135 research outputs found

    A feasibility study for the provision of electronic healthcare tools and services in areas of Greece, Cyprus and Italy

    Get PDF
    Background: Through this paper, we present the initial steps for the creation of an integrated platform for the provision of a series of eHealth tools and services to both citizens and travelers in isolated areas of thesoutheast Mediterranean, and on board ships travelling across it. The platform was created through an INTERREG IIIB ARCHIMED project called INTERMED. Methods: The support of primary healthcare, home care and the continuous education of physicians are the three major issues that the proposed platform is trying to facilitate. The proposed system is based on state-of-the-art telemedicine systems and is able to provide the following healthcare services: i) Telecollaboration and teleconsultation services between remotely located healthcare providers, ii) telemedicine services in emergencies, iii) home telecare services for "at risk" citizens such as the elderly and patients with chronic diseases, and iv) eLearning services for the continuous training through seminars of both healthcare personnel (physicians, nurses etc) and persons supporting "at risk" citizens. These systems support data transmission over simple phone lines, internet connections, integrated services digital network/digital subscriber lines, satellite links, mobile networks (GPRS/3G), and wireless local area networks. The data corresponds, among others, to voice, vital biosignals, still medical images, video, and data used by eLearning applications. The proposed platform comprises several systems, each supporting different services. These were integrated using a common data storage and exchange scheme in order to achieve system interoperability in terms of software, language and national characteristics. Results: The platform has been installed and evaluated in different rural and urban sites in Greece, Cyprus and Italy. The evaluation was mainly related to technical issues and user satisfaction. The selected sites are, among others, rural health centers, ambulances, homes of "at-risk" citizens, and a ferry. Conclusions: The results proved the functionality and utilization of the platform in various rural places in Greece, Cyprus and Italy. However, further actions are needed to enable the local healthcare systems and the different population groups to be familiarized with, and use in their everyday lives, mature technological solutions for the provision of healthcare services

    A Review on Provisioning Quality of Service of Wireless Telemedicine for E-Health Services

    Get PDF
    In general, on-line medical consultation reduces time required for medical consultation induces improvement in the quality and efficiency of healthcare services. All major types of current e-health applications such as ECG, X-ray, video, diagnosis images and other common applications have been included in the scope of the study. In addition, the provision of Quality of Service (QoS) for the application of specific healthcare services in e-health, the scheme of priority for e-health services and the support of QoS in wireless networks and techniques or methods for IEEE 802.11 to guarantee the provision of QoS has also been assessed. In e-health, medical services in remote locations such as rural healthcare centers, ambulances, ships as well as home healthcare services can be supported through the applications of e-health services such as medical databases, electronic health records and the routing of text, audio, video and images. Given this, an adaptive resource allocation for a wireless network with multiple service types and multiple priorities have been proposed. For the provision of an acceptable QoS level to users of e-health services, prioritization is an important criterion in a multi-traffic network. The requirement for QoS provisioning in wireless broadband medical networks have paved the pathway for bandwidth requirements and the real-time or live transmission of medical applications. From the study, good performance of the proposed scheme has been validated by the results obtained. The proposed wireless network is capable of handling medical applications for both normal and life-threatening conditions as characterized by the level of emergencies. In addition, the bandwidth allocation and admission control algorithm for IEEE 802.16- based design specifically for wireless telemedicine/e-health services have also been presented in the study. It has been concluded that under busy traffic conditions, the proposed architecture can used as a feasible and reliable infrastructure network for telemedicine

    Provisioning Quality of Service of Wireless Telemedicine for E-Health Services: A Review

    Get PDF
    In general, on-line medical consultation reduces time required for medical consultation and induces improvement in the quality and efficiency of healthcare services. The scope of study includes several key features of present day e-health applications such as X-ray, ECG, video, diagnosis images and other common applications. Moreover, the provision of Quality of Service (QoS) in terms of specific medical care services in e-health, the priority set for e-health services and the support of QoS in wireless networks and techniques or methods aimed at IEEE 802.11 to secure the provision of QoS has been assessed as well. In e-health, medical services in remote places which include rustic healthcare centres, ships, ambulances and home healthcare services can be supported through the applications of e-health services such as medical databases, electronic health data and the transferring of text, video, sound and images. Given this, a proposal has been made for a multiple service wireless networking with multiple sets of priorities. In relation to the terms of an acceptable QoS level by the customers of e-health services, prioritization is an important criterion in a multi-traffic network. The requirement for QoS in medical networking of wireless broadband has paved the way for bandwidth prerequisites and the live transmission or real-time medical applications. The proposed wireless network is capable of handling medical applications for both normal and life-threatening conditions as characterized by the level of emergencies. In addition, the allocation of bandwidth and the system that controls admittance designed based on IEEE 802.16 especially for e-health services or wireless telemedicine will be discussed in this study. It has been concluded that under busy traffic conditions, the proposed architecture can used as a feasible and reliable infrastructure network for telemedicine

    Opportunities And Challenges of E-Health and Telemedicine Via Satelite

    Get PDF
    The introduction of Information and Communication Technology (ICT) in the health scenario is instrumental for the development of sustainable services of direct benefit for the European citizen. The setting up of satellite based applications will enhance rapidly the decentralisation and the enrichment of the European territory driving it towards a homogenous environment for healthcare

    Telemedicine using mobile telecommunication: towards syntactic interoperability in teleexpertise

    Get PDF
    Telemedicine allows collaborative activities between health professionals for the deployment of medical procedures carried out remotely by means of device using information and communication technologies. This article focuses on the Teleexpertise that allows collaboration between medical professionals in order to share knowledge and expert advices used as explanation elements for decision support. We propose a conceptual model integrating the FIPA (Foundation for Intelligent Physical Agents) Contract Net Protocol which permits to collect medical professionals’ answers for a request for teleexpertise in an efficient manner. Our model satisfies four requirements (coverage, QoS (Quality of Service) guarantees and prioritisation, mobility and roaming, service usability) on the configuration and operation of the underlying network and the services. Therefore, we provide an operational assistance by improvement of the networks quality of service via interoperable web services. Finally, we hope to bring a tangible contribution on the implementation of this suggested conceptualization that will allow to generate relevant and action-oriented finding

    Telemedicine

    Get PDF
    Telemedicine is a rapidly evolving field as new technologies are implemented for example for the development of wireless sensors, quality data transmission. Using the Internet applications such as counseling, clinical consultation support and home care monitoring and management are more and more realized, which improves access to high level medical care in underserved areas. The 23 chapters of this book present manifold examples of telemedicine treating both theoretical and practical foundations and application scenarios

    Emergency Prenatal Telemonitoring System in Wireless Mesh Network

    Get PDF
    Telemedicine promises a great opportunity for health care service improvement. However, it has several issues for its implementation in certain area. They include communication service quality, infrastructure and operational cost. Since Wireless Mesh Network (WMN) is designed to reduce the infrastructure cost and operational cost, an investigation of network performance for implementation of telemedicine is required.  In this paper, a simulation to investigate the wireless mesh network quality of service.  Using network simulator 2, The QoS performance analysis was performed in different routing protocol scenarios of proposed system. It showed that OLSR protocol for Mesh Network maintained the time transfer of the EPT data. The field testing of the proposed system to measure the distance with various time has already been done.  The infrastructure has been also implemented using low cost 5.8 GHz transceiver for backhauls and low cost 2.4 GHz transceiver for clients.  Test result shows that the low cost telemedicine system is able to do real time communication between patient and medical staff with medical data rate up to 2 Mbps. It shows that telemonitoring system using wireless mesh network can give a low cost application in emergency time with acceptable medical data transfer quality.

    System Integration for Medical Data Dissemination and Multimedia Communication in the Implementation of Tele-ECG and Teleconsultation

    Get PDF
    One of the options to extend medical services coverage is deploying a telemedicine system, where medical personnel make use of ICT (Information and Communication Technology) to overcome distance and time constraints. The implementation of telemedicine systems in Indonesia faces challenges posed by the lack of ICT infrastructure availability, such as communication networks, data centres, and other computing resources. To deal with these challenges, a telemedicine innovation needs to produce a modular and flexible system that is adaptive to medical services needed and the available ICT infrastructure. This paper presents research and development of a telemedicine system prototype for tele-electrocardiography (tele-ECG) and teleconsultation. The contributions offered are integrating system from various open-source modules and the system operational feasibility based on its function and performance. The research is conducted on a testbed which represents various components involved in the telemedicine system operation. Experiments are carried out to assess the system functionality and observe whether tele-ECG and teleconsultation reach their expected performance. Experiment results show that the system works properly and recommend several multimedia communication modes to achieve the target quality based on the available network bandwidth
    corecore