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ABSTRACT

Five modules have been developed to incorporate an LQG-control algorithm into PRI-
MAL (Package for Real time Interactive Modeling Analysis and Learning). This LQG-
algorithm can be seperated into two independent sub-problems. Optimal state estimation
and optimal state feedback.

Most of the effort has been put into developing 4 modules that can be used to design and
test a steady-state Kalman filter. This Kalman filter is the best linear estimator for a sys-
tem that can be described by a linear state space model with Gaussian white noise distur-
bances. The 4 modules are: KALSIM, a module that simulates a stochastic state space
model, KALMAN, a module that calculates the Kalman filter, KALEST, a module that
estimales the state vector for a stochastic state space model using a Kalman gain matrix
and WTEST. a module that tests a signal on being zero mean white noise. A Kalman filter
is functioning optimally when the residual vector (the difference between the predicted
and real measurement) is zero mean white noise and the by KALMAN predicted variance
is equal to the by SIMEST observed one. For cases of a sub-optimal Kalman filter, several
approaches to adaptive filtering have been considered. The most promising one uses the
autocorrelation function of the residuals to obtain better estimates for the noise com-
ponents and the Kalman gain matrix. A simple SISO system is used to demonstrate the set
of modules and the adaptive filtering approach.

The steady-state solution to the optimal state feedback matrix is obtained by solving the
algebraic Riccati equation. This, numerically troublesome equation, is solved by obtaining
the stable and unstable eigenvalues and eigenvectors of the corresponding Euler-Lagrange
equation. The algorithm basically solves a generalized eigenvalue problem.
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CHAPTER 1
INTRODUCTION

1.1. OPTIMAL CONTROL AND STATE ESTIMATION

Optimal control and state estimation are two closely related subjects but are two
completely independent problems. This may seem to be a paradox., but when we look
closer at what is meant by this remark it describes how a LQG (Linear Quadratic Gaus-
sian) algorithm has been implemented.

1.1.1. THE LQG ALGORITHM
A LQG algorithm calculates an optimal feedback matrix L:

u, = LX 4 - 1.1

u, is the input vector at instant k, X; the estimate of the state variable x; obtained by the
Kalman filter.

L is optimal in the sense that it minimizes a quadratic cost function of the form:

J = E{ ¥ [x/Ex; + 2u/Mx; + u/Fu, }} 1.2
k=0

with E a positive semi-definite symmetric matrix, M positive semidefinite and F positive
definite symmetric.

The system itself can be represented by a linear model corrupted by Gaussian white noise
processes. The idea is to extract from the available input and output data an optimal esti-
mate of the state X of the system. Optimal in the sense that it performs better than any
other algorithm and minimizes a certain cost function. Later it will be discussed what kind
of cost functions are minimized.

The estimation problem (estimating the state variable) and the control problem (calculat-
ing the feedback matrix) are two completely independent problems in the sense that the
feedback can be performed using the optimal estimate of state. which can be calculated
separately from the feedback matrix. Together the two methods provide us with a power-
ful method for controlling a process that can be modeled by a linear model corrupted by
independent Gaussian white noise processes. These assumptions do in no way restrain the
practical use of the method as will be discussed in (ch.2.2). Since the two problems are
completely independent we will first pay attention to estimation problems in general and
to the Kalman filter as an optimal linear estimator in special. How to solve (1.2) resulting
in a solution for L will be discussed in the chapter about optimal control and the Riccati
equation.
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1.1.2. STATE ESTIMATION, A MATHEMATICAL TOOL

All applications in PRIMAL calculate "black box" models from available input and
output data. In this case state variables are just mathematical 100ls to model a process.
Since there is a wide variety of mathematical tools and theory available for state estima-
tion and state feedback we will use the concept of state variables even if they have no
phyvsical reality.

1.1.3. FINAL REMARKS

Since the sirength of a contirol application is determined by the weakest component.
it is important to put a lot of effort into developing a package that can design a Kalman
filter and test and evaluate its performance and that can adapt the filter in case of sub-
optimal behaviour. The second step, the implementation of the optimal feedback matrix
has therefore been restricted to the algorithm for solving the Riccati equation. There are no
results that show a control routine "in action” but there are results showing how 1o design
an optimal Kalman filter and how to evaluate its performance.



CHAPTER 2

INTRODUCTION
TO STOCHASTIC MODELS
AND ESTIMATION

2.1. STOCHASTIC MODELS

Most of the techniques for designing optimal controllers are based upon deterministic

models. However, these models are not always succesful in a noisy or uncertain environ-
ment. There are three reasons why we should consider stochastic models.

(1)

(2)

(3)

Deterministic models are never perfect. The purpose of a model is to represent cer-
tain characteristics of the reality. Sometimes it is not possible to derive a complete
model, since this would require a model with inifinite variables. Therefore, for practi-
cal and computational reasons, the model must be an approximation.

There are stochastic disturbances. Noise processes and uncertainties in the model
introduce a random component.

Sensors do not provide perfect and complete data about the system. Sensors introduce
their own dynamics and distortions in the measurements. Sometimes it is not possible
to measure a variable directly.

Since we are interested in developing an optimal controller for a system. corrupted with
noise and uncertainties. we are left with the following tasks:

(1)

(2)
3)

To develop a system model that accounts for these uncertainties and disturbances in
a direct but practical way.

To estimate the quantities of interest.
To control the system in an optlimal sense.

We will develop a stochastic model that accounts for uncertainties and disturbances
in such a way that it can be used in practice.

2.1.1. THE STOCHASTIC SYSTEM MODEL

A potentially powerful and useful model is a discrete linear state equation: '

X; 41 = Ax; + Bu, + Gn, 2.1a

y:. =Cx, +Dy + m; 2.1v

This model is an extension to the deterministic state space model, obtained by adding a
noise process n, to the dynamics equation and m, to the output equation. If we would
like to evaluate the probability function for x;, and for y,; in a practical way. we will
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have to restrict the inputs to the ones obtained from Gauss-Markov processes. For a Mar-
kov process, the probability function at time-instant k completely determines the proba-
bility function at instants larger than k. In the context of linear models, it can be shown
that the Markov assumption is equivalent to stating that the random process n; and m;
are expressible as the outputs of linear models, called shaping filters, driven by white
noises and deterministic inputs only.

Since a Gaussian probability function is compleletely determined by the mean and vari-
ance, and since linear operations on Gaussian processes result in Gaussian processes. we
only have to propagate in time the first two moments to obtain a propagation of the com-
plete probability function.

The model is thus reduced to a linear model of a physical svstem driven by deterministic
inputs, white Gaussian noises and Gauss-Markov processes. Consequently, one can consider
the original model and the necessary shaping filters as a single "augmented” linear system
driven only by white Gaussian noises and deterministic inputs.

The model can thus be restricted to:

X; +1 = Ax, + By, + Gw, 2.2a

V. =Cx; +Du; +v; 2.2b

where X, is now the augmented system state and W, and v, are white Gaussian noises,
assumed 1o be independent of each other (fig. 2.1).
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Fig. 2.1

The augmented system

We will now give an overview of estimation problems and the purpose of the KAl-
man filter.
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2.2. INTRODUCTION TO ESTIMATION PROBLEMS

A general estimation problem can be posed in the following manner. Given some

quantities of interest whose values are not known exactly. Measuring devices and sensors
provide data that is related to the variables of interest. The objective is 10 use this data,
the knowledge aboul ils relations 1o the quantities of interest and the knowledge about its
noise-corruption tc obtain an estimate of these variables. This estimate has to be "optimal”
in a sense defined by some criterion.

This means that in general. an estimation problem has five fundamental components :

(1)
(2)
(3)

(4)
(5)

the variables to be estimated
the measurements or observations available

the mathematical model describing how the measurements are related to the variables
of interest

the mathematical model of the uncertainties present
the performance criterion to judge which estimation is "the best”

In our case we restrict ourselves to time (in)dependent, linear Gaussian systems. This
means that the five components of our estimation problem can be specified as follows :

(1)

(2)
(3)

(4)

(5)

The variables to be estimated are pul in a n-dimensional state vector X; (with k the
time index) that are related as:

X; +1 = Ax; + Buy; + Gw,

with v, , a m~-dimensional, deterministic input vector.
There will be a p-dimensional measurement vector y; .

The set of measurements y, are assumed to be a linear combination of the variables
of interest, corrupted with a disturbance vector v, of dimension p.:

¥ = Cx‘ + Duk + vy 23

The possible values of x; are realizations of a random Gaussian variable with mean
X; and covariance P, . Also the set y, can be viewed as a realization of a random
Gaussian variable.

With respect to the performance criterion, the Bayesian viewpoint is adopted. We
want to generate a complete description of the probability distribution for the values
of the variables of interest. Since we are interested in estimating the values of a vari-
able x, . knowing the measurements y,; . we need to generate a conditional density
function. Once we know this density function, it provides us with all the informa-
tion necessary to define an optimal estimate, since reasonable definitions of optimality
might include (fig. 2.2) the median (having equal weight on either side), the mode
(maximum likelihood value), or the mean (the center of probability).

An algorithm that propagates the mean and covariance of the variables of interest

and in case of Gaussian noise also the complete density function is called the Kalman
filter.
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2.2.1. THE KALMAN FILTER

Basically a Kalman filter is an optimal recursive dataprocessing algorithm. Although
there are many ways of defining optimal, depending on the criterion chosen to evaluate per-
formance, it can be shown that under some basic assumptions the Kalman filter is optimal
with respect to virtual any sensible criterion.

The Kalman filter needs the following information to perform its function:

(1) A linear model of the system and measurement dynamics.

(2) A statistical description of the system noises, measurement noises and model uncer-
lainties.

(3) Any available information about initial conditions of the variables of interest.

The word recursive means that the Kalman filter does not require all previous data to
be kept in store nor does it need to reprocess all information every time a new measure-
ment is taken. This makes the Kalman filter easy to implement.

A Kalman filter basically combines all available measurement data, plus knowledge
about the system and measuring devices and noise statistics, to produce an estimate of a
desired variable in such a way that the error is minimized statistically. This means that
the average results of the Kalman filter are better than the average results of any other
method. The next section will give a very elementary description of the necessary assump-
tions. In chapter 3 they will be treated more accurately.

2.2.2. BASIC ASSUMPTIONS

The Kalman filter will only give an optimal estimate if three basic assumptions are
satisfied. They are:
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(1) The model description is a linear model.
(2) The system and measurement noise are white.
(3) The system and measurement noise are Gaussian.

Some of these restrictions can be relaxed. For insiance, if the Gaussian assumption is
removed, the Kalman filter is still the best (minimum error variance) filter out of the class
of linear filters.

These three assumptions do in no way restrain the practical use of the Kalman filter.

(1) A linear model is often adequate enough to describe the dvnamics of a system. If the
syvstem contains non-linearities, the standard approach is to linearize about a chosen
point or trajectory. Linear models are easier to manipulate mathematically and the
linear theory is more complete and practical than the non-linear.

(2) A white noise model is used, since the mathematics involved are simple and usable in
practical systems. In cases where the noise power level is not constant over all fre-
quencies, or in which the noise is time correlated, a white noise through a linear sys-
tem can duplicate the necessary characteristics of the noise. This system, called a

"shaping filter" is added to the overall system to obtain a system driven by white
noise again.

(3) The Gaussian property can be justified physically by the fact that system or meas-
urement noise is caused by a number of small sources and it can be shown
mathematically that when a number of independent random variables are added
together, the summed effect can be adequately described by a Gaussian probability
function, regardless of the shape of the individual densities. And since one knows, at
best, the first and second order stochastics (mean and variance) of a noise process, the
Gaussian assumption means that we can propagate in time the complete density func-
tion if we can propagate the mean and covariance.



CHAPTER 3
THE KALMAN FILTER

3.1. PROBLEM STATEMENT

We will describe the model that is used for the Kalman filter, the necessary
information needed to solve the problem and the algorithm.

3.1.1. THE MODEL DESCRIPTION

Consider the following completely observable, completely controllable, discrete,
linear, stochastic system:

X 41 = Ak x, + BI( u. + GL’ W, 31
¥ = Ckxk + Dkuk + v, 3.2

where

X is a n-state vector

u is a m-input vector

W is a r-process noise vector
¥ is a p-measurement vector

v is a p-measurement vector
and

A is a n-by-n state transition matrix
B is a n-by-m input weight matrix
G is a n-by-r process noise matrix

C is a p-by-n output weight matrix
D is a p-by-m feedthrough matrix

3.1.2. THE STATISTICAL DESCRIPTION OF THE NOISE

The noise sequences W, and v, are uncorrelated Gaussian white noises with the
following properties:
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Elw,wll= Q.8 3.3a
Elv, vjr} = R, 8§, 3.3b
Elv,1=0 3.3¢c
E{w, }=0 3.3d
E{w,v[}=0 3.3e

8., is the delta function defined 1o be 1 if k=j and O if k# j. Q, is r-by-r symmetric,
positive semidefinite matrix and R, is p-by-p symmetric. positive definite matrix.
Positive definiteness of R; implies that all components of the measurement vector are
corrupted by noise and there are no linear combinations of measurement vectors that
are noise-free.

3.1.3. THE A PRIORI INFORMATION

(Eqn. 3.1) is propagated from the initial condition x,. However, since this value
may not be known precisely a priori, it will be modeled as a random variable with a
normal distribution. X, is completely described by its mean X, and covariance Py:

Elxo} = x4 3.4a
Ef{lxo — Xollxo — X0} } = Py 3.4b

where Pj is n-by-n symmetric, positive semidefinite matrix. A singular P, means that
some initial states or linear combinations of initial states are known precisely.
Furthermore it is assumed that X, W, , Vv, are uncorrelated.

3.1.4. THE CRITERION

The Kalman filter will be derived in a Bayesian manner by generating recursive
equations to propagate in time the Gaussian conditional probability function and the
mean value for the states [MAY79), [LEE64]). Another criterion is minimization of the
mean-squared estimation error [KAL60] but this approach leads to the same results.

We now have a linear model with white noise disturbances and a priori informa-
tion, enough information for the Kalman filter to combine the measurement data with
the information provided by the system model and the statistical descrlptlon of the
uncertainties to obtain an optimal estimate of the system state.

3.2. THE ALGORITHM

We will only summarize the final algorithm, the interested reader can refer to
the numerous publications about the Kalman filter [KAL60), [KAL61], [LEE64].
[SOR8S5].

The optimal state estimate is propagated from instant k to k+1 by the relations
[BRA75]. [MAY79]:
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TIME UPDATE
Xo+in = AX By 3.5

Pivin = AP Al + G, QG] 36

Since no measurement is available, the best prediction for the mean state is what the
model predicts (eqn. 3.5). The state estimation error P, is propagated in time and
the measurement uncertainty G; Q, G/ is added. 1o obtain the prediction error Py 4y,
(eqn 3.6). At instant k+1 the measurement Y, +) becomes available. The estimate is
updated by defining the Kalman gain matrix K, 4, and using it in the following rela-
tions

MEASUREMENT UPDATE
f(k +1 = P CLalCoaiPrari Clor + Ry ™! 3.7
i&- +1/k+1 = ik w1 T K -H[Yk +s1— G +lik sk — Dy ug +1] 38

Pisin+1 = Pesie — KentCo iiPran 39

Where X; .1/ is the conditional mean of x, ., before the measurement y; ., is taken
and processed and X; .. +; is the conditional mean of X, ., after the measurement
¥ +1 has been processed. P, ., and P, .. 41 are the conditional error covariances of
X, 4, before respectively after the measurement is available.

The structure of the filter is as follows. The input to the algorithm is y; ;. the
measurement. The measurement residual r; ., is generated as the difference between
the measurement y; +; and the best prediction of it before it was taken:

Fs1 = Vi1 — CoarXesan — D _ 3.10

This residual or innovation is important in adaptive algorithms and sensor failure
detection. The residual is multiplied with an optimal weighting matrix K, +; to gen-
erate a correction term to be added to the predicted value of state X, +1/; resulting in a
corrected value X; 414 +1. The algorithm has therefore a predictor-corrector structure.

A positive definite R and a positive semidefinite Q together with:
(1) (A.C) completely observable (necessary condition).

(2) (A.W) completely controllable, with W any n-by-n matrix such that WW’ = Q
(sufficient condition).



CHAPTER 4

NUMERICAL PROBLEMS
AND
SQUARE ROOT MATRICES

4.1. INTRODUCTION

Despite the fact that the equations for solving the Kalman filter are well defined,
there are some numerical difficulties in solving the equations. The most troublesome
numerical aspect of the Kalman filter is the measurement update of the covariance
matrix.

The update formula (eqn. 3.9) :
Posve+1 = Posrne — Kis1CisrPesane 4.1
can, using (eqn. 3.7), be written as:
Piswi+1= Poowne = Posn CLaalCh i1Prsnk Cli + Re ] 'Ch i1Pr s 1k 4.2

Both equations have their own numerical difficulties. (Eqn. 4.2) involves p-by-p
inversions, where p is the dimension of the measurement vector, but (egqn. 4.1) can
involve small differences of large numbers, resulting in numerical problems on finite
wordlength computers. This is especially the case when measurements are very accu-
rate. On finite wordlength computers these numerical problems can result in a non-
positive definite result, which is a theoretical impossibility.

The update can also be written as:
Piswi+1 = 1= K 11Ci 1P +1/k 4.3

This form is. unlike (eqn. 4.2), not able to ensure positive definiteness and can addi-
tionally not preserve symmetry very well. (egn. 4.1) and (egn. 4.2) involve subtrac-
tion of two symmetric matrices whereas (eqn. 4.3) is in the form of a product of non-
symmetric matrix and a symmetric one, which does not necessarily result in a sym-
metric matrix.

The consequences of these problems in calculating covariance measurement updates
make it necessary to calculate in double precision to maintain numerical accuracy. For
on-line applications, symmetry can be used by propagating and updating only lower
or upper triangular forms of the covariance matrix. This requires only %n(n + 1)
terms instead of n 2.

Symmetry can be exploited further by using a square root covariance formulation.
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This means that the algorithm does not propagate P but P*. In case of a symmetric,
positive definite matrix P, it is always possible to find a matrix P” such that
P~P*I = P. Square root formulation either increases the numerical accuracy with a
factor of two or makes it possible to achieve the same accuracy on a computer with
half the wordlengih. The prove of this is simple. The condition number. a concept
often used 10 analyze the effect of perturbations in linear equations, of a matrix A is
defined 10 be:

k (A) = o-max/a'm'm

where @ 2. and o 2, are the maximum and minimum eigenvalues of ATA. When
computing in base 10 arithmetic with N significant digits, numerical difficulties may
be expected as k (A) approaches 10" [MAY79]. But,

k(P) = k(SS7) = [k(S)P

Therefore. while calculations on P may encounter difficulties when k (P) = 10", those
same numerical problems would arise when k (S) = 10"/2 This means that the same
numerical precision is achieved with half the wordlength.

Square root algorithms also maintain a symmetric, positive semidefinite form of the
covariance matrix. In the next section, the concept of matrix square roots is intro-
duced.

4.2. MATRIX SQUARE ROOTS

Let A be an n-by-n, symmetric, positive definite matrix. Without proof it is
assumed that there exists at least one n-by-n "square root” matrix VA, such that

AYAY = A 4.4

In fact, there are many "square root” matrices which satisfy (eqn. 4.4) and this pro-
perty will be used to take an attractive form.

By propagating the square root of the state error covariance matrix P instead of P
itself, it is impossible for P to become negative. In a scalar case this means that instead
of the variance o2, the standard deviation o is propagated. this way reducing the
numerical range by a factor of two and increasing the numerical accuracy by a factor
of two. '

To propagate the error covariance matrix P it is necessary to define the following
square root matrices

Sisk 18l ek 41 = Posrii sy 4.5a
Sc+1 Sk = Pesan 4.5b
w, Wl =Q, 4.5¢

V. Vi =R, 4.5d
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As stated before, these square roots are not uniquely defined by (eqn. 4.5a-d). but
since square root filters can be formulated in terms of general matrix square roots it is
not necessary to define the exact form of the matrices. By developing algorithms that
use and maintain special forms of square roots, it is possible to minimize storage
requirements and computation time. A speciallv attractive form is an upper or lower
triangular matrix (e.g. a matrix with all zeros above or below the diagonal). This way
only Y2n(n + 1) instead of n” variables need 10 be computed and stored. An algo-
rithm that computes a unique lower triangular, square rool matrix given a symmetric,
positive definite matrix is called the Cholesky decomposition . To take care of positive
semidefinite matrices. a row and column exchange can move the zero diagonal element
to the end of the matrix and a size reduction of the matrix will ensure positive
definiteness of this submatrix [MAY79].

4.3. THE ALGORITHM

We will use matrix square roots to calculate the numerically difficult time
update for the state error covariance matrix [AND71].
The time update equation for the error covariance matrix is:

Pivin = AcPe Al + G QuGJ 4.6
Using (eqn. 4.5b~c) this equation can also be written as
Piik = AcSenS{nAl + G, W, W/[G] 4.7

Our objective is to find a propagation equation for the square root of P; +1,; - There-
fore it is necessary to find a matrix S, 4+,,, such that S; 41/ s7, 1/ 1S equal to the right
hand side of (eqn. 4.7).

One such matrix 5‘. +1/1 1S obvious:
Se+n = [AeSep 1 G W] 48

Since S; ; is n-by-n, then S; .,/ is n-by-(n + r). This means that every timestep the
dimension of the square root matrix increases which must be rejected for being com-
putationally impractical.

But if we can find an orthonormal (n+r }-by-{n+r) transformation matrix T such that,
S; +1: T is a square root of P, 4/ . then:

Scen TTT S o1 = S Sl 4.9
This means that if it is possible to find an orthonormal matrix, such that
Si+ixT=[Scqn 10] 4.10

we have found an n-by-n square root matrix §; ,;/ that satisfies the required rela-
tionships. If in addition S, 4y, would be lower triangular, this would mean that the
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algorithm propagates a lower triangular, square root matrix.
There are two methods that generate such S; +;,; (known as triangularization algo-
rithms) : Gram-Schmidt orthonormalization and Househoulder transformation.

We can write the final result as
Scoin 10]1=1[AS; 1GWIT 4.11

The same procedure can also be applied 1o the measurement update equation for
the error covariance matrix

Pesrier = Poaae = Poainn CFoiRy vy + CoidPrs1i CLa) 7 IC iPrwiie 4.12

Since we also want to calculate the measurement update for the state vector a pro-
cedure 1o compute them simultaneously has been developed. We write (eqn. 3.8) as:

Xoewn+1 = o + MR + CoaaPeain Clat) ™ 1y 413
with M, ., defined as
Mt = Poan CLaRy 1 + CostPrsin L )™ 4.14
using (eqn. 4.14) equation (egn. 4.12) is written as
Si sk +18{sn+1 + MMy = Py 4.15

now we want to find a square root relation for the right hand side which is equal to
Sk +1/k (equ. 415)
One such matrix would be

[Sk 41k +1 | My 4] 4.16

A transformation matrix can be used to give S; 1y, +) a special form, like upper or
lower triangular. To update the state vector we need to calculate the Kalman gain
matrix K, ;. which means we need to know M, ,; and the inverse of the square root
of (Ci +1Px +1/¢ C{ +1 + Ry +1). The latter can be written as

IR, IR ) = Vi Vi + CoSevan SEe1n Sl 4.17

with IR, ;; the square root of R; 47 + Ci 41P; 414 Cl -

One such matrix IR, ,, can be written as
IR, 41 = [Visr ! CoasSivan] 4.18

Since we can choose an orthonorm transformation matrix T freely, we choose one that
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preserves the dimensions. So if we can find an orthonormal matrix T such that
IR, ., T= [IR4; | 0] 4.19

then we have found an p-by-p square root matrix IR, ;; which satisfies the desired
relationship.

Now we can combine the measurement update for the covariance matrix and for
the state vector

(Ri 41 + Ci 1P 41 CF )" 0 Vier CeSeaan

T 4.20
M, . St 41/ 41 0 S+

Now we can combine the time update (eqn. 4.11) and the measurement update (egn.
4.20) as follows

V, S,/ _ \
. CiSen—a 0 T 0 I 0
0 ASiu-1 G W, rpjerT
(R; + C. Py ,CH* 0 0
= 10 421
= 0T )

R, +CP,CH® 0 o

A M, Sive O

The T and T  are Householder transformation matrices which maintain the special

form of the covariance matrices without an increase in dimensions. The Kalman gain
matrix K, is given by:

K‘» = Ak f(k = Ak M‘ (R‘ + Ck Pk ,k_ICk )..yz 422

Note the difference between K, the Kalman gain matrix, and K, the Kalman gain
matrix multiplied by the system matrix A. In the literature the definition of the Kal-
man gain matrix can be either of these. We will use K as the Kalman gain matrix since
the algorithm provides us with it.



CHAPTER 5
ADAPTIVE FILTERING TECHNIQUES

5.1. UNKNOWN NOISE COVARIANCE MATRICES

It is not always possible to know beforehand the exact noise covariance matrices
Q and R. Therefore we can not be sure that the calculated Kalman gain matrix is
optimal. In certain cases. the use of wrong a priori statistics can lead to large estima-
tion errors or even divergence. The purpose of adaptive filtering is to reduce the errors
by adapting the Kalman filter to real data.
In PRIMAL only so called black-box models are developed. This means that there is
little or no correspondence of the models with physical properties of the system. Some
of the applications estimate the error component but not in the by Kalman required
form since transformation of these matrix fraction description models into state space
form results in a stochastic state space model with correlated w; and v, .
Since the Kalman filter is only optimal if the noise covariance matrices are known
exactly, it is important to develop methods to obtain these as accurate as possible.
Several methods have been developed among which, output correlation methods, inno-
vation correlation methods and covariance matching techniques.

5.2. SOME DEFINITIONS
The time independent, discrete time system is defined by the equations:

X1 = AX,' + Bu,' + Gw; 5.1
Cx,» + Du,~ + v; 5.2

Y

The a priori information and the noise covariance matrices are defined by (egn. 3.3-4).
Note that the time index is i instead of k&, k will be used as the lag of the autocorre-
lation. '

We use (eqn. 3.8 and egn. 4.22) to obtain:

X410 = AX;yi—1 + Bu; + K(y;, — Cx;/;—; — Du;)
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5.3. OPTIMALITY TESTING

An interesting problem of adaptive filtering is deciding whether the Kalman gain
matrix K constructed using some estimates of Q and R is close to optimal or not
(hypothesis testing).

It is sufficient for the optimality of a Kalman gain matrix that the innovation
sequence r; is white and of zero mean. The last condition is often forgotten but is of
essential importance [MAR74). There are many statistical tests for testing the white-
ness of a sequence. One suited for larger datasets will be discussed. We will use the
autocorrelation function C; to test the whiteness for a sequence.

In this method we obtain an estimate of C, , denoted as C; , by using the ergodic pro-
periy of a stationary random sequence. A process is ergodic if any statistic calculated
by averaging over all members of the ensemble of samples at a fixed time can be cal-
culated equivalently by time-averaging over any single representative member of the
ensemble, except a single member out of a set of probability zero.

~

C‘ = r; r,-T_k 53

i

1
N &,

where N is the number of sample points and k& the lag.
The estimates C; are biased for finite sample sizes:

E{é‘.}=(1—%)ck 5.4

However, it can be shown that the estimate of (eqn. 5.3) is prefered to the
corresponding unbiased estimate, since it has a lower variance.

Estimates of the normalized autocorrelation coefficients p; are obtained by dividing
the elements of C, by the appropriate elements of C,,

[ék ]ij

ClilCol;; »

los ]ij =

It can be proven that [p; J;; has an asymptotically normal distribution. Therefore, the
95 percent confidence limits for [p, ]; are = (1.96/N*).

To test the whiteness of a sequence, look at a set of values for [p;]J; (k > 0) and
check the number of times they lie outside the band = (1.96/N™). If this number is
less than 5 percent of the total, the sequence r; will be called white. This test is based
on the assumption of large N. If N is small, other tests can be used [AND51].
[HANS1].

5.4. CORRELATION METHODS

Correlation methods are used extensively in time series analysis. The basic idea is
to correlate the output of a system either directly or after a known linear operation
on it. A set of equations is derived relating system parameters to the calculated auto-
correlation functions and these equations are solved for the unknown parameters.
Two different methods can be developed considering either the autocorrelation
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function of the output y or the autocorrelation function of the innovations r. The
estimates obtained from the latter method turn out to be more efficient than the first
since innovations are less correlaied than outputs. Furthermore, the first method is
only usable if the output y is stationary or A, the system matrix, is a stable matrix.
The second method can also be used if these conditions are not satisfied. As it is neces-
sary for the whiteness test to calculate the autocorrelation functions of the innovation
sequence, the second method is preferable. Both methods assume complete controlla-
bility and observability of the system.

5.4.1. OUTPUT CORRELATION METHOD
Let C; be the kih lag autocorrelation of the output y;:
C: = Ely;y/~«) 5.6

It is assumed that the output is stationary so that the autocorrelation is only a func-
tion of the lag. An expression for C; can easily be derived from (eqn. 5.1-5.2) and
D= 0:

CPC" +R k=0
CL’ - CA‘PCT k > O 5.7
where P = E{x,x7} satisfies:
P = APA” + GQG™ 58

Combining (eqn. 5.7-8) we obtain an expression that can be solved for Q and R pro-
vided the system is observable. (Eqn. 5.7) can be written fork = 1,...n,

G
. | = HPC 5.9
C,

where H' = lAT .- (AT ] Since A is non-singular and the system is

observable, which means that rank (H) = n, the set of equations can be solved.

Solving (eqn. 5.9) for PCT,

P’ = (HH) W | . 5.10

using (eqn. 5.7) for k = 0,
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To obtain Q we must solve (eqn. 5.8) and (egn. 5.10). A unigue solution for Q cannot
be obtained. in general. Only if » € n i.e. if the dimension of the process noise vector
is equal or smaller than the dimension of the state vector, a unique solution for Q
exists. However, the optimal steadv-state Kalman filter gain K can still be determined
uniquely as follows.

Define
™= E(ix/i-liir/i—l}
from (eqn. 3.5-3.8)
Xi+yi = AX;;;—; + Bu, + Kr, 5.12

with r;. the innovation sequence, defined by (eqn. 3.10) and wu,. the deterministic
input vector.

Therefore,
7 = AmAT + KWK’ 5.13a

with
W = (CPCT +R) 5.13b

‘W is the covariance matrix of the innovation or residual sequence r;.

Use has been made of the fact that r; is white and uncorrelated 1o X;;;_;. Another
relationship for 7 can be derived from the fact that

X; = ii/i—l + e; 5.14

where the error €; has covariance M and is uncorrelated to X;,;_; because of the
orthogonality principle (the error vector contains no more information for the
estimated state vector):

E{i,‘/,’-le,’T} =0 . 5.15
Therefore,
P=7+M 5.16

Now the Kalman gain K is given by (egn. 3.7):

AMCT w! 5.17
AP - 7)CT(Cy — CnCT)™?

K
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substituting for K in (eqn. 5.13a-b),
7= Alm + (P — 7)C" (C. — CnC" )IC(P — w)]AT 5.18

which can be solved since PC’ is known from (egn. 5.10).
Then K is obtained from (egn. 5.17).

We have now derived all the equations necessary to calculate Q. R and K from

the autocorrelations Cy. - - - .C,, . The autocorrelations are estimated as:
e N r
G = ZYiyi-L 519
=4

where N is defined to be the sample size.

It can be shown that the estimates ék are asymptotically normal and unbiased.
Since Q and R are linearly related to C, . their estimates are also assymptotically nor-
mal and unbiased. Similarly, the estimate of K is assymptotically unbiased. This
method is extensively discussed in [MEH70]. The estimates for the Kalman gain
matrix and the noise matrices can be improved until the Kalman filter behaves
optimal, as tested with the in section 5.3 developed method.

5.4.2. INNOVATION CORRELATION METHOD

From the theory of Kalman filtering it is known that the innovation sequence :

r =y - Ci,'/,‘-l - Du,- = Ce,- + v; 5.20a

with e; defined as:

€ =X, — i,'/,'_l 5.20b

is a zero mean, Gaussian white noise sequence for an optimal filter. However, for a
suboptimal filter, the innovation sequence is correlated as will be shown below.

Let
T, = Elrir]_ )
substituting from (eqn. 5.20a) and considering k > 0,

I, = E{(Ce; + v;XCei—p + vi )}
= CE{e,- el‘r_‘- }CT‘FCE {e,' v,'T_k } 5.21

since for (k > 0), v, is independent of v;,_, and e, _; .
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and fork = 0,
Ir,=CMC +R

The expectation terms in (eqn. 5.21) can be evaluated by writing the difference equa-
tion for e,. We assume that the filter uses a suboptimal a priori gain K

e, = A(I- K,Cle,_, + AK,v,_; + Gw,_, 5.22

repeating this k steps backwards,

~ S - -
e, = [AU-KOle_, — X IAT- KOV 'AKyv,_;

Jj=1
& ~ .
+ Y [A0 - KO ~'Gw,_; 5.23
i=1

Therefore,

Ele;el_ ) = [AQ - K,O)FM, 5.24a
where

E{eieir} =M,

E{V"—je.'.-k}:(), j=1..k
Elw,_;e;_,}=0. j=1..k

because of the fact that the system is causal. M; is the state error covariance matrix
belonging to the suboptimal filter with Kalman gain K.

similarly.
Elevi ) = —[AU - K,O)F 'AKR 5.24b

since u; and v; are uncorrelated white noise sequences.
Substituting (eqn. 5.24a-b) in (egn. 5.21).

r, = CIAQ - KO)¥F 1AM, - ﬁoro) 5.25

For an optimal filter,
K = MCT (CMC” + R)™! 5.26

so that I'; disappears for k& > 0. When there are uncertainties in Q and R, the calcu-
lated covariance M, will be different from the true covariance M, and the filter gain
K, will be suboptimal. Therefore, I'; will not be zero and the optimal gain K and the
covariances Q and R can be obtained as follows:
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(1) Obtain M,C’ by solving (eqn. 5.25) fork = 1, - n.

T, + CAKJI(
I, + CAK,T, + CA’K,T,
M,C’ = (HTH)"'H : 5.27

T, + CAR,T,_, + - CA*K,T,

where H is defined in (egn. 5.9).
(2) Calculate R using T'y and M,CT .

R=T,—CMC) 5.28
(3) Define M to be the error covariance associated with optimal gain matrix K:
M= A(M - KCM)A” + GQG’ 5.29
An equation for M is derived from (eqn. 5.17) :
M,; = A[M, — KCM, — M,CTK{ + Ko(CM;C7 + R)KJIAT + GQGT 5.30
subtracting (eqn. 5.30) from (eqn. 5.29) and defining SM = M — M;:

SM = A[SM — (M,C7 + 8MC7 )(C, + CSMCT )" }(CM,; + C3M)
+ K,CM, + M,CTKZ — K, (KJ]AT 5.31

The optimal gain K can using (eqn. 5.26) be written as
K = (M,C7 + 8MCT (T, + CSMCT )1 5.32

Steps (2) and (3) can be repeated until 18M;; or IK; — K;_;| becomes small com-
pared to IM; { or IK; |, where i.| denotes a suitable matrix norm. Another procedure
would be to filter the available data y; using the new K and to repeat the whole pro-
cedure. , .
Solving (eqn. 5.31) for 8M by using M;C’ from (egn. 5.27), the optimal gain K can
be obtained from (eqn. 5.32). In actual practice, if a batch of observations y; is avail-
able, these calculations might be repeated to improve the estimates. The innovation
sequence r; will become more white each iteration, resulting in better estimates for
the autocorrelations I'yI'y - - -, and therefore for R and K. The estimate for Q can be
obtained from (eqn. 5.30) but is only then uniquely defined if the dimension of the
state noise vector r is equal or smaller than the dimension of the state vector n. Also
for this method it can be proved that the estimates are asymptotically unbiased.

The efficiency of the correlation methods may be improved by using higher order
correlations, i.e.. k > n to estimate PCT or M;C’ . Moreover, the two methods can be
combined by using the output correlation method as a start-up procedure since it does
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not require any a priori estimates of Q and R or K. This method is discussed in
[MEH70].

(Egn. 5.31) requires the solution of a Lvapunov-type matrix equation for every itera-
tion. A method that only requires matrix multiplications and is more stable than the
here presented method is developed by Carew c.s. [CAR73]. For convenience, we only
present the final results of the algorithm.

We define the following covariance matrix:
X = El(X, 41 — X 41 X4y — X,"+1/i)r} 5.33

Where X, is the optimal linear estimate of x; and X;/;_; the suboptimal estimate of
X;;i—1- For the optimal filter X' = O and K, . the suboptimal Kalman gain matrix
converges 10 K.

and we define W to be :
W=CPC’ +R 5.34

the covariance matrix of the innovation sequence

Initially, Q and R are assigned the values Q¢ and R,. Using these values a Kalman
filter is designed from which the suboptimal steady-state filter gain K, is obtained.
The first step is to obtain estimates for the autocorrelation functions of the innovation
sequence of the suboptimal filter C, .k = (0.1.2,...,n ). Using K, and the autocorrela-
tion functions, estimates X, W and K are obtained using the following formulas:

W, = C, — CX,, C7 5.35
K, = (FIG — AX,,CT)W;! 5.36
X1 = (A= KOX,,(A—-KCY +(Ky— K)W,, (Ko — K, )T 5.37

with m an iteration index and F¥ is defined by:
Ft = (FFF)Y'F
the generalized inverse of F. and F is the system observability matrix of rank n.

F=|[(CT 1ATCT | - 1 (AT~ T
and G by :

C, + CK.Co
C; + CK.C, + CAK.C,

C, + CKoC,_; + -+ + CA""IK.Co
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A simple choice for X, is the null matrix. This is further justified by the fact that
X' = 0 if K, happens to be the optimal Kalman gain matrix. The iterative scheme
(egn. 5.35-37) converges uniquely to the optimal gain K if the autocorrelation func-
tions are accurate. However, the finiteness of the sample size and other experimental
and round-off errors, introduce errors in the autocorrelations. This sets a limit on the
accuracy with which K can be delermined.

5.5. COVARIANCE MATCHING TECHNIQUES

The basic idea behind the covariance matching techniques is to make the residu-
als consistent with their theoretical covariances. For example, consider the innovation
sequence r;, which has a theoretical covariance of (CP;;;-;C” + R). If it is noticed
that the actual covariance is much larger than the theoretical value obtained from the
Kalman filter. then the process noise Q should be increased. This has the effect of
increasing P;,,_; and bringing the actual covariance of r; closer to the theoretical
value.

One method that adaptively estimates the a priori statistics is given by Myers
[MYE76]. He also uses the innovation sequence to adapt the noise covariance matrices.

I, =Y —CxXppm 5.38

Consider a sample dataset consisting of N measurements. The covariance matrix of r;
is given by:

Cov(r;)= Ellys = Cx4p-1)¥x — Cx42-1)"] 5.39

An unbiased estimator for the covariance matrix of r; is:

§
Cov(r,) = ﬁz r; ro 5.40

j=1
It can be shown that the expected value of this quantity is :
Cov(r;)= CP°C" +R : 5.41

The following estimate of R can be obtained by using (eqn. 5.40) and (eqn. 5.41) :
. 1 & T _ cpecT
R= Z r.r, — C 5.42
N-1 /5,

P* is the a priori covariance matrix of the state. This means that it is the steady state
value of P, 41/ . (Eqn. 5.42) is of the same type as (eqn. 5.28) except that P* is
obtained from the Kalman filter. In certain applications where Q is known, this has
shown to be a good approximation. However convergence of covariance matching tech-
niques is doubtful.



Adaptive filiering techniques 510

The same can be done for the noise covariance matrix Q. The state relation is :
X 43 = A.Xk + GW‘ 5.43

The true siates X, 43 and X; are unknown, so W, can nol be determined. bul an
approximation for w; is:

Q+1 = Xpvie — AXppp—y 5.44

where q; is defined as the state noise sample at instant k. If q; is assumed to be
representative of Gw, then it may be considered independent and identically distri-
buted. An unbiased estimator for the noise covariance matrix GQG’ is :

1 N

Another estimator for the covariance matrix is:

Cov(q) = A[P* — K*C P°JA” + GQG’ 5.46

A A A

again an estimator for the noise covariance matrix GQG’ can be found by:

~ A A Ay
T o ﬁ 3 q,q7 — A[P® — K*CP>1A7 5.47

i=1

(Eqn. 5.47) does not give a unique solution for Q if G is of rank less than n.
(Eqn. 5.41) is an approximation since P does not represent the actual covariance since
the actual values of Q and R are unknown.

5.6. SOME CONSIDERATIONS

It is obvious that the noise covariance matrices R and Q may become negative
definite in numerical applications, especially when a small amount of data has been
processed. Therefore, the diagonal elements of R and Q are always reset to the abso-
lute value of their estimates. During filter initialization, the noise matrices are poor
indicators of the noise, especially since only the steady state values K* and P* are
used. This requires a fading memory approach in which successive samples are multi-
plied by a weight factor given by : '

wy = (k — 1)k — 2)..(k — B)/k?" 5.48

which has the property that it converges to 1 as k approaches o and that the use of
invalid noise samples is delayed for the first B stages.

Several other methods are proposed but convergence of covariance matching tech-
niques has never been proved. In this case it is also not always possible to find Q
unless the number of unknowns is restricted so that r £ n e.g., the dimension of the
state vector is equal or larger than the dimension of the state-noise vector.
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The innovation correlation methods seem to be the most promising methods for
adapting the Kalman filter since the autocorrelation have already been calculated to
test the optimality for the Kalman filter. And since the method developed by Carew
(egn. 5.35-37) involves no Lvapunov type of equations. this one has a better numeri-
cal behaviour than the method developed by Mehra (egn. 5.27-5.29) [CAR73]. Output
correlation methods are restricied to stationary outpuils or a stable A but do not
require initial estimates for Q. R and K and could be considered as start-up methods.
Covariance methods seem simple and straightforward but since they use incorrect
state error covariance matrices their convergence is doubtful. Numerical problems can
be prevented by using square root formulations.



CHAPTER 6
OPTIMAL CONTROL

6.1. WHY OPTIMAL CONTROL?

For single-input, single output (SISO) systems it is possible to design a compen-
sator which places the closed-loop poles wherever the designer wants them to be.
Since the closed-loop poles determine the speed (bandwidth) and the damping of the
response, why should we want to develop new mathematic tools? There are several
good reasons for that [FRI86].

The first reason for seeking an optimal controller is that for multi-input, multi-
output (MIMO) systems. the pole placement technique does not completely specify
the controller gains. When we have a nth-order system with m inputs and all states
accessible, a controller has, in the case of state feedback, nm parameters to determine,
but only n closed-loop pole locations. This means that there are an infinite number of
ways to obtain the same closed-loop pole locations. From a practical viewpoint, the
fact that there are more adjustable parameters than needed to achieve the desired
closed- loop pole location, is a great opportunity since other things can be accom-
plished besides placing the closed-loop poles but which one is the best? By choosing a
control law to optimize a, yet to be specified, performance criterion, the designer can
choose one possibility out of an infinite number.

Another reason for seeking an optimal controller is that the designer may not
know the desirable closed-loop pole locations. Choosing poles far from the origin, in
the s-domain, may give very fast responses but require control signals that are too
large too be produced by the available power source. Too large input signals will lead
to saturation and a behaviour of the system that can not be modeled by the same
linear model. To avoid these problems it is often necessary to limit the speed of
response to that which can be achieved without saturation of the input signals.
Another reason is that high-gain systems are typically accompagnied by noise prob-
lems that the designer may want 1o avoid.

6.2. FORMULATION OF THE OPTIMAL CONTROL PROBLEM

The object of optimal control is to specify an input vector w; which drives a
system to a specified target state in such a way that, during the process. a defined "cost
function’ is minimized.
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6.2.1. LINEAR OPTIMAL QUADRATIC GAUSSIAN CONTROL

Optimal contro! is in no way limited to linear sysiems but when a linear qua-
dratic cost function is specified for a time independent linear system. optimal control
strategy results in a particular case of pole shifting by state feedback. If the sysiem is
corrupted by Gaussian white noise processes. the control routine is called LQG (Linear
Quadratic Gaussian) [FRI186].

Consider the following time independent system:

X, 41 = Axk + Buk + ka 6.1
ka + Duk + A 6.2

il

Y

A linear quadratic cost function is defined:

J = E{Y IX[Ex; +2u/Gx; + u/Fu, ]} 6.3

k=0

where E is a positive semidefinite symmetric (n-by-n) matrix and F a positive definite
symmetric (m-by-m) matrix. G is a positive semidefinite (m-by-n) matrix which is
normally set to zero unless we want to minimize the output as follows:

J=E{Lyiw} 6.4

£=0
In this case E= C'C,F = D'Dand G = D’ C. with y; given by (eqn. 6.2).

The E matrix can be used to specify a trajectory the state vector has to follow
and is often called state weighting matrix. The matrix F can be used to put limits on
the input vector u; and is often called control weighting matrix.

The problem is to find an input u; which drives the state from X, to X, with
minimal J. The solution to this problem is found to be :

where

L=-(BPB+F)"YA’PB+ G’ ) 6.6

and P is the (n-by-n) matrix solution of the algebraic Riccati equation:
P=A"PA—- (A’TPB+ G’ )(B'PB+ F)"(A’PB+ G’ ) +E 6.7

with X, ,; —; the optimal prediction of the state obtained by the Kalman filter. The
power of the LQG problem lies in the fact that it can be divided into two separate
problems: obtaining an optimal prediction of the state of a stochastic system using a
Kalman filter, and obtaining an optimal feedback for a deterministic system with a
predicted state (separation principle) [KWA72]. Figure 6.1 shows how the separation
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principle divides the LQG-algorithm into two separate problems.
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Fig. 6.1
The separation principle.

The fact that the required trajectory must be expressed in terms of x” Ex places con-
siderable limitations on the trajectories which can be specified. Furthermore, the mere
fact that a trajectory can be specified this way is no guarantee that the optimal control
can achieve i1, the cost function J is merely minimized, not necessarily brought to
zero.

Furthermore, the designer is left with the selection of the weighting matrices E
and F. but often minimization of (egn 6.3) is not the true design objective. The prob-
lem is that the true design objective often cannot be expressed in mathematical terms.
Formulating the design objective in the form of a quadratic sum is a practical
compromise between formulating a real problem that cannot be solved and formulat-
ing a maybe somewhat artificial problem that can be solved easily.

Since the relationship between the weighting matrices E and F and the dynamic
behaviour of the closed-loop system are quite complex, it is impossible to predict the
effect on closed-loop behaviour of a given pair of weighting matrices. A suitable
approach for a designer would be to solve for a range of E and F matrices and to cal-
culate the corresponding closed-loop behaviour. With the here presented software this
would take a few hours of time, depending on the number of inputs and outputs and
states.

6.2.2. MINIMUM VARIANCE CONTROL STRATEGY

It can be shown that the LQG approach leads to a minimum variance control
strategy [GOO84). The importance of minimum variance control is that by reducing
the variance of a given variable, the set point, y , can be put at a higher value while
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still ensuring that a certain proportion of the output meets a given acceplance cri-
terion. This can lead to greater throughput or reduced costs. This is illustrated in
figure 6.2.

Distribution

of A

output

Distribution with
minimum variance control

Set point Set point Output
without with
control minimum
variance
control
Fig. 6.2

The importance of minimum variance controllers

6.3. THE ALGORITHM

The algorithm used to solve the algebraic Riccati equation, has been derived by P.
van Dooren [DOO81]. The algorithm basically solves a generalized eigenvalue problem:

Mx = ANx 6.8
where N is not necessarily invertible but where the pencil AN — M is regular. i.e.,
detAON - M) # 0 6.9

It can be shown that solving (eqn. 6.7) (with G = 0 ) is equivalent to solving for the
“stable” deflating subspace of the pencil:

1 BF B/ A O
A - 6.10
0 AT d O |

where the stable eigenvalues are those inside the unit circle. The "stable” deflating sub-
space is the subspace spanned by the eigenvectors of (eqn. 6.10) that correspond to
stable eigenvalues. (Eqn. 6.10) is better known as the Euler-Lagrange equation
[DAMS86], [KWA72]. The solution is found by obtaining the stable eigenvalues and
eigenvectors.
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To avoid matrix inversions, (eqn. 6.10) can be rewritten as [DOO81}:

1 0 0 A 0 -B
A O AT Of- |-ET 0O 6.11
OB O 0 0 F

The algorithm has 5 stages:

Orthogonal row transformations will transform the (2n+p)-by-(2n+p) matrices
of (egn. 6.11) into 2n-by-2n matrices given by (eqn. 6.10).

M is reduced to upper Hessenberg form by a Householder reduction and at the
same time N is transformed to upper triangular form.

A double shift QR algorithm is used to reduce M to quasi-triangular form with
no 1wo consecutive subdiagonal elements nonzero while maintaining the triangu-
lar form of N. The eigenvalues are extracted and reordered into stable and
unstable ones.

The n-by-2n eigenvectors are obtained from M and N and are transformed back
to the original coordinate system to form the following stable basis for the
deflating pencil:

X,
6.12
X,
The n-by-n P can be obtained from (eqn. 6.12) :
P= X,X[! 6.13

This method is better known as the solution by diagonalization as described in

[DAMS3]. The actual algorithm is a numerical stable implementation of this method
[DOO081], [MOL73]). A small change in the matrices of (eqn. 6.11) makes it possible to
solve also for G 0. The controller provides an asymptotically stable closed-loop sys-
tem if E is posive semidefinite, F positive definite and [KWA72]:

(1)

(2)

6.4.

(A B) either completely controllable or stabilizable by state feedback (necessary
condition). :

(A.V) completely observable with V any n-by-n matrix that satisfies VV/ = E
(sufficient condition).

THE EFFECT OF INACCURATE NOISE MATRICES

A simple, scalar problem will be used to show the effect of using the right values

for the noise matrices Q and R in the Kalman filter.
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Consider the following system:

X141 = 0.8 x; + 0.5 u + wy

M=oty
with:

Elw, )= E{v;}=0
E{Wk2}= E{Vk2}= 1

and

E{XO} = 10
E{(xo— E{xo)?= 0.1

If the functional to be minimized is:

99
J = E{l/ﬁ Z (xk2+uk2)}

k=0

the resulting value of J is 405.

6.6

6.13a
6.13b

If however the erroneous value E{w,;?} = 0.1 is used, the resulting functional obtains

the value 412 [QLC83].

A comparison of these two values shows the degradation of the sub-optimal filter.



CHAPTER 7

DISCUSSION
OF THE
RESULTS

7.1. INTRODUCTION

PRIMAL (Package for Real time Interactive Modeling Analysis and Learning) is a
sof tware package developed at the Physics department, section Control and Measurement,
of the Technical Universtity of Eindhoven. This package enables a user to obtain, interac-
tively, "raw” data from a process. PRIMAL presents the user with modules for data condi-
tioning, model estimation, model validation and model simulation. But the lack of control
modules was considered a serious problem by the users of PRIMAL. Therefore a LQG-
module has been implemented, although the work has been focused on state estimation
using a Kalman filter. For this reason, four PRIMAL modules have been written that can
be used to design and test a Kalman filter for a stochastic state space model. Together with
an optimal feedback matrix, calculated by a fifth module, they implement an optimal con-
trol strategy.

The first module, KALSIM [MEU88a], simulates a stochastic state space model of the
form (5.1-2) with specified Q. R and initial xq, Py.

X, 41 T A.xk +Buk +GWL

This module has been developed because SIMSYS (a state-space simulator in PRIMAL)
does not provide means to simulate a state-space system with specified noise covariance
matrices for the state and output vector.

The module simulates the noise corrupted state and output vectors as a function of time
with their mean and noise covariance matrices. To test if the simulation is consistent with
the specified variances. the 95 % limits for the observations of the state and output vector
are calculated as well as the amount that is "out of bound", which should not exceed the
limit of 5 % [MEU88a]. If the number of "out of bound" exceeds 5 %. the user may specify
different seeds for the random number generator and rerun the simulation. KALSIM pro-
duces an output dataset which contains the simulated state vector and simulated output
vector, together with their 95 % limits. As an example, figures 7.1a-b show the simulated
vectors and their bounds for a SISO system.
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Fig. 7.1a
The simulated state vector and the 95 % bounds
as function of the time index k.
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Fig. 7.1b

The simulated output vector and the 95 % bounds
as function of the time index k.

The second module is the Kalman filter KALMAN [MEU88b] which calculates the
steady-state Kalman filter, given a linear stochastic state space model and the state and
measurement noise covariance matrices Q and R. It calculates the steady-state covariance
matrix P, the steady-state Kalman gain matrix K and the covariance matrix of the innova-
tion vector W using a square root algorithm. The calculations are repeated recursively
until steady-state is reached and the module keeps track of the convergence history.
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Figures 7.2a-b illustrate the convergence history of the state error covariance matrix P and
the Kalman gain matrix K as produced by KALMAN for a MIMO system.

xPig APR1 vP2
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Fig. 7.2a
The state error covariance matrix.
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Fig. 7.2b

The Kalman gain matrix.

The third module KALEST [MEU88c] uses the computed Kalman filter and the simu-
lated data 1o estimate the state vector. KALEST calculates the state vector and the innova-
tion vector with their corresponding variances. The innovation covariance may be com-
pared with the estimate computed by KALMAN. The module calculates the 95 % limits
for the state and innovation vector and the number of observations outside these limits.
As an example of the data presented to the user, figures 7.3a-b show the state vector, the
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innovation vector and the 95 % limits.
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2 4 h II I
|
0 I {
i i
_a J .
L ‘ l '
-4 |
{ T 1 ] L)
0 100 200 300 400
Fig. 7.3a
The state error vector with the 95 % bounds
as function of the time index k.
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Fig. 7.3b
The innovation vector with the 95 % bounds
as function of the time index k.

3
-
-

The 95 % bounds are calculated using the, by KALMAN, computed covariance matrices for
the state error P and the innovations W:

—1.96 \/iii < [x‘. - XZ], < 1.96 \/Fii
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with X the "truth” vector (calculated by KALSIM).

_196 -\/ R,’, < [rk ],‘ < 1.96 '\/Wii

where k is the time index and i the i-th element of a vector and ii the i-th diagonal ele-
ment of a matrix.

5 percent of the observations are allowed to lie outside these limits. This is only valid in
case of Gaussian white noise.

The fourth module WTEST [MFUS8d] is a whiteness test module. It tests if a
sequence T; is zero mean white noise by looking at the sample mean (should be less than a
certain bound) and the correlation function (less than 5 % of the correlation values should
lie outside the corresponding bounds). Figure 7.4 shows the normalized correlation
coefficient p; and the 95 % bounds as function of the lag k.

X INNOV4 AUPLIN wLOLIM
0.05
0.00 ' 1 J
l'
-0.058 J
I " dr A . or
-0.10
T i ] T T
0 s0 100 150 200
Fig. 7.4

The normalized correlation function and the 95 % bounds
as function of the lag.

The 95 % confidence interval is constructed using the fact that the normalized correlation
coefficient is normally distributed for a large number of lags and has zero mean and
covariance 1/N . Therefore,

-1.96 /YN < p, <196 /VN

where N is the number of samples used. Thus only 5 % of the normalized sample covari-
ances are allowed to exceed this bound for the sequence to be called statistically white.
The bound for the sample mean is obtained by a statistical hypothesis test given by:

HO: E{r, 1= 0
Hl: E{r,}= 0

The test is implemented at the 0.05 significance level (95 %) with the threshold. called
bound mean, calculated using the sample mean estimator for E{r, } :
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1.96 fcov (x; /N

with N the number of samples and cov the covariance. The calculated mean should be
smaller than the threshold.

Together these 4 routines (KALSIM, KALMAN, KALEST, WTEST) form the state estima-
tion modules. They can be used to design a Kalman filter and test its performance.

The Kalman filter is functioning optimally when:
(1) The innovations are zero mean, white noise (calculated by WTEST).
(2) Less than 5 % of the observations for the innovations are "out of bound".

(3) The, by KALMAN, calculated variance of the innovation vector is equal to the, by
KALEST., observed variance.

These 3 criteria will be used in the next sections to check the Kalman filter performance.

If the innovations are white noise and zero mean, but there is an inconsistency
between the estimated and calculated variance of the innovations, the Kalman filter can
still be functioning close to optimum, depending on the actual values for Q and R. Sections
7.4-6 will treat the influence of the value Q/R on the behaviour of the optimal filter and
suboptimal filters.

A fifth module RIC has been developed that calculates the steady-state optimal feed-
back matrix L for a stochastic state space system. The module solves the steady-state Ric-
cati equation using the in chapter 6 described algorithm [MEU88e]. This module forms,
together with the Kalman filter, a LQG- algorithm.
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7.2. A PRACTICAL EXAMPLE

In reality we ofien do not have exact knowledge about the syvstem and the noise
covariance matrices. All uncertainties will be condensed into Q and R. To show this we
have used the following SIS() model with a 1-dimensional state vector:

X 41 = 0.97 Xy + u; + wy 7.1a

Vi 2 Xy + Vi 7'1b
withQ = le—3 and R = 1.0.

We have used the stochastic state space simulator KALSIM 1o simulate this system.
Figure 7.5 shows the impulse respones of the simulated system.

xYi
1.5
1.0 .
0.5 .
0.0
1 L L 4 L}
0 10 20 20 40
Fig. 7.5

The impulse response for the simulated system
as function of the time-index k.

The calculated input and output vectors are used by MARKOV [LIN87] to estimate the
impulse response of the system. HANKEL (a realization algorithm that converts the
impulse response into a state space system) is used to obtain the following state space sys-
tem [GER88]: '

Xi4+1 & 0.9645 X, = 1.42 U 72a
Yy = —1.41 Xt 7-2b
by using a state vector transformation x; = Tx; and 7 = —1/1.42, we obtain the follow-

ing. equivalent system:
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fk +1 = 0.9645 XA‘ +uk 7.3a
2.00 y, 7.3b

Y

The by MARKOV calculated impulse response (M11) and the fit by HANKEL (MR11) are
shown in figure 7.6 (note the difference with fig. 7.5. MR11 decreases faster than the origi-
nal response):

xMALL ANty

0 10 20 30 40

Fig. 7.6
The calculated and fitted impulse response
as function of the time-index k.

Using the Kalman filter module KALMAN, a Kalman filter is designed for the state
space model (eqn. 7.2a-b) and Q = 1l.e—3 and R = 1.. After 104 iterations, the Kalman
gain reaches steady-state.

The value of P, K and W are:

P K w

1.11e-2  -1.49e-2 1.02

Table 7.1
Results from KALMAN for the SISO-system (7.2).

The calculated Kalman gain is used by KALEST to estimate the state and innovation vec-
tor. The results for the innovation vector are presented in table 7.2:
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out estimated calculated
of bound variance variance
43=8.6% 1.02 1.25
Table 7.2

Results from KALEST for the SISO-system (7.2).

KALEST shows that more than 5 percent of the innovation vector is "out of bound” and
the calculated variance is higher than the estimated one. The residuals clearly show a

dynamic component (fig. 7.7):
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Fig. 7.7

The residuals and the 5 % limits as function of the time-instant k.

We use WTEST to see what might be the cause of this. The sample mean, the bound mean
and the number of correlation values that are out of bound are presented in table 7.3:

sample bound out
mean mean of bound

0.14 0.098 70=28.1%

Table 7.3
Results from WTEST for the SISO-system (7.2).

From table 7.3 it is obvious that the innovation vector is neither zero mean nor white
noise. This can be explained better when we look at the correlation function (fig. 7.8). We
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can clearly observe a coloured noise component in the correlation function. This is caused

by the difference between the real system matrix (0.97) and the HANKEL estimated sys-
tem matrix (0.9645).

3 INNOV1L AUPLIM VLOLIM

50 100 150 200

(-

Fig. 7.8
The correlation function versus lag.

We will use the in chapter 5 developed techniques to adapt Q and R, using the values
of the calculated correlation function, Cy and C,. The necessary values of the correlation
function are found to be (table 7.4 ):

Co C scale factor

1 0.168 1.25

Table 7.4
The first two values of the correlation function obtained from WTEST.

The values have been normalized by dividing them by the scale factor.

Using (eqn. 5.27-28) we obtain Q = 1.32¢—2 and R = 1.00. Compare these values
with the original values Q = 1.e—3 and R = 1.00. The extra uncertainty, introduced by
MARKOV and HANKEL in the system matrix is added to the existing state noise.
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We design a new Kalman filter using the adapted values (table 7.5):

7.13e-2 -8.47e-2 1.15

Table 7.5
Results from KALMAN for adapted SISO-system

To check if these values are optimal we use KALEST to estimate the state and innovation
vector with the following results:

out estimated calculated
of bound variance variance
4.4% 1.15 1.12
Table 7.6

The results from KALEST for the system with adapted noise matrices

From table 7.6 can be concluded that less than 5 percent is out of bound and the calcu-
lated variance is close to the estimated one. The innovation sequence looks better, the
dynamic component has disappeared (fig. 7.9).

xYLO4 4 INNOVY vYUPL
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Fig. 7.9
The residuals and the 5 % limits as function of the time-instarnu k.

To check the innovation vector on being zero mean white noise, we use WTEST which
gives the following results:
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sample bound out
mean mean of bound

0.048 0.093 8=3.21%

Table 7.7
The results from WTEST using the system with adapted noise matrices

The innovation vector is zero mean and white noise. The Kalman filter is optimal. The
resulting values of the correlation function as function of the lag for the optimal filter are
clearly better (fig. 7.10):
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Fig. 7.10

The correlation functions versus lag for the optimal filter

This simple example shows the importance of adaptive filtering techniques for the
noise covariance matrices. In this simple case, one iteration is enough to obtain an optimal
filter. For MIMO systems the number of iterations can be larger and the calculations for
obtaining a new estimate are more difficult, but the profit is not only a better estimate, but
also better control when using an LQG algorithm. This shows that serious attention should
be given to the development of adaptive filtering routines before elaborating on the control
routines.
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7.3. KALMAN FILTER PERFORMANCE

For a simple SISO-system. the steady-state Kalman gain matrix K. the steady-state
covariance matrix P and the number of iterations necessary to reach steady state are calcu-
lated for different values of Q/R. Also the influence of a varying P, is discussed. The
steady-slate solution is computed with a relative error smaller than 1.e-3.

We use the following system:

Xp 41 = 0.76 Xy +W"

M= 2x +wy
The results are ordered in tables 7.8a-b
Q 0.1 1.0 2.0 5.0 10.0
Iteration 12 6 6 5 5
P 0.155 | 1.19 2.13 5.14 10.1
K 0.146 | 0.311 | 0.340 | 0.362 0.371
Table 7.8a

Effects of variations in Q. (with R = 1).

R 0.1 1.0 2.0 5.0 10.0
Iteration 4 6 6 8 10
P 2.01 2.13 2.24 2.48 2.76
K 0.375 | 0.340 | 0.311 | 0.253 | 0.199
Table 7.8b

Effects of variations in R, (with Q = 2).

From tables 7.8a-b it is clear that increasing Q or decreasing R leads to a larger Kalman
gain K. And that decreasing Q or increasing R leads to a smaller K. This means that when
the system noise becomes larger, relative to the measurement noise, the difference between
the calculated and realized measurement is weighted heavier. And that when the system
noise becomes smaller, relative to the measurement noise, the model is trusted more.
Increasing Q and/or R leads to a larger covariance matrix P and decreasing Q and/or R
leads 10 a smaller P. More uncertainty in the system leads to more uncertainty in the esti-
mate.

The number of iterations necessary to reach steady-state with a relative error of 1l.e-5
decreases when Q increases or when R decreases. The algorithm depends less on the model
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and since the model has a slow impulse response this means that steady-state is reached
faster.

When the ratio Q/R remains the same (Q = 2 in table 7.8a and R = 1 in table 7.8b), the
Kalman gain matrix K remains the same. Q/R will be shown 1o be the relevant factor for
the value of the Kalman gain matrix.

It can be shown that the steady-state filter gain K,

for a slightly more general system (1 input, 1 output, 1 state) :

X1 = ax +w

e =2x +vy

can be written as:

TN —
K= %{'\/(Q/R)z + —(—“—-R-l—- + Q/R+%(a? — 1)Q/R+%—ll - Q/R}

K evidently only depends on the ratio Q/R. It can be proven that also for MIMO systems,
K is determined only by Q/R.

What is the influence of increasing the initial covariance matrix Py on the staedy-state
solutions? Since P, enters in no formula for the steady-state solution for P and K, a
different Py will result in a different magnitude for the transient characteristic, but the
steady-state conditions are unaffected. The length of the start-up period depends on the
system matrix A and the initial covariance matrix P,

This SISO system is only a very simple example. MIMO systems are more compli-
cated. The SISO system is only used to show the influence of certain parameters on the
behaviour of the steady state Kalman filter gain and the steady state covariance matrix.
This behaviour explains a lot about how a Kalman filter basically behaves.

7.4. SUBOPTIMAL FILTERING

In this section, the developed modules will be used to test the optimality of the Kal-
man filter with variations in Q and R. Since we do not always know beforehand the exact
values of the noise covariance matrices Q and R, it is important to know how to extract
from the results presented to the user by KALSIM, KALEST and WTEST, the necessary
information 10 determine if the Kalman filter is optimal. Optimality is easy to test. the
innovations have to be zero mean white noise with a variance equal to the by Kalman
predicted variance. It will be shown that it is very difficult to interpret the presented
results when a Kalman filter functions suboptimally. Sometimes the Kalman filter is
functioning as if it is an optimal filter, the innovations are zero mean, but the estimated
and calculated variances do not agree. How should this be interpreted?

We have used the same system and the same a priori information to simulate 3 systems,
one with large measurement noise, one with equal staie and measurement noise and one
with large state noise.

We have calculated the Kalman filter for the exact Q. and R and for 4 cases in which Q or
R are varied. resulting in a suboptimal filter.
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Xl 41 = 0.97 Xy + U, + wy

M= 2x tw

With the following a priori information:

P(,= 1.8—12
XO= 2.5

7.15

7.5a
7.5b

The simulation uses 500 samples. This means that the autocorrelation function is calcu-
lated (by WTEST) for 250 lags. KALEST uses all 500 samples to calculate the bounds and
the number of observations that are "out of bound". WTEST uses 250 lags of the auto-

correlation function to calculate the number of observations that are "out of bound".

7.5. LARGE MEASUREMENT NOISE, SMALL STATE NOISE

In the first case the measurement noise is large compared 1o the state noise.

Q= le—4
R =4

This is an extreme case of a system with very little state noise compared to the output

noise.

7.5.1. KALMAN FILTER

The Kalman filter for the five different cases is calculated by KALMAN. The results
are collected in table 7.9:

CASE Q R P K A

1 le-4 4 1.64e-3 | 7.98¢-4 | 4.01
2 l.e-4 40 | 1.69e-3 | 8.18e-5 | 40.0

3 le-4 | 05 1.43e-3 | 5.50e-3 0.51
4 l.e-1 4 3.37e-1 | 1.22e-1 5.35

5 1.e-8 4 1.69¢-7 | 8.21e-8 4.00

Table 7.9
Results from the Kalman filter module KALMAN.
Large measurement noise, small state noise.
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P is the steady-state covariance matrix, K the steady state Kalman gain matrix and W the
steady-state covariance matrix of the innovation or residual sequence r;, all predicted by
KALMAN.

As can be seen from table 7.9, case 1 uses the exact values for Q and R. In case 2-3 R is
varied. in case 4-5 Q. In case 3-4 Q/R is larger than the optimal value in case 2-5 smaller.
It can be observed that W is very sensitive 1o the value of R and relatively unsensitive to
variations in Q, P is more sensitive to variations in Q than to variations in R. The Kalman
gain matrix is very sensilive to variation in both Q and R.

7.5.2. STATE ESTIMATION

We use KALEST to estimate the state vector, using the by KALMAN calculated Kal-
man gain. The results for the innovation vector are collected in table 7.10

CASE out estimated calculated
of bound variance variance

1 4.6% 4.01 4.0

2 0.0% 40.0 4.0

3 50.4% 0.51 4.0

4 2.2% 535 4.5

5 4.4% 4.00 4.0

Table 7.10

The results for the innovation vector (obtained from KALEST).
Large measurement noise, small state noise

It can be observed that the calculated variance for all the four suboptimal cases is close to
the one predicted by the Kalman filter for the optimal case. The estimated variance varies
heavily with variations of R and only little with variations of Q. When R is too small, the
model relies too much on the measurements which leads to 50.4 % out of bound. Com-
pared to the optimal case, the suboptimal filters behave close to optimal.

7.5.3. WHITENESS TEST

The calculated innovation vector is tested on being a zero mean, white noise sequence
by WTEST. The results are collected in table 7.11. The sample mean, which is the calcu-
lated mean of the innovation sequence, should be smaller than the bound mean, which is
the maximum value for the absolute sample mean so that the sequence can statistically be
called "zero mean". The number of elements of the correlation function that are "out of
bound"” should be smaller than 5 % for the sequence to be white. If a sequence complies to
both of these conditions, it can be called a zero mean, white noise sequence. All the
sequences are zero mean white noise.
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sample bound out
CASE mean mean  of bound
1 0.10 0.176 4.8%
2 0.11 0176 | 4.8%
3 0.079 0.176 | 4.4%
4 0.006 0.187 | 4.8%
5 0.11 0.18 4.8%
Table 7.11

Results from the whiteness test module WTEST .
Large measurement noise, small state noise.

Even more information can be obtained by considering the first n +1 components of
the correlation function, calculated by WTEST (stored in WTEST.DATA). These com-
ponents are used by adaptive estimation algorithms to correct the noise covariance matrix
R and Q (Table 7.12).

CASE C, C scale factor
1 1 0.313e-2 4.03
2 1 0.380e-2 4.03
3 1 | -0.432e-2 40.4
4 1 -0.130 4.54
5 1 0.450e-2 4.03
Table 7.12

The first n +1 elements of the correlation function.
Large measurement noise, small state noise.

The 95 % limit for all cases is 8.877e-2 ( 1.96/N* ). When the state noise is too large (case
4), C, is larger than the allowed limit. Combining the results from table 7.9-12 lead to the
following observations:

Case 1 (Optimal case) :
The number of "out of bound” is in both cases smaller than 5 percent. The calculated mean

and the estimated mean are the same and the sample mean of the innovation vector is
smaller than its bound mean. Case 1 is optimal (as it should be).
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Case 2 (R too large) :

The estimated variance is larger than the observed variance due to the fact that R is too
large. The innovation sequence is still zero mean. white noise. The calculated variance for
the innovations is equal 1o the optimal case.

Case 3 (R 100 small) :

The percentage "out of bound" for the innovation vector is 50.4 percent, the Kalman filter
is relying too much on the model. The estimated variance is also smaller than the observed
one, but equal 1o the one for the optimal case. The innovation is zero mean, white noise.

Case 4 (Q too large) :

The estimated variance is larger than the observed variance and C, is "out of bound”. the
filter is relying too much on the measurements. The innovation sequence is zero mean,
white noise. The calculated variance is still close to the estimated variance for the optimal
case.

Case 5 (Q too small) :

The estimated and calculated variance are the same as for the optimal case. The innova-
tions are zero mean white noise.

Conclusions:

The innovations are for all four suboptimal cases zero mean, white noise and since, except
for case 4, the calculated variance for the innovations is equal to the, by KALMAN,
estimated variance, they should be considered optimal. The noise covariance matrix Q for
the optimal case and thus for the simulated data is so small that a large variation in K
(table 7.9) is allowed without the filter performing far from optimally. But for each
seperate case, the estimated and the calculated variance differ which means that the noise
covariance matrices are not exacl. In case of a small Q/R for the optimal case. variations in
Q or R will cause the filter to function still close to optimal. despite the fact that there is
an inconsistency between the estimated and calculated variance. But this is only a sign for
incorrect noise matrices and does not imply that the resulting filter is performing worse.

7.6. EQUAL STATE AND MEASUREMENT NOISE

The state noise and the measurement noise are equal in this case:

Q=1
R=1

7.6.1. KALMAN FILTER

The Kalman filter is calculated by KALMAN, the results are in table 7.13:
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CASE Q R P K w
1 1. 1. 119 | 0401 | 5.78
2 1. 10. 206 | 0219 | 18.3
3 1. 0.001 | 1.00 | 0484 | 4.01
4 10. 1. 10.2 0.473 | 41.9
5 0.001 | 1. 0.047 | 0.077 | 1.19
Table 7.13

Results from the Kalman filter module KALMAN .
Equal measurement and state noise.

As can be seen from table 7.13, case 1 uses the exact values for Q and R. In case 2-3 R is
varied, in case 4-5 Q. For cases 3-4, Q/R is larger than for case 1, for cases 2-5 smaller. P
seems mainly to be infiuenced by variations in Q and to a lesser extent by variations in R.
Both K and W are effected by variations in Q and R.

7.6.2. STATE ESTIMATION

We use KALEST to estimate the state vector, using the by KALMAN calculated Kal-
man gain. The results for the innovation vector are presented in table 7.14:

out estimated calculated
CASE of bound variance variance
1 4.6% 5.78 5.7
2 0.0% 18.3 6.6
3 10.4% 4.01 5.9
4 0.0% 41.9 58
5 52.0% 1.19 100.0
Table 7.14

The results for the innovation vector (obtained from KALEST)
Equal measurement and state noise.

The estimated variance in case 3 and case 5 are smaller than the real variance, leading to
more than 5 % out of bound. In case 2 and 4 the estimated variance is too large leading to
0.0 % out of bound. For cases 2-3-4, the calculated variance is still close to the estimated
variance for the cptimal filter.
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7.6.3. WHITENESS TEST

The calculated innovation vector is tested on being a zero mean, white noise sequence
by WTEST. If Q/R is smaller than for the optimal case (cases 2-5), the model is trusted to
much and part of the state noise. filtered by the svsiem. is added to the innovations as
coloured noise. The innovations are not white anvmore (table 7.15):

sample bound out
CASE mean mean of bound
1 0.087 0.21 2.4%

2 0.15 0.23 6.4%
3 0.072 0.21 4.0%
4 0.074 0.21 4.0%

5 0.39 0.29 17.3%

Table 7.15
The results form the whiteness test module WTEST.
Equal measurement and state noise.

Table 7.16 contains the first two values of autocorrelation function. For all four cases
C, is out of bound. C, is used by adaptive filtering routines to correct Q and R.

CASE (, C, factor

1 1 0.010 5.7

2 1 0374 66.2

3 1 | -0.148 59

4 1 | -0.129 5.8
5 1 0.663 | 100.0
Table 7.16

The first n +1 elements of the correlation function.
Equal measurement and state noise.

The 95 % limit for all cases is 8.877e-2 ( 1.96/N* ). Combining the results from table
7.13-16 leads to the following observations:
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Case 1 (optimal case) :

The number of "out of bound" is in both cases smaller than 5 percent. The calculated mean
and the estimaled mean are the same and the sample mean of the innovation vector is
smaller than its bound mean. Case 1 is optimal.

Case 2 (R too large) :

The large R leads 10 t0oo much reliance on the model. The innovation sequence is not white
anvmore as can be seen from table 7.15.

Case 3 (R 100 small) :

When R is too small. the estimated variance is also too small which leads to more than 5
percent out of bound. The resulting innovation sequence is still white and of zero mean.

Case 4 (Q oo large) :

A too large Q leads to too much reliance on the measurements. The estimated variance is

too large ( 0.0 percent out of bound) but the innovations are still white noise and zero
mean.

Case 5 (Q 100 small) :

The filter relies too much on the model, the estimated variance is too small. The result is
that more than 5 percent is out of bound and the innovations are not white and not of
zero mean anymore.

Conclusions:

In case of equal state and measurement noise, using a smaller Q/R (case 2-5) results in a
coloured noise component in the innovations. The model is trusted to much and part of the
white state noise is filtered by the system and added to the innovations. Using a Q/R that
is too large results in a filter with white innovations and with a calculated variance close
to the estimated variance for the optimal filter. There is a statistical discrepancy between
the calculated and estimated variance for each case, but compared with the optimal case, a
larger Q/R performs still close to optimal. Overestimating the accuracy of the model or the
inaccuracy of the measurements however, results in a filter that behaves badly (the inno-
vations are not white and the calculated variance differ significantly from the estimated
variance for the optimal filter).

7.7. LARGE STATE NOISE, SMALL MEASUREMENT NOISE

In this case the state noise is large compared to the measurement noise:

Q=4
= le—4

This is an extreme case of a system with measurements, very accurate compared to the
state noise.
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7.7.1. KALMAN FILTER

The Kalman filter is calculated by KALMAN, the results are in table 7.17:

CASE Q R P K A\
1 4. | le4 | 400 | 0485 | 16.0
2 4. | 1. 422 | 0458 | 179
3 4. | 1e8 | 400 | 0.485 | 16.0

4 40. le-4 | 400 0.485 | 160.0

5 0.1 | 1le-4 0.10 | 0.485 0.4

Table 7.17
The results from the Kalman filter module KALMAN.
Small measurement noise, large state noise

As can be seen from table 7.17, case 1 uses the exact values for Q and R. In case 2-3 R is
varied. in case 4-5 Q. For the cases 2-5, Q/R is smaller than the optimal value, for case 3-4
larger. The Kalman gain matrix K is unsensitive to variations in both Q and R. W and P
are only sensitive to variations in Q .

7.7.2. STATE ESTIMATION

We use KALEST to estimate the state vector, using the by KALMAN calculated Kal-
man gain. The results are shown in table 7.18

CASE out estirpated calcglated
of bound  variance variance
1 3.4% 16.0 15.0
2 3.2% 17.9 15.0
3 3.4% 16.0 15.0
4 0.0% 160.0 15.0
5 74.0% 0.4 15.0
Table 7.18

The results for the innovation vector (obtained from KALEST).
Small measurement noise, large state noise.
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The calculated variance is the same for all 5 cases. due to the fact that K is the same. The
estimated variance is mainly influenced by variations in Q, R is too small to have a real
influence.

7.7.3. WHITENESS TEST

The calculated innovation vector is tested on being a zero mean, white noise sequence
by WTEST. The results are in table 7.19:

CASE sample bound out
mean mean of bound
1 0.14 0.34 2.4%
2 0.15 0.34 3.2%
3 0.14 0.34 2.4%
4 0.14 0.34 2.4%
5 0.14 0.34 2.4%
Table 7.19

The results from the whiteness test module WITEST
Small measurement noise, large state noise.

In all cases the innovations are white noise and zero mean.

Table 7.20 contains the first two values of the calculated autocorrelation function, C,
and Cl .

A

CASE C, G, factor
1 1 | 0054 | 15.0
2 1 | 0106 | 15.0
3 1 | 0054 | 150
4 1 | 0.054 | 150
5 1 | 0054 | 150
Table 7.20

The first n +1 elements of the correlation function.
Small measurement noise, large state noise.
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The 95 % limit for all cases is 8.877e-2 ( 1.96/N™ ). A too large R results in a too large C,.
Combining the results from table 7.17-20 leads to the following observations:

Case 1 (Optimal case) :

As it should be. case 1 is optimal. The estimated and calculated variances are equal. the
innovations are white noise zero mean and less than 5 % out of bound.

Case 2 (R 100 large) :

Case 2 seems 10 be close 10 being optimal. The innovations are white and of zero mean, the
estimated and calculated variance are almost the same, only C, is an indication that the
model is trusted too much.

Case 3 (R too small) :

Case 3 is optimal, not in the sense that it has the right R but in the sense that the innova-
tions are white and zero mean and the variances are the same. It uses the same Kalman
gain matrix as the optimal case.

Case 4 (Q too large) :

Case 4 is optimal except for a too large estimate for the variance. The Kalman gain matrix
is the same despite the fact that Q is too large.

Case 5 (Q too small) :

Also case 5 is optimal except for a too small estimate for the variance, leading to more
than 5 % out of bound.

Conclusions:

It is obvious that all 5 cases perform the same, since K is almost the same. The sensitivity
of K for changes in the noise matrices is very small. There is only a statistical incon-
sistency between the calculated and estimated variances but the filter performs the same.

7.8. CONCLUSIONS

Three different cases have been considered: Q/R << 1, Q/R= 1, and Q/R >> 1.
When Q/R >> 1, the performance of the Kalman filter is very insensitive to incorrect
noise covariance matrices, the Kalman gain matrix K does not vary a lot and the innova-
tions are zero mean white noise. The estimated and calculated variances are different but
the filter is still close to optimal. '

When Q/R << 1, the innovations are also zero mean white noise when incorrect noise
matrices are used. Only when Q/R = 1, the Kalman filter is very sensitive to incorrect
noise matrices especially when the model is trusted more than it should. In this case, the
resulting innovations show a coloured noise component. The state noise. af ter being filtered
by the system is coloured noise and is as such added to the innovations. Q and R need to
be determined accurately to prevent this. Generallt can be stated that it is very difficult to
determine from the by KALMAN, KALEST and WTEST presented results, how to adapt
the noise covariance matrices. Adaptive filtering routines can perform this task much more
efficiently The innovation correlation method developed by Carew seems to be the most
promising one. It is proven to be numerically more stable than the method developed by
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Mehra, it uses innovation correlation functions which have already been calculated by
WTEST and it is proven to converge assvmptotically to the exact values for Q. R and K.

(1)

(2)

(3)

(4)

(5)

Consequently, in the case of unknown noise covariance matrices:

Use some sensible estimates for Q and R and calculate the corresponding kalman
filter using KALMAN.

Use KALEST 10 obtain the innovation sequence, the 95 % limits, the number of
observations that are "out of bound" and the observed variances. A comparison of the
observed variances with the by KALMAN estimated ones, shows if the estimates for
Q and/or R are too small or too large. But only an adaptive filtering routine can
determine how much Q and R should be changed.

Use WTEST to test the innovations on being zero mean white noise. A coloured noise
component means that the model is trusted too much (Q too small or R too large).

The Kalman filter is performing optimally when the innovations are zero mean white
noise, when the by KALEST observed variances are equal to the by KALMAN
predicted ones, and when less than 5 % of the observations of the innovations are
"out of bound".

If the innovations are not zero mean white noise or the estimated and observed vari-
ances do not agree, use an adaptive filtering routine to obtain better estimates for Q.
R and K.



Chapter 8

CONCLUSIONS
AND
SUGGESTIONS

8.1. CONCLUSIONS

- A set of PRIMAL modules has been developed to design a Kalman filter for a stochastic
state space model and to test and evaluate its performance.

- The performance of the Kalman filter can be evaluated without knowing the "true
states”. WTEST tests if the innovations are zero mean white noise. KALEST calculates the
variance for the observed innovations and the number of innovations that are “out of
bound”, and KALMAN calculates an estimate for the variance of the innovations. The
Kalman filter is functioning optimally when:

(1) the innovations are zero mean white noise which means that the calculated mean is
smaller than the bound mean (zero mean test) the number of values of the autocorrelation
function that are "out of bound" is smaller than 5 percent (whiteness test)

(2) the estimated and calculated variance are equal.

I not, it is still possible that the filter is close 10 optimal depending on the actual values
of Q,and R.

- Apart from modules for designing and evaluating the Kalman filter, a module for solving
the Riccati equation has been developed. Together these modules form the first controller
design facility in PRIMAL.

- In the case of unknown noise covariance matrices the adaptive filtering techniques
described in chapter 5 may be used. Chapter 7.3-5 show that it is difficult to determine Q
and R from KALSIM, KALMAN, KALEST and WTEST even for a SISO system. The inno-
vation correlation method developed by Carew (eqn. 5.35-37) [CAR73] is the most
promising, it requires no solution of a Lyapunov type of equation and it seems to perform
better than the method developed by Mehra (eqn. 5.27-32) [MEH70)], [MEH72] and is
numerically more attractive.

The output correlation method does not require any initial estimates for Q and R, but it
requires a stable system matrix A or y; to be stationary. Furthermore the correlations for
the innovations have already been calculated in the whiteness test and are therefore avail-
able to the user.

The covariance matching methods seem simple and straightforward, but convergence of
these methods has never been proven and they only seem to work well if the state covari-
ance matrix Q is known and R has to be estimated.

- The matrices necessary for the optimal control E and F are difficult to determine. The
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user has to formulate his objectives in terms of desired trajectories for the state vector and
allowed values for the input vector. The algorithm does not guarantee these objectives, but
by repeating this step with different matrices it should be possible to design a feedback
matrix which meets the specifications. Minimization of the output vector y, can be
achieved by setling:

E=CC’
F = DD’
M = CD’/

This means that the user does not have to specifiy the matrices, they are inherent to the
used system. How this method performs can be evaluated after implementation of the
simulator.

8.2. SUGGESTIONS

- Before the LQG-module will be used in practice it is necessary to implement an adaptive
filtering routine and a simulator for evaluating the performance of the LQG-feedback
matrix using a Kalman filter for state estimation. Since optimal performance of the LQG-
algorithm is assured only when all the previous steps are optimal. it is important to
develop an adaptive filtering routine first.

- The possible use of the residuals or innovations are numerous. Apart from being able to
use them for adapting the noise covariance matrices, they can also be used for sensor
failure detection or spike filtering (on line). This can prevent the control routine from
using spikes. Special routines may warn the user of a possible sensor failure or change in
the system model. The user can take the necessary actions to prevent further damage.

- Mehra suggests that the estimate for the Kalman gain matrix K can be improved by
repeatedly filtering the data with the adapted Kalman filter and using the new autocorre-
lation functions 1o obtain a better estimate. However, this is not always true. If we start
with the optimal Kalman gain and there are any errors in the estimation of the correlation
functions, due to the finite sample size, the adaptive filtering routine will not lead to the
optimal gain again. The value of Mehra's suggestion must be determined when an adaptive
filtering routine is available.

- PRIMAL offers two possibilities for implementing the obtained controller. The first pos-
sibility is to implement in PRIMAL control routines that use the computer to control a
process in real-time. The second possibility is to develop modules that approximate an
optimal control regulator using conventional PID-controllers. The first possibility requires
enough computing capabilities for the real-time controller to perform in real-time, but the
obtained LQG-controller will be implemented exactly. The second possibillity will imple-
ment an approximation which means that the actual performance is difficult to predict. But
the conventional PID-controllers are easier 10 implement and no computer time is required.
The introduction of process computers in (industrial) processes will make the first option
more attractive, but many processes are still controlled by conventional controllers.
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