
An Open Middleware for Proactive QoS-Aware Service
Composition in a Multi-Tenant SaaS Environment

Kristof Geebelen∗1, Stefan Walraven1, Eddy Truyen1, Sam Michiels1, Hendrik Moens2,
Filip De Turck2, Bart Dhoedt2 and Wouter Joosen1

1IBBT-DistriNet, Dept. Computer Science, KU Leuven, Belgium
2IBBT Dept. of Information Technology, Ghent University, Belgium

Abstract— Business Process as a Service (BPaaS) is expected
to emerge as the next major category of Cloud Computing.
The combination of fast expanding technologies with increasing
competitiveness will make more and more companies move
parts of their business processes into the cloud. This enables
them to take advantage of the cloud provider’s expertise and to
reduce their cost by sharing resources to exploit economies of
scale. In such a multi-tenant setting, the cloud provider has to
tailor its business processes to meet the QoS requirements of
each tenant. This requires techniques for QoS-aware service
selection and prediction. However, there is no one-size-fits-
all approach to tackle this challenge. The choice of the most
suitable technique typically depends on the particular context
and characteristics of the services that are being composed.
This paper has the following contributions: To support the
provider with the creation of custom-tailored processes, we
propose an open middleware that provides the mechanisms to
perform requirement-driven customizations on shared process
templates. This open middleware supports easy integration of
new and existing service selection and prediction techniques.

Keywords: Software as a Service; Multi-tenancy; QoS-aware service
composition; WS-BPEL.

1. Introduction
Context. With the trend of cloud computing, Software as a
Service (SaaS) has become a common delivery model for
business applications. A special form of SaaS is Business
Process as a Service (BPaaS) [20], where multiple client
organisations are served with a single engine hosting multi-
ple business processes [2]. The business model of a BPaaS
company is to offer highly customizable business processes to
client organisations (also known as tenants). However, tenants
will preferably outsource their business processes to the one
provider that can not only offer the highest flexibility in custom-
tailored business processes, but more importantly, also offers
the most competitive service-level agreements.

The underlying service compositions that enact business
processes are typically compositions of third-party services that
are possibly delivered as cloud-based SaaS applications. In such
constellation of third-party service compositions, guaranteeing
SLAs is a difficult problem due to the lack of certainty on
the actual QoS values offered by the participating services and

∗ Corresponding author: kristof.geebelen@cs.kuleuven.be

underlying cloud platforms. To assist the BPaaS provider with
this problem, techniques for QoS-aware service selection and
prediction of SLA violations constitute an interesting direction
of research.
Problem Statement. Different classes of service selection and
prediction techniques have been developed in the past. Existing
studies show that their accuracy is still suboptimal and highly
variable depending on a.o. the type of composition and the
services to be composed ([5], [12], [18]). It can therefore be
expected that the choice of the most suitable technique depends
on the particular context and characteristics of the services that
are being composed. However, no practical service composition
framework exists that allows flexible integration with different
prediction and QoS selection algorithms. The existing practical
frameworks are all based on a specific particular prediction
and/or selection algorithms. Moreover, they are closed imple-
mentations that cannot be easily modified with new algorithms.

Approach & Contribution. In this paper we present the
BPELOnRails middleware for on-demand and run-time gen-
eration of customizable BPEL processes in which it is easy to
switch between different prediction and service selection algo-
rithms, even at run-time. The key element of our architecture
is to adopt the model-view-controller (MVC) pattern [14]. The
decision of which services to select can be entirely encapsulated
in a separate controller component that can be implemented by
means of a general-purpose programming language.

This paper has the following contributions: (a) we present a
middleware that allows easy integration of new and existing ser-
vice selection and prediction algorithms to find an assignment
of services to workflow tasks according to a tenant’s requested
functional and non-functional requirements and (b) we show
how these algorithms can be practically integrated on top of
our middleware.
Structure of the Paper. The remainder of this paper is
organized as follows: Section 2 discusses related research and
motivates our work. Section 3 lists the key requirements for the
generic architecture: portability, deployment-time customiza-
tion of business processes, run-time adaptation of business
processes and an open programming model for service selection
and prediction. Section 4 gives an overview of the BPELOn-
Rails middleware architecture and shows how it is used to
perform deploy- and run-time business process customization.
This section also briefly discusses our prototype implementa-
tion on top of OpenESB. Section 5 illustrate our middleware

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55828283?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

by means of a multi-tenant BPaaS for workflows in the health-
care domain. Here we zoom in at how the controller component
can be programmed to implement QoS-aware customizations.
A performance evaluation of the middleware is documented in
Section 6. Finally, Section 7 concludes the paper.

2. Related Work & Motivation
2.1 Related Work

In literature, several works can be found that address the
challenge of QoS-aware service composition. Surveys are re-
ported in [12], [18]. Two popular fields of research in this
domain are QoS-based service selection and QoS prediction.

QoS-based service selection deals with finding an assignment
of services to workflow tasks which maximizes a customer
related utility function. Typically this boils down to the follow-
ing optimization problem: given an abstract composite service
and a set of candidate services with different QoS values for
each task, find a service for each task such that the global
composite QoS value satisfies certain Service Level Objectives
(SLO). Popular techniques in literature to solve this challenge
efficiently are integer programming (Zeng et al., 2004) and
genetic algorithms [4]. These works tackle the composition
problem assuming fixed QoS attributes for the elementary
services. More recent works take into account that in business
environments QoS attributes rarely remain unchanged over
the lifetime of a web process and focus on the stochastic
service composition problem. Wiesemann et al. [21] formulate
the service composition problem as a multi-objective stochas-
tic program which simultaneously optimizes QoS parameters
which are modeled as decision-dependent random variables.
Their model minimizes the average value-at-risk (AVaR) of
the workflow duration and costs while imposing constraints on
the workflow availability and reliability. Other approaches ([1],
[8]) propose a framework for QoS-aware service composition
that does not involve calculating a composite QoS, but support
services selection based on constraints specified on the level
the workflow tasks.

Driven by the fact that QoS attributes, such as response time,
can be very volatile with respect to time, the challenge of QoS
prediction has recently gained popularity. Its main goal is to
bridge the time gap between the service selection process and
the actual execution of the composite service. By predicting
accurate expected values for quality measures in the near
feature, this technique is able to improve the probability that
the selected composition of services, will still respect the SLA
constraints during the execution of the workflow. Related work
is done by Rosario et al. [17]. They propose QoS estimation
based on soft contracts. Soft contracts are characterized through
probability distributions for QoS parameters. Chen et al. [7]
propose a dynamic QoS model to represent the time related
characteristics of QoS, which is used for QoS prediction. In
previous work [10], we also focused on this challenge by
proposing a theoretical framework to predict the violation
probability of an SLA, given the composite service and the
monitored QoS values of the participating services. Also pro-

active QoS monitoring and failure prevention techniques can
be categorized in this research field. Canfora et al. [4] support
runtime replanning if the actual QoS is predicted to deviate
from the required SLA. Leitner et al. [15] propose a framework
called PREvent for event-based monitoring and prediction of
SLA violations and automated runtime prevention by trigger-
ing adaptation actions in service compositions. ProAdapt [3]
(Proactive adaptation of service composition) is an approach for
proactive adaptation of service compositions due to changes in
service operation response time, or unavailability of operations
or services. The approach uses exponentially weighted moving
average (EWMA) to model service operation response time.
Decision for replacement takes into account the predicted
response time and cost values as well.

2.2 Motivation
As discussed above, many algorithms or techniques are

described in literature that address the challenges in QoS-aware
service composition. All of them have their specific advan-
tages and disadvantages depending on the context in which
they are used. Important criteria for preferring one technique
above others are time complexity and accuracy. More complex
algorithms are usually slower but provide more accurate results.
In the context of QoS-Aware service composition this trade-off
depends on the type of composition. For example, for real-
time business processes performance is more important than
for long-running processes, possibly taking several days or
even weeks to complete. For the latter, restarting the process
is usually very costly and choosing an algorithm with a good
accuracy will quickly pay-off. Also the type of services that are
used in the composition can drive the trade-off. This is mainly
the case for prediction algorithms. For example, Geebelen [10]
uses a kernel-based algorithm that is able to take into account
service dependencies and allows the modeling of seasonality
in QoS attributes. The evaluation shows that this technique
performs well on predicting response time violations of com-
positions consisting of services that require human interaction.
These services have a low response time during their fixed
working hours and a high response time outside working hours
and during the weekends. This kind of prediction technique is
however less worthwhile in case of automatic services with
almost random QoS behavior. Another work [5] reports an
empirical study aimed at comparing different QoS prediction
models on time series of response times collected by monitoring
invocations of 10 services for 4 months. Their results show that
the accuracy of a prediction technique depends on the service
that is used. Next to performance related criteria, also the scope
of the technique can be an important selection criteria. For
example, some techniques try to optimize deploy-time service
composition, while others address run-time issues. There are
works that focus on task-level QoS constraints and others try
to enforce global QoS constraints.

As indicated above, no single selection or prediction tech-
nique is suitable for all cases. As such there is a need for
flexible support that enables integration with different selection
and prediction techniques. A limitation of the existing work,

reviewed in Section 2.1, is that a lot of these works are purely
theoretical results that have not been validated in a practi-
cal setting with existing standards-based service orchestration
languages such as WS-BPEL. The little other works, which
have implemented a practical system for QoS-aware service
composition, support one specific selection and/or prediction
technique, require a customized execution engine ([3], [22]),
and, more importantly, are closed implementations ([3], [1],
[8], [22]) that cannot easily be modified or extended with
an alternative technique. In a multi-tenant setting, however, it
is crucial that a BPaaS provider offers high flexibility with
respect to its tenant’s requirements. Therefore, there is need
for an open middleware that is not only able to offer custom-
tailored business processes, but also offers the option to select
an appropriate technique for optimizing the service composition
process. This middleware should thus be open for extensions
to allow an easy integration of new service selection and
prediction techniques.

3. Requirements
We define the key requirements for such an open middleware

for tenant-specific QoS-aware service composition:

Portability - As our aim is to support a practical middleware
that works with standards-based business process execution
languages such as WS-BPEL, we prefer an approach that does
not require modification of the language or the underlying
execution environment. The proposed middleware should be
easily portable between existing orchestration engines and al-
low automatic generation of customized BPEL scripts, tailored
to the needs of individual tenants. To satisfy this require-
ment, it must be possible to compose WS-BPEL scripts from
reusable modular fragments. WS-BPEL, however, has not been
designed with this modularity in mind. Therefore, the proposed
middleware supports a composition approach that combines
annotation-driven generation from abstract process templates
with aspect-oriented modularization principles [6], [13].

Deployment-time customization - Deployment-time cus-
tomization enables to generate a BPEL script, per specific
tenant request, before the process is deployed. Deployment-
time customization is driven by a QoS-aware selection of
participating services and, as we assume that actual QoS values
vary over time, a prediction of the probability that the SLA will
not be violated during process execution.

Run-time adaptation - Runtime implies that the gener-
ated business process should be able to check at developer-
designated checkpoints whether the process is still executing
in accordance with the agreed SLA. If there is a slack and
SLA violation is estimated high, it should be able to trigger a
regeneration of the remaining process execution to an alterna-
tive set of services of which the actual QoS values are better
than the currently selected services.

Open programming model for selection and prediction -
It must be possible to support an open yet disciplined program-
ming model where it is easy to implement different techniques

for service composition generation and run-time adjustment.
The BPaaS provider must be able to easily integrate an appro-
priate selection and prediction algorithms based on a classifi-
cation of which technique is best-suited for which particular
context. The knowledge needed for classifying and mapping
context (business process characteristics, etc.) to appropriate
techniques is out of the scope of this paper.

4. A Middleware for Tenant-Specific
Proactive QoS-aware service composition

In this section we present our middleware that provides a
solution for the requirements discussed above. The middleware
extends our framework presented in [11] with multi-tenancy
support and QoS-aware service composition.

The idea is based on similar evolutions in the domain of
web design. The intent of web design is to create a website
that presents the content to the end users in the form of web
pages. To comply with today’s expectations of end-users, there
is a growing tendency to use dynamic web pages. In contrast
to static pages, where the content and layout is not changed
with every request, dynamic pages adapt their content on the
fly depending on the user’s input. Similar, our middleware
needs to deal with the static character of WS-BPEL scripts
and support the creation of dynamic business processes where
the content is tailored depending on which tenant will execute
the process. We map concepts of dynamic web design to web
service composition. The proposed solution is based on model-
view-controller [14], an architectural pattern frequently used in
Web applications to separate the data model with business logic
from interface to promote reuse and modularization.

4.1 Building blocks: Overview
An overview of the middleware architecture is illustrated in

Figure 1. Based on the tenant’s requirements, the middleware
tailors a standard WS-BPEL process that is deployable on an
existing execution platform. The tenant can execute the process
by creating instances. The main artifacts of the middleware to
configure tenant-specific customizations are the Model, View
and Controller. To perform QoS-aware customizations, the
middleware integrates a QoS Monitor, Predictor or Selector.
We briefly discuss these building blocks:

View (Master Process) - The view or master process is similar
to a regular workflow process and specifies the sequence of
tasks that need to be executed. Instead of including all specific
implementation details, it is designed as a template. When
the concrete implementation of a task depends on certain
constraints, then only a general reference to the type of the
task is included. Binding a concrete implementation to the
task reference is done later by the controller according to the
customization logic. An example abstract task is: invoke an
airline booking service. A possible concrete implementation,
called an aspect, is a WS-BPEL fragment for invoking Brussels
Airlines’ booking service.

Run-time

Adjustment

Feedback

Services

BPEL Process

Running

Instances

Execution platform: shared bpel engine

Controller: Customization Logic

View:

Master Process BPEL Process

Running

Instances

Tenant 1

End

user

End

user

End

user

End

user

End

user

End

user

Customization

Requirements

Aspect LibraryTenant-Related

Data

 Environment- &

 Instance-

Related Data

Tenant 2

Multi-tenant middleware platform

Customization

Requirements

Model:

Reconfiguration Data

Development & Management platform

QoS

 Predictor

Service

Selector

QoS

Monitor

QoS-Aware

 WSC

S1

P1

S2

R

S3

ReB

P2

Data
Deploy

Fig. 1: Overview of the middleware architecture

Model - The model includes an aspect library, tenant-related
data and environment- and instance-related data. The library
contains aspects for the different WS-BPEL activities that can
be modularized as a specific task. All these concrete implemen-
tations of a task are bundled in the library and can be reused
across workflows. An aspect definition represents a coherent
set of basic and structured WS-BPEL activities that realize
a particular functionality. Environment-related data specifies
properties or parameter values that can be used to evaluate
customization logic. An example property is the response
time of services participating in a particular workflow. The
tenant-related data contains information on the requirements of
each tenant which is used to look-up certain constraints when
customizations are performed.

Controller - The controller contains the logic to decide which
aspects are substituted in the master process. It implements the
customization policies that depend on the information available
through the model, i.e. the environment-related data and the
tenant’s requirements. The controller can be implemented using
a general purpose language and thus provides the necessary
intelligence to implement customizations that require complex
algorithms.

QoS Monitor - Quantitative and time-varying QoS attributes
for the available concrete services are collected by the monitor
to compose time series that can be used by the prediction and
selection algorithms. This data is stored in the environment-
related database. A detailed discussion of this component is
not in the scope of this paper.

QoS Predictor - The Predictor contains the algorithms for QoS
prediction. A prediction algorithm uses the monitored data and
a tenant’s non-functional requirements to predict the violation
probability of QoS constraints for a given service composition.

Service Selector - The Selector contains the algorithms for
service selection. Such an algorithm uses QoS values (or pre-
dictions) to efficiently select suitable services for a composition.

4.2 QoS-aware composition methodology
Our goal is to create a composition, compliant with the

requirements of the tenant, using the best available service
selection and/or prediction techniques within the given context.
Figure 2 shows the different steps of this process. The input,
building and output blocks are shown on the left, middle and
right respectively. How these blocks are used in our approach is
illustrated in between. We distinguish two important phases: the
setup, and the actual composition. The latter can be divided in
deploy-time customization and run-time adaptation. We briefly
go over the important steps:

Setup - All elementary services available to the provider are
registered in a repository. (S1) A monitor observes the evolution
of the QoS attributes of these services in time and stores them
in a database. During the setup phase the BPaaS provider has
to perform the following actions: (S2) create aspects containing
the BPEL syntax to invoke the registered services, (S3) develop
a master processes for each composite services he wants to offer
to its tenants, and (S4) implement a controller for each master
process with a deploy and/or run-time customization strategy
using the best suited selection and/or prediction technique for
the given context. For example, the provider can implement a
combination of selection algorithm A and prediction algorithm
B and enforce the results with a deploy-time customization
mechanism to maximize the probability that the process will
respect a given SLA during its execution.

Deploy-time Customization - (D1) After choosing a compo-
sition template (master process) based on abstract services and
specifying his QoS requirements, a tenant can now trigger the
actual composition process. The middleware (D2) parses the
composition request and (D3) executes the controller logic that
belongs to the chosen template in order to tailor a process
according to the tenant-specific requirements. If a suitable
composition can be created, the resulting executable WS-
BPEL process is generated by weaving aspects for concrete
service invocations into the abstract composition. (D4) The
concrete services are selected by the integrated selection and/or

WS-BPEL process /

instance

S2

P3

S5

R8

S7

Re4B8

P6

S

P

S

R

S

ReB

P

Master Process

Tenant-related

Requirements

WS-BPEL

process

Parser

Controller Aspects

Master

Process
Algorithm

WS-BPEL

instance

Tenant

Deploy-time customization &

Run-time adaptation

B uses A
A B

A performs action on B
A B

A B
A produces B

Monitor QoS Data

Controller

Algorithms

Master

Process

Aspects

Services

BPaaS

Provider
(R1)

(D1) (D2)

(D3)

(D5)(D6)

(R4) (R2)

(D4)

QoS

Data

(R3)

OutputInput Setup Building Blocks QoS-Aware Composition

(S3)

(S4)

(S2)

(S1)

P10 P11 P12 ...

Prediction

Services

Selection

Algorithms

Aspects

P

R

S

Re

B

QoS data

RL C RT AV

P

R

S

Re

B

P

R

S

Re

B

P1

R1

S1

Re1

B1

Controller

P10

…

Tenant-related

Requirements

MAX RT = 10 days

MAX C = 460 EUR

RL > 93%

SLA

Fig. 2: QoS-aware composition methodology

prediction algorithm. (D5) The resulting WS-BPEL process is
deployed on the workflow engine. The tenant will be informed
if a composition, with an acceptable chance on fulfilling the
agreement, has succeeded. (D6) After receiving the service
location, the tenant can now use his tailored composition by
creating instances.

Run-time Adaptation - In some scenario’s it is beneficial
to enforce QoS constraints at run-time. For this purpose, the
middleware can substitute participating services during execu-
tion. This approach can be used separately or in combination
with deploy-time customization. Run-time customizations must
be annotated in the master process and are also performed
by the controller. (R1) On fixed points during execution, the
process reports its state to the middleware. (R2) The controller
will reevaluate the tenant-specific QoS constraints, given the
current state (QoS values) of the already executed tasks. (R3)
If there is an indication that the SLA will be violated, a new
service selection and/or prediction can be done to find a new
combination of services for the remaining tasks that is able to
respect the SLA. (R4) In case it is found, the running instance
will be adapted and use the new service invocations.

4.3 Prototype implementation
We used standards-based technologies to build a prototype

of the middleware. The implementation is done on top of the
sun-bpel-engine, a component of the Open Enterprise Service
Bus. OpenESB is a Java based open source enterprise service
bus. The MVC framework we used for the implementation is
the “Ruby On Rails (RoR)” framework [19], known for adding
dynamism to web pages. To support different techniques for
service selection and prediction, the controller can be imple-
mented using a general purpose language. Our middleware is
based on JRuby, a Java programming language implementation
of the Ruby language, and thus natively supports Ruby and
Java implementations. We also provided a component called
“MatlabController” that handles the interfacing with algorithms
written in Matlab. A concrete example on how our approach
integrates QoS-aware composition techniques is illustrated in
the next section.

5. Case Study

5.1 The e-health workflow
Our case study consists of a workflow that realizes a mam-

mography screening program in order to reduce breast cancer
mortality by early detection for women above a certain age (see
Figure 3). The first task of the workflow consists of sending out
invitations to all women that qualify for the program to let a
radiologist take images needed for the screening. Once images
are taken, the radiologist uploads them to the system (task 2).
Next, the image needs to be analyzed by specialized screening
centers. There are two independent readings, represented by
tasks 3 and 4. These readings can be performed in parallel.
In a next step, the two results of the readings are compared.
When the results are identical, there is little doubt that the two
physicians made the same mistake. Therefore it can be assumed
that results are correct and the workflow can proceed with task
5. However, when the results are different, a concluding reading
is performed (task 4’). Once the results of the screening of a
particular screening subject are formulated, a report is generated
(task 5) and different parties are billed (task 6). Finally, a report
is sent to the screening subject and her general practitioner in
task 7. Task 5 and 7 can be done in parallel with task 6.

The application is hosted by a BPaaS provider, a specialized
radiology department. The tenants are other departments of
the hospital, other hospitals, or local general practitioners that
initiate the breast cancer detection workflow on behalf of their
patients, the end-users. Each task in the workflow can be
executed by different services, each having their own QoS.
Depending on the personal preferences of the tenant or end-
user, the requirements for the workflow may differ. The service
composition provider can anticipate on these requirements by
selecting appropriate services to solve each task. An example
customization is where a tenant requires a workflow with a
maximal duration of 10 days, a total reliability higher than 93%
and a cost of no more than 460 EUR. If such a combination of
participating services is possible, our aim is to find and tailor
the workflow on such a per-tenant basis by selecting the most
appropriate technique.

Fig. 3: Example e-health workflow

5.2 Implementing the QoS-aware customization
We show how a BPaaS provider can implement a master

process and its associated controller using an appropriate tech-
nique (deploy- and/or run-time customization) and algorithm
(selection and/or prediction) to realize the scenario discussed
above. To illustrate the openness of our middleware, we zoom
in on how this approach supports easy integration of new and
existing service selection and prediction techniques.

In the master process, abstract service invocations need to
be specified as annotation-like references to controller methods
that implement the customization logic. Two important types
of annotations are “aspect(aspectName, controllerAction)” and
“aspect_dynamic(aspectName, controllerAction)”. The former
is used for deploy-time customization. Using the latter will
insert a callback in the process that contacts the controller
during process execution to perform run-time reselection of
services.

The controller implements the customization logic using
tenant- , environment- and instance-related data. These can
be retrieved from the database using the “get_variable(*)”
method. Returned values depend on the tenant for which
the customization is performed. To use service selection or
prediction, the controller can call any algorithm that requires
input (tenant- , environment-, instance-related data, business
process descriptor, etc.) that can be delivered by our middleware
and produces output that can be enforced using our deploy-
and/or run-time customization mechanisms. Integrating a new
algorithm is done by deploying it within the middleware. If it is
implemented in a supported language (Ruby or Java), it can be
called directly form the controller. Otherwise, our predefined
interfacing components can be used (e.g. “MatlabController”)
or a new one can be implemented.

An example master process and associated controller is
shown in Listing 1 and 2. Due to space limitations, we can
only illustrate a very simple, but intuitive example. However, it
should be clear that the presented constructs offer the flexibility
to model much more complex customization scenario’s. In this
example, the provider opts for using a deploy-time customiza-
tion technique, where services are selected by using a prediction
algorithm that tries to maximize the probability that QoS
constraints will be satisfied during the actual execution of the
workflow (starting on time “ST”). During the tenant-specific
customization process, first the “initialize” method is executed.

This method retrieves the constraints from the database and
calls a prediction algorithm in Matlab. The resulting service
selection is stored in “@result”. Next, the parser executes the
methods that weave the aspects in the master process. This
is done using “insert_snippet” with as parameter the aspect
name. The aspects are named in such a way that the last
number corresponds with the service numbers that are used by
the algorithm. As such, those aspects are selected that contain
the invocation syntax for the services that resulted from the
prediction.

Listing 1: Master process
1 < p r o c e s s name=" e−h e a l t h ">
2 <!−−# a s p e c t (EHealth , i n i t i a l i z e ({ ’ processID ’ => ’ e−hea l th ’ }) #−−>
3 . . .
4 < sequence >
5 . . .
6 <!−−# a s p e c t (EHealth , i n s e r t P o s t 1 () #−−>
7 . . .
8 <!−−# a s p e c t (EHealth , i n s e r t B i l l i n g () #−−>
9 . . .

10 </ sequence >
11 </ p r o c e s s >
12 < / a s p e c t >

Listing 2: Controller logic
1 @ r e s u l t
2 def i n i t i a l i z e (p roces s ID , *)
3 ST = g e t _ v a r i a b l e (s t a r t _ t i m e)
4 C = g e t _ v a r i a b l e (c o n s t r a i n t s)
5 @ r e s u l t = M a t l a b C o n t r o l . e v a l (" kqoa (p roces s ID , ST , C) ")
6 end
7 def i n s e r t P o s t 1 (*)
8 i n s e r t _ s n i p p e t (" invokeP1 " + @ r e s u l t [1])
9 end

10 . . .
11 def i n s e r t B i l l i n g (*)
12 i n s e r t _ s n i p p e t (" invokeB " + @ r e s u l t [7])
13 end

6. Evaluation
The goal of this evaluation is to quantify the performance

overhead of the different steps is the composition process. Our
experimental setup consists of the abstract e-health workflow
described in Section 5.1. For each abstract task, there are
several candidate services that can execute the task. Each
service has its own quality of service characteristics, which
vary in time. In this evaluation, we focus on two QoS attributes:
response time (RT) and availability (AV), which will be used
to evaluate deploy-time customization and run-time adaptation
respectively. Services, workflow and middleware were all de-
ployed on an Ubuntu, Intel Core 2 Duo @ 3.16 GHz, 3.2 GiB
RAM desktop.

6.1 Deploy-time customization
We consider a scenario where the middleware will try to

tailor a service composition at deploy-time, depending on the
tenant’s required response time (RT) and the planned start time
of the execution. The goal is to keep the actual response time
of the workflow execution below the required one. When the
middleware predicts that no such composition can be created,
the composition request is rejected. If the composition request
is accepted, the resulting composition is immediately executed
by the end-user. The prediction algorithm that is used by the
controller is a Kernel-Based Quantile Estimator with Online
Adaptation of the Constant Offset (Geebelen et al., 2011).

Performance is measured by decomposing the overhead
introduced by each component used in the composition process.
The average performance overhead introduced by the middle-
ware to make a deploy-time customization for this scenario was
approximately 100 ms. 9% is caused by parsing the tenant’s
composition request (step (D2) in Figure 2). 9% overhead is
caused by evaluation of the customization logic (step (D3)).
It takes 12% of the overhead to predict the response time
for 1 profile (step (D4)). This assumes that the prediction
algorithm is already trained on historical data points. This
takes approximately 400 s, but can be done off-line. To create
the final composition according to the profile introduces 70%
overhead (step (D5)).

6.2 Run-time adaptation
To evaluate run-time adjustments, we consider a similar

scenario as in [9]. The radiology task can be completed by
three candidate services (R1, R2 and R3). We implemented
each of these services so that occasionally a service becomes
unavailable for a random amount of time. The frequency
and amount of time of unavailability are chosen according
to uniform distributions so that the theoretical availability for
R1, R2 and R3 matches 75%, 85% and 95% respectively. The
middleware selects another radiology center at run-time if the
current is unavailable. With this technique, the composition is
thus only unavailable after 3 tries, when all three candidates
are unavailable. The performance overhead introduced by the
middleware to make these run-time customizations was ap-
proximately 460 ms. 16% is caused by enabling persistence
during workflow execution. Persistence is required by our
prototype implementation to enable run-time adaptations. It
slows down the execution of the process because the process
state is regularly saved to a persistence database. It takes 22%
of the overhead to feed back to the middleware to trigger the
customization (step (R1) in Figure 2). 2% overhead is caused
by evaluation of the customization logic (step (R1&R3)). Each
time the process needs to be recovered to use another radiology
service (step (R4)), it takes another 275 ms (60% of the
overhead).

7. Conclusion
In this paper, we presented an open middleware where

a cloud provider can implement context-specific QoS-aware
customizations using different techniques and algorithms. The
architecture is based on the model-view-controller principle.
Based on tenant-, environment-, and instance-related data
(Model), the middleware tailors a process from a shared com-
position template. The shared composition template, called a
master process, is designed as a regular WS-BPEL process
where tasks can be specified on an abstract level (View).
Concrete implementations, modeled as aspects, are selected
according to the customization logic using the best suited
service selection and/or prediction algorithm (Controller). The
middleware, implemented using standards-based technologies,
(1) supports deploy- and run-time customization of WS-BPEL

processes, (2) offers flexibility to integrate QoS-aware selec-
tion and prediction techniques as the enforcement logic is
implemented in a general purpose language, and (3) is easily
portable to different execution environments. To evaluate our
middleware, we applied our approach on a case-study in the
health-care domain. Our measures confirmed that both deploy-
and run-time QoS-aware composition introduce an acceptable
performance overhead.

References
[1] Agarwal, V. & Jalote, P. (2010). From Specification to Adaptation: An Integrated

QoS-driven Approach for Dynamic Adaptation of Web Service Compositions, In:
IEEE International Conference on Web Services, 2010, pp. 275-282

[2] Anstett, T., Leymann, F., Mietzner, R., Strauch, S. (2009). Towards BPEL in
the Cloud: Exploiting Different Delivery Models for the Execution of Business
Processes. In: IEEE Congress on Services - I.

[3] Aschoff, R. & Zisman, A. Kappel, G.; Maamar, Z. & Motahari-Nezhad, H. (2011).
QoS-Driven Proactive Adaptation of Service Composition, In: Service-Oriented
Computing, Springer Berlin/Heidelberg, 7084, pp. 421-435

[4] Canfora, G.; Di Penta, M.; Esposito, R. & Villani, M. L. (2005). An approach
for QoS-aware service composition based on genetic algorithms. In: Proc. of the
Conference on Genetic and evolutionary computation, ACM, pp. 1069-1075

[5] Cavallo, B., Di Penta, M. & Canfora, G. (2010). An empirical comparison of
methods to support QoS-aware service selection. In: Proc. of the 2nd International
Workshop on Principles of Engineering Service-Oriented Systems, pp. 64-70

[6] Charfi, A. & Mezini, M. (2004). Aspect-Oriented Web Service Composition with
AO4BPEL, In: European Conference on Web Services, pp. 168-182

[7] Chen, L.; Yang, J. & Zhang, L. Kappel, G.; Maamar, Z. & Motahari-Nezhad, H.
(2011). Time Based QoS Modeling and Prediction for Web Services, In: Service-
Oriented Computing Springer Berlin / Heidelberg, 7084, pp. 532-540

[8] Christos, K.; Vassilakis, C.; Rouvas, E. & Georgiadis, P. (2009). QoS-Driven
Adaptation of BPEL Scenario Execution, In: IEEE International Conference on
Web Services, 2009, pp. 271-278

[9] Erradi, A., Maheshwari, P. and Tosic, V. (2006). Policy-Driven Middleware for Self-
Adaptive Web Services Composition. In: Middleware 2006, Springer, LNCS, Vol.
4290, pp. 62-80.

[10] Geebelen, D., Geebelen, K., Truyen, E., Michiels, S., Suykens, J.A.K., Vandewalle,
J., Joosen, W. (2011). QoS Prediction for Web Service Compositions Using Kernel-
Based Quantile Estimation with Online Adaptation of the Constant Offset. Working
paper at ftp://ftp.esat.kuleuven.be/sista/dgeebele/www2011.
pdf.

[11] Geebelen, K., Kulikowski, E., Truyen E., and Joosen W. (2010). A MVC Framework
for Policy-Based Adaptation of Workow Processes: A Case Study on Confidentiality.
In: IEEE International Conference on Web Services, pp.401-408.

[12] Xianglan H., Yangguang L., Bin X. and Gang Z. (2011). A Survey on QoS-
Aware Dynamic Web Service Selection. In: Proc. of 7th International Conference on
Wireless Communications, Networking and Mobile Computing (WiCOM), pp.1-5

[13] Karastoyanova, D. & Leymann, F. (2009). BPEL’n’Aspects: Adapting Service
Orchestration Logic, In: IEEE International Conference on Web Services,
pp. 222-229

[14] Krasner, G.E., and Pope, S.T. (1988). A Description of the Model-View-Controller
User Interface Paradigm in the Smalltalk-80 System, tech. report, ParcPlace Sys-
tems, Mountain View, Calif.

[15] Leitner, P.; Michlmayr, A.; Rosenberg, F. & Dustdar, S. (2010). Monitoring,
Prediction and Prevention of SLA Violations in Composite Services. In: IEEE
International Conference on Web Services, pp. 369-376

[16] Mell, P., Grance, T. (2011). The NIST Definition of Cloud Computing. National
Institute of Standards and Technology (NIST). Special Publication 800-145 (Draft).

[17] Rosario, S., Benveniste, A., Haar, S., Jard, C. (2008). Probabilistic QoS and Soft
Contracts for Transaction based Web Services. IEEE Transactions on Services
Computing 1 (4), pp. 187-200.

[18] Strunk, A. (2010). QoS-Aware Service Composition: A Survey. In: IEEE 8th
European Conference on Web Services (ECOWS), pp. 67-74

[19] Thomas, D.,Hansson, D.,Breedt, L. and Clark, M. (2007). Agile Web Development
with Rails, 2nd Edition.

[20] Wang, M., Bandara, K. Y., and Pahl, C. (2010). Process as a Service - Distributed
Multi-tenant Policy-based Runtime Governance. In: IEEE International Conference
on Services Computing. IEEE Computer Society, pp. 578-585.

[21] Wiesemann, W., Hochreiter, R., Kuhn, D. (2008). A Stochastic Programming
Approach for QoS-Aware Service Composition, In: Int. Symposium on Cluster
Computing and the Grid, CCGrid 2008, Lyon, France, pp. 226-233.

[22] Zeng, L., Benatallah, B., Ngu, A. H. H., Dumas, M., Kalagnanam, J., and Chang, H.
(2004). QoS-aware middleware for web services composition. In: IEEE Transactions
on Software Engineering, vol. 30, no. 5, pp. 311-327.

