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Impulse Radio Ultra-Wideband (IR-UWB) is a wireless carrier communication technology using 

nanosecond non-sinusoidal narrow pulses to transmit data. Therefore, the IR-UWB signal has a high 

resolution in the time domain and is suitable for high-precision positioning or sensing systems in IIoT 

scenarios. This thesis designs and implements a high-precision positioning system and a contactless 

sensing system based on the high temporal resolution characteristics of IR-UWB technology. The 

feasibility of the two applications in the IIoT is evaluated, which provides a reference for human-

machine-thing positioning and human-machine interaction sensing technology in large smart factories. 

By analyzing the commonly used positioning algorithms in IR-UWB systems, this thesis designs an IR-

UWB relative positioning system based on the time of flight algorithm. The system uses the IR-UWB 

transceiver modules to obtain the distance data and calculates the relative position between the two 

individuals through the proposed relative positioning algorithm. An improved algorithm is proposed to 

simplify the system hardware, reducing the three serial port modules used in the positioning system to 

one. Based on the time of flight algorithm, this thesis also implements a contactless gesture sensing 

system with IR-UWB. The IR-UWB signal is sparsified by downsampling, and then the feature 

information of the signal is obtained by level-crossing sampling. Finally, a spiking neural network is 

used as the recognition algorithm to classify hand gestures. 

 

Keywords: Impulse-Radio Ultra-Wideband, TOF Algorithm, Indoor Positioning, Hand Gesture 
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1 Introduction

1.1 Background

At the HANNOVER MESSE in April 2013, the German Industry 4.0 Working Group published

a report entitled Securing the future of German manufacturing industry: Recommendations for

implementing strategic initiative INDUSTRIE 4.0[1]. Since then, the German government, in-

dustry, and academia have listed Industry 4.0 as a strategic goal in the future, which also marks

the beginning of the fourth industrial revolution. The second and third industrial revolutions

have completed the automation of production equipment and liberated human beings from te-

dious and heavy manual labor. Then the goal of the fourth industrial revolution is to truly realize

the intelligent construction of smart factories and even the entire industry.

In addition, with the development and application of high-tech such as the Internet of Things

(IoT) and artificial intelligence (AI), related research on the integration of human-machine-thing

has attracted widespread attention. IIoT and smart factories are typical staged applications in

the historical process of human society moving towards an intelligent integration of humans,

machines, and things society. Precise positioning technology and contactless human-computer

interaction sensing technology are two key technologies to realize smart factories and the IIoT.

Figure 1.1 shows a common work scenario in a smart factory, modified from the positioning

system diagram of the IWL IoT platform[2]. The robotic arm processes and packs the products

on the assembly line, and then the staff transports the packed products to the next location The
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positioning system of the smart factory can accurately locate the position of tags on employ-

ees, vehicles, and assets in real-time, display the position information of people, vehicles, and

objects in the factory control center with zero delays, and conduct safety area management and

control, people on-the-job monitoring, vehicles Real-time trajectory monitoring. The gesture

recognition system of the smart factory can judge the gesture information of the operator in real

time so that the robot arm can execute the corresponding instructions for cargo processing and

assembly line production.

Figure 1.1: Smart factory positioning and sensing application scenario, adapted from [2]

However, the precise positioning and sensing systems in a smart factory environment re-

quire sensors with high temporal resolution. Among them, the impulse radio ultra-wideband

(IR-UWB) sensor has lately received wide attention as a promising solution in smart factories

due to its high time-domain resolution[3], [4]. IR-UWB uses extremely narrow pulses as the sig-

nal propagation carrier, so the duty cycle of the IR-UWB signal is low. IR-UWB can effectively
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avoid multipath signals by working in a short time, leading to a high temporal resolution, which

is very suitable for high-precision positioning or sensing systems. Moreover, the IR-UWB

signal occupies a large bandwidth in the frequency domain and a low power spectral density.

Therefore, the power consumption of the IR-UWB system can also be extreme-low, which is

very suitable for power-sensitive IoTs applications in the smart factory environment. In recent

years, IR-UWB has been applied in some commercial scenarios because of these characteris-

tics. Since the iPhone 11 series of mobile phones, Apple has successively applied its IR-UWB

solution in products such as Apple Watch S6, HomePod mini smart speaker, iPhone12/13 series

mobile phones, and Airtag wireless trackers. Samsung mainly introduced the IR-UWB solution

on mobile phones. The specific models include Galaxy Note 20 Ultra, Galaxy Z Fold 2, S21+,

and S21 Ultra. At the same time, Samsung also launched the SmartTag+ smart tracker using

IR-UWB technology. Xiaomi has launched an IR-UWB connection technology called One Fin-

ger Link to give full play to the advantages of its smart home ecology and will be able to link

with various smart home products in the future. In addition, OPPO has also demonstrated the

precise orientation and precise control capabilities between mobile phones and IoT devices at

the technology conference.

Based on the above background, this thesis did research on IR-UWB technology. A po-

sitioning system and a sensing system are designed and implemented based on the time-of-

flight (TOF) algorithm, which provides a new thought for human-machine-thing positioning

and human-machine interaction sensing in the smart factory environment. We built two exper-

imental platforms to test systems, and the results show high accuracy in both positioning and

hand gesture recognition (HGR) systems due to the high temporal resolution of IR-UWB.

1.2 IR-UWB Technology

IR-UWB is a wireless carrier communication technology that uses non-sinusoidal narrow pulses

to transmit data. The working frequency band is from 3.25 GHz to 6.75 GHz, and the typical
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bandwidth is 500 MHz or 1 GHz. Although IR-UWB uses wireless communication, its data

transfer rate can reach more than a few hundred megabits per second, enabling sub-nanometer

precise timing. Unlike traditional wireless radio frequency signals (Figure 1.2) with fixed fre-

quency carriers (such as Bluetooth is 2.4 GHz), IR-UWB (Figure 1.3) only sends pulse signals

with a narrow width (such as 1 ns) when sending data, which is natally suitable for event-driven

mode.

Time Frequency

Figure 1.2: Narrowband signal

Time Frequency

Figure 1.3: IR-UWB signal

The IR-UWB signal occupies a large frequency domain, so it is called ultra-wideband. Be-

cause the IR-UWB time-domain signal pulse is relatively narrow, it has a good resolution in

time and space, and it is easier to resist the influence of the common multipath effect of indoor

signal transmission. Therefore, the accuracy of ranging and positioning is relatively high. Fur-
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thermore, signals in the form of spikes are very similar to neural signals, which are well suited

for neuromorphic processing systems.

IR-UWB has a high temporal resolution because it uses short pulses for communication in

the time domain. Its extremely-low power spectral density derives from the wide bandwidth

in the frequency domain[5]. Therefore, IR-UWB has been widely used in some scenarios that

are sensitive to accuracy and power consumption, such as indoor positioning[6]–[10], human

sensing[11]–[13], health monitoring[14], [15], and people counting[16].

1.2.1 IR-UWB Technology in Positioning Systems

N. Macoir et al. created a multi-technology IR-UWB localization MAC protocol for IIoT appli-

cations that may be used for unmanned aerial vehicle- (UAV-) based inventory management [7].

Figure 1.4a depicts the high-level system diagram of the IR-UWB localization system they pro-

posed. Multiple IR-UWB anchors were placed throughout the warehouse by them, who also

created a procedure to save energy usage by turning the IR-UWB modules off when no drones

were in the area. Instead, the IR-UWB anchor node uses its low-power sub-GHz radio to listen

continuously. When the drone is nearby, the drone will use the low-energy sub-GHz activa-

tion beacon to activate the anchor and range with the tag module on the drone during short

timeslots. The positioning mechanism finally attained a 5 cm accuracy. In a later work, N.

Macoir et al. additionally evaluated the planned IR-UWB system in two separate scenarios: (i)

automated drone inventory management navigation and (ii) placing runners on an undeveloped

indoor track [8]. Figure 1.4b depicts the IDLABimec-UGent small-scale warehouse test bed fa-

cility. Experimental results illustrate the validity and usefulness of IR-UWB-based positioning

systems for real-world industrial applications.

In the field of rescue, T. H. Mogale et al. designed a portable wireless sensor network for

personnel tracking based on IR-UWB technology for emergency scenarios[9]. All IR-UWB

modules are derived from the secondary development of Decawave’s DWM1000 module and
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(a) IR-UWB positioning system, taken from [7] (b) Small-scale warehouse test bed, taken from [8]

Figure 1.4: IR-UWB positioning system by N. Macoir et al.

define modules as anchors or tags through programming. The wireless sensor network consists

of four anchor points and one label, and the sink node connects to the PC. Firefighters only

need to wear the tag, and through the TOA positioning algorithm, the system can understand its

location in real-time, helping to coordinate rescue activities in the building. Sometimes, even in

a global navigation satellite system (GNSS), IR-UWB can be used for localization error reduc-

tion and the accuracy increasing. For instance, Y.-C. Chen et al. designed a more precise UAV

traffic control system by integrating GPS, LoRaWAN, and IR-UWB range measurement [10].

As IR-UWB transceivers, they employed Decawave DW1000 chips and dispersed many anchor

nodes around the test area’s structures. Real-world tests revealed that the technology could cut

the inaccuracy of outside relative location between the devices under test from 6 meters to just

10 centimeters. IR-UWB can help locate and keep an eye on UAVs in urban environments.

1.2.2 IR-UWB Technology in HGR Systems

Li et al. propose an IR-UWB radar-based method for hand gestures recognition using Shuf-

fleNet V2[11]. They collected the radar data of 7 gestures and performed 2D fast Fourier trans-

form (FFT) to get RGB images, called Doppler processing. Then after clutter suppression by

subtracting background and noise filtering, they get a 224*224 size continuous Range-Doppler
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Map. ShuffleNet V2, a masterpiece of lightweight convolutional neural network (CNN), was

used to train the processed signals and achieved 98.52% accuracy on seven gestures. Ahmed

et al. propose a gesture recognition system using IR-UWB based on another CNN algorithm,

GoogLeNet [12]. They first convert the 1D IR-UWB sensor signals into 3D image patterns and

then use a variant of GoogLeNet based on the Inception module to analyze the patterns in the

images to recognize different gestures. The proposed model can classify eight gestures with

95% accuracy.

Scherer et al. illustrated a model mixing temporal convolutional network (TCN) and CNN

model in Figure 1.5 bringing about high accuracy and low memory footprint by using IR-UWB

radar for data processing[13]. What’s more, they came up with new hand gesture recognition

with a low-power processor and low-power sensor, which added weight to the embedded de-

vices’ gesture recognition. They put various kinds of hand gestures in their dataset, which

achieve an accuracy of 89.52% (11 gestures) and 93.83% (5 gestures) with a surprisingly low

power consumption of 21mW. The conclusion meant that the model has high effectiveness and

potential.

Figure 1.5: Overview of the hand gestures processing algorithm, taken from [13]

1.2.3 IR-UWB Technology in Other Applications

Chehri et al. use IR-UWB modules for a closed wireless network named wireless body area

networks [14]. These static biomedical nodes are installed on the patient’s body to collect vital
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data and send it to a central node wirelessly for subsequent analysis by healthcare profession-

als. Through experiments, they evaluated the performance of the IR-UWB monitoring system

and, for example, the influence of node location, the number of transmitted symbols, multi-user

interference, and inter-symbol interference. It is proved that IR-UWB technology has many

unique characteristics in safe transmission, low noise, and low energy consumption. Shen et

al. proposed a new method based on autocorrelation to measure the respiration rate and heart-

beat rate by using IR-UWB radar[15]. They collected the breathing data of the human body

through IR-UWB radar echoes and then obtained the breathing frequency by applying the FFT.

Then an autocorrelation method is used for object localization, followed by variational modal

decomposition algorithms and separation of respiration and heartbeat information. Finally, they

conducted experiments using PulsOn410 IR-UWB radar, and the results also show that the pro-

posed algorithm can achieve higher accuracy with lower complexity.

(a) The system schema, taken from [14] (b) The system test scenario, taken from [15]

Figure 1.6: Healthcare applications based on IR-UWB

Choi et al. used IR-UWB radar as a counting sensor for inbound and outbound people [16].

They proposed a method using two IR-UWB radar sensors to solve the problem of counting

people in dense environments such as subway stations or airports. Due to the high resolution

of IR-UWB signals, radar sensors can theoretically detect most people entering and leaving.

Through the test in the laboratory environment and the actual subway station environment, the

average error can be limited to 7%.

Kim et al. used IR-UWB radar to collect environmental data and adopted proposed algo-
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rithms to determine the presence of humans in indoor environments[17]. They adopted singular

value decomposition to estimate clutter signals by comparing various filtering methods. Then

the smallest cell-averaging constant false alarm detector and reference method are used to de-

tect people standing or lying down in the indoor environment, respectively. Finally, they used

the single-chip radar sensor of the XeThru module X4M03 developed by Noveda to conduct

experiments in different environments to verify the robustness.

1.3 Thesis Work and Contributions

As a wireless carrier communication technology, IR-UWB signals have a high time-domain

resolution due to using nanosecond non-sinusoidal narrow pulses to transmit data. This thesis

designs and implements a high-precision positioning and a sensing system based on the high

temporal resolution characteristics of IR-UWB technology. The feasibility of the two applica-

tions in IIoT is evaluated, which provides a reference for human-machine-thing positioning and

human-machine interaction sensing technology in large smart factories.

Figure 1.7 demonstrates an overview of this work, consisting of three parts: introduction,

positioning system, and sensing system. In the introduction stage, we obtain the high time

resolution characteristic of IR-UWB by analyzing its time-domain and frequency-domain char-

acteristics. Then the IR-UWB technology is applied to positioning and sensing systems. The

positioning system contains the positioning algorithms and ranging and positioning experiments

and results. The sensing system shows gesture recognition algorithms and their performance,

including recognition accuracy on the two datasets and power consumption with floating-point

operations per second (FLOPs).

The contributions of this thesis are presented as follows:

1. By analyzing the commonly used positioning algorithms in IR-UWB systems, this thesis

designs an IR-UWB relative positioning system based on the TOF algorithm. The system uses
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the IR-UWB transceiver modules to obtain the distance data and calculates the relative position

between the two individuals through the proposed relative positioning algorithm.

2. The platform for ranging and positioning experiments is built using IR-UWB modules

from Bphero. The system is tested in a laboratory environment. The results suggest that the sys-

tem achieved a relatively high accuracy on the positioning. An improved algorithm is proposed

to simplify the system hardware, reducing the three serial port modules used in the positioning

system to one.

3. Based on the TOF algorithm, this thesis designs and implements a contactless hand

gesture recognition system with IR-UWB. The IR-UWB signal is sparsified by downsampling,

and the feature is extracted by level-crossing sampling. Finally, a spiking neural network (SNN)

is used as the recognition algorithm to classify hand gestures.

4. The system is verified on Acconeer’s IR-UWB sensor gesture dataset. Results suggest

that our algorithm can achive relatively high accuracy with extremely low power consumption.

This thesis also compares the proposed recognition algorithm with the existing gesture recog-

nition methods. The results illustrate that the proposed algorithm has the lowest computational

complexity when achieving similar classification accuracy as other works.

1.4 Thesis Organization

This thesis consists of the following six chapters.

• In Chapter 1, we introduce the background of IIoT. IR-UWB technologies have the po-

tential to solve precision problems in IIoT and smart factories applications due to the

high temporal resolution. Then we investigate the commercial application of IR-UWB

technology. After that, we analyze the application of IR-UWB technology in positioning,

HGR, and other systems. It is revealed that IR-UWB technology is a good solution for

positioning and sensing systems in smart factories scenarios. In the end, we make a brief
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introduction to the overview of the work and organization of this thesis.

• In Chapter 2, we introduce the IR-UWB ranging and positioning algorithm first. Then we

explain the relative positioning system design in detail, including the system architecture

design, positioning model design, hardware design, and positioning algorithm design.

• In Chapter 3, we first introduce the implementation and experiments of IR-UWB ranging

modules. Then we show the implementation of relative positioning systems, including

hardware architecture and software algorithms. After that, experimental platforms are

built to obtain the system’s positioning accuracy. The results suggest that the system

achieved an accuracy of 99.18% on the ranging and 93.09% on the positioning. Finally,

we evaluated other existing positioning systems with WiFi, Bluetooth, Lidar, and Camera

sensors and compared them with our system.

• In Chapter 4, we show another application of the IR-UWB: sensing system. Firstly, the

design principle of the sensing system is analyzed, such as sensor design principle, data

processing design principle, and classification algorithm design principle. Then we intro-

duce the design of the IR-UWB sensor dataset, preprocessing method, and the classifica-

tion algorithm of the sensing system in detail.

• In Chapter 5, we describe the sensing system implementation from dataset to classifica-

tion method. Then we analyze the accuracy of the algorithm through multiple experi-

ments. To demonstrate the superiority of the algorithm, we also compare the accuracy

and power consumption of our algorithm with other methods. The data indicates that the

algorithm has achieved an accuracy of 95.44% on five gesture datasets and 96.60% on six

gesture datasets.

• In Chapter 6, we discuss the conclusions from this work and outline future work.



2 Positioning System Design

2.1 Overview

In GNSS-Denied situations, accurate localization is a crucial component of autonomous robot

navigation [18]. IR-UWB localization systems, based on wireless radio modules, have recently

developed as high-accuracy solutions, on tens of centimeters or even centimeters [19]. In appli-

cation cases where a localization precision of the order of tens of centimeters is adequate, IR-

UWB based localization is likely to take the place of more complicated and expensive motion-

capture arenas based on visual markers [20].

In this chapter, we first characterize various techniques used to measure the distance be-

tween two IR-UWB transceivers, primarily using one-way and two-way ranging in the TOF

algorithm. Then we introduce three kinds of positioning algorithms commonly used in IR-

UWB positioning systems: TOF/time of arrival (TOA), time difference of arrival (TDOA), and

angle of arrival (AOA), and summarize their advantages and disadvantages. Finally, based on

the TOF positioning algorithm, we designed an IR-UWB relative positioning system. The sys-

tem design includes system architecture design positioning model design, hardware design, and

positioning algorithm design.
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2.2 IR-UWB Ranging Methods

We can calculate the distance between an IR-UWB transceiver that emits a signal and the recep-

tion node by using the flight of time and the known speed of electromagnetic wave propagation

in the air. TOF or TOA obtains the distance between devices by multiplying the time of flight

by the speed of light. The propagation time of the wireless signal from the transmitter node

to the receiver node is determined by recording the sending and receiving timestamps of the

range message [21], [22]. TOF can be divided into one-way and two-way ranges depending on

how the devices are synced. In one-way ranging, the ranging message can only travel in one

direction. The clocks on both must remain precisely synchronized. Clock synchronization is

not required for two-way ranging. Due to its decreased complexity, it is a more popular strategy.

The two-way ranging approach is mostly used in IR-UWB ranging. The two-way rang-

ing method requires two-way communication between devices, which may be separated into

two approaches based on available information regarding antenna delays and packet process-

ing latency: single-sided two-way ranging (SS-TWR) and double-sided two-way ranging (DS-

TWR) [23].

2.2.1 Single-Sided Two-way Ranging

The procedure is shown in Fig. 2.1. Device A eliminates a ranging request message in the

SS-TWR method, and device B gets the ranging and answers to a Treply message processing

delay. Device A calculates the round-trip delay Tround and utilizes equation (2.1) to measure

the distance between nodes A and B when it receives the response message from B.

Tprop = 0.5 ∗ (Tround − Treply) (2.1)

However, the condition for the establishment of the formula (2.1) is to assume that the prop-

agation times of the two signals are the same, that is, the distance between the sender sending
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Figure 2.1: Diagram of the single-side two-way ranging

information to the receiver and the receiver sending information to the sender is constant within

the interval, which requires Treply to be very short. What’s more, due to individual differences in

modules, the internal clock frequencies of the two devices cannot be guaranteed to be the same,

that is, the speed of time change is not necessarily equal. Therefore, there will be some fixed

errors in the SS-TWR method, which cannot be eliminated but reduced. The reduction method

is to send the information as quickly as possible after receiving the information to prevent the

accumulation of errors. Moreover, since the information is only sent twice between the two

devices (once each), there may be interference from obstacles or noise, and the range changes

greatly.

2.2.2 Double-Sided Two-way Ranging

In order to greatly reduce the time of Treply, the three-message ranging algorithm: DS-TWR was

created. Because in SS-TWR, only two messages are sent between the two devices (once each),

there may be obstacles or noise interference, and the ranging changes are large, so it is better
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to take the average multiple times to improve the measurement. Distance accuracy, here is the

ranging principle of DS-TWR. In the DS-TWR algorithm, both Transmitter A and Receiver B

send a ranging request, equivalent to the two times SS-TWR by devices A and B. According to

equation (2.2), we can calculate the flight time between nodes A and B. Figure 2.2 illustrates the

description of variables in the equation. The accuracy is often higher than the SS-TWR method.

Transmitter

Receiver

Tx

Rx

Rx

Tx

Tx

Rx

Tround1

Treply1
Tround2

Figure 2.2: Diagram of the double-side two-way ranging

Tprop =
Tround1 ∗ Tround2 − Treply1 ∗ Treply2

Tround1 + Tround2 + Treply1 + Treply2

(2.2)

2.3 IR-UWB Positioning Algorithms

2.3.1 Time of Arrival/Time of Flight

In terms of range, the TOF-based positioning approach is equivalent to the TOA-based posi-

tioning method. There is no error due to the clock synchronization variance since the TOF
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ranging method does not rely on the base station and tag in time synchronization. The precision

of the clock determines how quickly the TOF ranging mechanism operates, and a clock offset

will result in mistakes. The measurement method in both positive and negative directions is

typically used to reduce the ranging error brought on by the clock offset. To do this, the remote

base station sends the ranging information, the tag receives it and responds, after which the tag

initiates the ranging message, and the remote base station sends it. By figuring out the average

value of the flight time, the end base station responds and decreases the time offset between

the two, increasing the ranging accuracy. As explained in [24], the coordinates of the IR-UWB

positioning base station are known. The location of the IR-UWB positioning tag is determined

by drawing three circles using the three-point positioning method after calculating the distance

between the tag and the base station.

Figure 2.3 illustrates the working principle of three-circle positioning. A1, A2, and A3 are

three IR-UWB base stations, the positions are fixed during deployment. Assuming that the

coordinates of three anchors are (x1, y1), (x2, y2), (x3, y3), the coordinates of the required posi-

tioning label are T0(x0, y0). With the positioning label T0 determined by the signal propagation

time and d1, d2, d3 as the relative distances between the three positioning base stations, each

base station will draw a circle with the relative distance as the radius. The three circular equa-

tions may be used to compute the distinct intersection point, and the computation formula is as

follows: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
√︁

(x0 − x1)2 + (y0 − y1)2 = d1 = vt1√︁
(x0 − x2)2 + (y0 − y2)2 = d2 = vt2√︁
(x0 − x3)2 + (y0 − y3)2 = d3 = vt3

(2.3)

TOF is widely used in IIoT scenarios due to its high precision and ease of use. S. G. Pease et

al. designed a real-time semantic tracking system with TOF and received signal strength indica-

tion (RSSI) in IIoT scenarios [25]. They proposed a novel, communication-economical method

for ranging based on RSSI/TOF. The performance evaluation shows that the system ranging

accuracy is 6 meters with TOF (the ranging range is 40 meters in indoor industrial locations),
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Figure 2.3: TOF positioning algorithm

and the average positioning accuracy is 12.6-13.8 meters. F. Bonafini et al. adopted a Lo-

RaWAN network to complement indoor and outdoor real-time location systems (RTLS) [26].

Interestingly, their indoor positioning system uses the DWM1001-Dev board, which uses the

DS-TWR ranging method in TOF. By sharing time common sense in LoRaWAN, microsecond-

level errors are obtained in UWB ranging devices, resulting in higher positioning accuracy. The

experimental results show that the GPS-processed time reference pulse has a maximum jitter of

180 ns with a standard deviation of 40 ns, while if the UWB-processed time reference pulse is

considered, the maximum jitter is 3.3 µs with a standard deviation of 0.7 µs.
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2.3.2 Time Difference of Arrival

To determine the relative distance between a tag and each of the anchors, TDOA, also known

as hyperbolic positioning, evaluates the difference in propagation time between an IR-UWB

signal from a transmitting tag and an IR-UWB signal from two or more receiving anchors [27],

[28]. Over TOA, it may generally increase localization accuracy. To determine the position of

a moving IR-UWB tag, the TDOA method calculates the time difference between signals re-

ceived by various IR-UWB anchors rather than directly using the difference between the signal

emission and arrival times [29]. For clock synchronization between tags and anchors, it is not

necessary to provide a particular time signal, but anchors must be linked or synced [23]. Since

measuring the precise absolute time is difficult, as stated in [24], TDOA analyzes the delay in

the signal’s arrival at each IR-UWB positioning base station to calculate the signal’s distance

from each base station. At the point where three sets of hyperbolas cross, the placement label

is situated.

An illustration of the TDOA algorithm is shown in Figure 2.4. The base stations for IR-

UWB positioning are located at the following coordinates: A1(x1, y1), A2(x2, y2), A3(x3, y3),

and A4(x4, y4). During installation and deployment, base stations A1, A2, A3, and A4 are

in fixed places. The required placement label’s coordinates is R0(x0, y0). The pulse signal

propagates at a constant rate of v = 3∗108km/s. Three sets of hyperbolas can be obtained, and

the intersection of the hyperbolas is the coordinate of the positioning tag O. Assuming that the

time it takes for the pulse signal to reach the base stations R1, R2, R3, and R4 from the tag O

is t1, t2, t3, and t4, respectively, and that the distance between the signal sent by the positioning

tag Ro and the two base stations is a constant. The following formula gives the set of equations

needed to solve the coordinates (xo, yo):
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
√︁

(x0 − x1)2 + (y0 − y1)2 −
√︁

(x0 − x4)2 + (y0 − y4)2 = v(t1 − t4)√︁
(x0 − x2)2 + (y0 − y2)2 −

√︁
(x0 − x4)2 + (y0 − y4)2 = v(t2 − t4)√︁

(x0 − x3)2 + (y0 − y3)2 −
√︁

(x0 − x4)2 + (y0 − y4)2 = v(t3 − t4)

(2.4)

x

y

Figure 2.4: TDOA positioning algorithm

M. Martaló et al. solved the problem of object localization in a special scenario where the

object is outside the area where the anchor is located [27]. Based on the TDOA algorithm, they

compared and analyzed the linear hyperbolic positioning system (geometric) or particle swarm

optimization (soft computing-oriented) algorithms. The results show that a UWB TDOA-based

hotspot can accurately estimate the position around the target itself, and is also suitable for
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medium/large target-hotspot distances. In particular, the designed algorithm can estimate the

target angle of arrival with an error of only about a few degrees. Because the TDOA algorithm

is highly dependent on the synchronization of the module clock, the positioning accuracy is

relatively low. P. Zhao et al. proposed a high precision UWB-TDOA positioning system for

unmanned vehicle systems [28]. Referring to the working principle of GNSS-RTK (real-time

kinematic), a differential UWB positioning system is developed to reduce synchronization er-

rors and improve system stability. The experiment also proved that the system can achieve a

positioning accuracy of 10 cm.

2.3.3 Angle of Arrival

The AOA positioning is a positioning algorithm based on the angle of incidence of the signal.

Generally speaking, a simple AOA positioning system only needs two base stations, as shown

in Figure 2.5. Base stations A1 and A2 will radiate electrical signals outward 360°. When the

echo signal in a certain direction is obtained, the angle between the connection between the

devices and the reference direction will be recorded as α and β with reference The direction is

north. According to the size of the included angle, we can draw two rays l1, l2. At this time, the

intersection of l1 and l2 is the specific position of the device. The detailed calculation formula

is as follows.

The positions of the two base stations and the device form a triangle, so to get the position

of the device T0(x0, y0), you need to use some knowledge of trigonometric functions. Sup-

pose we know that the coordinates of the IR-UWB positioning base stations are A1(x1, y1) and

A2(x2, y2), and the angles between the device and the reference direction are α and β. There-

fore, the angle between the device and base station A and base station B is ∠1 + ∠2 = α + β.

Assume that the distance between the base station A1 and the device is d1.
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Figure 2.5: AOA positioning algorithm

x1 + x2

sin(α + β)
=

d1
sin(π − β)

(2.5)⎧⎪⎨⎪⎩x0 − x1 = d1cos(π − α)

y0 − 0 = d1sin(π − α)
(2.6)

The AOA algorithm is generally not used alone in applications, because the angular resolu-

tion of the UWB antenna is very demanding. It is often used in combination with TOF or TDOA

in localization algorithms. L. Taponecco et al. designed a UWB localization system jointing

TOA and AOA estimation [30]. The biggest advantage of this method is that the number of base

stations can be drastically reduced to one, which will greatly reduce costs in large factories. It is

experimentally demonstrated that a ranging error of about 10 cm and an angular error of about

1° is achieved using a pulse with a 3 GHz sampling rate and two antennas with a distance of

50 cm.
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2.3.4 Evaluation of Positioning Algorithms

L. Barbieri et al. evaluated the performance of three commercial off-the-shelf UWB technolo-

gies: Decawave, Sewio, and Ubisense [31]. According to their industrial experiments, the

positioning error of Decawave devices with TOF estimation is lower than 18 cm in line-of-sight

conditions, while 33 cm and 28 cm are achieved in the non-line-of-sight and shadowing cases.

However, Sewio attains an error value of 1.17 m with the TDOA algorithm. Ubisense achieved

less than 40cm error combining TDOA and AOA measurements. Table 2.1 summarizes some

characteristic comparisons of the three positioning algorithms: TOA/TOF, TDOA, and AOA.

Table 2.1: Comparison of positioning algorithms

TOA/TOF TDOA AOA

Precision high medium low

Min Anchors 3 3 2

Scalability low high high

Robustness high low high

Battery Life short long long

Availability low high high

Cost per module low low high

All in all, the algorithm implementation of TOF is relatively simple, and the accuracy is

the highest. However, since the base station and the tag need to communicate multiple times

to measure the distance, the module consumes a lot of power. Moreover, the positioning needs

to deploy base stations in advance, so the scalability of the system is poor. To expand the

positioning range, it is necessary to deploy new base stations. The TDOA algorithm requires

each base station to perform high-precision time synchronization with each other first, so the

development of the algorithm is difficult and the algorithm is relatively complex. In addition, the

positioning result strongly depends on the time synchronization of the module, so the accuracy

is not as good as the TOF algorithm. However, since only one communication between the base
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station and the tag is required for positioning, the relative power consumption of the system

will be very low, and it is very easy to expand to a larger positioning range. As for the AOA

algorithm, the biggest advantage is that the number of base stations required is very small,

and only two base stations are needed to obtain the label position. However, to obtain the angle

information, a high-cost IR-UWB module is required, and the antenna of the module is required

to transmit in a ring shape and to obtain accurate angle information. To make matters worse,

this positioning method is sensitive to signal occlusion and is generally not used in positioning

systems alone.

2.4 IR-UWB Relative Positioning System Design

In the traditional positioning system, we can get the specific position of the tag in the indoor

environment with fixed anchors. However, in some specific scenarios, we need to know the

relative positions of Tags rather than absolute position information, such as multi-robot col-

laborative exploration and mapping, search and rescue, and formation control. Therefore, we

design a relative positioning system based on IR-UWB for the above cases. In this section, we

will introduce the design of the relative positioning system in detail, mainly including system

architecture, system hardware, and software design.

2.4.1 System Architecture Design

Figure 2.6 shows the architecture of the relative positioning system based on IR-UWB, includ-

ing the hardware architecture, positioning algorithm, and GUI display.

In the hardware architecture, the three base station modules first calculate the distance be-

tween the tag based on the DS-TWR algorithm and then transmit data to the host computer

through the USB to TTL serial port. In the implementation part of the positioning algorithm,

after the host computer receives the three distance information, it first distinguishes the data
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Figure 2.6: Positioning system architecture design

source according to the serial port ID and then calculates the measured label position through

the positioning algorithm we designed. Finally, in the result GUI display module, the position

information is displayed in the GUI interface in real-time through the matplotlib.pyplot library

in python.

2.4.2 Positioning Model

Figure 2.7 shows the relative positioning system model we proposed.

We use robots A, B, and C to represent the multi-robot task scenario, and the robots commu-

nicate with each other through the IR-UWB transceiver module mounted on it. Three receiving

modules and one transmitting module are deployed on each robot, and the receiving module

can receive the IR-UWB signals transmitted by all the transmitting modules within the range

for distance measurement. Because the IR-UWB module will send a series of messages during

the ranging process, we also write the ID of the module into the message to distinguish the

source of the message for the receiving module. For example, robot A can communicate with

the transmitting module Tb of robot B through the three receiving modules A1, A2 and R3, ob-

tain the distance of the three sides: d1, d2, d3 through the ranging algorithm. Then the relative

positioning algorithm we designed is used to calculate the relative position of robot B in the

coordinate system of the Ta.
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Figure 2.7: Relative positioning system model

2.4.3 Hardware Design

The hardware we use is the BP-TWR-50 IR-UWB positioning module developed by the Bphero

team based on the DWM10001 module. The DWM1000 is a wireless IR-UWB transceiver

module developed by Decawave’s DW1000 IC2 that conforms to the IEEE802.15.4 − 2011

IR-UWB standard. The module enables object localization in RTLS to 10 cm indoor accuracy,

high data rate communication up to 6.8 Mbps through coherent receiver technology, and an

excellent communication range of up to 300 meters. On this basis, the Bphero team uses the

officially provided TWR algorithm to calculate the distance between two IR-UWB modules,

and then increases the ranging accuracy through functions such as mean filtering, and increasing

the LCD screen to display the distance information between modules in real-time. The most

important thing is that the module provides ST-LINK/V2 and USB to TTL interfaces, which are

convenient for users to debug and load programs and connect to serial ports. A single BPHero-

UWB module is shown in Figure 2.8a. It is equipped with a DWM1000 UWB ranging module

1https://www.decawave.com/product/dwm1000-module/
2https://www.decawave.com/product/dw1000-radio-ic/
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and uses STM32F103C8T6 as MCU. In the relative positioning system, each robot is equipped

with a set of BP-TWR-50 positioning modules (Fig. 2.8b), and the positioning algorithm is

calculated by placing each module at a certain distance.

(a) BPHero-UWB module (b) BPHero-UWB position module

Figure 2.8: BPHero-UWB module

2.4.4 Positioning Algorithm Design

In order to calculate the relative coordinates between robots, we design a relative positioning

algorithm based on the TOF algorithm, shown in Figure 2.9. The coordinates are calculated

by measuring the distance between the transceiver modules. Since the module is deployed

in advance, we can know the specific location of the IR-UWB transceiver module on each

robot. According to formula (2.3), the coordinates (x, y) of robot B can be solved. However,

to simplify the calculation process, we take the transmitting module of robot A as the origin,

and the three receiving modules C, D, and E are placed at (0, a), (−a, 0), (a, 0), respectively.

First, we can obtain the flight time from the transmitter module of robot B to the three-receiver

modules of robot A through the DS-TWR algorithm, to calulate the three distances of d1, d2, and

d3. Then, the following formula is listed based on the cosine law, so that the distance between
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robot A and robot B and the angle γ between the connection line and the negative x-axis can be

calculated.

A

C

D
E

B

B`

γ

d1

d2

d3

d`1

d2

d3

(0,0) (a,0)
(-a,0)

(0,a)

(x,y)

(x`,y`)

Figure 2.9: Relative positioning algorithm design

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d3

2 = d2
2 + (2a)2 − 2d2(2a)cosβ

|AB|2 = d2
2 + (a)2 − 2d2acosβ

d2
2 = |AB|2 + (a)2 − 2a |AB| cosγ

(2.7)
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Then, calculate the angle α between AB and the positive semi-axis of x through α = π− γ.

Now, we have obtained the polar coordinates of robot B (±α, |AB|). Due to the symmetry of

the coordinate system, the coordinates of B have two possibilities, up and down. Two cases

(x, y) and (x,−y) can be obtained through the conversion of polar coordinates and rectangular

coordinates (Equ. 2.8). Finally, we need to use d1 to determine the specific location of point B.

⎧⎪⎨⎪⎩x = |AB| ∗ cosα

y = |AB| ∗ sinα
(2.8)

If (x − 0)2 + (y − a)2 = d1
2 holds, then the coordinates of robot B are (x, y). Otherwise,

the coordinates of robot B are (x,−y).

2.5 Summary

This chapter mainly introduces related positioning methods and positioning system design.

Firstly, the principle of IR-UWB ranging and positioning is elucidated. Then we investigate

and evaluate three popular positioning methods TOF, TDOA, and AOA with IR-UWB sensors.

The design of the relatively calculated system is expounded, including positioning model de-

sign, hardware design, and positioning algorithm design. We adopt the BP-TWR-50 IR-UWB

positioning module as the hardware of the relative positioning system and design a positioning

algorithm based on TOF.



3 Positioning System Implementation and

Experiments

3.1 Overview

This chapter first introduces the one-to-one ranging experiment to illuminate the characteris-

tics of IR-UWB modules. Then the realization of the relative positioning system is shown in

detail. To examine the accuracy of the IR-UWB relative positioning system, we tested eight

experiments of position situations and collected the positioning results. Finally, we compare

the proposed localization method with existing localization systems (WiFi-, Bluetooth-, Lidar-

based) and analyze the advantages and disadvantages of these methods.

3.2 Implementation of IR-UWB Ranging Module

3.2.1 Ranging Algorithm Implementation

The ranging algorithm of IR-UWB modules adopts the DS-TWR algorithm, that is, the three-

message ranging method. The specific message transmission between devices is shown in Fig-

ure 3.1.

The Tag module will first send an IR-UWB Poll signal and record the sending timestamp
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T1. If the Anchor module receives it, the Anchor will first record the received timestamp T2,

and then return a Resp signal to the Tag after Treply1. At the same time, the sending message

timestamp T3 is recorded. Then, when the Tag receives the response signal, it will record the

timestamp T4, and return a Final signal to the Anchor at the time T5 after Treply2. The Anchor

will record the current timestamp T6 when it receives it. It is worth noting that each time the

Tag module sends information to the Anchor module, it will append the recorded timestamp

information to the sent information. In this way, when the last Final message is received,

Anchor can directly read the values of T1 to T6 from the buffer. Finally, the accurate distance

between the Tag and the Anchor can be calculated by the formula (3.1).

Tag

Anchor

T1

T2

T4

T3

T5

T6

Tround1

Treply1
Tround2

DTA

Figure 3.1: Message transmission between IR-UWB Modules with DS-TWR

Tprop =
(T4 − T1) ∗ (T6 − T3)− (T3 − T2) ∗ (T5 − T4)

(T4 − T1) + (T6 − T3) +−(T3 − T2) + (T5 − T4)

=
(T4 − T1) ∗ (T6 − T3)− (T3 − T2) ∗ (T5 − T4)

T6 + T5 − T1 − T2

DTA = Tprop ∗ c (c = 3× 108 m/s) (3.1)

where Tprop is the propagation time of information from the Tag module to the Anchor mod-
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ule. Therefore, the distance between the two modules (DTA) can be calculated by multiplying

the propagation time (Tprop) by the propagation speed (c) of the electromagnetic wave in the air.

3.2.2 Ranging Module Experiment

Experimental Setup

Fig. 3.2 shows the experimental setup for the ranging accuracy test. Since the final distance is

calculated on the MCU of the Anchor module, we connect the IR-UWB Anchor module to the

computer serial port through the USB to the TTL module and the IR-UWB Tag module to the

power bank for easy movement. We place the Anchor module at the origin, use the ruler as the

standard distance as a reference, and change the distance between the two modules by moving

the Tag module.

Figure 3.2: Experimental setup of ranging accuracy test
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Accuracy of Ranging Modules

We collected 13 sets of test data from 0.5m to 18m, respectively. To increase the confidence

of the data, we recorded 540 data points at each distance point and then took the average as

our measurement data. The absolute error, relative error, and measurement accuracy are also

recorded. The experimental result is shown in Table 3.1.

Table 3.1: Accuracy of ranging modules

Real

Distance(m)

Measurement

Points

Average

Measured distances(m)

Absolute

Error(m)

Relative

Error
Precision

0.5 540 0.498 0.002 0.42% 99.58%

1.0 540 0.999 0.001 0.13% 99.87%

1.5 540 1.515 0.015 1.02% 98.98%

2.0 540 1.963 0.037 1.84% 98.16%

2.5 540 2.529 0.029 1.15% 98.85%

3.0 540 2.938 0.062 2.08% 97.92%

3.5 540 3.470 0.030 0.85% 99.15%

4.0 540 3.988 0.012 0.30% 99.70%

4.5 540 4.491 0.009 0.19% 99.81%

5.0 540 4.909 0.091 1.82% 98.18%

6.0 540 6.019 0.019 0.31% 99.69%

10 540 9.992 0.008 0.08% 99.92%

15 540 14.848 0.152 1.02% 98.98%

18 540 17.958 0.042 0.24% 99.76%

The results show that the ranging accuracy of the IR-UWB module can reach about 99.18%,

indicating that the ranging results of IR-UWB are very reliable in the case of a large sample

base. In order to better show the volatility of the data and the deviation from the standard

quantity, we use python’s matplot library to plot all the measurement results. As shown in

Figure 3.3.
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As can be seen from the picture, when the actual distance is less than 5m, the data fluctuates

greatly, but when the actual distance reaches more than 10m, the overall trend of the data tends

to be flat. According to the table, the test accuracy rate above 5m exceeds 99.5%.
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Figure 3.3: Measurement data results

3.3 Implementation of IR-UWB Relative Positioning System

In the relative positioning system, we carried four IR-UWB modules (one transmitting mod-

ule and three receiving modules) for each tested individual. Each transmitter module will send

IR-UWB signals to other individual receiver modules, and also through the DS-TWR ranging

technology, the transmitter module will obtain the distance to the three-receiver modules re-

spectively. Then through serial communication, the three receiving distances are transmitted to
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the upper computer (pc), and then the relative positions of other robots are calculated by the

positioning algorithm we proposed, and finally displayed through python visualization.

3.3.1 Hardware Implementation

The actual placement is shown in Figure 3.4. To simplify the calculation of the positioning

algorithm, the receiving module is placed at the origin, and the three transmitting modules are

placed in the left, up, and down directions at a distance of 15cm from the origin, respectively.

Figure 3.4: Original hardware system design of relative positioning system

However, the experiment found that the crosstalk of the power supply will affect the rang-

ing results, the power supply module and the UWB module cannot be placed on the same

level. Therefore, we thought of placing the UWB ranging module vertically and horizontally,
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as shown in Figure 3.5.

Figure 3.5: Improved hardware system design of relative positioning system

Then, connect the three Anchor modules to the serial port of the host computer, and a label

module power supply is powered by one of the Anchor power supplies. Finally, the actual

hardware architecture of the relative positioning system is shown in Figure 3.6.

3.3.2 Positioning Algorithm Implementation

As shown in Figure 2.9 in Chapter 2, we design a localization algorithm to calculate the relative

positions of other individuals. Algorithm 1 is programmed in a Python language environment

with Pycharm software. Read the information of the three serial ports of the computer in turn

by installing the serial port library of python.
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Figure 3.6: Actual hardware architecture of relative positioning system

Algoritmi 1 The Relative Position Algorithm
Require: None;
Ensure: Position coordinates;

1: open three serial ports: serial.Serial(”COM1”, 115200, timeout = 5);
2: serial.Serial(”COM2”, 115200, timeout = 5);
3: serial.Serial(”COM3”, 115200, timeout = 5);
4: while True do
5: get serial buffer data: ser.inWaiting();
6: if count ! = 0 then
7: read three serial data: ser.read(ser.in_waiting).decode(”gbk”)
8: get three distance values: d1, d2, d3
9: end if

10: compute cosβ = (d2
2 + 2 ∗ a2 − d3

2)/(2 ∗ d2 ∗ 2 ∗ a)
11: compute disab =

√︁
d2

2 + a2 − 2 ∗ d2 ∗ a ∗ cosβ
12: compute cosγ = (disab

2) + 2 ∗ a2 − d2
2)/(2 ∗ disab ∗ a)

13: compute α = π − acos(cosγ)
14: compute x = disab ∗ cos(α), y = disab ∗ sin(α)
15: if x2 + (y − a)2 == d1

2 then
16: return (x, y)
17: else
18: return (x,−y)
19: end if
20: end while
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To improve the accuracy of positioning, we measure the distance multiple times to obtain the

average value by setting the serial port reading time. At the same time, to ensure the real-time

performance of the algorithm, we only take the average of 10 data as the ranging result. The

obtained three distance information are respectively defined as d1, d2 and d3. Then calculate the

distance between system A and system B disab and the angle α between the two and the x-axis

through the knowledge of trigonometric functions. We first calculated two possible cases (x, y)

and (x,−y) of point B by the two distances d2 and d3. Assuming that one of the cases (x, y)

holds, calculate the distance between the target and Anchor 0, and then compare the result with

the size of d1 to determine whether it holds. If the assumption is true, the coordinates are (x, y),

otherwise, it is (x,−y).

3.4 Experiment of IR-UWB Relative Positioning System

3.4.1 Experimental Setup

We employed a set of BP-TWR-50 UWB modules to simulate individuals in a relative position-

ing system. The movement of the individual in the actual situation is simulated by moving the

whole set of modules, and then the relative positions of other individuals are obtained through

the visual interface of the host computer. The experimental setup is shown in Figure 3.7. Three

Anchor modules are connected to the host computer through a serial port, and one Tag is pow-

ered through the power port of the Anchor module. The three anchor modules on system A will

continuously send IR-UWB signals, and both tags Ta and Tb will receive the signals, but before

replying, the Tag module will first make an ID judgment. In this way, the information received

by the Anchor module on system A can only come from Tb, and what is obtained is the distance

information d1, d2, and d3 between the three modules A1, A2, and A3. Then, through the posi-

tioning algorithm we proposed, the position of system B relative to system A is calculated and

displayed in the coordinate system with A as the origin.
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Figure 3.7: Experimental setup of IR-UWB relative positioning system

To verify the reliability of the algorithm, we set up 8 location situations for testing. As

shown in Figure 3.8, system B is directly left, right, directly above, just below, upper-right,

upper-left, down-right, and down-left of system A, respectively.

3.4.2 GUI Display of Positioning Results

We created a Cartesian coordinate system image with Python’s matplotlib library and displayed

the generated coordinate points in real time. Since our experiment uses System A as the main

system, the positioning results will be displayed in the main system of System A. As shown in

Figure 3.9, we set the Tag module of system A as the origin of the coordinates. According to

the specific placement of the module, the anchor module is identified at three positions (0, 0.15)

(−0.15, 0) and (0.15, 0). We obtained three distance information from the three serial ports, and

then calculated the position (x, y) of the label Tb in system B through the positioning algorithm,

and displayed it on the canvas. Since the serial port has been transmitting data, the position

of system B is also constantly updated. To achieve the effect of real-time display, every time

we calculate position information, we will refresh the canvas once, and then display the new

position information again.
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Figure 3.8: Eight positional situations for system A and system B



3.4 EXPERIMENT OF IR-UWB RELATIVE POSITIONING SYSTEM 41

-2 -1 0 1 2 3
-2

-1

0

1

2

3

A

B

Real-Time Relative Positioning System

Figure 3.9: Real-time GUI display of positioning results

3.4.3 Accuracy of the Relative Positioning Algorithm

We collected 500 data points respectively according to the eight positions of the experimental

setup. The results in the form of scatter plots are shown in Figure 3.10.

The positioning error is defined as:

Poserr =
√︁

(x− x0)2 + (y − y0)2 (3.2)
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Figure 3.10: Measurement coordinate results
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where (x0, y0) is the actual position of the measured target, and (x, y) is the result from the

calculation.

So, the accuracy of the positioning system can be calculated as:

Acc = 1− δ = 1− Poserr
Posreal

= 1−

√︄
(x− x0)2 + (y − y0)2

x2 + y2
× 100% (3.3)

where δ represents the relative error of the coordinate results, Posreal means the actual coordi-

nate position.

The formula for calculating Root Mean Square Error (RMSE) is:

RMSE =

⌜⃓⃓⎷ 1

n

n∑︂
i=1

[(x− x0)2 + (y − y0)2] (3.4)

Through the calculated data of 50 coordinate points, we obtain an average coordinate result

and calculate the positioning error through the formula (3.2). Finally, the positioning accuracy

and RMSE of the algorithm are obtained by formula (3.3) and (3.4). The detailed results are

shown in Table 3.2.

Table 3.2: Accuracy of the relative positioning system

Real Position

(x0, y0)

Measurement

Points

Average Measured

coordinate

Position

Error
Precision RMSE

(1,0) 50 (0.714,0.662) 0.721 27.94% 0.721

(-2,0) 50 (-1.961,0.324) 0.327 83.67% 0.356

(0,3) 50 (0.009,2.989) 0.014 99.52% 0.583

(0,-3) 50 (0.012,-3.018) 0.021 99.29% 0.043

(1,1) 50 (0.940,0.961) 0.072 94.90% 0.079

(-1,1) 50 (-1.029,0.874) 0.129 90.86% 0.136

(1,-1) 50 (1.002,-0.900) 0.100 92.91% 0.101

(-1,-1) 50 (-1.036,-0.870) 0.135 90.46% 0.138
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The relative error decreases greatly with the increase of the actual distance. When the rela-

tive distance reaches about 3m, the accuracy can reach about 99%. When the relative distance is

1m, the accuracy is less than 28%, so in the applicable scenario: large-scale smart factories, the

distance between robots is more than 3m; when the absolute distance is similar, the accuracy

on the coordinate axis is not as high as in the four quadrants. There may be an overlap between

the IR-UWB modules, and crosstalk occurs between the IR-UWB modules, which affects the

ranging results. Moreover, the accuracy of the four quadrants does not require high relative

distances. Even when the relative distance is about 1.5m, the accuracy can reach more than

90%.

3.5 Improvement of IR-UWB Relative Positioning System

During the implementation of relative positioning, we found that since each Anchor module

needs to communicate with the host computer, it needs to consume a lot of USB to TTL mod-

ules, and the USB interface of the host computer sometimes cannot meet the requirements.

Therefore, we consider passing the distance information to the Tag module, so that only one

USB serial port is needed to obtain three distance information at the same time. But in the

implementation process, we must first solve the problem of module identification and distinc-

tion. Since each individual carries only one IR-UWB transmitter module and three IR-UWB

receiver modules, how to make the transmitter module distinguish the three-receiver modules is

the challenge we face.

Therefore, we thought of the method of adding an ID to the receiving module to distin-

guish, and then in the transmitting module, the ID is used to determine which receiving module

the signal is returned from. In the code, we use Anchor to represent the receiving module,

Tag represents the transmitting module, and ANCHOR_IND is used to distinguish the three

receiving module numbers, which are 0, 1, and 2 in sequence.
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The specific implementation steps are shown in Algorithm 2. We first define the IDs of Tag

and Anchor and the number of Anchors outside the main function. Then we created two new

arrays, Anthordistance[] to store the distance information of the three Anchors and labels, and

Anthordistance_count[] to count the number of Anchors. Each bit of the array represents an

Anchor. In the main function, we need to initialize the peripherals first, including GPIO initial-

ization, SPI peripheral initialization, OLED initialization, and USART initialization. Then it

is the one-to-many ranging between Tag and Anchor. The ranging algorithm still uses the DS-

TWR method. The difference is that the Tag will determine the ID of the base station once, and

then transmit the UWB message in turn. When the communication between Tag and this An-

chor is successful, then the value on Anthordistance_coun[Anchor_IND] will be increased

by one, and finally, the calculated result will be stored in Anthordistance[Anchor_IND].

Algorithm 2 is compiled in the C language environment, and the code is compiled using the

keil5 software. After the compilation is successful, it is burned into the MCU of the IR-UWB

module through ST-Link. By changing the ANCHOR_IND parameter from 0 to 2, load the

program into Anchor0, Anchor1, and Anchor2 respectively. Finally, the distance calculation

and ID determination algorithm will be implemented in the Tag module, and the obtained three

distances d1, d2, and d3 will be sent to the serial port.

Finally, we can obtain the distance information between the Tag module of system A and

the three anchor modules of system B. Through our proposed positioning algorithm, the relative

position of system A and system B can be obtained. Then, at this time our coordinate origin

is the Tag module of system B. Therefore, if we want to obtain the relative position of system

B, we also need to do one step of coordinate transformation. For example, assuming that the

positive directions of system A and system B are the same, the position of system A relative to

B is (a, b), then the position of system B relative to A becomes (−a,−b).
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Algoritmi 2 Receiving Module ID Discrimination Algorithm
Require: None;
Ensure: Distance between transmitter module and three receiver modules;

1: define Tag ID: #define TAG_ID 0x0F ;
2: define the number of Anchors: #define ANCHOR_MAX_NUM 3;
3: define Anchor ID: #define ANCHOR_IND 0; // 0 1 2
4: define distance array: int Anthordistance[];
5: define distance count array: int Anthordistance_count[];
6: while True do
7: Peripheral initialization: peripherals_init();
8: calculate distance: DS − TWR algorithm
9: if Anthordistance_count[0] > 0 then

10: get the distance between Tag and Anchor0:
11: sprintf(dist_str, ”d1 : %3.2f”, (float)Anthordistance[0]/1000);
12: printf(”%s”, dist_str);
13: printf(”/r/n”);
14: end if
15: if Anthordistance_count[1] > 0 then
16: get the distance between Tag and Anchor1:
17: sprintf(dist_str, ”d2 : %3.2f”, (float)Anthordistance[1]/1000);
18: printf(”%s”, dist_str);
19: printf(”/r/n”);
20: end if
21: if Anthordistance_count[2] > 0 then
22: get the distance between Tag and Anchor2:
23: sprintf(dist_str, ”d3 : %3.2f”, (float)Anthordistance[2]/1000);
24: printf(”%s”, dist_str);
25: printf(”/r/n”);
26: end if
27: end while

3.6 Evaluation of Positioning Systems

We compare the proposed relative positioning system with other similar works and the results

are presented in Table 3.3. According to the adopted positioning module, we analyze the posi-

tioning systems based on six technologies: WiFi, BLE, Lidar, Camera, and UWB.

Interestingly, we found that WiFi and BLE have the widest coverage but the lowest accuracy.

Although the work of Lin et al. [32] and Subhan et al.[33] has reduced the positioning errors

of WiFi and BLE to 1.4m and 1.325m, the positioning errors of both may reach more than 2m
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Table 3.3: Comparison with other positioning methods

Study and Year Hardware Anchors Ranging Algorithm
Position error

or Accuracy

Lin et al.[32](2016) WiFi 6 50× 20m ISWF, AoA 1.4 m

Subhan et al.[33](2019) BLE 4 10× 10m RSSI 1.325m

Ramezani et al. [34] (2020) Lidar 1 100m,250m
Verified Lidar-SLAM 0.09m

Non-Verified Lidar-SLAM 0.64m

J. Lin et al.[35](2020) Camera 2 0.2− 0.5m Binocular stereo vision 95%

Che et al.[36](2020) UWB 4 32m2 the NB ML algorithm 87%

Relative Positioning system UWB 4 >18m TOF 93.09%

under the circumstances. Y. Yun et al.[37] collected both Wi-Fi and BLE RSS data on the same

smartphone to perform a detailed comparison of the two positioning methods. According to

the experimental results at 16m×7m indoors, the system based on WiFi and BLE technology

obtained indoor positioning errors of 2.39m and 2.52m, and outdoor positioning errors of 4.18m

and 4.07m, respectively. Lidar-based positioning technology has been a hotspot in recent years.

It scans the environment to obtain point cloud data, establishes an environment model, and

then locates it through a matching algorithm. Ramezani et al. [34] designed a 3D factor-

graph LiDAR-SLAM system and achieved 0.09m relative pose error with verification, 0.64m

without verification. So as the camera-based method, the work of Lin et al.[35] obtained the

proportional error within 5%. However, both Lidar-based and vision-based methods have one

of the biggest drawbacks: lighting. What’s worse, the power consumption of image processing

is also a large overhead. Fortunately, the emergence of UWB technology perfectly solves the

privacy and lighting impact problems caused by cameras. The work of Q. V. Brande et al.[6],

N. Macoir et al.[7], and Mogale et al.[9] demonstrate the superiority of IR-UWB technology in

indoor positioning. The use of IR-UWB technology enables the positioning system not only to

reduce multipath interference but also to achieve high accuracy. Che et al. developed a naive

Bayes (NB) machine learning (ML) algorithm to improve the localization accuracy of IR-UWB
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technology [36]. Good classification results also illustrate the potential of IR-UWB technology

in ML, providing a theoretical basis for future AI-related applications.

3.7 Summary

This chapter introduces the specific implementation method of the relative positioning system,

including ranging function, hardware construction, and software algorithm implementation.

Through experiments, we calculated that the ranging accuracy of IR-UWB is about 99.18%.

However, the positioning algorithm is limited by direction and distance. Except for one ex-

treme case (when the distance with a target is less than 2m), the average positioning accuracy

of rest cases has reached 93.09%. Moreover, we have also improved the original relative po-

sitioning system, unifying three serial ports into one serial port, thus simplifying the hardware

device. Finally, the comparison with other positioning methods shows the superiority of our

proposed system, such as high accuracy, scalability, and flexibility. It also provides a thought

for future IIoT positioning applications for robot arrays or flexible scheduling of staff groups.



4 Sensing System Design

4.1 Overview

Exploring novel sensing technologies to promote new interaction methods is still an active re-

search topic in human-computer interaction[38]. As a vital part of the non-verbal form of

communication, hand gesture recognition provides a user-friendly interface between humans

and computers[39]. In the IIoT application scenario, especially in smart factories, HGR has

emerged as a popular solution for human-machine interfaces (HMI)[40]–[43], enabling people

to communicate with machines and interact naturally. Hand gesture recognition has emerged in

recent years as a robust sensing method in non-contact HMI[44].

In this chapter, we first introduce the principle of sensing system design. We compare the

IR-UWB sensor with other sensing methods, illustrating its feasibility in IIoT applications.

Then we find a suitable approach for IR-UWB signals via the analysis of commonly used signal

pre-processing and classification methods. Last but not least, we show the overall architecture

of the sensing system, including the IR-UWB contactless sensor, hand gesture dataset, the pre-

processing method design, and the classification method design.
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4.2 System Design Principle

4.2.1 Sensor Design Principle

In the past decade years, various HGR methods have been proposed, which can divide into

two categories according to the data collection method: a) contact sensors[45]–[47], b) contact-

less sensors[48]–[50]. Among the various contact sensor-based methods, Bahador et al. col-

lected hand gesture information through an Electromyography signal and reached an accuracy

of 99.99% with 96 electrodes [45]. But the experiment needs to place electrodes on the arm and

keep the electrode plate in the same direction as the muscle. So are wearable devices in Yuan et

al. [46] and Bedico et al. [47], hard to adapt to differences in user physique and behavior and

troublesome to get signals we need. As for non-contact sensors, the camera-based method is the

most widely used in HGR. Lin et al. proposed an efficient and compact image-based pose rep-

resentation method[48]. It’s called the Poseimage Pyramid because of encodes the spatial and

temporal information of human posture or hand posture into an image pyramid. They get the

hand joints from a video, then calculate the pairwise Euclidean distance and geodesic distance

between the joints to build a Pose image clip. Event-based sensors-DVS Camera also receives

more attention from researchers because of the extremely low power consumption. Massa et

al. design a DNN-to-SNN model for the DvsGesture dataset and achieves 89.64% classification

accuracy on 11 hand gestures[49]. The DvsGesture dataset they used for gesture recognition is

fully event-based from IBM. Each gesture is recorded with a DVS128 camera, providing 1342

samples divided into 122 trials.

However, camera-based approaches are sensitive to the environment, such as contrast, expo-

sure, and brightness [51]. People also usually feel uncomfortable when viewed by the camera.

Furthermore, the image sensors have relatively high power consumption. Even the power con-

sumption of Kinect[50] sensors has reached several hundred watts in actual applications[52].

In addition to the camera-based recognition system, the radar sensor is a promising sensing
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technology for HGR, as not affected by lighting conditions or any related privacy issues[53].

IR-UWB non-contact sensor can generate a typical spikes signal with non-sinusoidal narrow

pulses ranging from nanoseconds to microseconds. IR-UWB sensor has lately received great

attention for gesture recognition applications due to its high temporal resolution, low risk of

exposure to the human body, lower power consumption, and robustness to multipath[3], [4].

Ahmed et al. [12] collected eight hand gestures data with two Xethru-X4 Radars and stored

them as a two-dimensional data matrix. They used a simple loop-back filter for signal pre-

processing thanks to its simple structure and low computation expense[4], [54]. However, they

converted the radar data matrix into a 3D image to train a 3D CNN, increasing algorithm calcu-

lation overhead. Choi et al. used IR-UWB radar as a counting sensor for inbound and outbound

people [16]. They collected data using two IR-UWB radar sensors equipped with narrow-beam

antennas, thereby improving the performance of the algorithm through mutual information be-

tween two adjacent radars. The radar chip they use is made by NOVELDA in Norway. Antennas

are arrayed to narrow the azimuth angle when transmitting pulsed signals. Finally, through the

test in the laboratory and real subway station, the average error rate can be controlled at about

7%, which also shows the potential of IR-UWB radar in people counting. Scherer et al. used A1

Radar sensors of Acconeer to collect gesture datasets [13], due to its low power consumption

and high resolution. They collected data from five basic gestures with an A1 radar and acquired

11 gesture datasets by increasing the number of radar sensors to two. A model mixing TCN and

CNN was proposed to process radar dataset, which achieve an accuracy of 89.52% (11 gestures)

and 93.83% (5 gestures) with a surprisingly low power consumption of 21mW.

Therefore, in the sensor design part of the sensing system, we decided to use the IR-UWB

radar module to collect gesture information. Therefore, in the sensor design part of the sensing

system, we decided to use the IR-UWB radar module to collect gesture information. This

approach does not require the user to wear any sensors, and also avoids the privacy concerns of

cameras.
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(a) Xethru-X4 radar chip, taken from [12] (b) A111 RADAR sensors setup, taken from [13]

Figure 4.1: The IR-UWB contactless sensors

4.2.2 Pre-processing Method Design Principle

With the increasing attention to IR-UWB technology in recent years, more and more methods

for IR-UWB signal pre-processing have been proposed. Generally speaking, common process-

ing methods are a) filtering method, b) FFT, and c) sampling.

The filtering method is generally used in the positioning system based on IR-UWB because

only one filtering or impurity removal operation is required on the signal to obtain the distance

signal we need. Generally, no subsequent identification algorithms need to process the filtered

signal. V.-H. Nguyen et al. [55] designed a location detection and tracking of moving targets

system based on a 2D IR-UWB Radthe ar. Generally speaking, the received radar signal divides

into three parts: target signal, clutter, and noise. The authors introduce a Kalman filter (KF)

based clutter estimation method to estimate the clutter and subtract it from the received signal.

The KF equation for clutter reduction can be greatly simplified by taking the coefficients of the

KF formula to 0 or special values such as the identity matrix I .

FFT is a commonly used method in IR-UWB based sensing systems. Due to the matu-

rity and superiority of CNN, most scholars convert the one-dimensional IR-UWB signal into

a two-dimensional matrix through Fourier transform related methods and input the simulated

picture information into the CNN for identification. Li et al. propose an IR-UWB radar-based
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method for hand gestures recognition using ShuffleNet V2[11]. They collected 7 gesture in-

formation through an IR-UWB radar. The radar transmitting antenna will emit electromagnetic

waves ST (t), and the electromagnetic waves will be reflected in the receiving antenna when en-

countering obstacles (human hands), the received signal is recorded as SR(t). To convert a 1D

waveform signal into an input signal suitable for ShuffleNet, Li et al. transformed SR(t) into a

2D matrix according to the scanning frequency. Finally, 2D FFT is performed on the 2D matrix

signal to obtain more frequency domain information, wider range, and Doppler accuracy, which

is also called Doppler processing. Scherer et al. [13] adopted the range frequency Doppler map

to extract feature maps, which are based on the Fourier transform of the time axis. They first

transformed the I/Q signal from the time domain to the frequency domain by Fourier transform

to detect changes in the frequency domain. Then, the results obtained from multiple scans of

the radar are spliced together, and the Fourier transform is performed on the data at the same

distance point. Finally, since each scan signal is discrete in time and distance, a discrete Fourier

transform is used to obtain the final feature maps. A 2D CNN will be used to process these

feature maps, and then combined with TCN to reduce system power consumption, and finally

realize the recognition of 11 gesture data.

As for the sampling method, it is commonly used in power-sensitive systems. In general,

downsampling reduces signal complexity and the processing power of the system. Kim et al.

used the sampling method to process 1D IR-UWB signals[56]. The IR-UWB signal received by

the receiving antenna first goes through an amplifier and a low-pass filter for impurity removal

and then is digitized by a high-speed oscilloscope with a sampling speed of 20 GHz. Although

the whole pre-processing process is not complicated, and the recognition algorithm only uses

1D CNN, the classification result is not very satisfactory, which only reaches 90%. It can be

seen that simple down-sampling or over-sampling is not suitable as a pre-processing method for

IR-UWB signals.

Recently, level-crossing (LC) sampling has become a novel and popular method in analog-

to-digital converter (ADC), called level-crossing ADCs (LC-ADCs). LC-ADCs are wildly used
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in the medical field, processing Biomedical Signals, such as electrocardiogram (ECG) [57],

[58], electroencephalogram[59], [60], and electrocorticography[61] signals. The common point

of these signals is that the sparseness is relatively large. If the traditional ADC method is used,

more sampling information will be required. If the sampling rate is reduced, information will

be missing due to insufficient sampling accuracy. M. Saeed et al. implemented an event-

driven ECG classification method based on an open-source, LC-ADC non-uniformly sampled

dataset[58]. In their work, the compression performance of three LC-ADC designs is presented

and the three models are evaluated using the MIT-BIH Arrhythmia dataset[62]. The results show

that the LC-ADC can help event-driven ECG signals reduce sampling complexity while achiev-

ing comparable classification accuracy compared to uniformly sampled data. S. M. Qaisar and

S. F. Hussain obtained electroencephalogram signals by using LC-ADCs, which reduced the

number of samples obtained by a factor of 1 and 3.7, respectively, compared to traditional

datasets [59]. This also reduces the computational complexity of subsequent signal processing

methods by a factor of more than 14, with significant reductions in transmitter power, system

bandwidth usage, and classifier computational load. Moreover, the proposed system achieves

100% classification accuracy in most of the study cases, illustrating the superiority of LC-ADCs

in bio-signaling.

Since the IR-UWB signal is also an event-driven pulse signal, and the data has a certain

sparseness, we also tried to use the LC-ADC method to preprocess the IR-UWB radar echo

signal. What’s more, the classification method we adopted is SNN, which only accepts neurons

in the form of spikes as input. So we sampled the analog signal quantity of radar echo into a

digital signal containing only 0/1 sequence.

4.2.3 Classification Method Design Principle

In recent years, hand gesture recognition has become a hot topic. Various papers are published

about it. However, the traditional methods for processing hand gesture recognition are high
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power consumption because these methods need to sample data constantly. Therefore, many

models and deep learning algorithms are coming out to solve recognition problems more effi-

ciently with less energy.

Elboushaki et al. present an effective multi-dimensional feature learning approach for hu-

man gesture recognition based on MultiD-CNN with RGB-D videos[63]. They use convolu-

tional residual networks for training extremely deep models and convolutional long short-term

memory networks (ConvLSTMs) for dealing with time-series connections. Long short-term

memory networks are a special type of recurrent neural network, which defines a cyclic hid-

den state, each activation of which depends on the previous time[64]. Elboushaki et al. adopt

one ConvLSTM layer with four ConvLSTM units. At different time steps, a 2D feature map

will be given as their input to capture the temporal dependencies between the RGB-D dataset.

It turns out that the design shows efficiency in video gesture classification tasks and achieves

state-of-the-art results on several datasets.

CNN is a crucial algorithm in the field of deep learning invented before SNN. Its potential

has been excavated by researchers since the 1980s, as TDNN and LeNet5 came out. And one of

the best-known utilizations is hand gesture recognition. Ikram and Liu have proposed a dynamic

hand gestures model by leap motion controller, based on CNN and long-short term memories

[65]. The controller can process the location and velocity in that 3-D space. The model ac-

quired an accuracy of 98% compared with state-of-art HGR methods. The system architecture

consists of gesture detection and gesture classification, and these two modules are connected

through a post-processing module. Usually, the detection will find a series of gestures, and the

processing module will separate similar frames and generate a large number of groups within

the frame. Although it has high accuracy, power is not mentioned, which means that power

cannot be the advantage of the model. Ahmed et al. [12] improved one of the classic models

of CNN, GoogLeNet, as an algorithm for IR-UWB radar gesture recognition. They reduced

the 9 Inception modules in the original GoogLeNet model to 7 to process 3D intensity images

converted from IR-UWB radar signals. The architecture of the system consists of seven basic
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inception modules, each of which is equipped with three different convolutional layers and a

max-pooling layer. Finally, experiments show that this new CNN architecture is more robust

and accurate than previous architectures, achieving 95% accuracy on eight gesture datasets. In

addition, Li et al. [11] and Scherer et al. [13] also used CNN-related models as their gesture

recognition algorithms, and achieved high accuracy.

However, power consumption remains a significant challenge in IIoT applications. Al-

though the CNN model can achieve very high accuracy, the entire classifier consumes a lot

of power due to the complexity of the convolution calculation. Therefore, in recent years, re-

searchers have also been exploring more efficient recognition networks. Singh et al. proposed

a low-energy algorithm for gesture recognition based on SNN called Gesture-SNN[66]. They

used Gradient-Descent to train deep artificial neural networks (ANNs) and converted them to

SNNs. What’s more, they designed three novel techniques: a) Combining multiple frames; b)

Aggregating the first layer membrane potential; c) Partially gating the first layer membrane po-

tential to improve the accuracy of the conversion from ANNs to SNNs. The evaluation showed

that the model is 38% more accurate with 35% lower energy and 55% lower EDP compared to

its traditional SNN counterpart.

Tsang et al. proposed an SNN approach for radar-based hand gesture recognition while

using frequency modulated continuous wave millimeter-wave radar[67]. They convert radar

Doppler maps into spike trains with a signal-to-spike conversion scheme. The spikes were used

as input for different classifiers, including logistic regression, random forest, and support vector

machine. Finally, they achieved over 98% accuracy on 10-fold cross-validation for two publicly

available reference datasets.

SNNs simulate the coding method of nerve synapses transmitting information via electrical

impulses to process pulse sequence information[68]. Therefore, the SNN neuron model is closer

to the brain nerve cell than other ANNs, naturally suitable for processing IR-UWB signals.
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4.3 System Architecture Design

Fig.4.2 presents the neuromorphic processing system for low-power hand gestures classification

based on IR-UWB Radar[44]. The system mainly consists of three parts: gesture data set, pre-

processing, and SNN processing. The gesture datasets are periodic samples with range scan

vectors recorded by the IR-UWB radar sensor. So, we can regard these samples as a time-series

signal with a sweep period and do some time-domain signal processing. The details of each

part of the system design are given.

Down-Sampling LC-Sampling Classification

(a) (b) (c)

+
-

+
-

(d)

Pre-processing SNN-processing

Down-Sampling LC-Sampling Classification

(a) (b) (c)

+
-

+
-

(d)

Pre-processing SNN-processing

Figure 4.2: Hand gestures recognition system architecture

4.3.1 IR-UWB Contactless Sensor and Dataset

The datasets were collected by Integrated Systems Lab at ETH Zurich using the Acconeer

XR111 sensor [13]. These gestures were selected by collectors through a long process, in-

cluding literature review, design seminars, focus groups, and user evaluations of the Wizard of

Oz[69]. The datasets are divided into one dataset with 5 gesture classes and one dataset with

11 gesture classes. Since the data set of 11 gestures is processed data, we cannot obtain the

amplitude and phase information of the original signal, so we chose 5 gesture classes as our

data set. We renumbered the five-gesture data of PullUp, PushDown, SwipeRL, FingerSlider,
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and PalmTilt as a-e, and added the NoHand data (f) as our sixth gesture, see Fig.4.3.

Figure 4.3: The overview of the 6 dynamic hand gestures dataset, adapted from [69]

1. Finger Slide: Slide the thumb left and right on the index finger to imitate the user’s

control on the electronic screen.

2. Fast Swipe: Move the palm quickly from the right to the left.

3. Push: Palm from top to bottom, imitating pushing action.

4. Pull: The palm moves from the bottom up, imitating the action of pulling up.

5. Palm Tilt: The process of tilting the palm to laying flat.

6. No hand: Surrounding environment information.

IR-UWB non-contact sensor transmits short pulses at the sweep frequency and hits the hu-

man hands. A single sensor records the phase and amplitude of the echo signal with a sweep

rate of 256Hz in the 5-gesture dataset, including 10 sessions with 50 data each of a single user.

The parameters of the dataset are depicted in Table4.1.
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Table 4.1: Parameters used to record the 5 and 6 gestures dataset

Parameters 5 gestures 6 gestures

Sweep frequency 256Hz 256Hz

Recording length 3s 3s

People 1 1

Instances per gestures 500 500

Instances per person 2500 3000

Total instances 2500 3000

Sweep ranges 10-30cm 10-30cm

Sensor module used Acconeer XR111 Acconeer XR111

4.3.2 Pre-processing Method Design

LC-ADCs sample the data according to the slope of the signal[58]. The basic principle is

that when the input signal changes significantly, the sampling event is considered to occur,

and the position of the sampling point is recorded[70]. Since the LC-ADCs contain temporal

information naturally and the output is a spikes signal, it is more suitable for neuromorphic

computing than Nyquist sampling ADCs. Fig. 4.4 elucidates two sampling methods for neu-

romorphic algorithm pre-processing: a) Nyquist sampling and b) LC sampling. At the same

sampling rate, the number of sampling pulses of Nyquist is much greater than that of the LC

sampling method. A recent study compared the power efficiency of using LC-ADC and tradi-

tional Successive-Approximation-Register ADC to process various biological signals[71], clar-

ifying that the power efficiency of LC-ADC is higher than that of standard ADC in low- and

medium-resolution applications.

In order to convert the data information into an input signal suitable for SNN, we first

perform down-sampling firstly to increase the sparsity of the raw data, then LC-sampling is

used to convert the original floating-point amplitude information into spikes signals as the input

of SNN. We also improve the LC-ADCs method from one threshold to two, i.e., LC-ADCs will
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(a) Nyquist sampling (b) Traditional LC sampling

Figure 4.4: Sampling approach comparison

sample up spikes when the amplitude is above a pre-defined high level or down spikes when it

is below a low-level threshold [44].

4.3.3 Classification Method Design

Like in the brain, the information of the SNN is usually in the form of an event stream encod-

ing by spike timing, spike latencies, and spike rates[72]. The synaptic weight modulates the

pre-spike to generate a resultant current into the post-neuron, modeled as integrate-and-fire or

leaky-integrate-and-fire (LIF)[73]. Bio-inspired spike-timing-dependent plasticity (STDP) has

emerged as an unsupervised learning rule for synaptic weight modification. Therefore, SNN is

biologically interpretable and has potential in neuromorphic real-time computing and control.

Stuijt et al. [74] and Ceolini et al. [75] demonstrate the superiority of SNN in neuromorphic

computing and lead to a close-loop (from development to deployment) in the application of AI

and IoT (collectively, AIoT).

In the SNN processing stage, we use a spiking multi-layer perceptron (MLP) for the hand

gestures classification. In the perceptron, each neuron is represented by a LIF model. As a

biologically inspired unsupervised learning rule, STDP trains the synaptic weights and biases of

the hidden layer. The final output neuron will converge to five different gesture data, illustrating

the classification results of the IR-UWB radar gesture dataset.
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4.4 Summary

This chapter first explains the principle of sensing system design and then proposes the system

architecture of our gesture recognition system. The whole system consists of three parts, ges-

ture data set, pre-processing module, and SNN processing module. We found the most suitable

HGR sensors (IR-UWB contactless sensor), pre-processing method (LC-sampling), and ges-

ture recognition algorithm (SNN) for the sensing system by consulting the relevant literature.

Finally, we detail the design work of each stage.



5 Sensing System Implementation and

Evaluation

Contol

Portions of text and figures reproduced from author’s work [44].

5.1 Overview

This chapter first introduces the raw gesture data format of the IR-UWB non-contact sen-

sor. Then it explains the implementation process of the sensing system, including data pre-

processing and classification algorithms. We obtain the recognition accuracy of the algorithm

through experiments. To illustrate the excellence of the algorithm, we also evaluate the al-

gorithm and compare the effects of different pre-processing methods and different algorithm

parameters on the accuracy. Finally, we calculate the power complexity of the algorithm and

compare it with other methods, indicating that our proposed HGR method can achieve high

accuracy in low-power scenarios



5.3 PRE-PROCESSING METHOD 63

5.2 IR-UWB Contactless Sensor Dataset

To verify the performance of our gesture recognition algorithm, we adopt the dynamic hand

gestures data in Scherer et al.[13] as our sample [44]. The raw data is a series of analog I/Q

signal parameters, including the distance of the sensor, amplitude, and phase information of the

signal. Figure 5.1 shows an example IR-UWB hand gesture signal, the width and height dimen-

sions correspond to the timing ranging and the sampling range, respectively. While the whole

recording time is 3s and the sweep frequency is 256Hz, we can get 768 sweep numbers called

slow time. At each sweep, the non-contact sensor emits a pulse to get information with another

frequency, regarded as fast time. After recording, we can get a 768*414 data matrix [44].

Since the Acconeer sensor uses one antenna for transmitting and receiving, the transmit-

ter and receiver are at the same position in the sensor. The trajectory of the signal is twice

the distance between the object and the non-contact sensor. According to the ToF principle

2 ∗ d = c ∗ t (where d is the distance between the object and the IR-UWB sensor, c is the speed

of light, and t is the time of flight), we can regard time as a variable related to distance. There-

fore, we can convert Range-Amplitude data into Time–Amplitude data [44].

5.3 Pre-processing Method

To convert the raw data matrix into the input of the SNN (spikes sequence), we rearranged the

data and processed downsampling and level-crossing sampling. Here are the steps in detail [44].

1. Rearrange the amplitude information in IR-UWB data with data points (fast time) as the

x-axis and sweep numbers (slow time) as the y-axis. A numpy array am_data was used to store

these data. Figure 5.2 shows the rearranged data matrix.

2. To increase the data sparsity, we have performed 10× and 3× down-sampling on the

x-axis and y-axis of the data, respectively. The size of the sparse matrix is 256*42.
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Figure 5.1: IR-UWB signal for an example recording (Finger Slide)

Sweep numbers

（Slow time）

Ranging points

（Fast time）

0

…
…

Sweep 0: D0, D1, D2, ……, D412, D413

Sweep 767: D0, D1, D2, ……, D412, D413

Figure 5.2: Data matrix of IR-UWB contactless sensor
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3. We perform an improved level-crossing sampling method on each row of data. We first

define two all-zero numpy arrays: up_spikes and down_spikes. Set the first point’s amplitude

as the reference value (Vam), then the high-level value (Vh) is the reference value add threshold

(Vth) and the low-level value (Vl) is the reference value minus threshold. Judge whether the

value of the next point is between Vh and Vl. If the amplitude is beyond this range, we will sam-

ple an up_spike and change the reference value to the new value (like point 4 in Figure 5.3).

Otherwise, if the value is lower than Vl, we will sample a down_spike and refresh the refer-

ence value. Finally, we can get two arrays called up_spikes and down_spikes after sampling

(Figure 5.4).

Vh =Vam+Vth

Vl=Vam-Vth

Vam

Vth

Vth

Up_spike

1

2

3

4

Figure 5.3: LC sampling of one data point

4. The size of up_spikes and down_spikes array is 256*42. To transform them as the input

of SNN, we combine the two arrays and get a 512*42 one.

After the down-sampling and LC-sampling, a 768*414 sensor data matrix has become a

512*43 spikes array. The data type has also changed from floating-point (Figure 5.1) to integer

(Figure 5.4) for computational complexity reduction. The large dark area in Figure 5.4 also

illustrates that the value of 0 occupies a large proportion of the sampled data.
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(a) Up spikes after LC-sampling

(b) Down spikes after LC-sampling

Figure 5.4: IR-UWB signals after LC-sampling
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5.4 Classification Method

Recently, the three popular SNN training algorithms are a) conversion-based method [76], b)

spike-timing-dependent plasticity [72], and c) error backpropagation[73]. The conversion-

based technique, on the other hand, uses the firing rate to represent information when con-

verting the SNN parameters from the trained ANN, resulting in high-density spikes. As for a

biologically-inspired training method, STDP changes the weight of a synapse according to the

time correlation between the peaks of presynaptic and postsynaptic neurons. Combined with the

error backpropagation method, a graph-based spatio-temporal backpropagation was proposed

to train SNN[77].

In this study, we employed a graph-based spatio-temporal backpropagation training ap-

proach to train SNN on the IR-UWB non-contact sensor gesture dataset. The backpropagation

route is established using a differentiable LIF neural dynamic model. To reduce the spike firing

rate and increase effectiveness, sparse regularization is proposed.

A common LIF model can be expressed as:

τ
du(t)

dt
= −u(t) + I(t) (5.1)

where τ is the time constant. I(t) represents presynaptic input, determined by pre-neuronal

activity or external injection and synaptic weight. u(t) is the membrane voltage at time t.

When the membrane voltage reaches the threshold, a pulse is released then its electrical position

resets to Urest[78]. We also designed a differentiable LIF model to solve the non-differentiable

issues with backpropagation in SNN. It defines the i-th LIF neuron membrane potential ut
i with

Equ. (5.2) and the state sti with Equ. (5.3) at discrete time t.

ut
i = ut−1

i · τ · g1(−st−1
i ) +

∑︂
j

wij · st−1
j + bi (5.2)
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sti = g2(u
t
i − Uth), s

t
i ∈ {0, 1} (5.3)

where τ denotes the potential leakage ratio, wij denotes the synaptic weight from neuron

j-th to neuron i-th, and bi is the bias of neuron i-th. Backpropagation’s route is gated by g
′
1. Wu

et al.[78] suggested the approximation g
′
2, whose form is determined by the coefficient a.

g
′

1(x) ≈

⎧⎪⎨⎪⎩0 x = 0

1 x ̸= 0
, g

′

2(x) =
1√
2πa

e−
x2

2a , x ∈ R (5.4)

This improved model has been proved in [77] with 97.3% accuracy in MNIST.
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Figure 5.5: Spiking MLP ‘512-fc128-fc32-fc5’(fc means full connection)

Figure 5.5 is the spiking MLP denoted by ‘512-fc128-fc32-fc5’ in the following discussions.

It contains 512 neurons in its input layer, 128 and 32 neurons in each of its two hidden layers,

and 5 neurons in its output layer, which correspond to five different hand movements. We regard

the fast time of the sensor as the running time of the SNN with the 512 neurons we input per unit

time carrying different temporal information in the same space. According to the differentiable

LIF model we proposed, the network topology can be represented as a directed weighted graph.
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The adjacency matrix of weights is written as W (i, j) = wij , meaning the corresponding weight

between synaptic i and synaptic j. When the value is zero, there is no connection between the

two synaptic. Then we put the 512*42 size spikes array into the network, where 42 represents

the runtime of SNN. Therefore, in each unit time, we will input 512 neurons into SNN, lasting

for a total of 42 unit times. The input 512 data points will take a dot product with the weight

graph W (i, j) between the input layer and the hidden layer and then add a neuron bias B(i),

conforming to the Gaussian distribution. The error is backpropagation through time. The edge

of the graph, the weight matrix W , and the bias matrix B are all updated by an optimization

algorithm. Finally, the MLP uses the sigmoid activation function to map the weighted inputs to

the next layer of each neuron again and again until the next layer is the output layer [44].

5.5 Experiment of Hand Gesture Recognition System

5.5.1 Training Setup

Using the Pytorch framework, the SNN was developed and is powered by AMD Ryzen-3970X

(CPU) and NVIDIA RTX-3080 (GPU). We divided the whole dataset into a training dataset and

a testing dataset with a ratio of 4 to 1 randomly. The LIF neuron and the training procedure

employ the settings in the table, which were successfully tested in [77]. To calculate the accu-

racy of the algorithm, we performed validation and 5-fold cross-validation (CV5) training on

the data set. The results of CV5 are in the following.

5.5.2 Accuracy of the Algorithm

The inference accuracy of the algorithm is discussed in terms of per-sequence accuracy. To

make the data more convincing, we did ordinary verification and CV5, respectively. The fir-

ing rate is 0.1 and 30× sparseness. Table5.2 displays the results, indicating that the proposed
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Table 5.1: Parameters setting in experiments, adapted from [77]

Parameter Description Value

Uth Potential threshold 1.5

τ Ratio of leakage 0.1%

a g
′
2(·) coefficient 1.0

pr Recurrent probability 0.5

T Runtime of SNN 42

λ Sparse regularization 5× 10−5

E Training epochs 40

lr Learning rate 0.01

Sch

Decay learning rate decay:0.2

Patience epochs improvement patience: 5

method can reach an accuracy of 95.44% of 5 hand gesture recognition and 96.60% of 6 ges-

tures.

Table 5.2: Accuracy of the algorithm on the respective train/test set

5G-Vali 5G-CV5 6G-Vali 6G-CV5

Train 98.40% 98.97% 99.09% 99.18%

Test 95.44% 95.36% 96.60% 96.00%

5.6 Evaluation of Hand Gesture Recognition System

5.6.1 Evaluation of Pre-Processing Methods

To reduce power consumption to a lower level, we evaluated different pre-processing methods

for neural networks. Fourier transform of the time axis is proved as an effective method in fea-

ture extraction[79]–[81]. We tried the FFT on signal and compared it with the downsampling.
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Since the raw sensor signal data contains the amplitude and phase information, I converted them

into I/Q signals expressed in complex numbers to perform FFT by formula (5.5), where A rep-

resents Amplitude and P for Phase. Do the FFT on a complex array and get the absolute value

with the scipy.fft() and abs(), respectively. Then we can get the frequency response of the

signal.

S = A ∗ cos(P ) + A ∗ sin(P )j (5.5)

In addition to LC sampling, we also designed an absolute threshold sampling method to con-

vert floating-point values into a 0/1 sequence. We tested the accuracy of the four pre-processing

methods combining FFT, downsampling, absolute threshold sampling, and LC sampling. The

number of spikes in the data set represents the power consumption of the entire network. Ta-

ble 5.3 elucidates the experimental results, adopting the same spareness (30×) and firing rate

(10%).

Table 5.3 shows that the accuracy of combining FFT and SNN is much lower than down-

sampling and LC sampling with SNN. The reason is that FFT converts the signal data into a

spectrogram like the range frequency Doppler map that is more suitable for CNN rather than

SNN. FFT makes the signal lose the time domain information, leaving only the spectrum infor-

mation. Although Scherer et al.[13] have proved the efficiency of FFT as the feature extraction

of CNN and TCN, for SNN, the accuracy rate in our experiment is only about 54.60%. In

conclusion, combining down-sampling and level-crossing sampling is the highest accuracy pre-

processing method for SNN so far.

5.6.2 Evaluation of Classification Algorithm

In SNN training, we did some experiments to balance the accuracy and spike numbers. We use

firing rate as a metric, determined by the number of spikes in the data set divided by the amount
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Table 5.3: Algorithm performance under different pre-processing methods

Pre-pro methods
5G 6G

Acc Spikes Acc Spikes

FFT-AS 54.60% 2551438 59.00% 2774386

FFT-LCS 68.00% 4968153 63.00% 6451200

DS-AS 76.00% 3006395 62.50% 3225600

DS-LCS 95.44% 5523145 96.60% 6627774

of data in the data set. Finding a proper value for the firing rate is necessary. If the firing rate is

too large, operands and the power consumption of the network will be huge. If the firing rate is

too low, plenty of information will be lost, leading to the low accuracy of the algorithm. We can

limit the firing rate by changing the size of the threshold during level-crossing sampling. The

smaller the threshold value, the greater the firing rate, and the more operations the subsequent

network needs to perform. We explored the influence of voltage threshold on the accuracy under

different sparsity and showed the results with figure 5.6.

The ordinate on the left presents the accuracy achieved by the algorithm, while the ordinate

on the right presents the number of spikes in each data set, representing the power consumption

of SNN. Figure 5.6 depicted that the performance and power consumption can be balanced by

an appropriate voltage threshold (0.02) to achieve high accuracy and low power SNN. When the

threshold is 0.02, the firing rate is about 10%. According to the comparison of the parameters

between 30x sparsity and 15x sparsity, sparsity has little effect on accuracy, while the spikes

number of 30x is much smaller than 15x. As for 40x sparsity, though the spikes number is the

smallest, its accuracy is lower than 95%. So we adopt a firing rate with 10% and 30x sparsity as

the parameter of our algorithm, the accuracies with two data sets are over 95% with 6.6 × 106

spikes.
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Figure 5.6: Accuracy under different firing rates and sparseness

5.6.3 Power Consumption Complexity Calculation

Since the proposed model is implemented on the CPU at this stage, we use the operands required

for each instance to compare the power consumption [44]. The value of each neuron is only

0 and 1, so we can ignore all operations with 0 and regard the multiplication and addition

calculation with 1 as an addition calculation between the weights. Furthermore, the LIF we

used needs to be multiplied by a step function when each neuron outputs. So the total number

of multiplication operations is only the number of neurons in the hidden layer and the output

layer. As for the addition operands, the model is a fully connected structure, equivalent to an

addition operation for each synapse at each time point. The firing rate also plays an important

role in power consumption complexity calculation. However, the firing rate here is different
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from that discussed in the pre-processing method. The firing rate we discussed now is a term

in rate coding referring to various averaging procedures, such as an average over time (rate as

a single-neuron spike count) or an average over several repetitions (rate of peristimulus time

histogram) of the experiment. The firing rate means the number of synapses fired between

every two layers in the MLP accounted for the total number of synapses, represented by fr in

the equation.

Multiplication operand calculation:

Mul = (Nh1 +Nh2 +No) ∗ △t (5.6)

Addition operand calculation:

Add = (Ni ∗Nh1 ∗ fri +Nh1 ∗Nh2 ∗ fr1 +Nh2 ∗No ∗ fr2) ∗ △t (5.7)

In this work, the spiking MLP for five gesture recognition is denoted by ‘512-fc128-fc32-

fc5’. So, the multiplication operand and the addition operand are:

Mul5g = (128 + 32 + 5) ∗ 42 = 6930

Add5g = (512 ∗ 128 ∗ 0.1042 + 128 ∗ 32 ∗ 0.3109

+ 32 ∗ 5 ∗ 0.4374) ∗ 42 = 343236

To make the data more convincing, we add the addition and multiplication operand to rep-

resent the power consumed by each instance in the network. Therefore, the performance of the

proposed network is 350 kFLOPs per inference, while TinyRadarNN[13] is 1582 MFLOPs with

the same dataset.
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5.6.4 Comparison with Other HGR Systems

It’s interesting to compare our work with Scherer et al.[13] because we use the same dataset

of IR-UWB non-contact sensor. The total operands required by TinyRadarNN is 31.8MFLOPs.

As for our algorithm, the calculation complexity is 0.35MFLOPs, which is 90× smaller than the

TinyRadarNN according to the operation numbers. To be more convinced, we also researched

some other neural networks with IR-UWB contactless sensors. Table 5.4 shows the parameters

of each network, including the network name, the accuracy of the algorithm, the number of

gestures, and the operands (presenting the power consumption). The definition of the data

format comes from Ahmed et al. [53]. Among them, Kim et al. adopt the same data format

of IR-UWB signal and pre-processing method with our work[56]. However, the accuracy of

their gesture recognition algorithm is around 90%, elucidating that SNN is more suitable than

CNN to process pulsed data with sampling pre-processing. Therefore we also do not count these

network operands as the accuracy has become uncompetitive. Ahmed et al.[12] and Li et al.[11]

adopt GoogLeNet and ShuffleNet V2 as the classification method. Although the accuracy rate

is higher than our proposed SNN algorithm with more gestures, the power consumption is much

higher than ours. According to the table, the model we proposed can achieve a relatively high

accuracy rate with low computational complexity. Moreover, the pre-processing method we

adopted is LC sampling, which is power-efficient. Compared to FFT, LC sampling has almost

no computational complexity and is more suitable for SNN.

5.7 Summary

This chapter presents a novel hand-gesture recognition model combining the IR-UWB signal

and SNN model with high accuracy and ultra-low-power consumption [44]. We converted IR-

UWB hand gesture signals into a 0/1 sequence that conforms to the SNN input by reorganizing,

sampling, and encoding. An improved LIF appeals to solve the non-differentiable problem
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Table 5.4: Comparison with other hand gesture recognition methods

Study and year Algorithm
No. of

Data Format
Pre- FLOPs

Acc
gestures Processing Mul Add

Kim et al.[56] (2017) (1-D) CNN 6 Time–Amplitude(1D) Filtering - - 90%

Ahmed et al.[12] (2020) GoogLeNet 8 Time–Range(3D-RGB) Clutter Removal 1582M 1582M 95%

Li et al.[11] (2021) ShuffleNet V2 7 Time–Range(2D) 2D-FFT 2.76M 2.76M 98.52%

Scherer et al.[13] (2021) TCN+CNN 5 Time–Range(2D) 2D-FFT 15.90M 15.90M 95%

This paper (2021) SNN
5

Time–Amplitude (1D) LC-sampling
6.93k 343k 95.44%

6 6.97k 313k 96.60%

for backpropagation in SNN. By comparing experiments with other pre-processing methods,

we proved the superiority of using LC-sampling and SNN algorithms in IR-UWB non-contact

sensor gesture recognition. Finally, the accuracy can reach 95.44% with five hand gestures and

96.60% with six gestures. The operation numbers are 350 kFLOPs per data sequence on the

five hand gestures dataset, which is 90× less than the previous network.



6 Conclusion and Future Work

6.1 Conclusion

In recent years, IR-UWB has received much attention from IIoT and smart factory scenarios due

to its high temporal resolution, low power consumption, and high robustness. In this thesis, we

made an investigation and analysis of IR-UWB technology. A positioning system and a sensing

system are designed and implemented based on the TOF algorithm, exploring a new thought

for equipment positioning and HMI sensing in the smart factory environment. For example,

both systems can be applied to multi-robot or drone arrays in smart factories, helping them

understand the location of other devices in real-time and recognize human gesture information

to complete HMI’s instructions.

In the positioning system, we abandon the need to deploy IR-UWB base stations in tradi-

tional absolute positioning and realize a flexible and convenient relative positioning system by

carrying multiple IR-UWB modules on a single robot or drone. We used the UWB transceiver

module of Bluepoint Technology to test the accuracy of the relative positioning system and

tested the positioning results of 8 possible positions of the robot pair/group. The results show

that when the distance is greater than 1m between the target robot and the main robot, the

positioning system can achieve 93.09% accuracy. In the sensing system, we use Acconeer’s

IR-UWB radar gesture dataset, perform signal preprocessing through LC-ADC sampling, and

then use SNN as the gesture recognition algorithm, thus realizing a high-precision, low-power
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gesture sensing system. Through model training on PyTorch, the algorithm finally achieved

95.44% accuracy on five gesture datasets and 96.60% accuracy on six gesture datasets. In ad-

dition, the computational complexity of this model is also about 90× lower than other similar

works.

6.2 Future Work

IR-UWB based positioning and sensing systems provide a good starting point for discussion

and further research on applications in IIoT and smart factories scenarios. However, due to

the time and experimental limitations, these two systems still have some parts that need to be

improved. Several recommendations for future research are given as follows.

First of all, we believe that apart from looking for how to improve the performance of

the two systems, future research should focus on how to integrate the two systems. Because

both the positioning and sensing systems use IR-UWB as the sensor, it would be an interesting

and feasible topic to combine these two systems into an integrated system for future work. This

integrated system can collect environmental information through a non-contact IR-UWB sensor,

achieve distance measurement with the target through the TOF algorithm, and then combine the

required positioning or sensing algorithm to complete the positioning or gesture recognition

function.

Secondly, further research on more human postures and motion recognition is warranted.

Looking forward, human motion detection might play a vital role for HMI in IIoT and smart

factories scenarios. It will be important for future research to build a data collection platform

for more gesture, posture, and motion information. In addition, we can also integrate the IR-

UWB signal pre-processing method and the HGR recognition algorithm into one module. Then

provide an application programming interface for the dataset. Through the API, we can con-

nect different IR-UWB gesture datasets, test the performance of the sensing system in various
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datasets, and get the generalization ability of the system.

Last but not least, future research could continue to explore the methods for improving

the ranging accuracy of the IR-UWB modules, which could prove directly beneficial to the

performance of positioning and sensing systems.
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