3,380 research outputs found

    Positioning and Sensing System Based on Impulse Radio Ultra-Wideband Technology

    Get PDF
    Impulse Radio Ultra-Wideband (IR-UWB) is a wireless carrier communication technology using nanosecond non-sinusoidal narrow pulses to transmit data. Therefore, the IR-UWB signal has a high resolution in the time domain and is suitable for high-precision positioning or sensing systems in IIoT scenarios. This thesis designs and implements a high-precision positioning system and a contactless sensing system based on the high temporal resolution characteristics of IR-UWB technology. The feasibility of the two applications in the IIoT is evaluated, which provides a reference for human-machine-thing positioning and human-machine interaction sensing technology in large smart factories. By analyzing the commonly used positioning algorithms in IR-UWB systems, this thesis designs an IRUWB relative positioning system based on the time of flight algorithm. The system uses the IR-UWB transceiver modules to obtain the distance data and calculates the relative position between the two individuals through the proposed relative positioning algorithm. An improved algorithm is proposed to simplify the system hardware, reducing the three serial port modules used in the positioning system to one. Based on the time of flight algorithm, this thesis also implements a contactless gesture sensing system with IR-UWB. The IR-UWB signal is sparsified by downsampling, and then the feature information of the signal is obtained by level-crossing sampling. Finally, a spiking neural network is used as the recognition algorithm to classify hand gestures

    Low complexity TOA estimator for multiuser DS-UWB system

    Get PDF
    International audienceIn this paper, we present a low complexity Time Of Arrival (TOA) estimator for direct-sequence ultra-wideband (DS-UWB) ranging system. With the assumption that TOA is the integer multiples of chip duration, our decoupled multiuser ranging (DEMR) estimator employs integrate-and-dump filter (IDF) in chip sampling rate instead of matched filter (MF) as the front-end to reduce sampling rate and to simplify the structure of estimator. This subsampling estimator is simplified substantially in dense multipath environment furthermore due to the long repetition time of DS-UWB pulse. Simulation results show that compared with other low complexity TOA estimator, DEMR estimator is not only quite near-far resistant, but also can obtain noticeable ranging performance in the fully loaded system

    Joint symbol and chip synchronization for a burst-mode-communication superregenerative MSK receiver

    Get PDF
    In this paper we describe a superregenerative (SR) MSK receiver able to operate in a burst-mode framework where synchronization is required for each packet. The receiver is based on an SR oscillator which provides samples of the incoming instantaneous phase trajectories. We develop a simple yet effective technique to achieve joint chip and symbol synchronization within the time limits of a suitable preamble. We develop some general results and focus on the case of the IEEE 802.15.4 MSK physical layer. We provide details on a VHDL implementation on an FPGA where the most complex digital processing block is an accumulator. Simulation and experimental results are provided to validate the described technique.Peer ReviewedPostprint (published version

    Design and implementation of synchronization and AGC for OFDM-based WLAN receivers

    Get PDF
    An efficient implementation of several tasks at the receiver becomes crucial in OFDM-based high-speed WLAN systems, such as automatic gain control, time and frequency synchronization and offset tracking. This paper deals with fixed point constraints and accuracy requirements for implementation of those algorithms. Also, a complete set of thresholds for the practical implementation of time and frequency synchronization sub-blocks is obtained. Moreover, a technique to mitigate the remaining frequency offset after coarse acquisition is proposed, yielding a good trade-off between performance and complexity. Finally, we propose the implementation of a simple and effective automatic gain control procedure.This work has been partially funded by Spanish government with project TIC 2002-03498 (ORISE), Telefonica I+D by the contract nº 25756, and the Chamber of Madrid Community and European Social Fund by a grant to the first author

    Waveform Advancements and Synchronization Techniques for Generalized Frequency Division Multiplexing

    Get PDF
    To enable a new level of connectivity among machines as well as between people and machines, future wireless applications will demand higher requirements on data rates, response time, and reliability from the communication system. This will lead to a different system design, comprising a wide range of deployment scenarios. One important aspect is the evolution of physical layer (PHY), specifically the waveform modulation. The novel generalized frequency division multiplexing (GFDM) technique is a prominent proposal for a flexible block filtered multicarrier modulation. This thesis introduces an advanced GFDM concept that enables the emulation of other prominent waveform candidates in scenarios where they perform best. Hence, a unique modulation framework is presented that is capable of addressing a wide range of scenarios and to upgrade the PHY for 5G networks. In particular, for a subset of system parameters of the modulation framework, the problem of symbol time offset (STO) and carrier frequency offset (CFO) estimation is investigated and synchronization approaches, which can operate in burst and continuous transmissions, are designed. The first part of this work presents the modulation principles of prominent 5G candidate waveforms and then focuses on the GFDM basic and advanced attributes. The GFDM concept is extended towards the use of OQAM, introducing the novel frequency-shift OQAM-GFDM, and a new low complexity model based on signal processing carried out in the time domain. A new prototype filter proposal highlights the benefits obtained in terms of a reduced out-of-band (OOB) radiation and more attractive hardware implementation cost. With proper parameterization of the advanced GFDM, the achieved gains are applicable to other filtered OFDM waveforms. In the second part, a search approach for estimating STO and CFO in GFDM is evaluated. A self-interference metric is proposed to quantify the effective SNR penalty caused by the residual time and frequency misalignment or intrinsic inter-symbol interference (ISI) and inter-carrier interference (ICI) for arbitrary pulse shape design in GFDM. In particular, the ICI can be used as a non-data aided approach for frequency estimation. Then, GFDM training sequences, defined either as an isolated preamble or embedded as a midamble or pseudo-circular pre/post-amble, are designed. Simulations show better OOB emission and good estimation results, either comparable or superior, to state-of-the-art OFDM system in wireless channels

    Efficient Time of Arrival Calculation for Acoustic Source Localization Using Wireless Sensor Networks

    Get PDF
    Acoustic source localization is a very useful tool in surveillance and tracking applications. Potential exists for ubiquitous presence of acoustic source localization systems. However, due to several significant challenges they are currently limited in their applications. Wireless Sensor Networks (WSN) offer a feasible solution that can allow for large, ever present acoustic localization systems. Some fundamental challenges remain. This thesis presents some ideas for helping solve the challenging problems faced by networked acoustic localization systems. We make use of a low-power WSN designed specifically for distributed acoustic source localization. Our ideas are based on three important observations. First, sounds emanating from a source will be free of reflections at the beginning of the sound. We make use of this observation by selectively processing only the initial parts of a sound to be localized. Second, the significant features of a sound are more robust to various interference sources. We perform key feature recognition such as the locations of significant zero crossings and local peaks. Third, these features which are compressed descriptors, can also be used for distributed pattern matching. For this we perform basic pattern analysis by comparing sampled signals from various nodes in order to determine better Time Of Arrivals (TOA). Our implementation tests these ideas in a predictable test environment. A complete system for general sounds is left for future wor

    Efficient Time of Arrival Calculation for Acoustic Source Localization Using Wireless Sensor Networks

    Get PDF
    Acoustic source localization is a very useful tool in surveillance and tracking applications. Potential exists for ubiquitous presence of acoustic source localization systems. However, due to several significant challenges they are currently limited in their applications. Wireless Sensor Networks (WSN) offer a feasible solution that can allow for large, ever present acoustic localization systems. Some fundamental challenges remain. This thesis presents some ideas for helping solve the challenging problems faced by networked acoustic localization systems. We make use of a low-power WSN designed specifically for distributed acoustic source localization. Our ideas are based on three important observations. First, sounds emanating from a source will be free of reflections at the beginning of the sound. We make use of this observation by selectively processing only the initial parts of a sound to be localized. Second, the significant features of a sound are more robust to various interference sources. We perform key feature recognition such as the locations of significant zero crossings and local peaks. Third, these features which are compressed descriptors, can also be used for distributed pattern matching. For this we perform basic pattern analysis by comparing sampled signals from various nodes in order to determine better Time Of Arrivals (TOA). Our implementation tests these ideas in a predictable test environment. A complete system for general sounds is left for future wor
    corecore