288 research outputs found

    Mathematical frameworks for oscillatory network dynamics in neuroscience

    Get PDF
    The tools of weakly coupled phase oscillator theory have had a profound impact on the neuroscience community, providing insight into a variety of network behaviours ranging from central pattern generation to synchronisation, as well as predicting novel network states such as chimeras. However, there are many instances where this theory is expected to break down, say in the presence of strong coupling, or must be carefully interpreted, as in the presence of stochastic forcing. There are also surprises in the dynamical complexity of the attractors that can robustly appear—for example, heteroclinic network attractors. In this review we present a set of mathemat- ical tools that are suitable for addressing the dynamics of oscillatory neural networks, broadening from a standard phase oscillator perspective to provide a practical frame- work for further successful applications of mathematics to understanding network dynamics in neuroscience

    Multiscale Modelling Of Platelet Aggregation

    Get PDF
    During clotting under flow, platelets bind and activate on collagen and release autocrinic factors such ADP and thromboxane, while tissue factor (TF) on the damaged wall leads to localized thrombin generation. Toward patient-specific simulation of thrombosis, a multiscale approach was developed to account for: platelet signaling (neural network trained by pairwise agonist scanning, PAS-NN), platelet positions (lattice kinetic Monte Carlo, LKMC), wall-generated thrombin and platelet-released ADP/thromboxane convection-diffusion (PDE), and flow over a growing clot (lattice Boltzmann). LKMC included shear-driven platelet aggregate restructuring. The PDEs for thrombin, ADP, and thromboxane were solved by finite element method using cell activation-driven adaptive triangular meshing. At all times, intracellular calcium was known for each platelet by PAS-NN in response to its unique exposure to local collagen, ADP, thromboxane, and thrombin. The model accurately predicted clot morphology and growth with time on collagen/TF surface as compared to microfluidic blood perfusion experiments. The model also predicted the complete occlusion of the blood channel under pressure relief settings. Prior to occlusion, intrathrombus concentrations reached 50 nM thrombin, ~1 μM thromboxane, and ~10 μM ADP, while the wall shear rate on the rough clot peaked at ~1000-2000 sec-1. Additionally, clotting on TF/collagen was accurately simulated for modulators of platelet cyclooxygenase-1, P2Y1, and IP-receptor. The model was then extended to a rectangular channel with symmetric Gaussian obstacles representative of a coronary artery with severe stenosis. The upgraded stenosis model was able to predict platelet deposition dynamics at the post-stenotic segment corresponding to development of artery thrombosis prior to severe myocardial infarction. The presence of stenosis conditions alters the hemodynamics of normal hemostasis, showing a different thrombus growth mechanism. The model was able to recreate the platelet aggregation process under the complex recirculating flow features and make reasonable prediction on the clot morphology with flow separation. The model also detected recirculating transport dynamics for diffusible species in response to vortex features, posing interesting questions on the interplay between biological signaling and prevailing hemodynamics. In future work, the model will be extended to clot growth with a patient cardio-vasculature under pulsatile flow conditions

    On the role of oscillatory dynamics in neural communication

    Get PDF
    In this Thesis we consider problems concerning brain oscillations generated across the interaction between excitatory (E) and inhibitory (I) cells. We explore how two neuronal groups with underlying oscillatory activity communicate much effectively when they are properly phase-locked as suggested by Communcation Through Coherence Theory. In Chapter 1 we introduce the Wilson-Cowan equations (WC), a mean field model describing the mean activity of a network of a single population of E cells and a single popultation of I cells and review the bifurcations that give rise to oscillatory dynamics. In Chapter 2 we study how the oscillations generated across the E-I interaction are affect by a periodic forcing. We take the WC equations in the oscillatory regime with an external time periodic perturbation. We consider the stroboscopic map for this system and compute the bifurcation diagram for its fixed and periodic points as the amplitude and the frequency of the perturbation are varied. From the bifurcation diagram, we can identify the phase-locked states as well as different areas involving bistablility between two invariant objects. Chapter 3 exploits recent techniques based on phase-amplitude variables to describe the phase dynamics of an oscillator under different perturbations. More precisely, the applications of the parameterization method to compute a change of variables that describes correctly the dynamics near a limit cycle in terms of the phase (a periodic variable) and the amplitude. The computational method uses the Floquet normal form to reduce the computational cost. This change provides two remarkable manifolds used in neuroscience: the sets of constant phase/amplitude (isochrons/isostables). Moreover, we compute the functions describing the phase and amplitude changes caused by a perturbation arriving at different phases of the cycle, known as Phase and Amplitude Response Curves, PRCs and ARCs, respectively. The computed parameterization provides also the extension of these curves outside of the limit cycle, defined as the Phase and Amplitude Response Functions, PRFs and ARFs, respectively. We compute these objects for limits cycles in systems with 2 and 3 dimensions. In Chapter 4 we apply the parameterization method to compute Phase Response Curves (PRCs) for a transient stimulus of arbitrary amplitude and duration. The underlying idea is to construct a particular periodic perturbation consisting of the repetition of the transient stimulus followed by a resting period when no perturbation acts. For this periodic system we consider the corresponding stroboscopic map and we prove that, under certain conditions, it has an invariant curve. We prove that this map has an invariant curve and we provide the relationship between the PRC and the internal dynamics of the curve. Moreover, we link the existence properties of this invariant curve as the amplitude of the perturbation is increased with changes in the PRC waveform and with the geometry of isochrons. Furthermore, we also provide algorithms to obtain numerically the PRC and the ARC. In Chapter 5 we study the dynamics arising when two identical oscillators are coupled near a Hopf bifurcation, where we assume the existence of a parameter uncoupling the system when it is equal to zero. Using a recently derived truncated normal form, we perform a theoretical dynamical analysis and study its bifurcations. Computing the normal form coefficients in the case of 2 coupled Wilson-Cowan oscillators gives an understanding of different types of behaviour that arise in this model of perceptual bistability. Notably, we find bistability between in-phase and anti-phase solutions. Using numerical continuation we confirm our theoretical analysis for small coupling strength and explore the bifurcation diagrams for large coupling strength, where the normal form approximation breaks down. We finally discuss the implications of this dynamical study in models of perceptual bistability.Aquesta Tesi estudia problemes relacionats amb les oscil·lacions de l'activitat cerebral. Explorem com dues poblacions neuronals en activitat oscil·latòria es comuniquen més efectivament quan estan lligades en fase, tal com suggereix la teoria de 'Comunicació a Través de la Coherència'. Al capítol 1 introduïm les equacions de Wilson-Cowan (WC), un model de camp mitjà que descriu l' activitat d'una xarxa de neurones excitatòries (E) i inhibitòries (I) i calculem les bifurcacions que generen cicles límit. Al capítol 2 estudiem com un cicle límit generat a través d'aquesta interacció E-I respon a un forçament periòdic. Considerem el model de WC en règim oscil·latori amb una pertorbació externa periòdica en el temps. Considerem el mapa estroboscòpic d'aquest sistema i calculem el diagrama de bifurcació dels seus punts fixos i òrbites periòdiques en funció de l'amplitud i la freqüència de la pertorbació. El diagrama de bifurcació ens permet identificar les àrees amb lligadura de fase, axí com diferents àrees on tenim coexistència de dos objectes invariants estables. Al capítol 3 utilitzem tècniques recents basades en les variables fase-amplitud per a descriure la dinàmica de fase d'un oscil·lador sota diferents pertorbacions. En particular, utilitzem el mètode de la parametrització per a calcular un canvi de variables que descriu correctament la dinàmica prop del cicle límit en termes de la fase (variable periòdica) i l'amplitud. Aquests càlculs estan basats en la forma normal de Floquet que en redueix el cost computacional. Aquest canvi de variables ens permet calcular dos varietats importants en neurociència: els conjunts de fase/amplitud constant (les isòcrones/isostables). A més a més, calculem les funcions que descriuen els canvis de fase i amplitud causats per una pertorbació que arriba a diferents fases del cicle, les Corbes de Resposta de Fase i Amplitud, (PRCs i ARCs), respectivament. El canvi de variables calculat proporciona també l'extensió d'aquestes corbes fora del cicle límit, definides com les Funcions de Resposta de Fase i Amplitud, (PRFs i ARFs). Calculem tots aquests objectes per a cicles límit en 2 i 3 dimensions. Al capítol 4 ens centrem en les aplicacions del mètode de la parametrització per calcular PRCs per a estímuls de duració i amplitud arbitraria. La idea bàsica del mètode és construir una pertorbació periòdica particular que consisteix en la repetició d'un estímul transitori seguit d'un període de relaxació en el qual no actua cap pertorbació. Per a aquest sistema periòdic considerem el seu corresponent mapa estroboscòpic i demostrem que sota certes condicions, té una corba invariant. Demostrem que aquesta aplicació té una corba invariant i donem la relació entre la PRC i la dinàmica interna d'aquesta corba. A més a més, relacionem les propietats d'existència d'aquesta corba quan l'amplitud de la pertorbació augmenta, amb els canvis a la PRC i a la geometria de les isòcrones. Finalment, presentem algoritmes per obtenir numèricament la PRC i la ARC. Al capítol 5 estudiem la dinàmica emergent quan s'acoblen dos oscil·ladors idèntics prop d'una bifurcació de Hopf, pels quals suposem l'existència d'un paràmetre que desacobla el sistema quan s'anul·la. Utilitzant una forma normal derivada recentment per a 2 sistemes idèntics prop d'una bifurcació de Hopf, fem una anàlisi teòrica i estudiem les seves bifurcacions. Identificant els coeficients de la forma normal per a un model de dos oscil·ladors de tipus WC acoblats, il·lustrem els resultats obtinguts en l'anàlisi teòrica en un model amb moltes aplicacions al camp de la percepció biestable. Un resultat important és la biestabilitat entre solucions en fase i en antifase. Utilitzant mètodes de continuacióPostprint (published version

    Applied Mathematics and Computational Physics

    Get PDF
    As faster and more efficient numerical algorithms become available, the understanding of the physics and the mathematical foundation behind these new methods will play an increasingly important role. This Special Issue provides a platform for researchers from both academia and industry to present their novel computational methods that have engineering and physics applications

    Communication through coherence in a realistic neuronal model

    Get PDF
    The Communication Through Coherence (CTC) theory establishes that neural communication is much effective if the underlying oscillatory activity of both populations are phase locked, that is, the input from the emitting population arrives at the peak of excitability of the receiving neural network. To study this setting, we consider a novel population rate model, which provides an exact description of the macroscopic activity of a network, and perturb it with a periodic function, modelling the input. We study analytical and numerically the emerging phase-locked states using tools from dynamical systems

    Optimizing electrical brain stimulation for seizure disorders

    Get PDF
    University of Minnesota Ph.D. dissertation. March 2017. Major: Neuroscience. Advisor: Theoden Netoff. 1 computer file (PDF); x, 145 pages.Approximately 1% of the world population is afflicted with Epilepsy. For many patients, antiepileptic drugs do not fully control seizures. Electrical brain stimulation therapies have been effective in reducing seizure rates in some patients. While current neuromodulation devices provide a benefit to patients, efficacy can be improved by optimizing brain stimulation so that the therapy is tuned on a patient by patient basis. One optimization approach is to target deep brain regions that strongly modulate seizure prone regions. I will present data on the effects of stimulation of two different anatomical regions for seizure control, and establish my experimental platform for testing closed-loop algorithms. There are two general methods to implementing closed-loop algorithms to modulate neural activity: 1) Model-free algorithms that require a learning period to establish an optimal mapping between neural states and best therapeutic parameters, and 2) Model-based algorithms that use forward predictions of the neural system to determine the appropriate stimulation therapy to be administered. In this thesis, I will propose and test two closed-loop control schemes to control the brain activity to prevent epileptogenic activity while reducing stimulation energy. I will also present techniques to remove stimulation artifacts so that neural biomarkers can be measured while simultaneously applying stimulation. The methods I will present could potentially be implemented in next generation electrical brain stimulation hardware for seizure disorders and other neurological diseases

    Multi-Scale Simulation of Complex Systems: A Perspective of Integrating Knowledge and Data

    Full text link
    Complex system simulation has been playing an irreplaceable role in understanding, predicting, and controlling diverse complex systems. In the past few decades, the multi-scale simulation technique has drawn increasing attention for its remarkable ability to overcome the challenges of complex system simulation with unknown mechanisms and expensive computational costs. In this survey, we will systematically review the literature on multi-scale simulation of complex systems from the perspective of knowledge and data. Firstly, we will present background knowledge about simulating complex system simulation and the scales in complex systems. Then, we divide the main objectives of multi-scale modeling and simulation into five categories by considering scenarios with clear scale and scenarios with unclear scale, respectively. After summarizing the general methods for multi-scale simulation based on the clues of knowledge and data, we introduce the adopted methods to achieve different objectives. Finally, we introduce the applications of multi-scale simulation in typical matter systems and social systems

    Towards a solution of the closure problem for convective atmospheric boundary-layer turbulence

    Get PDF
    We consider the closure problem for turbulence in the dry convective atmospheric boundary layer (CBL). Transport in the CBL is carried by small scale eddies near the surface and large plumes in the well mixed middle part up to the inversion that separates the CBL from the stably stratified air above. An analytically tractable model based on a multivariate Delta-PDF approach is developed. It is an extension of the model of Gryanik and Hartmann [1] (GH02) that additionally includes a term for background turbulence. Thus an exact solution is derived and all higher order moments (HOMs) are explained by second order moments, correlation coefficients and the skewness. The solution provides a proof of the extended universality hypothesis of GH02 which is the refinement of the Millionshchikov hypothesis (quasi- normality of FOM). This refined hypothesis states that CBL turbulence can be considered as result of a linear interpolation between the Gaussian and the very skewed turbulence regimes. Although the extended universality hypothesis was confirmed by results of field measurements, LES and DNS simulations (see e.g. [2-4]), several questions remained unexplained. These are now answered by the new model including the reasons of the universality of the functional form of the HOMs, the significant scatter of the values of the coefficients and the source of the magic of the linear interpolation. Finally, the closures 61 predicted by the model are tested against measurements and LES data. Some of the other issues of CBL turbulence, e.g. familiar kurtosis-skewness relationships and relation of area coverage parameters of plumes (so called filling factors) with HOM will be discussed also

    Computational fluid dynamics indicators to improve cardiovascular pathologies

    Get PDF
    In recent years, the study of computational hemodynamics within anatomically complex vascular regions has generated great interest among clinicians. The progress in computational fluid dynamics, image processing and high-performance computing haveallowed us to identify the candidate vascular regions for the appearance of cardiovascular diseases and to predict how this disease may evolve. Medicine currently uses a paradigm called diagnosis. In this thesis we attempt to introduce into medicine the predictive paradigm that has been used in engineering for many years. The objective of this thesis is therefore to develop predictive models based on diagnostic indicators for cardiovascular pathologies. We try to predict the evolution of aortic abdominal aneurysm, aortic coarctation and coronary artery disease in a personalized way for each patient. To understand how the cardiovascular pathology will evolve and when it will become a health risk, it is necessary to develop new technologies by merging medical imaging and computational science. We propose diagnostic indicators that can improve the diagnosis and predict the evolution of the disease more efficiently than the methods used until now. In particular, a new methodology for computing diagnostic indicators based on computational hemodynamics and medical imaging is proposed. We have worked with data of anonymous patients to create real predictive technology that will allow us to continue advancing in personalized medicine and generate more sustainable health systems. However, our final aim is to achieve an impact at a clinical level. Several groups have tried to create predictive models for cardiovascular pathologies, but they have not yet begun to use them in clinical practice. Our objective is to go further and obtain predictive variables to be used practically in the clinical field. It is to be hoped that in the future extremely precise databases of all of our anatomy and physiology will be available to doctors. These data can be used for predictive models to improve diagnosis or to improve therapies or personalized treatments.En els últims anys, l'estudi de l'hemodinàmica computacional en regions vasculars anatòmicament complexes ha generat un gran interès entre els clínics. El progrés obtingut en la dinàmica de fluids computacional, en el processament d'imatges i en la computació d'alt rendiment ha permès identificar regions vasculars on poden aparèixer malalties cardiovasculars, així com predir-ne l'evolució. Actualment, la medicina utilitza un paradigma anomenat diagnòstic. En aquesta tesi s'intenta introduir en la medicina el paradigma predictiu utilitzat des de fa molts anys en l'enginyeria. Per tant, aquesta tesi té com a objectiu desenvolupar models predictius basats en indicadors de diagnòstic de patologies cardiovasculars. Tractem de predir l'evolució de l'aneurisma d'aorta abdominal, la coartació aòrtica i la malaltia coronària de forma personalitzada per a cada pacient. Per entendre com la patologia cardiovascular evolucionarà i quan suposarà un risc per a la salut, cal desenvolupar noves tecnologies mitjançant la combinació de les imatges mèdiques i la ciència computacional. Proposem uns indicadors que poden millorar el diagnòstic i predir l'evolució de la malaltia de manera més eficient que els mètodes utilitzats fins ara. En particular, es proposa una nova metodologia per al càlcul dels indicadors de diagnòstic basada en l'hemodinàmica computacional i les imatges mèdiques. Hem treballat amb dades de pacients anònims per crear una tecnologia predictiva real que ens permetrà seguir avançant en la medicina personalitzada i generar sistemes de salut més sostenibles. Però el nostre objectiu final és aconseguir un impacte en l¿àmbit clínic. Diversos grups han tractat de crear models predictius per a les patologies cardiovasculars, però encara no han començat a utilitzar-les en la pràctica clínica. El nostre objectiu és anar més enllà i obtenir variables predictives que es puguin utilitzar de forma pràctica en el camp clínic. Es pot preveure que en el futur tots els metges disposaran de bases de dades molt precises de tota la nostra anatomia i fisiologia. Aquestes dades es poden utilitzar en els models predictius per millorar el diagnòstic o per millorar teràpies o tractaments personalitzats.Postprint (published version
    • …
    corecore