities of interest whose va lues are not known exactly. ~1easuring devices and sensors 
provide data that is related to the variables of interest. The objective is to use this data. 
the knowledgc> about its relations to the quantities of interest and the knowledge about its 
noise-corruption to obtain an estimate of these variables. This estimate bas to be "optima]" 
in a sense defined by some criterion. 

This means that in generaL an estimation problem has five fundamental components : 

( 1) the varia bles to be estima ted 

(2) the measurements or observations available 

(3) the mathematica] model descrihing how the measurements are related to the variables 
of interest 

(4) the mathematica] model of the uncertainties present 

(5) the performance criterion to judge which estimation is "the best" 

In our case we restriet ourselves to time (in)dependent, linear Gaussian systems. This 
means that the five components of our estimation problem can be specified as follows : 

(1) The variables to be estimated are put in a n-dimensional state vector x,. (with k the 
time index) that are related as: 

with ul . a m-dimensional. deterministic input vector. 

(2) There will be a p-dimensional measurement vector Yl . 

(3) The set of measurements Yt are assumed to be a Iinear combination of the variables 
of interest. corrupted with a disturbance vector vl of dimension p.: 

Y k = Cxl + Duk + V 1.: 2.3 

(4) The possible values of x,. are realizations of a random Gaussian variabie with mean 
i,. and covariance P~:. Also the set Yt can be viewed as a realization of a random 
Gaussian variable. 

(5) With respect to the performance criterion. the Bayesian viewpoint is adopted. We 
want to generate a complete description of the probability distribution for the values 
of the variables of interest. Since we are interested in estimating the values of a vari­
abie x,.. knowing the measurements y,. . we need to generate a conditionat density 
function. Once we know this density function. it provides us with all the informa­
tion necessary to define an optima] estimate. since reasonable definitions of optimality 
might include (fig. 2.2) the median (having equal weight on either side). the mode 
(maximum likelibood value). or the mean (the center of probability ). 

An algorithm that propagates the mean and covariance of the variables of interest 
and in case of Gaussian noise also the complete density function is called the Kalman 
filter. 
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2.2.1. THE KALMAN FILTER 

Fig. 2.2 
Choice of estimo.tor 

Local 
mode 

2.4 

Basically a Kalman filter is an optimo.l recursive do.to.pr~ssing o.l.gorithm. Although 
there are many ways of defining optimo.l, depending on the criterion chosen to evaluate per­
formance. it can be shown that under some basic assumptions the Kalman filter is optima! 
with respect to virtual any sensible criterion. 

The Kalman filter needs the following information to perform its function: 

( 1) A linear model of the system and measurement dynamics. 

(2) A statistica} description of the system noises, measurement noises and model uncer­
tainties. 

(3) Any available information about initial conditions of the variables of interest. 

The word recursive means that the Kalman filter does not require all previous data to 
be kept in store nor does it need to reprocess all information every time a new measure­
ment is taken. This makes the Kalman filter easy to implement. 

A Kalman filter basically combines all available measurement data, plus knowledge 
about the system and measuring devices and noise statistics, to produce an estimate of a 
desired variabie in such a way that the error is minimized statisticall~'· This means that 
the average results of the Kalman filter are better tban tbe average resulis of any other 
method. Tbe next section will give a very elementary description of the necessary assump-
tions. In chapter 3 they will be treated more accurately. · 

2.2.2. BASIC ASSUMPTIONS 

The Kalman filter will only give an optimal estimate if three basic assumptions are 
satisfied. They are: 
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( 1) Tbe model description is a linear model. 

(2) Tbe system and measurement noise are white. 

(3) The system and measurement noise are Gaussian. 

2.5 

Some of these restrictions can be relaxed. For instance. if the Gaussian assumption is 
removed. the kalman filter is still the best (minimum error variance) filter out of the class 
of linear filters. 
These three assumptions do in no way restraio the practical use of the Kalman filter. 

( 1) A linear model is of ten adequate enougb to describe the dynamics of a system. If the 
system contains non-linearities. the standard approach is to linearize about a chosen 
point or trajectory. Linear roodels are easier to manipulate mathematically and the 
linear theory is more complete and practical tban tbe non-linear. 

(2) A white noise model is used. since the matbematics involved are simple and usabie in 
practical systems. In cases where tbe noise power level is not constant over all fre­
quencies. or in wbich the noise is time correlated. a wbite noise tbrough a linear sys­
tem can duplicate the necessary characteristics of tbe noise. Tbis system. called a 
"shaping filter" is added to tbe overall system to obtain a system driven by wbite 
noise again. 

(3) Tbe Gaussian property can be justified pbysically by the fact that system or roeas­
urement noise is caused by a number of small sourees and it can be sbown 
mathematically that when a number of independent random variables are added 
together. the summed effect can be adequately described by a Gaussian probability 
function. regardless of the shape of tbe individual densities. And since one knows. at 
best. the first and second order stochastics (mean and variance) of a noise process. the 
Gaussian assumption means that we can propagate in time the complete density func­
tion if we can propagate the mean and covariance. 



CHAPTER 3 

THE KALMAN FILTER 

3.1. PROBLEM STA TEMENT 

We will describe the model that is used for the Kalman filter. the necessary 
information needed to solve the problem and the algorithm. 

3.1.1. THE MODEL DESCR.IPTION 

Consider the following completely observable. completely controllable. discrete. 
linear. stochastic system: 

where 

and 

Xt + 1 = A" Xt + Bt Ut + Gt w 1.: 

Yk = C~.:Xt + DtUt + Vt 

x is a n-state vector 

u is a m-input vector 

w is a r-process noise vector 

y is a p-measurement vector 

v is a p-measurement vector 

A is a n-by-n state transition matrix 

B is a n-by-m input weight matrix 

G is a n-by-r process noise matrix 

C is a p-by-n output weight matrix 

D is a p-by-m feedthrough matrix 

3.1.2. THE STATISTICAL DESCR.IPTION OF THE NOISE 

3.1 

3.2 

The noise sequences Wt and vk are uncorrelated Gaussian white noises with the 
following properties: 
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E{wt wJ} = Qt 8~j 

E {vk vJl = Rk lik; 

E{v~}=O 

E{w~}=O 

E{w" v[} = 0 

3.2 

3.3a 

3.3b 

3.3c 

3.3d 

3.3e 

~~j is the delta function defined to be 1 if k=j and 0 if k;é j. Q~ is r-by-r symmetrie, 
positive semidefinite matrix and Rt is p-by-p symmetrie. positive definite matrix. 
Positive definiteness of Rk implies that all components of the measurement vector are 
corrupted by noise and there are no linear combinations of measurement veetors that 
are noise-free. 

3.1.3. THE A PRIORI INFORMA TION 

(Eqn. 3.1) is propagated from the initia! condition XQ. However. since this value 
may not be known precisely a priori. it will be modeled as a random variabie with a 
normal distribution. Xo is completely described by its mean i 0 and covariance P0: 

E{xol = io 

E Hxo - io][xo - ioY } = Po 

3.4a 

3.4b 

where P0 is n-by-n symmetrie. positive semidefinite matrix. A singular P0 means that 
some initia! states or linear combinations of initia! states are known precisely. 
Furthermore it is assumed that :i. Wt. Vt are uncorrelated. 

3.1.4. THE CRITERION 

The Kalman filter will be derived in a Bayesian manner by generating recursive 
equations to propagate in time the Gaussian conditionat probability function and the 
mean value for the states [MAY79]. [LEE64]. Another criterion is minimization of the 
mean-squared estimation error [KAL60] but this approach leads to the same results. 

We now have a linear model with white noise disturbances and a priori informa­
tion. enough information for the Kalman filter to combine the measurement data with 
the information provided by the system model and the statistica! description of the 
uncertainties to obtain an optima} estimate of the system state. 

3.2. THE ALGORITHM 

We will only summarize the final algorithm. the interested reader can refer to 
the numerous publications about the Kalman filter [KAL60]. [KAL61]. [LEE64]. 
[SOR85]. 
The optima! state estimate is propagated from instant k to k+l by the relations 
[BRA75]. [MAY79]: 
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TIMEUPDATE 

3.5 

3.6 

Sinee no measurement is available. the best predietien for the mean state is what the 
model prediets (eqn. 3.5). The state estimation error Pt n. is propagated in time and 
the measurement uncertainty Gt Q~. G[ is added. to obtain the predietien error Pt +lik 

(eqn 3.6). At instant k+1 the measurement ~t + 1 becomes available. The estimate is 
updated by defining the Kalman gain matrix K1. + 1 and using it in the following rela­
tions 

MEASUREMENT UPDATE 

Wh ere i~. + w is the conditionat meao of Xt + 1 bef ore the measurement y k + 1 is taken 
and processed and i~. + 1/k + 1 is the conditionat mean of Xt + 1 after the measurement 
Yt + 1 bas been processed. Pt +llt and Pt + 1/t + 1 are the conditionat error covariances of 
Xt +1 befare respectively after the measurement is available. 

The structure of the filter is as follows. The input to the algorithm is Yt+ 1• the 
measurement. The measurement residual r~.- +1 is generated as the difference between 
the measurement Yt +1 and the best prediction of it befare it was taken: 

3.10 

This residual or innovation is important in adaptive algorithms and st;.nsor failure 
detection. The residual is multiplied with an optimal weighting matrix Kt +1 to gen­
erate a correction term to be added to the predieted value of state~ +1/t resulting in a 
corrected value it +1/t + 1. The algorithm bas therefore a predietor-corrector structure. 

A positive definite R and a positive semidefinite Q tagether with: 

(1) (A.C) completely observable (necessary condition). 

(2) (A.W) completely controllable. with W any n-by-n matrix such that wwr = Q 
(sufficient condition ). 



CHAPTER 4 

NUMERICAL PROBLEMS 
AND 
SQUARE ROOT MATRICES 

4.1. INTRODUCTION 

Despite the fact that the equations for solving the Kalman filter are well defined. 
there are some numerical difficulties in solving the equations. The most troublesome 
numerical aspect of the Kalman filter is the measurement update of the covariance 
matri:x.. 

The update formula (eqn. 3.9) : 

4.1 

can. using (eqn. 3. 7). be written as: 

Both equations have their own numerical difficulties. (Eqn. 4.2) involves Jrby-p 
inversions. where p is the dimension of the measurement vector. but (eqn. 4.1) can 
involve small differences of large numbers. resulting in numerical problems on finite 
wordlength computers. This is especially the case when measurements are very accu­
rate. On finite wordlength computers these numerical problems can result in a non­
positive definite result. which is a theoretica} impossibility. 

The update can also be written as: 

4.3 

This form is. unlike (eqn. 4.2). not able to ensure positive definiteness and can addi­
tionally not preserve symmetry very well. (eqn. 4.1) and (eqn. 4.2) involve subtrac­
tion of two symmetrie matrices whereas (eqn. 4.3) is in the form of a product of non­
symmetrie matrix and a symmetrie one. which does not necessarily result in a sym­
metrie matrix. 
The consequences of these problems in calculating covariance measurement updates 
make it necessary to calculate in double precision to maintain numerical accuracy. For 
on-line applications. symmetry can be used by propagating and updating only lower 
or upper triangular forms of the covariance matrix. This requires only 1fm (n + 1) 
terros instead of n 2

• 

Symmetry can be exploited further by using a square root covariance formulation. 
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Th is means that the algorithm does not propagate P but P"''. In case of a symmetrie. 
positive definite matrix P. it is always possible to find a matrix P~' such that 
P'''P'IoT = P. Square root formulation either increases the numerical accuracy with a 
factor of two or makes it possible to achieve the same accuracy on a computer with 
half the wordlength. The prove of this is simple. The condition number. a concept 
often used to analyze the effect of perturbations in linear equations. of a matrix A is 
defined to be: 

k (A) = U rnax/U min 

where u ~ax and u ~in are the maximum and minimum eigenvalues of AT A. When 
computing in base 10 arithmetic with N significant digits. numerical difficulties may 
be expected as k (A) approaches 101\' [MA Y79]. But. 

k (P) = k (SST) = [k (S)]2 

Therefore. while calculations on P mav encounter difficulties when k (P) = 10"". those 
same numerical probieros would arise- when k (S) = 101\' 12. This means that the same 
numerical precision is achieved with half the wordlength. 
Square root algorithms also maintain a symmetrie. positive semidefinite form of the 
covariance matrix. In the next section. the concept of matrix square roots is intro­
duced. 

4.2. MATRIX SQUARE ROOTS 

Let A be an n-by-n. symmetrie. positive definite matrix. Without proof it is 
assumed that there exists at least one n-by-n "square root" matrix .JA. such that 

4.4 

In fact. there are many "square root" matrices whicb satisfy (eqn. 4.4) and this pro­
perty will be used to take an attractive form. 

By propagating the square root of the state error covariance matrix P instead of P 
itself. it is impossible for P to become negative. In a scalar case this means that instead 
of the varianee u 2 • the standard deviation u is propagated. this way reducing the 
numerical range by a factor of two and increasing the numerical accuracy by a factor 
of two. 

To propagate the error covariance matrix P it is necessary to define the following 
square root matrices 

St+llt+tS[+llt+l = Pt+llt+l 

St +llt St~llk = Pt +1/t 

w* w[ = Qt 

Vt V{= Rt 

4.5a 

4.5b 

4.5c 

4.5d 
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As stated before, these square roots are not uniquely defined by (eqn. 4.5a-d), but 
since square root filters can be formulated in terms of general matrix square roots it is 
not necessary to defi.ne the exact form of the matrices. By developing algorithms that 
use and rnaintaio special forms of square roots. it is possible to minimize storage 
requirements and computation time. A specially attractive form is an upper or lower 
triangular matrix (e.g. a matrix with all zeros above or below the diagonal). This way 
only 11m (n + 1) instead of n 2 variables need to be computed and stored. An algo­
rithm that computes a unique lower triangular, square root matrix given a symmetrie. 
positive defi.nite matrix is called the Cholesky decomposition . To take care of positive 
semidefi.nite matrices. a row and column exchange can move the zero diagonal element 
to the end of the matrix and a size reduction of the matrix will ensure positive 
defi.niteness of this submatrix [MA Y79]. 

4.3. THE ALGORITHM 

We wil! use matrix square roots to calculate the numerically difficult time 
update for the state error covariance matrix [AND71]. 
The time update equation for the error covariance matrix is: 

Using (eqn. 4.5b-c) this equation can also be written as 

4.7 

Our objective is to find a propagation equation for the square root of Pt +1tt. There­
fore it is necessary to find a matrix S.~: + 1/t such that St +lik S[ +llt is equal to the right 
hand side of (eqn. 4.7). 

One such matrix Sk +lik is obvious: 

-
S~.: +lik = [At St tt I Gt Wt] 4.8 

Since St" is n-by-n. then S~c +lik is n-by-(n + r). This means that every timestep the 
dimension of the square root matrix increases which must be rejected for being com­
putationally impractical. 
!.Jut if we can fi.nd an orthonormal (n+r )-by-(n+r) transformation matrix T such that. 
Sk +W T is a square root of Pk +1tt.:. then: 

4.9 

This means that if it is possible to fi.nd an orthonormal matrix. such that 

4.10 

we have found an n-by-n square root matrix St +lik that satisfies the required rela­
tionships. If in addition St.: +11/.: would be lower triangular. this would mean that the 
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algorithm propagates a lower triangular. square root matrix. 
There are two methods that generate such S, +I/I (k.nown as triangularization algo­
rithms) : Gram-Schmidt orthonormalization and Househoulder transformation. 

We can write the final result as 

4.11 

The same procedure can also be applied to the measurement update equation for 
the error covariance matrix 

Since we also want to calculate the measurement update for the state vector a pro­
cedure to compute tbem simultaneously bas been developed. We write (eqn. 3.8) as: 

4.13 

witb Mt + 1 defined as 

4.14 

using (eqn. 4.14) equation (eqn. 4.12) is written as 

4.15 

now we want to find a square root relation for the rigbt hand side which is equal to 
s~.- +lik (eqn. 4.15). 
One sucb matrix would be 

4.16 

A transformation matrix can be used to give S~.: + 1/t + 1 a special form. like upper or 
lower triangular. To update tbe state vector we need to calculate the Kalman gain 
matrix Kt+ 1• wbicb means weneed to know M~.:+ 1 and the inverse of tbe square root 
of (Ck+1PHwC[+1 + RH 1). The latter can be written as 

4.17 

with IR~. +1 the square root of R~c +t +Ct +1P.1: +1U C[+t· 

-One such matrix IRt + 1 can be written as 

4.18 

Since we can choose an ortbonarm transformation matrix T freely. we choose one tbat 
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preserves the dimensions. So if we can find an orthonormal matrix T such that 

-
IRI +I T = [IR. +I I 0 ] 4.19 

then we have found an p-by-p square root matrix IR, +I whicb satisfies the desired 
relationship. 

~ow we can combine the measurement update for the covariance matrix and for 
the state vector 

0 VI +1 Ct St +11t 

= 4.20 
M• +1 0 

Now we can combine the time update (eqn. 4.11) and the measurement update (eqn. 
4.20) as follows 

vt Ct Sut -t 0 T' 0 I 0 

0 At St Ik -1 G.1. Wt 
0 I 0 T 

(Rt + Ct Pt lt -tC{)If' 0 0 I 0 = 0 T 4.21 
AtMt A" s" '" GtWt 

(Rt + ck Pt Ik -IC[)Ifz 0 0 
= 

A~.:Mt St +IIt 0 

The T and T* are Householder transformation matrices which maintain the special 
form ofA the covariance matrices without an increase in dimensions. The Kalman gain 
matrix Kt is given by: 

4.22 

Note the difference between K. the Kalman gain matrix. and K. the Kalman gain 
matrix multiplied by the system matrix A. In the literature the definition of the Kal­
man gain matrix can be either of these. We will use Kas the Kalman gain matrix since 
the algorithm provides us with it. 



CHAPTER 5 

ADAPTIVE FILTERING TECHNIQUES 

5.1. UNKNOWN NOISE COV ARIANCE MA TRICES 

lt is not always possible to know befarehand the exact noise covariance matrices 
Q and R. Therefore we can not be sure that the calculated Kalman gain matrix is 
optima!. In certain cases. the use of wrong a priori stalistics can lead to large estima­
tion errors or even divergence. The purpose of adaptive filtering is to reduce the errors 
by adapting the Kalman filter to real data. 
In PRI.MAL only so called black-box roodels are developed. This means that there is 
little or no correspondence of the models with physical properties of the system. Some 
of the applications estimate the error component but not in the by Kalman required 
farm since transformation of these matrix fraction description models into statespace 
form results in a stochastic statespace model with correlated w/.: and v/.:. 
Since the Kalman filter is only optimal if the noise covariance matrices are known 
exactly. it is important to develop methods to obtain these as accurate as possible. 
Several methods have been developed among which, output correlation methods. inno­
vation correlation methods and covariance matching techniques. 

5.2. SO:ME DEFINITIONS 

The time independent. discrete time system is defined by the equations: 

X;+t = Ax; + Bu; + Gw; 

Y; = Cx; + Du; + V; 

5.1 

5.2 

The a priori information and the noise covariance matrices are defined by (eqn. 3.3-4). 
Note that the time index is i instead of k . k will be used as the lag of the autocorre­
lation. 
We use (eqn. 3.8 and eqn. 4.22) to obtain: 

ii+t/i = Ai; ti-I + Bu; + K(y; - Cxu;-1- Du;) 
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5.3. OPTIMALITY TESTING 

An interesting problem of adaptive filtering is deciding whether the Kalman gain 
matrix K constructed using some estimates of Q and R is close to optimal or not 
( hypothesis testing ). 
It is sufheient f or the optimality of a Kalman ga in matrix that the innovation 
sequence r; is white and of zero mean. The last condition is often forgotten but is of 
essential importance [l\1AR74]. There are many statistica} tests for testing the white­
ness of a sequence. One suited for larger datasets will be discussed. We will use the 
autocorrelation function ck totest the wbiteness fora sequence. 
In this method we obtain an estimate of Ct . denoted as Ct , by using the ergodie pro­
perty of a stationary random sequence. A process is ergodie if any statistic calculated 
by averaging over all memhers of the ensemble of samples at a fixed time can be cal­
culated equivalently by time-averaging over any single representative member of the 
ensemble. except a single member out of a set of probability zero. 

where N is the:._ number of sample points and k the lag. 
The estimates Ck are biased for fi.nite sample sizes: 

A k 
E {Ct } = ( 1 - N )Ct 

5.3 

5.4 

However, it can be shown that the estimate of (eqn. 5.3) is prefered to the 
corresponding unbiased estimate, since it has a lower variance. 
Estimates of the:._ normalized autocorrelation coeffiçients Pt are obtained by dividing 
the elements of Ct by the appropriate elements of C0 • 

5.5 

It can be proven that [pt ];; has an asymptotically normal distribution. Therefore. the 
95 percent confi.dence limits for [pk L are ± (1.96/N'h). 
To test the whiteness of a sequence, look at a set of values for [pk ];; (k > 0) and 
check the number of times they lie outside the band ± (1.96/ N'h). If this number is 
less than 5 percent of the total, the sequence r; will be called white. This test is based 
on the assumption of large N. If N is small, other tests can be used [AND51]. 
[HAJ\'51]. 

5.4. CORRELA TION METHODS 

Correlation methods are used extensively in time series analysis. The basic idea is 
to correlate the output of a system either directly or after a known linear operation 
on it. A set of equations is derived relating system parameters to the calculated auto­
correlation functions and these equations are solved for the unknown parameters. 
Two different methods can be developed consirlering either the autocorrelation 
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function of the output y or the autocorrelation function of the innovations r. The 
estimates obtained from the latter metbod turn out to be more efficient than the first 
since innovations are less correlated than outputs. Furthermore. the first methad is 
only usabie if the output y is stationary or A. the system matrix. is a stabie matrix. 
The second metbod can also be used if these conditions are not satisfied. As it is neces­
sary f or the whiteness test to calculate the autocorrelation functions of the innovation 
sequence. the second metbod is preferable. Both methods assume complete controlla­
bility and observability of the system. 

5.4.1. OUTPUT CORRELA TION METHOD 

Let C1. be the kth lag autocorrelation of the output Y;: 

Ck = E{y;y{_k l 5.6 

It is assumed that the output is stationary so that the autocorrelation is only a func­
tion of the lag. An expression for Ct can easily be derived from (eqn. 5.1-5.2) and 
D = 0: 

lCPC+Rk=O 
ck = cA/.: PCr k > o 5.7 

where P = E {x; xn satisfies: 

5.8 

Combining (eqn. 5. 7-8) we obtain an expression that can be solved for Q and R pro­
vided the system is observable. (Eqn. 5.7) can be written for k = l. ... .n. 

= HPè" 5.9 

where Hr = [Ar er. · · · .(Ar )n C]. Since A is non-singular and the system is 

observable. which means that rank (H) = n . the set of equations can be solved. 

Solving (eqn. 5.9) for Per. 

5.10 

using (eqn. 5.7) for k = 0, 
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R = Cu - C(PCr) 5.11 

To obtain Q we must solve (eqn. 5.8) and (eqn. 5.10). A unique solution for Q cannot 
be obtained. in generaL Only if r ~ n i.e. if the dimension of the process noise vector 
is equal or smaller than the dimension of the state vector. a unique salution for Q 
exists. However. the optima] steady-state Kalman filter gain K can still be determined 
uniquely as follows. 

De fine 

- {A AT I 7r- E x,,;-lxi/i-1 

from (eqn. 3.5-3.8) 

X;+l!i = AX;;,- 1 + Bu, +Kr; 5.12 

with r;. the innovation sequence. defined by (eqn. 3.10) and Ut. the deterministic 
input vector. 

Therefore. 

7r = A7rAT + KWKT 5.13a 

with 

W = (CPCT + R) 5.13b 

W is the covariance matrix of the innovation or residual sequence r;. 

l.Jse has been made of the fact that r; is white and uncorrelated to i;;;- 1• Another 
relationship for 7r can be derived from the fact that 

X; = i;;;- 1 + e; 5.14 

where the error e; bas covariance M and is uncorrelated to i;/i-t because of the 
orthogonality principle ( the error vector contains no more information for the 
estimated state vector): 

5.15 

Therefore. 

P= 7r+M 5.16 

Now the Kalman gain K is given by (eqn. 3. 7): 

K = AMcrw- 1 5.17 

= A(P- 7r )CT (C0 - C'TTCT )- 1 
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substituting for Kin (eqn. 5.13a-b). 

which can be solved since PCT is known from (eqn. 5.10). 
Then Kis obtained from (eqn. 5.17). 

5.5 

5.18 

We have now derived all the equations necessary to calculate Q. R and K from 
the autocorrelations Co. · · · .Cn . The autocorrelations are estimated as: 

N 
ê·"''- ~y YT ~ - ~ j i-l 

i=k 

where N is defined to be the sample size. 

5.19 

It can be shown that the estima1es Ck are asymptotically normal and unbiased. 
Since Q and R are linearly related to Cl: . their estimates are also assymptotically nor­
mal and unbiased. Similarly. the estimate of K is assymptotically unbiased. This 
metbod is extensively discussed in [~EH70]. The estimates for the Kalman gain 
matrix and the noise matrices can be improved until the Kalman filter behaves 
optimal. as tested with the insection 5.3 developed method. 

5.4.2. INNOV A TION CORRELA TION METHOD 

From the theory of Kalman filtering it is known that the innovation sequence : 

r; = Y; - Ciif;- 1 - Du; = Ce; +V; 5.20a 

with e; defined as: 

e; = X; - X;fi-1 5.20b 

is a zero mean. Gaussian white noise sequence for an optimal filter. However. for a 
suboptimal filter. the innovation sequence is correlated as will be shown below. 

Let 

r t = E{r;rr-t I 

substituting from (eqn. 5.20a) and considering k > 0. 

r k = E{(Ce; + v; )(Ce;-k + v;-k )T} 

= CE{e;er-k IC" +CE{e;vr-t I 

since for (k > 0). V; is independent of V;-J: and e;-t. 

5.21 
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and fork = 0. 

fo = CMCT + R 

The expectation termsin (eqn. 5.21) can be evaluated by writing tb~ difference equa­
tion for e,. We assume that the filter uses a suboptimal a priori gain Kn: 

5.22 

repeating this k steps backwards. 
k A A 

L [A(I- KoC)]j-l~lvi-j 
J = 1 

k A 

+ I: [A(I- K 0C)F- 1Gw;-1 5.23 
j =I 

Therefore. 

5.24a 

where 

E{e;en = M1 

E{v;-jei-.t} = 0. j= l.. ... k 

E{w;-jei-.t} = 0. j= l, .... k 

because of the fact that the system is causal. M 1 is Jhe state error covariance matrix 
beienging to the suboptimal filter with Kalman gain K0 • 

similarly. 

E{e;vF-t} = -[A(I- KoC)]i -•AioR 

since U.t and V.t are uncorrelated white noise sequences. 
Substituting (eqn. 5.24a-b) in (eqn. 5.21). 

For an optima! filter. 

5.24b 

5.25 

5.26 

so that r J disappears for k > 0. When there are uncertainties in Q and R. the calcu­
liited covariance M, will be different from the true covariance M 1 and the {ilter gain 
K0 will be suboptimal. Therefore. f .t will not be zero and the optima! gain K and the 
covariances Q and R can be obtained as follows: 
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( 1) Obtain Mier by solving (eqn. 5.25) for k = 1. · · · .n. 

r I+ CAK.ofo 
r 2 + CA.Kof I+ CA2Kof 0 

r n + CAK.of n -I + . . . CAL Kor 0 

where H is defined in (eqn. 5.9). 

l2) Calculate R using r 0 and Mier. 

(3) Define M to be the error covariance associated witb optimal gain matrix K: 

M = A(M - KCM)A.T + GQGT 

An equation for MI is derived from (eqn. 5.17) : 

subtracting (eqn. 5.30) from (eqn. 5.29) and defining ~M = M- MI: 

The optima] gain K can using (eqn. 5.26) be written as 

5.7 

5.27 

5.28 

5.29 

5.31 

5.32 

Steps (2) and (3) c~n be repeated until I~M;1 or IK;- K;- 1 1 becomes small com­
pared to I M; I or IK; I . wbere I .I denotes a suitable mlltrix norm. A.nother procedure 
would be to filter tbe available data Y; using tbe new K and to repeat the whole pro­
cedure. 
Solving (eqn. 5.31) for ~M by using M 1C from (eqn. 5.27). the optimal gain K can 
be obtained from (eqn. 5.32). In actual practice. if a batch of observations Y; is avail­
able. these calculations migbt be repeated to improve the estimates. The innovation 
sequence r, will become more white each iteration. resulting in better estimates for 
the autocorrelations r 0 r 1 · · · • and therefore for Rand K. The estimate for Q can be 
obtained from (eqn. 5.3o) but is only then uniquely defined if the dimension of the 
state noise vector r is equal or smaller than the dimension of the state vector n. Also 
for this metbod it can be proved tbat the estimates are asymptotically unbiased. 

The efficiency of the correlation methods may be improved by using higher order 
correlations. i.e .. k > n to estimate PCr or Mier. Moreover. the two methods can be 
combined by using the output correlation metbod as a start-up procedure since it does 
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not require any a priori estimates of Q and R or K. Tbis metbod is discussed in 
[~EH70]. 

(Eqn. 5.31) requires tbe sol ut ion of a Lyapunov-type matrix equation for every itera­
tion. A metbod tbat only requires matrix multiplications and is more stabie tban the 
bere presented metbod is developed by Carew c.s. [CAR73]. For convenience. we only 
present tbe final results' of the algorithm. 

Wedefine tbe following covariance matrix: 

5.33 

Where i, is tbe optima! linear estimate of X; and x;"li-J tbe suboptimal estimate of 
X;t;- 1. For the optima! filter X' = 0 and Km. tbe suboptimal Kalman gain matrix 
converges to K. 

and we define \V to be : 

W=CPC+R 5.34 

tbe covariance matrix of tbe innovation sequence 

lnitially. Q and R are assigned tbe values Q0 and R0 . Using these values a Kalman 
filter is designed from wbicb tbe suboptimal steady-state filter gain K0 is obtained. 
The first step is to obtain estimatefl for the autocorrelation functions of the innovation 
sequence of the suboptimal filter Ct . k = (0.1.2 ..... n ). Using K0 and tbe autocorrela­
tion functions. estimates X.W and K are obtained using the following formulas: 

5.35 

Km = (FtG- AXmé)W;; 1 5.36 

witb m an iteration index and Ft is defined by: 

tbe generalized inverse of F. and Fis the system observability matrix of rank n. 

and G by: 

C1 + CKoCo 
C2 + CKoC1 + CAKoCo 

G= 
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A simple choice for X(l is the null matrix. This is further justified by the fact that 
x· = 0 if Ko happens to be the optimal Kalman gain matrix. The iterative scheme 
(eqn. 5.35-3 7) converges uniquely to the optimal gain K if the autocorrelation func­
tions are accurate. However. the finiteness of the sample size and other experimental 
and round-off errors. introduce errors in the autocorrelations. This sets a limit on the 
accuracy with which K can be determined. 

5.5. COV ARIANCE MA TCIDNG TECHNIQUES 

The basic idea bebind the covariance matching techniques is to make the residu­
als consistent with their theoretica! covariances. For example. consider the innovation 
sequence r,. which bas a theoretica} covariance of (CPif;- 1CT + R). lf it is noticed 
that the actual covariance is much larger than the theoretica} value obtained from the 
Kalman filter. then the process noise Q should be increased. This bas the effect of 
increasing Pi/i-l and bringing the actual covariance of r; closer to the theoretica} 
value. 

One metbod that adaptively estimates the a prwn stattsttcs is given by Myers 
[MYE76]. He also uses the innovation sequence to adapt the noise covariance matrices. 

rt = Yt - C Xttk-1 5.38 

Consider a sample dataset consisting of N measurements. The covariance matrix of rt 
is given by: 

An unbiased estimator for the covariance matrix of rt is: 

!I' 
Cov(rk) = - 1- ~ r rT 

N -1 .~ J J 
J = 1 

It can be shown that the expected value of this quantity is : 

The following estimate of R can be obtained by using (eqn. 5.40) and (eqn. 5.41) : 

~ 1 ~ T r<nP<>CT R = --~rtrt- vC 
N-1 i=l 

5.39 

5.40 

5.41 

5.42 

P"" is the a priori covariance matrix of the state. This means that it is the steady state 
value of P4 +l/t. (Eqn. 5.42) is of the same type as (eqn. 5.28) except that P"" is 
obtained from the Kalman filter. In certain applications where Q is known. this has 
shown to be a good approximation. However convergence of covariance matching tech­
niques is doubtful. 
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The same can be done for the noise covariance matrix Q. Tbe state relation is : 

5.43 

The true stat es x~. + 1 and X1. are unknown. so w 1. can not be determined. but an 
approximation for w~. is : 

qk+l = Xt+l/k- A.i.kik-I 5.44 

where q~. is defined as the state noise sample at instant k. lf q~. is assumed to be 
representative of Gw~. then it may be considered independent and identically distri­
buted. An unbiased estimator for the noise covariance matrix GQGT is : 

1 .•; T 
Cov (q) = N -1 L qj qj 

J =I 

Another estimator for the covariance matrix is: 

Cov (q) = A[:p= - K""C P"']AT + GQGT 

again an estimator for tbe noise covariance matrix GQi;T can be found by: 

1 N 
GQi;T = -- ~ q qT- A[P"'- K""CP""]AT 

N-1 .~ 1 1 
j=l 

5.45 

5.46 

5.47 

(Eqn. 5.47) does not give a unique salution for Q if G is of rank less than n. 
(Eqn. 5.41) is an approximation since P does not represent the actual covariance since 
the actual values of Q and R are unknown. 

S.6. SOME CONSIDERA TI ONS 

~ ~ 

It is obvious that the noise covariance matrices R and Q may become negative 
definite in numerical applications, especially wpen a !)_mall amount of data bas been 
processed. Theref ore. the diagonal elements of R and Q are always reset to the abso­
lute value of their estimates. During filter initialization. the noise matrices are poor 
indicators of the noise. especially since only the steady state values K"" and P"' are 
used. Tbis requires a fading memory approach in wbich successive samples are multi­
plied by a weight factor given by : 

Wt = (k - l)(k - 2) ... (k - (3)/kfl 5.48 

which bas the property tbat it converges to 1 as k approaches co and that the use of 
invalid noise samples is delayed for the first (3 stages. 
Several other methods are proposed but convergence of covariance matching tech­
niques bas never been proved. In tbis case it is also not always possible to find Q 
unless the number of unknowns is restricted so that r ~ n e.g .. the dimension of tbe 
state vector is equal or larger than the dimension of the state-noise vector. 
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The innovation correlation methods seem to be the most promising methods for 
adapting the Kalman filter since the autocorrelation have already been calculated to 
test the optimality f or the Kalman filter. And si nee the metbod developed by Carew 
(eqn. 5.35-3 7) involves no Lyapunov type of equations. this one bas a better numeri­
cal behaviour than the method developed by Mehra (eqn. 5.27-5.29) [CAR73]. Output 
correlation methods are restricted to stationary outputs or a stable A but do not 
require initia! estimates for Q. Rand K and could be considered as start-up methods. 
Covariance methods seem simple and straightforward but since they use incorrect 
state error covariance matrices their convergence is doubtful. Numerical probieros can 
be prevented by using square root formulations. 



CHAPTER 6 

OPTIMAL CONTROL 

6.1. WHY OPTIMAL CONTROL? 

For single-input. single output (SISO) systems it is possible to design a compen­
sator which places the closed-loop poles wherever the designer wants them to be. 
Since the closed-loop poles determine the speed (bandwidth) and the damping of the 
response. why should we want to develop new rnathematic tools? There are several 
good reasons for that [FRI86]. 

The first reason for seeking an optimal controller is that for multi-input. multi­
output (MI:\10) systems. the pole placement technique does not completely specify 
the controller gains. When we have a nth-order system with m inputs and all states 
accessible. a controller bas. in the case of state feedback. nm parameters to determine. 
but only n closed-loop pole locations. This means that there are an infinite number of 
ways to obtain the same closed-loop pole locations. From a practical viewpoint. the 
fact that there are more adjustable parameters than needed to achieve the desired 
closed- loop pole location. is a great opportunity since other things can be accom­
plished besides placing the closed-loop poles but which one is the best? By choosing a 
control law to optimize a, yet to be specified. performance criterion, the designer can 
choose one possibility out of an infinite number. 

Another reason for seeking an optima} controller is that the designer may not 
know the desirabie closed-loop pole locations. Choosing poles far from the origin, in 
the s-domain. may give very fast responses but require control signals that are too 
large too be produced by the available power source. Too large input signals will lead 
to saturation and a behaviour of the system that can not be modeled by the same 
linear model. To avoid these problems it is often necessary to limit the speed of 
response to that which can be achieved without saturation of the input signals. 
Another reason is that high-gain systems are typically accompagnied by noise prob­
Ieros that the designer may want to avoid. 

6.2. FORMULA TION OF THE OPTIMAL CONTROL PROBLEM 

The object of optimal control is to specify an input vector Ut which drives a 
system to a specified target state in such a way that, during the process. a defined 'cost 
function' is minimized. 
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6.2.1. LINEAR OPTIMAL QUADRA TIC GAUSSJAN CONTROL 

Optima) control is in no way limited to linear systems but when a linear qua­
dratic cost function is specif1ed for a time independent linear system. optima) control 
strategy results in a particular case of pole shifting by state feedback. If the system is 
corrupted by Gaussian white noise processes. the control routine is called LQG (Linear 
Quadratic Gaussian) [FRI86]. 

Consicter the following time independent system: 

X~; +1 = A:x~: + Bu~; + Gw~: 
YJ.. = Cx~; + Ou~; + V~; 

A linear quadratic cast function is defined: 

00 

J = E { L [x[Ex~.. + 2u[Gx~: + u{Fu~.. ]I 
/.: =0 

6.1 

6.2 

6.3 

where E is a positive semidefinite symmetrie (n-by-n) matrix and Fa positive definite 
symmetrie (m-by-m) matrix. G is a positive semidefinite (m-by-n) matrix which is 
normally set to zero unless we want to minimize the output as follows: 

CX) 

J =El LYlYd 6.4 
k=O 

In this case E = ere. F = oro and G = IY C. with Yt given by (eqn. 6.2). 

The E matrix can be used to specify a trajectory the state vector bas to follow 
and is often called state weigluing matrix. The matrix F can be used to put limits on 
the input vector Ut and is often called control weigluing matrix. 

The problem is to find an input u" wbich drives the state from Xo to Xoo with 
minimal J. The salution to this problem is found to be : 

6.5 

where 

L = - (BTPB + F)- 1(ATPB + GT )T 6.6 

and P is the (n-by-n) matrix salution of the algebraic Riccati equation: 

6.7 

with i~: IJ.. _ 1 the optimal prediction of the state obtained by the Kalman filter. The 
power of the LQG problem lies in the fact that it can be divided into two separate 
problems: obtaining an optimal prediction of the state of a stochastic system using a 
Kalman filter. and obtaining an optimal feedback for a deterministic system with a 
predicted state (separation principle) [KW A 72]. Figure 6.1 shows how the separation 
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principle divides the LQG-algorithm into two separate problems. 

L- _ .J,L 
opti-l control ~l.an filter 

Fig. 6.1 
The separation principle. 

The fact that the required trajectory must be expressed in terros of xTEx. places con­
siderable limitations on the trajectories which can be specified. Furthermore. the mere 
fact that a trajectory can be specified this way is no guarantee that the optima! control 
can achieve it. the cost function J is merely minimized. not necessarily brought to 
zero. 

Furthermore. the designer is left with the selection of the weighting matrices E 
and F. but often minimization of (eqn 6.3) is not the true design objective. The prob­
Iem is that the true design objective often cannot be expressed in mathematica! terms. 
Formulating the design objective in the form of a quadratic sum is a practical 
compromise between formulating a real problem that cannot be solved and formulat­
ing a maybe somewhat artificial problem that can be solved easily. 

Since the relationship between the weighting matrices E and F and the dynamic 
behaviour of the closed-loop system are quite complex. it is impossible to predict the 
effect on closed-loop behaviour of a given pair of weighting matrices. A suitable 
approach for a designer would be to solve fora range of E and F matrices and to cal­
culate the corresponding closed-loop behaviour. With the bere presented software this 
would take a few hours of time. depending on the number of inputs and outputs and 
states. 

6.2.2. MINIMUM V ARIANCE CONTROL STRA TEGY 

It can be shown that the LQG approach leads to a minimum varianee control 
strategy [G0084]. The importance of minimum varianee control is that by reducing 
the varianee of a given variable. the set point. y' . can be put at a higher value while 
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still ensuring that a certain proportion of the output meets a given acceptance cri­
terion. This can lead to greater throughput or reduced costs. This is illustrated in 
figure 6.2. 

Distribut ion 
of 

output 

Fig. 6.2 

minimum 
varianee 
control 

Distribution with 
minimum varianee control 

Output 

The importance of minimum varianee controllers 

6.3. THE ALGORITHM 

The algorithm used to solve the algebraic Riccati equation, has been derived by P. 
van Dooren [00081]. The algorithm basically solves a generalized eigenvalue problem: 

Mx = ÀNX 6.8 

where Nis not necessarily invertible but where the pencil ÀN- Mis regular. i.e .. 

det(ÀN- M) ~ 0 6.9 

lt can be shown that solving (eqn. 6.7) ( with G = 0 ) is equivalent to .solving for the 
"stable" defiating subspace of the pencil: 

0 

A 0 

-E I 
6.10 

where the stabie eigenva1ues are those inside the unit circle. The "stable" defiating sub­
space is the subspace spanned by the eigenveetors of (eqn. 6.10) that correspond to 
stabie eigenvalues. (Eqn. 6.10) is better known as the Euler-Lagrange equation 
[DAl\186]. [KW A 72]. The salution is found by obtaining the stabie eigenvalues and 
eigenvectors. 
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To avoid matrix inversions. (eqn. 6.10) can be rewritten as [D0081]: 

I 0 0 

À 0 A' 0 

0 BT 0 

The algorithm bas 5 stages: 

A 0 -B 

-E I 0 

0 0 F 

6.5 

6.11 

1. Orthogonal row transformations will transfarm the (2n+p)-by-(2n+p) matrices 
of (eqn. 6.11) into 2n-by-2n matrices given by (eqn. 6.10). 

2. M is reduced to upper Hessenberg form by a Householder reduction and at the 
sametimeN is transformed to upper triangular form. 

3. A double shift QR algorithm is used to reduce M to quasi-triangular form with 
no two consecutive subdiagonal elements nonzero while maintaining the triangu­
lar form of N. The eigenvalues are extracted and reordered into stabie and 
unstable ones. 

4. The n-by-2n eigenveetors are obtained from M and N and are transformed back 
to the original coordinate system to form the following stabie basis for the 
deflating pencil: 

6.12 

5. The n-by-n P can be obtained from (eqn. 6.12) : 

6.13 

This metbod is better known as the salution by diagonalization as described in 
[DAM83]. The actual algorithm is a numerical stabie implementation of this metbod 
[00081]. [MOL73]. A small change in thematrices of (eqn. 6.11) makes it possible to 
solve also for Göé 0. The controller provides an asymptotically stabie closed-loop sys­
tem if Eis posive semidefinite. F positive definite and [KWA 72]: 

(1) (A.B) either completely controllable or stabilizable by state feedback (necessary 
condition). 

(2) (A.V) completely observable with V any n-by-n matrix that satisfies vvr = E 
(sufficient condition). 

6.4. THE EFFECT OF INACCURATE NOISE MA TRICES 

A simple. scalar problem will be used to show the effect of using the right values 
for the noise matrices Q and R in the Kalman filter. 
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Consider the following systern: 

with: 

and 

E{wt l = E{v, l = 0 

E{w/l = E{v/l = 1 

E{x 0 l= 10 

E{(xo- E{xoD2 = 0.1 

If the functional to be rninirnized is: 

qq 

J = E {112 r. (x}+u.nl 
k=O 

the resulting value of J is 405. 

6.6 

6.13a 

6.13b 

lf however the erroneous value E{w/} = 0.1 is used. the resulting functional obtains 
the value 412 [OLC83]. 
A comparison of these two values shows the degradation of the sub-optirnal filter. 



CHAPTER 7 

DISCUSSION 
OFTHE 
RESULTS 

7.1. INTRODUCTION 

PRI~AL (Package for Real time lnteractive Modeling Analysis and Learning) is a 
software package developed at the Physics department. sectien Control and Measurement, 
of the Technica! Universtity of Eindhoven. This package enables a user to obtain, interac­
tively. "raw" data from a process. PRIMAL presents the user with modules for data condi­
tioning. model estimation. model validatien and model simulation. But the lack of control 
modules was considered a serieus problem by the users of PRIMAL. Therefore a LQG­
module has been implemented. although the work has been focused on state estimation 
using a Kalman filter. For this reason. four PRIMAL modules have been written that can 
be used to design and test a Kalman filterfora steebastic statespace model. Together with 
an optima} feedback matrix. calculated by a fifth module. they implement an optima} con­
trol strategy. 

The first module. KALSIM [MEU88a]. simulates a stochastic state space model of the 
form (5.1-2) with specified Q. Rand initia} XQ. P0 . 

Yt = Cxk +Dut + Vt 

This module has been developed because SIMSYS (a state-space simulator in PRIMAL) 
does not provide means to simulate a state-space system with specified noise covariance 
matrices for the state and output vector. 
The module simulates the noise corrupted state and output veetors as a function of time 
with their mean and noise covariance matrices. To test if the simulation is consistent with 
the specified variances. the 95 % limits for the observations of the state and output vector 
are calculated as well as the amount that is "out of bound". which should not exceed the 
limit of 5 % [MEU88a]. If the number of "out of bound" exceeds 5 %. the user may specify 
different seeds for the random number generator and rerun the simulation. KALSIM pro­
duces an output dataset which contains the simulated state vector and simulated output 
vector. tagether with their 95 % limits. As an example. figures 7.la-b show the simulated 
veetors and their bounds f or a SISO system. 
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Fig. 7.1a 
The simulated state vector and the 95 % bounds 

as function of the time index k. 
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Fig. 7.1b 
The sirrwlated output vector and the 95% bounds 

as function of the time index k. 

7.2 

The second module is the Kalman filter KALMAN [MEU88b] which calculates the 
steady-state Kalman filter. given a linear stochastic state space model and the state and 
measurement noise covariance matrices Q and R. It calculates the steady-state covariance 
matrix P. the steady-state Kalman gain matrix K and the covariance matrix of the innova­
tion vector W using a square root algorithm. The calculations are repeated recursively 
until steady-state is reached and the module keeps track of the convergence history. 
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Figures 7.2a-b illustrate the convergence history of the state error covariance matrixPand 
the Kalman gain matrixKas produced by K.ALMAJ\ fora MIMO system. 
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Fig. 7.2a 
The state error covariance matrix. 
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Fig. 7.2b 
The Kalman gain matrix. 

The third module KALEST [MEU88c] uses the computed Kalman filter and the simu­
lated data to estimate the state vector. KALEST calculates the state vector and the innova­
tion vector with their corresponding variances. Tbe innovation covariance may be com­
pared with the estimate computed by KALMAN. The module calculates the 95 % limits 
for the state and innovation vector and the number of observations outside these limits. 
As an example of the data presented to the user. figures 7.3a-b show the state vector. the 
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innovation vector and tbe 95 % limits. 
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Fig. 7.3a 
The state error vector with the 95 % bounds 

as function of the time index k. 

100 200 soo 400 

Fig. 7.3b 
The innovation vector with the 95 % bounds 

as function of the time index k. 

7.4 

Tbe 95 % bounds are calculated using tbe. by KALM.I\J\;. computed covariance matrices for 
tbe state error P and the innovations W: 

-1.96 .JP: < [x~ - xf ]; < 1. 96 .JP: 
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with x' the "truth" vector (calculated by KALSil\1). 

-1.96 ...;w-:: < [r~.l < 1.96 ..;w-;: 

where k is the time index and i the i -th element of a vector and ii the i -th diagonal ele­
ment of a matrix. 
5 percent of the observations are allowed to lie outside these limits. This is only valid in 
case of Gaussian white noise. 

The fourth module WTEST [\1EC88d] is a whiteness test module. It tests if a 
sequence r; is zero mean white noise by looking at the sample mean (should be less than a 
certain bound) and the correlation function Oess than 5 9c of the correlation values should 
!ie outside the corresponding bounds). Figure 7.4 shows the normalized correlation 
coefficient P• and the 95 % bounds as function of the lag k. 
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Fig. 7.4 
The rwrrrwlized correlation function aruJ the 95 % baunds 

as function of the lag. 

The 95 % confidence interval is constructed using the fact that the normalized correlation 
coefficient is normally distributed for a large number of lags and bas zero mean and 
covariance 11 N. Therefore. 

-1.96 !..fN < Pt < 1.96 !..fii 

where N is the number of samples used. Thus only 5 %of the normalized sample covari­
ances are allowed to exceed this bound for the sequence to be called statistically white. 
The bound for the sample mean is obtained by a statistica] hypothesis test given by: 

HO: Elrt I= 0 

Hl: Elrt I~ 0 

The test is implemented at the 0.05 significanee level (95 %) with the threshold. called 
bound mean. calculated using tbe sample mean estimator for E (r~; ) : 
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1.96 "/cov(r~.; )IN 

with N the number of samples and cm· the covariance. Tbe calculated mean should be 
smaller than the threshold. 

Together these 4 routines (1\.ALSI\1. 1\.ALMA..l\, KALEST. WTEST) form tbe state estima­
tion modules. They can be used to design a Kalman filter and test its performance. 

The Kalman filter is functioning optimally when: 

( 1) The innovations are zero mean. wbite noise (calculated by WTEST). 

(2) Less than 5 %of the observations for the innovations are "out of bound". 

(3) Tbe, by KALMAN. calculated varianee of tbe innovation vector is equal to the. by 
KALEST. observed variance. 

These 3 criteria will be used in the next sections to check the Kalman filter performance. 

If the innovations are wbite noise and zero mean, but there is an inconsistency 
between the estimated and calculated varianee of the innovations. the Kalman filter can 
still be functioning close to optimum. depending on the actual values for Q and R. Sections 
7.4-6 will treat the influence of the value Q/R on the behaviour of the optima! filter and 
suboptimal filters. 

A fifth module RIC bas been developed that calculates the steady-state optimal feed­
back matrix L fora stochastic statespace system. The module solves the steady-state Ric­
cati equation using the in chapter 6 described algorithm [MEU88e]. This module forms. 
together with the Kalman filter, a LQG- algorithm. 
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7.2. A PRACTICAL EXAMPLE 

In reality we often do not have exact knowledge about the system and the noise 
covariance matrices. All uncertainties will be condensed into Q and R. To show this we 
have used the following SISO model with a 1-dimensional state vector: 

X~ +I = 0.97 Xt + U1. + W1. 

Yt = 2 x~. + v1. 

with Q = l.e -3 and R = l.O. 

7.1a 

7.1b 

We have used the stochastic state space simulator KALSIM to simulate this system. 
Figure 7.5 shows the impulse respones of the simulated system. 

0 10 20 30 40 

Fig. 7.5 
The impulse response for the simulated system 

as function of the time-index k. 

The calculated input and output veetors are used by MARKOV [LIN8 7] to estimate the 
impulse response of the system. HANKEL (a realization algorithm that converts the 
impulse response into a state space system) is used to obtain the following state space sys­
tem [GER88]: 

Xt +1 = 0.9645 Xt - 1.42 Ut 

Yt = -1.41 XJ: 

7.2a 

7.2b 

by using a state vector transformation Xt = Txt and T = -1/1.42. we obtain the follow­
ing. equivalent system: 
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X~,: +I = 0.9645 x, +u~c 
Yt = 2.00 Yt 

7.8 

7.3a 

7.3b 

The by MARKOV calculated impulse response (M 11) and the fit by HANKEL (MR 11) are 
shO\IIin in figure 7.6 (note the difference with fig. 7.5. MRll decreases faster than the origi­
nal response): 

><MAU AMU 

Fig. 7.6 
The calculated and fttted impulse respatse 

as function of the time-index k. 

Using the Kalman filter module KALMAN. a Kalman filter is designed for the state 
space model (eqn. 7.2a-b) and Q = l.e -3 and R = 1.. After 104 iterations. the Kalman 
gain reaches steady-state. 

The value of P. K and Ware: 

P K W 

l.lle-2 -1.49e-2 1.02 

Table 7.1 
Results from KALMAN for the SISO-system (7.2). 

The calculated Kalman gain is used by KALEST to estimate the state and innovation vec­
tor. The results for the innovation vector are presented in table 7.2: 
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out estimated calculated 
of bound varianee varianee 

43=8.6% 1.02 1.25 

Table 7.2 
Results from KALEST for the SISO-system (7.2). 

KALEST shows that more than 5 percent of the innovation vector is "out of bound" and 
the calculated varianee is higher than the estimated one. The residuals clearly show a 
dynamic component (fig. 7.7): 

0 100 200 300 400 

Fig. 7.7 
The residuals and the 5% limitsas function of the time-instant k. 

We use WTEST to see what might be the cause of this. The sample mean. the bound mean 
and the number of correlation values that are out of bound are presented in table 7.3: 

sample bound out 
mean mean of bound 

0.14 0.098 70=28.1% 

Table 7.3 
Results from WTEST for the SISO-system (7.2). 

From table 7.3 it is obvious that the innovation vector is neither zero mean nor white 
noise. This can be explained better when we look at the correlation function (fig. 7.8). We 
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can clearly abserve a coloured noise component in the correlation function. This is caused 
by the difference between the real system matrix (0.97) and the HA~KEL estimated sys­
tem matrix (0.9645). 
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Fig. 7.8 
The correlation function versus lag. 

We will use the in chapter 5 developed techniques to adapt Q and R. using the values 
of the calculated correlation function. C0 and C1. The necessary values of the correlation 
function are found to be (table 7.4 ): 

scale factor 

1 0.168 1.25 

Table 7.4 
The first two values of the correlation function obtained from WTEST. 

The values have been normalized by dividing them by the scale factor. 

Using (eqn. 5.27-28) we obtain Q = 1.32e -2 and R = 1.00. Campare these values 
with the original values Q = l.e- 3 and R = 1.00. The extra uncertainty. introduced by 
MARKOV and HANKEL in the system matrix is added to the existing state noise. 
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We design a new Kalman filter using the adapted va lues ( table 7.5 ): 

P K W 

7.13e-2 -8.47e-2 1.15 

Table 7.5 
Results from KALMAN for adapted SISO-system 

To check if these values are optima} we use KALEST to estimate the state and innovation 
vector with the following results: 

out estimated calculated 
of bound varianee varianee 

4.4% 1.15 1.12 

Table 7.6 
The results from KALEST for the system with adapted noise matrices 

From table 7.6 can be concluded that less than 5 percent is out of bound and the calcu­
lated varianee is close to the estimated one. The innovation sequence looks better. the 
dynamic component bas disappeared (fig. 7.9). 

0 100 200 300 400 

Fig. 7.9 
The residuals and the 5 % limits as function of the time-instant k. 

To check the innovation vector on being zero mean white noise. we use WTEST which 
gives the following results: 
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sample bound out 
mean mean of bound 

0.048 0.093 8=3.21 o/c 

Table 7.7 
The re sult s jrom WTEST using the system with adapted rwise matrices 

The innovation vector is zero mean and white noise. The Kalman filter is optima!. The 
resulting values of the correlation function as function of the lag for the optima! filter are 
clearly better (fig. 7.10): 
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Fig. 7.10 
The arrelatioo junctions versus lag for the optimal filter 

This simple example shows the importance of adaptive filtering techniques for the 
noise covariance matrices. In this simple case. one iteration is enough to obtain an optima! 
filter. For MIMO systems the number of iterations can he larger and the calculations for 
obtaining a new estimate are more difficult. but the profit is not only a better estimate. but 
also better control when using an LQG algorithm. This shows that serious attention should 
he given to the development of adaptive filtering routines before elaborating on the control 
routines. 
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7.3. KALMAN Fll.. TER PERFORMANCE 

For a simple SISO-system. the steady-state Kalman gain matrix K. the steady-state 
covariance matrix P and the number of iterations necessary to reach steady state are calcu­
lated for different values of Q/R. Also the inftuence of a varying P(, is discussed. The 
steady-state solution is computed with a relative error smaller than l.e-5. 
We use the following system: 

The results are ordered in tables 7.8a-b 

Q 0.1 1.0 2.0 5.0 10.0 

lteration 12 6 6 5 5 

p 0.155 1.19 2.13 5.14 10.1 

K 0.146 0.311 0.340 0.362 0.371 

Table 7.8a 
Effects of varia1ions in Q. ( with R = 1). 

R 0.1 1.0 2.0 5.0 10.0 

lteration 4 6 6 8 10 

p 2.01 2.13 2.24 2.48 2.76 

K 0.375 0.340 0.311 0.253 0.199 

Table 7.8b 
Effects of varia1ions in R. ( with Q = 2). 

From tables 7.8a-b it is clear that increasing Q or decreasing R leads to a larger Kalman 
gain K. And that decreasing Q or increasing R leads to a smaller K. This means that when 
the system noise becomes larger. relative to the measurement noise. the difference between 
the calculated and realized measurement is weighted heavier. And that when the system 
noise becomes smaller, relative to the measurement noise. the model is trusted more. 
lncreasing Q and/or R leads to a larger covariance matrix P and decreasing Q and/or R 
leads toa smaller P. More uncertainty in the system leads to more uncertainty in the esti­
mate. 
The number of iterations necessary to reach steady-state with a relative error of l.e-5 
decreases when Q increases or when R decreases. The algorithm depends less on the model 
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and since the model bas a slow impulse response this means that steady-state is reached 
faster. 
When the ratio Q/R remains the same (Q = 2 in table 7.8a and R = 1 in table 7.8b). the 
Kalman gain matrix K remains the same. Q/R will be shown to be the relevant factor for 
the value of the Kalman gain matrix. 

lt can be shown that the steady-state filter gain K. 

fora slightly more general system (1 input. 1 output. 1 state) : 

can be written as: 

K evidently only depends on the ratio Q/R. It can be proven that also for MIMO systems. 
Kis determined only by Q/R. 

What is the infl.uence of increasing the initia! covariance matrix P0 on the staedy-state 
solutions? Since P0 enters in no formula for the steady-state solution for P and K. a 
different P0 will result in a different magnitude for the transient characteristic. but the 
steady-state conditions are unaffected. The length of the start-up period depends on the 
system matrix A and the initia! covariance matrix P0 • 

This SISO system is only a very simple example. MIMO systems are more compli­
cated. The SISO system is only used to show the infl.uence of certain parameters on the 
behaviour of the steady state Kalman filter gain and the steady state covariance matrix. 
This behaviour explains a lot about how a Kalman filter basically behaves. 

7 .4. SUBOPTIMAL FILTERING 

In this section. the developed modules will be used to test the optimality of the Kal­
man filter with variations in Q and R. Since we do not always know beforehand the exact 
values of the noise covariance matrices Q and R. it is important to know .how to extract 
from the results presented to the user by KALSIM. KALESTand WTEST. the necessary 
information to determine if the Kalman filter is optima!. Optimality is easy to test. the 
innovations have to be zero mean white noise with a varianee equal to tbe by Kalman 
predicted variance. It will be shown that it is very difficult to interpret the presented 
results when a Kalman filter functions suboptimally. Sometimes the Kalman filter is 
functioning as if it is an optima} filter. the innovations are zero mean. but the estimated 
and calculated variances do not agree. How should this be interpreted? 
We have used the same system and the same a priori information to simulate 3 systems. 
one with large measurement noise. one with equal state and measurement noise and one 
with large state noise. 
We have calculated the Kalman filter for the exact Q. and Rand for 4 cases in which Q or 
R are varied. resulting in a suboptimal filter. 
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The used model is: 

y1 = 2 x~ + v;. 

With the following a priori information: 

P11 = l.e -12 

x 0 = 2.5 

7.15 

7.5a 

7.5b 

The simulation uses 500 samples. This means that the autocorrelation function is calcu­
lated (by WTEST) for 250 lags. KALEST uses all 500 samples to calculate the bounds and 
the number of observations that are "out of bound". WTEST uses 250 lagsof the auto­
correlation f unction to calculate the number of observations that are "out of bound". 

7 .5. LARGE MEASUREMENT NOISE, SMALL STA TE NOISE 

In the first case the measurement noise is large compared to the state noise. 

Q = l.e-4 

R = 4. 

This is an extreme case of a system with very little state noise compared to the output 
noise. 

7 .5.1. KALMAN FILTER 

The Kalman filter for the five different cases is calculated by KALMAN. The results 
are collected in table 7.9: 

CASE Q R p K w 

1 l.e-4 4 1.64e-3 7.98e-4 4.01 

2 l.e-4 40 1.69e-3 8.18e-5 40.0 

3 l.e-4 0.5 1.43e-3 5.50e-3 0.51 

4 1.e-1 4 3.37e-1 1.22e-1 5.35 

5 l.e-8 4 1.69e-7 8.21e-8 4.00 

Table 7.9 
Results from the Kalman filter rrwdule KALMAN. 

Large m.easurem.ent noise, small stale noise. 
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P is the steady-state covariance matrix. K the steady state Kalman gain matrix and W the 
steady-state covariance matrix of the innovation or residual sequence r;. all predicted by 
KALMA"\. 
As can be seen from table 7.9. case 1 uses the exact values for Q and R. In case 2-3 R is 
varied. in case 4-5 Q. In case 3-4 Q/R is larger than the optima) value in case 2-5 smaller. 
lt can be observed that \V is very sensitive to the value of R and relatively unsensitive to 
variations in Q. Pis more sensitive to variations in Q than to variations in R. Tbe Kalman 
gain matrix is very sensitive to variation in both Q and R. 

7.5.2. STATE ESTIMATION 

We use 1-:.ALEST to estimate the state vector. using the by KALMAN calculated Kal­
man gain. The results for the innovation vector are collected in table 7.10 

CASE out estimated calculated 
of bound varianee varianee 

1 4.6% 4.01 4.0 

2 0.0% 40.0 4.0 

3 50.4% 0.51 4.0 

4 2.2% S.JS 4.5 

5 4.4% 4.00 4.0 

Table 7.10 
The resulls for the innovation vector (obtained from KALEST). 

Large measurement noise, smoll state noise 

It can be observed that the calculated varianee for all the four suboptimal cases is close to 
the one predicted by the Kalman filter for the optima! case. The estimated varianee varies 
heavily with variations of Rand only little with variations of Q. Wben Ris too small. the 
model relies too mucb on the measurements wbich leads to 50.4 % out of bound. Com­
pared to the optima! case. the suboptimal filters behave close to optima!. 

7 .5.3. \VHITENESS TEST 

The calculated innovation vector is tested on being a zero mean, white noise sequence 
by WTEST. The results are collected in table 7 .11. Tbe sample mean. which is the calcu­
lated mean of the innovation sequence. should be smaller than the bound mean. which is 
the maximum value for the absolute sample mean so that the sequence can statistically be 
called "zero mean". Tbe number of elements of the correlation function that are "out of 
bound" should besmaller than 5 % for the sequence to be white. lf a sequence complies to 
both of these conditions. it can be called a zero mean. white noise sequence. All the 
sequences are zero mean white noise. 
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CASE 
sample bound out 
mean mean of bound 

i 1 0.10 0.176 4.8o/c 
I 

2 0.11 0.176 4.8o/c 

3 0.079 0.176 4.4o/c 

4 0.006 0.187 4.8o/c. 

5 0.11 0.18 4.8o/c-

Table 7.11 
Results from the whiteness test module WTEST. 

lArge rneasurement noise, small state noise. 

7.17 

Even more information can be obtained by considering the first n +1 componentsof 
the correlation function. calculated by WTEST (stored in WTEST.DAT A). These com­
ponents are used by adaptive estimation algorithms to correct the noise covariance matrix 
Rand Q (Table 7.12). 

CASE Co c1 scale factor 

1 1 0.313e-2 4.03 

2 1 0.380e-2 4.03 

3 1 -0.432e-2 40.4 

4 1 -0.130 4.54 

5 1 0.450e-2 4.03 

Table 7.12 
The ftrst n + 1 elementsof the correlation function. 

lArge rneasurement noise, small state noise. 

The 95 % limit f or all cases is 8.8 77e-2 ( 1. 96/ N'h ). When the state noise is too large (case 
4). cl is larger than the allowed limit. Combining the results from table 7.9-12 lead to the 
f ollowing observations: 

Case 1 (Optima! case) : 

The number of "out of bound" is in both cases smaller than 5 percent. The calculated mean 
and the estimated mean are the same and the sample mean of the innovation vector is 
smaller than its bound mean. Case 1 is optimal (as it should be). 



Discussion of tlre results 7.1~ 

Case 2 (R too large) : 

The estimated varianee is larger than the observed varianee due to the faet that R is too 
large. The innovation sequenee is still zero mean. white noise. The calculated varianee for 
the innovations is equalto the optima! case. 

Case 3 ( R too smal!) : 

The percentage "out of bound" for the innovation vector is 50.4 percent. the Kalman filter 
is relying too mueh on the model. The estimated varianee is also smaller than the observed 
one. but equal to the one for the optima! case. The innovation is zero mean. white noise. 

Case 4 ( Q too large) : 

The estimated varianee is larger than the observed varianee and C 1 is "out of bound". the 
filter is relying too much on the measurements. Tbe innovation sequence is zero mean, 
white noise. The calculated varianee is still close to the estimated varianee for the optima! 
case. 

Case 5 (Q too small) : 

The estimated and calculated varianee are tbe same as for the optimal case. The innova­
tions are zero mean white noise. 

Conclusions: 

The innovations are for all four suboptimal cases zero mean. white noise and since. except 
for case 4, the calculated varianee for the innovations is equal to the. by KALMAN. 
estimated variance. they should be considered optimal. Tbe noise covariance matrix Q for 
tbe optima} case and thus for the simulated data is so small that a large variation in K 
(table 7.9) is allowed without the filter performing far from optimally. But for each 
seperate case. the estimated and the calculated varianee differ which means that the noise 
covariance matrices are not exact. In case of a small Q/R for the optima! case. variations in 
Q or R will cause the filter to function still close to optimal. despite the fact that there is 
an inconsistency between the estimated and calculated variance. But this is only a sign for 
incorrect noise matrices and does not imply that the resulting filter is performing worse. 

7.6. EQUAL STATE AND MEASUREMENT NOISE 

The state noise and the measurement noise are equal in this case: 

7 .6.1. KALMAN FILTER 

Q = 1. 

R = 1. 

The Kalman filter is calculated by KALMAN. the results are in table 7.13: 
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CASE Q R p K w 

I ! 
1 0.401 

i 
1 1. I 1. 1.19 5.78 

i 
2 10. 2.06 18.3 1. 0.219 

3 1. 0.001 1.00 0.484 4.01 

4 10. 1. 10.2 0.473 41.9 

5 0.001 1. 0.047 0.077 1.19 

Table 7.13 
Results from the Kalman filter rrwdule KALMAN 

Equal measurement and state noise. 

7.19 

As can beseen from table 7.13, case 1 uses the exact values for Q and R. In case 2-3 Ris 
varied, in case 4-5 Q. For cases 3-4, Q/R is larger than for case 1. for cases 2-5 smaller. P 
seems mainly to be influenced by variations in Q and to a lesser extent by variations in R. 
Both K and W are eff ected by varia tions in Q and R. 

7 .6.2. ST A TE ESTIMA TION 

We use KALEST to estimate the state vector. using the by KALMAN calculated Kal­
man gain. The results for the innovation vector are presented in table 7.14: 

CASE out estimated calculated 
of bound varianee varianee 

1 4.6% 5.78 5.7 

2 0.0% 18.3 6.6 

3 10.4% 4.01 S.9 

4 0.0% 41.9 5.8 

5 52.0% 1.19 100.0 

Table 7.14 
The r·esults for the innovation vector (obtained from KALEST) 

Equal measurement and state noise. 

The estimated varianee in case 3 and case 5 are smaller than the real variance. leading to 
more than 5 o/c out of bound. In case 2 and 4 the estimated varianee is too large leading to 
0.0 % out of bound. For cases 2-3-4, the calculated varianee is still close to the estimated 
varianee for the optima! filter. 
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7.6.3. WIDTENESS TEST 

The calculated innovation vector is tested on being a zero mean. white noise sequence 
by \\"TEST. lf Q/R i~ smaller than for the optima) case (cases 2-5). the model is trusted to 
much and part of the state noise. filtered by the system. is added to the innovations as 
coloured noise. The inno\ations are not white anymore (table 7.15): 

CASE 
sample bound out 
mean mean of bound 

1 0.087 0.21 2.4o/c 

2 0.15 0.23 6.4% 

3 0.072 0.21 4.0o/c 

4 0.074 0.21 4.0% 

5 0.39 0.29 17.3% 

Table 7.15 
The results form the whiteness test rrwdule WTEST. 

Equal measurement and state rwise. 

Table 7.16 contains tbe first two values of autocorrelation function. For all four cases 
C1 is out of bound. C 1 is used by adaptive filtering routines to correct Q and R. 

CASE Co c1 factor 

1 1 0.010 5.7 

2 1 0.374 66.2 

3 1 -0.148 5.9 

4 1 -0.129 5.8 

5 1 0.663 100.0 

Table 7.16 
The ftrst n + 1 elem2nts of the correlation function. 

Equal measurement and state rwise. 

Tbe 95 % limit for all cases is 8.877e-2 ( 1.96/Nv, ). Combining tbe results from table 
7.13-16 leads to the following observations: 
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Case 1 (optima! case): 

The number of "out of bound" is in both cases smaller than 5 percent. The calculated mean 
and the estimated mean are the same and the sample mean of the innovation vector is 
smaller than its bound mean. Case 1 is ortimal. 

Case 2 ( R too large) : 

The large R leads to too much reliance on the model. The innovation sequence is not white 
anymore as can beseen from table 7.15. 

Case 3 (R too small) : 

When R is too small. the estimated varianee is also too small which leads to more than 5 
percent out of bound. The resulting innovation sequence is still white and of zero mean. 

Case 4 ( Q too large) : 

A too large Q leads to too much reliance on the measurements. The estimated varianee is 
too large ( 0.0 percent out of bound) but the innovations are still white noise and zero 
mean. 

Case 5 (Q too small) : 

The filter relies too much on the model. the estimated varianee is too small. The result is 
that more than 5 percent is out of bound and the innovations are not white and not of 
zero mean anymore. 

Conclusions: 

In case of equal state and measurement noise. using a smaller Q/R (case 2-5) results in a 
coloured noise component in the innovations. The model is trusted to much and part of the 
white state noise is filtered by the system and added to the innovations. Using a Q/R that 
is too large results in a filter with white innovations and with a calculated varianee close 
to the estimated varianee for the optimal filter. There is a statistica! discrepaney between 
the calculated and estimated varianee for each case. but compared with the optima! case, a 
larger Q/R performs still close to optimal. Overestimating the aceuracy of the modelor the 
inaccuracy of the measurements however. results in a filter that behaves badly (the inno­
vations are not white and the calculated varianee differ significantly from the estimated 
varianee f or the optimal filter). 

7.7. LARGE STATE NOISE, SMALL MEASUREMENT NOISE 

In this case the state noise is large compared to the measurement noise: 

Q = 4. 

R = l.e-4 

This is an extreme case of a system with measurements. very accurate compared to the 
state noise. 
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7.7.1. KALMAN FILTER 

The Kalman filter is calculated by KAL!\1~1'\. the results are in table 7.17: 

CASE Q R p K w 

1 4. 1.e-4 4.00 0.485 16.0 

2 4. 1. 4.22 0.458 17.9 

3 4. 1.e-8 4.00 0.485 16.0 

4 40. 1.e-4 40.0 0.485 160.0 

5 0.1 1.e-4 0.10 0.485 0.4 

Table 7.17 
The results from the Kalman filter rrwdule KALMAN 

Small measurement noise, large state noise 

7.22 

As can beseen from table 7.17. case 1 uses the exact values for Q and R. In case 2-3 R is 
varied. in case 4-5 Q. For the cases 2-5. Q/R is smaller than the optimal value. for case 3-4 
larger. The Kalman gain matrix K is unsensitive to variations in both Q and R. W and P 
are only sensitive to variations in Q . 

7.7.2. STATE ESTIMATION 

We use KALEST to estimate the state vector. using the by KALMAN calculated Kal­
man gain. The results are shown in table 7.18 

CASE out estimated calculated 
of bound varianee varianee 

1 3.4% 16.0 15.0 

2 3.2% 17.9 15.0 

3 3.4% 16.0 15.0 

4 0.0% 160.0 15.0 

5 74.0'1'o 0.4 15.0 

Table 7.18 
The results for the innovation vector (obtained from KALES/'). 

Sm.all measurement noise, large state noise. 
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The calculated varianee is the same for all 5 cases. due to the fact that K is the same. The 
estimated varianee is mainly influenced by variations in Q. R is too small to have a real 
influence. 

7.7.3. WHITENESS TEST 

The calculated innovation vector is tested on being a zero meao. white noise sequence 
by WTEST. The results are in table 7.19: 

CASE sample bound out 
meao meao of bound 

1 0.14 0.34 2.4% 

2 0.15 0.34 3.2% 

3 0.14 0.34 2.4% 

4 0.14 0.34 2.4% 

5 0.14 0.34 2.4% 

Table 7.19 
The results from the whiteness test nwdule WTEST 

Small measurement noise, large state noise. 

In all cases the innovations are white noise and zero meao. 

Table 7.20 contains the fust two values of the calculated autocorrelation function. C0 

and cl: 

CASE Co c1 factor 

1 1 0.054 15.0 

2 1 0.106 15.0 

3 1 0.054 15.0 

4 1 0.054 15.0 

5 1 0.054 15.0 

Table 7.20 
The first n + 1 elements of the correlation function. 

Small measurement noise, large state noise. 
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The 95 %limit for all cases is 8.877e-2 ( 1.96/ N''' ). A too large R results in a too large C 1. 

Combining the results from table 7.17-20 leads to the following observations: 

Case 1 (Optimal case): 

As it should be. case 1 is optima!. The estimated and calculated variances are equal. the 
innovations are white noise zero mean and less than 5 o/c out of bound. 

Case 2 (R too large) : 

Case 2 seems to be close to being optimal. The innovations are white and of zero mean. the 
estimated and calculated varianee are almest the same. only C1 is an indication that the 
model is trusted too much. 

Case 3 (R too small) : 

Case 3 is optimal. not in the sense that it bas the right R but in the sense that the innova­
tions are white and zero mean and the variances are the same. It uses the same Kalman 
gain matrix as the optimal case. 

Case 4 (Q too large) : 

Case 4 is optimal except fora too large estimate for the variance. The Kalman gain matrix 
is the same despite the fact that Q is too large. 

Case 5 (Q too small) : 

Also case 5 is optimal except for a too small estimate for the variance. leading to more 
than 5% out of bound. 

Conc 1 usions: 

It is obvious that all 5 cases perferm the same. since K is almest the same. The sensitivity 
of K for changes in the noise matrices is very small. There is only a statistica! incon­
sistency between the calculated and estimated variances but the filter perfarms the same. 

7.8. CONCLUSIONS 

Three different cases have been considered: Q/R << 1. Q/R = 1. and Q/R >> 1. 
When Q/R >> 1. the performance of the Kalman filter is very insensitive to incorrect 
noise covariance matrices. the Kalman gain matrix K does not vary a lot and the innova­
tions are zero mean white noise. The estimated and calculated variances are different but 
the filter is still close to optimal. 
When Q/R << 1. the innovations are also zero mean white noise when incorrect noise 
matrices are used. Only when Q/R = 1. the Kalman filter is very sensitive to incorrect 
noise matrices especially when the model is trusted more than it should. In this case. the 
resulting innovations show a coloured noise component. The state noise. after being filtered 
by the system is coloured noise and is as such added to the innovations. Q and R need to 
be determined accurately to prevent this. Generallt can be stated that it is very difficult to 
determine from the by KALMAN. KALESTand WTEST presented results. how to adapt 
the noise covariance matrices. Adaptive filtering routinescan perferm this task much more 
efficiently The innovation correlation metbod developed by Carew seems to be the most 
promising one. It is proven to be numerically more stabie than the metbod developed by 
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\1ehra. it uses innovation correlation functions which have already been calculated by 
WTEST and it is proven to converge assymptotically to the exact values for Q. Rand K. 

Consequently. in the case of unk.nown noise covariance matrices: 

(1) L'se some sensible estimates for Q and R and calculate the corresponding Kalman 
filter using KAL:'v1A '\. 

(2) L'se KALEST to obtain the innovation sequence. the 95 o/c limits. the number of 
observations that are "out of bound" and the observed variances. A comparison of the 
observed variances with the by KALMAN estimated ones. shows if the estimates for 
Q and/or R are too small or too large. But only an adaptive filtering routine can 
delermine how much Q and R should be changed. 

(3) L'se WTEST to test the innovations on being zero meao white noise. A coloured noise 
component means that the model is trusted too much (Q too smallor R too large). 

(4) The Kalman filter is performing optimally when the innovations are zero mean white 
noise. when the by KALEST observed variances are equal to the by KALMAN 
predicted ones. and when less than 5 % of the observations of the innovations are 
"out of bound". 

(5) If the innovations are not zero meao white noise or the estimated and observed vari­
ances do not agree. use an adaptive filtering routine to obtain better estimates for Q. 
Rand K. 



Chapter 8 

CONCLUSIONS 
AND 
SUGGESTIONS 

8.1. CONCLUSIO:SS 

- A set of PRIMAL modules bas been developed to design a Kalman filter fora stochastic 
statespace model and to test and evaluate its performance. 

- The performance of the Kalman filter can be evaluated without knowing the "true 
states". WTEST tests if the innovations are zero mean white noise. KALEST calculates the 
varianee for the observed innovations and the number of innovations that are "out of 
bound". and KALMA..l'\ calculates an estimate for the varianee of the innovations. The 
Kalman filter is functioning optimally when: 

(1) the innovations are zero mean white noise which means that the calculated mean is 
smaller than the bound mean (zero mean test) the number of values of the autocorrelation 
function that are "out of bound" is smaller than 5 percent ( whiteness test) 

(2) the estimated and calculated varianee are equal. 

If not. it is still possible that the filter is close to optima} depending on the actual values 
of Q. and R. 

- Apart from modules for designing and evaluating the Kalman filter. a module for solving 
the Riccati equation bas been developed. Tagether these modules form the first controller 
design facility in PRIMAL. 

- In the case of unknown noise covariance matrices the adaptive filtering techniques 
described in chapter 5 may be used. Chapter 7.3-5 show that it is difficult to determine Q 
and R from KALSIM. KALMAN. KALESTand WTEST evenfora SISO sysiem. The inno­
vation correlation metbod developed by Carew (eqn. 5.35-3 7) [CAR73] is the most 
promising. it requires no salution of a Lyapunov type of equation and it seems to perform 
better than the metbod developed by Mehra (eqn. 5.27-32) [MEH70]. [MEH72] and is 
numerically more attractive. 
The output correlation metbod does not require any initia} estimates for Q and R. but it 
requires a stabie system matrix A or Yt to be stationary. Furthermore the correlations for 
the innovations have already been calculated in the whiteness test and are therefore avail­
able to the user. 
The covariance matchirtg methods seem simple and straightforward. but convergence of 
these methods bas never been proven and they only seem to work well if the state covari­
ance matrix Q is known and R bas to be estimated. 

- The matrices necessary for the optima! control E and F are difficult to determine. The 
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user has to formulate bis objectives in termsof desired trajectories for the state vector and 
allowed values for the input vector. The algorithm does not guarantee these objectives. but 
by repeating this step with different matrices it should be possible to design a feedback 
matrix which meets the specifications. Minimization of the output vector Y1. can be 
achieved by setting: 

E =eer 

F= DDT 

M = CD7 

This means that the user does not have to specifiy the matrices. they are inherent to the 
used system. How this metbod performs can be evaluated after implementation of the 
simulator. 

8.2. SUGGESTIONS 

- Before the LQG-module will be used in practice it is necessary to implement an adaptive 
filtering routine and a simulator for evaluating the performance of the LQG-feedback 
matrix using a Kalman filter for state estimation. Since optima! performance of the LQG­
algorithm is assured only when all the previous steps are optimal. it is important to 
develop an adaptive filtering routine first. 

- The possible use of the residuals or innovations are numerous. Apart from being able to 
use them for adapting the noise covariance matrices. they can also be used for sensor 
failure detection or spike filtering (on line). This can prevent the control routine from 
using spikes. Special routines may warn the user of a possible sensor failure or change in 
the system model. The user can take the necessary actions to prevent further damage. 

- Mehra suggests that the estimate for the Kalman gain matrix K can be improved by 
repeatedly filtering the data with the adapted Kalman filter and using the new autocarre­
lation functions to obtain a better estimate. However. this is not always true. If we start 
with the optima! Kalman gain and there are any errors in the estimation of the correlation 
functions. due to the finite sample size. the adaptive filtering routine will not lead to the 
optima! gain again. The value of Mehra·s suggestion must be determined when an adaptive 
filtering routine is available. 

- PRIMAL offers two possibilities for implementing the obtained controller. The first pos­
sibility is to implement in PRIMAL control routines that use the computer to control a 
process in real-time. The second possibility is to develop modules that approximate an 
optima} control regulator using conventional PlO-controllers. The fi.rst possibility requires 
enough computing capabilities for the reai-time controller to perform in real-time. but the 
obtained LQG-controller will be implemented exactly. The second possibillity will impie­
ment an approximation which means that the actual performance is difficult to predict. But 
the conventional PlO-controllers are easier to implement and no computer time is required. 
The introduetion of process computers in (industrial) processes will make the fi.rst option 
more attractive. but many processes are still controlled by conventional controllers. 



REFERENCES 

[A:\D71] 
B.D.O. Anderson. J.B. Moore. Linear optinuzl control. l\ew York.: Prentice Hall. 1971. 

[A:\'042] 
R.L. Anderson. "Distribution of the serial correlation coefficient." Ann. Math. Statist .. 
vol. 13. 1942. 

[BRA 75] 
K. Brammer. Kalman-Bucy-filter, deterministische beobachtung und stochastische 
filterung." München: R. Oldenbourg Verlag. 1975. 

[CAR73] 
8. Carew. P.R. Belanger. "Identification of optimum filter steady-state gain for sys­
tems with unknown noise covariances." IEEE Trans. of Autom. Contr., vol. AC-18. 
pp.582-587. Dec. 1973. 

[DAM86] 
A.A.H. Damen. A.J.\V. van den Boom, Toegepaste systemanalyse. syllabus Dept. of 
Elec. Eng .. Techn. Univ. Eindhoven, Netherlands. 1986. 

[00081] 
P. van Dooren. "A generalized eigenvalue approach for solving Riccati equations." 
SIAM J. Sci. Stat. Comput .. 2. pp. 120-135. 1981. 

[FRI86] 
B. Friedland, Control system design. an introduetion to state-space methods . New 
York: McGraw Hill. 1986. 

[GER87] 
P.H.M. Gerlings. The Hankel realization methad in PRIMAL. M.Sc. Thesis (NR-
1485P) System and control group dept. Techn. Fys .. Techn. Univ. Eindhoven. 1987. 

[GOD74] 
S.S. Godbole. "Kalman filtering with no a priori information about noise: white noise 
case: identification of covariances. " IEEE Trans. Autom. Contr. (short paper). vol. 
AC-19. pp. 561. Oct. 1974. 

[G0084] 
G.C. Goodwin. K.S. Sin. Adaptive filtering, prediction and control. New Yersey: Pren­
tice Hall. 1984. 

[HAN60] 
E.J. Hannan, Time series analysis, New York: Wiley. 1960. 



Refer·ences Lit.2 

(HAU79) 
M.LJ. Hautus. Lineaire multivariabele systemen, Syllabus Math. Dept.. Techn. Cniv. 
Eindhoven. ]\; etherlands. 198 7. 

[KAI6&) 
T. K.ailath."An innovations approach to least-squares estimation, part I:linear filtering 
in additive white noise." IEEE Trans. Autom. Contr., vol. AC- 13. pp. 646-655. Dec. 
1986. 

[KAL60] 
R.E. Kalman. "A new approach to linear filtering and prediction problems," Trans 
ASME. J. Basic Eng .. Series 82D. pp. 35-45, 1960 

(KAL61] 
R.E. Kalman, R.S. Bucy. "New results in linear filtering and prediction theory." Trans. 
ASME, J. Basic Eng .. Series 83D. pp.95-108, Mar. 1960. 

(KWA72] 
H. Kwakernaak, Linear optimal control systems, New York: John Wiley. 1972. 

[LEE64] 
R.C.K. Lee. Y.C. Ho. "A Bayesian approach to problems in stochastic estimation and 
control." IEEE Trans. Autom. Contr., voL AC-9. pp.333-339. Oct. 1964. 

[LIJ.\;87] 
R. v.d. Linden, A Markov impu.lse response in PRIMAL .. internal memo (NR1284P) 
System and Control group. dept. of Techn. Fys .. Technica} Univ. Eindhoven. 1987. 

[MAR74] 
W.C. Martin. A.R. Stubbero. "An additional requirement for innovations." IEEE 
Trans. Au.tom. Contr .. voL AC-19. pp. 583-584. Oct. 1974 

(MAY79] 
P.S. Maybeck, Stochastic models, estimation, anti control, vol. I. Vol. 141 Matbematics 
in Science and Engineering. New York. Academie Press. 1979. 

[MEH70] 
R.K. Mehra. "On the identification of variances and adaptive Kalm~n filtering." IEEE 
Trans. Autom. Contr., voL AC-15. pp.175-184. Apr. 1970. 

[MEH72] 
R.K. Mehra. "Approaches to adaptive filtering." IEEE Trans. Au.tom. Contr. (short 
papers). vol. AC-17. pp. 693-698. Oct. 1972. 

(MEU88a] 
P. van Meurs. KALSIM, a stochastic statespace simulator in PRIMAL. Internal memo 
(NR-1504P) System and Control Group. Dept. of Techn. Fys .. Technica! Univ. Ein­
dhoven. 1988. 

I 



Rejerences Lit.3 

[MEU88b] 
P. van Meurs. KALMAN. a Kalman filter module in PRIMAL. Internal memo (~R-
1505P) System and Control Group. Dept. of Techn. Fys .. Technica) Liniv. Eindhoven. 
1988. 

[l\lEL"8bc] 
P. van \-teurs. KALEST, a state estimation module in PRIMAL .. Internat memo (;\;R-
1506P) System and Control Group. Dept. of Techn. Fys .. Technica! Univ. Eindhoven, 
198b. 

[l\tEC8bd] 
P. van Meurs. WTEST, a whiteness test and zero mean test module in PRIMAL. Inter­
na) memo (:\'R-1507P) System and Control Group. Dept. of Techn. Fys .. Technica} 
L"niv. Eindhoven. 1988. 

[MEC88e] 
P. van Meurs. RIC. a Riccati equation solver in PRIMAL. Internal memo (NR-1508P) 
System and Control Group. Dept. of Techn. Fys .. Technica) Univ. Eindhoven. 1988. 

[MOL73] 
C. Moler. G. Stewart. "An algorithm for generalized matrix eigenvalue problems." 
SIAM J. Numer. Anal .. 10. pp. 241-256. 1973. 

[MYE76] 
K.A. Myers. B.D. Tapley. "Adaptive sequentia! estimation with unknwon noise statis­
tics." IEEE Trans. of Autom. Contr .• vol AC-21. pp. 520-523. 1976. 

[OLC83] 
S. Olcer. Cammande sous optimale adaptive de systèmes stochastiques linéaires. Thesis 
Dept. Mech. Eng .. Institution d'Automatique de L'EPFL. Lausanne. France, 1983. 

[PRI68] 
C.F. Price. J.J. Reyst. "Conditions for assymptotical stability of the discrete minimum 
varianee linear estimator." IEEE Trans Autom. Contr. (short papers). vol AC-13. 
pp. 702-705. Dec. 1968 

[SCH77] 
K. W. Schriek. Anwendungen der Kalman filter technik, anleitung und beis piele. 
München: R. Oldenbourg Verlag. 1977. 

[SOR85] 
H.W. Sorenson. Kalman filtering: Theory and application, New York. IEEE press. 
1985. 


