
Distributed aspect-oriented service composition for business compliance governance
with public service processes

MingXue Wang, Kosala Yapa Bandara and Claus Pahl
Dublin City University, Ireland

[mwang‖kyapa‖cpahl]@computing.dcu.ie

Abstract—Service-Oriented Architecture (SOA) offers a
technical foundation for Enterprise Application Integration and
business collaboration through service-based business compo-
nents. With increasing process outsourcing and cloud comput-
ing, enterprises need process-level integration and collaboration
(process-oriented) to quickly launch new business processes
for new customers and products. However, business processes
that cross organisations’ compliance regulation boundaries are
still unaddressed. We introduce a distributed aspect-oriented
service composition approach, which enables multiple process
clients hot-plugging their business compliance models (business
rules, fault handling policy, and execution monitor) to BPEL
business processes.

Keywords-Web service composition; Process-oriented; Aspect-oriented;

Business compliance; Rule; Constraint; Fault handling policy;

I. INTRODUCTION

The business service and process technology can enable
the integration of service-based business components for
complex business goals. Organisations often have internal
(private) business processes, as adopting processes from
outside organisations (public) often restricted by their busi-
ness compliance concerns [15]. However, with demand of
borderless enterprises and embracing of cloud computing,
the ’process-oriented’ paradigm is emerging as a key re-
quirement [15], [17].

A business process describes an automated workflow of
an organisation. The organisation as a business entity is
obliged to conform to business regulations [21], [14], e.g.
business practices, policies, agreements, etc. With private
business processes, the organisation is in charge for the
process development and deployment. The organisation’s
regulations will be considered during process development.
The process ensures compliance with regulations.

With business process outsourcing and cloud computing
[11], [15], organisations are looking for existing external
processes (external process providers) to quickly adopt new
business and also save costs on process development and
maintenance. The same process from a process provider
is expected to serve multiple clients, just same as a Web
service can be invoked by multiple service clients. We call
this process a public business process. It is decoupled from
the process clients. However, it is problematic to address
business compliance for multiple clients.

Due to the dynamic nature of businesses, their regulations
are constantly changing. Frequently updating business reg-
ulations is a must for process clients to support quick adap-
tion to real-time business situations. Therefore, to address
business compliance restriction within public processes, we
define the following key requirements to enable a process-
oriented solution:

• Business processes are decoupled from organisation
and application, accessible for multiple process clients.

• Business processes can deal with any clients’ business
regulations and comply with accepted regulations.

• Business regulations can be defined and updated by
process clients without changing the business process.

In this paper, we introduce a novel approach - a dis-
tributed aspect-oriented service composition architecture,
which allows process clients to address business compliance
problems (business rule integration, fault handling, execution
monitor) on public business process requests. We introduce
a BPEL instrumentation mechanism which transforms the
original process to an aspectual business process. Combined
with a weaving mechanism, we allow clients hot-plugging
their business compliance governance models through en-
capsulation as different aspects. In addition, our approach is
BPEL engine-independent for process providers.

This paper is structured as following. In first section,
we study the business compliance solution components for
private business processes, then analyse the challenge with
public process. In section two, we introduce our concept
design with AOP and the architecture overview. We detail
the prototype design and implementation in section four.
Finally, we discuss related works and give conclusions.

II. A BUSINESS SCENARIO AND PROBLEM ANALYSIS

Business compliance is a major concern today. Cur-
rent research addresses applying business regulations for
business processes [24], [5], [22], [6], [23], [25], though
these approaches are designed for private process used in
conversional SOA. To leverage these achievements, we have
present the problem in different solution components: busi-
ness rule and fault-handling policy components to manage
business regulations; execution monitor component to cap-
ture process behaviours for validating business regulations.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11310037?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1. Bill payment business process scenario

An example shall be based on a utility bill payment pro-
cess for multiple process clients (post offices, convenience
shops, etc.). Customers pay an amount of money for a bill
at any of the process clients. The process clients charge a
fee to the utility company for the customer service.

A business process can be modelled in terms of func-
tional and non-functional requirements [21]. This includes
capturing a set of business tasks that model the functional
behaviour of business requirements, but also non-functional
requirements referring to business regulations to be complied
to. Figure. 1 shows a public process from a provider, where
business regulations have to be addressed for each client. For
example, a process client (convenience shop) policy requires
a max amount for each payment (3000). Another process
client (bank) want to use its own online transfer services.

Business rules A business rule is a statement that defines
or constrains some aspect of a business; The intent of a
business rule is to control or influence some aspect of a
business through the imposition of structure [10]. Business
rules formalize business regulations in a rule language [24],
[14] and are managed by business rule management systems
separately from the application logic. [24], [22] categorise
business rules. These different types of rules allow that
business regulations within in the safe boundary of the
business be expressed as if-then business decisions.

Constraint rules represent assertions that must be satisfied
in all states, considered as ’exception rules’. It defines the
safe boundary of the business to restrict business behaviours.
Violating any constraint indicates a business fault situation,
e.g., If amount of payment > 3000, then violation of constraint.

Derivation rules are statements of knowledge that is
derived from other knowledge by inference or calculation for
on-demand needs. For example, for a service fee agreement,
If payment amount <= 500 , then service fee for utility company
is 3%, else is fixed to 20.

Reaction rules trigger actions when certain conditions
are met. It defines additional actions needed in specified
conditions, e.g., If a payment more than 1000, then log customer
information is required for a client’s policy.

With a private process development, business rule com-
ponents of an organisation are fixed in the process. This
approach only allows rule components integration during
process development and is not suitable for a public process.
The process needs to be dynamically integratde with rule
components of an arbitrary process client.

Fault handling policy integration Faults are defective
states of a system and root causes of failures. Unrepaired
fault may lead to subsequence failure. For business pro-
cess, faults are not just technical (runtime) faults, but also
business-related faults caused by violations of constraint
rules. It is up to the business to decide what remedies need
to be applied when the faults occurs, which are defined in

a fault handling policy as a type of business regulation for
the business outside a safe boundary (constraint rules define
the safe boundary). This policy defines the business actions
be taken outside the boundary.

With a private process, static remedial strategies defined
in the fault handling policy are embedded in the process
during development. With a public process, it is impossible
to pre-embed any static remedial strategies. Since different
process clients may have different remedial strategies for the
same fault scenarios. The process is expected to dynamically
apply a remedial strategy for its clients.

Execution monitoring Constraint rules are commonly
used as safeguards, e.g. QoS constraints for service-level
agreements (SLA). In business processwa, these constraints
are not only (global) process-level, but also local-level
constraints on a single service [4], e.g., high reliability is
wanted for the online transfer service. Since Web services
are executed in dynamic Web environments, behaviour of
service is changes frequently. It has to been monitored at
runtime for accurate constraint validation.

Applying monitors on private processes is not difficult.
Since public processes are executed at the process provider
side, it is impossible to apply the monitors for single services
from process clients. The process provider may be able to
provide his own monitoring, but trust and accuracy issues
arise [18]. Additionally, with multiple process clients, the
client needs client-specific and not averaged data. Hence,
process clients expect to be able to apply their own mon-
itoring mechanism for any service of the process to give
real-time accurate service profile data.

III. A DISTRIBUTED ASPECT-ORIENTED SERVICE
COMPOSITION ARCHITECTURE

Aspect-Oriented Programming (AOP) is a programming
paradigm that increases modularity by allowing the sep-
aration of cross-cutting concerns. An aspect is a modu-
larization of a concern that cuts across multiple objects.
Future modifications of these concerns are within the module
only. Using AOP, we encapsulate our problems (business
rules, fault handling, execution monitoring) as crosscutting
concerns of a business process. We allow process clients to
implement the aspects as they want to bring the maximum
process governability to clients without requiring the process
to change with changing aspects.

A. Aspectual business process

Join pont, Pointcut and Advice are key concepts intro-
duced by AOP to enable modularisation of crosscutting con-
cerns. Join points are well defined points during execution
where crosscutting code can be applied, e.g. calling a method
or reading a field. A pointcut is declared to specify where
and when to apply the advice; it selects a set of join points.
An advice is the implementing crosscutting code, applied to
a declared pointcut. We apply these concepts in a business

process as follows. To define a join point model of a business
process, we break the process down into different basic
business elements, which represens the business information
of the process.

• Business activity is an implementation of a business
task. A process contains a set of business tasks invoked
in a specific sequence to achieve a complex goal. In
service processes, a business activity is accomplished
by invoking an operation of a Web service.

• Data/Business object is a collection of attributes for
a business entity, e.g. order or bill. Data objects, pro-
cessed by business activities, form the information flow
of the process. For example, a data object (Bill) is
getting updated via bill request activity in the process.

• Business faults are business events where a fault situa-
tion occurs during the process execution. This includes
both runtime and business aspect faults.

The following table shows basic pointcut declarations for
a business process. The signature is used to match a range
of services operations, message elements, and faults.

Pointcut Description
Invoke (Web service operation signa-
ture)

Select joint points whenever the spec-
ified business activity is executed.

Process(message element signature) Select joint points whenever the spec-
ified data object is processed.

Handle (fault signature) Select joint points whenever the spec-
ified business fault is occured.

There are two different types of advice for business activ-
ity and data object pointcuts: Before and After. It tells when
to apply the advice, i.e. executing the advice code before or
after the pointcut. In other well-known AOP frameworks for
Java programming, such as AspectJ [1] and SprintAOP [2],
they also include a third advice type: Around, which we do
not support, but can be achieved by a combination of before
and after advice here. For replacing, we allow business
services to be replaced in extreme conditions (business
faults). This can be achieved with fault-related aspects. In
fact, skipping is only function which we can not achieve
currently. However, in service processes, the pre-executed
Web services generally provide data required as input for
subsequent services. Skipping is feasible only very rarely.

B. Architecture overview

With distributed aspect-oriented service composition (Ta-
ble I left), the process provider offers the business process,
where the process client is responsible for aspect design
and implementation. The business compliance solution com-
ponents are encapsulated as aspects of the process. These
aspects will be dynamically integrated with the process when
the process is requested by the client.

A process instrumentation component is a core component
on the provider side to enable this distributed collabora-
tion. The instrumentation transforms the original process
to an AOP-enabled BPEL process before deploying it in
any execution engine. The instrumented process is able to

communicate with the weaving component (weaver) on the
client side, which enables dynamic aspect integration.

With this design, the business compliance model is com-
pletely separated out from (functional) process workflow.
The core concept of our architecture is to enable a hot
plugging of the business compliance model with the work-
flow model. There is no interruption to process execution
by changing or replacing business compliance models. The
architecture supports three different implementation patterns
(Table I right) for meeting various business scenario needs:

• Client driven pattern The business compliance models
are implemented by process clients. Each process client
freely defines their own business regulations for the
business process. We have detailed this pattern as our
business scenario - section 2.

• Provider driven pattern The compliance models are
implemented by the process provider. The process
provider defines regulations for different process
clients. For example, in a scenario with internal clients
of a large organisation, several compliance models for
different regional branches have different regulations.

• Hybrid (Client&Provider) driven pattern The business
compliance models are implemented by both clients
and provider. A sample scenario: additional of organisa-
tion self-using, it also provides excrescent computation
resource for external customers.

IV. DESIGN AND IMPLEMENTATION

With distributed AOP on a public process, the process
does not know where (pointcut), when (before, after), and
who (client) would has what (advice). The advice could be
everywhere from different clients. One purpose of process
instrumentation is exposing every crosscut point of the
process to the clients during the execution. The client side’s
weaver is responsible for matching aspects with these cross-
cut points. There three different types of crosscut service are
instrumented in the original process to expose all crosscut
points.

To establishing a communication between the processes
and weaver. The process clients need to provide the weaver
Web interface. This means in each process request, the
client needs to give request message data additional with the
weaver interface data (Table below). The serviceReference
contains the communication data allows the crosscut services
dynamicly invoking the weaver. In case of the serviveRef-
erence is empty, or the weaver is inaccessible, the crosscut
services will be simply ’ignored’. This means the instru-
mented processes are still workable for conversional service
approach, which do not have compliance requirements and
implementations.

In following sub sections, we will detail aspects associate
with three defined types of business element through process
execution. Section 4.1 details both business activities and
data objects are governed by business rules where within

(1) Client driven pattern
(2) Provider driven pattern
(3) Hybrid driven pattern

Table I
ARCHITECTURE OVERVIEW (LEFT) , IMPLEMENTATION PATTERNS (RIGHT)

<utilityBillPayRequest>
Message data:
<bill>...</bill>

</utilityBillPayRequest>

<utilityBillPayRequest>
Weaver interface:
<serviceReference>...<serviceReference>
Message data:
<bill>...</bill>

</utilityBillPayRequest>
Conversional process request Process request with business compliance

Figure 2. Instrumentation template of before crosscut service

the safe boundary of the business, additional with service
monitor. Section 4.2 details that the fault handling policy
takes control of the process when it is outside the safe
boundary, i.e., a business fault occurs.

A. Aspects associate with business activity and data object
join points

1) BPEL instrumentation with before/after crosscut ser-
vice: A before crosscut service is instrumented in the
crosscut point before each business service of the process. It
is responsible for before advice related with business activity
and data object joint points, which are interested for business
rules. Figure. 2 shows the instrumentation template of before
crosscut service for each business service of the process.

The before crosscut service takes the current crosscut
information and client’s weaver interface as input, then
sent the crosscut information to the weaver. The crosscut
information includes the joint points data (business activity,
data object) and advice type data. In this case Figure. 2,
the business activity is a bill request service in the Process,
the message billRequest is a data object bill, and the advice
type is before. The response of weaver is a possible updated
data object, and a possible list of constraint violations
(violationData). The violationData is consisted of the current
business activity data, and a list of violated constraint types.
For a complete list of business constraint type in [25].

A BPEL Assign is the first activity after the crosscut
service. It copys the updated data object back to the business
service request parameter (billRequest), which is ready for
the business service (bill request service) execution.

After the Assign is a BPEL If control structure. It checks
if the violation message data is empty, i.e., if any constraint
is violated in this crosscut. If it is not empty, the violation
data will be copied to a defined BPEL Exception (Cos-
ntraintViolation), and be thrown by a BPEL Throw activity
- A business fault occurs. We will detail this in later section.

A corresponding after crosscut service is instrumented
after the business service. It is responsible for after advice
with business activity and data object. It is almost same as
before crosscut service, except it has after advice type in
weaver request.

2) Aspects defining and weaving: One key step in AOP
is weaving. After a set of aspects are defined for the target
program, the weaving process introduces the advice codes

at the captured join points of the target program. With our
approach, the weaving is performed at runtime during the
process execution by the weaver. With each request from the
crosscut service, the weaver matches received crosscut point
information with defined aspects’ information (point cut, and
advice type). If any aspect is matched, the contained advice
code will be executed.

Following code are aspect examples show three types
of business rule implementations. With our framework,
each aspect is implemented as a Java class. The pointcut
and advice type metadata of a aspect is defined in Java
annotation, which retrieved by Java reflection. An additional
XML file defines aspects associate with a process. The
advice method has following interface standard. It takes
defined point cut (service operation and/or message element)
as input, and return an adviceReponse. The adviceReponse
includes message element and a set constraint violations.
@Aspect
p u b l i c c l a s s B i l l R e q u e s t S e r v c i e S e c u r i t y C o n s t r a i n t{

@Pointcut (” i nv ok e (b i l l R e q u e s t) ”)
@Before
p u b l i c AdviceResponse c h e c k S e r v c i e S e c u r i t y (S e r v i c e R e f e r e n c e s r){

/ / −−−−− C o n s t r a i n t r u l e example−−−−−−−
/ / (d e f r u l e b i l l R e q u e s t S e r v i c e−s e c u r i t y
/ / (S e r v i c e R e f e r e n c e (u r l ” h t t p : / / l o c a l h o s t : 8 0 8 0 / b u s i n e s s S e r v i c e /
/ / u t i l i t y B i l l P a y S e r v i c e ? wsdl ”))
/ / (S e r v i c e R e f e r e n c e (o p e r a t i o n ” b i l l R e q u e s t ”))
/ / (S e r v i c e P r o f i l e {s e c u r i t y < 3})
/ / => add (new C o n s t r a i n t V i o l a t i o n T y p e ”SECURITY ”)))
r e t u r n a d v i c e R e s p o n s e ; / / r e t u r n maybe i n c l u d e a v i o l a t i o n t y p e
}

}

@Aspect
P u b l i c c l a s s Se r v i c e Fe e Ag r e em e n t{

@Pointcut (” i nv ok e (b i l l R e q u e s t) && p r o c e s s (b i l l) ”)
@After
p u b l i c AdviceResponse g e t S e r v i c e F e e (S e r v i c e R e f e r e n c e s r , B i l l b i l l){

/ / −−−−−−−− D e r i v a t i o n r u l e example−−−−−−−−
/ / (d e f r u l e s e r v i c e F e e−c a l c u l a t o r
/ / ? b <− (B i l l) =>
/ / (i f (<= ? b . amount 500)
/ / t h e n (add (new S e r v i c e F e e (∗ ? b . amount 0 . 0 3)))
/ / e l s e (add (new S e r v i c e F e e 2 0))))
b i l l . se tAmount (b i l l . getAmount − s e r v i c e F e e) ;
r e t u r n a d v i c e R e s p o n s e ; / / r e t u r n i n c l u d e s a u p d a t e d b i l l message

}
}

@Aspect
P u b l i c c l a s s LogLargeAmountRule {

@Pointcut (” i nv ok e (b i l l R e q u e s t) && p r o c e s s (b i l l) ”)
@Before
P u b l i c AdviceResponse logLargeAmount (S e r v i c e R e f e r e n c e s r , B i l l b i l l){

/ / −−−−−−−− R e a c t i o n r u l e example−−−−−−−−−
/ / I f b i l l . amount >= 1000 , t h e n c a l l l o g (b i l l + c u r r e n t T i m e)
r e t u r n a d v i c e R e s p o n s e ; / / r e t u r n a lways empty (n u l l)

}
}

The first aspect example shows a pre-condition constraint
rule applied for a business service. The rule is described
by Jess rule language, as Jess rule engine [3] is used in
our prototype development. If the service fails to meet the
minimal constraint requirement, a constraint violation type
will be returned. Second aspect is a derivation rule example;
the service fee for the payment is deducted. The reaction rule
is in lasted example, which triggers a log action.

Although, the last example we have demonstrated the pos-
sibility of integrating reaction rule. But the reacted actions

must be executed within client side; it is Not a business
activity will be included in the process on the provider
side. It is hard to allow reacting a business activity on a
public process. Where, in a private business process, possible
reacting activities are pre-embedded into the process during
the development, by If or Switch BPEL control structures.
For public process, it is unfeasible to pre-embed all business
services.

Regarding with execution monitoring, by same strategy,
the service client can trigger monitoring action before and
after for any Web services. For example, get service perfor-
mance data by collecting start and stop time.

Following code shows the weaving algorithm for be-
for/after crosscut service. For each matched aspect, i.e., both
pointcut and advice type are marched, the advice method
of the aspect will be executed. If the adviceResponse of a
executed advice is not null, then the weaver response will be
updated. After all matched aspects are executed, the weaver
response will be sent back to crosscut service.
b e f o r e A f t e r C r o s s c u t W e a v i n g (weave rReques t){

weaverResponse . d a t a O b j e c t = weave rReques t . d a t a O b j e c t ;
For each a s p e c t d e f i n e d f o r c u r r e n t p r o c e s s

I f (p o i n t c u t M a t c h i n g (a s p e c t . p o i n t c u t , weave rReques t . p o i n t c u t) &&
adv iceTypeMatch ing (a s p e c t . adviceType , weave rReques t . adv iceType))

adv i ceReponse = a s p e c t . a d v i c e (p o i n t c u t) ;
end i f
I f adv i ceReponse . d a t a O b j e c t != n u l l

MessageUpdate (weaverResponse . d a t a O b j e c t , adv i ceReponse . d a t a O b j e c t) ;
end i f
I f adv i ceReponse . v i o l a t i o n D a t a != n u l l

addNewViola t ionType (weaverResponse . v i o l a t i o n D a t a , adv i ceReponse . v i o l a t i o n T y p e) ;
end i f

end f o r
re turn weaverResponse
}

B. Aspects associate with business fault join points
1) BPEL instrumentation with handler crosscut service:

The handler crosscut service is quite different with be-
fore/after crosscut service. It is instrumented inside a BPEL
fault handler Catch for exposing the crosscut point, where a
business fault (constraintViolation) occurs (Figure. 3). The
BPEL fault handler is responsible for catching the fault,
which is interested for the fault handling policy.

Figure 3. Partial instrument template of handler crosscut service
Unlike the before/after crosscut service, the handler cross-

cut service requires receive complex actions rather than up-
dated message and violation data. This because that various
remedial strategies defined by a fault handling policy are
required to be applied directly on process execution. In this
case, the response of weaver for handler crosscut service
is a selected remedial strategy. A complete instrumentation
temple is able to apply any return remedial strategy on the
process execution, we have shown this in our previous work
[25]. In this work, we only offer three types of remedial
strategy: Ignore the fault, Retry the fault service, Replace
the fault service with an alternative service. In [25], we also
include a Recompose strategy, which discard the current fault
process and establish an alternative process. However, this
is not available in case, as a public process is shared with
other process clients.

2) Aspects defining and weaving: The aspect is also
defined as a Java class (see below). In following example,
the declared pointcut matches all types of faults, as we want
all faults be handled. The advice method takes defined joint
point (constraint violations) as input. It searches the fault
handling policy and fault log database, returns a remedial-
Strategy for the type of constraint violation.
@Aspect
P u b l i c c l a s s F a u l t H a n d l i n g P o l i c y I n t e r g a t i o n{

@Pointcut (” h a n d l e (∗) ”)
P u b l i c r e m e d i a l S t r a t e g y f i n d A R e m e d i a l S t r a t e g y (S e r v i c e R e f e r e n c e s r ,

c o n d i t i o n T y p e c t , V i o l a t i o n T y p e v t){
D e f a u l t r e m e d i a l S t r a t e g y = I g n o r e ;
S ea rc h f a u l t p o l i c y and e x e c u t i o n l o g
r e t u r n r e m e d i a l S t r a t e g y ; / / r e t u r n a r e m e d i a l s t r a t e g y

}
}

The aspect will be executed for each type of constraint
violation. In case of more than one constraint are violated,
i.e., the violationData includes more than one constraint
violation type. The only most severity remedial strategy
(Replace>Retry>Ignore) will be return by weaver finally. Below
is the weaving algorithm for the handler crosscut service.

Hand le rCros scu tWeav ing (weave rReques t){
I n i t i a l r e m e d i a l S t r a t e g y S e t ;
For each v i o l a t i o n i n weave rReques t . V i o l a t i o n D a t a

For each a s p e c t d e f i n e d f o r c u r r e n t p r o c e s s
I f p o i n t c u t M a t c h i n g (a s p e c t . p o i n t c u t , v i o l a t i o n)

r e m e d i a l S t r a t e g y = a s p e c t . a d v i c e (p o i n t c u t) ;
end I f
r e m e d i a l S t r a t e g y S e t . add (r e m e d i a l S t r a t e g y) ;

end For
R e tu rn g e t M o s t S e v e r i t y R e m e d i a l s t r a t e g y (r e m e d i a l S t r a t e g e S e t) ;

}

V. RELATED WORK

Work in the context of business compliance mainly ad-
dresses the problems of private business processes. Although
the ultimate goal of our work is different to the work we
compare to, but we believe this provides considerable useful
information from technical implementation aspects.

Business rules and fault handling [22] provide a dis-
tributed business rules architecture - VIDRE - implementing
a service interface (following the JSR 94 standard) to allow
a process client to manage the business rule remotely. It
does not allow adding business rules to an arbitrary business
process. [6], [23] allow developers to define fault handling
policies. First, this implementation require a customized
BPEL engine to enable this feature. Second, how multiple
policies work for one process has not be addressed.

SOA and AOP [5], [9] implement AOP extensions for the
ActiveBPEL engine, which offer a framework (Dynamo) to
monitor constraints. The fault handling policies are required
to be defined in a specific recovery language. However,
the process requires be recompiled for any rule or policy
change. [12], [13] implement an AOP extension with IBM’s
BPWS4J engine. The advice in the approach (AO4BPEL)
is a BPEL activity defined by BPEL-like XML document.
This work focuses on dynamic changes of the process
workflow by adding/deleting BPEL actives (aspects) rather
than business regulation centric concerns. In [20], an AOP
feature is implemented for three BPEL engines through
different engine adaptors, focussing on enhancing process

performance (service adaption) and flexibility (message me-
diator) specifically with regard to partner service interaction.

In the above AOP work, AOP features are implemented
at BPEL engine level, limited to a particular BPEL engine.
As our approach is designed on top of Web service and
BPEL standards, we do not have such limitations. Different
BPEL engine deployment descriptor generators are, how-
ever, required. In these works, aspects are only available be
implemented at the provider side. In our approach, aspects
of business compliance models can be implemented by both
client and provider. Hence, our architecture supports three
different implementation patterns (section 3).

VI. CONCLUSIONS

Business compliance problems in public business pro-
cesses need a flexbile, process-oriented soluation. We have
introduced a distributed AOP architecture that decouples
the process from the organisation, enabling the process
to work for multiple organisations’ business compliance
requirements. We have presented a BPEL instrumentation
and a weaving mechanism, which allows distributed and
platform-independent architectures to be implemented.

Our future work includes improving the prototype to
support rich pointcut language. It includes more complex
relation operators for join points, such as, Not Equal(!=),
Or(||), etc. We currently only support the And (&&) relation.
Also, the performance overhead of aspects with dynamic
weaving still requires further study, although, this may be
different for different scenarios.

ACKNOWLEDGMENT

The authors would like to thank the Science Foundation Ireland for their support

for the CASCAR project.

REFERENCES

[1] AspectJ from http://www.eclipse.org/aspectj/.
[2] Johnson, R., J. Hoeller, et al. Spring Framework from http://static.springsource.

org/spring/docs/3.0.x/spring-framework-reference/html/.
[3] Jess, the Rule Engine for the Java Platform from http://www.jessrules.com/.
[4] Alrifai, M. and T. Risse Combining Global Optimization with Local Selection

for Efficient QoS-aware Service Composition 18th International World Wide
Web Conference, 2009.

[5] Baresi, L. and S. Guinea Dynamo: Dynamic Monitoring of WS-BPEL Processes
3rd International Conference In Service Oriented Computing, 2005.

[6] Baresi, L. and S. Guinea A Dynamic and Reactive Approach to the Supervision
of BPEL Processes 1st India Software Engineering Conference, 2008.

[7] Daniel, F., F. Casati, et al. Business Compliance Governance in Service-Oriented
Architectures International Conference on Advanced Information Networking
and Applications, 2009.

[8] Taveter, K. and G. Wagner Agent-Oriented Enterprise Modeling Based on
Business Rules the 20th International Conference on Conceptual Modeling:
Conceptual Modeling, 2001.

[9] Baresi, L., S. Guinea, et al Self-Healing BPEL Processes with Dynamo and the
JBoss Rule Engine International workshop on Engineering of software services
for pervasive environments, 2009.

[10] Byrne, B. and G. Imirzian IBM Industry Models and ILOG business
rules management systems, Part 1: Define business rules using IBM Indus-
try Models from http://www.ibm.com/developerworks/data/library/techarticle/
dm-0809byrne/index.html, 2008.

[11] Casati, F. Industry Trends in Business Process Management: Getting Ready
for Prime Time 16th International Workshop on Database and Expert Systems
Applications, 2005.

[12] Charfi, A. and M. Mezini AO4BPEL: An Aspect-oriented Extension to BPEL
World Wide Web Journal, 2007.

[13] Charfi, A., B. Schmeling, et al. Transactional BPEL Processes with AO4BPEL
Aspects Fifth European Conference on Web Services, 2007.

[14] Daniel, F., F. Casati, et al. Business Compliance Governance in Service-Oriented
Architectures International Conference on Advanced Information Networking
and Applications, 2009.

[15] Fingar, P. Cloud Computing and the Promise of On-
Demand Business Innovation.” Intelligent enterprise. from
http://intelligent-enterprise.informationweek.com/print article.jhtml;jsessionid=
I0D53X4L1J0RRQE1GHPCKHWATMY32JVN?articleID=218500039, 2009.

[16] Gaur, H. and M. Zirn BPEL Cookbook Best Practices for SOA-based integration
and composite applications development Packt Publishing, 2006.

[17] Hoyer, V., E. Bucherer, et al. Collaborative e-Business Process Modelling:
Transforming Private EPC to Public BPMN Business Process Models 10th
International Conference on Business Information Systems, 2007.

[18] Jurca, R., W. Binder, et al. Reliable QoS Monitoring Based on Client Feedback
16th International World Wide Web Conference, 2007.

[19] Lesiecki, N. Improve modularity with aspect-oriented programming from http:
//www.ibm.com/developerworks/java/library/j-aspectj/, 2002.

[20] Moser, O., F. Rosenberg, et al. Non-intrusive monitoring and service adaptation
for WS-BPEL 17th international conference on World Wide Web, 2008.

[21] Pavlovski, C. J. and J. Zou Non-functional requirements in business process
modeling 5th on Asia-Pacific conference on conceptual modelling, 2008.

[22] Rosenberg, F., C. Nagl, et al. Applying Distributed Business Rules - The VIDRE
Approach IEEE International Conference on Services Computing, 2006.

[23] Subramanian, S., P. Thiran, et al. On the Enhancement of BPEL Engines for
Self-Healing Composite Web Services International Symposium on Applications
and the Internet, 2008.

[24] Taveter, K. and G. Wagner Agent-Oriented Enterprise Modeling Based on
Business Rules the 20th International Conference on Conceptual Modeling:
Conceptual Modeling, 2001.

[25] Wang, M., K. Y. Bandara, et al. Integrated Constraint Violation Handling for
Dynamic Service Composition SCC, 2009.

