602 research outputs found

    Distributed aspect-oriented service composition for business compliance governance with public service processes

    Get PDF
    Service-Oriented Architecture (SOA) offers a technical foundation for Enterprise Application Integration and business collaboration through service-based business components. With increasing process outsourcing and cloud computing, enterprises need process-level integration and collaboration (process-oriented) to quickly launch new business processes for new customers and products. However, business processes that cross organisations’ compliance regulation boundaries are still unaddressed. We introduce a distributed aspect-oriented service composition approach, which enables multiple process clients hot-plugging their business compliance models (business rules, fault handling policy, and execution monitor) to BPEL business processes

    Dynamic integration of context model constraints in web service processes

    Get PDF
    Autonomic Web service composition has been a challenging topic for some years. The context in which composition takes places determines essential aspects. A context model can provide meaningful composition information for services process composition. An ontology-based approach for context information integration is the basis of a constraint approach to dynamically integrate context validation into service processes. The dynamic integration of context constraints into an orchestrated service process is a necessary direction to achieve autonomic service composition

    Achieving Autonomic Web Service Compositions with Models at Runtime

    Full text link
    Over the last years, Web services have become increasingly popular. It is because they allow businesses to share data and business process (BP) logic through a programmatic interface across networks. In order to reach the full potential of Web services, they can be combined to achieve specifi c functionalities. Web services run in complex contexts where arising events may compromise the quality of the system (e.g. a sudden security attack). As a result, it is desirable to count on mechanisms to adapt Web service compositions (or simply called service compositions) according to problematic events in the context. Since critical systems may require prompt responses, manual adaptations are unfeasible in large and intricate service compositions. Thus, it is suitable to have autonomic mechanisms to guide their self-adaptation. One way to achieve this is by implementing variability constructs at the language level. However, this approach may become tedious, difficult to manage, and error-prone as the number of con figurations for the service composition grows. The goal of this thesis is to provide a model-driven framework to guide autonomic adjustments of context-aware service compositions. This framework spans over design time and runtime to face arising known and unknown context events (i.e., foreseen and unforeseen at design time) in the close and open worlds respectively. At design time, we propose a methodology for creating the models that guide autonomic changes. Since Service-Oriented Architecture (SOA) lacks support for systematic reuse of service operations, we represent service operations as Software Product Line (SPL) features in a variability model. As a result, our approach can support the construction of service composition families in mass production-environments. In order to reach optimum adaptations, the variability model and its possible con figurations are verifi ed at design time using Constraint Programming (CP). At runtime, when problematic events arise in the context, the variability model is leveraged for guiding autonomic changes of the service composition. The activation and deactivation of features in the variability model result in changes in a composition model that abstracts the underlying service composition. Changes in the variability model are refl ected into the service composition by adding or removing fragments of Business Process Execution Language (WS-BPEL) code, which are deployed at runtime. Model-driven strategies guide the safe migration of running service composition instances. Under the closed-world assumption, the possible context events are fully known at design time. These events will eventually trigger the dynamic adaptation of the service composition. Nevertheless, it is diffi cult to foresee all the possible situations arising in uncertain contexts where service compositions run. Therefore, we extend our framework to cover the dynamic evolution of service compositions to deal with unexpected events in the open world. If model adaptations cannot solve uncertainty, the supporting models self-evolve according to abstract tactics that preserve expected requirements.Alférez Salinas, GH. (2013). Achieving Autonomic Web Service Compositions with Models at Runtime [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34672TESI

    Distribution pattern-driven development of service architectures

    Get PDF
    Distributed systems are being constructed by composing a number of discrete components. This practice is particularly prevalent within the Web service domain in the form of service process orchestration and choreography. Often, enterprise systems are built from many existing discrete applications such as legacy applications exposed using Web service interfaces. There are a number of architectural configurations or distribution patterns, which express how a composed system is to be deployed in a distributed environment. However, the amount of code required to realise these distribution patterns is considerable. In this paper, we propose a distribution pattern-driven approach to service composition and architecting. We develop, based on a catalog of patterns, a UML-compliant framework, which takes existing Web service interfaces as its input and generates executable Web service compositions based on a distribution pattern chosen by the software architect
    corecore