

DYNAMIC INTEGRATION OF CONTEXT MODEL CONSTRAINTS IN WEB

SERVICE PROCESSES

Kosala Yapa Bandara, MingXue Wang and Claus Pahl
Dublin City University, School of Computing

Glasnevin, Dublin
Ireland

[kyapa|mwang|cpahl]@computing.dcu.ie

ABSTRACT

Autonomic Web service composition has been a
challenging topic for some years. The context in which
composition takes places determines essential aspects. A
context model can provide meaningful composition
information for services process composition. An
ontology-based approach for context information
integration is the basis of a constraint approach to
dynamically integrate context validation into service
processes. The dynamic integration of context constraints
into an orchestrated service process is a necessary
direction to achieve autonomic service composition.

KEYWORDS: Autonomic Composition, Context Model,
Context Constraints, Web Service Processes.

1. Introduction

Web services are self-contained, self-describing, and
modular applications that can be published, located and
invoked across the Web. An increasing amount of
organizations only implement their core businesses and
outsource other application services over the Internet.
Thus the ability to efficiently and effectively select and
integrate inter-organizational and heterogeneous services
over the Web at run-time is an important step towards the
development of these Web service applications. The
requirement to address service composition in dynamic
environments demands a high degree of flexibility and
autonomy. A context notion can capture both business-
level and technical requirements for autonomic
composition. Dynamic integration of context
requirements, i.e. constraints-based monitoring and
validation, is an important step in the direction of
autonomic service composition.

The notion of context has been defined by Brahim and
Yacine as any information that can be used by a Web
service to interact with clients and client to interact with
Web services [1]. We define context as any static or
dynamic client-, provider- or service-related information,
which enables or enhances efficient communications

among clients, providers and services. This allows us to
capture context as used in autonomic service composition.

We can identify a number of shortcomings in current
approaches to dynamic service composition:
• Context modelling is a promising approach for

capturing context information requirements at design
time, however it currently lacks a suitable capabilities
for exchanging and integrating context models and
instances in heterogeneous systems dynamically [5].

• Constraint languages, such as WSCol (Web Service
Constraint Language) or the Java Modelling
Language, are used in composition environments like
the Dynamo service monitoring platform [2] to
support fault handling. However, in terms of service
composition, more integration is needed at the
context model level to capture business and technical
aspects beyond basic fault handling.

• Nowadays, WS-BPEL is the de facto standard for
web service composition [6]. However, WS-BPEL
remains focused on syntactical aspects with no
consideration of semantic composition aspects. The
Web service protocol stack does not address the
requirements of a successful semantic exchange.

Dynamic integration of context information can achieve
context-based semantic bindings among services at
runtime. For instance, business rules can change often,
which makes the dynamic and efficient adaptation of
compositions to the new rules necessary. Their integration
in a modular fashion as constraints into the processes is
needed [3]. In this paper, we propose an approach to
dynamically integrate context model-based constraints
into Web service processes.

In this paper, Section 2 illustrates a motivating example.
Section 3 illustrates our context model, which has been
developed to focus on autonomic semantic Web service
composition. In Section 4, we introduce our dynamic
context integration architecture in detail. We discuss and
evaluate a prototype implementation in Section 5. Finally,
we discuss related work and present some conclusions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11310028?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. A Motivating Composition Scenario

Our example focuses on a broker architecture where a
client can requests one of his utility bills from a range of
devices:

 UserBillRequest (UserID, UserName, UserAddress,
 UtilityType, BillRequestDevice, BillRequestCurrency)

The service broker (e.g. a bank or post office) is
responsible for providing the requested utility bill in the
requested currency to the requested device. Here it is
assumed that both user and service provider have already
registered with the service broker.

Figure 1. Utility Bill Broker WS-BPEL Process

An initial user request results in a dynamic generation of
a service process, composing the application Web
services and weaving in appropriate supporting context-
dependent constraint validation services. Constraints and
their validation support are generated based on context
information of the service involved. The user calls the
UserBillRequest at the service broker that generates the
WS-BPEL process. This integrates ProviderBillRequest,
ProviderBillResponse and UserBillResponse
application services. All related context constraints are
integrated into the Web service process as pre-conditions

or post-conditions, i.e. all context constraints are grouped
under these two categories by the context constraint
generator. Context constraint checking itself is provided
as Web services to make this equally reusable and
configurable. The constraints SS3 before and after the
user bill response are the same, but the bill formats vary
depending on the destination context. The user might
expect his/her bill on his mobile device (user-friendly
format in appropriate resolution) whereas the service
broker expects it in machine-processable format (XML).

3. Context Model for Service Composition

Often, context models are developed for specific domains.
Researchers like Dey et. al, Schilit et. al, Pascoe et. al and
Brown et. al [10,11,12,13] have created context models
suitable to their application needs. Brahim and Yacine
have proposed a context categorization and context
matching approach for Web services [1]. However, a lack
of integrative context models that can be used in
autonomic service composition led us to develop the
following context model. Our model addresses both the
user context and the service context, making it more
complete and flexible for changing user environments
(e.g. mobile applications) and service environments (e.g.
dynamic heterogeneous systems).

<Receive>
Provider Bill Response

<Invoke>
Provider Bill Request

< Receive>
User Bill Request

<Reply>
User Bill Response

Post-Condition
SS1: User Verification (UserID)

Pre-Condition
SS1: User Verification (UserID)

Pre-Condition
SS1: Broker Verification (BrokerID)
SS2: User Verification (UserID)

Post-Condition
SS3: Verify Bill Format (Device)

Pre-Condition
SS1: Currency Converter (Currency)
SS2: Device Setting (Device)

Post-Condition
SS3: Verify Bill Format (Device)

from user

at provider

from provider

reply to user

functional:
- syntax
- semantics

domain:
- measurements
and standards
(currency)

platform:
- device

<Receive>
Provider Bill Response

<Invoke>
Provider Bill Request

< Receive>
User Bill Request

<Reply>
User Bill Response

Post-Condition
SS1: User Verification (UserID)

Pre-Condition
SS1: User Verification (UserID)

Pre-Condition
SS1: Broker Verification (BrokerID)
SS2: User Verification (UserID)

Post-Condition
SS3: Verify Bill Format (Device)

Pre-Condition
SS1: Currency Converter (Currency)
SS2: Device Setting (Device)

Post-Condition
SS3: Verify Bill Format (Device)

from user

at provider

from provider

reply to user

functional:
- syntax
- semantics

domain:
- measurements
and standards
(currency)

platform:
- device

3.1 Context Model

The user context captures context information about the
service user, location information and the platform used
(platform context). For example, the location context
changes when the user moves from one place to another
while working with a system using mobile devices.
Service context is mainly divided into four categories.

Functional Context: This describes the operational
features of Web services. The functional context is
grouped into Syntax, Effect and Protocol context.
• Syntax includes the list of input/output parameters

that define the operations’ messages and the data
types of the parameters for invoking the Web service.

• Effect includes pre-conditions and post-conditions,
i.e. the operational effects of an operation execution.

• Protocol refers to a consistent exchange of messages
between services involved in an autonomic service
composition to achieving their goals. The protocol
context includes context on conversation rules and
data flow.

Quality of Service Context (QoS): Facilitating end-to-
end quality in service compositions is a significant
challenge because of two difficulties. One difficulty is to
define quality and to determine quality. Then, based on an
agreed concept of quality, QoS for individual services
needs to be modelled. In addition to single service QoS,
end-to-end QoS is critical for business processes, which
are composed of both single and compound services.
There is no adequate model or method to provide good

support for QoS in Web service compositions [8]. In our
model, quality of service context is grouped into four
major categories [9].
• Runtime: enables the measurement of properties that

are related to the execution of a service. Performance
context: the measurement of the time behaviour of
services in terms of response time, throughput etc.
Reliability context: the ability of the service to be
executed within the maximum expected time frame.
Availability context: the probability that the service
is accessible.

• Financial / Business: allows the assessment of a
service from a financial or business perspective. Cost
context: the amount requited for execution.
Reputation context: measures the service’s
trustworthiness. Regulatory context: a measure of
how well a service is aligned with government or
organizational regulations.

• Security: describes whether a service is compliant
with security requirements. Integrity context:
protecting information from being deleted or altered
without the permission of the owner. Authentication
context: ensures that both consumers and providers
are identified and verified. Non-repudiation context:
the ability of the receiver of something to prove to a
third party that the sender really did send the
message. Confidentiality context: protecting
information from being read or copied by anyone
who has not been explicitly authorized.

• Trust: refers to establishment of trust relationships
between client and providers – which is a
combination of technical assertions (measurable and
verifiable quality) and relationship-based factors
(reputation, history of cooperation).

Domain Context: Each application domain may need its
own requirements met for interacting with services.
• Semantic: refers to semantic framework (i.e.

concepts and their properties) in terms of
vocabularies, taxonomies or ontologies.

• Linguistic: the language used to express queries,
functionality and responses.

• Measures and Standard: refers to locally used
standards for measurements, currencies, etc.

Platform Context: The technical environment a service
is executed in.
• Device: refers to the computer/hardware platform on

which the service is provided.
• Connectivity: refers to the network infrastructure

used by the service to communicate.

3.2 Context Model Ontology

Context model information comes from very different
sources. The functional context is derived from the
service descriptions; quality and platform contexts are
captured based on system and platform data. Domain

context is based on meta-level information. This diversity
requires an integrating framework, which we provide in
the form of a context model ontology.

The context model ontology is an OWL-light ontology
that, at its core, captures the context model categories in
the format of a taxonomy (concept level of the ontology).
OWL provides the necessary interoperability between
possibly different source formats. We assume these to be
mapped onto the OWL context ontology. We only
illustrate a few excerpts here. We use the Manchester
OWL syntax here to avoid the verbosity of XML-OWL.

 Class: FunctionalContext
 SubClassOf: Context
 DisjointWith: QoS or Domain or Platform

 Class: Syntax
 SubClassOf: FunctionalContext
 DisjointWith: Effect or Protocol

Specific linkages – for instance between Trust and
Security context – can be formalised by using
EquivalentTo instead of DisjointWith at lower taxonomy
levels. Specific properties can be formulated, for instance
for Syntax:

 hasInterface MIN 1 and hasInterface SOME string

which requires a syntax element to have at least one
interface associated to it that must be of type string.

The context ontology also has a second purpose. We
capture concrete context model instances as instances of
the ontology. We illustrate this using the
UserBillRequest service in terms of our context model
ontology.

 UserBillRequest (UserID, UserName, UserAddress,
 UtilityType, BillRequestDevice, BillRequestCurrency)

Each parameter has a data type and the Web service has
functionality, both specified as context information. In
this example, the user information is the user context
(UserID, UserName, UserAddress). This is provided to
the service in the form of parameters, i.e. the user context
becomes syntax for this service. For an Interface
element, we can express:

 hasUserID VALUE 123 and
 hasUserName VALUE ‘John’ and
 hasUserAddress VALUE ‘Dublin’

UserAddress and UtilityType are the other syntax
context elements of this service. BillRequestCurrency is
a domain context element (measurements and standards).
Parameter BillRequestDevice is device context element,
part of the platform context. Concrete values can be
attached as above.

4. Dynamic Context Model Integration

4.1 Constraint Integration Architecture

The context model details the properties of users and
service providers in the defined categories. The context
ontology is used in the respective specifications. The
ontology-based context instances, which define and
describe a concrete situation are then converted into
context constraints and context services that validate
them. At composition time (here dynamically at runtime),
context constraints (validated through context services)
are integrated with the application Web service process.

Figure 2. Context Model Integration Architecture

4.2 Constraint Template

When a service, such as the bill request, is called by the
service broker, the user is verified first, which is governed
by the information provided through the authentication
context of the service (QoS context). In order to achieve a
uniform approach to context constraint validation, all
constraints such as the user verification become post-
conditions of the service within the integrated, composed
Web service process. A standard constraint checker can
be used here. However, for some constraint types,
additional information needs to be provided through so-
called data collectors.

The supporting constraint services are annotated in the
form of a context template. A context template has link,
condition and expression elements.
• The link is used in supporting service binding. Path

expressions (XPath) are used in specifying the
location in the service composition.

• The condition explains both the type of the
supporting service (pre-condition or post-condition)
and the order of execution.

• The expression specifies the constraint itself to be
checked by the supporting context service –
formulated using syntax and semantics defined in the
context constraint language.

An index file of supporting services maintains pointers to
the supporting constraint services of an application
service – remember that these were customised by the
service-specific context.

4.3 Constraint Language

The Java Modelling language (JML) provides a suitable
foundation as our context constraint language. JML is a
behavioural interface specification language.
• The keyword requires is used in specifying pre-

conditions. A precondition is a condition that must be
satisfied before calling a service. servicesdomain QoS platform

context ontology service description

context constraints composed process

constrained process

weaving

generate compose

servicesdomain QoS platform

context ontology service description

context constraints composed process

constrained process

weaving

generate compose

• The ensures keyword indicates that what follows is a
post-condition that must be satisfied.

For instance, the UserBillRequest Service proceeds
further only if the user is verified. This is an
authentication (the QoS context category). For the
userVerification (with parameter UserID), we get:

 <Link: path expression to the service process/>
 <Condition>
 <Type> post-condition </Type>
 <Order> 1 </Order>
 </Condition>
 <Expression>
 @ensures \returnBoolean(
 Context:userVerification(UserID)) == True;
 </Expression>

The @ensures expression requires the return value of the
userVerification context service (located at <Context>
with parameter is UserID) to be true. Similarly, for the
UserBillResponse service, the constraint depends on the
user device and device type (platform context):

 <Link: path expression to the service process/>
 <Condition>
 <Type> post-condition </Type>
 <Order> 3 </Order>
 </Condition>
 <Expression>
 @ensures \returnBoolean(
 Context:compareBillFormat(),
 DeviceType,
 Context:setBillFormat(
 Context:getBillFormat(DeviceType))) == True;
 </Expression>

This post-condition ensures that compareBillFormat
returns true. SetBillFormat calls getBillFormat, located
at Context, with the parameter DeviceType to set the bill
format. The parameters for the ensure statement are the
Context-based CompareBillFormat() service, the
DeviceType parameter and the currently set bill format
(which is set by calling getBillFormat in setBillFormat) ,
Then compareBillFormat compares the device type with

the set bill format and returns true if the bill format
matches the device type. If not, it returns false.

In the UserBillResponse service, the VerifyBillFormat
supporting service queries the existing device (e.g.
mobile) and sets the appropriate settings for the bill to be
displayed on that device. By default, devices uses an
XML format so that the bill can be used in other systems
for further processing. In the ProviderBillResponse
service, the device setting is the default one and the
predefined XML format is used in forwarding the bill to
the broker.

4.4 Transformation and Weaving

At the centre of the integration of constraint validation
into a composed service process is a mapping:
• Attributes of the context model aspects are connected

to concrete values at the instance level. These form
the context constraints. Thus, attributes like UserID
or BillRequestDevice are extracted from the
ontology. Pairs of attributes with their associated
values form abstract constraints.

• A preparation step for the final mapping is the
determination of data collectors (e.g. getBillFormat)
and data initialisers (e.g. SetBillFormat) that support
the constraint condition (e.g. compareBillFormat).

• The abstract constraints are mapped to JML pre- or
postcondition constraints as illustrated in Section 4.3.
Hereby, the use of data collectors and data initialisers
needs to be considered.

Context service calls for constraint checking are
generated based on context ontology instances. These
service invocations are based on information given in the
constraint templates, i.e. path expression (link), context
constraints (condition), context services and context
constraint language (expression).

Context constraint validation is implemented using the
context services that encapsulate the constraint checker.
Context services are services that directly deal with
context instances. A service-related context specification,
the context ontology, and context service invocation
shells can be precomputed at the development stage of the
main services. However, depending on the changing
environment, the weaving process is executed in parallel
with the Web service process planner/generator. For
example, the bill format is set for the respective service
calls, e.g. ProviderBillResponse or UserBillResponse.
The path expression (to the context service) is set during
context service planning, thus enabling dynamic bindings.

4.5 Service Process Execution

Based on the service process outline from Fig. 1,
application service invocations (the grey boxes) are
generated in the format of the corresponding WS-BPEL
command:

<bpel:invoke name="UserBillRequestInvoke"
 partnerLink="UserBillRequestPL"
 operation="UserBillRequestProcess"
 portType="ns:UserBillRequestDelegate"
 inputVariable="UserBillRequestRequest"
 outputVariable="UserBillRequestResponse">
</bpel:invoke>

Constraint validation is woven in by calling the context
services that encapsulate the constraint checker.

<bpel:invoke name="UserVerificationInvoke"
 partnerLink="UserVerificationPL"
 operation="UserVerificationProcess"
 portType="ns:UserVerificationDelegate"
 inputVariable="UserVerificationRequest"
 outputVariable="UserVerificationResponse">
</bpel:invoke>

<bpel:if name="userVerificationConstraint">
 <bpel:condition>
 <![CDATA[
 $UserVerificationResponse.parameters/return ='true']]>
 </bpel:condition>

The execution of the application process will only
proceed if the respective constraint is not violated.

5. Prototype Implementation

We have implemented a service process planning and
monitoring architecture for which we have developed a
prototype. In a context-determined composition approach,
a composition planner works in parallel with the
constraint validation generator. The WS-BPEL engine
running the process needs to integrate the constraint
validation checker. We are working with ActiveBPEL
engine and the OCL checker here.

Performance is central. Two aspects emerge.
 Firstly, the ontology processing and weaving is time-

consuming – depending on the size of the ontology.
A strategy that favours early pre-computation of
constraint templates (from the ontology as soon as
changes to the ontology are known if the application
services are determined) is advisable.

 The second aspect is the constrained service
execution. Our first experiments with different
variants of the architecture in terms of the constraint
weaving into the BPEL service process – in particular
with respect to how constraint violations are handled
– shows an acceptable overhead of around 15-18%
for constraint validation through the context services.

While the constraint checking performance is more or less
constant for each of the categories – of course there are
variations between the different types of data collection
involved. However, the solutions vary in terms of the
fault handling applied. WS-BPEL fault handling provides

support for category-specific, but also engine-independent
handling, which turns out to be the most flexible form.

6. Related Work

The related work in this area covers Web service
composition approaches and rule-based approaches
including rule representation formats and rule integration
approaches [3]. Baresi et.al. present work on monitoring
directives, called monitoring rules, and a weaving
approach for the dynamic inclusion into Web service
processes. Dynamic selection and execution of
monitoring rules at runtime and also data acquisition and
analysis into monitoring rules are core elements of the
solution [2]. Monitoring rules are selected by the designer
at design-time. However, this approach can be improved
in terms of monitoring rule determination. In our
approach, we use the context model for modelling and
integrating context information and then use context
instances in determining context constraints and context
services attached to an application service. Our context
constraint validators are invoked through the supporting
services, making them compatible and reusable in a range
of service-based architectures.

The METEOR-S project has focused on constraint-driven
Web service composition [4]. It distinguishes data,
functional and quality of service semantics, but the
approach to capturing and specifying of semantics can be
extended. Especially, the METEOR-S approach does not
sufficiently support the dynamic binding of constraints –
the use SWRL and OWL to provide more descriptive
rules for specifying constraints is, however, planned. Our
approach is more advanced in capturing, specifying and
binding of semantics using the context model ontology
with context instances and corresponding sound
supporting services and context validators.

7. Conclusions

Our approach focuses on dynamic service composition
problems, driven by context constraints validation
problems. Context-based composition is an essential
ingredient for autonomic Web service composition. We
first defined a notion of context in a range of categories,
then formalised an approach of specifying semantic
context information in a context ontology and finally
introduced a technique to integrate context constraints
dynamically into Web service processes.

Two central contributions define our approach:
• A context model that captures both business and

technology aspects and that, through its ontology-
based formalisation, acts as an integrator for context
information stemming from different sources.

• A uniform approach to runtime context constraint
validation, based on a dynamic mapping on ontology
instances to constraints that can be validated during

the execution of a dynamically composed service
process.

These are two central stepping-stones towards an
autonomic service composition platform.

We are planning to enhance the technique in two
directions. Firstly, we aim to automate the integration of
different information sources into the context ontology.
Secondly, in particular the validation of non-functional
constraint properties requires a deeper investigation into
the provision, selection and use of appropriate data
collectors for different qualities.

Acknowledgement

The authors are grateful for the support the Science
Foundation Ireland has provides for the CASCAR project.

References

[1] Brahim Medjahed and Yacine Atif, Context-based matching
for web service composition, Journal: Distributed and Parallel
Databases, Volume 21, pages 5-37, Springer Netherlands, 2007.
[2] L. Baresi and S. Guinea, Towards Dynamic Monitoring of
WS-BPEL Processes, In Proceedings of the 3rd International
Conference on Service Oriented Computing, 2005.
[3] F. Rosenberg and S. Dustdar, Business Rules Integration in
BPEL- A Service Oriented Approach, In Proceedings of the 7th
IEEE International Conference on E-Commerce Technology
(CEC’05), 2005.
[4] R. Aggarwal, K. Verma, J. Miller and W. Milnor, Constraint
Driven Web Service Composition in METEOR-S, In
Proceedings of IEEE International Conference on Services
Computing, 2004.
[5] R. Robinson and K. Henricksen, XCML: A runtime
representation for the Context Modelling Language, In
Proceedings of the 5th Annual IEEE International conference on
Pervasive Computing and Communications Workshops
(PerComW’07), 2007.
[6] M. Mrissa, C. Ghedira, D. Benslimane, Z. Maamar, F.
Rosenberg and S. Dustdar, A Context-Based Mediation
Approach to Compose Semantic Web Services, ACM
Transactions on Internet Technology, Vol.8, No. 1, Article 4,
November 2007.
[7] C. Moore, M. Wang, C. Pahl, An Architecture for
Autonomic Web Service Process Planning, The 3rd Workshop
on Emerging Web Services Technology (WEWST-2008),
November, 2008.
[8] Z. Wu, J. Luo, QoS-Resource Graph Model for Web Service
Composition in Service Oriented Computing, The Sixth
International Conference on Grid and Cooperative Computing
(GCC 2007), IEEE Computer Society, 2007.
[9] B. Medjahed, A. Bouguettaya, A Dynamic Foundational
Architecture for Semantic Web Services., Journal: Distributed
and Parallel Databases, Volume17, Number 2, pages 179-206,
Springer Netherlands, 2005.
[10] A.K. Dey and G.D. Abowd, Towards a Better
Understanding of Context and Context-Awareness, Lecture
Notes In Computer Science; Vol.1707, Proceedings of the 1st
international symposium on Handheld and Ubiquitous
Computing, Germany, pp.304-307, 1999.

[11] P.J. Brown., J.D. Bovey and X. Chen. Context-Aware
Applications: from the laboratory to Marketplace. IEEE
Personal Communications 4, 5, 58-64. 1997.
[12] J. Pascoe, Adding General Contextual Capabilities to
Wearable Computers. In 2nd International Symposium on
Wearable Computers (ISWC 1998), pp. 92-99. 1998.
[13] W.N. Schilit, A System architecture for Context-Aware
Mobile Computing. PhD thesis, Columbia University, 1995.

	4.1 Constraint Integration Architecture
	4.2 Constraint Template
	4.3 Constraint Language
	4.4 Transformation and Weaving
	4.5 Service Process Execution

