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Preface to ”Applied Mathematics and Computational

Physics”

In an age of ever-increasing computing power, there has been a rapid development of powerful

computational methods in all areas of engineering and physics. In some cases, increased processing

power allows us to address complex problems that not long ago had been considered out of

reach for practical purposes. In other cases, novel computing techniques have been developed to

approximate more accurately solutions for problems that otherwise would remain intractable for

practical applications. Of particular note is the success of machine learning techniques, which provide

a new avenue to approach many computational challenges and have been widely utilized in a variety

of engineering and physics disciplines.

As faster and more efficient numerical algorithms become available, the understanding of

the physics and the mathematical foundation behind the new methods will play an increasingly

important role. In this Special Issue, we provide a platform for researchers from both academia and

industry to present their new and novel computational methods that have engineering and physics

applications.

Aihua Wood

Editor
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Abstract: A radial basis function-finite differencing (RBF-FD) scheme was applied to the initial value
problem of the Benjamin–Ono equation. The Benjamin–Ono equation has traveling wave solutions
with algebraic decay and a nonlocal pseudo-differential operator, the Hilbert transform. When posed
on R, the former makes Fourier collocation a poor discretization choice; the latter is challenging
for any local method. We develop an RBF-FD approximation of the Hilbert transform, and discuss
the challenges of implementing this and other pseudo-differential operators on unstructured grids.
Numerical examples, simulation costs, convergence rates, and generalizations of this method are
all discussed.

Keywords: radial basis functions; finite difference methods; traveling waves; non-uniform grids

1. Introduction

In this paper we use the benjamin–ono equation as a test-bed for new radial basis
function-finite differencing (RBF-FD) simulations of nonlocal wave equations on non-
uniform grids. The Benjamin–Ono equation presents the numerical challenges of numerical
stiffness, a nonlocal pseudo-differential operator, and localized traveling solutions with
slow decay. The equation

ut−Huxx+uux = 0, (1)

in which H is the Hilbert transform, has many known exact solutions. For example, on R,
Equation (1) supports traveling solitary waves solutions:

u(x,t)=
4

(x− t)2+1
.

The Benjamin–Ono equation is known to be well-posed [1] and integrable. It can be
solved with inverse scattering, and many exact solution profiles are known [2,3]. It has
been numerically simulated many times, both in the periodic setting [4] and on R [5,6].

In this work we develop an RBF-FD scheme for the Benjamin–Ono equation. Common
practice for the simulation of (1) on R is to use periodic boundary conditions, allowing for
Fourier collocation, on a large spatial domain [7]. Global radial basis functions (RBFs) have
been used as a basis set for simulation of Benjamin–Ono [8]; instead, this work is the first
example of the application of RBF-FD to this model. In many cases, RBFs allow for high
orders of accuracy while taking advantage of non-uniform spacing in the node set when
approximating linear operators. There are an increasing number of texts discussing the use
of RBFs in the approximation of differential operators (see, e.g., [9,10]) while presenting
much of their history and theory in detail. Recently, the concept of RBF-FD has been further
extended to the approximation of definite integrals—first over smooth surfaces [11–13]
and then over the volume of the ball [14]. In this paper we look at an extension of RBF-FD
now to pseudo-differential operators. The method presented in this paper utilizes as a
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basis for approximation the so-called polyharmonic spline RBF augmented by shifted
monomials. In this case, reference [15] explains that if the shifted monomials up to degree
m are included in the basis for approximation, then all of the terms in the Taylor series
up to degree m will be handled exactly for the function being interpolated. Therefore,
for functions with rapidly decaying terms in the Taylor series, the linear operator will be
applied to an approximation with O(Δxm) accuracy on a node set with step size Δx.

RBF-FD simulation of the Benjamin–Ono equation presents the challenge of creating
a local approximation of a non-local pseudo-differential operator—the Hilbert transform.
The process used herein is generalizable to other pseudo-differential operators, but is the
primary cost of the method as it requires diagonalization of an RBF-FD differentiation
matrix. Further, the spectrum of the RBF-FD differentiation matrix, particularly when
constructed on non-uniform spaced node sets, can often include spurious eigenvalues (for
example, with a positive, real part when approximating an operator with pure imaginary
spectrum), similar to those observed in [16,17]. We observe that these spurious eigenvalues
are the result of floating point errors due to the conditioning of the RBF-FD discretization
of the linear operators.

Another complication is the slow decay of the solution as |x| increases. To deal with
this complication and with a localized steep gradient in the solutions, we increase the
point density where the wave amplitude is large and decrease point density in the far field.
This allows for increased accuracy over uniform grids with the same number of nodes.
Consideration of non-uniform node sets is a key advantage of RBF based approximations.
Even in the context of approximating a non-local operator with local approximations and
slowly decaying solutions, we demonstrate O(Δxm) accuracy where Δx is the smallest
spacing between adjacent points in a node set. We report errors based on this smallest step
size, rather than the largest or the number of nodes as in [18,19], because the mapping
we use to refine the node set both decreases the step size near important features of the
solution and increases the large step sizes elsewhere while keeping the total number of
nodes fixed. To further illustrate this method, we present a brief example in another model
equation [20].

In the process of simulating the Benjamin–Ono equation, we present a simple frame-
work for using RBF-FD to approximate pseudo-differential operators. The procedure
extends the applicability of RBF methods beyond the purely differential equations previ-
ously simulated (see [16,21]) to a host of other pseudo-differential model equations—e.g.,
Whitham [22], Akers-Milewksi [20], and many more [23–25]. Many of these pseudo-
differential equations exhibit coherent structures which are computed with quasi-Newton
iteration [26,27]. The simulation of the dynamics near these coherent structures is the appli-
cation where we believe this method will be most useful. The diagonalization cost required
to approximate the pseudo-differential operators in our simulations (a pre-processing step)
is comparable to the cost of the quasi-Newton iteration already being done to compute
these waves [28].

The paper is organized as follows. Section 2 describes the RBF-FD based numerical
method for simulating the Benjamin–Ono equation. This includes a discussion of RBF-FD,
a node placement strategy, the approximation of a pseudo-differential operator, and the
time-stepping scheme. Then, Section 3 presents numerical results when applying the
method to both the Benjamin–Ono equation and the Akers–Milewski equation. Finally,
Section 4 draws some conclusions about the use of these methods for approximation
pseudo-differential operators.

2. Numerical Method

The numerical method begins in the familiar way of partitioning an interval using
N subintervals. The endpoints of these subintervals are the sets of points SN = {xk}N

k=1.
In this paper periodic boundary conditions on a large domain are imposed as a proxy for
the slow decay of the solution as |x|→∞. To implement these boundary conditions, the
method creates two periodic images of the set SN . These are defined by S±

N =
{

x±k
}N

k=1 :=

2
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{xk±L}N
k=1, where the signs each define a separate set and L is the period. Considering

a point xk ∈SN , define N n
k =

{
xk,j

}n

j=1
to be the set of n points in SN

⋃S+
N
⋃S−

N nearest

to xk. The proposed method approximates the application of a linear operator L to u :
R �→R by interpolating u over the points in N n

k and then applying the linear operator
to the interpolant. Traditional finite difference methods are defined in this way, where a
polynomial interpolant of degree n−1 is constructed over the set xk and n−1 prescribed
neighbors, and the linear operator is applied to the interpolant. The method proposed here,
however, utilizes local RBF interpolation. RBF interpolation has been used successfully
in the approximation of differential operators over subsets of scattered data through the
concept of RBF-FD in, for instance, [10,29–31].

2.1. RBF-FD Weight Calculations for Linear Operators

For the simplicity of discussion, consider approximating L applied to u at a point
xk ∈SN . That is, consider

Lk(u) :=Lu(x)|x=xk .

Following common RBF/RBF-FD procedures, the interpolant is constructed via

sk(x) :=
n

∑
j=1

ck,jφ
(
|x−xk,j|

)
+

m

∑
l=0

dk,l(x−xk)
l

with φ being function dependent only on the distance from the point xk,j. Note that the
shift in the monomial terms is included for numerical stability when inverting the matrix
Ak in what follows. The interpolation coefficients ck,j, j=1,2, . . . ,n, and dk,l , l =0,1, . . . ,m,
are chosen to satisfy the interpolation conditions s(xk,j)=u(xk,j), j= 1,2, . . . ,n, along with
constraints ∑n

j=1 ck,j(xk,j−xk)
l =0, for l =0,1, . . . ,m. By applying L to the interpolant and

then evaluating at xk, we wish to reduce the desired approximation to

Lk(u)≈
N

∑
i=1

wk,iu(xk,i). (2)

A simple derivation can be carried out to show that the weights can be found by
solving the system of linear equations Akvk =bk. This system of equations includes the
(n+m+1)× (n+m+1) matrix

Ak =

[
ΦT

k Pk
PT

k 0

]
,

where Φk,ij =φ
(
|xk,i−xk,j|

)
and Pk,il =(xk,i−xk)

l , for i, j=1,2, . . . ,n and l =0,1, . . . ,m
([10], Section 5.1.4). The right-hand side is the length n+m+1 column vector

bk =
[
Lk(φ(|x−xk,1|)) Lk(φ(|x−xk,2|)) · · · Lk(φ(|x−xk,n|)) Lk(π0) Lk(π1) · · · Lk(πm)

]T .

The system of linear equations is uniquely solvable in our present context ([32],
Theorem 8.21) and the weights wk,i, i=1,2, . . . ,n are the first n entries of the solution
vector vk.

It is typical to approximate the action of L on u at each point in SN simultaneously
through the product Du, where D is an N×N matrix and

u=
[

u(x1) u(x2) · · · u(xN)
]T .

The entries of D are found row by row (something that is easily parallelized), so that

3
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Dki =

{
wk,j if xk,j = xi or xk,j = xi±L

0 otherwise
;

that is, entry i of row k is nonzero only if xi (one of the points in SN) or one of its periodic
images, xi±L, appears in the set N n

k of the points nearest xk.

2.2. Node Placement

To construct node sets With non-uniform spacing that take advantage of the features
of the solution, we first create a spatial node set with equal spacing x̃ on the domain
[−L/2, L/2]. We then apply a nonlinear transformation:

x= x̃
(

1+ a/L2(x̃−L/2)(x̃+L/2)
)

. (3)

The parameter a dictates the variation in step size in this transformation. For a=0,
the node set has uniform spacing; for a= 4 the transformation degenerates by making the
step size near the origin equal to zero. The transformation in Equation (3) is designed
to preserve the overall domain length. It is by no means the only transformation which
places a larger density of points near the origin and fewer far from the origin. We also ran
experiments with the generalization

x= x̃
(

1+ a/L2(x̃−L/2)(x̃+L/2)
)p

. (4)

for p= 2,3,4. Increasing either p or a causes increased node density near the origin; however,
it also leads to issues with the spectrum of the approximation of the linear operators, as we
discuss in next section. For the numerical results presented in this work, we used only (3);
examples of step-sizes for a sampling of a values in Equation (3) are in Figure 1.

-200 -100 0 100 200
x

0

5

10

15

20

25

 x

Figure 1. The step sizes from (3) as a function of x. The horizontal equi-spaced case is a=0.
The step size becomes increasing variable as a ascends through the samples a=1,2,3, and 3.5 (the
extreme graph). The step size near the origin vanishes as a→4. The domain has length L=512,
with N = 64 points.
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2.3. Approximating the Hilbert Transform

In this work we use degree seven polyharmonic splines as the radial basis functions,
complemented with polynomials as described above, so that

φ(r)= r7.

These are a common choice for RBF-FD [10], but make the computation of pseudo-
differential operators such as the Hilbert transform less straightforward than some other
RBFs [8]. The classic procedure to approximate a linear operator using RBFs includes a step
where the linear operator is exactly applied to the basis function. This has been done in a
previous RBF-based numerical study of the Benjamin–Ono equation using gaussian basis
functions on which the Hilbert transform can be exactly calculated [8]. For polyharmonic
splines, an exact formula for the Hilbert transform is unavailable. Instead, we use ideas
motivated by the Fourier transform definition of the Hilbert transform:

Ĥu=−i sign(k)û.

The Fourier transform definition reveals a relationship between the spectrum of the
derivative operator, λ∂x = ik, and the spectrum of the Hilbert transform λH=−isign(k),
so that

λH=−i sign(Im(λ∂x)). (5)

Using this relationship, if the spectrum of the derivative operator is known, then the
spectrum of the Hilbert transform can be computed by an algebraic transformation of
the spectrum of the derivative. We use this transformation to compute an approximation
to the Hilbert transform by first computing a matrix which approximates the derivative,
as described in Section 2.1. Next we diagonalize this matrix using QR iteration to get
its eigenvalues λ∂x and eigenvectors. The Hilbert transform can then be approximated
using the same eigenvectors and Equation (5) applied to the computed λ∂x to get its
eigenvalues. This computation of the Hilbert transform, a pre-processing step, costs O(N3)
flops, where N is the number of spatial points. The time-stepping portion of the RBF-
FD method is O(N2) flops per step, due to the full matrix that approximates the Hilbert
transform. The resulting method however, allows for non-uniform point spacing, so that
larger domains can be accurately simulated with a fixed number of points. We expect this
method to be competitive only in cases where there are fine local features of interest and
slow decay to a remote boundary, as in the Benjamin–Ono solitary wave on R. We admit
that the Benjamin–Ono equation has special properties, i.e., integrability, which make
other simulation methods such as inverse scattering available [3]. The above algorithm
makes no use of integrability, and thus can be trivially extended to other equations with
pseudo-differential operators, such as the intermediate-long wave [25], Whitham [22], and
Akers–Milewski equations [20].

2.4. Time Stepping

For the time evolution of the system of differential equations induced by the RBF-FD
spatial discretization of (1), we use a second order IMEX method [33],

3uq+1−4uq+uq−1

2Δt
= 2 f (uq)− f (uq−1)+g(uq+1), (6)

in which f (u) is the nonlinear term (explicitly treated) and g(u) is the linear term (implicitly
treated). This method is sometimes called SBDF [33], or extrapolated GEAR [34]. The linear
stability region for this scheme is exterior to an egg-shaped region in the right half plane; it
is unconditionally stable for wave equations—such as the Benjamin–Ono equation—that
have pure imaginary linear spectra. We chose this method over the competing IMEX
scheme CNAB (Crank–Nicholson Adams–Bashforth) so that small, real perturbations of
the pure imaginary spectrum do not leave the stability region (as is the case for the CNAB).

5
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As we will see later, floating point errors due to the condition number of the matrices
involved in RBF-FD discretization of the linear operators can cause changes in the spectrum
of the approximation of the linear operators involved. We chose (6) to be as robust as
possible to such errors.

The method we used to approximate the linear operators begins with an eigenvalue
calculation. As such, other numerical time steppers are available—for example, exponen-
tial time differencing (ETD) [35] and integrating factors (IF) [36]. Since the equation is
nonlinear, after diagonalizing the linear part, both ETD and IF methods require full matrix
multiplications to evaluate the nonlinearity at each time step. The IMEX method used here
has the inversion of a full matrix (for the implicit linear term); however, this can be done
as a pre-processing step, so it also has a cost which scales like a full matrix multiplication
per time step (and thus is comparable with ETD or IF). We chose the IMEX scheme due
to its unconditional stability, to ameliorate the stiffness of this equation in explicit time
steppers and to be robust to perturbations of the spectrum off the imaginary axis. In future
work we plan to explore other time steppers, including higher order IMEX methods with
unbounded stability regions [33].

3. Results

In this section, the numerical method described herein is evaluated via a number
of numerical tests. We show the effects of the numerical discretization and truncation
error, and the effect of truncating R to finite length. Errors are measured as a function the
minimal step size of our non-uniform parameterization. The effect of the non-uniform step-
size on the spectrum of approximation to the linear operator is also discussed. Example
simulations of algebraically decaying Benjamin–Ono solitary waves are shown, along with
an oscillatory exponentially decaying wave in the Akers–Milewski equation.

In Figure 2, we display an example of a simulation of the Benjamin–Ono solitary wave:

u(x,t)=
4

1+(x)2 . (7)

The simulation was computed in a frame which travels with the wave so that the wave
appears stationary. As is common practice, a large domain size with periodic boundary
conditions was used as a proxy for R [7] since the solution decays as |x|→∞. The crest of
the wave profile, in the left panel, is marked with a solid black line, to highlight the lack of
oscillation in time. The initial profile is also marked with a solid black line for highlighting
purposed. The right panel shows the step sizes used for this simulation, which range over
an order of magnitude with Δx∈ [0.125,1.25]. The node spacing is concentrated near the
origin, where the wave (and its derivatives) is largest; the largest spacing occurs for large x,
where the wave is small. This allows for increased accuracy for the same number of points
as compared to uniform step sizes.

In Figure 3, we study the accuracy of the spatial discretization of the linear operator

Lu=Huxx+ux, (8)

when applied to the solitary wave (7). There are two competing parameters which deter-
mine the spatial accuracy, the domain size L, and the minimal space step Δx. We present
two experiments, one where the domain size is varied for a sampling of parameterizations
(left panel of Figure 3) and one where the parameterization is varied for a fixed domain
size (right panel of Figure 3). In the left panel, all discretizations show an initial decrease in
error as the domain size increases, scaling like O(L−4), up to a point where the truncation
error of the discretization of the linear operator grows to be larger than the domain dis-
cretization error. For each discretization, including Fourier, there is a length L for which the
method is most accurate (for a fixed number of points). All of the RBF-FD discretizations,
based on (3), are able to give a more accurate discretization than a Fourier discretization
(with the best observed improvement at a= 3.5). That these methods outperform a Fourier

6
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discretization on the Benjamin–Ono solitary wave is natural, since a periodic tiling of this
wave has a discontinuous first derivative at the boundary, limiting the accuracy of a Fourier
discretization. The variable space step RBF-FD is not limited by this discontinuity, even
with an approximation that assumes more than one continuous derivative at the boundary.
The accuracy of the RBF-FD discretization of the linear operator as a function of minimal
step size (controlled by the parameter a) is depicted in the right panel of Figure 3, in which
we observe O(Δx8) accuracy. Given that the approximation of the linear operator was
formed by applying the linear operator to an interpolant with a basis set of polynomials
terms up to degree eight and polyharmonic splines of r7, it is not surprising to see O(Δx8)
accuracy since the interpolation procedure provides for at least that order of accuracy [15].

-200 -100 0 100 200
x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 x

(a) (b)

Figure 2. (a) The soliton solution propagated on a domain x∈ [−256,256]. (b) The step-sizes used for the RBF-FD
discretization used in the left simulation.

0 50 100 150 200 250 300 350
L
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10-5

10-4
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10-2

10-1

100

10-1 100

min(  x)

10-8

10-6

10-4

10-2

100

(a) (b)

Figure 3. The infinity norm of the error of the numerical approximation of the linear operator, LNu, against the exact Lu on
the solitary wave u(x)= 4/(1+x2) is depicted. (a) The error’s dependence on domain size, L, is compared for the RBF-FD
discretization using the spatial points in (3) with a= 2 (red triangles), a= 3 (blue circles), and a= 3.5 (black squares), and an
equi-spaced Fourier discretization (green stars). All of these computations use N =512. (b) The error dependence on the
minimal step size for N =1024,L=800, altering the step size with the parameter “a”. The numerical results are marked
with triangles; the continuous line marks O(Δx8).
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The method used here to discretize the linear operator in Equation (8) is based on a
diagonalization of a RBF-FD differentiation matrix. First we compute an RBF-FD approxi-
mation of a derivative matrix. Next we compute the eigenvalues and eigenvectors of this
matrix. As we knew the exact spectrum of the derivative and the Hilbert transform in the
infinite dimensional problem from Fourier analysis,

∂̂x = ik and Ĥ=−isign(k),

we constructed eigenvalues of the discrete Hilbert transform by applying the same rela-
tionship to the discrete problem. If λDx is an eigenvalue of the differentiation matrix, then
the eigenvalues of the discretized Hilbert transform λH are defined to satisfy

λH= isign(imag(λDx)).

Eigenvalue manipulation based on the above definition is used to find all the eigen-
values of the approximation to (8); the eigenvector matrix (and its inverse) of the RBF-FD
differentiation matrix is then multiplied by diagonal matrices with this approximate spec-
trum to get an approximation for (8). Although the eigenvalues were constructed to be
pure imaginary, as is the spectrum of the exact problem, the result of the matrix multi-
plication (by the matrix of eigenvectors and its inverse) can perturb the spectrum due to
machine precision errors. These errors scale with the condition number of the matrix of
the eigenvectors of the RBF-FD differentiation matrix. As is the case for classic polynomial
interpolation, the condition number of this matrix grows as the points get closer together.
This increase in condition number results in a corresponding increase in the size of spurious
real eigenvalues of the discretized linear operator (which poses a stability problem for
numerical time stepping algorithms). To observe this phenomenon, after creating the
approximate linear operator Lk, we apply a QR iteration to compute the eigenvalues of this
matrix. That these computed eigenvalues differ at all from the desired spectrum is a direct
result of the conditioning of the eigenspace of RBF-FD differentiation matrix. An example
of the computed spectrum of the matrix Lk used to evolve the Benjamin–Ono solitary wave
in Figure 2 is in the left panel of Figure 4. This spectrum includes spurious eigenvalues with
a real part as large as 10−9. In the right panel of Figure 4, we observe the dependence of
the eigenvalue with the largest real part as a function of the parameter a from Equation (3).
The match between the size of the eigenvalues and the condition number of the matrix of
eigenvectors, F, times the machine precision, is displayed in the right panel of Figure 4.
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Figure 4. (a) The spectrum of the linear operator used for the evolution depicted in Figure 2. (b) The condition number and
the maximally real eigenvalue of the approximation of the linear operator as a function of the step-size parameter “a” in
Equation (3), marked with xs, is compared to the condition number of eigenvector matrix, F, of the RBF-FD differentiation
matrix times the machine precision, ε, marked with circles.
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Examples of the discretized eigenfunctions are plotted in Figure 5. These eigenfunc-
tions were all computed on a domain of length L=800; the panels each show different
subsets of the computational domain. As the discretization becomes coarser near the
boundary (a→4), globally supported eigenfunctions are more poorly resolved. This is
natural, as a trade-off for better resolution near the origin. The exact relationship between
the resolution of the eigenfunctions and the errors in the argument of the corresponding
eigenvalues is unknown. This does, however, point to a possible explanation for the ill-
conditioning of the eigenspace of the differentiation matrix. Poor resolution of globally
supported eigenfunctions could be the cause; the ill-conditioned eigenspace could be due
to some points being too far apart, rather than too close together (as is typical in polynomial
interpolation matrices).
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Figure 5. The real part of three sample eigenfunctions is depicted. These eigenfunctions have eigenvalues with “spurious”
real parts Re(λ100)≈10−9,Re(λ450)≈10−8, and Re(λ700)≈10−6 respectively. These values were computed with a=3.9,
N = 1024, and L= 800.

A few references have studied the behavior of eigenvalue stability with regard to node
placement. This includes [16] which investigates special node distributions that improve
eigenvalue stability for global RBF methods, and [37–42] which investigate the effects of
using mapped nodal sets on the accuracy and eigenvalue stability of finite-difference and
pseudo-spectral methods. These works may provide the framework for future research
avenues which resolve the relationship between node placement the ill-conditioning of the
eigenspace of differential operators.

The method presented here and error analysis are presented in the context of the
Benjamin–Ono equation, where the combination of algebraic decay of the solitary wave
and nonlocal nature of the Hilbert transform make a challenging testbed for a numerical
scheme. The same ideas generalize easily to other nonlocal equations; it is trivial to
apply this method to the Whitham equation [22] or the Akers–Milewski equation [20,43].
The Akers–Milewski equation,

ut+Hu−Huxx+uux = 0, (9)

supports traveling, wavepacket-type solitary waves [44]. These waves decay exponentially
in space, and thus do not present the same challenges for numerical simulation, (Fourier
collocation is spectrally accurate) as the Benjamin–Ono solitary wave (7). As evidence of
the ease of generalizing this approach, we include an example of the evolution of such a
wave using RBF-FD discretization a non-uniform grid in Figure 6.
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Figure 6. (a) An example of the evolution of a traveling wavepacket-type solitary wave in the Akers–Milewski Equation (9).
(b) The step sizes used for this simulation.

Although the method is presented in one spatial dimension with periodic boundary
conditions, its application is not exclusive to either. The exact methodology can be directly
applied for higher dimensional problems (for example, the two-dimensional solutions of
Akers–Milewski [20]). In order to consider different boundary conditions, one needs a rela-
tionship between the spectrum of the derivative operator and that of the pseudo-differential
operator with the new boundary conditions. This relationship may be simple to determine
(for example, the relationship for homogeneous Dirichelet boundary conditions agreeing
with that of the periodic case), in which case the definition of the pseudo-differential
operator is unchanged and the boundary conditions may be implemented with standard
RBF-FD methods. For general boundary conditions the relationship between the deriva-
tive’s spectra and the pseudo-differential operator’s spectra should be investigated before
applying the method.

4. Conclusions

In this paper an RBF-FD implementation of the Benjamin–Ono equation was presented.
This required the development of an RBF-FD implementation of the Hilbert transform.
An approximation of the Hilbert transform was built by manipulating the spectrum of
a differentiation matrix. This approach generalizes simply to other pseudo-differential
operators, but incurs an O(N3) pre-processing cost, meaning that this method is expensive
compared to a Fourier implementation. The approach, however, allows for arbitrary
boundary conditions and non-uniform grids. We expect it to be most useful in problems
where an O(N3) pre-processing cost is already being paid, for example, in the evolution of
a coherent structure which was computed via quasi-Newton iteration. A future avenue
for research is in the relationship between the node placement and the conditioning of
the eigenspace of the differentiation matrix; we observe that this plays a key role in the
accuracy of the approximation of the spectrum of the linear operator.
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Abstract: Point defects play a fundamental role in the discovery of new materials due to their
strong influence on material properties and behavior. At present, imaging techniques based on
transmission electron microscopy (TEM) are widely employed for characterizing point defects in
materials. However, current methods for defect detection predominantly involve visual inspection of
TEM images, which is laborious and poses difficulties in materials where defect related contrast is
weak or ambiguous. Recent efforts to develop machine learning methods for the detection of point
defects in TEM images have focused on supervised methods that require labeled training data that is
generated via simulation. Motivated by a desire for machine learning methods that can be trained
on experimental data, we propose two self-supervised machine learning algorithms that are trained
solely on images that are defect-free. Our proposed methods use principal components analysis
(PCA) and convolutional neural networks (CNN) to analyze a TEM image and predict the location of
a defect. Using simulated TEM images, we show that PCA can be used to accurately locate point
defects in the case where there is no imaging noise. In the case where there is imaging noise, we
show that incorporating a CNN dramatically improves model performance. Our models rely on a
novel approach that uses the residual between a TEM image and its PCA reconstruction.

Keywords: transmission electron microscopy (TEM); convolutional neural networks (CNN); anomaly
detection; principal component analysis (PCA); machine learning; deep learning; neural networks;
Gallium-Arsenide (GaAs)

1. Introduction

Point defects are zero-dimensional defects in crystalline materials that have a strong
influence on their atomic structure and properties. The engineering of point defects in
materials, by creation of specific defect types and by the control of spatial location and
number density, is foundational in the development of novel materials for advanced
electronic and photonic applications. Transmission electron microscopy (TEM) is a widely
used technique for imaging defects, due to its versatility for many different modes of
imaging and spectroscopy at high spatial resolution. However, detection of point defects
in TEM images continues to remain a challenge in many material systems, since the
contrast due to the defect is affected by various factors such as its local environment and
imaging conditions.

Recent efforts to develop machine learning methods for the detection of point defects
in TEM images focused on supervised methods that require labeled training data that is
generated via simulation. These methods treat the defect detection problem as a pixel-
level classification problem [1,2]. In contrast, we treat the defect detection problem as an
anomaly detection problem and propose two self-supervised machine learning methods
that can be trained solely using defect-free TEM images. Importantly, since our models only
require defect-free images for training, it allows for our models to be trained directly on
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experimental images of samples that are manufactured to be defect-free. The first method
we propose uses principal components analysis (PCA) and the second method uses both
PCA and convolutional neural networks (CNN). We assess the performance of these
methods by introducing hypothetical anomalies that mimic point defects of different types
in simulated images of defect-free GaAs (Figure 1) [3] and examining the detection accuracy
of our proposed algorithms. We use GaAs as the test material. We also note that atomic
resolution TEM imaging is performed in two different modes, wherein the electron beam is
in parallel illumination (conventional high-resolution transmission electron microscopy) or
as a focused probe (scanning transmission electron microscopy). The present work is based
on parallel beam mode, since images simulated for this mode exhibits widely varying
(although distinct) patterns for different imaging conditions, providing a large dataset for
training and testing purposes. However, the results are also applicable to focused probe
mode images.

Figure 1. Examples of different types of defects that could occur. Green corresponds to A and red
corresponds to B. Blue represents a dopant [3].

Related Works

In recent years, CNNs have proven to be a highly effective tool for image analysis.
Applications include image classification, object detection, pose estimation, and text recog-
nition [4,5]. Given the data-intensive nature of TEM imagery, there have been recent efforts
to employ CNNs in the analysis of TEM images. Examples of using neural networks for
analyzing TEM images include using CNNs for denoising TEM images [6,7], generating
TEM images from partial scans [8], enhancing TEM images [9,10], classifying types of crys-
talline structures [11], locating defects in non-crystalline materials [12], mapping atomic
structures and defects [1], and mapping general structures of interest [2].

The latter two studies [1,2] are of particular interest because they propose CNN models
that can be used to identify point defects in TEM images of crystalline materials. In both
studies, the framework is to train a CNN using simulated TEM images and then apply the
trained models to experimental images. Additionally, both propose training a multi-class
classification CNN that outputs pixel-wise classifications, i.e., every pixel in a TEM image is
assigned a predicted class. The classes can be vacancies, dopants, and defect-free lattice [1]
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or general, non-overlapping structural characteristics such as the column height of the
sample [2]. Both of these models require extensive simulated data where the true label for
each pixel is known. After training the pixel-wise classification model with pixel-by-pixel
truth data, the models are shown to produce strong results on experimental TEM images.

Similar to the aforementioned work, we seek to develop a model that can detect local
structures of interest in TEM images, namely defects, in crystalline materials. However,
we choose to take an approach that does not rely on a training data set with pixel-by-pixel
truth labels. Rather, we rely on a training set of TEM images that are only known to be
free of defects. In both prior works, the authors acknowledge the difficulty in acquiring
experimental images where the true defect locations are known and, therefore, propose
models that are solely trained on simulated data with known defect locations. Since we
only use a training set consisting of TEM images without defects, the proposed methods
can be trained on simulated images or experimental images. Using TEM images of samples
that are known to be free of defects, the proposed methods seek to locate areas of a TEM
image that are anomalous and, thus, are most likely to contain a defect.

Due to a wide range of applications, anomaly detection has been well studied and
there are numerous proposed anomaly detection techniques. Anomaly detection methods,
also known as novelty detection methods, are trained using only “normal” observations
and the goal is to accurately determine whether a new observation is anomalous or normal.
Anomaly detection problems commonly arise in practice when there is an abundance
of normal training data and a limited number of anomalous observations. Examples of
well-known applications include medical imaging [13–15] and fraud detection [16–18]. A
thorough review and taxonomy of machine learnings methods for anomaly is provided by
Pimentel, et al. [19].

In recent years, CNNs have become a leading tool for anomaly detection in image data.
Many of these efforts have been focused on benchmark datasets such as CIFAR-10 and
ImageNet where the general approach is to use a subset of classes as normal data and then
testing whether an image from a new class is correctly identified as an anomaly [20–22]. In
this approach, a new image is considered an anomaly if the object in the new image does not
match the objects included in the training data. For example, an anomaly detection model
would attempt to distinguish between an airplane and a bird. One common framework for
anomaly detection uses autoencoders to generate anomaly scores based on reconstruction
error [23,24]. A thorough survey of deep learning methods for anomaly detection are
provided in several works [25,26].

Defect detection can be considered a more specific type of anomaly detection problem
where the goal is recognize subtle abnormalities in an image where the background object
is normal. For example, a defect detection model would attempt to distinguish between a
piece of fabric with and without a tear. While much progress has been made on general
anomaly detection methods, recent work has shown that these methods do not generalize
well to defect detection problems [27]. Tailored methods for defect detection [27,28] have
been shown to outperform general anomaly detection models when using the MVTec
benchmark dataset, a dataset specifically designed for defect detection [29]. Given that
anomaly detection methods may generalize poorly to defect detection problems, our
contribution is a novel method that is specifically intended for point defect detection in
TEM images. While our methods are specifically tailored for defect detection in TEM
images, our proposed PCA-CNN model has several parallels to recently proposed state-of-
the-art defect detection methods [27].

In addition to our PCA-CNN model, we also propose a baseline defect detection
method that uses principal components analysis (PCA) and reconstruction error to locate
point defects in TEM images. The PCA model serves primarily as a performance baseline
for the PCA-CNN model. PCA is a commonly used method for anomaly detection and
is preferred for its simplicity [30–32]. PCA-based anomaly detection methods generally
involve measuring the reconstruction error between a data point and its reconstruction. The
reconstruction is generated via a linear transformation that is fitted on a training data set
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of normal observations [33]. The PCA method is presented in more detail in a later section.
The concept of using reconstruction error for anomaly detection is also applicable to deep
learning models that generate reconstructions via an autoencoder instead of PCA [20,23,24].

2. Materials and Methods

In this section, we introduce the simulated data used for model development and
propose two methods for detecting defects in TEM images of GaAs. We specifically
consider defect detection using high-resolution transmission electron microscopy (HRTEM)
images, hereafter referred to as TEM images. The first method involves using PCA and
reconstruction error, measured by mean squared error (MSE), to detect defects. The second
method involves using PCA in combination with a weakly supervised CNN classification
model to detect defects. Both models are trained using simulated TEM images of GaAs
samples that are free of defects and then used to determine the location of a point defect in
a simulated image of a GaAs sample. For each of the models, we consider the case when
imaging noise is present and when there is no imaging noise.

2.1. Data Processing

The first step in developing a model for predicting the location of point defects is
to generate simulated TEM images. We note that atomic resolution TEM imaging is
performed in two different modes, wherein the electron beam is in parallel illumination
(conventional high-resolution transmission electron microscopy) or as a focused probe
(scanning transmission electron microscopy). The present work is based on parallel beam
mode, since images simulated for this mode exhibits widely varying patterns for different
imaging conditions, providing a large dataset for training and testing purposes. However,
the results are also applicable to focused probe mode images. TEM images for GaAs were
simulated using the TempasTM software. The TempasTM software has been developed in
collaboration with the Material and Manufacturing Directorate, Air Force Research Lab
(AFRL) and AFRL has validated the simulation results against experimental images of
GaAs. The output of the simulation for a crystal projected along the [110] zone axis for
TEM accelerating voltage of 300 kV and up to specimen thickness of 15 nm. The imaging
parameters for the objective lens were set such that the spherical aberration coefficient was
−15 μm and defocus ranging from −20 nm to +20 nm.

Ideally, experimental data would be used for this study, but due to the difficulty in
acquiring experimental data, we use simulated TEM images to train and test our defect
detection models. The use of simulated data is a start towards developing a method that can
be trained directly on experimental data. A key consideration, then, is an understanding of
the extent to which we can control defects in experimental images. As discussed earlier,
it is possible to produce experimental GaAs samples that are defect-free so we assume
it is feasible to acquire experimental TEM images that are known to be defect-free. In
contrast, when defects, such as dopants, are added to experimental GaAs samples during
the production process, the true locations of the dopant atoms in the GaAs sample are
unknown. Thus, it is infeasible to generate a set of TEM images for which we know the
true location of the point defects. The lack of knowledge about the true location of the
defects in an experimental image is crucial. In light of this lack of defect truth data, the goal
is to develop a defect detection method that is trained solely on defect-free TEM images.

Our dataset consists of simulated TEM images of GaAs using 8 different thickness
conditions and 21 different defocus conditions. The thickness is varied from 1 nm to 15 nm
in 2 nm steps. The defocus condition ranges from −20 nm to 20 nm in 2 nm steps. Thus,
there are a total of 168 unique imaging conditions. These 168 imaging conditions are split
into a set of 112 train conditions (66%) and 56 test conditions (33%). The splitting of the
train and test conditions is done in a nonrandom manner. A third of the defocus conditions,
{−18 nm, −12 nm, −6 nm, 0 nm, +6 nm, +12 nm,+18 nm}, are assigned to the test set and
the remaining are assigned to the training set. The imaging conditions have a significant
impact on the resulting TEM image so splitting on the imaging conditions ensures that
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model performance generalizes beyond conditions only in the set of training conditions.
For the remainder of the paper, we refer to these sets as the train and test conditions.

We use the train and test conditions to further generate the training and tests data
for our models. For each of the 112 train conditions, we simulate a single TEM image of
dimension 1007 × 1024. The image is represented as a matrix of dimension 1007 × 1024
where each entry represents a grayscale pixel value. Since the TEM image consists of a
repeating lattice structure, we choose to analyze the TEM images in smaller segments of
dimension 84 × 118. Each of these image segments is large enough to include two sets of
GaAs pairs in both the vertical and horizontal direction. At the same time, these image
segments are small enough such that accurately identifying the presence of a defect in a
particular image segment is nearly equivalent to determining the location of the defect.
Thus, after generating the larger simulated TEM images, we generate 50 random crops
from each training set image where each crop is an image segment of dimension 84 × 118.
Please note that the crops are random so the location of the GaAs atoms differs within
each image segment. These 5600 image segments constitute the training data for the PCA
and form the basis for the training data for the CNN. During the training of the CNN, we
apply data augmentation and randomized circular defects to the 5600 image segments to
generate labeled training data. This process is described in more detail when we present
the PCA-CNN model.

Next we use the test conditions to generate the test data. For each of the 56 test
conditions, we generate 30 TEM images that are each 1007 × 1024. Specifically, each
simulated image contains a single point defect that can be one of three defect types. For
each of these three defect types, 10 replicates are generated where the defect location is
randomized for each replicate. This results in a total of 1680 test images that are each
1007 × 1024. The three types of defects are (1) an antisite complex where the Gallium and
Arsenic atoms are reversed, (2) substitutional defect where a dopant has an approximately
5% larger radius, (3) an arbitrary circular defect. Figure 2a shows an example of each
of the three defect types. We choose to consider these three types of defects because it
includes a very subtle defect in the substitutional defect, a more obvious defect in the
antisite defect, and a general defect in the circular defect. The circular defect is located
randomly in an image segment while the other two located appropriately. The circular
defect is meant to capture any general point defect such as an interstitial defect or a vacancy.
The circular defect is unique in that it is easily added to any TEM image, either simulated
or experimental. This flexibility plays an important role in the CNN model that introduced
in a later section. For each combination of imaging condition and defect type, we generate
10 simulated TEM images with a randomly located defect. This results in 1680 test images
where the defect location is known. Unlike the smaller image segments used in the training
set, the images in the test set are 1007 × 1024. The test set images are used to evaluate
whether or not the defect detection methods can accurately predict the location of the
defect in the test image. Specifically, a 84 × 118 sliding window is used to determine the
likelihood that each image segment in the 1007 × 1024 image contains a defect. Using
a stride length of 4, each 1007 × 1024 image results in over 50,000 image segments that
must be individually analyzed. The process for generating the training and test data is
summarized in Figure 3.

The simulated TEM images do not include imaging noise. However, experimental
TEM images can have varying degrees of noise that make it difficult to identify defects
in a TEM image. Therefore, it is desirable for our proposed defect detection methods to
be robust to imaging noise. To account for the presence of imaging noise in experimental
images, Gaussian noise is used in both the training and test sets. Specifically, Gaussian
noise with ε ∼ N (μ = 0, σ2 = 0.05) is added to each pixel value for images in the training
set. For the test set, varying levels of Gaussian noise, where σ2 = 0.00, 0.05, 0.10, are added
to the TEM images and model performance is evaluated for each noise level. Figure 2b
shows the effect of the Gaussian noise on a TEM image.
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(a) Examples of defect types

(b) Examples of effect of increasing imaging noise

Figure 2. (a) Three different types of defects are considered. For each imaging condition in the test
set, each of the three defect types is added to the test image. (b) Examples of increasing levels of
Gaussian noise. The noise percentage level corresponds to the variance, σ2, of the Gaussian noise
that is added the image. A circular defect is shown for reference.

Figure 3. The methodology of the PCA-based defect detection method is summarized by the steps
bordered in blue. The steps outside the blue border are the additional necessary to incorporate the
CNN classification model into the defect detection methodology.

2.2. PCA Model

We present a method of detecting defects using PCA reconstructions. We fit a PCA
transformation on the 5600 defect-free 84 × 118 image segments in the training set. Then
we apply an 84 × 118 sliding window across each 1007 × 1024 test set image and, for each
window, we generate a PCA reconstruction of the image segment in the window. Since the
PCA transformation (and inverse transformation) is only fitted on defect-free TEM images,
the assumption is that PCA will struggle to reconstruct an image with a defect. Thus, we
expect that the reconstruction error of image segments with a defect to be greater than the
reconstruction error of images without defects. We can predict the location of a defect by
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identifying the image segment with the highest MSE. With this framework in mind, we
present the method in more detail below.

In general, PCA is a method for transforming a data matrix, X, with dimensions
m × n to a lower-dimensional representation, Xk, with dimensions m × k where k < n.
Specifically, PCA involves a linear transformation, Xk = XWk, where the transformation
matrix is defined as Wk = arg maxWk

∥∥∥X − XkWk
T
∥∥∥ with the constraint that Wk is orthog-

onal, Wk
TWk = I. Notice that XkWk

T is an m × n matrix that can be interpreted as a
reconstruction of the original data using the lower-dimensional representation. Thus, Wk

is a transformation matrix that minimizes reconstruction error for a given data matrix X

and dimension k [33].
In our PCA-based model, the training data consists of 50 randomly cropped image

segments from each of the 112 larger TEM images in the training set. These 5600 training
image segments can be represented by the data matrix Q ∈ R5600×9912 where the rows rep-
resent individual image segments and the columns represent mean-centered values at each
pixel location. The orthogonal linear transformation Qk = QWk projects the original data,
Q, to a lower k-dimensional representation, Qk. In PCA, the weight matrix Wk ∈ R9912×k

is constructed such that the reconstruction MSE,
∥∥∥Q − QkWk

T
∥∥∥2

F
, is minimized. Notice

that Q̂ = QkWT
k , a matrix of dimension 5600 × 9912 represents the reconstructed images.

The projection to the lower-dimensional space and the reconstruction back to the original
dimensional space are both determined by Wk. Once Wk is fit using the training data, it
can be used to generate the reconstruction of any 84 × 118 image segment.

We set the value of k using reconstruction mean-squared error (MSE) of a test set.
Specifically, we fit the PCA using the 5600 image segments in the training set and then
apply the fitted PCA to image segment from the test conditions to compute the average
reconstruction MSE. For each of the 56 test conditions, 50 random crops are taken where
each crop is known to be free of defects. Figure 4 shows the effect of increasing the number
of components on MSE. To prevent overfitting to the noise in the training set, we set
k = 150. Figure 4 shows several examples of image segments under various imaging
conditions as well as the associated reconstruction with k = 150. Figure 5 also shows
examples of circular defects and the effect of the PCA reconstruction on the defect. The
circular defects in the raw image are not visible in the PCA reconstruction which indicates
that PCA reconstruction struggles to accurately reconstruct anomalous point defects.

Figure 4. The number of components used to fit the PCA is determined using the average reconstruc-
tion MSE of the test set images. The average reconstruction MSE for test set images falls rapidly and
levels off after the number of components exceeds 150.
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Figure 5. The first three rows show (1) the defect-free image segments with noise, (2) the PCA
reconstruction, and (3) the residual between the raw and reconstructed image, respectively, for a
range of imaging conditions. The bottom three rows show the same sequence images except the raw
image contains a circular defect that has been randomly inserted. Notably, the PCA reconstructed
image does not accurately reconstruct the defect since the PCA transformation was fitted only on
images without defects.

The difference between an image segment and its reconstruction is referred to as
the residual image. The residual image, intuitively, shows what is remaining when the
general lattice structure is “subtracted” from the original image. Thus, the residual images
consists of noise and any anomalies in the lattice structure. The reconstruction MSE can be
regarded as a scalar that summarizes the residual image. For each of the 5600 images in the
training set, we can compute the reconstruction MSE with and without a circular defect to
understand the distribution of reconstruction MSE. Figure 6a shows how the presence of a
defect changes the reconstruction MSE for each training example. In addition, Figure 6b
shows how the addition of imaging noise affects the reconstruction MSE distribution with
and without a defect. The concept of a residual image plays an important role in the CNN
model that is presented in the next section.

After fitting the PCA transformation, we apply the resulting Wk to the test set images
via a sliding window. Recall that each test set image is of dimension 1007 × 1024 and
contains a single point defect with known location. We use a 84 × 118 sliding window
across the 1007 × 1024 image and, for each window, we complete the following three steps:
(1) generate the PCA reconstruction, (2) generate the residual between the original image
segment and the reconstruction, (3) compute the pixel-wise mean squared error (MSE).
We then generate a heatmap that shows the average reconstruction MSE for each pixel in
the full-size TEM image. The predicted location of the defect corresponds to the area of
the heatmap that has the largest reconstruction MSE. Figure 7 shows an example of a test
image and the corresponding MSE heatmap. The defect in the test image is a substitutional
defect where a single Gallium atom is replaced with a dopant atom that has a 5% larger
radius. The defect is difficult to identify visually, but the heatmap accurately locates the
defect. This method is applied to all imaging conditions in the test set and we evaluate the
accuracy in predicting the location of each type of defect. Figure 3 summarizes the process
for predicting defect location using PCA.
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(a) without noise (b) with noise σ2 = 0.10
Figure 6. The scatterplot shows the reconstruction MSE of 5600 defect-free image segments (x-axis)
in the PCA training set and the corresponding reconstruction MSE for the same image segment with
a circular defect inserted. Points that are close to the x = y represent image segments where the
reconstruction MSE does not differ much with or without a defect. The marginal plots show the
distribution of reconstruction MSEs with and without defects. On left, without imaging noise. On
right, with imaging noise.

Figure 7. Heatmap that shows the pixels with the largest average MSE based on the PCA reconstruc-
tion. Bright spots correspond to areas that are mostly likely to have a defect.

2.3. PCA-CNN Model

In this section, we supplement the PCA-based detection method with a CNN classifier
to improve the accuracy of the defect location predictions. This combined method signif-
icantly improves the prediction accuracy of the PCA model, especially in the case when
there is imaging noise.

The PCA-based defect detection method has the benefit of being straightforward.
However, in the presence of imaging noise, using PCA reconstruction error can lead to
issues. Figure 5 shows the PCA residual images of segments with and without defects. In
these particular examples, the reconstruction MSE for the defect images is actually lower
than the reconstruction of the MSE for the defect-free images. Notably, if we visually
inspect the residual images, the residual images clearly show the presence of a point defect.
To address this shortcoming, we introduce a CNN classification model fitted on the PCA
residual images. Intuitively, reconstruction MSE is equivalent to adding up the squared
values in the residual image and it ignores any local patterns in the residual image. A
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CNN, on the other hand, can be trained to look for the presence of local patterns in the
residual image that may be evidence of a defect. To the best of our knowledge, the use of
the residual image for defect detection is a novel approach.

A CNN is a type of neural network that is commonly used for analyzing image
data ([4]). The key concept in a CNN involves the use of small filters or kernels to extract
local information from an image. A filter, often of dimension 3 × 3, is a matrix consisting of
weights. The filter is applied to an image by sliding the filter across the image and taking
the sum of the element-wise product between the filter weights and the image pixel values.
The sums of these element-wise products are then stored in a new matrix, commonly
referred to as a feature map, which can once again be analyzed using another set of filters.
The training process of a CNN involves optimizing the filter weights to minimize a given
loss function. In our application, our goal is to train a CNN to identify the presence of a
defect within a residual image.

The training data for the CNN model begins with the same set of defect-free training
images used to fit the PCA. Recall that 50 random crops from each of the 112 training
images were used to fit the PCA. These same 5600 images are used to build a set of labeled
training data for the CNN classifier. Since the training data only includes image segments
that are defect-free, a set of labeled training data with defects is generated by adding
random, circular defects to each of the 5600 training images. These circular defects could
be representative of an interstitial defect or a vacancy, but they are not necessarily meant
to represent a realistic defect that would be observed in an experimental image. Instead,
the hope is that the CNN will learn to classify any residual image with an abnormal local
pattern as one containing a defect. Since the circular defects are arbitrary and are added
post-hoc to the simulated image, this method can easily be applied to experimental TEM
images as well. After generating the labeled training, a CNN classification model is trained
such that for an input PCA residual image, the model outputs a scalar ŷ = P(defect) where
P(defect) ∈ [0, 1] is the probability that the image segment contains a defect. A summary
of the CNN model development process is visualized in Figure 3.

Our primary CNN architecture is adapted from the classic LeNet-5 architecture [34]
and has 58,000 trainable parameters. Figure 8 shows the details of each layer of the CNN. It
contains four convolutional layers with max-pooling following by two dense layers. We use
a binary cross-entropy loss function and is optimized using nAdam. The model is trained
for 200 epochs. Importantly, the training data are generated randomly for each batch so
the location of the circular defects and noise patterns in the training set are randomized
during training. The CNN is trained using Python 3.7 and Keras 2.3 with a TensorFlow
2.4.1 backend. The model achieves >99% training accuracy and test accuracy in less than
100 epochs. At the completion of 200 epochs, the test accuracy is 99.8% (Figure 9. Since the
test set images are generated using a separate set of imaging conditions (focal length and
thickness), the strong performance on the test set suggests that the trained CNN generalizes
well to imaging conditions that were not included in the training set.

In addition to the LeNet based architecture, a VGG-16 architecture [35] was also
implemented for comparison. The VGG-16 model was pretrained on ImageNet and the
top dense layers were retrained using the TEM images. This resulted in 14.7 million fixed
parameters and 3.2 million trainable parameters. After training for 100 epochs, the VGG-16
model achieved an accuracy of 98.2%. Given the much smaller size of the LeNet-based
model and the better test set performance, the LeNet-based model was chosen as the
preferred model.
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Figure 8. CNN architecture motivated by LeNet-5.

Figure 9. Train and test set accuracy during the CNN training process. The input to the CNN model
is a residual image of dimension 84 × 118 and the output is the probability that the image contains a
defect, P(defect).

After training the CNN, an 84 × 118 sliding window is applied to each of the 168 test
images that are 1007 × 1024 with one hidden point defect. Using a stride of four pixels,
this process results in 50,000 image segments that must be classified as having a defect or
not. For each 84 × 118 window, we apply the following three steps: (1) generate a PCA
reconstruction, (2) generate a residual image between the original image segment and the
PCA reconstruction, and (3) pass the residual image into the trained CNN to generate

23



Mathematics 2021, 9, 1209

P(defect). For each pixel in the 1007 × 1024 test image, we compute the average P(defect)
for all sliding windows that contain the pixel. This results in a smoothed heatmap for the
entire test image. The location of the defect is then predicted to be the area of the heatmap
that has the highest average P(defect). The heatmap shown earlier in Figure 3 is an example
of a heatmap generated using the CNN classification model with a sliding window.

In many applications of CNNs for anomaly detection, the output of the CNN classifier,
P(defect), is compared to a fixed threshold value to determine if a particular input contains
an anomaly or not [19]. Please note that a threshold is not necessary here since the predicted
defect location is simply the pixel value with the largest average P(defect). If we generalize
to the case where there are n defects in a GaAs sample, then the locations corresponding to
the n largest average P(defect) would be the predicted locations of the defects.

3. Results

In this section, we compare the performance of the two defect detection methods
discussed above. Recall that there are 56 imaging conditions that were reserved for the test
set and there are three defect types. For each combination of imaging condition and defect
type, we generate 10 simulated TEM images, each of dimension 1007 × 1024, where the
defect location is randomized. This results in 1680 test images where the defect location
is known. For each of the 1680 test images (540 images for each of the three defect types),
we apply the PCA and PCA-CNN defect detection methods to predict the location of the
defect. We compare the predicted defect location to the true defect location to determine
whether the model successfully located the defect.

Table 1 shows the accuracy of both methods in predicting the defect location for
various levels of imaging noise. The PCA defect detection method performs particularly
well in the case of no imaging. It accurately locates all three defects types at nearly >97%
and generally outperforms the CNN model. However, as the imaging noise increases, we
observe the superior performance of the CNN model. Specifically, when imaging noise
rises to σ2 = 0.10, the PCA model achieves an accuracy of 56% and 57% on antisite and
circular defects, respectively, while the CNN model achieves 75% and 93% accuracy.

Table 1. Accuracy of the PCA and PCA-CNN model in locating point defects in the test set images.
Table (a) shows the accuracy results when including all images in the test set. Table (b) shows the
accuracy results when only the nominal defocus conditions are included. In both cases, the CNN
model is more robust to imaging noise.

(a) Location detection accuracy including all imaging conditions

Method Noise
Substitution

n = 560
Antisite
n = 560

Circular
n = 560

PCA
σ2 = 0.00 0.97 1.00 1.00
σ2 = 0.05 0.16 0.80 0.94
σ2 = 0.10 0.04 0.56 0.57

PCA-CNN
σ2=0.00 0.71 0.86 1.00

σ2 = 0.05 0.64 0.90 0.99
σ2 = 0.10 0.14 0.75 0.93

(b) Location detection accuracy for central defocus conditions, {−6 nm, 0 nm, +6 nm}

Method Noise
Substitution

n = 240
Antisite
n = 240

Circular
n = 240

PCA
σ2 = 0.00 1.00 1.00 1.00
σ2 = 0.05 0.24 0.91 0.92
σ2 = 0.10 0.04 0.70 0.61

PCA-CNN
σ2 = 0.00 1.00 0.98 1.00
σ2 = 0.05 0.89 0.99 0.99
σ2 = 0.10 0.23 0.89 0.91

24



Mathematics 2021, 9, 1209

The results in Table 1a report the performance of the two methods under all test imag-
ing conditions. Recall that the test set includes an equal number of TEM images for a range
of defocus conditions. In practice, extreme defocus conditions are relatively uncommon
and are actively avoided. Narrowing the focus on the central range of defocus conditions,
{−6 nm, 0 nm, +6 nm}, provides a better representation of expected performance on
experimental images. Table 1b shows the defect location accuracy of both methods under
nominal defocus conditions. Under the restricted set of defocus conditions, the CNN model
remains more robust in the presence of imaging noise. Specifically, when σ2 = 0.10, the
CNN model achieves 89% and 91% accuracy for antisite and circular defects, respectively,
while the PCA model achieves 70% and 61% accuracy.

Based on these preliminary results, it appears that the substitution defects are more
challenging to identify compared to the antisite and circular defect. This is unsurprising
given that the substitution defects are also the most challenging to identify from visual
inspection. The substitution defects were purposely subtle so as to determine the effec-
tiveness of the proposed methods for a wide range of defects. In practice, the substitution
defects are unlikely to sit precisely in a gallium or arsenic site. If the substitution defect is
slightly misaligned, then it is likely that the proposed methods would be more effective in
locating the defect. The antisite and random circular defects are more readily identified
visually which is reflected in the accuracy results. Although the circular defect is not repre-
sentative of a particular defect, the circular defect could be representative of an interstitial
defect or a vacancy.

4. Discussion

In this paper, we introduce two methods for determining the location of a point defect
in a TEM image of GaAs. Compared to recent applications of using CNNs for defect
detection ([1,2], and references therein), the proposed PCA and PCA-CNN methods of
defect detection are unique in that they can be trained on TEM images that are defect-
free. Unlike prior approaches to defect detection, this opens the door to training these
models using experimental data. After training both models using a set of simulated
images that are free of defects, we demonstrate the performance of both methods in
locating a simulated defect in an HRTEM image. In the case of no imaging noise, we
show the PCA method is sensitive to minor defects such as a subtle substitution defect
(97% accuracy). However, as imaging noise is introduced, the performance of the PCA
method declines rapidly. Supplementing the PCA method with a CNN classification
model improves the performance of the model dramatically. The CNN classification model
achieves >89% accuracy for both antisite and circular defects at the highest level of imaging
noise (σ2 = 0.10). These results suggest that the CNN approach has the potential to be
highly effective in analyzing experimental images.

Our PCA-CNN classification model is unique in that it is trained on PCA residual
images. Using the PCA reconstruction to generate a residual image is a novel approach that
has notable benefits. One of the benefits is that it allows for a single pre-trained CNN to be
used for a wide range of imaging conditions. This is in contrast to prior studies that rely
on condition-specific models for defect detection. Imaging conditions, such as thickness
and defocus condition, change the overall “pattern” that is visible in an TEM image. By
taking the difference between an image segment and its reconstruction, we are, intuitively,
“subtracting” the pattern that is associated with a set of imaging conditions. The residual
images are then less correlated with the imaging conditions used to generate the TEM
image and can be analyzed using a single pre-trained CNN. Another benefit is that using
the residual images allows a CNN to more effectively classify defects. Specifically, when we
trained a CNN classification model directly on image segments in the training set without
using residual images, the trained model far underperformed our model that uses residual
images. This suggests that the use of residual images is a key step in training an effective
CNN classification model in the context of TEM images.

25



Mathematics 2021, 9, 1209

The results presented in this paper are based on simulated TEM images. However,
the goal is to implement and adapt these methods for experimental images as they become
available. We observe that experimental images pose unique challenges compared to
simulated images. In the simulated TEM images, the imaging conditions and the imaging
noise were assumed to be consistent across the entire image. In contrast, the thickness
of a sample can vary in an experimental image and the imaging noise is unlikely to be
consistent across an entire image. While additional steps will be necessary to account
for these variations, we believe the key ideas of using PCA reconstructions and residual
images will remain an integral part of analyzing defects in experimental TEM images.

5. Conclusions

In this paper, we propose an anomaly detection method for locating point defects
in crystalline materials using TEM images. The proposed method involves using a PCA
reconstruction to generate a residual image and then a self-supervised CNN classifier to
detect the presence of an anomaly in the residual image. Unlike earlier works that rely on
extensive pixel-by-pixel labeled training data via simulation ([1,2]), our proposed method
is a self-supervised method that only requires defect-free TEM images in the training set.
Since the method only requires defect-free TEM images, it allows for the possibility of
training a defect detection model directly on experimental TEM images that are defect-free.
Additionally, our novel use of a residual image allows for strong results using a simple,
computationally efficient CNN architecture that generalizes well to imaging conditions
that are not included in the training set. Using simulated TEM images with a single point
defect, we show that our PCA-CNN method is able to accurately locate point defects and
it outperforms reconstruction error-based methods, particularly in the case when there is
significant imaging noise.
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Abstract: In this paper, for solving the nonlinear Rosenau-KdV equation, a conservative implicit
two-level nonlinear scheme is proposed by a new numerical method named the multiple integral
finite volume method. According to the order of the original differential equation’s highest derivative,
we can confirm the number of integration steps, which is just called multiple integration. By multiple
integration, a partial differential equation can be converted into a pure integral equation. This is very
important because we can effectively avoid the large errors caused by directly approximating the
derivative of the original differential equation using the finite difference method. We use the multiple
integral finite volume method in the spatial direction and use finite difference in the time direction
to construct the numerical scheme. The precision of this scheme is O(τ2 + h3). In addition, we
verify that the scheme possesses the conservative property on the original equation. The solvability,
uniqueness, convergence, and unconditional stability of this scheme are also demonstrated. The
numerical results show that this method can obtain highly accurate solutions. Further, the tendency
of the numerical results is consistent with the tendency of the analytical results. This shows that the
discrete scheme is effective.

Keywords: multiple integral finite volume method; finite difference method; Rosenau-KdV; conser-
vation; solvability; convergence

1. Introduction

Proposed by Korteweg and de Vries, the Korteweg–de Vries (KdV) equation,

ut + uux + uxxx = 0 (1)

has been widely studied. It can describe ion–phonon waves, magnetic fluid waves in cold
plasma, unidirectional shallow water waves with small amplitude and long waves, and
other wave processes in some physical and biological systems.

It has a wide range of physical applications, so there is great interest in this equation.
A great many numerical methods have been proposed to obtain the numerical solutions
of KdV equations [1–5]. In addition, [6] developed a new integral equation using the
negative-order KdV equation and derived multiple soliton solutions, while [7] created
various negative-order KdV equations in (3 + 1) dimensions and discussed the solutions
for each derived model.

Given the shortcomings of the KdV equation in describing wave–wave and wave–
wall interactions, Rosenau [8,9] proposed the Rosenau equation to cope with the compact
discrete dynamic system.

ut + uxxxxt + ux + uux = 0 (2)

The existence, uniqueness, and regularity of solutions were derived by Park [10]. Since
then, several numerical methods have been studied for the Rosenau equation. For exam-
ple, ref [11] used the Petviashvili iteration method to construct numerical solitary wave
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solutions; ref [12] applied Galerkin mixed finite element methods to (2) by employing a
splitting technique; ref [13] discussed new methods to expand solutions for wave equations
like Rosenau-type equations with damping terms; ref [14] constructed an implicit Crank–
Nicolson formula of the mixed finite element method for nonlinear fourth-order Rosenau
equations; and [15] proposed a meshfree method based on the radial basis function for
the Rosenau equation and other higher-order partial differential equations(PDEs). The
long-time behavior of solutions was investigated in [16].

To better study nonlinear waves, the viscous term uxxx needs to be included.

ut + uxxxxt + ux + uux + uxxx = 0 (3)

Equation (3) is usually called the Rosenau-KdV equation. The authors of [17,18]
proposed conservative schemes for the Rosenau-KdV equation based on the finite differ-
ence method. The authors of [19] proposed a Crank–Nicolson meshless spectral radial
point interpolation (CN-MSRPI) method for the nonlinear Rosenau-KdV equation. The
authors of [20] solved the equation by the first-order Lie–Trotter and second-order Strang
time-splitting techniques combined with quintic B-spline collocation, while [21] studied
numerical solutions by using the subdomain method based on sextic B-spline basis func-
tions. Although various methods have been proposed, we wonder whether there might
be a new method with higher accuracy and efficiency that can keep some properties of
the original partial differential equation. Further, research on the Rosenau-KdV equation
under certain conditions is relatively lacking.

In this paper, we consider the Rosenau-KdV Equation (4) with initial condition

u(x, 0) = u0(x), x ∈ [xl , xr] (4)

and boundary conditions

u(xl , t) = u(xr, t) = 0, ux(xl , t) = ux(xr, t) = 0, t ∈ [0, T] (5)

Here, u0(x) is a known smooth function, and xl and xr are, respectively, the left
border and the right border of x.

Theorem 1. The system (3)–(5) satisfies the following conservative property:

E(t) = ‖u‖2
L2 + ‖uxx‖2

L2 = E(0) = Const. (6)

Here, ‖u ‖2
L2 =

xr∫
xl

u2 dx.

Proof. Integrate both sides of Equation (3) from xl to xr and apply (5); we thus obtain

xr∫
xl

(ut + uxxxxt + uxx + ux + uux)u dx =
1
2

∂

∂t

(
‖u ‖2

L2 + ‖uxx‖2
L2

)
= 0 (7)

Let E(t) = ‖u‖2
L2 + ‖uxx‖2

L2 . Then we get

E(t) = ‖u‖2
L2 + ‖uxx‖2

L2 = E(0) = Const. (8)

Hence, the system (3)–(5) meets the conservative property. �

In this paper, we present a two-level implicit nonlinear discrete scheme for the
Rosenau-KdV Equations (3)–(5) by using a new method named the multiple integral
finite volume method (MIFVM). The remaining contents of this paper are arranged as
follows: In Section 2, we introduce MIFVM in detail and propose a numerical scheme. The
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conservative property of this scheme is also discussed. In Section 3, the solvability of this
numerical scheme is derived. Then, in Section 4, we show some prior estimates. According
to the prior estimates, we demonstrate the convergence with order O(τ2 + h3) and uncon-
ditional stability of this numerical scheme in Section 5. In Section 6, the uniqueness of this
numerical solution is verified with the classic theorem. Finally, we verify the effectiveness
of the numerical scheme via some numerical experiments in Section 7.

2. A Two-Level Implicit Nonlinear Discrete Scheme and Its Conservative Law

2.1. Notation

Let h and τ be uniform step sizes in the spatial and temporal directions, respec-
tively. Let xj = xl + jh(j = 0, 1, · · · , J), tn = nτ(n = 0, 1, · · · , N), where h = (xr − xl)/J,
τ = T/N. Further, let uj = uj(t) =u(xl + jh, t) , un

j = u(xl + jh, tn), Z0
h = {uj|u0 = uJ = 0,

j = 0, 1, · · · , J}, and Ωh =
{

xj
∣∣j = 0, 1, · · · , J

}
. In this paper, we let C denote a generic

positive constant independent of h and τ . The difference operators, inner product, and
norms we defined are shown below.

un+ 1
2

j =
un+1

j +un
j

2

(
un

j

)
x
=

un
j+1−un

j
h ,

(
un

j

)
x
=

un
j −un

j−1
h ,

(
un

j

)
x̂
=

un
j+1−un

j−1
2h ,(

un
j

)
xx

=
(

un
j

)
xx

=
un

j+1−2un
j +un

j−1
h2 ,

(
un

j

)
xxx̂

=
un

j+2−2un
j+1+2un

j−1−un
j−2

2h3 ,(
un

j

)
xxxx

=
un

j+2−4un
j+1+6un

j −4un
j−1+un

j−2

h4 ,
(

un+ 1
2

j

)
t̂
=

un+1
j −un

j
τ ,

‖un‖ =
√
(un, un), ‖un‖∞ = max

xj∈Ωh

∣∣∣un
j

∣∣∣, (un, vn) =
J

∑
j=0

un
j vn

j h

However, we should note that if the inner product operates on different functions,

there will be different ranges of values of j, for example, (un
x , vn

x) =
J−1
∑

j=0

(
un

j

)
x

(
vn

j

)
x
h and

(un
x , vn

x) =
J

∑
j=1

(
un

j

)
x

(
vn

j

)
x
h.

Lemma 1. For any two mesh functions u, v ∈ Z0
h, the following equations hold.

(ux, v) = −(u, vx), (uxx, v) = −(ux, vx) , (ux̂, v) = −(u, vx̂)

Furthermore, if
(
un

0
)

xx =
(

un
J

)
xx

= 0, then ((un)xxx x, un) = ‖un
xx‖2.

Lemma 2. For any mesh function u ∈ Z0
h, the following equation holds.

‖ux̂‖2 ≤ ‖ux‖2 (9)

Lemma 3. For any discrete function u ∈ Z0
h, we have

(ϕ(u), u) =
J−1

∑
j=1

1
3

(
uj

)
x̂

(
uj−1 + uj + uj+1

)
ujh = 0, (10)

where ϕ(uj) =
1
3

(
uj

)
x̂

(
uj−1 + uj + uj+1

)
.

Proof. Because u ∈ Z0
h, we have
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(ϕ(u), u) = 1
6h

J−1
∑

j=1

[
uj+1uj − ujuj−1 +

(
uj+1

)2
−
(

uj−1

)2
]

uj

= 1
6h

[
J−2
∑

j=1

(
uj + uj+1

)
ujuj+1 −

J−1
∑

j=2

(
uj−1 + uj

)
uj−1uj

]
= 0

(11)

�

2.2. The Multiple Integral Finite Volume Method(MIFVM)

In this paper, we use a method named MIFVM to construct a two-level implicit nonlin-
ear scheme for the Rosenau-KdV Equations (3)–(5).The method uses multiple integrals and
combines the finite difference method with the finite volume method. We thus discretize
the original PDE into separate spatial and temporal directions.

In the spatial x direction, firstly, by multiple integrals, we turn the original differential
Equation (3), with unknown function u and its derivative, into an integral equation with
only the unknown function. This is very important because we can effectively avoid the
large errors caused by directly approximating the derivative of the original differential
equation using the finite difference method. We use the multiple integral finite volume
method in the spatial direction and use finite difference in the time direction to construct
the numerical scheme. Firstly, in the spatial direction, the number of integration steps
m depends on the order of the highest derivative in the x direction of the original PDE.
Considering the original Equation (3), the order of the highest derivative in the x direction
is four, so m = 24 − 1 = 15. Now, we define a 15-time integral,

∫
xxxx

u =
∫

xxxx
u(x, t) de f

xj+ε8∫
xj+ε7

dx f2

xj+ε7∫
xj+ε6

dx f1

xj+ε6∫
xj+ε5

dxe2

xj+ε5∫
xj

dxe1

xj∫
xj−ε4

dxd2

xj−ε4∫
xj−ε3

dxd1

xj−ε3∫
xj−ε2

dxc2

xj−ε2∫
xj−ε1

dxc1

x f2∫
x f1

dx f

xe2∫
xe1

dxe

xd2∫
xd1

dxd

xc2∫
xc1

dxc

x f∫
xe

dxb

xd∫
xc

dxa

xb∫
xa

u(x, t) dx

(12)

and we treat original Equation (2) using integral (12). Then, we can get

xj+ε8∫
xj+ε7

dx f2

xj+ε7∫
xj+ε6

dx f1

xj+ε6∫
xj+ε5

dxe2

xj+ε5∫
xj

dxe1

xj∫
xj−ε4

dxd2

xj−ε4∫
xj−ε3

dxd1
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xj−ε2

dxc2

xj−ε2∫
xj−ε1

dxc1

x f2∫
x f1

dx f
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dxe

xd2∫
xd1

dxd
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xc1

dxc

x f∫
xe

dxb

xd∫
xc

dxa

xb∫
xa

ut dx

+
xj+ε8∫

xj+ε7

dx f2

xj+ε7∫
xj+ε6

dx f1

xj+ε6∫
xj+ε5

dxe2

xj+ε5∫
xj

dxe1

xj∫
xj−ε4

dxd2

xj−ε4∫
xj−ε3

dxd1

xj−ε3∫
xj−ε2

dxc2

xj−ε2∫
xj−ε1

dxc1

x f2∫
x f1

dx f

xe2∫
xe1

dxe

xd2∫
xd1

dxd

xc2∫
xc1

dxc

x f∫
xe

dxb

xd∫
xc

dxa

xb∫
xa

uxxxxt dx

+
xj+ε8∫

xj+ε7

dx f2

xj+ε7∫
xj+ε6

dx f1

xj+ε6∫
xj+ε5

dxe2

xj+ε5∫
xj

dxe1

xj∫
xj−ε4

dxd2

xj−ε4∫
xj−ε3

dxd1

xj−ε3∫
xj−ε2

dxc2

xj−ε2∫
xj−ε1

dxc1

x f2∫
x f1

dx f

xe2∫
xe1

dxe

xd2∫
xd1

dxd

xc2∫
xc1

dxc

x f∫
xe

dxb

xd∫
xc

dxa

xb∫
xa

ux dx

+
xj+ε8∫

xj+ε7

dx f2

xj+ε7∫
xj+ε6

dx f1

xj+ε6∫
xj+ε5

dxe2

xj+ε5∫
xj

dxe1

xj∫
xj−ε4

dxd2

xj−ε4∫
xj−ε3

dxd1

xj−ε3∫
xj−ε2

dxc2

xj−ε2∫
xj−ε1

dxc1

x f2∫
x f1

dx f

xe2∫
xe1

dxe

xd2∫
xd1

dxd

xc2∫
xc1

dxc

x f∫
xe

dxb

xd∫
xc

dxa

xb∫
xa

uux dx

+
xj+ε8∫

xj+ε7

dx f2

xj+ε7∫
xj+ε6

dx f1

xj+ε6∫
xj+ε5

dxe2

xj+ε5∫
xj

dxe1

xj∫
xj−ε4

dxd2

xj−ε4∫
xj−ε3

dxd1

xj−ε3∫
xj−ε2

dxc2

xj−ε2∫
xj−ε1

dxc1

x f2∫
x f1

dx f

xe2∫
xe1

dxe

xd2∫
xd1

dxd

xc2∫
xc1

dxc

x f∫
xe

dxb

xd∫
xc

dxa

xb∫
xa

uxxx dx = 0

(13)
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We then use Lagrange interpolation to approximate u(xj ± εi, t)(i = 1, 2, · · · , 8),
because they aren’t defined on grid nodes. In addition, to obtain a high-precision numerical
scheme, the following Lagrange interpolation polynomials are used.

u(x, t) =
(x−xj)(x−xj+1)

2h2 uj−1(t)− (x−xj−1)(x−xj+1)
h2 uj(t)

+
(x−xj−1)(x−xj)

2h2 uj+1(t) + O(h3)
(14)

u(x, t) =
(x−xj−1)(x−xj+1)(x−xj+2)

12h3 uj−2(t)

− (x−xj−2)(x−xj+1)(x−xj+2)
6h4 uj−1(t)

+
(x−xj−2)(x−xj−1)(x−xj+2)

6h4 uj+1(t)

− (x−xj−2)(x−xj−1)(x−xj+1)
12h4 uj+2(t) + O(h4)

(15)

and
u(x, t) =

(x−xj−1)(x−xj)(x−xj+1)(x−xj+2)
24h4 uj−2(t)

− (x−xj−2)(x−xj)(x−xj+1)(x−xj+2)
6h4 uj−1(t)

+
(x−xj−2)(x−xj−1)(x−xj+1)(x−xj+2)

4h4 uj(t)

− (x−xj−2)(x−xj−1)(x−xj)(x−xj+2)
6h4 uj+1(t)

+
(x−xj−2)(x−xj−1)(x−xj)(x−xj+1)

24h4 uj+2(t) + O(h5)

(16)

Secondly, in the temporal direction, we use center difference,

(
un+ 1

2
j

)
t
=

un+1
j − un

j

τ
+ O

(
τ2
)

(17)

to approximate the one-order derivative. Then, the numerical scheme will possess two-
order accuracy in the temporal direction.

With the 15-time integral, Lagrange interpolation, and center difference, we obtain
a series of numerical schemes with eight parameters, εi(i = 1, 2, · · · , 8). As soon as we
identify the eight parameters, we obtain a specific scheme. In fact, finally, we want to
obtaina specific scheme that can keep some properties of the original PDE, such as the
conservative property.

2.3. A Two-Level Implicit Nonlinear Discrete Scheme

According to the specific steps introduced above, to retain theenergy conservative
property of problem (3)–(5), we choose ε1 = −ε4 = −ε5 = ε8 =

√
3h and ε2 = −ε3 =

−ε6 = ε7 =
√

3h/3. Now, let us substitute the eight parameters and (17) into (13). After
simplifying, we obtain a two-level implicit nonlinear discrete scheme for (3)–(5). This is
presented below.

1
9

((
un+ 1

2
j−1

)
t̂
+ 7

(
un+ 1

2
j

)
t̂
+

(
un+ 1

2
j+1

)
t̂

)
+

(
un+ 1

2
j

)
xxxxt̂

+

(
un+ 1

2
j

)
x̂

+ 1
3

(
un+ 1

2
j

)
x̂

(
un+ 1

2
j−1 + un+ 1

2
j + un+ 1

2
j+1

)
+

(
un+ 1

2
j

)
xxx̂

= 0,

1 ≤ j ≤ J − 1, 0 ≤ n ≤ N − 1

(18)

u0
j = u0

(
xj
)
, 1 ≤ j ≤ J − 1 (19)

un
0 = un

J = 0, (un
0 )x =

(
un

J

)
x
= 0, 0 ≤ n ≤ N − 1 (20)
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2.4. Conservative Law of the Discrete Scheme

Theorem 2. The two-level implicit nonlinear numerical scheme (18) possesses the following property:

En =
7
9
‖un‖2 +

2h
9

J−1

∑
j=0

un
j un

j+1 + ‖un
xx‖2 = En−1 = . . . = E0 (21)

Proof. Computing the inner product of (18) with 2un+ 1
2
(
i.e.un+1 + un), we have

7
9τ

(
‖un+1‖2 − ‖un‖2

)
+ 2h

9τ

(
J−1
∑

j=0
un+1

j un+1
j+1 −

J−1
∑

j=0
un

j un
j+1

)
+ 1

τ

(
‖un+1

xx ‖2 − ‖un
xx‖2

)
+
(

ϕ(un+ 1
2 ), 2un+ 1

2

)
= 0

(22)

Let En = 7
9‖un‖2 + 2h

9

J−1
∑

j=0
un

j un
j+1 + ‖un

xx‖2. Applying Lemma 3, we have

En+1 = En. (23)

Thus, we obtain En = · · · = E0, which proves Theorem 2. It shows that this numerical
scheme can retain the conservation property of the original PDE. �

3. Solvability

The following lemmas will be very helpful for proving the solvability of the discrete
scheme (17)–(19).

Lemma 4. Ref [22] Let H be a finite-dimensional inner product space; suppose that g : H → H ,
is continuous and there exists an α > 0 such that (g(x), x) > 0 for all x ∈ H with ‖x‖ = α. Then
there is x∗ ∈ H such that g(x∗) = 0 and ‖x∗‖ ≤ α.

It is a classic theory and comes from the paper Existence and uniqueness theorems for
solutions of nonlinear boundary value problems. This article was published in the Proceedings of
Symposia in Applied Mathematics in 1965.

Lemma 5. 2M − E is a positive definite matrix, where E is an identity matrix and

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0 0
0 7 1 · · · 0 0 0
0 1 7 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 7 1 0
0 0 0 · · · 1 7 0
0 0 0 · · · 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(J+1)×(J+1)

Proof. We know that
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2M − E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0 0
0 13 2 · · · 0 0 0
0 2 13 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 13 2 0
0 0 0 · · · 2 13 0
0 0 0 · · · 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(J+1)×(J+1)

Let Pi(1 ≤ i ≤ J + 1) be ordered principal minor determinants of 2M − E. Obviously,

we have P1 = 1, P2 = 13, P3 =

∣∣∣∣∣∣
1 0 0
0 13 2
0 2 13

∣∣∣∣∣∣ = 165, and PJ = PJ+1. In addition, from

2M − E, we have
Pi = 13Pi−1 − 4Pi−2, 3 ≤ i ≤ J.

So, when i = 4, we have P4 = 13P3 − 4P2 > P3. Similarly, when 5 ≤ i ≤ J, we have

PJ > PJ−1 > · · · > P5 > P4

Then, we have

PJ+1 = PJ > PJ−1 > · · · > P4 > P3 > P2 > P1 > 0

Hence, 2M − E is a positive definite matrix. �

Theorem 3. There is a un+1 ∈ Z0
h that satisfies the discrete scheme (18)–(20).

Proof. Suppose that u0, u1, . . . , un−1 and un satisfy (18)–(20) for n ≤ N − 1. Next, we prove
that there is a un+1 that satisfies the discrete scheme (18)–(20).

Let g be an operator on Z0
h defined by

g(v) =
2
9

A(v − un) + 2(v − un)xxx x + τvx̂ +
τ

3
vx̂
(
vj−1 + vj + vj+1

)
+ τvxxx̂ (24)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0 0
1 7 1 · · · 0 0 0
0 1 7 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 7 1 0
0 0 0 · · · 1 7 1
0 0 0 · · · 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(J+1)×(J+1)

, N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0 0
1 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 1
0 0 0 · · · 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(J+1)×(J+1)

,

v =

⎛⎜⎜⎜⎜⎜⎝
v0
v1
v2
...
vJ

⎞⎟⎟⎟⎟⎟⎠ ∈ Z0
h

Obviously, g is continuous, A = M + N, and (N v, v) = v0v1 + vJ−1vJ = 0. Let
λ0, λ1, · · · , λJ be the eigenvalues of M and let λmin =

{
λ0, λ1, · · · , λJ

}
. Take the inner

product of (24) with v. By Lemma 1 and Lemma 3, we have
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(g(v), v) = 2
9 (Av, v)− 2

9 (Aun, v) + 22‖vxx‖2 − 22(vxx, un
xx)

≥ 2
9 (Mv, v)− 2

9‖Aun‖ · ‖v‖+ 2‖vxx‖2 − 2‖vxx‖ · ‖un
xx‖

≥ 2
9 (λ0v2

0 + · · ·+ λJv2
J )− 1

9‖Aun‖2 − 1
9‖v‖2 + ‖vxx‖2 − ‖un

xx‖2

≥ (2λmin−1)
9 ‖v‖2 − 1

9‖Aun‖2 − ‖un
xx‖2

(25)

From Lemma 2, we can guarantee that 2λmin − 1 > 0. Therefore, let

‖v‖2 =
‖Aun‖2 + 9‖un

xx‖2 + 1
2λmin − 1

(26)

For all v ∈ Z0
h, we have (g(v), v) > 0. From Lemma 4, there is a v∗ = un+un+1

2 ∈ Z0
h

such that g( v∗) = 0. So, there is a un+1 = 2v∗ − un that satisfies the scheme (18)–(20). �

4. Some Prior Estimates for the Discrete Scheme

Lemma 6. Suppose that u0 ∈ H2
0 [xl , xr]; then the solution of (3)–(5) satisfies

‖u‖ ≤ C, ‖ux‖ ≤ C, ‖u‖∞ ≤ C, ‖ux‖∞ ≤ C (27)

Proof. From (16), we have
‖u‖ ≤ C, ‖uxx‖ ≤ C (28)

Then, by the Holder inequality and the Schwarz inequality, we obtain

‖ux‖2 =
∫ xr

xl
uxuxdx = uux|xr

xl
−
∫ xr

xl
uuxxdx = −

∫ xr
xl

uuxxdx

≤ ‖u‖ · ‖uxx‖ ≤ 1
2

(
‖u‖2 + ‖uxx‖2

) (29)

Thus, ‖ux‖ ≤ C. By the Sobolev inequality we have ‖u‖∞ ≤ C, ‖ux‖∞ ≤ C. �

Lemma 7. [Discrete Sobolev Inequality] [22]. There are two constants C1 and C2 such that

‖un‖∞ ≤ C1‖un‖+ C2‖un
x‖ (30)

Lemma 8. Assume that u ∈ Z0
h; then the solution of the discrete scheme (18)–(20) satisfies

‖un
xx‖ ≤ C, ‖un‖ ≤ C, ‖un

x‖ ≤ C, ‖un‖∞ ≤ C, ‖un
x‖∞ ≤ C. (31)

Proof. From (21) we have
‖un

xx‖ ≤ C, ‖un‖ ≤ C (32)

By Lemma 1 and the Cauchy–Schwarz inequality, we obtain

‖ux‖2 ≤ ‖un‖ · ‖un
xx‖ ≤ 1

2

(
‖un

xx‖2 + ‖un‖2
)
≤ C

Applying Lemma 7, we also obtain

‖un‖∞ ≤ C, ‖un
x‖∞ ≤ C.

�
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5. Convergence and Stability of the Discrete Scheme

Let vn+ 1
2

j = v
(

xj, tn+ 1
2

)
be the solution of (3)–(5). By substituting this into (18), we

obtain the truncation error of scheme (17)–(19)

Ern+ 1
2

j = 1
9

((
vn+ 1

2
j−1

)
t̂
+ 7

(
vn+ 1

2
j

)
t̂
+

(
vn+ 1

2
j+1

)
t̂

)
+

(
vn+ 1

2
j

)
xxxxt̂

+

(
vn+ 1

2
j

)
x̂

+ 1
3

(
vn+ 1

2
j

)
x̂

(
vn+ 1

2
j−1 + vn+ 1

2
j + vn+ 1

2
j+1

)
+

(
vn+ 1

2
j

)
xxx̂

(33)

By Taylor expansion and Lagrange interpolation, we know that Ern+ 1
2

j = O(τ2 + h3).

Theorem 4. Suppose u0 ∈ H2
0 [xl , xr] and u(x, t) ∈ C5,3; then the numerical solution un

j of scheme

(17)–(19) converges to the solution vn+ 1
2

j of the initia lboundary value problem (3)–(5) with order
O
(
τ2 + h3) by the norm ‖ · ‖∞.

Proof. Let en+ 1
2

j = vn+ 1
2

j − un+ 1
2

j and subtract (18) from (33); we then have

Ern+ 1
2

j = 1
9

((
en+ 1

2
j−1

)
t̂
+ 7

(
en+ 1

2
j

)
t̂
+

(
en+ 1

2
j+1

)
t̂

)
+

(
en+ 1

2
j

)
xxxxt̂

+

(
en+ 1

2
j

)
x̂
+

(
en+ 1

2
j

)
xxx̂

+ (ϕ(vn+ 1
2

j )− ϕ(un+ 1
2

j )).
(34)

Computing the inner product of (34) with 2en+ 1
2
(
i.e.en+1 + en), we have

(
Erj

n+ 1
2 , 2en+ 1

2

)
= 7

9τ ‖en+1‖2
+ 2h

9τ

J−1
∑

j=1
en+1

j en+1
j+1 − 7

9τ ‖en‖2 − 2h
9τ

J−1
∑

j=1
en

j en
j+1

+ 1
τ

(
‖en+1

xx ‖2 − ‖en
xx‖2

)
+
(

ϕ(vn+ 1
2 )− ϕ(un+ 1

2 ), 2en+ 1
2

) (35)

From Lemmas 6 and 7 and the Cauchy–Schwarz inequality, we obtain

−
(

ϕ(vn+ 1
2 )− ϕ(un+ 1

2 ), 2en+ 1
2

)
= − 2

3 h
J−1
∑

j=1

(
vn+ 1

2
j−1 + vn+ 1

2
j + vn+ 1

2
j+1

)(
vn+ 1

2
j

)
x̂
en+ 1

2
j + 2

3 h
J−1
∑

j=1

(
un+ 1

2
j−1 + un+ 1

2
j + un+ 1

2
j+1

)(
un+ 1

2
j

)
x̂
en+ 1

2
j

= − 2
3 h

J−1
∑

j=1

(
en+ 1

2
j−1 + en+ 1

2
j + en+ 1

2
j+1

)(
vn+ 1

2
j

)
x̂
en+ 1

2
j + 2

3 h
J−1
∑

j=1

(
un+ 1

2
j−1 + un+ 1

2
j + un+ 1

2
j+1

)(
un+ 1

2
j

)
x̂
en+ 1

2
j

− 2
3 h

J−1
∑

j=1

(
un+ 1

2
j−1 + un+ 1

2
j + un+ 1

2
j+1

)(
vn+ 1

2
j

)
x̂
en+ 1

2
j

= − 2
3 h

J−1
∑

j=1

(
en+ 1

2
j−1 + en+ 1

2
j + en+ 1

2
j+1

)(
vn+ 1

2
j

)
x̂
en+ 1

2
j − 2

3 h
J−1
∑

j=1

(
un+ 1

2
j−1 + un+ 1

2
j + un+ 1

2
j+1

)(
en+ 1

2
j

)
x̂
en+ 1

2
j

≤ 2
3 Ch

J−1
∑

j=1

(∣∣∣∣en+ 1
2

j−1

∣∣∣∣+ ∣∣∣∣en+ 1
2

j

∣∣∣∣+ ∣∣∣∣en+ 1
2

j+1

∣∣∣∣)∣∣∣∣en+ 1
2

j

∣∣∣∣+ 2
3 Ch

J−1
∑

j=1

∣∣∣∣(en+ 1
2

j

)
x̂

∣∣∣∣∣∣∣∣en+ 1
2

j

∣∣∣∣
≤ C

(
‖en+1‖2

+ ‖en‖2 + ‖en+1
x̂ ‖2

+ ‖en
x̂‖

2
)

(36)

In addition, we have

(
Erj

n+ 1
2 , 2en+ 1

2

)
=
(

Erj
n+ 1

2 , en+1 + en
)
≤ ‖Ern+ 1

2 ‖
2
+

‖en+1‖2
+ ‖en‖2

2
(37)
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Substituting (36) and (37) into (35), with Lemma 3, we have

7
9‖en+1‖2

+ 2h
9

J−1
∑

j=1
en+1

j en+1
j+1 − 7

9‖en‖2 − 2h
9

J−1
∑

j=1
en

j en
j+1 + ‖en+1

xx ‖2 − ‖en
xx‖2

≤ τ‖Ern+ 1
2 ‖

2
+ Cτ

(
‖en+1‖2

+ ‖en‖2 + ‖en+1
x ‖2

+ ‖en
x‖2 + ‖en

xx‖2‖en+1
xx ‖2

) (38)

Let Bn = 7
9‖en‖2 + 2h

9

J−1
∑

i=1
en

i en
i+1 + ‖en

xx‖2 + ‖en
x‖2. Obviously, B0 = 0. Then, (38) can

be rewritten as
Bn+1 − Bn ≤ τ‖Ern+ 1

2 ‖
2
+ Cτ

(
Bn+1 + Bn

)
(39)

When τ is sufficiently small that 1 − Cτ > 0, we have

Bn+1 ≤ 1+Cτ
1−Cτ Bn + τ

1−Cτ ‖Ern+ 1
2 ‖

2
≤ τ

1−Cτ

n
∑

k=0

(
1+Cτ
1−Cτ

)n−k
‖Erk+ 1

2 ‖
2

≤ O2(τ2 + h3)n+1
∑

k=1

(
1+Cτ
1−Cτ

)k (40)

�

Then we have

Bn ≤ O2
(

τ2 + h3
) n

∑
k=1

(
1 + Cτ

1 − Cτ

)k

≤ O2
(

τ2 + h3
) n

∑
k=1

(
1 +

2Cτ

1 − Cτ

)k

≤ O2
(

τ2 + h3
)

That is, ‖en‖ ≤ O
(
τ2 + h3), ‖en

x‖ ≤ O
(
τ2 + h3). Using Lemma 8, we have

‖en‖∞ ≤ O
(

τ2 + h3
)

(41)

Similarly, we can prove the following theorem.

Theorem 5. Under the conditions of Theorem 4, the solution un
j of discrete scheme (18)–(20) is

unconditionally stable by the norm ‖ · ‖∞.

6. Uniqueness of the Numerical Solution

Theorem 6. The solution of the discrete scheme (18)–(20) is unique.

Proof. We assume that un and wn are two different solutions of (18)–(20). Let Sn+ 1
2

j =

wn+ 1
2

j − un+ 1
2

j . Then, we have

1
9

((
Sn+ 1

2
j−1

)
t̂
+ 7

(
Sn+ 1

2
j

)
t̂
+

(
Sn+ 1

2
j+1

)
t̂

)
+

(
Sn+ 1

2
j

)
xxxxt̂

+

(
Sn+ 1

2
j

)
x̂
+

(
Sn+ 1

2
j

)
xxx̂

+ 1
3

(
wn+ 1

2
j

)
x̂

(
wn+ 1

2
j−1 + wn+ 1

2
j + wn+ 1

2
j+1

)
− 1

3

(
un+ 1

2
j

)
x̂

(
un+ 1

2
j−1 + un+ 1

2
j + un+ 1

2
j+1

)
= 0

(42)

By computing the inner product of (42) with 2Sn+ 1
2
(
i.e.Sn+1 + Sn), we obtain

7
9τ ‖Sn+1‖2

+ 2h
9τ

J−1
∑

j=1
Sn+1

j Sn+1
j+1 − 7

9τ ‖Sn‖2 − 2h
9τ

J−1
∑

j=1
Sn

j Sn
j+1

+ 1
τ

(
‖Sn+1

xx ‖2 − ‖Sn
xx‖2

)
+
(

ϕ(w)− ϕ(u), 2en+ 1
2

)
= 0

(43)
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Let Zn = 7
9‖Sn‖2 + 2h

9

J−1
∑

j=1
Sn

j Sn
j+1 + ‖Sn

xx‖2 + ‖Sn
x‖2; we know that Z0= 0. From (43)

we obtain

Zn+1 − Zn ≤ Cτ
(
‖Sn+1‖2

+ ‖Sn‖2 + ‖Sn+1
xx ‖2

+ ‖Sn
xx‖2 + ‖Sn+1

x̂ ‖2
+ ‖Sn

x̂‖2
)

(44)

Similarly, while 1 − 2Cτ > 0, we have

Zn+1 ≤ (1 + βτ)Zn ≤ · · · ≤ (1 + βτ)n+1Z0 = 0 (45)

Hence, we have ‖Sn‖2 = 0, where β = 4C
1−2Cτ . This implies that un = wn. The

discrete scheme (18)–(20) is thus uniquely solvable. �

7. Results

7.1. Example

We consider the Rosenau-KdV equation

ut + uxxxxt + ux + uux + uxxx = 0, (x, t) ∈ [−40, 40]× [0, 10] (46)

with initial condition

u(x, 0) =
(

35
312

√
313 − 35

24

)
sech4

[
1
24

√
2
√

313 − 26x
]

, x ∈ [−40, 40] (47)

and boundary conditions

u(−40, t) = u(40, t) = 0, ux(−40, t) = ux(40, t) = 0, t ∈ [0, 10] (48)

The exact solution is given by

u(x, t) =
(

35
312

√
313 − 35

24

)
sech4

{√
2
√

313 − 26
24

[
x −

(
1
2
+

1
26

√
313

)
t
]}

(49)

7.2. Figures, Tables, and Schemes

We discretize the problem (46)–(48) using the numerical scheme (18)–(20).
From Figures 1–6, we can see that the numerical solution is consistent with the

exact solution.

Figure 1. Numerical solution and exact solution with h = τ= 1/4, t = 0.
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Figure 2. Numerical solution and exact solution with h = τ= 1/4, t = 5.

Figure 3. Numerical solution and exact solution with h = τ= 1/4, t = 10.

Figure 4. Numerical solution and exact solution with h = τ= 1/8 , t = 0.
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Figure 5. Numerical solution and exact solution with h = τ= 1/8 , t = 5.

Figure 6. Numerical solution and exact solution with h = τ= 1/8 , t = 10.

In Table 1, the errors with various h and τ are given. It is obvious that the
errors are reducing with decreasing h and τ. Hence, our discrete scheme is reasonable.
‖en(h, τ)‖/‖en(h/2, τ/2)‖ and ‖en(h, τ)‖∞/‖en(h/2, τ/2)‖∞ are given in Table 2, which
interprets the convergence rates of the numerical scheme with various h and τ and various
norms. From Table 3, we can see that the discrete En is conservative. This property is
consistent with the original equation. The numerical experiment shows that our discrete
scheme is efficient.
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Table 1. The errors at different times with various h and τ.

h=τ=1/4 h=τ=1/8

‖en‖∞ ‖en‖ ‖en‖∞ ‖en‖
t = 2 2.31861708 × 10−4 1.23912354 × 10−3 5.80241511 × 10−5 4.38690718 × 10−4

t = 4 4.68968494 × 10−4 2.46559087 × 10−3 1.17406720 × 10−4 8.73135975 × 10−4

t = 6 7.06502002 × 10−4 3.66896388 × 10−3 1.77078291 × 10−4 1.30146495 × 10−3

t = 8 9.33077015 × 10−4 4.84157574 × 10−3 2.34850462 × 10−4 1.72786004 × 10−3

t = 10 1.14711186 × 10−3 5.97898965 × 10−3 2.91676007 × 10−4 2.16772647 × 10−3

Table 2. The convergence rateswith various h and τ and various norms.

‖en(h, τ)‖/‖en(h/2, τ/2)‖ ‖en(h, τ)‖∞/‖en(h/2, τ/2)‖∞

τ=h=1/2 τ=h=1/4 τ=h=1/8 τ=h=1/2 τ=h=1/4 τ=h=1/8

t = 2 — 2.81334134 2.82459484 — 3.98408169 3.99595175

t = 4 — 2.81287147 2.82383379 — 3.96857153 3.99439224

t = 6 — 2.81210118 2.81910310 — 3.98033046 3.98977197

t = 8 — 2.81112183 2.80206476 — 3.96316463 3.97306867

t = 10 — 2.81001148 2.75818454 — 3.97437701 3.93282902

Table 3. Discrete En values at different times with various h and τ.

h=τ=1/2 h=τ=1/4 h=τ=1/8

t = 2 3.08675012 6.17349199 12.34697937

t = 4 3.08676651 6.17350095 12.34698364

t = 6 3.08679087 6.17351432 12.34698593

t = 8 3.08681918 6.17352996 12.34696462

t = 10 3.08684844 6.17354622 12.34685552

8. Conclusions

In this paper, a second-order implicit nonlinear discrete scheme for the Rosenau-KdV
equation is proposed via the multiple integral finite volume method (MIFVM). The discrete
scheme possesses the conservative property of the original equation. The solvability,
uniqueness, convergence, and unconditional stability of the scheme were demonstrated
in detail. Numerical experiments verified that the discrete scheme given by MIFVM
is effective.
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Abstract: The Boltzmann equation is essential to the accurate modeling of rarefied gases. Unfortu-
nately, traditional numerical solvers for this equation are too computationally expensive for many
practical applications. With modern interest in hypersonic flight and plasma flows, to which the
Boltzmann equation is relevant, there would be immediate value in an efficient simulation method.
The collision integral component of the equation is the main contributor of the large complexity. A
plethora of new mathematical and numerical approaches have been proposed in an effort to reduce
the computational cost of solving the Boltzmann collision integral, yet it still remains prohibitively ex-
pensive for large problems. This paper aims to accelerate the computation of this integral via machine
learning methods. In particular, we build a deep convolutional neural network to encode/decode the
solution vector, and enforce conservation laws during post-processing of the collision integral before
each time-step. Our preliminary results for the spatially homogeneous Boltzmann equation show a
drastic reduction of computational cost. Specifically, our algorithm requires O(n3) operations, while
asymptotically converging direct discretization algorithms require O(n6), where n is the number of
discrete velocity points in one velocity dimension. Our method demonstrated a speed up of 270 times
compared to these methods while still maintaining reasonable accuracy.

Keywords: Boltzmann equation; machine learning; collision integral; convolutional neural network

1. Introduction

While the Euler and Navier–Stokes equations have for a long time been the work
horses in the modeling of fluid dynamics, these equations are inadequate for modeling
complex flows, such as rarefied gases, for which the continuum assumption is invalid.
Rarefied gas flows have become a topic of increasing interest due to their relevance in
practical applications such as hypersonic and space vehicles. To accurately capture the
true physics of these non-equilibrium flows, analysis of molecular-level interactions is
required. As the governing equation of kinetic theory, the Boltzmann equation is key in
understanding these interactions, and therefore also critical in aiding the successful design
of these flight vehicles, as well as other applications. Unfortunately, and despite the rapid
increase in computing power of recent years, numerical solution of this equation continues
to present a major challenge. Among the components of the equation, the main driver
of computational complexity is the multi-dimensional collision integral. As a result, a
plethora of new mathematical and numerical approaches have been proposed in an effort
to reduce the computational cost of solving the Boltzmann collision integral.

Fourier-based spectral methods represent a potent approach to deterministic evalu-
ation of the collision integral [1–5]. These methods use uniform meshes in the velocity
space and have complexity of O(n6) operations, where n is the number of discrete velocity
points in one velocity dimension. A discontinuous Galerkin discretization with O(n6)
complexity was proposed in [6]. While these algorithms are suitable for simulation of
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flows in one and two spatial dimensions, they are difficult to use for three dimensional
flows. An additional reduction in complexity is achieved in fast spectral methods by
leveraging low rank approximate diagonalization of the weighted convolution form of
the collision integral [7–11]. Complexities of the fast spectral methods may vary between
O(Mr M2n3 log n) and O(M2n3 log n) depending on the form of molecular interaction po-
tential. Numbers M2 and Mr correspond to the numbers of discrete integration points in
angular and radial directions used in diagonalization and usually are significantly smaller
than n. In spite of the significant improvement in efficiency, simulation of three dimen-
sional flows of gases with internal energies, multi-component gases, and flows in complex
geometries still remains challenging for fast spectral methods.

Other algorithms of lower complexities have also been proposed for either special
physics or various representations of the approximate solutions, for example, O(n4) algo-
rithm for evaluating the collision integral in the case of Maxwell’s pseudo-molecules [12],
and O(Mn3 log n) for hard spheres potentials [13,14]. Simulation of gas mixtures and gases
with internal energies, as well as multidimensional models can be found in [14–20], and
references therein. Other fast methods include representing the solution as a sum of homo-
geneous Gaussians [21,22], polynomial spectral discretization [23], utilizing non-uniform
meshes [24], and a hyperbolic cross approximation [25]. Additional review of recent results
can be found in [26,27].

In this paper, we apply machine learning to accelerate the calculation of the Boltzmann
collision integral. The results presented are intended to be an initial demonstration of
the viability of machine learning to accelerate solution of the problem at hand, more so
than to rigorously prove consistency of machine learning techniques with the discretized
Boltzmann equation. For our case study, we consider a class of solutions to the problem
of spatially homogeneous relaxation computed using deterministic approach of [6]. The
considered class of solutions correspond to hard spheres potential, however, we expect that
the results can be replicated for other molecular potentials. We build a deep convolutional
neural network to encode/decode the solution vector, and enforce conservation laws
during post-processing of the collision integral before each time-step. Our preliminary
results for the spatially homogeneous Boltzmann equation show a drastic reduction of
computational cost, in the order of O(n3), compared to O(n6) for direct discretization
algorithm of [6].

Specifically, our model would take the numerical solution as input and return a
predicted collision integral at every point of the computational domain as output. This
model could then directly replace the collision integral calculation in a time stepping
simulation without requiring any other aspect of the simulation to change. Due to the fact
that machine learning algorithms are to be trained on a specific set of data, the resulting
approximate algorithms will be only applicable to the same classes of problem for which the
data was generated. Thus, the proposed approaches are intrinsically applicable to a specific
set of problems. For that set of problems, however, the methods provide a significant
improvement in speed compared to classical methods. This opens an entire new avenue for
addressing the computational complexity associated with solving the Boltzmann equation.

Artificial neural networks and machine learning were previously applied to solution of
partial differential equations, see, e.g., [28–30], including solution of kinetic equations [31].
Another data driven approach consists of using low rank tensor approximations of kinetic
solutions [32]. Commonly, deep neural networks provide low rank representations of
solutions in high dimensional spaces while the governing partial differential equations
are used to define penalty functions for network training. It should be noted, however,
that a direct implementation of the collision integral in a penalty function in a manner
the governing equations are used in physics informed networks, is problematic due to
extremely high costs of evaluating the collision integral. As a result, in this paper, we focus
on learning the collision operator itself, for a class of solutions. The resulting approximation
can be, in principle, combined with approaches of [31,32] to provide an inexpensive
physically accurate collision operator. To the authors’ knowledge, this is the first attempt
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at using machine learning to accelerate the calculation of the Boltzmann collision integral.
Our early results suggest that the approach has potential to drastically advance the state-
of-the-art in simulating complex flows or rarefied gas.

The rest of the paper is organized as follows. Section 2 presents the problem setup and
the convolutional network structure that enables the dimension reduction. Conservation
considerations are described in Section 3. Section 4 is devoted to error analysis. Our test
models and results are shown in Section 5. The paper is concluded in Section 6.

2. Problem Setup

In the kinetic approach the gas is described using the molecular velocity distribution
function f (t,�x,�v) which has the property that f (t,�x,�v)d�x d�v represents the number of
molecules that are contained in the box with the volume d�x around point �x whose velocities
are contained in a box of volume d�v around point �v. In this work, we are concerned with
the solution of the spatially homogeneous flows that correspond to the assumption that
the f (t,�x,�v) is constant in the �x variable. In this case, the dynamics of the gas is given by
the spatially homogeneous Boltzmann Equation (see, for example [33,34]),

∂

∂t
f (t,�v) = I[ f ](t,�v) . (1)

Here I[ f ] is the molecular collision operator

I[ f ](t,�x,�v) =
∫
R3

∫
S

2
( f (t,�v′) f (t,�u′)− f (t,�v) f (t,�u))B(|g|, cos θ) dσ d�u , (2)

where �v and �u are the pre-collision velocities of a pair of particles, �g = �v − �u, S2 is a unit
sphere in R3 centered at the origin, �w is the unit vector connecting the origin and a point
on S

2, θ is the deflection angle defined by the equation cos θ = �w ·�g/|g|, dσ = sin θ dθdε,
where ε is the azimuthal angle that parametrizes �w together with the angle θ. Vectors �v′

and �u′ are the post-collision velocities of a pair of particles and are computed by

�v′ = �v − 1
2
(�g − |g|�w), �u′ = �v − 1

2
(�g + |g|�w) .

Due to the high computational complexity of the collision integral, use of the Boltz-
mann equation in practice has been limited.

2.1. Class of Solutions and Solution Collection

The class of solutions for which the training data is constructed consists of solutions
to the problem of spatially homogeneous relaxation with the initial data given by two
homogeneous Gaussian densities. The initial data is normalized so that the velocity
distribution function has unit density, zero bulk velocity and, a set temperature. In the
simulations presented in this paper, the value of dimensionless temperature of 0.2 was used.
The bulk velocities of the homogeneous Gaussian densities have zero v and w components,
thus the solutions are radially symmetric in vw velocity plane.

A collection of solutions is computed by randomly generating macroscopic parameters
of density, the u components of the bulk velocity, and temperatures of two homogeneous
Gaussian densities and solving (1) until a steady state is reached using the method of [6].
The numerically computed velocity distribution functions are saved at multiple instances in
time, each save becoming a data point in the collection. We note that due to normalization
of the initial data, the steady state is the same for all computed solutions. All solutions were
computed on uniform meshes with dimensions of 41 by 41 by 41 in the velocity domain.

2.2. Dimension Reduction

A key component of finding a faster method of calculating the collision integral
is finding low dimensional features that adequately characterize the solution. The true
dimensionality of the solution data can be demonstrated using the SVD decomposition.
The saved solutions are re-arranged as one dimensional arrays f j. Then f j are added as
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rows to the matrix Dij, where index i runs over all saved solutions and index j runs over
all discretization points. This process is schematically depicted in Figure 1.

In Figure 1, singular values of matrix Dij, i = 1, . . . , P, j = 1, . . . , M3 are shown, where
M = 41 is the number of velocity points in each velocity dimension in the computed
solutions and P is the total number of the considered solution saves, P ≈ 5000. About
100 of cases of initial data is included in the results in Figure 1. It can be seen that the
singular values decrease very fast allowing for low rank approximation D̂ij of the data
matrix Dij:

D̂ij =
K

∑
l=1

σlμ
l
iξ

l
j . (3)

Here σl is the l-th singular value, μl
i is the l-th left singular vector and ξ l

j is the l-th right

singular vector of Dij. Vectors ξ l
j represent orthogonal modes in solutions and σl represents

the relative importance of these modes in the solution data. A SVD truncation theorem of
numerical linear algebra states that the relative L2 norm of error of approximating Dij with
a truncated sum (3) is 0.001 for K = 21 and 1.0 × 10−4 for K = 38. The relative L∞ norm of
the SVD truncation error is often estimated using the quantity eK = (∑P

i=K+1 σi)/ ∑P
i=1 σi.

Values of eK for K = 20, K = 36, and K = 55 are 0.0087, 0.00089, and 9.8× 10−5, respectively.
This suggests that modes corresponding to singular values σl , l > 20 account for less than
0.01 of the solutions, for l > 36 for less than 0.001, and for l > 55 for less than 1.0 × 10−4

of the solutions. In other words, the solutions can be approximated accurately with first
55 singular vectors ξ l

j and these vectors provide a very efficient basis for representing this
class of solutions (but not other classes of solutions).

Figure 1. (left) Schematic depiction of constructing the solution data matrix: 3D solutions are reshaped into vectors f j

which are then stacked as rows of the solution data matrix Dij. (right) Singular values of the solutions data matrix and
estimated accuracy plotted on logarithmic scale.

To assess the ability of low rank features to be learned, experiments were conducted
applying autoencoders to solution data. An autoencoder is a type of neural network
which tries to learn a compressed form of the data on which it is trained. Such a network
will contain a constricted layer with only a few output nodes which is meant to be the
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compressed data. The layers preceding this bottleneck are referred to as the encoder and
the layers following are the decoder.

The architecture of autoencoders applied involved convolutional layers, thus making
them convolutional autoencoders. As with much of machine learning, there is no specific
way that such a network must be constructed. Generally speaking, a 3D convolutional
autoencoder will have an encoder with layers arranged as depicted in Figure 2a, and a
decoder with layers as depicted in Figure 2b. Figure 2a shows three convolutional filters
being applied to the original, resulting in the next three data blocks (color coded to match).
These data blocks are then reduced in size by the application of a pooling filter. Another
round of convolutional filters is applied, followed by another pooling filter. In Figure 2b,
that process is occurring in reverse. The three small data blocks in the beginning are
up-sampled to increase their size, then go through a set of convolutional filters. This
result is up-sampled again before a final convolutional filter returns the data block to its
original dimensions.

(a) (b)
Figure 2. Diagram of convolutional autoencoder. The encoder (a) contains successive convolutional and pooling layers
which downsize the data. The decoder (b) contains successive convolutional and upsampling layers which restore the data
to its original size.

The goal is for the convolutional layers to learn key features in the data which are
sufficient to reconstruct the data but can be stored in a smaller dimensional space. The
compression and decompression is controlled by pooling and upsampling layers. Pooling
layers such as max pooling or average pooling replace a block of values in the data with
a single value (the max or the average, respectively) which reduces the total number of
values being handled. Upsampling layers do the opposite which is to increase the number
of values being handled by either repeating values or inserting values which interpolate
neighboring values. Alternatively, a network can be allowed to learn its own up-sampling
method using transposed convolutional layers.

The convolutional layers are inserted between the pooling and upsampling layers to
do the learning. The size of the kernels being applied as well as their activation functions
and the number of filters applied are all hyperparameters which must be chosen to get the
best results. The requirement for an autoencoder is that at the bottleneck, the number of
filters must be such that the total number of values being output is less than the number
of values at the input to the network. In Figure 2a this means that M3 × N3 × K3 × F2 
M1 × N1 × K1.

Samples of the data were taken randomly from the database without discriminating
based on initial conditions or the time at which the solution was saved to construct training
and test sets. A few different network architectures were constructed and fit to the data
using the Keras API included with TensorFlow [35]. The Nadam optimizer proved most
effective at training the models. Compared to the Adam and Stochastic Gradient Descent
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optimizers, Nadam converged the fastest and resulted in the lowest prediction error. A
variety of hyperparameter values were explored for the training, some results of this
exploration are discussed next.

To demonstrate the performance of the autoencoders, we provide some graphs of the
reconstructed solutions to compare to the original solutions. The solutions are 3D data
cubes and so can not be easily plotted in totality. Instead we have provide graphs of slices
of the domain, taken near the center. The results in Figure 3 come from a network with
a bottleneck with dimensions of 8 by 8 by 8 with 8 filters which translates to 84 or 4096
variables which is a significant reduction down from 413 variables. Both the encoder and
decoder portions of the network had three convolutional layers, all of which used the ReLU
activation function. The ReLU activation function and its derivative are simple and compu-
tationally cheap to use and still grant networks the universal approximator property [36].
Furthermore, we observed ReLU to be easier to train than sigmoid. It has been shown that
ReLU is easier to train than sigmoid and sigmoid-like activation functions, because it does
not suffer from the vanishing gradient problem [37,38]. Since our autoencoding problem is
not a categorical one, the restricted range of sigmoid-like activation functions provides no
advantage, and thus ReLU was the preferable activation function.

(a) True above, Predicted below (b) True above, Predicted below
Figure 3. Comparison between true solutions (top) and reconstructed (bottom) from autoencoder with 8 × 8 × 8 × 8
bottleneck. Since the solutions are on a 3D grid, only a slice towards the center of the domain is plotted here. The
reconstructions are generally good, but with sharp features having been rounded off.

The results in Figure 4 come from a network with a bottleneck with dimensions of 2 by
2 by 2 with 8 filters which translates to 64 variables. The architecture of this network was
identical to the previous, less restricted network, other than the bottleneck being tighter.

The results show promise that the convolutional architecture is capable of identifying
and capturing important features in this data set, even with a significantly smaller number
of variables. This provides hope that machine learning algorithms will be able to compute
such solutions with far less computational effort and memory usage than traditional
methods. It is most notable that the peaks of the reconstructed graphs have been rounded
off and do not reach as high as the true data. Still captured though is the location and
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general Maxwellian shape, with the reconstructions from the network with the tighter
restriction definitely being lossier than those from the less restricted network.

(a) True above, Predicted below (b) True above, Predicted below
Figure 4. Comparison between true solutions (top) and reconstructed (bottom) from autoencoder with 2 × 2 × 2 × 8
bottleneck. These are plots of a slice of the domain of the data. Reconstructions were clearly less accurate than those
produced by the previous autoencoder, but still demonstrate the Maxwellian’s shape and location.

3. Conservation Laws

Exact solutions to the spatially homogeneous Boltzmann equation must adhere to
the conservation of mass, momentum, and energy. Each of these quantities is computed
from the solution by the application of a linear integral operator. When these operators are
applied to the collision integral, the result must be zero in order to ensure conservation.

The present strategy to enforce conservation laws in numerical solution is to post-
process the collision integral after it is predicted and before it is used to step in time as
shown in Algorithm 1. Many approaches have been proposed to enforce conservation
laws in numerical evaluation of the collision integral, see, e.g., [17,39,40]. In this paper, we
employ a modification of the Lagrangian multiplier method of [41,42]. The resulting post-
processing procedure is schematically described in Algorithm 2. The procedure computes
a corrected value of the collision integral that satisfies the discrete conservation laws up to
roundoff errors while being as close as possible to the prediction. The difference from the
approach of [42] is that values of the predicted collision integral that are small in magnitude
are not affected by the procedure. Thus, the procedure avoids creation of small spurious
values in the conservative collision integral at the domain boundaries.

In the future, enforcement of the conservation laws can be incorporated into the model
and will thus force the training process to account for them. For example, let M be a 5 by
m matrix (5 < m) which computes the mass, momentum, and energy from the solution.
The collision integral must exist in the null space of this matrix. The basis of the null space
consists of columns of V0 from the singular value decomposition of the matrix M,

M = U [S 0]
[

VT
1

VT
0

]
(4)
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where U, S are 5 by 5 matrices and V = [V1, V0] is an m by m matrix. Thus,

Q =
m

∑
i=6

αivi, (5)

where
V0 =

[
v6 v7 . . . vm

]
. (6)

A model can then be taught to learn values for the parameters {αi} such that Equation (5)
approximates the collision integral. This will ensure that the conservation laws are auto-
matically satisfied.

Algorithm 1 Solve 0-dimensional Boltzmann.

1: while t < t f do

2: Compute Q̂ = Q̂[ f (t)] using machine learned model
3: Q̂ = enforceConservation(Q̂)
4: f (t + Δt) = f (t) + Δt ∗ Q̂
5: end while

Algorithm 2 Enforce Conservation.

1: procedure ENFORCECONSERVATION(q)
2: Construct mass, momentum, and energy operator, M
3: Construct a masking projection operator P that preserves small components of q

and nullifies other components
4: Solve min 1

2 ||qcorr − q||2 s.t. Mqcorr = 0, P(qcorr − q) = 0
5: return qcorr
6: end procedure

4. Error Propagation

A known weakness of using a machine learned model in place of an analytical one
is that errors will be injected into the simulation process. Even if the magnitude of the
generated error is small, the way these errors evolve and interact may be significant. It is
thus desirable to understand how the errors will behave. In our case, if we define Q̂ as the
machine-learned model for the collision integral and f̂ as the solution computed using that
model, then we can define the error functions as

e f = f − f̂ (7)

and
eQ = Q[ f ]− Q̂[ f̂ ]. (8)

We then have an equation for the evolution of error given by

∂

∂t
e f +�v · ∇xe f = eQ, (9)

from which we can derive some approximate error bounds.
If one assumes that the distribution of error is approximately uniform, then the second

term can be ignored. This leaves

∂

∂t
e f = eQ. (10)

Writing eQ as

eQ =
(
Q[ f ]− Q̂[ f ]

)
+
(

Q̂[ f ]− Q̂[ f̂ ]
)

, (11)
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we see that there are two contributions to the error. The first is the error in the prediction due
to the model not being exact, the second is from error accumulated during the time stepping
process. If we now assume Lipschitz continuity of the model and that the prediction error
is bounded by a constant, then

|eQ| ≤ C1 + C2| f − f̂ | = C1 + C2|e f |. (12)

The worst case scenario estimate is

∂

∂t
|e f | ≤ C1 + C2|e f |, (13)

which leads to the bound on the solution’s error

|e f (t,�x,�v)| ≤ C1

C2

(
eC2t − 1

)
. (14)

Depending on the application for which the Boltzmann equation is being solved, it
may not be sufficient just to bound the magnitude of the error in the prediction of the
solution, but the effect the error has on the moments may also be of interest. It is from
the moments that many physical properties of the gas are computed and the errors in the
solution may manifest in ways which significantly or insignificantly affect the moments of
the solution. In general, a moment of the solution is given by

mi =
∫

Ω
qi f , (15)

where qi is a quantity associated with the definition of the ith moment. Therefore, the error
in the moment calculation is

emi =
∫

Ω
qi f −

∫
Ω

qi f̂ =
∫

Ω
qie f , (16)

which is the corresponding moment of the error. For error in the collision integral prediction
satisfying our previous assumptions, the error bound on the moment calculation is

|emi | ≤
C1

C2
(eC2t − 1)

∫
Ω
|qi|. (17)

As of yet, it cannot be said what kind of errors should be expected or how they
will manifest themselves, other than that the error in the mass, momentum, and energy
moments will be exactly zero due to conservation law enforcement. We expect that lower
order moments will be less affected by introduced error, however higher order moments
could react dramatically to small deviations in the solution.

5. Test Model

Examination of trends in the solution, collision integral pairs in the database led to
the conclusion that a second order function should have sufficient flexibility to predict the
value at each point of the collision integral. The chosen predictors for each value in the
collision integral were the 27 values in the solution in the neighborhood of the index in the
collision integral being predicted.

A sparsely connected neural network was then constructed using an expanded feature
space which included second order terms computed from the predictors. For a given value
in the collision integral, yi∗ j∗k∗ , at indices i∗, j∗, k∗, let Pi∗ j∗k∗ be the set of corresponding
features which is
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Pi∗ j∗k∗ := {xi1 j1k1 , xi1 j1k1 xi2 j2k2 |

d((i1, j1, k1), (i∗, j∗, k∗)) ≤ 1, d((i2, j2, k2), (i∗, j∗, k∗)) ≤ 1}, (18)

where d((i1, j1, k1), (i∗, j∗, k∗)) = max(|i1 − i∗|, |j1 − j∗|, |k1 − k∗|). We then define Xi∗ j∗k∗

to be a vector of all the elements in Pi∗ j∗k∗ . The model to predict yi∗ j∗k∗ is the support vector
machine,

yi∗ j∗k∗ = wT
i∗ j∗k∗Xi∗ j∗k∗ + wi∗ j∗k∗ ,0 , (19)

with parameters wi∗ j∗k∗ , and wi∗ j∗k∗ ,0 which correspond to the given yi∗ j∗k∗ . The full network
made up of these SVMs is a sparsely connected, single layer network with linear activation
functions. In total this architecture has O(n3) parameters and requires O(n3) flops to
compute the collision integral where n is the number of indices along a single dimension
of the discrete mesh. Both the computational complexity and memory requirements are
this linear in the size of the mesh. The model was fit to training data using a regularized
least squares loss function and achieved overall good predictions.

Comparison of Results

To assess the performance of this machine-learned method for computing the collision
integral, the model was used to solve the spatially homogeneous Boltzmann equation

∂

∂t
f (t,�v) = Q[ f ](t,�v) (20)

using forward Euler integration in time as shown in Algorithm 1. The solution was
integrated starting with initial data f (0,�v) from the database of solutions.

The Python implementation of this method took about 6 min to carry out 667 time
steps and about 9 min to carry out 1000 time steps, an estimated O(102) times faster than
the method of [6]. That method uses a discontinuous Galerkin discretization and takes
about 40 h on a single CPU to carry out 1000 time steps. The machine-learned method
thus greatly outperformed the method of [6]. The CPU time for both methods to perform
one evaluation of the collision operator are summarized in Table 1. The CPU time for the
machine-learned method also shows significant improvement compared to times reported
in [10] for a fast spectral method.

Table 1. Time to perform one evaluation of the collision operator using machine-learned collision
operator and the O(n6) deterministic method of [6].

ML Method Deterministic Speed Up

Time, s 0.54 147 270×

Solutions computed using the machine-learned collision operator were comparable to
the deterministic solutions with better predictions towards the center of the domain than
towards the boundary. Figures 5 and 6 show comparisons between solutions achieved
using the method in [6] and the present method. As was the case with the autoencoder,
these plots are of slices of the domain. The predictions look very similar and trend toward
the same steady state over time. The fact that the quality of the prediction is better closer to
the center of the domain may be a result of the training data being more diverse towards the
center of the domain than towards the boundary. The true solution and collision integral
go to zero at the boundary of the domain and so there was not as much information to
use to train the model out there. Even still, the magnitude of the difference between the
prediction and the true value was small.
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(a) t = 0.027 (b) t = 0.1065
Figure 5. Comparison between solutions computed numerically (top) and using the machine learned model (bottom).
Both comparisons were produced from the same initial data. Time stamps are normalized to the maximum time for which
training data existed. These plots are of a single slice of the domain.

(a) t = 0.027 (b) t = 0.507
Figure 6. Comparison between solutions computed numerically (top) and using the machine learned model (bottom).
Both comparisons were produced from the same initial data. Time stamps are normalized to the maximum time for which
training data existed. These plots are of a single slice of the domain.
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Figure 7 demonstrates how the absolute error between the true solution and the
predicted solution evolves over time. The total magnitude of the difference remains low
throughout the duration of the simulation, being under 10% of the L1 norm of the true
solution. There is also a consistent behavior among all the error curves, mainly that the
difference grows the most during the first few iterations, then starts to flatten out.

Figure 7. Normalized L1 error, given by ‖ fTrue − fPred‖1/‖ fTrue‖1, shown for 10 different test cases.
Time axis is normalized to the maximum time for which training data existed. Error growth is
consistently most rapid for t < 0.2. For t > 0.5 error growth is consistently at a much lower rate.

It is now of interest to see the effect the error has on the moments of the solution.
Figure 8 shows a comparison of second and third order moments between the predicted
and true solution. The lower order moments corresponding to mass, momentum, and
temperature moments are not shown because they match exactly with the analytically
computed solution’s moments. Generally, the moments of the predicted solutions followed
the true moments and headed towards the steady state. They did not however perfectly
arrive and remain at the steady state. In some cases the moments of the predicted solution
cross over each other, and in other cases they simply fail to meet. The higher order moments
exhibited similar behaviors, even more so than the lower order moments, but for many
applications moments higher than 3rd order will not be as important.

Solutions remained stable up until and beyond time values for which training data
existed. Eventually though there was observed degradation and destabilization of the
quality of predictions. Figure 9 demonstrates the long term behavior of the predicted
solutions. Training data existed up until the dimensionless time t = 1.0, and the simulation
was run until t = 2.0. The solution has clearly lost its shape by the end of that run; no
longer having a nice Gaussian shape. In addition, the moments do not nicely converge
to uniform values. The typical behavior was that the moments would tend towards the
appropriate steady state early on, but would eventually begin to diverge. We propose that
this behavior could be corrected by replacing the machine-learned model with an analytical
method once the solution is close to steady state. This would ensure the appropriate long
term behavior, and would still run much faster than using a direct discretization method
for the full duration. Additionally, we are confident a more advanced architecture can
be developed which achieves better accuracy and will likely still be faster than the true
method. Even a model architecture that requires ten times the computational work of this
simple model would still be tremendously time saving.
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(a) Directional Temperature, Case 116 (b) 3rd Moments, Case 116( ) p

(c) Directional Temperature, Case 082

( )

(d) 3rd Moments, Case 082

Figure 8. Comparison of moments between numerically computed and machine learning computed
solutions. The red and blue curves correspond to different coordinate directions. The case numbers
merely serve to differentiate the runs. Time axis is normalized to the maximum time for which
training data existed.

(a) Directional Temperature (b) 3rd Moments( ) p

(c) t = 1.962
Figure 9. Long term behavior of predicted solution, Case 116. Key moments and domain slice are
shown. Divergence of the directional temperature is seen around t = 1.75, and the plot of the solution
is visibly degraded. Time axis is normalized to the maximum time for which training data existed.
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6. Conclusions

In an effort to advance the state-of-the-art in simulating complex flows, we have
conducted investigations into the ability of machine learning to calculate the Boltzmann
collision integral more quickly than traditional methods. Our experiments show that the
machine-learned models are capable of finding low dimensional features that can encode
the solutions with good accuracy. Consequently, predictions of the collision integral are able
to be computed in much less time than is required for analytical methods. In the spatially
homogeneous case, this approach shows greatly accelerated integration time. The resulting
approximate solutions and key moments are generally similar to those of the true solutions.
A key weakness exhibited by the method is the long term degradation of the solutions.
An ideal numerical method will convergence to the correct steady state solution, however
we have observed that the method presented here does not. Future work will involve
improving accuracy even further by implementing more sophisticated machine learning
methods. This will include investigation of different model architectures, and incorporating
the enforcement of conservation laws into the model and the training process.
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Abstract: This study investigates the nanofluid flow towards a shrinking cylinder consisting of Al2O3

nanoparticles. Here, the flow is subjected to prescribed surface heat flux. The similarity variables are
employed to gain the similarity equations. These equations are solved via the bvp4c solver. From
the findings, a unique solution is found for the shrinking strength λ ≥ −1. Meanwhile, the dual
solutions are observed when λc < λ < −1. Furthermore, the friction factor Re1/2

x Cf and the heat
transfer rate Re−1/2

x Nux increase with the rise of Al2O3 nanoparticles ϕ and the curvature parameter
γ. Quantitatively, the rates of heat transfer Re−1/2

x Nux increase up to 3.87% when ϕ increases from 0
to 0.04, and 6.69% when γ increases from 0.05 to 0.2. Besides, the profiles of the temperature θ(η)

and the velocity f ′(η) on the first solution incline for larger γ, but their second solutions decline.
Moreover, it is noticed that the streamlines are separated into two regions. Finally, it is found that the
first solution is stable over time.

Keywords: heat transfer; prescribed heat flux; similarity solutions; dual solutions; stability analysis

1. Introduction

The fluid flow toward a stagnation point on a fixed surface was first introduced by
Hiemenz [1] in 1911. The axisymmetric flow was then studied by Homann [2]. Ariel [3]
followed by examining the flow with the hydromagnetic effects. The flow on a shrink-
ing sheet was reported by Wang [4] and Kamal et al. [5]. Different from the aforemen-
tioned studies, which considered the flow over a flat plate, Wang [6] discussed the fluid
flow over a circular cylinder. This was then followed by several researchers, including
Ishak et al. [7] and Awaludin et al. [8], who studied the flow over a shrinking cylinder
subject to a prescribed surface heat flux. They found that the increment of the curvature
parameter delayed the boundary layer separation from the surface of the cylinder. Muth-
tamilselvan and Prakash [9] studied the unsteady flow and heat transfer of a nanofluid
over a moving surface with prescribed heat and mass fluxes, and stated that the heat
flux condition is important in a microelectromechanical (MEM) condensation application.
Several researchers [10–16] have also considered this type of surface heating condition in
their studies.

Nanoparticles and structures have been used by humans in fourth century AD, by the
Romans, which demonstrated one of the most interesting examples of nanotechnology in
the ancient world [17]. The term nanofluid, a mixture of the base fluid and nanoparticles,
was initiated by Choi and Eastman [18]. It seems that Pak and Cho [19] were the first
who introduced the thermophysical correlations for the nanofluid. Several studies have
considered these nanofluid correlations [20–25]. The nanofluid correlations introduced
by Pak and Cho [19] were improved by Ho et al. [26]. They reported that the numerical

Mathematics 2021, 9, 1612. https://doi.org/10.3390/math9141612 https://www.mdpi.com/journal/mathematics

61



Mathematics 2021, 9, 1612

predictions from the existing nanofluid correlations are contradicted with the experimental
results. The dispersion of nanoparticles in the base fluid was observed to result in a
marked reduction, instead of an enhancement. Therefore, they have introduced the new
correlations of the Al2O3-water nanofluid through a least-square curve fitting from the
experimental results. They concluded that these new correlations give more accurate
predictions with the experimental data. It should be noted that the studies of the nanofluid
employing these nanofluid correlations are very limited. Among them, Sheremet et al. [27]
employed these correlations to study the natural convective heat transfer and fluid flow
of Al2O3-water nanofluid in an inclined wavy-walled cavity under the effect of non-
uniform heating. They found that the heat transfer rate and fluid flow rate are non-
monotonic functions of the cavity inclination angle and undulation number. Similarly, these
correlations have been considered by Waini et al. [28] to examine the impact of Dufour and
Soret diffusions on Al2O3-water nanofluid flow over a moving thin needle. They reported
that the skin friction coefficient and the heat transfer coefficients increase, but the mass
transfer coefficient decreases in the presence of Al2O3 nanoparticles. This concept has been
upgraded by considering two or more types of nanoparticles that dispersed simultaneously
into the base fluid and is called ‘hybrid nanofluid’. Some works on such fluids can be
found in references [29–31]. Additionally, Takabi and Salehi [32] and Devi and Devi [33]
introduced the hybrid nanofluid thermophysical models, which were widely used by many
researchers [34–43] in the boundary layer problems. Furthermore, Waini et al. [44–47]
scrutinized the temporal stability of the hybrid nanofluid flow.

In this study, the stagnation point flow towards a shrinking cylinder with the Al2O3
nanoparticle subjected to prescribed surface heat flux is investigated. Different from
the previous studies, the present study examines the flow and thermal behavior of the
Al2O3/water nanofluid by employing the correlations introduced by Ho et al. [26]. Most
importantly, this is the first attempt to study the flow towards a stagnation region of a
shrinking cylinder by considering these correlations. Moreover, the dual solutions and
their stability are also reported in this study. The finding from this study can contribute to
foresee the flow and thermal behaviors in industrial applications.

2. Mathematical Formulation

Consider the nanofluid flow on a shrinking cylinder with Al2O3 nanoparticles as
shown in Figure 1.

Figure 1. The flow configuration.

Here, ue(x) = c1x/L denotes the external flow velocity with c1 > 0. The surface
velocity is represented by uw(x) = c2x/L where c2 is a constant. Besides, qw(x) = T0x/L
is the prescribed heat flux where T0 and T∞ correspond to the reference and the ambient
temperatures, respectively.

Accordingly, the governing equations are [7,8]:

∂(ru)
∂x

+
∂(rv)

∂r
= 0 (1)
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u
∂u
∂x

+ v
∂u
∂r

= ue
due

dx
+

μn f

ρn f

(
∂2u
∂r2 +

1
r

∂u
∂r

)
(2)

u
∂T
∂x

+ v
∂T
∂r

=
kn f

(ρCp)n f

(
∂2T
∂r2 +

1
r

∂T
∂r

)
(3)

Subject to:
u = uw(x), v = 0, kn f

∂T
∂r = −qw(x) at r = a

u → ue(x), T → T∞ as r → ∞
(4)

where (u, v) are the corresponding velocity components and T is the temperature. Further,
Table 1 provides the properties of water and Al2O3 [22]. Here, Prandtl number, Pr is taken
as Pr = 6.2. Meanwhile, the nanofluid thermophysical models are given by [19,26]:

μn f = μ f
(
1 + 4.93ϕ + 222.4ϕ2), kn f = k f

(
1 + 2.944ϕ + 19.672ϕ2),

ρn f = (1 − ϕ)ρ f + ϕρs, (ρCp)n f = (1 − ϕ)(ρCp) f + ϕ(ρCp)s
(5)

where μ, k, ρ, and (ρCp) denote the dynamic viscosity, the thermal conductivity, the density,
and the heat capacity, respectively with ϕ is the Al2O3 nanoparticle volume fractions
and the subscript s represents its solid component. Meanwhile, the subscripts f and n f
correspond to fluid and nanofluid, respectively. Note that these thermophysical models
were also considered by Sheremet et al. [27] and Waini et al. [28].

Table 1. Thermophysical properties.

Properties Nanoparticle Base Fluid

Al2O3 water

Cp (J/kgK) 765 4179
ρ
(
kg/m3) 3970 997.1

k (W/mK) 40 0.613

Consider the following dimensionless variables [7,8]:

ψ =

( c1ν f

L

)1/2
ax f (η), T = T∞ +

qw

k f

(
ν f L
c1

)1/2

θ(η), η =

(
c1

ν f L

)1/2
r2 − a2

2a
(6)

With the stream function ψ, the characteristic length L, and the fluid kinematic viscos-
ity ν f . Here, u = (∂ψ/∂r)/r and v = −(∂ψ/∂x)/r. So that:

u =
c1x
L

f ′(η), v = − a
r

( c1ν f

L

)1/2
f (η) (7)

On using Equations (6) and (7), the continuity equation, i.e., Equation (1), is identically
satisfied. Now, Equations (2) and (3) become:

μn f /μ f

ρn f /ρ f
[2γ f ′′ + (1 + 2γη) f ′′′ ] + 1 − f ′2 + f f ′′ = 0 (8)

1
Pr

kn f /k f

(ρCp)n f /(ρCp) f

[
2γθ′ + (1 + 2γη)θ′′

]
+ f θ′ − f ′θ = 0 (9)

Subject to:

f ′(0) = λ, f (0) = 0, θ′(0) = − k f
kn f

,

f ′(η) → 1, θ(η) → 0 as η → ∞
(10)
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The physical parameters appearing in Equations (8)–(10) are the stretching/shrinking
parameter λ, the curvature parameter γ, and the Prandtl number Pr, given as:

λ =
c2

c1
, γ =

(
ν f L
c1a2

)1/2

, Pr =
(μCp) f

k f
(11)

Note that, λ < 0 and λ > 0 signify the shrinking and stretching sheets, while λ = 0 is
for the static sheet. Here, by taking ϕ = λ = γ = 0, Equation (8) reduces to the Hiemenz
flow, see White [48]. The local Nusselt number Nux and the skin friction coefficients Cf are:

Nux = −
xkn f

k f (Tw − T∞)

(
∂T
∂r

)
r=a

, Cf =
μn f

ρ f u2
e

(
∂u
∂r

)
r=a

(12)

On using Equation (6), one obtains

Re−1/2
x Nux =

1
θ(0)

, Re1/2
x Cf =

μn f

μ f
f ′′ (0) (13)

where Rex = uex/ν f is the local Reynolds number.

3. Stability Analysis

This temporal stability analysis was first introduced by Merkin [49] and then followed
by Weidman et al. [50]. Firstly, consider the new variables as follows [8]:

ψ =

( c1ν f

L

)1/2
ax f (η, τ), T = T∞ +

qw

k f

(
ν f L
c1

)1/2

θ(η, τ), η =

(
c1

ν f L

)1/2
r2 − a2

2a
, τ =

c1

L
t (14)

where τ is the dimensionless time variable. Then, the unsteady form of Equations (2)
and (3) are employed. On using Equation (14), one obtains:

μn f /μ f

ρn f /ρ f

[
2γ

∂2 f
∂η2 + (1 + 2γη)

∂3 f
∂η3

]
+ 1 −

(
∂ f
∂η

)2
+ f

∂2 f
∂η2 − ∂2 f

∂η∂τ
= 0 (15)

1
Pr

kn f /k f

(ρCp)n f /(ρCp) f

[
2γ

∂θ

∂η
+ (1 + 2γη)

∂2θ

∂η2

]
+ f

∂θ

∂η
− θ

∂ f
∂η

− ∂θ

∂τ
= 0 (16)

Subject to:
∂ f
∂η (0, τ) = λ, f (0, τ) = 0, ∂θ

∂η (0, τ) = − k f
kn f

,
∂ f
∂η (∞, τ) = 1, θ(∞, τ) = 0

(17)

To investigate the temporal stability, the following perturbation functions are em-
ployed [50]:

f (η, τ) = f0(η) + e−ατ F(η), θ(η, τ) = θ0(η) + e−ατG(η) (18)

where F(η) and G(η) are comparatively small compared to f0(η) and θ0(η), and α denotes
the eigenvalue. On using Equation (18), Equations (15) and (16) respectively become:

μn f /μ f

ρn f /ρ f
[2γF′′ + (1 + 2γη)F′′′ ]− 2 f ′0F′ + f ′′0 F + f0F′′ + αF′ = 0 (19)

1
Pr

kn f /k f

(ρCp)n f /(ρCp) f

[
2γG′ + (1 + 2γη)G′′

]
+ f0G′ + θ′0F − f ′0G − θ0F′ + αG = 0 (20)
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The boundary conditions then become:

F′(0) = 0, F(0) = 0, G′(0) = 0;
F′(∞) = 0, G(∞) = 0

(21)

Without loss of generality, following Harris et al. [51], we fix the value of F′′ (0) as
F′′ (0) = 1 to obtain the smallest eigenvalues α in Equations (19) and (20).

4. Results and Discussion

The solutions of Equations (8)–(10) are attained by utilizing the package bvp4c in
MATLAB software [52]. The effects of various physical parameters are then examined and
presented in tabular and graphical forms.

By taking ϕ = λ = γ = 0, we obtain f ′′ (0) = 1.232588, which is in agreement with
what is reported by Wang [4] and Awaludin et al. [8]. The values of f ′′ (0) and 1/θ(0)
for several values of λ when ϕ = γ = 0 are also provided in Table 2 for future reference.
Further, the values of Re−1/2

x Nux and Re1/2
x Cf when Pr = 6.2 with various values of ϕ,

γ, and λ are given in Table 3. The values of Re−1/2
x Nux and Re1/2

x Cf are intensified with
the rise of γ and ϕ. Quantitatively, a 3.87% increment of Re−1/2

x Nux is observed when ϕ

increases from 0 to 0.04. Moreover, it is noticeable that the values of Re−1/2
x Nux increase

up to 6.69% when γ increases from 0.05 to 0.2. Meanwhile, the values of Re1/2
x Cf reduce,

but the values of Re−1/2
x Nux increase when λ increases from −0.5 to 0.5. It is seen that the

nanoparticle volume fractions, the curvature, and the stretching/shrinking parameters can
be utilized to control the heat transfer rate.

Table 2. Values of f ′′ (0) and 1/θ(0) for regular fluid (ϕ = 0) under different λ when γ = 0 (flat plate).

λ
Wang [4] Awaludin et al. [8] Present Results

f”(0) f”(0) f”(0) 1/θ(0)

−1 1.32882 1.328817 −2.359393
−0.5 1.49567 1.495670 0.314542

0 1.232588 1.232588 1.232588 1.573433
0.1 1.14656 1.146561 1.146561 1.767533
0.2 1.051130 1.051130 1.051130 1.949500
0.5 0.7133 0.713295 0.713295 2.438276
1 0 0 0 3.120727
2 −1.88731 −1.887307 −1.887307 4.203068
5 −10.26475 −10.264749 −10.264749 6.491300

Table 3. Values of Re−1/2
x Nux and Re1/2

x Cf for ϕ, γ, and λ when Pr = 6.2.

ϕ γ λ Re−1/2
x Nux Re1/2

x Cf

0 0 0 1.573433 1.232588
0.02 1.610281 1.382684
0.04 1.634333 1.625081
0.04 0.05 1.673416 1.667025

0.1 1.711566 1.708036
0.2 1.785416 1.787623
0.1 −0.5 0.354240 2.110589

−0.2 1.242946 1.914480
0.5 2.645346 0.979397

Next, the results in graphical forms are provided to have a better insight into the effect
of the physical parameters. The variations of the local Nusselt number Re−1/2

x Nux and the
skin friction coefficient Re1/2

x Cf against λ when ϕ = 0.02 and Pr = 6.2 for several values of
γ are shown in Figures 2 and 3. Larger γ gives higher values of Re1/2

x Cf and Re−1/2
x Nux
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on the first solution compared to the flat plate case (γ = 0). Besides, a unique solution is
found when λ ≥ −1. Meanwhile, two solutions are observed for the limited range of λ
when the sheet is shrunk (λc < λ < −1). The similarity solutions also terminate in this
region at λ = λc (critical value). Here, the critical values are respectively λc = −1.24657,
−1.32099, and −1.38801 for γ = 0, 0.1 and 0.2. The velocity f ′(η) and temperature θ(η)
profiles for ϕ = 0, 0.02, and 0.04 when Pr = 6.2, λ = −1.24, and γ = 0.1 are given in
Figures 4 and 5. The reduction of f ′(η) and θ(η) are observed for both branches with the
rising of ϕ. Physically, the addition of the nanoparticles makes the fluid more viscous and
thus, slows down the flow. Consequently, the fluid velocity decreases. Also, the added
nanoparticles dissipate energy in the form of heat and consequently exert more energy,
which enhances the temperature. However, in this study, we discover that the temperature
decreases as ϕ increases. This behavior is due to the prescribed heat flux on the shrinking
surface of the cylinder.

Further, Figures 6 and 7 show the effect of γ on f ′(η) and θ(η) when ϕ = 0.02,
λ = −1.24 and Pr = 6.2. The profiles of f ′(η) and θ(η) on the first solution incline for
larger γ. However, the profiles on the second solution decline. Besides, the negative values
of θ(η) are noticed in Figures 5 and 7. The definition of the curvature parameter γ is
inversely proportional to the radius of the cylinder, see Equation (11). Thus, the radius
of the cylinder decreases as γ increases. Hence, the fluid velocity amplifies due to less
resistance occurring between the surface of the cylinder and the fluid. Consequently, the
fluid temperature increases for cumulative γ. Since the Kelvin temperature of substances
is defined as the average kinetic energy of the particles of substances, as velocity enhances
with γ, the kinetic energy increases, and consequently intensifies the temperature [16].

 
Figure 2. Local Nusselt number Re−1/2

x Nux against λ for various values of γ.
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Figure 3. Skin friction coefficient Re1/2

x Cf against λ for various values of γ.

Figure 4. Velocity profiles f ′(η) for various values of ϕ.

Figures 8 and 9 display the streamlines when λ = −1.24 (shrinking sheet), ϕ = 0.02,
and γ = 0.1 for the first and the second solutions, respectively. Here, the streamlines are
plotted for several values of ψ = ψ/a(c1ν f /L)1/2. The streamlines are separated into two
regions by the horizontal line for both solutions. It is notable that the horizontal line that

67



Mathematics 2021, 9, 1612

separates the flow is nearer to the shrinking sheet for the first solution. Besides, the reverse
rotating flow occurs in the lower region. Meanwhile, the flow pattern on the upper region
behaves as the normal stagnation point.

Figure 5. Temperature profiles θ(η) for various values of ϕ.

Figure 6. Velocity profiles f ′(η) for various values of γ.
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Figure 7. Temperature profiles θ(η) for various values of γ.

Figure 8. Streamlines for the first solution.

The variation of α against λ when ϕ = 0.02 and γ = 0.1 is described in Figure 10.
For positive values of α, it is noted that e−ατ → 0 as time evolves (τ → ∞) . In contrast,
negative values of α, e−ατ → ∞ as τ → ∞ show a growth of disturbance as time evolves.
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These behaviors show that the first solution is stable, while the second solution is unstable
in the long run.

Figure 9. Streamlines for the second solution.

Figure 10. Smallest eigenvalues α against λ.
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5. Conclusions

This study examined the stagnation point flow on a shrinking cylinder filled with
Al2O3 nanoparticles. The surface of the cylinder is subjected to prescribed surface heat flux.
The correlations of Al2O3/water nanofluid introduced by Ho et al. [25] were employed.
Findings revealed two solutions to be observed for the limited range of λ when the sheet
is shrunk (λc < λ < −1). The similarity solutions terminated in this region at λ = λc.
Meanwhile, a unique solution was found when λ ≥ −1. The skin friction coefficient
Re1/2

x Cf and the local Nusselt number Re−1/2
x Nux were intensified with the rising of the

nanoparticle volume fraction ϕ and the curvature parameter γ. Quantitatively, the values of
Re−1/2

x Nux increased up to 3.87% when ϕ is increased from 0 to 0.04, and 6.69% when γ is
increased from 0.05 to 0.2. Furthermore, Al2O3/water nanofluid produced higher values of
Re1/2

x Cf and Re−1/2
x Nux compared to water. Moreover, the rising of ϕ tended to reduce the

velocity f ′(η) and the temperature θ(η) for both branches. Besides, the profiles on the first
solution incline when larger values of γ are applied. Finally, the temporal stability analysis
showed that the first solution is stable while the second solution is unstable over time.
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Abstract: In recent years, real-valued neural networks have demonstrated promising, and often
striking, results across a broad range of domains. This has driven a surge of applications utilizing
high-dimensional datasets. While many techniques exist to alleviate issues of high-dimensionality,
they all induce a cost in terms of network size or computational runtime. This work examines
the use of quaternions, a form of hypercomplex numbers, in neural networks. The constructed
networks demonstrate the ability of quaternions to encode high-dimensional data in an efficient
neural network structure, showing that hypercomplex neural networks reduce the number of total
trainable parameters compared to their real-valued equivalents. Finally, this work introduces a novel
training algorithm using a meta-heuristic approach that bypasses the need for analytic quaternion
loss or activation functions. This algorithm allows for a broader range of activation functions over
current quaternion networks and presents a proof-of-concept for future work.

Keywords: multilayer perceptrons; quaternion neural networks; metaheuristic optimization;
genetic algorithms

1. Introduction

Over the last several decades, the explosive growth in artificial intelligence and ma-
chine learning (AI/ML) research has driven a need for more efficient data representations
and machine learning training methods. As machine learning applications have expanded
into new and exciting domains, the scale of data processed through enterprise systems
has grown to an almost incomprehensible level. While computational resources have
grown commensurately with this increase in data, inefficiencies in current neural network
architectures continue to hamper progress on difficult optimization problems.

This work examines the use of hypercomplex numbers in neural networks, with
a particular emphasis on the use of quaternions in neural network architectures. This
work demonstrates that quaternion data representations can reduce the total number of
trainable neural network parameters by a factor of four, resulting in improvements in
both computer memory allocations and computational runtime. Additionally, this work
presents a novel, gradient-free, quaternion genetic algorithm that enables the use of several
loss and activation functions previously unavailable due to differentiability requirements.

The remainder of this article is organized as follows: Section 2 provides a review
of neural networks, the quaternion number system, quaternion neural networks, and
metaheuristic optimization techniques. Section 3 describes the methodology used to de-
velop a quaternion neural network and a novel quaternion genetic training algorithm.
Section 4 presents the network results, comparing the quaternion genetic algorithm per-
formance to two analogous real-valued networks. Additionally, a multidimensional in-
put/multidimensional output network is presented for predicting the Lorenz attractor
chaotic dynamical system. Finally, Section 5 provides conclusions, recommendations, and
proposals for future work.
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2. Background and Related Work

2.1. Neural Networks and Multi-Layer Perceptrons

Statistical learning processes have received increasing attention in recent years with the
proliferation of large datasets, ever-increasing computing power, and simplified data explo-
ration tools. In 1957, Frank Rosenblatt proposed a neural structure called the perceptron [1].
A perceptron is composed of several threshold logic units (TLUs), each of which takes
a weighted sum of input values and uses the resulting sum as the input to a non-linear
activation function. While each TLU computes a linear combination of the inputs based on
the network weights, the use of a non-linear activation function allows the perceptron to
estimate a number of non-linear functions by adjusting the weights of each input.

Stacking multiple layers of perceptrons together so that the output of one perceptron
forms the input to a subsequent perceptron allows for the estimation of a vast set of linear
and non-linear problems. In fact, two contemporaries, Cybenko [2] and Hornik et al. [3]
both independently showed that a network with a single hidden layer and sigmoidal
activation functions is able to approximate any nonlinear function to an arbitrary degree of
accuracy. This network structure is called the multilayer perceptron (MLP) and it forms the
most basic deep neural network (DNN). This result (called the Universal Approximation
Theorem) has provided the theoretical justification that has driven neural network research
to the present day. A representation of an MLP is shown in Figure 1, and [4] provides an
overview of MLPs and other common neural network structures.

Figure 1. Representation of a basic MLP [5].

2.1.1. The Backpropagation Algorithm

Although artificial neural networks have existed since the mid-20th century, re-
searchers found them to be computationally expensive to train and impractical for most
applications. As a result, neural network research was largely stagnant until 1986, when
Rumelhart et al. [6] introduced the backpropagation algorithm for training a neural network.
The algorithm developed by Rumelhart et al. extended several key ideas that Werbos [7]
presented in his unpublished doctoral dissertation.

The backpropagation algorithm has proven to be a straightforward, easy-to-understand,
and easy-to-implement algorithm that has enabled efficient implementations of neural
networks across a wide-range of problem sets. Examples of custom architectures include
convolutional neural networks (CNNs) for processing image data, recurrent neural net-
works (RNNs) for processing sequence data, and generative adversarial networks (GANs)
which have been used in recent years to create deep fakes and very convincing counterfeit
data [8].

2.1.2. Shortfalls

Despite artificial neural networks achieving state-of-the-art results in a breathtaking
array of problem domains, ANNs are not without their shortfalls. For example, ANNs
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often require a vast amount of training data. Standard machine learning datasets such
as the ImageNet dataset for computer vision often contain several million datapoints [9].
Consequently, training an ANN requires a large amount of computer resources, in terms
of both RAM and processing time. Additionally, the backpropagation algorithm requires
a significant amount of low-level computational power in order to perform the matrix
multiplications for each forward and backward pass. While GPUs have proven to be
particularly well-suited for this task [10], many of the current large-scale ANN research
applications require prohibitive amounts of computer memory and GPU hours.

Finally, MLPs can struggle to maintain any sort of spatial relationships that are present
within the training data. A simple example of this is seen in color image processing.
In general, each of the three color channels of an RGB image are processed separately in an
MLP since the 3-dimensional matrix representation of the image must first be flattened into
a vector for the network forward pass step. This results in the loss of the spatial relationship
between the red, green, and blue pixel intensities at each pixel.

Many spatial dependency issues can be alleviated using more advanced ANN archi-
tectures such as convolutional neural networks, which preserve spatial relationships within
the data using successive convolutional layers to transform the input data [11]. However,
every CNN must contain at least one fully-connected layer prior to the output layer which
flattens the output of the final convolution into a 1-dimensional real-valued vector. Thus,
even with a CNN, there is some spatial information that is lost when the output of the final
convolution is flattened.

On the other hand, Yin et al. [12] highlight the fact that this spatial hierarchy between
pixel intensity values can be maintained when using higher-dimensional number systems
such as quaternions as opposed to real numbers, and their result is a significant moti-
vation for this paper. Matsui et al. [13] demonstrated similar experimental results on a
3-dimensional affine transformation problem, showing that quaternion-valued deep neural
networks were able to recover the spatial relationships between 3-dimensional coordinates.
Section 2.2 provides a brief summary of hypercomplex number systems, along with a
review of their use and success in advanced neural network applications.

2.2. The Quaternions

The quaternion numbers (denoted by H) are a four-dimensional extension of the
complex numbers. Complex numbers have the form x + iy, consisting of a real part x
and an imaginary part y, and can be thought of as an isomorphism of R2. That is, the
complex numbers contain two copies of the real number line, allowing a single complex
number to encode twice as much information as a single real number. Complex numbers
are particularly useful for describing motion in 2-dimensional space, since there is a very
succinct analogue between complex multiplication and rotations in the plane [14].

Quaternions are referred to as hypercomplex numbers. Each quaternion q consists of
a real part and three imaginary parts, so that the quaternions form an isomorphism with
R4 with basis elements 1, i, j, and k:

q = r + xi + yj + zk. (1)

Quaternions form a generalization of the complex numbers, where the three imaginary
components i, j, and k follow the same construct as i in C:

i2 = j2 = k2 = −1. (2)

However, the three imaginary basis components must also satisfy the following rules:

jk = −kj = i (3)

ki = −ik = j (4)

ij = −ji = k. (5)
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These rules clearly demonstrate that quaternion multiplication is non-commutative.
However, since the multiplication of any two basis elements is plus or minus another basis
element, the quaternions under these rules form a non-abelian group, denoted Q8. The
group Q8, along with the operations of addition and multiplication form a division algebra,
which is an algebraic structure similar to a field where multiplication is non-commutative.

The 4-dimensional structure of each quaternion number indicates that quaternions are
capable of encoding four copies of the real number line into a single quaternion number,
analogous to the two copies of R encoded in the complex numbers. Quaternions were
discovered by the Irish mathematician Sir William Rowan Hamilton in 1843 [15], hence
why the set of quaternions is referred to as H and the quaternion notion of multiplica-
tion, described below, is referred to as the Hamilton Product. For an in-depth review of
quaternions and their applications, see [16].

2.2.1. Quaternion Algebra

The quaternions form a division algebra, meaning that the set of quaternions along
with the operations of addition and multiplication follow 8 of the 9 field axioms (all but
commutativity). Quaternion addition is defined using the element-wise addition operation.
For two quaternions q1, q2 ∈ H, where:

q1 = r1 + x1i + y1j + z1k

and
q2 = r2 + x2i + y2j + z2k.

The sum q1 + q2 is defined as,

q1 + q2 := (r1 + r2) + (x1 + x2)i + (y1 + y2)j + (z1 + z2)k. (6)

Quaternion multiplication, referred to as the Hamilton Product, can easily be derived
using the basis multiplication rules in Equations (3)–(5) and the distributive property. In
reduced form, the Hamilton Product of two quaternions q1 and q2 is defined as:

q1 ∗ q2 :=(r1r2 − x1x2 − y1y2 − z1z2)

+(r1x2 + x1r2 + y1z2 − z1y2)i

+(r1y2 − x1z2 + y1r2 + z1x2)j

+(r1z2 + x1y2 − y1x2 + z1r2)k.

(7)

2.2.2. Quaternion Conjugates, Norms, and Distance

The notion of a quaternion conjugate is analogous to that of complex conjugates in C.
The conjugate of a quaternion q = r + xi + yj + zk is given by q∗ = r − xi − yj − zk. The
norm of a quaternion is equivalent to the Euclidean norm in R and is given by:

||q|| :=
√

qq∗ =
√

r2 + x2 + y2 + z2. (8)

With this quaternion norm, one can also define a notion of distance d(q, p) between
two quaternions q and p as:

d(q, p) := ||q − p||. (9)

2.2.3. Quaternionic Matrices

Since the set of quaternions H form a division algebra under addition and the Hamilton
product, they also form a non-commutative ring under the same operations. Hence,
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quaternionic matrix operations can be defined as for matrices over an arbitrary ring. Given
any two quaternionic matrices A, B ∈ HM×N , the sum A + B is defined element-wise:

(A + B)ij := Aij + Bij. (10)

Similarly, for any quaternionic matrix A ∈ HM×N and B ∈ HN×P, the product
AB ∈ HM×P is defined as:

(AB)(m, p) :=
N

∑
n=1

A(m, n)B(n, p), ∀m = 1, . . . , M, p = 1, . . . , P. (11)

As with matrix multiplication over an arbitrary ring, quaternionic matrix multipli-
cation is non-commutative. Additionally, great care must be taken to ensure the proper
execution of the Hamilton product when multiplying each row of A with each column of
B, since the Hamilton product itself is non-commutative.

2.3. Quaternion-Valued Neural Networks (QNNs)

Many practical applications of machine learning techniques involve data that are mul-
tidimensional. With the mathematical machinery described in Section 2.2, the quaternions
provide a succinct and efficient way of representing multidimensional data. Additionally,
when applied to neural network architectures, quaternions have been shown to preserve
spatial hierarchies and interrelated data components that are often separated and distorted
in real-valued MLP architectures. This section provides a brief review of QNN research,
starting with a brief note on some of the issues in QNN construction stemming from
quaternionic analysis and quaternion calculus. Then, the development of QNNs is traced
chronologically from early works to the state of the art.

2.3.1. A Note on Quaternion Calculus and Quaternionic Analysis

There are very few analytic functions of a quaternion variable. To account for this,
quaternion networks generally utilize “split” activation functions, where a real-valued acti-
vation function is applied to each quaternion coefficient. For example, the split quaternion
sigmoid function [17] for a quaternion q = r + xi + yj + zk is given by:

σ(q) = σ(r) + σ(x)i + σ(y)j + σ(z)k, (12)

where σ(·) is the real-valued sigmoid function. Similar definitions hold for any real-valued
activation function, and many QNNs utilize these split activation functions even when
quaternionic functions, such as the quaternion-valued hyperbolic tangent function, are
available. Research has indicated that true quaternionic activation functions can improve
performance over split activation functions [18], but they require special considerations
since their analyticity can only be defined over a localized domain, and the composition of
two locally analytic quaternion functions is generally not locally analytic [19], providing lim-
ited utility in deep neural networks. Additionally, many complex and quaternion-valued
elementary transcendental functions, including the hyperbolic tangent, are unbounded
and contain singularities [20] that make neural network training difficult.

These issues, along with the non-commutativity of quaternions, also affect the gradient
descent algorithm employed in many quaternion networks. Generally speaking, the non-
commutativity of quaternions precludes the development of a general product rule and
a quaternion chain rule to compute quaternion derivatives and partial derivatives. Thus,
quaternion networks must employ split loss functions and the partial derivatives used in
the backpropagation algorithm are calculated using a similar “split” definition. The split
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partial derivative used in training a Quaternion Multilayer Perceptron (QMLP) network,
first defined by [17], is given by:

∂E
∂Wl =

∂E
∂Wl

r
+

∂E
∂Wl

x
i +

∂E
∂Wl

y
j +

∂E
∂Wl

z
k, (13)

where E is the loss function and Wl is the weight matrix at layer l. Some researchers refer
to this as a “channelwise" [18] or vectorized implementation.

Researchers have made several advances in quaternion calculus, dubbed the general-
ized Hamilton-Real (GHR) calculus [21], with novel product and chain rules. However, as
of this writing, the GHR calculus and the associated learning algorithms implementing the
GHR product and chain rules have yet to be applied to any real-world machine learning
dataset with a deep quaternion network.

This work proposes a genetic algorithm to train a quaternion-valued neural network
with fully quaternion activation functions at each layer of the network. The genetic
algorithm circumvents the need for the convoluted calculus rules that one must employ in
traditional QNNs due to the non-commutativity of quaternions and the locally analytic
nature of the activation functions, allowing for a broader range of available activation
functions. While not yet proven in the quaternion domain, this approach has a strong
theoretical basis that is supported in both the complex- and real-valued domains ([2,3,20]).

2.3.2. Quaternion Neural Networks

The QMLP was first introduced by Arena et al. [17] in 1994, as noted in Section 2.3.1.
The initial QMLP used split sigmoid activation functions and a version of the mean square
error (MSE) loss function E, formed by substituting quaternions into the real-valued MSE
equation. For a network with l = 1, . . . , M layers and 1 < n < Nl nodes per layer, the
output of each node n in each layer l is computed as:

yl
n = σ(Sl

n), (14)

where σ is any split sigmoidal activation function and Sl
n is the linear combination of

network weights, biases, and the output of the l − 1 layer computed as in a normal MLP:

Sl
n =

Nl−1

∑
m=0

wl
nm ∗ yl−1

m + bl
n. (15)

For each Sl
n, the weights, biases, and y-values are all quaternions. Thus, ∗ represents

the Hamilton Product. The loss function E is given by:

E =
1
N

N

∑
n=1

(tn − y
(M)
n )2, (16)

where t represents the target (truth) data and y(M) represents the neural network output at
the Mth layer.

The authors also introduced a simple learning algorithm using the split or “channel-
wise” partial derivatives discussed in Section 2.3.1, where the gradient Δl

n at the output
layer is simply the output error of the network (tn − y

(M)
n ) and the error at each prior layer

l is calculated using the formula:

Δl
n =

Nl+1

∑
n=1

w∗l+1
hn ∗ (Δl+1

n · σ′(Sl+1
n )), (17)

where w∗l+1
hn represents the quaternion conjugate of the weight connecting node h in the lth

layer to node n in the l + 1st layer. Additionally, (·) represents the componentwise product,
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not the Hamilton Product between the gradient at the l + 1st layer and the channelwise
partial derivative of σ(·). Using this gradient rule, the biases at each layer are updated
according to the normal backpropagation process:

bl
n = bl

n + εΔl
n, (18)

where ε is the learning rate. Note, however, that the weights are updated using the rule:

wl
nm = wl

nm + εΔl
n ∗ S∗l−1

m , (19)

where S∗l−1
m represents the conjugate of the input to the lth layer Sl−1

m .
Although the quaternion backpropagation algorithm bears similarities to the real-

valued backpropagation algorithm, it is unique in several ways. The first is the use of
split derivatives in the weight and bias update step. Although the use of split derivatives
may seem like a trick to bypass a true quaternion derivative definition, it builds on [22],
which proved that split activation functions and derivatives in the complex domain could
universally approximate complex-valued functions. While unproven in the quaternion
domain, Arena et al. demonstrated the effectiveness of this network on a small func-
tion approximation problem, where a quaternion network was used to approximate a
quaternion-valued function. Additionally, the weight update and the gradients leverage
the quaternion conjugate, which improves training performance.

Since the introduction of the QMLP and its associated training algorithm, researchers
have used QMLPs for a variety of tasks. In particular, QMLPs have been used as autoen-
coders [23], for color image processing [24], text processing [25], and polarized signal
processing [26]. Another natural application of quaternions is in robotic control [27], since
quaternions can compactly represent 3-dimensional rotation and motion through space.
Parcollet et al. [28] note that in every scenario, QMLPs always outperform real-valued
MLPs when processing 3- or 4-dimensional signals. These simple networks have driven
further research in more advanced network architectures such as convolutional neural net-
works and recurrent neural networks, both of which have shown promise in the quaternion
domain for advanced image processing [29], speech recognition [30], and other tasks.

2.4. Metaheuristic Optimization Techniques

Whereas the backpropagation algorithm discussed in Section 2.1.1 has dominated
nearly all neural network research since it was first introduced, recent work has shown that
heuristic search methods can also effectively train neural networks at a scale comparable
to gradient descent and backpropagation. Metaheuristic optimization encompasses a
broad range of optimization techniques that do not provide guarantees of algorithmic
closure or convergence, but have shown empirically to perform well in a variety of complex
optimization tasks. In contrast to gradient-based methods such as the backpropagation
algorithm, many metaheuristics do not require any gradient information.

Perhaps the most famous application of a metaheuristic approach in training neural
networks is the NeuroEvolution through Augmenting Topologies (NEAT) [31] process,
which uses a genetic algorithm to simultaneously train and grow neural networks through
an evolutionary process. NEAT has proven to be a very effective neural network training
tool, and subsequent variants of NEAT have successfully evolved neural networks with
millions of weight and bias parameters [32]. More recently, researchers with Uber’s OpenAI
Labs have shown that even basic Genetic Algorithms can compete with backpropagation in
training large networks with up to four million parameters [33]. Several other metaheuristic
implementations have shown promise in training neural networks and optimizing the hy-
perparameters of neural networks. See [34] for a full review of metaheuristic optimization
in neural network design.

Metaheuristic optimization methods have also been applied to a limited number
of search problems in the quaternion domain. A quaternion variant of the Firefly Algo-
rithm [35] demonstrated comparable performance to the real-valued Firefly Algorithm
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in optimizing nonlinear test functions. In addition, [36] introduced a quaternion-based
Harmony Search algorithm, demonstrating the algorithm’s performance on a similar range
of nonlinear test functions. The hypothesis of both approaches is that the search space in
the hypercomplex domain is smoother than the search space in R. While not proven, [37]
summarizes the approach. Additionally, Khuat et al. [38] introduced a quaternion ge-
netic algorithm with multi-parent crossover that was used to optimize a similar set of
nonlinear test functions. Finally, [39] used the Harmony Search algorithm introduced
in [36] to fine-tune the hyperparameters of a neural network. However, as of this writing,
quaternion metaheuristic search methods have yet to be applied to more complex tasks,
such as optimizing a large number of weights and biases in a quaternion neural network.

Given the difficulties in defining globally analytic quaternion loss functions, activation
functions, and quaternion partial derivatives, metaheuristic optimization provides an ideal
method of training quaternion neural networks. Section 3 outlines a novel quaternion
genetic algorithm for training the weights and biases of quaternion neural networks.
The algorithm does not require gradient information and makes no assumptions on the
analyticity of the activation functions of the network at each layer, allowing for a broader
range of quaternion activation functions than have been available in prior works.

3. Methodology

This section describes the test methodology employed in comparing the performance
of real-valued MLPs to quaternion-valued MLPs in several multidimensional function
approximation tasks. First, Section 3.1 describes the test functions selected for use in the
study. Section 3.2 outlines the structure of the neural networks, including an overview of
the neurons, layers, and total trainable parameters of each network. Section 3.3 details
the genetic algorithm used to train the real- and quaternion-valued networks. Finally,
Section 3.4 presents a description of the evaluation strategy and key comparison metrics.

3.1. Test Functions

Demonstrating the ability of a neural network to approximate an arbitrary nonlinear
function is a crucial step in the development of any ANN structure. Cybenko’s Universal
Approximation Theorem [2], discussed in Section 2.1, provides the theoretical underpinning
for all modern ANN research and has legitimized many of the ANN applications to date.
While still unproven for the quaternion domain, this research demonstrates that quaternion
neural networks with elementary transcendental activation functions and a genetic training
algorithm can effectively approximate arbitrary nonlinear functions, using the Ackley
function and the Lorenz attractor chaotic system as test cases.

3.1.1. The Ackley Function

The Ackley function is a non-convex test function that is often used to test global
optimization algorithms. It was first introduced by David Ackley [40] and has since been
included in a standard library of optimization test functions. In three dimensions, the
function is characterized by an elevated eggcrate-like surface, with a global minimum in the
center of the function that sinks down to zero. The Ackley function is a good test case for
quaternion networks since it can easily be defined in any number of dimensions. A vector
representation of the function is given in Equation (20), where a, b, and c are constants and
n represents the dimensionality of the vector x. Additionally, a three-dimensional plot of
the Ackley function is shown in Figure 2.

f (x) = −a exp

(
−b

√
1
n

n

∑
i=1

x2
i

)
− exp

(
1
n

n

∑
i=1

cos(c · xi)

)
+ a + exp(1) (20)

This research uses a 4-dimensional Ackley function, with the a, b, and c coefficient
values set to 20.0, −0.2, and 2π, respectively. The function’s x, y, and z values are generated
over the range [−5, 5], using a meshgrid with a spacing of 0.5 between each point. With
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three-dimensional input, and this results in 9261 data points. The coordinate values are
then translated from R into H by taking the coordinates of each point and casting them into
the three imaginary parts of a quaternion. For example, the point (−5,−5,−5) ⇒ q1 =
0r − 5i − 5j − 5k.

Figure 2. 3D Ackley function.

Finally, the data is split into a training set and a test set. The purpose of this split
is to ensure that the neural networks are producing functions with good generalization
capabilities. The data points are randomly shuffled and 80% of the data points are retained
as training data while 20% of the data points are split into the test set.

3.1.2. The Lorenz Attractor Chaotic System

The Lorenz attractor is a deterministic system of differential equations that was first
presented by Edward Lorenz [41]. The Lorenz attractor is a chaotic system, meaning
that while it is deterministic, the system never cycles and never reaches a steady state.
Additionally, the system is very sensitive to initial conditions. When represented as a set
of 3-dimensional coordinates, the Lorenz attractor produces a mesmerizing graph often
referred to as the Lorenz butterfly. A static representation of this is shown in Figure 3.

The Lorenz attractor is governed by the following system of differential equations:

dx
dt

= σ(y − x) (21)

dy
dt

= ρx − y − xz (22)

dz
dt

= xy − βz (23)

where σ, ρ, and β are constants. For this experiment (and in Figure 3), σ = 10, ρ = 28, and
β = 8

3 . Quaternions are naturally well-suited to predicting chaotic time series, including
the Lorenz attractor, since the problem involves both a multidimensional input and a
multidimensional output. Split quaternion neural networks have proven quite successful
at chaotic time series prediction based on small training datasets ([42–45]).
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Figure 3. Lorenz Attractor.

The data for the Lorenz attractor was again split 80%/20% between training and
test datasets. Additionally, both the inputs and the outputs were cast into the quaternion
domain. This allowed for a direct output error calculation using the quaternion distance
metric defined in Section 2.2.2. The full details of the loss function, the activation functions,
the neurons, and the layers of the networks used in both experiments are discussed in
Section 3.2.

3.2. MLP Network Topologies
3.2.1. Function Approximation

The function approximation experiment focused on the relative performance of real-
valued network architectures to quaternion networks with pure quaternion activation
functions. The comparison experiment operated on three distinct network architecture and
training algorithm combinations. The first is the quaternion multilayer perceptron trained
with a genetic algorithm (from here on referred to as QMLP+GA). This network consists of
an input layer, two hidden layers, and an output layer.

Between each layer of the network, a “normalization” step was added, where the out-
put of each layer is individually normalized. Since the training data-points were encoded
into quaternion values, the input and output layer require a single node each. The two hid-
den layers of the network contain 3 nodes each, resulting in a total of 22 trainable weights
and biases for the network. The pure-quaternion hyperbolic tangent (tanh) function was
selected as the nonlinear activation function for the input layer and both hidden layers.
The tanh function in the quaternion domain is defined as:

tanh(q) =
e2q − 1
e2q + 1

, q ∈ H. (24)

To determine the loss at the output layer, the final output is first mapped from H

into R using the norm defined in Section 2.2.2. This mapping allows for the use of any
real-valued loss function, and the mean absolute error (MAE) loss function was selected
due to its simplicity. The MAE is given by:

1
N

N

∑
i=1

|ŷ − y|, (25)

where N is the number of data-points, ŷ is the predicted value, and y is the truth or
target value.

To provide a baseline comparison for the QMLP+GA network, an equivalent real-
valued network is constructed and trained using the same genetic algorithm as the
QMLP+GA. Finally, an identical MLP is constructed and trained using the gradient descent
(GD) algorithm. These two variants are referred to as the MLP+GA network and the
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MLP+GD network, respectively. The layers, neurons per layer, and total parameters of
each of the three networks are summarized in Table 1.

Table 1. Neural network topologies for the Ackley Function approximation.

Network Input Hidden 1 Hidden 2 Output Parameters

QMLP+GA 1 3 3 1 22
MLP+GA 3 9 9 3 136
MLP+GD 3 9 9 3 136

The real-valued hyperbolic tangent was used as the activation function on the input
layer and both hidden layers, with a MAE loss function. However, since the hyperbolic
tangent is globally analytic in R, the normalization layers from the QMLP were removed.
The learning rate η for the gradient descent algorithm was set to η = 0.03. The real-valued
MLPs contained a total of 136 trainable weight and bias parameters, a six-fold increase
over the QMLP.

3.2.2. Chaotic Time Series Prediction

Chaotic time series prediction of the Lorenz attractor requires multidimensional
input data as well as multidimensional output data. It is a notoriously difficult problem,
especially considering the system’s sensitivity to initial conditions. In contrast with the
function approximation experiment, the time series prediction experiment focused on the
ability of quaternion networks to learn complex multidimensional nonlinearities. To that
end, the time series prediction experiment centered on optimizing a set of quaternion
network hyperparameters and did not consider any equivalent real-valued networks.

To test the predictive capabilities of a simple QMLP+GA network, a set of 500 time
series inputs were generated using a fixed-timestep 4th-order Runge–Kutta Ordinary
Differential Equation (ODE) solver. The first 400 time series formed the training dataset,
while the last 100 were held out for the test set. The starting point for each time series
was randomly generated using a uniform U[−10.0, 10.0] distribution for the x- and y-
coordinates and a uniform U[0.0, 10.0] distribution for the z-coordinates. Initial tests
focused on relatively short time series inputs. Each series was generated over a range of
20 timesteps, and the first 10 values of each series formed the input training data, while the
last 10 values formed the target values for training.

Figure 4 illustrates the sensitivity of the Lorenz system to initial starting conditions.
Several initial starting points were generated using the distributions defined above for the
x-, y-, and z-coordinates. Each system was then solved for 500 timesteps, starting at the
initial position in 3-space. While each curve exhibits the characteristic “butterfly” shape,
the individual coordinates of each series at each time step are drastically different.

Figure 4. Impact of initial conditions on the Lorenz system.
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Initial experiments showed that simple, smaller networks performed better with
the genetic algorithm then larger networks. A 4-layer network was constructed for the
time series prediction experiment. The structure of the network closely resembles an
autoencoder network, where large input layers are scaled down throughout the network
before being scaled back up for the output layer. This structure proved successful over
several rounds of experimentation in predicting the 10-step ahead x, y, and z coordinates
for the test set data. As a final experiment, a QMLP was created to predict the Lorenz
coordinates 50 steps ahead based on in input time series of 25 steps. The layers, neurons
per layer, and total parameters of each network are summarized in Table 2.

Table 2. Neural network topology for chaotic prediction.

Network Input Hidden 1 Hidden 2 Output Parameters

QMLP+GA 10 3 3 10 85
QMLP+GA 25 5 10 50 740

Before processing through the network, the training and test datasets were cast into the
quaternion domain using a vectorized approach. For an input vector τi, the corresponding
quaternion input vector was constructed using the following approach:

τi =

⎡⎢⎢⎢⎣
�x1
�x2
...

�x10

⎤⎥⎥⎥⎦ =⇒ τqi =

⎡⎢⎢⎢⎣
0.0 + x1i + y1j + z1k

0.0 + x2i + y2j + z2k
...

0.0 + x10i + y10j + z10k

⎤⎥⎥⎥⎦. (26)

Additionally, the target values were cast into quaternions. At each iteration, a quater-
nionic form of the MAE measured the fitness of each solution. Only the imaginary compo-
nents of each input and target vector contained coordinate information, so this experiment
introduced a QMAEimag calculation, defined in Equation (27) below.

QMAEimag : =
1
N

N

∑
i=1

||ŷqi
− yqi

||imag

=
1
N

N

∑
i=1

||(x̂ii + ŷij + ẑik)− (xii + yij + zik)||

=
1
N

N

∑
i=1

(√
(x̂i − xi)2 + (ŷi − yi)2 + (ẑi − zi)2

)2
.

(27)

Since this experiment did not consider any real-valued networks, several quaternion
activation functions were utilized during testing that are not available as activation func-
tions in the real-domain. In particular, Ref. [46] notes that quaternionic functions with local
analytic conditions are isomorphic to analytic complex functions. Additionally, Ref. [20]
demonstrate that hyperbolic and inverse hyperbolic trigonometric functions are universal
approximators in the complex domain. This experiment explored the use of several quater-
nionic elementary transcendental functions and found the inverse hyperbolic tangent,
defined in [47], to provide the best performance:

arctanh(p) :=
ln(1 + p)− ln(1 − p)

2
. (28)

Whereas the Lorenz prediction QMLP+GA networks required a slightly different net-
work structure than the Ackley function approximation networks, both networks employed
an identical genetic algorithm in the training phase. This approach eliminated the need
for differentiability of both the loss function and the activation functions of the network.
Additionally, it eliminated the need for a quaternion partial derivative calculation, which
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is a notoriously difficult problem. Section 3.3 describes the details of the algorithm, while
Section 4 discusses the results and performance of the algorithm in both experiments.

3.3. Quaternion Genetic Algorithm

This section describes the quaternion genetic algorithm that was developed to train the
QMLP-GA. A simple change of the underlying data type from quaternions to real-valued
inputs, weights, and biases enabled the training of the MLP-GA with an identical algorithm.
This research took a similar approach to Uber’s OpenAI Labs genetic algorithm training
process [33], opting for a very basic algorithm with minimal enhancements to demonstrate
the proof-of-concept. Based on the success of this approach in Uber’s experiments as well
as in the quaternion domain presented here, a more advanced algorithm incorporating
any of the many algorithmic improvements would likely improve on the baseline results
discussed in Section 4.

A general diagram of the genetic algorithm process flow is shown in Figure 5. A genetic
algorithm is a population-based search method, operating on a population of solutions to
iteratively find improving solutions. In this case, an individual neural network, defined by
its weights and biases, represents a single solution. To initialize the algorithm, a population
of N = 20 distinct neural networks was instantiated, with all weights and biases randomly
generated following a uniform distribution over [−1, 1].

Figure 5. Genetic algorithm/genetic programming process.

After instantiation, the algorithm measures the fitness of each solution. For each
neural network, the entire training dataset is processed through the network, capturing
the total MAE for each network. The networks are then rank-ordered based on the lowest
MAE value.

In the selection step, the n best solutions are retained as the “parents” for the next
generation of the algorithm. In this research, n = 5 networks were retained as the parent
generation in each iteration of the algorithm. While many advanced selection techniques
exist, this work employed a simple rank selection, which selected the five best networks
from each generation.

Finally, to generate a new population of solutions, the genetic algorithm performs
a random mutation step, where a parent solution is randomly selected from the n = 5
best parent solutions. Then, the algorithm creates a “child” solution by mutating roughly
half of the weights and biases of the parent solution with random noise. In this case, the
generating distribution for the random noise was the standard normal distribution, N (0, 1).
This process repeats for N − n = 20 − 5 = 15 times to create a new generation of solutions.

This process is commonly referred to as a genetic program, where generations are
created solely through the mutation process. Often, genetic algorithms will include an
additional crossover step prior to mutation, where new child solutions are created using
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a selection of features from separate parent solutions. Crossover was omitted from this
algorithm, since mutation alone provided a good baseline performance, reiterating the fact
that the most simple genetic algorithms are competitive to the popular backpropagation
algorithm. A summary of the algorithm is shown in Algorithm 1. Additional details of the
genetic algorithm along with a brief comparison of the computational effort required for
the genetic algorithm versus classic gradient descent are provided in Appendix A.

Algorithm 1 Quaternion Genetic Algorithm

1: Instantiate Pm parent networks, m ∈ N = {1, . . . , 20}, input mutation function ψ.
2: for i ∈ N do
3: Evaluate population fitness Fi
4: end for
5: for g = 1 to G generations do
6: Sort population ← Fi

7: Select best parents P g−1
n , n = 1, . . . , 5

8: for j = n + 1 to N do
9: Generate k = UniformInt(1, n)

10: P g
j = ψ(P g−1

k ).
11: end for
12: end for
13: Return final population PG

m for m ∈ N.

3.4. Evaluation and Analysis Strategy

Each of the networks described in Section 3.2 processed the training data from the
Ackley function and the Lorenz attractor system. At each training epoch, the algorithms ei-
ther recorded the MAE of the overall system in the case of the gradient descent network, or
the MAE or (QMAE) of the best solution for the genetic algorithm networks. Additionally,
several computational metrics were recorded including memory allocations and compu-
tational runtime. Finally, each of the trained models processed the test data, recording
the test set percentage error for each instance. Section 4 contains a discussion of network
performance in each problem instance for each network in regards to these metrics.

4. Results

All computations presented here were performed on a desktop workstation running
Windows 10 Enterprise with 64 GB of RAM and dual Intel Xeon Silver 4108 CPUs. Each
CPU contained eight physical cores running at 1.80 GHz. Coding was performed in Julia
1.5.3 using the Quaternion.jl package and Flux.jl [48] for the MLP+GD network.

4.1. Function Approximation Results

The focus of the function approximation test was twofold. First, the function approx-
imation task served as a proof-of-concept for the QMLP-GA. While quaternion neural
networks and metaheuristic neural network training algorithms both exist separately in the
literature, this work demonstrates the first use of metaheuristics to effectively train quater-
nion neural networks. Second, this experiment demonstrated some of the computational
benefits that quaternions provide.

In keeping with these two goals, the three neural networks employed default param-
eters and very basic training algorithm implementations. No attempt was made to tune
the hyperparameters of any of the models; instead, the results speak for themselves. The
training set error for each of the three networks versus epoch is shown in Figure 6.
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Figure 6. The training set mean absolute error for each network.

The QMLP+GA initialized using the random uniform weight initialization scheme de-
scribed in Section 3 had the lowest initial prediction error, at roughly 50% in the first epoch.
In contrast, the MLP+GA started with a nearly 60% initial error, while the MLP+GD was
above 70%. The genetic algorithm improved rapidly, showing significantly faster initial al-
gorithmic improvement versus the gradient descent algorithm. Both GA-trained networks
showed rapid improvements over the first 25 training epochs, while the MLP+GD network
searched for nearly 75 epochs before catching up to the GA-trained networks. The MLP+GD
eventually caught up to the other two networks, but the prediction error remained slightly
higher for the gradient descent network throughout the entire training process.

Table 3 shows the test set performance for each of the three networks across several
measures of merit. In each column, the best results are highlighted in bold text. The
quaternion network had the fastest overall runtime, resulting in the lowest test set error
with the fewest number of trainable parameters. The real-valued MLP had a similar
performance and required less overall system memory throughout the runtime of the
algorithm, but required nearly six times the number of trainable parameters. Finally, the
gradient descent-trained MLP had the worst performance in every category. While the test
set error was comparable to the other two networks, the MLP+GD took more than 50 times
as long to run with over 70 times as much memory allocated to store the gradient and error
information for the backpropagation process.

These results, while cursory, clearly demonstrate the viability of quaternion networks
trained with genetic algorithms. The quaternion network showed the fastest overall im-
provement, lowest final error, and lowest computational cost (in terms of runtime) when
compared to two comparable networks. Additionally, the two GA-trained networks outper-
formed the gradient descent network across all measures of merit. These results validate
the use of genetic algorithms in neural network training and show that quaternion net-
works can easily outperform equivalent real-valued networks involving multidimensional
input data.

Table 3. Neural network comparison results.

Network Runtime (s) Memory (GB) Parameters Test Error

QMLP+GA 17.421 10.238 22 11.01%
MLP+GA 18.069 9.497 136 11.15%
MLP+GD 955.040 778.027 136 11.23%

4.2. Time Series Prediction Results

While the function approximation results demonstrate a viable proof-of-concept for
quaternion neural networks, the chaotic time series prediction task illustrates the power of
QNNs in the difficult task of predicting noisy systems. Additionally, chaotic time series
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prediction provides a natural multidimensional input + multidimensional output test that
is almost tailor made for quaternion networks. In each of the figures displayed in this
section, the orange graph represents the true chaotic time series, while the blue graph
represents the predicted values. The final prediction results presented in Figure 7 are
far from current state-of-the-art results using deep recurrent neural networks (RNNs) or
long-short term memory (LSTM) networks, yet they illustrate the ability of simple QNNs
to learn complex nonlinearities over time.

Figure 7. 10-step ahead predicted coordinate values.

This experiment utilized two distinct QNN network topologies. The first network
predicted the Lorenz attractor for 10 timesteps in the future based on an input time series
of 10 timesteps. The second network predicted the Lorenz attractor for 50 timesteps in
the future based on an input of 25 observations. The structure of each network is listed in
Table 2, while the results for both networks are listed in Table 4. The test error percentage
listed in Table 4 was measured using the mean absolute percentage error (MAPE) for time
series forecasting, defined in Equation (29), where et is the unscaled prediction error for
observation t and yt is the target value at t:

MAPE = mean
(∣∣∣∣100

et

yt

∣∣∣∣). (29)

Early tests indicated that smaller networks performed better with the genetic algo-
rithm. The final two networks contained comparatively few nodes in each layer and were
structured as autoencoder networks, which perform a type of downsampling and subse-
quent upsampling as information passes through the network. Each network was trained
for 50,000 epochs, which equated to roughly 28 min for the 10-step prediction network and
around 4 h for the 50-step prediction network.

Table 4. Lorenz prediction results.

Prediction Steps Runtime (s) Memory (GB) Params Test Error

10 1668.565 947.304 85 10.89%
50 14769.069 2.815 (TB) 740 9.59%

The test set error listed in Table 4 indicates that on average, individual predicted
values were off by about 11%. The actual versus predicted x-, y-, and z-coordinates for one
of the test set time series are shown in Figure 7, while two 3-dimensional path predictions
are shown in Figure 8. While the test error is relatively high, the QMLP+GA performs
remarkably well on future predictions, especially in the long sweeping sections of the
Lorenz attractor curves. The errors understandably grow and compound in the two
“wings” of the curve, where the graph circles closely around each pole of the attractor.

The final experiment tested the ability of the QMLP to predict long sequences based
on a relatively short input. The network was trained over 50,000 epochs to predict 50 obser-
vations based on an input sequence of length 25. Table 4 summarizes several measures of
merit for the network, while the x-, y-, and z-coordinate results for a representative test set
sequence are shown in Figure 9.

90



Mathematics 2021, 9, 938

Figure 8. 10-step ahead path predictions.

In each coordinate direction, there is some clear noise at each prediction step, but
the network accurately predicts the general motion of each variable. The motion of each
prediction path is even more evident in the 3-dimensional plots shown in Figure 10, which
shows two path predictions for two series from the test set data. As with the 10-step
prediction model, the 50-step model makes the best predictions along the long sweeping
arcs of the system, with errors compounding near the two “wings” of the attractor.

Figure 9. 50-step ahead predicted coordinate values.

Finally, the unscaled training error plots for both networks are shown in Figure 11.
The genetic algorithm showed similar performance in both time series prediction tasks as it
did in the function approximation task, with dramatic initial improvements and slow but
consistent improvements as the iterations progressed. Surprisingly, the 50-step prediction
experiment resulted in a lower test set prediction error than the 10-step prediction network,
likely due to the scale of each predicted value.

Figure 10. 50-step ahead path predictions.
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10-Step Predictions 50-Step Predictions

Figure 11. Unscaled QMAE training error.

5. Discussion

In the Ackley function approximation experiment, all three networks utilized a ran-
dom uniform weight initialization scheme. However, the quaternion network had between
a 10–20% lower initial prediction error than the real-valued networks. This is likely due to
the fact that the quaternion network employed six times fewer weight and bias parameters
than the real-valued networks. The quaternion network maintained the lowest training set
error across the entire 100-epoch training period, resulting in the best test set performance.
The larger networks constructed in the second experiment demonstrated similar training
characteristics and test set performance.

The genetic algorithm removes the need for expensive gradient calculations, resulting
in better memory performance and more than 50x faster runtime in the first experiment
versus the real-valued gradient descent algorithm. Given the difficulty of calculating
quaternion gradients, the improvement over a quaternion gradient descent algorithm
would likely be even greater. However, a genetic programming approach does come with
some drawbacks. In the naive approach presented here, the algorithm would sometimes
stall for several iterations while searching for an improving solution. There are many exist-
ing techniques designed to mitigate this stalling, but the literature on genetic algorithms is
much less developed compared to comparable work on gradient descent optimization.

Despite this, the genetic algorithm opened the aperture on viable activation functions
and loss functions for use with quaternion networks. This is perhaps the most signifi-
cant contribution of this research. The results from [46] indicate that any locally analytic
complex-valued activation function can be extended and used in the quaternion domain,
but this work presents the first successful implementation of inverse hyperbolic trigono-
metric functions in quaternion networks. The success of the inverse hyperbolic tangent
function in the chaotic time series prediction task demonstrates the value of using gradient
free optimization methods in the quaternion domain.

The quaternions and quaternion neural networks are relatively unexplored compared
to real analysis and real-valued neural networks. While certain applications in image
processing and other domains have driven research in the quaternions and QNNs, there
is still room for significant improvement in both the theoretical and practical aspects of
quaternions. Going forward, the following lines of research will be crucial for continued
innovation in the quaternion domain.

First, a solid foundation of quaternionic analysis is crucial to theoretically sound QNN
research. While a handful of researchers have published works on quaternionic analysis,
the corpus is quite thin. Research in novel quaternion activation functions, quaternion
differentiability, quaternion analytic conditions, and novel quaternion training algorithms
could significantly enhance both the current understanding of quaternion optimization as
well as quaternion implementations of common machine learning models. Additionally,
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the quaternion Universal Approximation Theorem for either split or pure quaternion
activation functions is an outstanding problem that is vital for establishing the legitimacy
of quaternion networks from a theoretical point of view. Proving either variant of the
Universal Approximation Theorem would be a substantial contribution to the field.

Finally, this research simply provided a proof-of-concept for GA-trained quaternion
neural networks. The two examples presented were limited in scope and future work
should build on these results to demonstrate the viability of GA-trained networks in large-
scale optimization problems. In particular, quaternions are particularly well suited to the
fields of image processing and robotic control, both of which have a plethora of neural
network-related application opportunities. The authors intend to build on this proof-of-
concept in future work by examining the scalability of quaternion GAs to large machine
learning datasets and an in-depth comparative analysis of real-valued versus quaternion-
valued neural networks using a design of experiments (DoE) hyperparameter-tuning
approach. Finally, the authors intend to apply GA-trained QNNs to problem domains for
which quaternions are particularly well suited, including 3D optimal satellite control and
reinforcement learning for autonomous flight models.
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Appendix A. MLP-GD and MLP-GA Pseudocode

This section provides a high-level overview of the main algorithmic steps for the
genetic algorithm (GA) and gradient descent (GD) neural network training algorithms.
In terms of computational effort, the main differences between the two algorithms are that
the GA requires a population of different neural networks while the GD algorithm only
requires a single network but instead computes the error gradients at each training itera-
tion. The main computational burden of the GA stems from processing the training data
through each network at every iteration of the algorithm. In contrast, the GD algorithm’s
main computational effort stems from the calculation of expensive partial derivatives to
determine the error gradient at each layer of the network for every iteration. In prac-
tice, the computational cost of the backpropagation step in the GD algorithm outweighs
the repeated processing of training data through each network in the GA. The results in
Section 4.1 provide a good demonstration of this.
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Appendix A.1. MLP-GA

# Network Structure contains weight/bias values

# that define each layer of the neural network

struct network

bias1

Weight1

bias2

Weight2

bias3

Weight3

bias4

fitness

end

# initialization function

function init() do

instantiate n random networks

return list of networks

end

# main forward pass

function update_fitness(X, Y, Networks) do

foreach network in Networks do

foreach x in X do

y_predicted = network output

error = |y_predicted - Y|

end

network.fitness = sum(error)

end

end

# mutation operator

function mutate_weights(weight_array) do

foreach weight in weight_array do

weight = weight + random_noise

end

return weight_array

end

# Genetic Algorithm

function GA(X, Y) do

population = init()

n_epochs = N

for i = 1:N do

update_fitness(X, Y, population)

sort(population, on = fitness, order = ascending)

# retain the best k networks as parents

# mutate parent weights to create new children

for j = k+1:length(population) do

rand = rand(1:k)

population[j] = mutate_weights(population[rand])
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end

end

update_fitness(population)

sort(population, on = fitness, order = ascending)

best_entity = population[1]

return best_entity

end

Appendix A.2. MLP-GD

# Network Structure contains weight/bias values

# that define each layer of the neural network

struct network

bias1

Weight1

bias2

Weight2

bias3

Weight3

bias4

end

# initialization function

function init() do

instantiate single random network

return network

end

# main forward pass

function forward_pass(X, Y) do

foreach x in X do

y_predicted = network output

error = |y_predicted - Y|

end

return error

end

# main backward pass

function backpropagation(network, error, eta)do

foreach layer in network do

gradient(error, layer) = partial derivative of error

layer.weights = layer.weights - eta*gradient

end

return network

end

# Training Algorithm

function train(X, Y) do

network = init()

n_epochs = N

eta = learning rate

for i = 1:N do
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error = forward_pass(X, Y)

network = backpropagation(network, error, eta)

end

return network

end
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Abstract: To the best knowledge of the authors, in former studies in the field of measuring volume
fraction of gas, oil, and water components in a three-phase flow using gamma radiation technique, the
existence of a scale layer has not been considered. The formed scale layer usually has a higher density
in comparison to the fluid flow inside the oil pipeline, which can lead to high photon attenuation
and, consequently, reduce the measuring precision of three-phase flow meter. The purpose of this
study is to present an intelligent gamma radiation-based, nondestructive technique with the ability
to measure volume fraction of gas, oil, and water components in the annular regime of a three-phase
flow independent of the scale layer. Since, in this problem, there are several unknown parameters,
such as gas, oil, and water components with different amounts and densities and scale layers with
different thicknesses, it is not possible to measure the volume fraction using a conventional gamma
radiation system. In this study, a system including a 241Am-133Ba dual energy source and two
transmission detectors was used. The first detector was located diametrically in front of the source.
For the second detector, at first, a sensitivity investigation was conducted in order to find the optimum
position. The four extracted signals in both detectors (counts under photo peaks of both detectors)
were used as inputs of neural network, and volume fractions of gas and oil components were utilized
as the outputs. Using the proposed intelligent technique, volume fraction of each component was
predicted independent of the barium sulfate scale layer, with a maximum MAE error of 3.66%.

Keywords: annular regime; scale layer-independent; petroleum pipeline; volume fraction; dual
energy technique

1. Introduction

Numerous applications for multiphase flow meters exist in the petrochemical and oil
industries. For instance, there is a need to monitor multiphase flow continuously at some
points. Some of these points include the gas–oil separator units and the wellhead collection
lines. Monitoring at these points is of great value. The three-phase flow’s volume fraction
can be determined through several methodologies. One of the best methodologies is the
gamma radiation-based technique, which is a nondestructive and reliable tool. Several
studies have covered this area. One of the earliest studies was conducted in 1980, when
Abouelwafa and Kendall introduced a method for metering three-phase flow. That is
the dual-energy gamma-ray attenuation-based method [1]. In their study, Dong-hui et al.
(2005) presented the dual-energy gamma-ray method. The method aimed to examine
the volume fraction of various components on the multiphase pipe flow cross-section of
gas–oil–water [2]. With the intent to measure the attenuation dose rate of the material,
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there was a need to design a data acquisition system and nuclear instruments. After
designing the data acquisition system and the nuclear instruments, static tests followed.
Oil–water–gas media has three phases. These phases were investigated to test the hy-
pothesis that they effectively simulate different distributions of media volumetric fraction.
The three phases were investigated when the oil–water–gas media was used in experi-
mental vessels. During this investigation, the measurements of attenuation intensities
were taken. There was also a study of the volumetric fraction’s equations and the linear
attenuation coefficients’ arithmetic. When the attenuation equations were investigated
for unexpected measurement error, the involvement of modified arithmetic was disclosed.
Besides, the experimental research revealed that the system’s accuracy was acceptable. In
their study, Salgado et al. (2009) measured a three-phase flow volume fraction using the
gamma radiation technique [3]. They used two radioactive sources whose energies were
different. They also used three Nal detectors. In their estimation of the gas–oil–water’s
volume fraction, the researchers were aided by the artificial neural network (ANN). They
considered several flow regimes in this process. The researchers replicated this method-
ology in 2010 to recognize the homogenous, stratified, and annular flow regime. They
then estimated the water–gas–oil multiphase systems’ volume fraction [4]. Hoffmann et al.
(2011) measured phase fractions using a traversable gamma radiation-based instrument [5].
There was a need to ensure that the noisy measurements yielded relevant data. Therefore,
the researchers had to be careful in their data analysis. In this regard, the researchers used
the two-phase and single-phase flow calibration data and tested the three-phase flow data
analysis technique against this data. The researchers found that the traversable gamma
instrument’s average density data was significantly related to the calibrated, stationary,
single-energy gamma instrument’s density measurements. However, more information
was obtained from the traversable densitometer than from the single energy instrument.
The rationale behind this is that it was possible to measure all the three phases’ transient
phase fraction over the pipeline’s cross-section. By using this information, the flow pattern
could be determined. Further studies in field of multiphase flow meters can be found in
references [6–25].

According to the literature review, in the systems that used gamma radiation technique
to determine the oil, water, and gas volume fraction, the existence of the scale layer’s has
not been considered. The scale layer forms gradually as mineral salts are deposited on the
oil pipeline’s inner surface. An example of such a layer is shown in Figure 1.

 

Figure 1. An oil pipeline before and after cleaning of the scale layer by chemical methods [26].

When the scale layer is compared to the fluid flow inside the oil pipeline, its density
tends to be higher. In this regard, the three-phase flow meter’s measuring precision can
be reduced over time due to high photon attenuation that can occur due to the scale layer
having a higher density. This study aims at presenting an intelligent gamma radiation-
based system that can measure the oil, gas, and water components’ volume fraction
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in a three-phase flow’s annular regime independent of the scale layer. The article is
structured as follows: Section 2 discusses the details of the proposed detection system
and the implementation of the neural network. Section 3 reports the results of the neural
network and calculates the accuracy of the designed neural networks. The last section
provides both the summary and the conclusion.

2. Materials and Methods

2.1. Radiation Based System

Monte Carlo N Particle code (MCNP) [27] was implemented in the present investiga-
tion in order to model the radiation-based system. As pointed out in the abstract section,
the aim of this investigation is to propose an intelligent, gamma radiation-based system
with the ability of measuring volume fraction of gas, oil, and water components in annular
regime of a three-phase flow independent of the scale layer. Since, in this problem, there
are several unknown parameters, it is not possible to measure the volume fraction using a
conventional gamma radiation system that includes one radiation source and one detector.
To obtain more information from the fluid inside the pipe, a system including a dual energy
source consisted of 241Am and 133Ba radioisotopes that emit photons with energies of 59
and 356 keV, respectively, and two NaI detectors for recording the transmitted photons,
were used.

A steel pipe with internal radius and thickness of 10 cm and 0.5 cm, respectively, was
considered in this study. In order to model the scale layer, a cylindrical shell of barium
sulfate (BaSO4) with density of 4.5 g·cm−3 and different thicknesses in the range of 0–3 cm,
with a step of 0.5 cm, was considered on the internal wall of the steel pipe.

Annular regime of a three-phase flow was modeled inside the pipe. Air, gas, oil, and
water with densities of 0.00125, 0.826, and 1 g·cm−3 were utilized as gas, oil, and water
phases, respectively. For each scale thickness, various volume fractions were simulated for
each component (seven different scale thickness×36 different volume fractions = totally
252 simulations were done).

As aforementioned, in this investigation, two 2.54 cm × 2.54 cm NaI detectors were
applied to record the transmitted photons. Tally F8 was utilized in order to record photon
spectra in both detectors. The first detector was positioned diametrically in front of the
radioactive source (see Figure 2). For the second detector, at first, a sensitivity investigation
was done in order to find the optimum position. In this regard, the center of the second
detector was positioned in different orientation in the range of 5◦–11◦, with a step of 1◦,
and transmitted photons were recorded. Orientation of 5◦ was the minimum possible
position for the second detector, because, at less than this orientation, the first and second
detectors would interfere with each other. The reason for choosing orientation of 11◦

as the maximum position was that, at more than this orientation, there would be no
more transmitted photons through the pipe that carries on useful information about the
three-phase flow to reach the detector. At each position, sensitivity of the second detector
relative to gas phase and oil phase volume fraction changes was investigated for both
registered counts of gamma radiations emitted from 241Am and 133Ba radioisotopes. For
instance, calculation of sensitivity of registered counts under 241Am photo peak in the
second detector relative to gas phase changes is indicated in Equation (1). It is worth
mentioning that the sensitivity was calculated using the registered counts for gas phase
fractions of 10% and 80%, which make the highest and lowest attenuation for photons.

Relative sensitivity (%) =

(
Cgv f 80 − Cgv f 10

Cgv f 80

)
× 100 (1)

where, Cgvf 80 and Cgvf 10 refer to registered counts under 241Am photo peak when the gas
volume fraction is 80% and 10%, respectively. The results of sensitivity investigations are
shown in Figure 3. For all four cases, by increasing orientation angle of the second detector,
sensitivity starts to increase until it reaches a maximum value at the angle of 7◦ and then
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it gradually decreases. Based on the acquired results, it could be deduced that 7◦ is the
optimal orientation angle for the second detector.

Figure 2. Investigation of optimum position for the second detector in the proposed system.

Figure 3. Sensitivity investigations results to find optimum position for the second detector.

It is worth mentioning that the simulated configuration in this work, especially the
performance of the detectors, has been validated in our previous study using some experi-
ments [28]. The corresponding experimental setup can be seen in Figure 4. A geometry
identical to the experimental setup was simulated using MCNP code, and then the regis-
tered counts in both detectors were compared with the experimental ones. Calibrations of
the gamma attenuation-based devices used for measuring the three-phase flow characteris-
tics are usually done for three different extreme cases when the pipe is completely filled
by gas, oil, and water. In the present study, a detection system the same as the validated
one in our previous work was modeled. However, in the present study, a gas–oil–water
three-phase flow was modeled instead of a two-phase flow.
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Figure 4. Experimental setup including 2 NaI detectors and one radioactive source [28].

2.2. Artificial Intelligence

In recent years, it has been proved that artificial intelligence can be implemented
as a powerful tool for various engineering applications [29–65]. There are several kinds
of ANNs, in which multilayer perceptron (MLP) is the most well-known kind of them.
This kind of ANN has a good ability for regression and classification. This network is
constructed from at least three layers of neurons: The input layer, the hidden layer (or
hidden layers), and the output layer. There are different techniques to calculate the biases
and weights of this mathematical network, of which Levenberg Marquardt (LM) is most
well-known algorithm in this regard. In the present investigation, two different MLP–LM
networks with four inputs and one output were considered. Four features were extracted
from the recorded spectra in the detectors and were considered as MLP–LM inputs. The
procedure of obtaining gas, oil, and water volume fraction percentages independent of
scale layer thickness is indicated in Figure 5. The trained networks can estimate the
percentages of gas and oil volume fraction based on input signals independent of scale
layer thickness, correctly.

Figure 5. The procedure of obtaining gas, oil, and water volume fraction percentage in a three-phase flow independent of
scale layer thickness.
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A total of 252 different cases were simulated using MCNPX code; 177 cases were
implemented for training the network, and 75 cases were used for testing the efficiency
of presented MLP–LM. In order to obtain the optimum structure of proposed networks,
different structures with various number of layers, neurons in each layer, epochs, and
different activation functions were tested. For this purpose, different loops were defined,
and, with trial and error, the optimum architecture was found. The mentioned algorithm is:

(1) The data set, counters, and error are defined.
(2) The data set is normalized.
(3) The parameters initial values are set.
(4) Several loops are created.
(5) Different number of layers, neurons in each layer, epochs, and different activation

functions are tested.
(6) The efficiency of each network is checked.
(7) The best network with lowest error is saved.

The best structure of presented MLP–LM model for gas volume fraction measuring
has one hidden layer consists of 9 neurons. The number of epochs was 685. The best
structure of presented MLP–LM model for oil volume fraction measuring has one hidden
layer consists of 10 neurons. The number of epochs was 750. Architectures of the ANN
models were shown in Figure 6.

(a) (b) 

Figure 6. Architectures of presented MLP–LM models (a) for gas volume fraction measuring (b) for oil volume fraction measuring.

The mathematical equations for the first MLP–LM model are as follows. The input to
the neuron m in the hidden layer is given by:

ηm =
4

∑
u=1

(XuWum) + bm m = 1, 2, . . . , 9 (2)

The output from mth neuron of the hidden layer is given by:

Um = f (
4

∑
u=1

(XuWum) + bm) m = 1, 2, . . . , 9 (3)

The output of the neuron in the output layer is given by:

O =
9

∑
u=1

(UuWu) + b (4)
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where X is the input vector, b is the bias term, W is the weighting factor, and f is the
activation function of the hidden layer.

3. Results and Discussions

After finding optimum positions for the detectors, orientation angle of 0◦ for the
first detector and 7◦ for the second detector, counts under photo peaks of 241Am and
133Ba radioisotopes were recorded in both detectors for different scale layer thicknesses
and volume fractions. Ternary contour plots of the recorded counts in both detectors for
different volume fractions when the scale thickness is 0 and 3 cm, are shown in Figures 7–10.
Comparing Figures 7 and 8 that correspond to the recorded counts in the first detector for
241Am and 133Ba radioisotopes, respectively, it can be said that dynamic range of registered
counts relative to changes of gas volume fraction, or, better to say, sensitivity, for 133Ba is
more than 241Am. A same response is also observed for the second detector. Comparing
Figure 7a,b, it could be observed that, when scale layer is 0, sensitivity of detector relative
to changes of gas, oil, and water components is much more than when the scale thickness
is 3. In other words, by increasing thickness of scale layer, somehow information about
the flow of inside the pipe starts fading. This manner can be also seen for both detectors
and radioisotopes. Comparing Figures 7a and 9a, it can be observed that sensitivity of
the second detector relative to changes of volume fractions is a little bit more than the
first detector.

Regression diagrams of actual data and predicted data using presented MLP–LM
models are shown in Figures 11 and 12. In Table 1, data number, scale layer thickness,
actual outputs, and measured outputs for test data set are tabulated.

Figure 7. Recorded counts under photo peaks of 241Am in the first detector versus gas, oil, and water volume fraction:
(a) scale thickness is 0, (b) scale thickness is 3 cm.

Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) of presented meter-
ing system were calculated using Equations (5) and (6).

MAE =
1
N

Z

∑
i=1

|Xi(Actual)− Xi(Measured)| (5)

RMSE =

[
∑N

i=1((Xi(Actual)− Xi(Measured))2

N

]0.5

(6)
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where N, Xi (Actual), and Xi (Measured) are the data number, real values, and estimated
values, respectively. Performance criteria of the developed models were tabulated in
Table 2 using Equations (5) and (6).

Figure 8. Recorded counts under photo peaks of 133Ba in the first detector versus gas, oil, and water volume fraction:
(a) scale thickness is 0, (b) scale thickness is 3 cm.

Figure 9. Recorded counts under photo peaks of 241Am in the second detector versus gas, oil, and water volume fraction:
(a) scale thickness is 0, (b) scale thickness is 3 cm.

It can be found from the obtained errors that the presented gauging system is reliable.
This novel meter could be used in different industries for metering volume fraction of each
phase independent of scale layer thickness. Radioisotope sources, detectors type, detectors
position, extracted features from output signals, used data analysis algorithms and ANN
architectures were selected appropriately in order to achieve the optimum performance for
the proposed system.
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Figure 10. Recorded counts under photo peaks of 133Ba in the second detector versus gas, oil, and water volume fraction:
(a) scale thickness is 0, (b) scale thickness is 3 cm.

(a)                             (b) 

Figure 11. Regression diagrams of first model results (gas volume fraction) for (a) train data (b) test data.

(a)                             (b) 

Figure 12. Regression diagrams of second model results (oil volume fraction) for (a) train data (b) test data.
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Table 2. Performance criteria of the developed model.

Output
RMSE MAE

Train Test Train Test

Gas Volume Fraction Percentage 3.0956 3.3362 2.3266 2.6198

Oil Volume Fraction Percentage 3.5757 4.3268 2.7662 3.6579

4. Conclusions

In the present investigation, a novel and optimized radiation-based gauge, including
two detectors and a dual energy source, was presented to measure volume fraction of gas,
oil, and water components in annular regime of a three-phase flow independent of the scale
layer. Position of the second detector was optimized. The percentages of gas, oil, and water
volume fractions were measured independent of the barium sulfate scale layer. In fact,
the presented measuring system can be used in different pipes with different thicknesses
of scale layer. All the required data for modeling the presented system was achieved
using MCNPX code. In order to model the metering system using MATLAB software,
two different ANNs with four inputs and one output were considered. Recorded counts
under photo peaks of 241Am and 133Ba were applied to both ANN models, as 252 × 4 input
matrix and gas and oil volume fraction percentages were considered as the first and second
ANN model outputs, respectively. The architectures of both ANNs were optimized using
a presented algorithm. The dataset was divided to train set and test set. The accuracy of
models was confirmed by good agreement of actual data and measured data in both sets.
Finally, the volume fraction percentages were predicted with the RMSE of less than 4.33
and independent of scale layer.
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Abstract: The increasing consumption of fossil fuel resources in the world has placed emphasis on
flow measurements in the oil industry. This has generated a growing niche in the flowmeter industry.
In this regard, in this study, an artificial neural network (ANN) and various feature extractions have
been utilized to enhance the precision of X-ray radiation-based two-phase flowmeters. The detection
system proposed in this article comprises an X-ray tube, a NaI detector to record the photons, and a
Pyrex-glass pipe, which is placed between detector and source. To model the mentioned geometry,
the Monte Carlo MCNP-X code was utilized. Five features in the time domain were derived from the
collected data to be used as the neural network input. Multi-Layer Perceptron (MLP) was applied to
approximate the function related to the input-output relationship. Finally, the introduced approach
was able to correctly recognize the flow pattern and predict the volume fraction of two-phase flow’s
components with root mean square error (RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE) of less than 0.51, 0.4 and 1.16%, respectively. The obtained precision of the
proposed system in this study is better than those reported in previous works.

Keywords: radiation-based flowmeter; two-phase flow; feature extraction; artificial intelligence;
time domain

1. Introduction

Optimization of separation processes is not possible except with enough knowledge
of the quantitative measurement of gas and oil components. The type of flow pattern
impacts the efficiency of the separation process in such a way that the percentage of each
component indicates whether the drilling needs to be stopped or not. The mixture of
gamma radiation and ANNs have contributed in a lot of researches as a practical tool [1–7].
In [1], a calculation of volumetric percentages in three-phase flows was performed by
using a dual-energy source and three detectors. Simulations were performed by MCNP-4C
code. In addition, Abro and Johansen [2] researched the gas volume ratio by measuring
two-phase flows. Their method consisted of a single 241Am source and three detectors.
The MRE% achieved was less than 3%. Adineh et al. presented a method to study the
two-phase flow by a two-detector model of NaI and a single 137Cs source [3]. The use
of feature extraction methods can definitely lead to a qualitative improvement in the
accuracy of flowmetry. In this regard, Sattari et al. [4] introduced a 137Cs source and a
single NaI detector to perform the flow measurement. In the research, the input ports of
the GMDH neural network were time-domain features, which were extracted from the
recorded spectrum. In similar studies, to establish the volume percentages and type of
flow patterns with high accuracy, researchers evaluated many time- and frequency-domain
characteristics, and they presented the best separator characteristics using an innovative
method [5,6]. Some structures of MLP neural networks were investigated for the volume
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fraction calculation in 3-phase flows [7]. In that research, annular and homogeneous flow
patterns were considered as the main flow regime. Complete diagnosis of the kind of
flow regime and determining the volume fraction with an RMSE of 1.28 were the research
findings. In addition to radioisotope sources, it has been proved that X-ray tubes can
be potentially used in radiation-based multiphase flowmeters [8,9]. The X-ray tube has
some advantages over radioisotope sources, for example, it has the capability of energy
adjustment of emitted photons, it releases photons more intensely than fundamental
radioisotope sources; it has the capability of turning on and off, etc.

Although X-ray radiation-based two-phase flowmeters have a lot of advantages over
the radioisotope-based ones, they suffer from lower measurement accuracy. One reason
might be that the registered X-ray spectrum has been analyzed in a simple way. The X-ray
sources generate multi-energy photons despite radioisotopes that generate single energy
photons. Therefore, data analysis of radioisotope sources would be easier than X-ray ones.
As mentioned, one of the problems researchers have encountered is the lower measurement
accuracy of the X-ray radiation-based two-phase flowmeters. The current project’s goal is
to resolve this problem by improving the precision of the X-ray radiation-based two-phase
flowmeter using an artificial neural network (ANN) and feature extraction techniques.

In Section 2.1, the details of the modeled detection system, including one X-ray tube
and one detector, will be discussed. Sections 2.2 and 2.3 are dedicated to processing and
extracting features of the registered signals. In Section 2.4, the employment of ANN for
flow pattern identification and volume ratio prediction will be explained. The results of all
four sub-sections in part 2, will be discussed in Section 3. Figure 1 depicts the flowchart of
the presented methodology used in the current investigation.

Figure 1. Flowchart of the presented methodology in this investigation.

2. Materials and Methods

2.1. X-ray System

In present article, the detection system that is consisted of an X-ray tube and a NaI
detector which are located on both sides of the Pyrex-glass pipe, was modeled using the
MCNP code. This code has been employed for modeling measuring instruments based on
ionizing radiation [10–16].

In Figure 2, a geometric sketch of the designed system is shown. The emitted photons
from the X-ray tube pass through the pipe, in which the two-phase flow components are
being examined, and then, the portion of them that is not attenuated inside the pipe is
detected by the detector. In fact, the attenuation of the radiation beam is based on the
quantity of gas and liquid components inside the pipe.
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Figure 2. Modeled detection system using the MCNP code.

Since perfect modeling of an industrial X-ray tube including a cathode (electron source)
and an anode (tungsten target) embedded in a cylindrical shield, using the MCNPX code
is time consuming, in this work, a more efficient geometry including a photon source
mounted inside a metal shield was defined. In other words, since photon tracking in
the MCNPX code is much faster than electron tracking, a photon source mounted in a
metal shield was just deemed in the present investigation instead of modeling the cathode-
anode accumulation. To provide the X-ray energy spectrum for the photon source, the
acquired spectrum by the TASMIC, a free software represented by Hernandez et al. [17],
was employed. The employed X-ray spectrum including the X-ray characteristic peaks
related to the tungsten anode is depicted in Figure 3. Fundamentally, the X-ray tube’s
cylinder-shaped shields are usually made of steel or lead to prevent leakage of radiation.
On the shield surface, a section is left open, which is described as the output window to
emit congenially produced X-ray photons. The output window’s radius of the simulated
X-ray in this study is 5 cm. To filter the low energy photons with the aim of reducing
scattering, an aluminum filter having 2.5 mm thickness was embedded in front of the
output window.

Figure 3. The applied X-ray energy spectrum in simulations obtained by the TASMIC package [17].

2.2. Signal Processing

In this investigation, 3 typical flow patterns (shown in Figure 4) and 19 different
volume fractions from 5% void fraction to 95% with the step of 5%, are simulated (57 sim-
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ulations were used in total). As an example, the recorded spectra in the detector for the
4 different void fractions of 25%, 45%, 65%, and 95% are shown in Figure 5.

Figure 4. Simulated flow regimes.

Figure 5. Recorded spectra in the detector for different void fractions of: (a) 25%, (b) 45%, (c) 65%, (d) 95%.

The tremendous data are collected for each simulation, as can be seen in Figure 5.
In this context, to minimize the amount of data and preserve the data specifications
simultaneously, the feature extraction techniques in the time domain have been employed.
The extracted aspects are explained in detail in the following sections.

2.3. Feature Extraction

In this scrutiny, 12 time-domain characteristics (average value, variance, 4th-order
moment, root mean square, skewness, kurtosis, median, waveform length (WL), SSR, MSR,
SVER, and maximum value) were extracted from the recorded data. These characteristics
were used as network inputs to determine the flow pattern and the volume percentages.
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Therefore, an attempt was made to determine the efficient characteristics. To do this,
various neural networks were configured with different combinations of the extracted
features, and finally, it was observed that use of the Variance, Skewness, Kurtosis, SSR, and
SVER can provide sufficient and high accuracy in detecting the mentioned parameters.

Five effective characteristics were extracted from the registered signals using the
following equations. (xn), n = 1, · · · , N, where N is the number of datasets:

• Variance:

σ2 =
1
N

N

∑
n=1

(xn − m)2, m =
1
N

N

∑
n=1

xn (1)

• Skewness:

g1 =
m3

σ3 , m3 =
1
N

N

∑
n=1

[xn − m]3 (2)

• Kurtosis:

g2 =
m4

σ4 , m4 =
1
N

N

∑
n=1

[xn − m]4 (3)

• Summation of square roots (SSR):

SSR =
1
N ∑N

n=1(xn)
0.5 (4)

• Summation of variable exponent roots (SVER):

SVER =
1
N

N

∑
n=1

(xn)
exp, exp =

{
0.05 if (n > 0.25·N and n < 0.75·N)

0.75 otherwise
(5)

The extracted features are indicated in Figure 6.
Two variables that are uncorrelated are not certainly independent, however, they

may have a nonlinear relationship. In fact, two variables that have a little or insufficient
correlation may have a strong nonlinear relationship. Since in this study there is not
sufficient linear relation between the input and target, an MLP network with nonlinear
parameters was used to find the relationship between input and output with high accuracy.
Correlation analysis of each feature with respect to the target value is shown in Figure 7.

Figure 6. Cont.
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Figure 6. Extracted characteristics: (a) SVER, (b) SSR, (c) variance, (d) skewness, (e) kurtosis.

2.4. Artificial Intelligence

In the last few years, various computational techniques have been utilized for various
applications in the engineering research area [18–32]. In this study, ANN has been imple-
mented for flow pattern identification and volume ratio prediction. As a mathematical
system, ANNs are described to be formed by the plain processing components called
neurons acting in parallel and are produced as one or multiple layers [23,24]. MLP acquires
nonlinear function mappings and could learn the abundant diversity of nonlinear decision
surfaces as well. Figure 8 depicts the presented MLP model, in which the inputs are the
extracted features described in the former section, and the outputs are the volume fraction
ratios regardless of the flow pattern. The neuron output in the output layer is achieved by
the following equations [33,34]:

xl =
u

∑
i=1

aiwij + b j = 1, 2, · · · , m (6)

yj = f (∑u
i=1 aiwij + b) j = 1, 2, · · · , m (7)

output = ∑j
n=1(ynwn) + b (8)
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The equation related to the tansig activation function is given below:

tansig(x) =
2

(1 + exp(−2x))
− 1 (9)

where a, b, w, and f present the input parameters, the bias term, the weighting factor, and
the activation function, respectively. The index i is the input number, and j is the neuron
number in every hidden layer. The Levenberg—Marquardt algorithm was used for training
of the presented MLP networks, where the 1st and 2nd derivatives (i.e., the gradient and
Hessian) were utilized for network weight correction [35]. The available data are organized
into three categories: training, validation, and testing data.

Figure 7. Correlation analysis of extracted features: (a) Skewness, (b) Kurtosis, (c) Variance, (d) SVER, and (e) SSR.
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Figure 8. The configuration of the presented network for predicting void fraction.

Training dataset: The sample of data utilized to fit the model. The model sees and
learns from these data.

Validation dataset: The validation set is utilized to assess the performance of a model,
but this is for frequent evaluation. The model encounters these data on occasion, but never
does it “Learn” from these data.

Testing dataset: The sample of data utilized to offer an unbiased assessment of a final
model fit on the training dataset. The test dataset serves as the gold standard against which
the model is assessed. It is only utilized once after completing the network training.

The use of validation data in the network training process as well as final network
testing using test datasets will give us the reassurance to avoid under-fitting and over-
fitting problems. The training, validation, and testing samples data are 39 (70% of data),
9 (15% of data), and 9 (about 15% of data), respectively. In the present article, two ANN
models of MLP were trained to recognize the type of flow regime and to predict the
volumetric fraction. Several ANN configurations were tested and enhanced to obtain
the optimum ANN configuration with the least error. Several configurations with 1,
2, and 3 hidden layers owning different neuron numbers in every layer and diverse
activation functions were examined. MATLAB-2018b was utilized for training the ANN
model. The structure of neurons as predictors and clarifiers of ANNs are indicated in
Figures 8 and 9, respectively. The specification of the implemented MLP ANNs is described
in Tables 1 and 2. The outputs of the classifier network are the type of flow patterns: 1, 2
and 3 were deemed as the annular, homogenous and stratified flow pattern, respectively.

Figure 9. The configuration of presented ANN for classifying the flow regimes.
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Table 1. Specifications of the presented network for void fraction prediction.

Neural Network MLP

Nodes number in input layer 5
Nodes number in 1st latent layer 8
Nodes number in 2nd latent layer 5
Nodes number in output layer 1
Number of epochs 450
Activation function applied for hidden neurons Tansig
Activation function applied for output neuron purelin

Table 2. Characteristics of the presented flow regime classifier network.

Neural Network MLP

Nodes number in input layer 5
Nodes number in 1st latent layer 8
Nodes number in output layer 1
Number of epochs 380
Activation function applied for hidden neurons Tansig
Activation function applied for output neuron purelin

Many different architectures with different configurations were tested based on the
algorithm detailed below in order to find the optimized structure:

(1). The dataset is defined;
(2). The counter parameters with zero initial value are defined;
(3). The root mean square error is defined;
(4). The initial values of other parameters in order to break loops are set;
(5). Several nested loops are generated to test all of the structures;
(6). The ANN with various number of hidden layers, various number of neurons in each

layer, various epochs and various activation functions are tested in created loops
utilizing the specified counter parameters and other parameters’ initial values;

(7). The network’s effectiveness in each step is checked utilizing the specified error;
(8). The best network with lowest error is saved.

3. Results and Discussions

The function of the enacted network to the volumetric fraction project is displayed in
Figures 10–12 using a fitting, regression, and histogram diagram. Both the given output
and the network output are plotted in the fitting diagram. The blue star in the regression
diagram depicts the network output, and the red line depicts the given output. Apparently,
as the blue star is close to the red line, the planned network is more precise. The diagram of
error histogram illustrates the error distribution. To show the precision of the flow regime
classifier network, the confusion matrix is utilized and depicted in Figure 13 for training,
validation, and testing of the dataset.

The MAPE, MAE, and RMSE of the network are computed by:

MAPE% = 100 × 1
N ∑N

j=1

∣∣∣∣∣Xj(Exp)− Xj(Pred)
Xj(Exp)

∣∣∣∣∣ (10)
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RMSE =

⎡⎣∑N
j=1
(
Xj(Exp)− Xj(Pred)

)2

N

⎤⎦0.5

(11)

MAE =
1
N

×
N

∑
j=1

∣∣Xj(Exp)− Xj(Pred)
∣∣ (12)

where X(Exp) and X(Pred) denote the experimental and forecasted (ANN) void fractions,
respectively. The errors of the given predictor network are listed in Table 3.

The results of the relevant investigations and the work are listed in Table 4. As it
can be seen, the precision of the presented system in this paper is significantly higher
than all of the previous meters in this category which demonstrates the superiority of the
proposed method.

Figure 10. (a) Fitting, (b) regression, and (c) error histogram diagram for training the ANN to estimate the gas volume
ratio percentage.
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Figure 11. (a) Fitting, (b) regression, and (c) error histogram diagram for validation of the ANN to estimate the gas volume
ratio percentage.

Figure 12. (a) Fitting, (b) regression, and (c) error histogram schematic for testing the ANN to
estimate the gas volume ratio percentage.
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Figure 13. Precision of the flow regime classifier network: (a) train data, (b) validation data, (c) test data.

Table 3. Computed errors for training, validation, and testing dataset of the estimation network.

Dataset MAPE MAE RMSE

Training dataset 1.16 0.34 0.38
Validation dataset 0.99 0.21 0.26

Testing dataset 1.1 0.4 0.51

Table 4. The results of the relevant investigations and the presented two-phase flow meter in this study.

Refs
Radiation

Source
Number of Detectors/Type

of Detector
Number of Considered

Flow Regimes
Volume Fraction Prediction

Accuracy (RMSE)
Volume Fraction Prediction

Accuracy (MAPE)

[4] Cs-137 1/NaI 3 1.11 5.32
[36] Cs-137 2/NaI 3 1.29 1.48
[37] Cs-137 1/NaI 2 6.12 1.17
[38] Cs-137 2/NaI 3 2.12 1.32
[39] Cs-137 1/NaI 1 3.57 -
[40] Am-241 2/NaI 2 3.1 -
[13] X-Ray Tube 1/NaI 2 5.54 4.49
[8] X-Ray Tube 2/NaI 3 5.39 -

[Our study] X-Ray Tube 1/NaI 3 0.51 1.16
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4. Conclusions

The thirst of oil and gas companies for more and efficient access to fossil fuels has led
the industry to find new development approaches for new production techniques. In this
work, a system has been presented for accurate measurement of the volumetric percentages
in two-phase flows independent of the flow pattern, in which an X-ray tube, a Pyrex-glass,
and a sodium iodide detector, have been used. The different volume percentages of the
three flow regimes have been simulated and the data obtained from each of them have been
recorded. Five characteristics in the time-domain were acquired and deemed as the inputs
of the multilayer perceptron. The capability for the proposed networks to classify the flow
patterns with 100% accuracy and acquire the void percentages precisely with respect to
the recorded values of 0.51 for RMSE and 1.16 for MAPE, represents the success of the
approach presented in this work. The precision of the proposed X-ray-based system in this
paper is significantly higher than all of the previous meters in this category. In addition,
this meter has a safer and easier mechanism than other, radiation-based meters. The usage
of appropriate soft computing methods and the suitable radiation source were the reason
of this achievement.

Although the obtained results in this study are promising, the proposed methodology
has been investigated for two-phase flow in static conditions. For future studies, it is
planned to implement the proposed methodology for dynamic two-phase flows.
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Abstract: A series of computational models and simulations were conducted for determining the
dynamic responses of a solid metal projectile impacting a target under a prescribed high strain rate
loading scenario in three-dimensional space. The focus of this study was placed on two different
modeling techniques within finite element analysis available in the Abaqus software suite. The
first analysis technique relied heavily on more traditional Lagrangian analysis methods utilizing
a fixed mesh, while still taking advantage of the finite difference integration present under the
explicit analysis approach. A symmetry reduced model using the Lagrangian coordinate system was
also developed for comparison in physical and computational performance. The second analysis
technique relied on a mixed model that still made use of some Lagrangian modeling, but included
smoothed particle hydrodynamics techniques as well, which are mesh free. The inclusion of the
smoothed particle hydrodynamics was intended to address some of the known issues in Lagrangian
analysis under high displacement and deformation. A comparison of the models was first performed
against experimental results as a validation of the models, then the models were compared against
each other based on closeness to experimentation and computational performance.

Keywords: high strain rate impact; modeling and simulation; smoothed particle hydrodynamics;
finite element analysis

1. Introduction

High strain rate impact testing entails the high velocity collision of a projectile with
a target, then observing the effects of the interaction. This is primarily done in terms of
deformation and fragmentation, considering both the projectile and target, and evaluating
the target failure pattern and projectile penetration depth [1]. Due to the expense of these
impact experiments, especially considering the rising interest in hyper-velocity ballistic
applications, much of this research must be done utilizing numerical and computational
modeling and simulation methods [2]. Modeling and simulation of impact scenarios is
complicated, involving the evaluation of several non-linear steps, such as contact between
the projectile and target, high strain rates near the impact region, stress wave propagation
through both projectile and target, and material deformation and separation. Due to these
complexities, high strain rate impact has predominantly been modeled in two-dimensional
space, only recently expanding into three dimensions with moderate success of correlating
deformation with variation in impact velocity and projectile shape [3,4]. Progression into
three-dimensional simulation is important to accurately characterize projectile impact,
since in the real world impacts almost always occur across all three dimensions. Oblique
impact, translation, and rotation all play a significant role in the outcome of an impact
scenario, and these conditions can only truly be represented in three-dimensional space.
Due to the overall complexity of the impact scenarios and expansion into three dimensions,
being further combined with varied sources of non-linearity, it is essential to perform model
validation. A thorough impact evaluation provides the validation of numerical failure
models through the assessment of the energy absorbed during impact, penetration depth
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in a thick target or residual velocity of the projectile in the thin target, and the measured
deformation of both projectile and target [5].

There have been several numerical methods devised to provide insight and eval-
uate an impact event, two of the more prevalent methods used to simulate and model
impacts are the meshed finite elements and mesh-free discrete elements. The finite ele-
ment method (FEM) has successfully been used to simulate and model impacts beyond
a one-dimensional representation. Johnson first introduced two-dimensional and three-
dimensional Lagrangian numerical models to simulate high velocity impact, noting that
the elements were subjected to large distortions that required significant remeshing, which
introduced error into the solution [6,7]. Utilizing two-dimensional FEM, Gailly and Es-
pinosa were able to create an impact model that correlated well with experimental results
at increased impact velocities, up to 1450 m per second [8]. Following the work of Gailly
and Espinosa, Kurtaran et al. demonstrated that FEM is also capable of providing rela-
tively accurate three-dimensional simulations at increased velocities, up to 1500 m per
second [3]. As computing power increases, the use of three-dimensional FEM in modeling
impact has also increased, with work expanding into impact modeling of fiber reinforced
composites [9,10], concrete beams [11], and thin target perforation [12,13].

The second numerical method for analyzing impacts, which has been gaining re-
newed interest, is the Discrete Element Method (DEM). Although Cundall and Strack
first suggested the use of the DEM in 1979 as a numerical method to evaluate the stresses
and strains within a continuum of discontinuous materials [14], it was not until the early
1990s that it began to gain influence in impact modeling. Libersky et al. first adapted
the Smoothed Particle Hydrodynamics (SPH) methodology within DEM to model the
dynamic response of solids [15,16], later adapting their model to simulate high velocity
impact [17]. Johnson et al. were some of the first to incorporate SPH into a computational
model for impact simulation, which was used to address the severe distortions noted in
traditional FEM [18]. The authors later introducing a normalized smoothing function into
their algorithm which scoped the region of particle interaction within a coupled FEM-SPH
model [19]. More recently, SPH modeling techniques have expanded into simulation of
hypervelocity impact [20,21], penetration of ballistic gelatin [22,23], perforation of layered
targets [24], and use of granular media [25,26]. Much of this work has remained in two-
dimensional space as the computational requirements for modeling in three-dimensions
are still high.

Within the Air Force Institute of Technology (AFIT), FEM has been used successfully
in related impact analysis efforts preceding the current research effort. The previous
work focused on two-dimensional stress field analysis for use in topology optimization of
an additively manufactured projectile impacting a concrete target [27], expansion of the
impact scenario to multiple target sets [28], inclusion of a multi-material projectile [29],
and inclusion of a lattice substructure within the projectile wall [30]. The current line
of research is expanding the high strain rate impact scenario to three dimensions with
the inclusion of a lattice section into the projectile to aid in impact energy absorption
and stress wave management [31,32]. Impact testing will also be used to determine the
dynamic material properties of the lattice designs, along with characterizing plasticity and
damage modeling parameters. With an emphasis on high strain rate impact, one of the
first steps taken in this research was to develop and validate a three-dimensional physics
based computational model capable of accurately representing the impact environment.
As part of the modeling effort, an analysis between two particular techniques, traditional
Lagrangian finite elements and SPH discrete methods, was performed to investigate the
differences in methodology, modeling, and analysis capabilities.

2. Methodology

FEM is a numerical method used to find the solution to boundary value problems.
FEM grew out of the aerospace industry in the 1960s, as a method for performing stress
and thermal analysis on complex aircraft, rocket, and engine parts [33]. FEM uses the

130



Mathematics 2021, 9, 274

concept of discretization, by applying a fixed mesh, to divide a body into smaller units,
finite elements, which are interconnected across shared nodes or boundaries. Applicable
field quantities are approximated across the entire structure through piecewise element
interpolation and summation [34].

FEM has been used with success to describe the failure modes of brittle materials
during ballistic penetration, finding where transition from micro-cracking to pulverization
occurs in ceramic armor [8]. Utilizing FEM techniques, two-dimensional impact models
have been created that showed good correlation with experimental results even at higher
impact velocities, up to 1450 m per second. More recently, FEM has proven capable
of providing relatively accurate three-dimensional simulations at increased velocities,
modeling the deformation patterns of projectile and target up to 1500 m per second, as well
as showing the effects of thermal softening in target deformation at the higher velocities [3].
As demonstrated by the aforementioned studies, one benefit of FEM over other impact
modeling techniques is the relative computational ease to perform simulations in both
two and three dimensions while maintaining good correlation with experimental and
real-world results.

Since Dassault Systèmes Abaqus finite element software was used as the primary
means of computational analysis within this study, the specific applications and mathemat-
ical representations used within Abaqus are highlighted within the described theory and
application sections.

2.1. Lagrangian Finite Element Analysis

Finite Element Analysis (FEA) is the numerical method for solving complex boundary
value problems where analytical solutions may not be able to be obtained utilizing FEM.
Within FEA, the explicit approach is most useful in solving problems that result in large
deformations or are highly time dependent. Instead of solving the traditional finite element
problem of global mass and stiffness matrices, the explicit technique solves Newton’s
Second Law of Motion, F = ma for each element. This relies on a half-step time integration
technique that evaluates a known nodal solution of displacement and acceleration compo-
nent vectors at set time t with the velocity components at time t − 1

2 [34]. This solution is
then iterated with the next time increment, Δt. This analysis technique is formulated as an
initial value problem that is capable of determining how a system evolves given an initial
loading condition and position. Explicit analysis was required to be used in this study
since it deals with the time dependent behavior of materials, the high strain rate effects of
impact, and the progression of a wave through the system.

The explicit analysis approach, in order to account for the deformation rate and stress
wave propagation of impact, must consider displacement, velocity, and acceleration on
a node by node basis within the structure with respect to time. Abaqus incorporates a
finite difference scheme incorporating central difference time integration (CDTI) that is
used to calculate nodal field variables as the time step is incremented along with the
use of lumped mass matrices. As this is a three-dimensional problem, the nodes create
three-dimensional solid elements, which were represented by eight-noded stress bricks
with reduced integration, or C3D8R elements, in this implementation. The C3D8R is
considered a general purpose three-dimensional linear element with a single integration
point. The reduced integration allows the element to overcome the shear locking issue
prevalent in the full integration element, C3D8, under high values of plasticity. Shear
locking is prevalent in all first-order, fully integrated solid elements, where the element
cannot exhibit pure bending [35]. The failure to exhibit pure bending deformation leads
to parasitic shear strain developed alongside the bending strain, where strain energy is
absorbed by the shear strain causing the element to appear too stiff. Reduced integration
of the element limits the development of parasitic shear strain. The first step in the CDTI
process, using a half-step central differences scheme, is to create a force balance using the
equations of motion at time t, then the acceleration values at time t are used to determine the
nodal velocities at time t+ Δt

2 , which is then, in turn, used to determine the displacements at
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time t + Δt. This process is repeated throughout the time interval of interest, and evaluates
deformation and stress wave propagation through the part. In this implementation of
CDTI, the expressions for displacement (d), velocity (ḋ) and acceleration (d̈) are given by
Equation (1), Equation (2) and Equation (3) respectively [36].

d(i+1) = d(i) + Δt(i+1)ḋ(i+ 1
2 )

(1)

ḋ(i+ 1
2 )

= ḋ(i− 1
2 )
+

Δt(i+1) + Δt(i)
2

d̈(i) (2)

d̈(i) = M−1(F(i) − R(i)). (3)

In these equations, the subscript i is the time increment number, and therefore i − 1
2

and i+ 1
2 refer to the mid-increment values, Δt refers to the time step, M is the lumped mass

matrix, and F is applied external load vector and R is the internal force vector [35]. The in-
ternal force vector is determined through an analysis of the element stress-strain relations.

In FEA, elemental strain, ε is determined from displacement through utilization of the
strain-displacement matrix, shown in Equation (4).

ε = Bu(i) (4)

The strain-displacement matrix, B, relates the displacements to the element strain
component based on the derivatives of the element shape functions, or basis functions.
The shape functions used by the C3D8R element are shown in their isoparametric form
in Equation (5). In the isoparametric form, the reference coordinate system is changed to
a natural coordinate system, where the element coordinates range from −1 to 1 regard-
less of the global element position. Here ξ, η, and ζ represent the element’s x, y, and z
isoparametric coordinates respectively.

N1 =
1
8
(1 − ξ)(1 − η)(1 + ζ)

N2 =
1
8
(1 − ξ)(1 − η)(1 − ζ)

N3 =
1
8
(1 − ξ)(1 + η)(1 + ζ)

N4 =
1
8
(1 − ξ)(1 + η)(1 − ζ)

N5 =
1
8
(1 + ξ)(1 − η)(1 + ζ)

N6 =
1
8
(1 + ξ)(1 − η)(1 − ζ)

N7 =
1
8
(1 + ξ)(1 + η)(1 + ζ)

N8 =
1
8
(1 + ξ)(1 + η)(1 − ζ)

(5)

Thus, the strain-displacement matrix for this element can be found using the relation-
ship shown in Equation (6), where the partial derivatives are taken within respect to the
isoparametic coordinates found in the shape functions Ni presented in Equation (5).

[B] = [∂]][N] (6)

The strain determined from Equation (4) is the total strain, which is comprised of both
the elastic and viscoplastic strain. Elastic strain is the deformation that is fully recoverable,
and therefore is not reliant on deformation history. Viscoplastic strain on the other hand is
not fully recoverable and results in permanent deformation, which means that is does rely
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on deformation history. Elastic strain is required to determine the internal force vector and
is given by Equation (7).

εe = εtotal − εvp(i) (7)

where εvp(i) is the viscoplastic strain at time increment i. The viscoplastic strain is deter-
mined through evaluation of a chosen plasticity model and determined in a later step of
the explicit analysis. Having the elastic strain, the stress can now be determined through
application of Hooke’s Law, see Equation (8).

σ = Eεe = E(εtotal − εvp) (8)

Here E is the stress-strain relationship matrix, or elasticity matrix, which relates stress
and strain through the Elastic Modulus, Shear Modulus, and Poisson’s Ratio. Figure 1
depicts a typical stress-strain curve with the total strain separated into viscoplastic and
elastic strain components. As shown here, the viscoplastic strain is taken as the permanent
set, or unrecoverable strain, when the curve is unloaded along the linear elastic slope.
The recovered strain is the elastic strain portion, and that strain when multiplied by the
elastic modulus provides the stress value at the total strain value as depicted. Therefore
the stress is only reliant on the elastic strain and elastic matrix.

Figure 1. Typical Uniaxial Stress-Strain Response Curve.

Once the stress has been calculated, the internal force vector can be found using
Equation (9), which is used to determine the acceleration in Equation (3) through a nodal
force balance.

R =
∫

V
BTσdV (9)

In this integral, V represents the element volume at the current time step. The evalua-
tion to determine R is based on the original shape elements, and as the elements deform the
nodal integration across the volume is distorted when utilizing the Lagrangian coordinate
systems for the B matrix. This allows for the development of errors within the solution.
Abaqus uses the Eulerian coordinate system for certain functions, which is able to avoid
significant distortion, to overcome this problem, although the coordinate transformations
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still introduce some error in this step. This error will ultimately be realized in the resultant
nodal displacements determined through use of the CDTI Equations (1)–(3).

Plasticity is determined through an incremental approach, an associated flow rule,
that is characterized through the use of an incremental stress function, the effective stress,
and an incremental plastic strain function, the effective strain increment. For this impact
study, the Johnson-Cook Flow Rule will be utilized, which allows for determination of
the viscoplastic strain. The Johnson-Cook Flow Rule Condition evaluates the relationship
between the Johnson-Cook Flow Stress and Static Stress, it is given by Equation (10).
The Johnson-Cook equations are represented here as one-dimensional functions, when in
reality they are multi-dimensional, but hold the same relationships as presented.

σy ≥ σ0. (10)

σy is the Johnson-Cook Flow Stress is given by Equation (11), and σ0 is the Static Stress,
given by Equation (12) [37].

σy =
[
A + B(εvp)

n][1 + C ln

(
ε̇vp

ε̇0

)]
[1 − (T∗)m] (11)

σ0 = [A + B(εvp)
n][1 − (T∗)m]. (12)

In Equations (11) and (12), A is the initial yield stress, B is the hardening modulus,
C is a strain rate dependent coefficient, m is a thermal softening variable, and n is a
work hardening variable. A, B, C, m, and n are material specific variables generally
determined through experimentation. The first bracketed term accounts for the strain
hardening, or plastic strain accumulation. The second bracketed term accounts for the
effects of strain rate. The third, and final, bracketed term accounts for the effects of
temperature. ε̇0 is a reference strain rate, which is set to the strain rate for which A, B,
and n were determined, and T∗ is the homologous temperature, a ratio of the difference
between the current temperature and room temperature over the difference between the
material melting temperature and the current temperature, Equation (13). The temperature
considered within the flow equation is a function of amount of plastic energy that is
assumed present at the nodal locations. For impact problems, this is generally taken to be
90% or greater [38,39].

T∗ =
T − T0

Tm − T
. (13)

Stress can be divided into two components, hydrostatic stress and deviatoric stress.
Hydrostatic stress can be thought of as pressure stress, and is the average of the three
principal stresses, see Equation (14) [40].

σhyd =
1
3
(σ11 + σ22 + σ33). (14)

Based on the assumption that metals are incompressible, it follows that hydrostatic
stress cannot cause deformation. This means that deformation is caused by the deviatoric
stress, which is the total stress minus the hydrostatic stress, presented in Equation (15) [40].

σ′ = σtot − σhyd. (15)

The flow stress equation, Equation (11), is a function of the von Mises stress equation,
which is derived from the deviatoric stress, as shown in Equation (16).

σvM =

√
3
2

σ′ : σ′. (16)

Here, : represents the double inner product, carried out across two second order stress
tensor, which provides a scalar output. The von Mises stress is useful as an invariant
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effective stress, which can predict the onset of yield, which is why the von Mises stress can
be utilized as the effective stress, σe, for determination of plasticity [34].

If the Johnson-Cook Flow Rule Condition evaluates as true, then yielding has occurred
and the viscoplastic strain rate must be determined to calculate the equivalent viscoplastic
strain. Otherwise, yielding has not occurred and the element is still in the elastic region,
and therefore the viscoplastic strain rate is zero. The viscoplastic strain rate is determined
through Equation (17).

ε̇vp(i+1/2) = ε̇0e
[

1
C

(
σy
σ0

−1
)]

. (17)

The viscoplastic strain rate is then used to calculate an equivalent plastic strain, see
Equation (18).

εvp(i+1) = εvp(i) +

√
2
3

ε̇vp(i+1/2) : ε̇vp(i+1/2)Δt(i+1/2). (18)

Δt(i+1/2) is the half time step increment. This equivalent plastic strain is carried forward to
the next time step and used to determine the elastic strain. This time step iteration process
is continued for all of the subject finite elements until the time interval is exhausted, or the
elements are damaged, which is covered further in Section 2.4 [35].

An equation of state (EOS), see Section 2.3, is required to be used when modeling
dynamic impacts in order to balance the physical properties of the projectile and target
due to shock wave creation and propagation. The EOS is also used in the solution of the
conservation of mass, momentum, and energy equations. This allows velocity to be a
normalizing function, so that equilibrium conditions can be determined by relating the
material’s pressure and internal energy to its density and temperature.

2.2. Smoothed Particle Hydrodynamics

The large deformation and high strain rates of the projectile impact problem necessi-
tates that another numerical technique be utilized, SPH. SPH is a computational technique
used in FEA for the simulation of fluids and solid mechanics, primarily utilized due to its
ability to trace failure events in a more physically representative manner. It was developed
in the late 1970s for use in analyzing complex three-dimensional astrophysics problems
related to asymmetry in stars [41] and fission of a rotating star [42] utilizing a mesh free
method to determine element forces. As mentioned, this work was adapted and applied
to solid materials in the early 1990s for use in a strength of materials elasticity model [15],
then further refined for use in determining dynamic material response [16]. When ap-
plied to solid mechanics, it was found that the mesh free SPH method was able to handle
larger displacements and distortions more accurately than the traditional Lagrangian
grid-based methods, making SPH a useful tool in shock, impact, fracture, and damage
analysis [4,43–45].

In SPH, the part being analyzed is discretized into a set of particles which retain all of
the relevant field variable information within an associated volume, as well as maintain a
mass [46]. Figure 2 shows the difference between a traditional grid-based FEM and SPH.
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Figure 2. Traditional Grid Mesh versus Smoothed Particle Hydrodynamics Discretization.

As integrated within Abaqus, SPH is an extension of the explicit method, except in-
stead of solving for residual forces through element volume integration to determine nodal
displacements. SPH relates particles, via a weighting function, through satisfying the
conservation equations about a point. This is accomplished through use of an interpola-
tion method to express any field value function, f in terms of the particle set, defined by
Equation (19).

f (x) =
∫

f (x′)W(x − x′, h)dx′. (19)

In this equation, x represents the coordinates of the point of interest, x′ denotes the
particle positions, h is the smoothing length variable, and W is the interpolating kernel,
which must satisfy the two properties presented in Equations (20) and (21). The smoothing
length is the distance chosen to determine which particles within the model will influence
the interpolation for the point of interest.∫

W(x − x′, h)dx′ = 1 (20)

lim
h→0

W(x − x′, h) = δ(x − x′). (21)

Here δ represents the Delta function [47]. As the kernel starts with the Delta function,
which is point oriented, a smoothing function is required to make the integral numerically
discrete, although the smoothing function also makes the integration in Equation (19) an
approximation. An essential property of the smoothing function value for a particle is that
it should be monotonically decreasing with increasing the distance away from the particle.
This property is based on the physical consideration in that a nearer particle should have a
larger influence on the particle under consideration than one further away. Additionally,
as mentioned, the smoothing function should satisfy the Dirac delta function condition as
the smoothing function approaches zero. This property of the smoothing function makes
sure as the smoothing length tends towards zero, the approximation value approaches the
function value [48]. The result of applying Equations (19)–(21) is determining the field
variable values through convolution across the domain created by the smoothing length
utilizing the kernel function. In the original SPH theory, the calculations were performed
using a Gaussian kernel; however, the cubic spline kernel is more widely used today than
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the Gaussian in SPH, and is the default kernel used within the Abaqus software package.
The cubic spline kernel is shown in Equation (22) [35].

W(x − x′, h) =
1

h3π

⎧⎪⎨⎪⎩
1 − 3

2 ξ2 + 3
4 ξ3, for 0 ≤ ξ ≤ 1;

1
4 (2 − ξ)3, for 1 ≤ ξ ≤ 2;
0, for ξ > 2,

(22)

where ξ = x
h . The cubic spline kernel reduces the number of particles included in the

calculations to those that are within twice the smoothing length of the particle of interest,
while still maintaining C2 continuity. The kernel function is generally chosen based on the
type of problem being addressed, and a reduced interaction function, such as the cubic
spline kernel, is often better suited for highly time dependent problems that occur over
a short duration, such as impact events [49]. Regardless of kernel chosen, for numerical
operations the field variables can be approximated though a kernel summation, which is
presented in Equation (23).

f (x) ∼=
N

∑
k=1

fkW(x − xk, h)
mk
ρk

. (23)

Here, k represents the particle index, N is the total number of particles, fk is the field
variable at the kth particle, xk is the position of the kth particle, W and k remain the kernel
function and smoothing length variable, mk is the mass of the kth particle, and ρk is the
density of the kth particle [44]. A visual example of a kernel function is depicted in Figure 3,
where the black particles would be included in the computations and white particles would
not be included.

Figure 3. Visualization of the Cubic Spline Kernel Function.

As can be seen by viewing Equations (19) and (23), one of the primary differences
between SPH and traditional grid based FEA is that SPH solves the field value differential
functions through discretization of volume into particles versus a point-wise discretization
of space-time [50]. Instead of solely using the traditional Lagrangian explicit technique
based on Newton’s Second Law of Motion, the conservation of mass, momentum, and en-
ergy equations are utilized to determine particle response [47]. SPH still uses a Lagrangian
formulation; however in the SPH implementation, the conservation equations must be
satisfied for each particle at each time increment and the updated field values will be
carried forward to the next time step.
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The first conservation equation that must be addressed is the conservation of mass, also
known as the continuity equation. The particle density is calculated through the continuity
equation, which is needed for the two remaining conservation equations. In evaluating
the mass density interaction between a particular particle pair, notated as a − b, the con-
tinuity equation can be represented as the time rate of change of mass density shown
in Equation (24). A subscript a denotes the properties at the particle of interest, and a
subscript b denotes the properties at another particle within the field.

dρa

dt
= ∑

b
mb(va − vb)∇aWab. (24)

In these equations, ρ is the particle density, m is the individual mass of the particle, v is
the velocity of the particle, ∇ is the gradient function taken with respect to the coordinates
of the particle of evaluation, and Wab is the kernel function relating particles a and b.

Once the conservation of mass equation has been satisfied, the conservation of mo-
mentum, or momentum equation, will be evaluated. Again, in evaluating the interaction
between a particle pair a − b, the momentum equation starts from a pressure gradient
estimate shown in Equation (25) [47].

ρa∇Pa = ∑
b

mb(Pb − Pa)∇aWab. (25)

Here, P is the pressure at the particle under evaluation. In this form, the momentum
equation is considered asymmetric, and can lead to unstable simulations by creating an
inconsistent energy equation. To address this problem the pressure gradient can by sym-
metrized, then the equation can be rewritten using the relationship found in Equation (26)
to arrive at Equation (27) [47].

∇P
ρ

= ∇
(

P
ρ

)
+

P
ρ2 ∇ρ (26)

dva

dt
= −∑

b
mb

(
Pb

ρ2
b
+

Pa

ρ2
a

)
∇aWab. (27)

In Equation (27), dv/dt is the total time derivative, in the Lagrangian sense, of the
velocity vector. By utilizing this form of the momentum equation both the linear and
angular momenta are conserved, which may not be the case with an asymmetric pressure
gradient term.

Finally, the conservation of energy, or energy equation, can be addressed. In the
original SPH formulation, this was the rate of change of thermal energy per unit mass of
the particles, or the hydrodynamic energy equation, absent heat sources or sinks as shown
in Equation (28) [46].

de
dt

= −
(

P
ρ

)
∇ · v. (28)

Here, de/dt is the time derivative of the specific internal energy, e. This equation
can be rewritten to determine the conservation of energy at particle a, and simplified for
adiabatic systems, as shown in Equation (29).

dea

dt
=

(
Pa

ρ2
a

)
∑
b

mb(va − vb) · ∇aWab. (29)

There are several variations on the energy equation that can be used in SPH analysis,
and it is important to note that several of these forms can present non-realistic physical
solutions, such as negative internal energy. These issues are typically solved through use
of a predictor-corrector approach for analysis. In this approach the governing conservation
equations are used to predict the field variables utilizing the chosen kernel, the predictor
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phase. This may lead to an unbalanced energy solution, which is corrected for through a
local restoration of the conservation of energy equation, the corrector phase. Following the
corrector phase the field values are adjusted to meet the new particle state. This process is
followed at every time step used in analysis, and with a sufficiently small time increment
the numerical adjustments used in the predictor-corrector method do not affect the accuracy
of the solution [44].

As with the traditional Lagrangian implementation in Abaqus, the SPH technique
incorporates the Johnson-Cook Flow Stress to determine viscoplastic strain, Equation (11).
Again, this assumes that the von Mises flow stress can be determined as the combination of
plastic strain accumulation, strain rate effects, and thermal effects. The Johnson-Cook Flow
Stress is also used in determining particle damage utilizing the Johnson-Cook Damage
Model described in Section 2.4.

One of the concerns that arose from adapting SPH to solid mechanics is the issue of
boundary effects. When the summation approximation, Equation (23), is applied near
a boundary there is a truncation error, which results in an incomplete summation and
C0 continuity may not be maintained. This means that rigid body motion may not be
determined correctly through the analysis process [50]. There have been many efforts to
overcome this error to regain at a minimum C1 continuity through the use of Lagrangian
stabilization [51], symmetric formulation [52,53], Galerkin formulation [54], least squares
methods [55,56], or the ghost particle method [57].

Abaqus incorporates the ghost particle method as a primary means to deal with SPH
boundary surfaces. This method creates imaginary particles when an SPH body interacts
with a solid Lagrangian boundary. Interaction is considered when a particle is within twice
the smoothing length of a boundary surface. In this case, a virtual plane is formed along
this boundary, with the ghost particles being formed across the plane from the physical
particles. The number of ghost particles included within the simulation is based upon the
smoothing length utilized and the boundary condition. The ghost particle’s field properties
are computed from those of the physical particles, as if the SPH part spanned the virtual
plane, but they are assigned the opposite sign of the physical particles. The opposing field
values are derived from a Lennard-Jones potential, which forms a repulsion force along
the boundary surface, preventing SPH particle penetration of the solid [58–60]. Within the
SPH methodology, the Lennard-Jones potential is used solely as a mathematical force
generator for the required numerical boundary force. The use of ghost particles improves
performance of SPH method integration along the boundaries, and it is worth noting that
the ghost particles are not permitted to interact back across the virtual plane with the
physical particles. As the ghost particles are still permitted to interact amongst themselves,
care must be taken to avoid an excess of ghost particle mass [57]. An excess of ghost
particle mass can start providing false inputs into the boundary surface integration, which
in-turn can lead to errors in physical particle field values along the boundary. To limit the
ghost particle mass the smoothing length can be decreased near a boundary, which is the
application method used within Abaqus. See Figure 4 for a pictorial representation of the
ghost particle method acting along a perpendicular boundary surface.
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Figure 4. Ghost Particle Formulation along a Lagrangian Boundary Surface.

2.3. Equation of State

An EOS provides a hydrodynamic material model for use in FEA, in which the sys-
tem’s pressure, volume or density, temperature, and energy are related through application
of a specific EOS [61]. EOS are used to relate the state variables together when the con-
servation equations are not enough, which is the case of high strain rate impact, along
with all fluid dynamics cases. One of the most commonly used EOS in impact modeling is
the Mie-Grüneisen equation, which has also proven effective at predicting the response
of porous materials to compressive shock waves [62–65], and was the EOS used in the
Abaqus impact simulations run as part of this research. In order to develop a relationship
between pressure and volume there must be a link between statistical mechanics and
thermodynamics, which starts with the analysis of the Helmholtz free energy equation,
Equation (30) [62].

AH = U − TS. (30)

AH represents the Helmholtz free energy, U is the internal energy of the system, T is
the absolute temperature of the surroundings, and S is the entropy of the system. Within the
EOS, entropy is linked to heat transfer, which ties the EOS to the same phenomena repre-
sented in the Johnson-Cook Flow Stress Equation, Equation (11), where temperature is a
function of plastic energy concentrated at a nodal coordinate. The Helmholtz free energy is
considered the useful energy within the system, as opposed to the energy related solely to
the thermal environment. As such, it is defined as a measure of the work attainable within
a closed thermodynamic system with constant temperature, or isothermal. Utilizing the
fundamental thermodynamic relationship, see Equation (31), pressure is obtained through
taking differential of the Helmholtz free energy with regards to volume, Equation (32) [66].

dA = TdS − PdV (31)

P =

∣∣∣∣∂AH
∂V

∣∣∣∣
T

. (32)

140



Mathematics 2021, 9, 274

Through use of the virial theorem, mathematically represented in Equation (33) [67],
Grüneisen obtained the pressure-energy relationship shown in Equation (34) [68]. For ap-
plications in mechanics, the virial theorem states that twice the total kinetic energy within
a system is equal to the interaction of the particle forces, or virial, within the system [67].
Use of the total kinetic energy formulation provides valuable information on the system
behavior, relating energy to force, which allows for the reformulation of the pressure-energy
relationship from Equation (32) to Equation (34).

KE = −1
2

N

∑
k=1

〈Fk · xk〉. (33)

Here KE represents the total kinetic energy, N is the total number of particles, Fk is
the force applied to the kth particle, and xk is the position vector of particle k in the local
coordinates for a Lagrangian system [69].

P =
Γ
V

E. (34)

In this equation, Γ is the Grüneisen coefficient, defined by Equation (35) [70], where
Vs is the specific volume, e is the specific internal energy, and P is the pressure.

Γ = Vs(∂eP)Vs
. (35)

From here the Grüneisen equations were modified, utilizing the work performed by
Mie, by relating the current conditions to those of a known value, a point off of the Hugoniot
curve. Additionally, a simplification to the Grüneisen equations was made by correlating
the material volume to its density. These two associations led to the Mie-Grüneisen equation
taking on a linear form with respect to energy, as shown in Equation (36) [35].

P − PH = Γρ(e − eH). (36)

Here P is the current pressure, PH is the Hugoniot pressure, Γ is a redefined Grüneisen
ratio, ρ is the material density, e is the specific internal energy, and eH is the Hugoniot
specific energy. The Grüneisen ratio is presented in Equation (37), the Hugoniot pressure is
presented in Equation (38), and the Hugoniot specific energy is presented in Equation (39).

Γ = Γ0
ρ0

ρ
. (37)

Γ0 is the material specific Grüneisen coefficient, ρ0 is a reference density, and ρ is the
current density.

PH =
ρ0c2

0η

(1 − sHη)2 . (38)

In the Hugoniot pressure equation, c0 is the material reference speed of sound, η is a
nominal compressive strain, and sH is the linear Hugoniot slope coefficient. The Hugoniot
pressure is solely a function of density, and is determined through fit of experimental data.

eH = PH
η

2ρ0
. (39)

In Equations (38) and (39), the nominal strain is represented by Equation (40).

η = 1 − ρ0

ρ
. (40)
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Abaqus uses the form of the Mie-Grüneisen equation presented in Equation (41) for
its analysis [35].

P = PH

(
1 − Γ0η

2

)
+ Γ0ρ0e. (41)

This equation is solved simultaneously alongside the three conservation equations
at each material point and time increment to ensure that the state variables are balanced
throughout an impact event. In this implementation of the Mie-Grüneisen EOS, the refer-
ence material properties that will be used are those for the base material of the projectile
and target.

2.4. Damage Modeling

As mentioned above, for both the Lagrangian and SPH finite analysis techniques,
a damage model is required to determine when the elements or particles fail within a simu-
lation so that they can be analyzed appropriately as part of the FEA process. The damage
model used in this study, the Johnson-Cook failure model, was chosen due to its ability to
model the failure of metals across a range of strain rates.

The Johnson-Cook failure model was developed in the 1980s, and It makes the as-
sumption that the change in material properties between static and dynamic cases is due
to strain rate effects, which can account for large strains, high temperatures, and high
pressures [71]. It incorporates the Johnson-Cook material model and is based on plastic
damage accumulation, that damage begins when plasticity begins. This model is commonly
used for estimating the dynamics deformation of metals under high strain rates [72–74].

The Johnson-Cook failure model defines material damage as the sum of incremental
equivalent plastic strain divided by the critical fracture strain, see Equation (42).

D = ∑
Δεp

ε f
. (42)

In this failure model, D is the Johnson-Cook damage coefficient, Δεp is the increment
of equivalent plastic strain, and ε f is the Johnson-Cook fracture strain, or strain at failure,
see Equation (43). The right hand side of Equation (42) sums the incremental change in
the element or particle plastic strain, and compares it as a ratio to the failure strain of the
material, which is presented as the Johnson-Cook damage coefficient. The premise here is
that as long as there is viscoplasticity, damage is accumulating. The damage coefficient has
a range of zero to one. Where zero represents a pristine, or undamaged material, and a one
represents the material being fully damaged and fracture will occur.

ε f =
[

D1 + D2eD3σ∗]
[1 + D4ε∗][1 + D5T∗]. (43)

The Johnson-Cook relationship assumes that the damage effects can be decoupled.
The first bracketed term contains the stress triaxiality effects. Where D1, D2, and D3
are material specific model fit properties, and σ∗ is triaxiality ratio, or the ratio of the
average normal stress to von Mises equivalent stress. This term accounts for the static
and quasi-static strain response of the finite element parts. The second bracketed term
comprises the strain rate effects. Where D4 is another material specific model fit property
and ε∗ is the dimensionless strain rate ratio of viscoplastic strain rate to reference strain
rate. The reference strain rate here is the same as that used in Equation (11). The final
bracketed term includes the effects of temperature on material failure. Where D5 is a
material specific model fit parameter, and T* is the material’s homologous temperature,
Equation (13). The Di terms are traditionally found through experimentation, utilizing
quasi-static compression testing and the Split Hopkinson Pressure Bar test, allowing for
modeling of the material response across a broad range of strain rates.
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The damage evolution presented by the Johnson-Cook failure model describes the
degradation in the material stiffness once damage is initiated. This reduction in stiffness is
formulated by Equation (44).

σ = (1 − D)σy. (44)

Here σ is the stress within the element or particle, σy is the Johnson-Cook Flow Stress
given by Equation (11), and D is the damage variable as described above. When the
element or particle is fully damaged, D = 1, it is removed from the analysis.

3. Results and Discussion

In this study, a three-dimensional physics based computational model was developed
in Abaqus. This model was used to predict the damage and failure of both projectile and
target under high strain rate impact using the Johnson-Cook plasticity and damage models
native in the Abaqus software. The materials and dimensions for the initial model were
chosen to match experimental validation conditions [4], in order to provide validation of
the modeling techniques, configuration, and simulation execution.

The initial computational model used for this study was a single projectile-single
target assembly constructed in Abaqus using the inherent explicit finite element solver.
The models all started at the point of impact with calculated impact velocities from the
experimental data. Contact between the two parts was modeling using the general contact
algorithm native to Abaqus, which utilizes a penalty method to impose contact constraints
through introduction of increased local stiffness. The general contact algorithm was used
to enforce contact between two bodies, and model friction between parts. This algorithm
allows for automatic contact definition based on surface inclusion. Within the Lagrangian
systems, contact forces are generated based on node, face, and edge interactions. It is also
capable of enforcing contact between Eulerian and Lagrangian systems, compensating
for any discrepancies between the two constructs. Of the contact algorithms available
within Abaqus, general contact is the only contact algorithm that can be used with three-
dimensional models, and is capable of evaluating across a mixed model type simulation.
The friction developed here follows the Coulomb friction model, which formulates the
friction coefficient based on primarily on contact pressure for impact, but also includes
surface slip and temperature at the contact point [35].

The projectile was configured with a cylindrical body 24.7 mm in length and 16.7 mm
in diameter to develop an equivalent system to the experimental setup. It incorporated
a blunt nose geometry, and was modeled using reference material properties of 6061-
T6 Aluminum, shown in Table 1, along with the Johnson-Cook Parameters shown in
Table 2. The impact velocity of 970 m per second was applied as a load to the rear face
of the projectile, with no other boundary conditions enforced upon the projectile within
the simulation.

Table 1. Material properties of 6061-T6 Aluminum [75].

Material Property Value

Elastic Modulus, E 69 GPa
Poisson’s Ratio, ν 0.33

Density, ρ 2700 g/m3
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Table 2. Johnson-Cook Model Parameters for 6061-T6 Aluminum [76].

Johnson-Cook Parameter Value

Yield Stress, A 324.1 MPa
Strain Hardening Parameter, B 113.8 MPa

Strain Rate Parameter, C 0.002
Thermal Softening Exponent, m 1.34
Strain Hardening Exponent, n 0.42

Damage Constant, D1 −0.77
Damage Constant, D2 1.45
Damage Constant, D3 −0.47
Damage Constant, D4 0.0
Damage Constant, D5 1.6

The targets were configured as square-faced plates that were 203 mm by 203 mm with
a thickness of 12.7 mm, utilizing the same material set. The target had fixed boundary
conditions applied at both the upper and lower surfaces, as if it were affixed in a mount,
with the other edges left as free surfaces. A depiction of the simulation boundary and
initial conditions is shown in Figure 5.

Figure 5. Depiction of Impact Simulation Loading and Boundary Conditions.

All of the simulations were evaluated for an impact time of 12 μs. Presented here are
the validation cases, utilizing a variety of FEA techniques, compared to the previously
acquired experimental results as means for evaluation of the modeling techniques [4]. Three
variations of the base model were developed to evaluate different modeling techniques for
use in this work. The first two models were based solely on Lagrangian FEA techniques,
comprising a full scale model to match the real-world dimensionality of the experiment,
and a symmetry reduced model that used dual-axis symmetry to achieve a quarter scale
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model. The third incorporated the use of SPH to model the target. The target was chosen
for the use case of SPH as it would see larger deformations than the projectile.

Figure 6a presents the stress colormap that corresponds to traditional Lagrangian
models, and Figure 6b presents the stress colormap scales that correspond to the mixed
Lagrangian-SPH models.

(a) (b)

Figure 6. Stress Colormap Scale: (a) Traditional Lagrangian Model, (b) Mixed Traditional-SPH Model.

3.1. Lagrangian Models

The projectile and target were both symmetric across two axes, allowing the model to
be cut along those axes and reduced in scale, to a quarter scale of the full model. This was
only possible because of the shared planes of symmetry about the impact location of both
the parts, forces, and boundary conditions. A visual comparison of the symmetry reduced
and full scale model are provided in Figure 7.

Figure 7. Symmetry Reduced versus Full Scale Model Impact Model.
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As mentioned, in both the reduced and full scale models, the C3D8R eight-noded stress
bricks with reduced integration were used as the elements for analysis of the projectile
and target. In the full scale model, the projectile incorporated 7800 elements, and the plate
target was comprised of 50,000 elements. The number of elements chosen for the parts was
based on a convergence study performed by varying the element size from 1/50th down to
1/500th of the plate width using the symmetry reduced model. To save on computational
run time the largest element size that still provided consistent results was chosen, which
was 1/100th of the plate width. The Johnson-Cook plasticity and failure models were used
to estimate the element failure modes of the materials, with element deletion occurring
for cells with equivalent plastic strain values greater than 1.0. This value was found to
most closely match the model data to previous experimental results. Figures 8 and 9 show
a comparison between the full scale model deformation results against the experimental
results of the projectile and target plate respectively [4].

Figure 8. Visual Comparison of the Projectile with the Finite Element Results.

Figure 9. Visual Comparison of the Target with the Finite Element Results.

There is noticeable difference in the projectile results shown in Figure 8. The most
significant aspect of this difference, showing the leading face of the projectile narrowing
versus mushrooming, is due to inaccurate equivalent plastic strains for the impact face
elements combined with the element deletion scheme used. At the projectile impact velocity,
and subsequent strain rate, the traditional Lagrangian modeling technique is subject to
mesh distortion causing errors which are compounded through the CDTI methodology.
Ultimately this will lead to inaccuracies in the element strain and equivalent plastic strain,
which would cause errant element deletion.

The symmetry reduced model provided nearly identical results as the full scale model,
yet took approximately one third of the time to run, 0.3 processor hours versus 1.0 processor
hours for the full model.
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3.2. Mixed SPH-Lagrangian Model

While the deformation results of the traditional Lagrangian model appeared to match
the experimental results adequately for the target, the deformation and residual velocity
of the projectile were not well modeled. Residual velocity is the projectile’s velocity upon
exit of the target. Therefore, a mixed SPH-Lagrangian model was developed to evaluate
the projectile and target dynamics and interactions more closely. As previously mentioned,
it was decided that the target would be modeled utilizing SPH techniques, as it would
be subject to larger deformations than the projectile based on the deformation seen in the
traditional Lagrangian grid model and experimentation. The projectile was still modeled
using the traditional C3D8R element with the same seeding as the full Lagrangian model,
using 7800 elements. The plate was discretized into SPH particles to match the size of
the elements used in the full Lagrangian model, resulting again in 50,000 elements used
to model the target. However, due to the use of ghost particles in modeling boundary
interaction within the SPH methodology, 100,000 particles were ultimately used in the
computational analysis, which comprised the 50,000 particles used to represent the target
plate and 50,000 particles used to model boundary interaction throughout the impact
scenario. Figure 10 depicts the SPH target deformation following impact under the same
parameters as the traditional model compared with the experimental results.

Figure 10. Visual Comparison of the Target with the Smoothed Particle Hydrodynamics Results.

In this figure, the particles that are no longer attached to the target plate would have
been removed from the target during impact, and show as deleted under the traditional FEA
method. As shown here, the SPH model more closely replicates the asymmetric shearing
around the exit hole that was found in the experimental results. While the impact problem
is described as a symmetrical problem, there are potential sources for the asymmetry in
the simulation, such as asymmetric discretization of a part and numerical round off.
The projectile was discretized the same between the two models, and some element
asymmetry was noted in both the impact and rear faces. The asymmetry in the projectile
discretization can still provide physically relevant data, as it can be seen as a similar effect
to imperfections within the part, or non-homogeneity within the material or structure.
As different mathematical methodologies are used in the two models, an asymmetric
discretization could lead to asymmetry in the mixed model but not the traditional model.
In a similar manner, numerical round offs could cause asymmetry in either model, but as
different equations are utilized the round off would likely manifest differently between
the models.

While in this model only the target was converted into an SPH model, the use of SPH
in the assembly also gave a better appreciation of the projectile response throughout the
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interaction. Figure 11 shows the projectile following impact compared to the experimental
projectile deformation.

Figure 11. Visual Comparison of the Projectile with the Smoothed Particle Hydrodynamics Results.

Utilizing this model, the projectile shows a deformation pattern more similar to the
experimental results than with the previous modeling technique. A primary contributor to
the accuracy of the solution is the more precise displacement solution of the target through
use of the SPH technique. With contact prescribed throughout much of the simulation,
the displacement solution of the target has a direct impact on the forces imposed upon the
projectile, which in-turn will dictate the plastic strain accumulation used in the damage
model. An additional element that lead to the closeness in results is due to the equivalent
plastic strain value used for element deletion being tuned more specifically for the pro-
jectile in the SPH-Lagrangian model than for the traditional model while maintaining a
nearly identical target failure pattern. However, the SPH model took significantly longer
to process than either the full scale or symmetry reduced models, with a run time of
5.2 processor hours.

3.3. Further Comparison of Models

As mentioned above, the traditional grid model did not provide an adequate result
for the projectile’s residual velocity, but the SPH model was able to very closely match
the results seen through experimentation, see Table 3. Also shown here are the computer
processing times required for each model.

Table 3. Comparison of Computational Models.

Model Residual Velocity
(m/s)

Residual Velocity
Error (%)

Processor Time
(h)

Experimental 336.194 - -
Traditional, Full 30.186 91.021 1.0

Traditional, Reduced 30.189 91.020 0.3
SPH 335.406 0.234 5.2

Figure 12 shows the velocity plot of the projectile for both the traditional model and
SPH model against the simulation time, with t = 0 being initial contact. The velocity values
are taken from elements along the center-line of the projectile. As shown here, the SPH
velocity follows a smooth and expected deceleration from the initial impact velocity to
the projectile’s residual velocity. On the other hand, the traditional grid velocity shows
an initial acceleration within the first time step, then decelerates more quickly down to a
velocity roughly one-tenth of that observed in experimentation.
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Figure 12. Comparison of Projectile Residual Velocity between Traditional Lagrangian Finite Element and Smoothed Particle
Hydrodynamics Models.

The initial increase in velocity is likely due to the high strain rate of impact, which
could not be accurately modeled by the traditional explicit methodologies. One of the most
essential differences between the two methods is that SPH is meshless, and the problem
domain is discretized with particles that do not have a fixed connectivity. Thus, large
displacement problems are better evaluated since there is no need to evaluate the internal
forces based on individual volume integration as required in the traditional approach.
The traditional Lagrangian method requires a continuity of nodes, which requires the inte-
gration of the volume represented by the element geometry, and under large deformations
may be so distorted that the evaluation will produce errors in balancing force distribution.
At this impact velocity, and subsequent strain rate, the full Lagrangian model would have
produced some error in the elemental volume integration required to determine the internal
force vector that is used to determine the time step acceleration term. In the SPH method,
there is no need to evaluate the integration of volume within the element as there are no
element connecting nodes, rather the internal force vector is through a pre-established
association with the neighboring particles by means of the kernel function. This association
is predetermined and becomes part of the derivative included within the conservation
equations. Another potential source of error that led to the lower residual velocity is the
implementation of the Coulomb friction coefficient in Abaqus’s general contact algorithm.
If the friction coefficient is too high it can lead to binding in the model as it progresses.
While the same friction coefficient was used in both models, the differences in relative
motion of the projectile and target between the models would change the application of
the friction and lead to errors in the velocity.

Figure 13, presents the impact axis, or z-axis, acceleration for a target particle and
node on the edge of the initial contact. For reference, the model was oriented with initial
impact velocity along the negative z-axis. The acceleration of the traditional Lagrangian
element depicts a significantly larger rise in positive acceleration than the SPH particle in
the beginning of the response. This difference is an important factor in the initial increase in
velocity shown by the full Lagrangian model, and why the initial velocity of the SPH model
stayed constant. The acceleration response of the full Lagrangian model also exhibits larger
peaks and troughs, which is indicative of the errors manifesting in the internal energy
volume integration.
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Figure 13. Comparison of Impact-Axis Acceleration between Traditional Lagrangian Finite Element and Smoothed Particle
Hydrodynamics Models.

Furthermore, a comparison between the internal energy versus time for the two mod-
els is presented in Figure 14. Overall, the trend between the two curves is similar with the
traditional model displaying higher internal energy values, see Figure 14a, but there is a
unique artifact within the traditional model early within the simulation run, see Figure 14b.
This variation within the internal energy curve is likely due to an error developed within
the internal force calculations of the traditional method as mentioned above. Since the tra-
ditional Lagrangian model is based on Newton’s Second Law, the error in the acceleration
derived from the internal force calculation would have been carried forward to the velocity
and displacement vectors through the CDTI methodology shown in Equations (1)–(3) and
compounded throughout the time step integration process. This is likely the cause of the
significant error in residual velocity realized by the two traditional models.

(a)

Figure 14. Cont.
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(b)

Figure 14. Model Internal Energy versus Time Comparison: (a) Full Run Duration, (b) Initial Reaction.

While both modeling techniques both rely upon a Lagrangian reference frame ac-
cording to the internal interactions and external forces and thus evolve the system in
time, within SPH the mathematical process of satisfying the three conservation equations
alongside the equation of state reduces the likelihood of error. To highlight the differences
in computed displacements between the two methods, a comparison of element strain over
time is presented in Figure 15. Figure 15a compares the element strain of an element on
the impact face of the projectile. As seen in the figure, both curve follow the same trend,
although the SPH model strain is roughly twice that of the traditional model. Figure 15b
shows a similar comparison for an element on the rear face of the projectile through the
simulation duration. For this case, the response curves are not quite in alignment, al-
though the general trend of the strain over time is comparable. The back face element
shows the opposite case of the front face, in that here the strain values of the traditional
model are higher than that of the SPH model, by roughly 70%. These figures emphasize the
resultant difference in nodal displacements, and ultimately projectile strain, between the
two models utilized.

(a)

Figure 15. Cont.
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(b)

Figure 15. Element Strain versus Time: (a) Projectile Impact Face, (b) Projectile Back Face.

Figure 16 depicts the plastic strain accumulation of a single target element or particle
on the outer edge of the initial contact between the particle and target. The Johnson-Cook
Damage Model, which is used to determine element and particle failure, relies upon
the plastic strain accumulation within the model. The SPH plastic strain accumulation
was characterized by a smooth accumulation up to a maximum strain of 0.73 mm/mm.
The traditional Lagrangian response was significantly more chaotic, displaying several dis-
continuities. The element reached a maximum plastic strain of 1.1 mm/mm, although the
mean plastic strain in the plateau region was 0.85 mm/mm. The more stable response from
the SPH target provides a reliable input source into the damage model for determining
degradation of material properties throughout the impact. The erratic strain response of
the full Lagrangian model could lead to either early or late element deletion, which would
have a substantial impact on further evaluation within the model.

Figure 16. Comparison of Plastic Strain along the Impact Axis between Traditional Lagrangian Finite Element and Smoothed
Particle Hydrodynamics Models.
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During the impact period, the high rate force is applied and kinetic energy is partially
transferred between the colliding bodies, the use of the conservation of momentum and
energy specifically provide a more balanced solution than Newton’s Second Law. Figure 17
shows a comparison of the model kinetic energy between the traditional model and mixed
model. In Figure 17a, the model kinetic energy is presented over the entire simulation run,
and it can be seen here that the SPH model retained a higher level of kinetic energy than
the traditional model. This correlates with the higher residual velocity of the projectile in
the SPH model; however, similar to the internal energy response, there is an interesting
phenomenon that can be seen early in the simulation run, which is presented in Figure 17b.
Early in the simulation, as shown in this figure, the traditional model appears to recover
some kinetic energy, where the mixed model does not show this anomaly. This peculiar
feature is a further indication of the errors produced in the Lagrangian impact model.

(a)

(b)

Figure 17. Model Kinetic Energy versus Time Comparison: (a) Full Run Duration, (b) Initial Reaction.

4. Conclusions

These two techniques show that there is a trade-off that must be made in the modeling
of high-velocity projectile impact between computational cost and simulation performance.
The first technique relied primarily on an explicit analysis of the impact using Lagrangian
finite element methods and a finite difference time integration analysis to account for the
dynamics. Lagrangian finite elements uses space-time discretization of the parts into a
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grid of elements connected by common nodes and boundaries. The time integration, CDTI,
determines deformation through satisfying the equations of motions, which is used to
find the strain and stress. Whereas the second technique, SPH, uses volume discretization
into particles that retain volume, mass, and field properties. Then the three conservation
equations are solved based on proximity to other particles through a kernel function.
Considering the complexities of three-dimensional modeling, the Lagrangian model does
an adequate job modeling physical deformation even at nearly 1000 m per second and at
a reasonable computational cost. However, there are drawbacks to Lagrangian analysis.
The most notable deficiency is that it does not model larger deformations or displacements
well, which was plainly evident in the residual velocity results being one-tenth of that seen
in experimentation. This deficiency is primarily caused by two factors. The first is in the
volumetric integration used to determine the internal force vector, Equation (9), where
the change in coordinate systems used between the Lagrangian and Eulerian systems
introduces some error in the CDTI methodology, although less error than keeping the
Lagrangian coordinate system through the integration. This miscalculation will propagate
into the nodal displacement vector and can lead to significant mesh distortion, which
will only further compound the error. A potential remedy to these issues within the full
Lagrangian model is remeshing as the element distortion becomes too great to adequately
evaluate the internal force integral. Remeshing adds significant complexity and time to the
model, which would negate the benefit of a reduced run time. As the SPH technique does
not rely on a mesh system, this error is not present in the SPH representation. The second
source of error is in the mathematical methodology used, where the Lagrangian technique
relies on solving Newton’s Second Law of Motion at each time step and SPH satisfies
the conservation equations at each time step. The balance of the conservation equations
with the equation of state provides for a more accurate solution at each individual time
step in the formulation used here, which prevents compounding error. For these reasons,
the mixed model was capable of handling higher strain rates and larger deformations better,
which was evidenced in the closeness of the simulation results to the experimental values.
The mixed model was able to achieve a residual velocity within a quarter of a percent of
the experimental results, and also displayed asymmetric results in the deformation pattern
similar to experimentation. While the computational cost was five times that of the more
traditional Lagrangian technique, the improved accuracy in the solution makes the mixed
model preferable for simulating high strain rate projectile impact.
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Abbreviations

The following abbreviations are used in this manuscript:
CDTI Central Difference Time Integration
EOS Equation of State
FEA Finite Element Analysis
FEM Finite Element Method
KE Kinetic Energy
SPH Smoothed Particle Hydrodynamics
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Abstract: This article presented an analysis of the pulsatile flow of non-Newtonian micropolar
(MP) fluid under Lorentz force’s effect in a channel with symmetrical constrictions on the walls.
The governing equations were first converted into the vorticity–stream function form, and a finite
difference-based solver was used to solve it numerically on a Cartesian grid. The impacts of different
flow controlling parameters, including the Hartman number, Strouhal number, Reynolds number,
and MP parameter on the flow profiles, were studied. The wall shear stress (WSS), axial, and micro-
rotation velocity profiles were depicted visually. The streamlines and vorticity patterns of the flow
were also sketched. It is evident from the numerical results that the flow separation region near
constriction as well as flattening of the axial velocity component is effectively controlled by the
Hartmann number. At the maximum flow rate, the WSS attained its peak. The WSS increased in
both the Hartmann number and Reynolds number, whereas it declined with the higher values of the
MP parameter. The micro-rotation velocity increased in the Reynolds number, and it declined with
increment in the MP parameter.

Keywords: micropolar fluid; constricted channel; MHD pulsatile flow; strouhal number; flow
pulsation parameter

1. Introduction

MP fluids are non-Newtonian fluids consisting of the dilute suspension with an
individual motion of thin, rigid cylindrical macromolecules. Incompressible MP fluids
have significance in the study of various phenomena such as blood rheology in medical
sciences and melted plastic mechanics in industries. MP fluid theory explains the micro-
rotation effects. Eringen [1] first described micro-inertia effects. Several numerical studies
have been conducted by researchers to study the behavior of internal and external MP fluid
flows. Agarwal et al. [2] examined MP fluid flow on a porous stationary surface with heat
transfer. The 2D stagnation point flow of MP fluid for the steady case over a stretching sheet
was examined by Nazar et al. [3]. Lok et al. [4] researched the steady mixed convection
boundary layer flow of MP fluid on a double-infinite, vertical flat plate near the stagnation
point. The flow behavior and heat transfer effects of mixed convection in MP fluid flow over
a vertical flat plate with conduction were analyzed by Chang et al. [5]. Magyari et al. [6]
examined the flow of quiescent MP fluid over a doubly infinite plate accelerated from
rest to a constant velocity. The impacts of radiation and viscous dissipation on MP fluid
stagnation-point flow to a nonlinearly stretching surface with suction and injection were
reported by Babu et al. [7]. The flow of MP fluid over a porous stretch surface with heat
transfer was analyzed by Turkyilmazoglu [8]. Waqas et al. [9] provided a mixed convection
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flow of MP liquid in the occurrence of the magnetic field on a nonlinear stretched surface.
Ramadevi et al. [10] carried out an analysis of the nonlinear MHD radiative flow of MP
fluid on a stretching surface.

MHD MP fluid over an oscillating, infinite vertical plate embedded in a porous
medium was analyzed by Sheik et al. [11]. Hussanan et al. [12] analytically examined MP
fluid flow over a vertical plate with Newtonian heating in the presence of the magnetic
field and the absence of thermal radiation. Kumar et al. [13] examined the heat transfer
mechanism with variable heat sink/source, a nonlinear approximation of Rosseland and
Biot number over a stretched field. Shamshuddin et al. [14] used the finite-element ap-
proach for solving MHD, incompressible, dissipative, and chemically reacting MP fluid
flow with heat transfer as well as mass transfer on an inclined heat source/sink plate.
Nadeem et al. [15] examined the flow of MP fluid over the Riga plate with exponential
surface temperature and heating effects.

Si et al. [16] investigated the behavior of MP fluid flow in a porous channel with
mutable walls. Lu et al. [17] considered the 2D creeping flow of MP fluid in a thin permeable
channel with a variable absorption rate. Fakour et al. [18] studied heat and mass transfer
of MP fluid flow inside a channel with permeable walls. Tutty [19] investigated the non-
uniform channel which is used as a simple model of a constricted arterial vessel. There are
several studies regarding fluid motion with pulsation in a constricted channel. Peristalsis
is a mechanism in which progressive transverse waves produced by flexible channel/tube
boundary walls transport the fluid. Peristaltic pumping is also very effective in the design
of several biomedical devices for maintaining blood supply during critical operations.
Mekheimer et al. [20] studied the effect of an induced magnetic field on the peristaltic
transport in a symmetric channel of an incompressible MP conductive fluid. Hayat and
Ali [21] examined the peristaltic wave motion for the endoscope impact via the distance
among two concentric tubes, finding the inner tube to be rigid when moving outwards to
allow the MP fluid to flow.

Under certain physical situations, the behavior of the pulsatile flow of Newtonian and
non-Newtonian fluids has been examined, usually with assumptions of long wavelength
and low Reynolds number to simplification. A numerical study of the MHD pulsatile
flow of Newtonian fluid was carried out by Bandyopadhyay and Layek [22] in a single-
constricted channel. Khair et al. [23] described the transition from laminar to the turbulent
regime in a constricted channel for pulsatile flow. The steady and pulsatile flow of MHD
Casson fluid in a constricted channel was studied by Ali et al. [24].

The present work’s objective is to investigate the magnetohydrodynamic (MHD)
pulsatile flow of non-Newtonian MP fluid in a channel having symmetrical constrictions on
both the walls under the influence of the Lorentz force. The numerical method to solve the
governing equations is based on the finite difference method on a Cartesian grid instead of
the cylindrical one. The impacts of various parameters on the axial velocity, shear stress,
and micro-rotation velocity are discussed. The streamlines and vorticity distributions of
the pulsatile MP fluid flow are also shown. The flow separation region generated due to
the constriction bumps is also discussed. The flow parameters under consideration for the
study include the Hartmann number (M), Strouhal number (St), Reynolds number (Re),
and MP parameter. The study finds applications in understating the blood flow, modeled
as non-Newtonian micropolar fluid, in stenotic arteries especially. The outcomes can be
used in designing the biomedical devices and techniques for cardiovascular treatments,
e.g., evaluating the thrombogenic potential of implantable cardiac devices [25]. The rest
of the article is structured as follows. Section 2 explains the mathematical formulation of
the problem and method. Section 3 presents the results and discussion. Section 4 displays
the conclusions.

2. Materials and Methods

A two-dimensional pulsatile flow of MP fluid was analyzed by a uniform magnetic
field applied perpendicular to the flow direction, as shown in Figure 1. The geometry under
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consideration was a constricted channel. The center of the constriction was placed at x = 0
with a total width of constriction as 2x0, as depicted in Equation (1). The constrictions on
the walls of the channel are formulated and implemented as:

y1(x) =

⎧⎨⎩
h1
2

[
1 + cos

(
πx
x0

)]
, |x| ≤ x0

0, |x| > x0

(1a)

y2(x) =

⎧⎨⎩ 1 − h2
2

[
1 + cos

(
πx
x0

)]
, |x| ≤ x0

1, |x| > x0

(1b)

where y1 and y2 define the lower and upper walls with constriction heights h1 and
h2, respectively.

 
Figure 1. Constricted channel geometry.

The momentum equations of the unsteady flow are given by:

∂û
∂t̂ + û ∂û

∂x̂ + v̂ ∂û
∂ŷ = − 1

ρ
∂ p̂
∂x̂ +

(
μ+k

ρ

)
∇2û + 1

ρ (J × B)x +
k
ρ

∂N̂
∂ŷ (2)

∂v̂
∂t̂ + û ∂v̂

∂x̂ + v̂ ∂v̂
∂ŷ = − 1

ρ
∂ p̂
∂ŷ +

(
μ+k

ρ

)
∇2v̂ − k

ρ
∂N̂
∂x̂ (3)

∂N̂
∂t̂ + û ∂N̂

∂x̂ + v̂ ∂N̂
∂ŷ = − k

ρj

(
2N̂ + ∂û

∂ŷ − ∂v̂
∂x̂

)
+ γ

ρj∇2N̂ (4)

The continuity equation is given by:

∂û
∂x̂ + ∂û

∂ŷ = 0 (5)

Here the velocity components along the x̂- and ŷ-axis are û and v̂, respectively. p̂, ρ,
and ν represent pressure, density, and kinematic viscosity, respectively. N̂ represents the
micro-rotation velocity, k represents vortex viscosity, J ≡

(
Jx, Jy, Jz

)
the current density,

B ≡ (0, B0, 0) the magnetic field with uniform strength B0, σ the electric conductivity, and
μ the dynamic viscosity. γ = j(μ + k)/2 represents the spin gradient viscosity, where j
defines the micro-inertia density. If E ≡

(
Ex, Ey, Ez

)
indicates the electric field directed

along the normal to the flow plane, then E ≡ (0, 0, Ez). In addition, using Ohm’s law:

Jx = 0, Jy = 0, Jz = σ(Ez + ûB0) (6)

Maxwell’s equation ∇× E = 0 for stationary flow implies that Ez = a, where a is
a constant, assumed to be zero for simplicity. Then, Jz = σûB0. Therefore, applying
J × B = −σûB2

0, Equation (2) becomes:

∂û
∂t̂ + û ∂û

∂x̂ + v̂ ∂û
∂ŷ = − 1

ρ
∂ p̂
∂x̂ +

(
μ+k

ρ

)
∇2û +

−σûB2
0

ρ + k
ρ

∂N̂
∂ŷ (7)
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We define the dimensionless quantities:

x = x̂
L , y = ŷ

L , u = û
U , v = v̂

U , t = t̂
T , St = L

UT ,

p = p̂
ρU2 , Re = UL

ν , N = N̂L
U , K = k

μ , M = B0L
√

σ
ρν (8)

Here, T is the period of flow pulsation, L the maximum channel width, Re the Reynolds
number, M the Hartmann Number, the micro-rotation velocity, and K the MP parameter.

Using the non-dimensional parameters from Equation (8), in Equations (7), (3), (4),
and (5), we attain:

St ∂u
∂t + u ∂u

∂x + v ∂u
∂y = − ∂p

∂x +
(

1+K
Re

)
∇2u − M2

Re u + K
Re

∂N
∂y (9)

St ∂v
∂t + u ∂v

∂x + v ∂v
∂y = − ∂p

∂y +
(

1+K
Re

)
∇2v − K

Re
∂N
∂x (10)

St ∂N
∂t + u ∂N

∂x + v ∂N
∂y = −K

Re

(
2N + ∂u

∂y − ∂v
∂x

)
+
(

1
Re +

K
2Re

)
∇2N (11)

∂u
∂x + ∂u

∂y = 0 (12)

2.1. Vorticity–Stream Function Formulation

The dimensionless stream function (ψ) and vorticity function (ω) for the flow under
consideration are as follows:

u = ∂ψ
∂y , v = − ∂ψ

∂x , ω = ∂v
∂x − ∂u

∂y (13)

Some manipulations with Equations (9) and (10) produce:

St
∂

∂t

(
∂v
∂x

− ∂u
∂y

)
+ u

∂

∂x

(
∂v
∂x

− ∂u
∂y

)
+ v

∂

∂y

(
∂v
∂x

− ∂u
∂y

)

=

(
1 + K

Re

)[
∂2

∂x2

(
∂v
∂x

− ∂u
∂y

)
+

∂2

∂y2

(
∂v
∂x

− ∂u
∂y

)]
+

M2

Re
u − K

Re

(
∂2N
∂x2 − ∂2N

∂y2

)
(14)

Using the quantities in Equation (13), we obtained the following vorticity transport
equation as:

St
∂ω

∂t
+

∂ψ

∂y
∂ω

∂x
− ∂ψ

∂x
∂ω

∂y
=

(
1 + K

Re

)[
∂2ω

∂x2 +
∂2ω

∂y2

]
+

M2

Re
∂2ψ

∂y2 − K
Re

(
∂2N
∂x2 − ∂2N

∂y2

)
(15)

Again, using the quantities in Equation (13), Equation (11) becomes:

St
∂N
∂t

+
∂ψ

∂y
∂N
∂x

− ∂ψ

∂x
∂N
∂y

=
−K
Re

(
2N +

∂2ψ

∂x2 +
∂2ψ

∂y2

)
+

(
1

Re
+

K
2Re

)(
∂2N
∂x2 − ∂2N

∂y2

)
(16)

The Poisson equation for ψ is:

∂2ψ

∂x2 + ∂2ψ

∂y2 = −ω (17)

Here, u, v, and N are primitive variables, and ω and ψ are non-primitive variables.

2.2. Boundary Conditions

The steady case of the fluid flow from Equation (7) is considered to obtain the boundary
conditions for the current problem:

− 1
ρ

∂ p̂
∂x̂ +

(
μ+k

ρ

)
∂2û
∂ŷ2 − 1

ρ (J × B) = 0 (18)
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where J × B = −σ(Ez + ûB0)B0. By substituting in Equation (18) and rearranging:

(ρν + k ) ∂2û
∂ŷ2 − σûB2

0 = ∂ p̂
∂x̂ + σEzB0 (19)

Using the dimensionless variables from Equation (8) and some manipulations results
in the following:

C d2u
dy2 − M2u = L2

ρνU

(
∂ p̂
∂x̂ + σEzB0

)
(20)

Here C = (1 + K). Approximating the term on the right-hand side of Equation (20):

M2 cosh(M
2 )

8sinh2(M
4 )

= − L2

ρνU

(
∂ p̂
∂x̂ + σEzB0

)
(21)

Solving Equation (20) gives:

u(y) = 1
8

[
cosh(M

2 )
[
cosh

(
M

2
√

C

)
−cosh

(
M√

C (y− 1
2 )
)]

sinh2(M
4 ) cosh

(
M

2
√

C

)
]

, v = 0, M �= 0 (22)

The inlet velocity profile for M = 0 is:

u(y) = 1
C
(
y − y2), v = 0, M = 0 (23)

where u(y) represents the steady velocity profile given by Equations (22) and (23). A
sinusoidal time-dependent flow is considered for pulsatile flow:

u(y, t) = u(y)[1 + ε sin(2πt)], v = 0 (24)

Further, u = 0 and v = 0 (i.e., no-slip conditions) are considered on the walls. The
proper boundary conditions for N on both the walls are:

N = −
[
s ∂u

∂y

]
y=0

, N =
[
s ∂u

∂y

]
y=1

(25)

where 0 ≤ s ≤ 1. s = 0, s = 1/2, and s = 1 are for the flow with high concentration, weak
concentration, and turbulence, respectively. N = 0 is considered for the inlet boundary
condition of the micro-rotation velocity function. The outlet boundary conditions are set
considering the flow fully developed.

2.3. Coordinates Transformation

Consider the following relation for transforming the coordinates:

ξ = x, η = y−y1(x)
y2(x)−y1(x) (26)

For computation purposes, we mapped the constriction to a straight channel which
resulted in mapping the domain [y1, y2] to [0, 1]. Equations (15)–(17) on applying Equation
(26) result as follows:

St ∂ω
∂t + u

(
∂ω
∂ξ − Q ∂ω

∂η

)
+ vD ∂ω

∂η

=
(

1+K
Re

)[
∂2ω
∂ξ2 − (P − 2QR) ∂ω

∂η − 2Q ∂2ω
∂ξ∂η +

(
Q2 + D2) ∂2ω

∂η2

]
+ D2 M2

Re
∂2ψ

∂η2
∂2ω
∂ξ2

− K
Re

[
∂2 N
∂ξ2 − (P − 2QR) ∂N

∂η − 2Q ∂2 N
∂ξ∂η +

(
Q2 + D2) ∂2 N

∂η2

] (27)
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St ∂N
∂t + u

(
∂N
∂ξ − Q ∂N

∂η

)
+ vD ∂N

∂η

= −K
Re

[
2N + ∂2ψ

∂ξ2 − (P − 2QR) ∂ψ
∂η − 2Q ∂2ψ

∂ξ∂η +
(
Q2 + D2) ∂2ψ

∂η2

]
+
(

1
Re +

K
2Re

)[
∂2 N
∂ξ2 − (P − 2QR) ∂N

∂η − 2Q ∂2 N
∂ξ∂η +

(
Q2 + D2) ∂2 N

∂η2

] (28)

∂2ψ

∂ξ2 − (P − 2QR) ∂ψ
∂η − 2Q ∂2ψ

∂ξ∂η +
(
Q2 + D2) ∂2ψ

∂η2 = −ω (29)

where:
P = P(ξ, η) =

ηy′′2 (ξ)+(1−η)y′′1 (ξ)
y2(ξ)−y1(ξ)

, R = R(ξ) = y′2(ξ)−y′1(ξ)
y2(ξ)−y1(ξ)

,

Q = Q(ξ, η) =
ηy′2(ξ)+(1−η)y′1(ξ)

y2(ξ)−y1(ξ)
, D = D(ξ) = 1

y2(ξ)−y1(ξ)

(30)

The velocity components u and v becomes:

u = D(ξ)
∂ψ
∂η , v = Q(ξ, η)

∂ψ
∂η − ∂ψ

∂ξ (31)

The boundary conditions at the walls, in the (ξ, η) coordinate system for ψ, ω, and
N are:

ψ(η, t) =

[√
C cosh(M

2 )tanh
(

M
2
√

C

)
8Msinh2(M

4 )

]
[1 + ε sin(2πt)], at η = 0

ψ(η, t) =
cosh(M

2 )
8sinh2(M

4 )

[
1 −

√
C

M tanh
(

M
2
√

C

)]
[1 + ε sin(2πt)], at η = 1

ω = −
[(

Q2 + D2) ∂2ψ

∂η2

]
η=0,1

N = −
[
sD2 ∂2ψ

∂η2

]
, at η = 0

N =
[
sD2 ∂2ψ

∂η2

]
, at η = 1 (32)

The value of ε determines the nature of the flow, where 0 and 1 represent the steady
and pulsatile flows, respectively.

2.4. Numerical Method

The finite difference method was employed to acquire the numerical solution of
Equations (27)–(29) over a uniform structured Cartesian grid

(
ξi, ηj

)
. The solution at time

level l + 1 = l + Δt, for l = 0, 1, 2, · · · , was computed using the known solution at
time level l. To obtain the solution at the time level l + 1, firstly, the space derivatives
of Equation (29) were discretized using the central difference, and the resulting linear
system was solved for ψ = ψ(ξ, η) by the tri-diagonal matrix algorithm (TDMA) method.
Then, Equations (27) and (28) were solved for the vorticity function ω = ω(ξ, η) and
micro-rotation function N = N(ξ, η) by the alternating direction implicit (ADI) method.
The over-relaxation parameter used for computations was λ = 1.4. The execution time of
the calculations could be reduced by parallel implementation of the computer program,
Ali and Syed [26]. However, developing a parallel solution on any shared, distributed, or
hybrid memory programming paradigms is not a trivial task.

Equation (29) is discretized for the solution at advanced time level l + 1, and for
l = 0, 1, 2, · · · , is given by:

ψi+1,j−2ψi,j+ψi−1,j

(dξ)2 −
{

Pi,j − 2Qi,jRi
}ψi,j+1−ψi,j−1

2dη

−2Qi,j
ψi+1,j+1−ψi+1,j−1−ψi−1,j+1+ψi−1,j−1

4dξdη

+
{

Q2
i,j + D2

i

}
ψi,j+1−2ψi,j+ψi,j−1

(dη)2 = −ωl
i,j

(33)
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For the sake of simplicity, the l + 1 superscript from ψ is removed. Rearranging,
Equation (33) results as:

A(j)ψi,j−1 + B(j)ψi,j + C(j)ψi,j+1 = S(j) (34)

where A(j), B(j), C(j), and S(j) are given as:

A(j) =
Pi,j − 2Qi,jRi

2dη
+

Q2
i,j + D2

i

(dη)2

B(j) = − 2

(dξ)2 − 2

(dη)2

{
Q2

i,j + D2
i

}

C(j) = −
Pi,j − 2Qi,jRi

2dη
+

Q2
i,j + D2

i

(dη)2

S(j) = −ωl
i,j −

(
ψi+1,j + ψi−1,j

(dξ)2

)
+ 2Qi,j

ψi+1,j+1 − ψi−1,j+1 − ψi+1,j−1 + ψi−1,j−1

4dηdξ
(35)

The solution of Equation (27) was computed at l + 1
2 time level by incorporating the

solution of level l in the ADI method’s first half. The explicit and implicit schemes at time
levels l and l + 1

2 in ξ-direction and η-direction, respectively, were used while discretizing
the derivatives of ω.

St
[

ωl+1/2
i,j −ωl

i,j
Δt/2

]
+ ui,j

[
ωl

i+1,j−ωl
i−1,j

2dξ − Qi,j
ωl+1/2

i,j+1 −ωl+1/2
i,j−1

2dη

]
+vi,jDi

ωl+1/2
i,j+1 −ωl+1/2

i,j−1
2dη =

(
1+K
Re

)[ωl
i+1,j−2ωl

i,j+ωl
i−1,j

(dξ)2

−
{

Pi,j − 2Qi,jRi
}ωl+1/2

i,j+1 −ωl+1/2
i,j−1

2dη − 2Qi,j
ωl

i+1,j+1−ωl
i+1,j−1−ωl

i−1,j+1+ωl
i−1,j−1

4dηdξ

+
(

Q2
i,j + D2

i

)ωl+1/2
i,j+1 −2ωl+1/2

i,j +ωl+1/2
i,j−1

(dη)2

]
+ M2

Re D2
i

ψi,j+1−2ψi,j+ψi,j−1

(dη)2

− K
Re

[
Ni+1,j−2Ni,j+Ni−1,j

(dξ)2 −
{

Pi,j − 2Qi,jRi
}Ni,j+1−Ni,j−1

2dη

− 2Qi,j
Ni+1,j+1−Ni+1,j−1−Ni−1,j+1+Ni−1,j−1

4dηdξ +
(

Q2
i,j + D2

i

)Ni,j+1−2Ni,j+Ni,j−1

(dη)2

]

(36)

Equation (36) can be rearranged as:

A1(j)ωl+1/2
i,j−1 + B1(j)ωl+1/2

i,j + C1(j)ωl+1/2
i,j+1 = S1(j)

where A1(j), B1(j), C1(j), and S1(j) are given as:

A1(j) = ui,j
Qi,j

2dη
− vi,j

Di
2dη

−
(

1 + K
Re

)Pi,j − 2Qi,jRi

2dη
−
(

1 + K
Re

)Q2
i,j + D2

i

(dη)2

B1(j) =
St

Δt/2
+

(
1 + K

Re

)2
(

Q2
i,j + D2

i

)
(dη)2 (1)

C1(j) = −ui,j
Qi,j

2dη
+ vi,j

Di
2dη

+

(
1 + K

Re

)Pi,j − 2Qi,jRi

2dη
−
(

1 + K
Re

)Q2
i,j + D2

i

(dη)2 (2)
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S1(j) =
(

ui,j
2dξ + 1

(dξ)2

(
1+K
Re

))
ωl

i−1,j +

(
− ui,j

2dξ + 1
(dξ)2

(
1+K
Re

))
ωl

i+1,j

+

(
St

Δt/2 + 2
(dξ)2

(
1+K
Re

))
ωl

i,j −
(

1+K
Re

)
2Qi,j

ωl
i+1,j+1−ωl

i+1,j−1−ωl
i−1,j+1+ωl

i−1,j−1
4dηdξ

+
M2D2

i
Re

ψi,j+1−2ψi,j+ψi,j−1

(dη)2 − K
Re

[
Ni+1,j−2Ni,j+Ni−1,j

(dξ)2 −
{

Pi,j − 2Qi,jRi
}Ni,j+1−Ni,j−1

2dη

− 2Qi,j
Ni+1,j+1−Ni+1,j−1−Ni−1,j+1+Ni−1,j−1

4dηdξ +
(

Q2
i,j + D2

i

)Ni,j+1−2Ni,j+Ni,j−1

(dη)2

]
The ω at both the walls is given as:

ωl
i,0 = −2

[
Q2

i, 0 + D2
i

]
ψi,1−ψi,0

(dη)2

ωl
i,m = −2

[
Q2

i, m + D2
i

]
ψi,m−1−ψi,m

(dη)2 (37)

In the second step of the ADI method, using the solution computed at l + 1/2 level,
the solution was obtained at the l + 1 time level. The explicit and implicit schemes at time
levels l + 1/2 and l + 1 in the η-direction and ξ-direction, respectively, were used while
discretizing the derivatives of ω.

St
[

ωl+1
i,j −ωl+1/2

i,j
Δt/2

]
+ ui,j

[
ωl+1

i+1,j−ωl+1
i−1,j

2dξ − Qi,j
ωl+1/2

i,j+1 −ωl+1/2
i,j−1

2dη

]
+vi,jDi

ωl+1/2
i,j+1 −ωl+1/2

i,j−1
2dη =

(
1+K
Re

)[ωl+1
i+1,j−2ωl+1

i,j +ωl+1
i−1,j

(dξ)2

−
{

Pi,j − 2Qi,jRi
}ωl+1/2

i,j+1 −ωl+1/2
i,j−1

2dη − 2Qi,j
ωl+1/2

i+1,j+1−ωl+1/2
i+1,j−1−ωl+1/2

i−1,j+1+ωl+1/2
i−1,j−1

4dηdξ

+
(

Q2
i,j + D2

i

)ωl+1/2
i,j+1 −2ωl+1/2

i,j +ωl+1/2
i,j−1

(dη)2

]
+

M2D2
i

Re
ψi,j+1−2ψi,j+ψi,j−1

(dη)2

− K
Re

[
Ni+1,j−2Ni,j+Ni−1,j

(dξ)2 −
{

Pi,j − 2Qi,jRi
}Ni,j+1−Ni,j−1

2dη

− 2Qi,j
Ni+1,j+1−Ni+1,j−1−Ni−1,j+1+Ni−1,j−1

4dηdξ +
(

Q2
i,j + D2

i

)Ni,j+1−2Ni,j+Ni,j−1

(dη)2

]

(38)

Equation (38) can be written as:

A2(i)ωl+1
i−1,j + B2(i)ωl+1

i,j + C2(i)ωl+1
i+1,j = S2(i) (39)

where A2(j), B2(j), C2(j), and S2(j) are given as:

A2(i) =
−ui,j

2dξ
− 1

(dξ)2

(
1 + K

Re

)

B2(i) =
St

Δt/2
+

2

(dξ)2

(
1 + K

Re

)
(3)

C2(i) =
ui,j

2dξ
− 1

(dξ)2

(
1 + K

Re

)
(4)
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S2(i) =

(
vi,jDi
2dη +

Pi,j−2Qi,jRi
2dη

(
1+K
Re

)
+

Q2
i,j+D2

i

(dη)2

(
1+K
Re

)
− ui,jQi,j

2dη

)
ωl+1/2

i,j−1

+

(
− vi,jDi

2dη − Pi,j−2Qi,jRi
2dη

(
1+K
Re

)
+

Q2
i,j+D2

i

(dη)2

(
1+K
Re

)
+

ui,jQi,j
2dη

)
ωl+1/2

i,j+1

+

(
St

Δt/2 + 2
(dξ)2

(
1+K
Re

))
ωl+1/2

i,j − 2Qi,j
ωl

i+1,j+1−ωl
i+1,j−1−ωl

i−1,j+1+ωl
i−1,j−1

4dηdξ(
1+K
Re

)
+ M2

Re D2
i

ψi,j+1−2ψi,j+ψi,j−1

(dη)2 − K
Re

[
Ni+1,j−2Ni,j+Ni−1,j

(dξ)2

−
{

Pi,j − 2Qi,jRi
}Ni,j+1−Ni,j−1

2dη − 2Qi,j
Ni+1,j+1−Ni+1,j−1−Ni−1,j+1+Ni−1,j−1

4dηdξ

+
(

Q2
i,j + D2

i

)Ni,j+1−2Ni,j+Ni,j−1

(dη)2

]
In a similar way, using the ADI method, the solution of Equation (28) was computed.

3. Results and Discussion

A grid of 400 × 50 was found to be suitable for the current work after a grid indepen-
dence test was carried out for multiple grids with −10 ≤ ξ ≤ 10 and 0 ≤ η ≤ 1. For ξ and
η directions, we considered the step length 0.05 and 0.02, respectively. The constriction
length, i.e., x0, was 2. The height of the constriction on both walls was considered as 0.35.
The time step, Δt, was taken as 0.0001. We considered t = 0, 0.25, 0.50, 0.75 to show the
influence of the flow controlling parameters in a pulsatile cycle. These four time levels were
corresponding to the specific states of the flow pulsation: t = 0 corresponded to the start of
pulsation motion, t = 0.25 corresponded to the maximum flow rate, t = 0.50 corresponded
to the minimum flow rate, and t = 0.75 corresponded to the instantaneous zero flow rate.
The magnitude of the WSS was the same for the upper and lower walls. Therefore, the
WSS distribution was depicted only on the upper wall in the study.

Figure 2 presented the axial velocity (u) profile and micro-rotation velocity (N) profile
for the four pulsation cycles at different values of η and at the center of constriction (x = 0)
with M = 5, St = 0.02, K = 0.6, and Re = 700. The phase-amplitude of u profile increased,
whereas a decrease in the shifting phase was observed as the distance from the bottom wall
increased. An opposite behavior for N was observed. For validity of the present scheme,
Figure 3 compares the present study with Bandyopadhyay and Layek [22] for the WSS by
varying magnetic field strength. The results were found to be promising in the comparison.

 
(a) (b) 

Figure 2. At x = 0 (a) the u profile and (b) the N profile is presented against η.
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(a) (b) 

Figure 3. The WSS distribution on varying magnetic parameter values, (a) on the upper wall, and (b)
on the lower wall.

The WSS on the upper wall in a pulsatile cycle at different times for M = 0, 5, 10, and
15 with K = 0.6, St = 0.02, and Re = 700 is shown in Figure 4. At t = 0, the WSS tended to
increase with increasing M and attained its peak value at x = 0. The flow accelerated for
0 ≤ t ≤ 0.25 during the pulse cycle. At t = 0.25, the WSS reached its extreme value at the
maximum flow rate. During 0.25 < t < 0.75, the flow started to decelerate, and the WSS
decreased. The sign of the WSS changed at t = 0.75, when the net flow rate was zero. The
flow separation region was maximum for M = 0, whereas it diminished for M = 15. The
Hartmann number could be used to control the flow separation region.

 
(a) (b) 

 
(c) (d) 

Figure 4. The WSS distribution on varying the values of M with St = 0.02, Re = 700, and K = 0.6 at
(a) t = 0, (b) t = 0.25, (c) t = 0.50, and (d) t = 0.75.

The WSS on the upper wall in a pulsatile cycle at different times for St = 0.02, 0.04,
0.06, and 0.08 with M = 5, K = 0.6, and Re = 700 is shown in Figure 5. During 0 < t < 0.25,
the WSS increased with an increment in St. The flow separation region did not change
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significantly with an increase in the value of St. At t = 0.25, the WSS achieved the same
peak value for all the values of St. During 0.25 < t < 0.75, the flow started to decelerate,
and the WSS decreased in the region with an increment in St and the flow separation region
expanded. At t = 0.75, the sign of the WSS was changed.

The WSS at the four time levels for K = 0.3, 0.6, 0.9, and 1.2 with St = 0.02, M = 5,
and Re = 700 is shown in Figure 6. The WSS fell with the increasing values of K during a
complete cycle. During 0 < t < 0.25, the flow separation region had an inverse relation
with K. At t = 0, a decrease in the WSS was witnessed with increasing K. At t = 0.25,
the WSS reached the maximum peak for all values of K. During 0.25 < t < 0.75, the flow
started to decelerate, and a decrease in the WSS for all the K’s was observed. The flow
separation region slightly expanded with the increasing values of K. The WSS altered its
sign at t = 0.75.

The WSS at the four time levels for Re = 500, 700, 900, and 1100 with St = 0.02, M = 5,
and K = 0.6 is shown in Figure 7. The WSS has an inciting trend towards Re. At t = 0, an
increase in the WSS was witnessed with increasing Re. At t = 0.25, the WSS reached the
maximum peak for all values of Re. The flow started to decelerate during 0.25 < t < 0.75
and a decrease in the WSS for all the Re’s was observed. The flow separation region
expanded with the increasing values of Re. The WSS altered its sign at t = 0.75.

 
(a) (b) 

 
(c) (d) 

Figure 5. The WSS distribution on varying the values of St with M = 5, K = 0.6, and Re = 700 at (a)
t = 0, (b) t = 0.25, (c) t = 0.50, and (d) t = 0.75.
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(a) (b) 

 
(c) (d) 

Figure 6. The WSS distribution on varying the values of K with M = 5, St = 0.02, and Re = 700 at
(a) t = 0, (b) t = 0.25, (c) t = 0.50, and (d) t = 0.75.

 
(a) (b) 

 
(c) (d) 

Figure 7. Impact on the WSS distribution on varying the values of Re with M = 5, St = 0.02, and
K = 0.6 at (a) t = 0, (b) t = 0.25, (c) t = 0.50, and (d) t = 0.75.
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Figure 8 displays the plots of u-velocity profiles at x = −5, 2, 5, and 7 for M = 0, 5,
10, and 15 with K = 0.6, St = 0.02, and Re = 700 at t = 0.25, 0.5, and 0.75. The u profiles
became flattened as the value of M increased. There was flow symmetry at x0 = −2 and
x0 = 2. The flow separation region appeared larger near the constriction for lower values
of M. The flow separation region expanded at the end of the constriction. The backflow
occurred near the walls when incoming flow tended to be zero at t = 0.75. Asymmetric
behavior of the velocity contours can be seen in the case of M = 0. It was observed that in
a complete pulsation cycle, the u profile decreased. This happened because a resistive force
was produced due to the magnetic field, known as the Lorentz force, which opposed the
fluid flow.

  

  

  

  
(a) = 0.25 (b) = 0.50 (c) = 0.75 

Figure 8. u profiles of the pulsatile flow at different instants of a pulsation cycle for different values of M at various
x locations.

Figure 9a depicts the influence of K on N profile at x = 0 with fixed parameters M = 5,
St = 0.02, Re = 700, and K = 0.6. The oscillations in the N profile were observed. The
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amplitude of N had a direct relation with K near the lower wall of the constricted channel,
whereas it had an inverse relation with K near the upper wall. In Figure 9b,c, it can be
seen that near the lower wall, the micro-rotation velocity boundary layer had a declining
behavior towards Re and M. In contrast, it had inclining behavior towards Re and M near
the upper wall.

 
(a) (b) 

 
(c) 

Figure 9. Effects of (a) micropolar parameter (b) Reynolds number, and (c) Hartmann number on
micro-rotation velocity profile at t = 0.25.

Figure 10 presents the influence of M on the streamline at the four time levels. The
flow separation region had a direct relation with M. At t = 0, the streamlines ran smoothly
over the constriction. It can be seen that at t = 0.25 and t = 0.50, the flow separation region
was decreased for larger values of M. At t = 0.75, vortices took up the largest portion of
the channel. A symmetric behavior can be seen in the streamlines.

Figure 11 presents the effects of varying the Reynolds number on the streamline at the
four time levels for Re = 500, 700, 900, and 1100 with M = 5, K = 0.6, and St = 0.02. The
streamlines near the constriction were smooth. It is noted as well that the disturbance in
the flow tended to grow, leading towards the turbulence, as the value of Re was increased.
The flow separation region was maximum at t = 0.25 for Re = 1100, as can be seen in
Figure 11d.

Figure 12 presents the vorticity of the flow for different values of Re at the four time
levels. At t = 0, the vortex size had a direct relation with Re. Over time, the size of
these vortices increased with increasing values of Re and eventually occupied a greater
part of the channel downstream of the constrictions on increasing Re. The presence of
the backflow was observed at t = 0.75. Symmetric behavior of contours could also be
witnessed. Moreover, as the flow accelerated, a small vortex emerged near the constriction
on the upper wall, which became larger with increasing values of St. The vortex that
appeared near the constriction became smaller with increasing values of K.
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(a) (b) 

  
(c) (d) 

Figure 10. Streamlines of the pulsatile flow for different values of M with St = 0.02, Re = 700, and
K = 0.6 at (a) t = 0, (b) t = 0.25, (c) t = 0.50, and (d) t = 0.75.

173



Mathematics 2021, 9, 1000

  
(a) (b) 

  
(c) (d) 

Figure 11. Streamlines of the pulsatile flow for different values of Re with M = 5, St = 0.02, and
K = 0.6 at (a) t = 0, (b) t = 0.25, (c) t = 0.50, and (d) t = 0.75.
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(a) (b) 

  
(c) (d) 

Figure 12. Vorticity contours of the pulsatile flow for different values of Re with M = 5, St = 0.02,
and K = 0.6 at (a) t = 0, (b) t = 0.25, (c) t = 0.50, and (d) t = 0.75.

4. Conclusions

The pulsatile flow, in a constricted channel, of non-Newtonian MP fluid under the
impact of the applied magnetic field was examined numerically on a Cartesian grid. The
effects of M, St, Re, and K on the WSS, u, and N profiles were studied. The key outcomes
of the present study are listed as follows:

• The direct relation between the WSS and M was observed, and the WSS attained its
peak value at t = 0.25. The flow began to decelerate as the flow rate tended to be zero.
The sign of the WSS changed when the net flow rate was zero;

• The WSS rose with an increasing value of St in the accelerating phase of the pulsation
cycle. The WSS attained the same peak value for all values of St when t = 0.25;

• The WSS was reduced with the increasing values of K during a complete cycle and
attained its peak value at t = 0.25;

• The dampening of the u profile was impacted by the magnetic field strength M. The
u profile was asymmetric in the absence of an external magnetic field. However, the
flow was symmetric at both ends of constrictions for M = 0. The flow parameters, M,
Re, and K, had significant effects on N. The amplitude of the N profile had a direct
relation with M and Re and an inverse relation with K;

• The streamlines became smoother as the value of M increases;
• The flow separation region was reduced by increasing M. The flow separation region

had a direct relation with Re. The flow downstream of the constriction showed abrupt
behavior as the value of Re increased.
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The study found applications in understating the blood flow, modeled as non-Newtonian
micropolar fluid, in stenotic arteries especially. The outcomes could be used in designing
the biomedical devices and techniques for cardiovascular treatments.
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Nomenclature

y1 lower wall of the constricted channel
y2 upper wall of the constricted channel
h1 height of lower wall constriction
h2 height of upper wall constriction
û velocity in x̌-direction
v̂ velocity in y̌-direction
p̂ pressure
ρ density
μ dynamic viscosity
k vortex viscosity
E electric field
Re Reynolds number
M Hartmann number
N micro-rotation velocity
K MP parameter
J current density
B magnetic field
B0 strength of uniform magnetic field
σ electrical conductivity
ν kinematic viscosity
j micro-interia density
γ spin gradient velocity
s switch for weak/strong concentrations/turbulence
L length between channel walls
T period of flow pulsation
St Strouhal number
ψ stream function
ω vorticity function
ε pulsating amplitude
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Abstract: Chaotic oscillators have been designed with embedded systems like field-programmable
gate arrays (FPGAs), and applied in different engineering areas. However, the majority of works do
not detail the issues when choosing a numerical method and the associated electronic implementation.
In this manner, we show the FPGA implementation of chaotic and hyper-chaotic oscillators from
the selection of a one-step or multi-step numerical method. We highlight that one challenge is the
selection of the time-step h to increase the frequency of operation. The case studies include the
application of three one-step and three multi-step numerical methods to simulate three chaotic and
two hyper-chaotic oscillators. The numerical methods provide similar chaotic time-series, which are
used within a time-series analyzer (TISEAN) to evaluate the Lyapunov exponents and Kaplan–Yorke
dimension (DKY) of the (hyper-)chaotic oscillators. The oscillators providing higher exponents and
DKY are chosen because higher values mean that the chaotic time series may be more random to
find applications in chaotic secure communications. In addition, we choose representative numerical
methods to perform their FPGA implementation, which hardware resources are described and
counted. It is highlighted that the Forward Euler method requires the lowest hardware resources,
but it has lower stability and exactness compared to other one-step and multi-step methods.

Keywords: chaotic oscillator; one-step method; multi-step method; computer arithmetic; FPGA

1. Introduction

Chaos is a nonlinear and unpredictable behavior that can be modeled by ordinary
differential equations (ODEs). In continuous-time, the minimum number of ODEs for
autonomous chaotic oscillators is three, as for example in [1,2]. A dynamical system
modeled by four or more ODEs can generate hyper-chaotic behavior, as for example in [3].
Although sensitivity to initial conditions does not necessarily yield chaos [4], the majority
of authors agree that the main characteristic of a dynamical system that generates chaos is
the high sensibility to initial conditions, which is associated with a high unpredictability in
the evolution of the time series of the state variables. The chaotic time series can be used
to estimate Lyapunov exponents, as already shown in the seminal work [5], and by using
the software for TIme SEries ANalysis (TISEAN) introduced in [6]. Lyapunov exponents
are quite useful to characterize the behavior of a dynamical system, and they quantify
the exponentially fast divergence or convergence of nearby orbits that can be seen in
phase space.

Nowadays, it is said that a system with one positive Lyapunov exponent (LE+) is
defined to be chaotic, and a system with more than one LE+ is hyper-chaotic. Some engi-
neering applications of chaotic oscillators can be found in [7], which provides guidelines on
the implementation by using field-programmable gate arrays (FPGAs), and shows the de-
sign of random number generators (RNGs) and chaotic secure communication systems [8].
The applications based on (hyper-)chaotic oscillators can be enhanced by guaranteeing
higher unpredictability of the chaotic time series. One way is finding the chaotic oscillator
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having the highest LE+ [2], and also one must take into account other dynamical char-
acteristics such as entropy and Kaplan–Yorke dimension (DKY). For a chaotic oscillator
having three ODEs, one computes three Lyapunov exponents, where one must be positive,
one zero and one negative. There are methods to evaluate the Lyapunov spectrum [9,10],
the seminal one was introduced in [5], and herein we apply TISEAN [6].

Recent works show the usefulness of chaotic oscillators in different engineering prob-
lems [11–13], however, there is no information on the issues related to the implementation
of the numerical methods in electronic systems. In this manner, this paper uses three
representative chaotic and two hyper-chaotic oscillators as case studies, which are listed
in Table 1, along with their associated name, ODEs and parameter values that are used
herein to generate chaotic behavior. The five chaotic oscillators are case studies to evaluate
LE+ and DKY from their chaotic time series that are generated by applying three one-step
and three multi-step methods. Representative numerical methods are chosen to be imple-
mented on a FPGA and their hardware resources are counted to show the challenges of
minimizing hardware resources while guaranteeing the highest exactness and stability of
the numerical simulations.

The three chaotic and two hyper-chaotic oscillators that are case studies in this paper
are detailed in Section 2. Three one-step and three multi-step numerical methods are given
in Section 3. The chaotic time series of each state variable of each (hyper-)chaotic oscillator
are generated by applying all the numerical methods, and the LE+ and DKY of each state
variable are evaluated in Section 4. The FPGA implementation of representative numerical
methods is detailed in Section 5. Finally, the conclusions are summarized in Section 6.

2. Chaotic and Hyper-Chaotic Oscillators

The three chaotic (modeled by three ODEs) and two hyper-chaotic (modeled by four
ODEs) oscillators that are case studies herein are given in Table 1. In this Table CO1 is the
well-known Lorenz system, introduced in 1963 as a simplified mathematical model for
atmospheric convection [14], and from which was accidentally discovered the property
associated to the high sensitivity to initial conditions. This originated one of the main
characteristics in chaos theory and this CO1 is widely used as a work-horse to verify
simulation and hardware implementation issues. In phase space, the Lorenz attractor
resembles a butterfly effect, which stems from the real-world implications, i.e., in any
physical system, the prediction of the evolution of the chaotic trajectories of the state
variables will always fail in the absence of perfect knowledge of the initial conditions.
In this manner, although physical systems can be completely deterministic, their chaotic
behavior makes them inherently unpredictable (https://en.wikipedia.org/wiki/Lorenz_
system#cite_note-lorenz-1).

The chaotic oscillator labeled as CO2 is another well-known system introduced by
Otto Rössler in 1976, originally intended to behave similarly to the Lorenz attractor, but its
dynamical behavior is simpler and has only one manifold. In the Rössler system, an orbit
within the attractor follows an outward spiral around an unstable fixed point. From the
mathematical model of CO2 given in Table 1, this spiral effect is seen in the x, y plane,
and once the graph spirals out enough, the z-dimension shows the influence of a second
fixed point causing rise and twist. After the introduction of the Rössler system, impor-
tant news was that the original model was useful in modeling equilibrium in chemical
reactions [15].

CO3 is based on a saturated nonlinear function series that can be approximated by a
piecewise-linear (PWL) function. Considering that the PWL function has saturation levels
ki, break-points Bi and slope m, then Equation (1) can be used to generate two scrolls,
and Equation (2) to generate three scrolls. In a general sense, the PWL function given in
Equation (1) can be increased to generate an even number of scrolls, and Equation (2) to
generate an odd number of scrolls, as shown in [16].
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The hyper-chaotic oscillators labeled as HO4 and HO5, both have more than three
ODEs in order to have more than one positive Lyapunov exponent, so that they present a
more complex behavior than chaotic oscillators modeled by three ODEs.

Table 1. Chaotic and hyper-chaotic oscillators.

Name ODEs Parameters

CO1 [1]
ẋ = σ(y − x)
ẏ = x(ρ − z)− y
ż = xy − βz

σ = 10, β = 8/3,
ρ = 28

CO2 [1]
ẋ = −y − z
ẏ = x + ay
ż = b + z(x − c)

a = b = 0.2,
c = 5.7

CO3 [2]

ẋ = y
ẏ = z
ż = −ax − by − cz
+d1 f (x, m)

a = 0.7, b = 0.7,
c = 0.7, d1 = 0.7

HO4 [3]

ẋ = a(y − x) + yz + w
ẏ = by + cxz − px2 + w
ż = xy − d
ẇ = −x − y

a = 16, b = 3,
c = 8, d = 20,
p = 0.1

HO5 [17]

ẋ = a(y − x)− w
ẏ = bx + 2y + xz
ż = c − xy
ẇ = x

a = 6, b = 5,
c = 50

f (x) =

⎧⎨⎩
k1 if B1 < x < B2
mx if B2 ≤ x ≤ B3
k2 if B3 < x < B4

(1)

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k1 if B1 < x < B2

m
(

x − B2+B3
2 − k1+k2

2

)
if B2 ≤ x ≤ B3

k2 if B3 < x < B4

m
(

x − B4+B5
2 − k2+k3

2

)
if B4 ≤ x ≤ B5

k3 if B5 < x < B6

(2)

3. One-Step and Multi-Step Methods

The mathematical models of the chaotic and hyper-chaotic oscillators given in
Table 1 can be formulated as initial value problems of the type ẋ = f (x). The solution of
the ODEs can be performed by applying one-step and multi-step methods. The former
requires values evaluated in one step xi to evaluate the next step denoted by xi+1, while
the multi-step methods require two or more previous step values denoted as xi, xi−1, xi−2,...
to evaluate xi+1. Other classifications are predictor or explicit and corrector or implicit
methods. The explicit methods require past steps to evaluate the current step at iteration
i + 1, but the implicit methods require estimation of the value at the current step i + 1
and past values at steps xi, xi−1, xi−2,.... In this manner, it is common to name predictor–
corrector [18] to the implicit methods, and they require an explicit method to evaluate the
functions at the current iteration.

The explicit methods are faster than the implicit ones, but they may present numerical
instability and lower exactness than the implicit methods. There are some rules for choosing
the explicit method that is used within an implicit one to evaluate the current step xi+1 [18].
The step-size can also be varied during the computation or it can be constant and can be
estimated from the stability analysis of the method, but one must take care of choosing the
correct step-size to avoid non-convergence [19]. The explicit or predictor is the weak part
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in an implicit method due to the inherent truncation error, so that it puts a condition on the
exactness of the initial prediction and the step-size of the corrector [18]. To enhance FPGA
implementations of the numerical methods, the challenge is the selection of a method that
allows a large step-size. That way, the larger the step-size of a numerical method, the
higher the operating frequency of the FPGA implementation, as shown in Section 5.

The solution of the five chaotic oscillators given in the previous section are solved
herein by applying the three one-step methods given in Table 2, and the three multi-step
methods given in Table 3. The one-step methods are labeled as Forward Euler (FE), Back-
ward Euler (BE) and fourth-order Runge–Kutta (RK4). The multi-step methods are labeled
as sixth-order Adams–Bashforth (AB6), fourth-order Adams–Moulton (AM4) and fourth-
order Gear (G4).

Table 2. One-step methods.

Method Iterative Equation

Forward Euler (FE) yi+1 = yi + h f (yi, ti)

Backward Euler (BE) yi+1 = yi + h f (yi+1, ti+1)

Runge–Kutta 4 (RK4)

k1 = h f (xi, yi)
k2 = h f (xi +

1
2 h, yi +

1
2 k1),

k3 = h f (xi +
1
2 h, yi +

1
2 k2),

k4 = h f (xi + h, yi + k3),
yi+1 = yi +

1
6 (k1 + 2k2 + 2k3 + k4)

Table 3. Multi-step methods.

Method Iterative Equation

Adams–
Bashforth 6
(AB6)

yi+1 = yi +
h

1440 (4277 f (ti, yi)
−7923 f (ti−1, yi−1) + 9982 f (ti−2, yi−2)
−7298 f (ti−3, yi−3) + 2877 f (ti−4, yi−4)
−475 f (ti−5, yi−5))

Adams–
Moulton 4
(AM4)

yi+1 = yi +
h

24 (9 f (ti+1, yi+1)
+19 f (ti, yi)− 5 f (ti−1, yi−1)
+ f (ti−2, yi−2))

Gear 4 (G4)
yi+1 = 48

25 yi +− 36
25 yi−1

+ 16
25 yi−2 − 3

25 yi−3
+ 12

25 h f (yi+1)

4. Chaotic Time Series, LE+ and DKY

In Table 1, CO1 is the well-known Lorenz system, therefore, we show the simulation
results for CO2, CO3, HO4 and HO5. The step-size h for each numerical method is given
in the upper corner of each figure. One can appreciate that in some cases h is decreased
to generate the same behavior provided by the majority of methods. Although the time
evolution of the chaotic series is different for each method, the LE+ and DKY are similar,
and it can be improved by varying h, which is not a trivial task and requires the analysis
of the eigenvalues associated to each Jacobian matrix of each equilibrium point of each
chaotic oscillator.

Figures 1–4 show some chaotic time series of the (hyper-)chaotic oscillators simulated
by applying the six numerical methods and listing the step-size h. The six methods were
programmed into MatLab, and afterwards described in hardware language for FPGA
implementation. In this case, a large h is desired to increase the operation frequency of an
FPGA implementation, as shown in the following section.
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Figure 1. Time series of x of CO2 given in Table 1 with initial conditions x0 = y0 = z0 = 0.01.

Figure 2. Time series of z of CO3 given in Table 1 with initial conditions x0 = y0 = 0.1, z0 = 0.0.

Figure 3. Time series of z of HO4 given in Table 1 with initial conditions x0 = y0 = z0 = w0 = 0.2.

Figure 4. Time series of w of HO5 given in Table 1 with initial conditions x0 = y0 = z0 = w0 = 0.2.

The DKY is evaluated from the Lyapunov exponents [9], and for an n-dimensional
system it is evaluated by Equation (3), where LE1, . . . , LEn are Lyapunov exponent values
ordered from the highest to the lowest value.

DKY = (n − 1) +
LE1 + LE2 + LEn−1

|LEn|
(3)

The LE+ and DKY were evaluated by TISEAN [6], which is based on the method
introduced in [20]. The parameters for TISEAN are different for each state variable and
analysis is performed using 50,000 samples for each chaotic time series. The LE+ for each
state variable of each oscillator is shown in Table 4, and ordered from the highest to the
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lowest value. The highest LE+ is from the state variable x of HO4 and simulated with the
fourth-order Runge–Kutta method, so that it is labeled as x_HO4_RK4. The same labels
were adopted for the evaluation of DKY, whose results are shown in Table 5.

Table 4. LE+ (ordered from the highest to the lowest) evaluated by time series analysis (TISEAN) for
each state variable of the five oscillators given in Table 1, and for each numerical method.

Variable LE+ Variable LE+

x_HO4_RK4 0.48209 x_HO4_G4 0.05828

y_HO4_RK4 0.46388 y_HO4_BE 0.05650

w_HO4_FE 0.44930 x_HO5_BE 0.05628

z_HO4_FE 0.44903 z_HO4_BE 0.05575

x_HO4_FE 0.43356 y_HO5_FE 0.05489

w_HO4_RK4 0.43249 x_HO5_AM4 0.05380

z_HO4_AB6 0.42495 z_HO4_G4 0.05366

z_HO4_AM4 0.41541 w_HO5_BE 0.05221

w_HO4_AB6 0.41065 x_CO1_G4 0.05066

w_HO4_AM4 0.40906 x_CO1_AM4 0.04997

x_HO4_AM4 0.40645 w_HO5_G4 0.04912

x_HO4_AB6 0.40141 y_CO2_AB6 0.04814

z_HO4_RK4 0.38334 x_HO5_G4 0.04812

y_HO4_FE 0.37315 w_HO5_AM4 0.04610

y_HO4_AB6 0.36170 w_HO4_G4 0.04488

y_HO4_AM4 0.35865 y_HO5_AB6 0.04372

x_CO2_FE 0.29526 z_CO3_AM4 0.04275

z_HO5_FE 0.22398 y_HO5_AM4 0.04017

y_CO2_FE 0.20778 y_HO5_G4 0.03834

z_CO2_AM4 0.20292 z_CO3_G4 0.03809

z_CO2_G4 0.20292 y_HO4_G4 0.03730

z_HO5_RK4 0.15873 x_CO1_BE 0.03651

z_CO2_BE 0.15520 y_HO5_BE 0.03585

w_HO5_RK4 0.13860 y_CO1_RK4 0.03529

z_HO5_AB6 0.12956 z_CO3_BE 0.03187

z_CO3_RK4 0.11378 y_CO1_BE 0.02697

w_HO5_AB6 0.10937 y_CO1_FE 0.02547

y_CO2_BE 0.10362 y_CO3_FE 0.02457

w_HO4_BE 0.09907 x_CO2_G4 0.02429

x_HO5_RK4 0.09784 x_CO3_AB6 0.02294

z_HO5_G4 0.09718 y_CO3_RK4 0.02166

w_HO5_FE 0.09207 z_CO1_BE 0.02024
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Table 4. Cont.

Variable LE+ Variable LE+

y_CO2_G4 0.09088 x_CO2_RK4 0.01952

y_CO1_AM4 0.08520 y_CO1_AB6 0.01944

z_HO5_AM4 0.08389 y_CO3_AM4 0.01918

z_CO2_FE 0.08388 x_CO2_AM4 0.01659

y_CO2_RK4 0.08253 x_CO1_AB6 0.01596

x_HO4_BE 0.08253 z_CO1_RK4 0.01593

x_HO5_AB6 0.08008 y_CO3_G4 0.01488

z_CO3_FE 0.08000 x_CO3_RK4 0.01414

z_CO1_AM4 0.07899 x_CO3_FE 0.01380

x_CO2_AB6 0.07732 x_CO2_BE 0.01352

y_CO1_G4 0.07696 z_CO1_AB6 0.01333

x_CO1_FE 0.07658 z_CO1_FE 0.01107

z_CO2_AB6 0.07475 z_CO3_AB6 0.01041

z_HO5_BE 0.07097 x_CO3_G4 0.01024

x_HO5_FE 0.06928 y_CO3_AB6 0.00988

z_CO2_RK4 0.06513 x_CO3_AM4 0.00959

x_CO1_RK4 0.06501 z_CO1_G4 0.00826

y_CO2_AM4 0.06107 x_CO3_BE 0.00788

y_HO5_RK4 0.06064 y_CO3_BE 0.00642

Table 5. DKY (ordered from the highest to the lowest) evaluated by TISEAN for each state variable of
the five oscillators given in Table 1, and for each numerical method.

Variable D-KY Variable D-KY

x_HO5_BE 4.00000 z_CO2_RK4 3.00000

z_HO5_AM4 4.00000 x_CO1_AB6 2.98513

z_HO5_AB6 4.00000 x_CO1_BE 2.90439

z_HO5_G4 4.00000 y_HO5_BE 2.90363

w_HO5_BE 4.00000 y_CO2_BE 2.89287

z_HO4_G4 3.94577 y_HO5_AM4 2.87440

z_HO5_BE 3.92788 y_CO2_AB6 2.87170

w_HO5_G4 3.92303 y_CO1_G4 2.84422

w_HO5_AB6 3.92021 y_HO5_G4 2.81868

z_HO5_RK4 3.91847 z_CO2_FE 2.81799

w_HO5_AM4 3.90834 x_CO2_FE 2.73846

z_HO5_FE 3.90638 y_HO4_G4 2.73341

w_HO5_FE 3.88397 z_CO3_RK4 2.71019

x_HO5_AB6 3.86937 z_CO2_AM4 2.68730

x_HO5_RK4 3.86684 z_CO2_G4 2.68730

w_HO5_RK4 3.84980 y_CO2_G4 2.65563
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Table 5. Cont.

Variable D-KY Variable D-KY

x_HO5_AM4 3.80773 z_CO2_AB6 2.50008

w_HO4_RK4 3.71818 z_CO3_FE 2.37750

y_HO4_AM4 3.70668 x_CO3_AB6 2.37036

x_HO4_FE 3.68494 x_CO2_AB6 2.35488

x_HO4_AM4 3.68262 y_CO2_FE 2.28816

y_HO4_AB6 3.68177 y_CO2_AM4 2.26332

w_HO4_AB6 3.68161 z_CO3_AM4 2.24167

x_HO4_AB6 3.68044 x_CO3_RK4 2.20126

w_HO4_FE 3.67562 z_CO1_BE 2.18781

z_HO4_RK4 3.66694 z_CO1_RK4 2.17805

w_HO4_AM4 3.66422 x_CO3_FE 2.17802

z_HO4_AM4 3.65360 y_CO3_AM4 2.16888

x_HO4_G4 3.64872 z_CO3_BE 2.16674

y_HO4_FE 3.63942 z_CO3_G4 2.15179

z_HO4_AB6 3.62949 x_CO3_G4 2.14228

z_HO4_FE 3.62776 y_CO3_FE 2.13910

y_HO4_RK4 3.59111 x_CO3_AM4 2.13357

x_HO4_RK4 3.58378 y_CO1_RK4 2.12505

x_HO5_G4 3.57333 y_CO3_G4 2.11978

x_HO4_BE 3.54548 z_CO1_AB6 2.11110

y_HO5_RK4 3.53267 x_CO3_BE 2.09697

w_HO4_BE 3.44177 y_CO1_AM4 2.09374

y_HO5_FE 3.37649 z_CO3_AB6 2.08648

z_HO4_BE 3.30898 x_CO2_RK4 2.08539

y_HO5_AB6 3.30389 y_CO3_RK4 2.08183

x_HO5_FE 3.17620 z_CO1_AM4 2.06457

y_HO4_BE 3.16271 x_CO1_AM4 2.06136

w_HO4_G4 3.15787 z_CO1_FE 2.05527

x_CO1_FE 3.00000 y_CO1_FE 2.04314

x_CO1_RK4 3.00000 x_CO2_G4 2.03557

x_CO1_G4 3.00000 y_CO3_AB6 2.03262

y_CO1_BE 3.00000 z_CO1_G4 2.02645

y_CO1_AB6 3.00000 x_CO2_AM4 2.00114

y_CO2_RK4 3.00000 y_CO3_BE 2.00079

z_CO2_BE 3.00000 x_CO2_BE 1.98573

5. FPGA Implementation Issues

The development of engineering applications like chaotic secure communication
systems and lightweight cryptography have positioned chaotic oscillators as a hot topic
for research in this century. Nowadays, one can find implementations of chaotic systems
using either analog or digital electronics, as already shown in [21]. This paper shows the
implementation of (hyper-)chaotic oscillators from the selection of a numerical method,
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and by using FPGAs, which can be programmed/configured in the field after manufacture,
and allow fast prototyping at relatively low development cost while providing good
performance, computational power and programming flexibility.

Lets us consider the Lorenz oscillator (CO1) given in Table 1. The ODEs can be
discretized by applying the most simple method known as Forward Euler (FE), to give the
equations given in Equation (4). It is easy to see that these equations can be implemented
by using multipliers, adders and subtractors. In addition, each block can be implemented
including a clock (clk) and a reset (rst) pin to control the iterative process. As the multiplier
consumes more power, if the multiplication includes a constant, as h, σ, ρ, β, one can
design single-constant-multipliers (SCMs), as shown in [21], which use shift registers and
adders to reduce power consumption and hardware resources. In this manner, the block
description of Equation (4) is shown in Figure 5. The registers have an enable (en) pin
and the description is divided into the macro-blocks labeled as Function Evaluation and
Integrator FE. A counter is added to control the number of clks required in the FPGA
implementation to evaluate the current iteration at n + 1, which is saved in the registers to
process the next iteration.

x f en+1
= xn + h[σ(yn − xn)]

y f en+1
= yn + h[−xnzn + ρxn − yn]

z f en+1
= zn + h[xnyn − βzn]

(4)

Figure 5. Block diagram of Equation (4) for field-programmable gate array (FPGA) implementation
applying Forward Euler (FE).

The discretization of CO1 by applying an implicit method like Backward Euler (BE)
is given in Equation (5), where it can be appreciated that the predictor is the FE given in
Equation (4) to evaluate x f en+1

, x f en+1
, x f en+1

. The block description for FPGA implementa-
tion is more complex and it embeds the FE method as shown in Figure 6. One can infer
that the hardware resources for the BE method almost double compared to FE.

xn+1 = xn + h[σ(y f en+1 − x f en+1)]
yn+1 = yn + h[−x f en+1 z f en+1 + ρx f en+1 − y f en+1 ]
zn+1 = zn + h[x f en+1 y f en+1 − βz f en+1 ]

(5)
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Figure 6. Block diagram description of Equation (5) applying Backward Euler (BE) highlighting function evaluation,
integrator Forward Euler and integrator Backward Euler blocks.

The application of other one-step and multi-step methods to discretize a (hyper-
)chaotic oscillator is performed in a similar manner as for the FE and BE methods. For ex-
ample, the application of the multi-step sixth-order Adams–Bashforth (AB6) method
is more complex than FE or BE. It requires five past steps associated to f (n), f (n − 1),
f (n − 2), f (n − 3), f (n − 4), f (n − 5) that can be evaluated by the 4th-order Runge–Kutta
(RK4) method. In this manner, using the iterative equation associated to AB6 that is
given in Table 3, the discrete equations of CO1 are given in Equation (6). Figure 7
shows the block description for the FPGA implementation of CO1. One can see the
predictor RK4, function evaluation and integrator Adams–Bashforth blocks, which are
designed as for the FE and BE methods. The evaluation of Equation (6) also requires
a finite-state machine (FSM) to control the iterative process, a cumulative sum block to
process the RK4 method and random access memories (RAMs) to save the past steps
f (n), f (n − 1), f (n − 2), f (n − 3), f (n − 4), f (n − 5) that are required for the next itera-
tion, and they are controlled by STP (StarT Prediction) and EOP (End Of Prediction).
The predictor RK4 is disconnected after the first iteration, which is controlled by the FSM.

xab6n+1 = xn + h/1440[4277 f (n)− 7923 f (n − 1) + 9982 f (n − 2)− 7298 f (n − 3) + 2877 f (n − 4)− 475 f (n − 5)]
yab6n+1 = yn + h/1440[4277 f (n)− 7923 f (n − 1) + 9982 f (n − 2)− 7298 f (n − 3) + 2877 f (n − 4)− 475 f (n − 5)]
zab6n+1 = zn + h/1440[4277 f (n)− 7923 f (n − 1) + 9982 f (n − 2)− 7298 f (n − 3) + 2877 f (n − 4)− 475 f (n − 5)]

(6)

In all the previous cases, the FPGA synthesis can be performed by adopting computer
arithmetic of fixed-point notation, where the number of bits depends on the amplitudes
of the state variables, as detailed in [7], where one can also find guidelines on Very High
Speed Integrated Circuit Hardware Description Language (VHDL) programming. In this
paper, the fixed-point notation has the format 12.20. Table 6 summarizes the hardware
resources for the implementation of CO1, CO2, CO3, HO4 and HO5 applying FE and using
FPGA Cyclone IV EP4CGX150DF31C7 under the synthesizer of software “Quartus II 13.0”.
In the same table, the last two rows provide the number of clk cycles that are required to
evaluate one iteration n, and the latency is given in nanoseconds when using a 50 MHz clk
signal.
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Figure 7. Block diagram description of Equation (6) for FPGA implementation applying AB6 highlighting function
evaluation, integrator Adams–Bashforth, cumulative sum, finite-state machine (FSM) and RK4.

Table 6. Hardware resources using FPGA Cyclone IV EP4CGX150DF31C7 and applying FE to CO1,
CO2, CO3, HO4 and HO5.

Resources CO1 CO2 CO3 HO4 HO5 Available

Logic elements 1295 1083 2567 2554 1707 149,760
Registers 654 565 588 1591 1045 149,760
9*9 bit multipliers 16 8 8 135 92 720
Max freq (MHz) 90.88 102.75 58.55 79.77 82.7 50
Clock cycles by iteration 5 7 9 12 9 -
Latency (ns) 100 140 180 240 180 -

Table 7 shows the hardware resources for CO1 using FPGA Cyclone IV
EP4CGX150DF31C7 under “Quartus II 13.0” and by applying the three one-step (FE,
BE, RK4) and three multi-step (AB6, AM4, G4) methods. As supposed, FE requires the
lowest hardware resources and clks to process one iteration. The use of SCMs makes a
considerable reduction on the number of multipliers. Although RK4 requires almost four
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times the hardware resources than FE, it is more exact and allows a higher h [7]. AB6
requires the higher number of hardware resources compared to the other five methods.
If one does not design an SCM, the VHDL description of AB6 will require more than the
720 available multipliers in the FPGA Cyclone IV, and therefore it may not be implemented
on this FPGA, so that one must use an FPGA with more density resources.

Table 7. Hardware resources for CO1 using FPGA Cyclone IV and applying different methods.

Resources FE BE RK4 AB6 AM4 G4 Available

Logic elements 1295 1988 4708 8512 7684 7220 149,760
Registers 654 1160 2662 4232 3856 3484 149,760
Multipliers 16 32 208 325 290 274 720
Freq (MHz) 90.88 92.59 84.77 83.53 84.18 82.73 50
Clks/iteration 5 11 32 190 130 100 -
Latency (ns) 100 220 640 3800 2600 2000 -

The hardware resources for the FPGA implementation of the remaining chaotic sys-
tems labeled as CO2, CO3, HO4 and HO5, have similar increases for each numerical
method, the main difference being due to the number of ODEs and nonlinear functions.

Figure 8 shows a representative case of the FPGA implementation of CO1 applying
the one-step method BE, and Figure 9 shows the application of the multi-step method
G4, considering h = 0.001 in both cases.

Figure 8. FPGA simulation of CO1 applying BE.

Figure 9. FPGA simulation of CO1 applying G4.

6. Conclusions

We have shown the issues with the FPGA implementation of chaotic and hyper-
chaotic oscillators from the selection of a one-step and multi-step numerical method.
The challenge is the selection of the time-step h to increase the frequency of operation of
the FPGA design. It was appreciated that each one-step or multi-step method requires
different hardware resources, so that trade-offs arise among reducing hardware resources,
improving exactness and maximum operation frequency. Another open problem is the
selection of the best chaotic oscillator, which can be done by evaluating the LE+ and DKY.
This last characteristic increases as the number of ODEs increases, so that according to the
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results provided by TISEAN, the hyper-chaotic oscillators have the higher LE+ and DKY
values. The FPGA implementation of the Lorenz system CO1 showed good agreement on
the time series generated by applying BE and G4 methods, and using 32 bits in fixed-point
notation of 12.30. The exactness can also be accomplished through using more bits, so
that one can enhance applications in chaotic secure communications and the Internet of
Things (IoT) to guarantee security and privacy. In particular, the IoT application requires a
connectivity protocol in which chaotic oscillators can be synchronized to mask the data
being transmitted, like in the extremely lightweight publish/subscribe messaging transport
known as MQTT (mqtt.org), which is ideal for connecting remote devices with a small code
footprint and minimal network bandwidth.
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Abstract: In this paper, we examine the influence of hybrid nanoparticles on flow and heat transfer
over a permeable non-isothermal shrinking surface and we also consider the radiation and the
magnetohydrodynamic (MHD) effects. A hybrid nanofluid consists of copper (Cu) and alumina
(Al2O3) nanoparticles which are added into water to form Cu-Al2O3/water. The similarity equations
are obtained using a similarity transformation and numerical results are obtained via bvp4c in
MATLAB. The results show that dual solutions are dependent on the suction strength of the shrinking
surface; in addition, the heat transfer rate is intensified with an increase in the magnetic parameter and
the hybrid nanoparticles volume fractions for higher values of the radiation parameter. Furthermore,
the heat transfer rate is higher for isothermal surfaces as compared with non-isothermal surfaces.
Further analysis proves that the first solution is physically reliable and stable.

Keywords: hybrid nanofluid; heat transfer; non-isothermal; shrinking surface; MHD; radiation

1. Introduction

In the history of fluid mechanics, flow development over stretching and shrinking
surfaces was first described by Crane [1] and Wang [2], respectively. Meanwhile, Miklavčič
and Wang [3] reported the existence of non-unique solutions for flow over a shrinking sheet.
Since then, many studies have considered the effect of several physical parameters such as
magnetohydrodynamic (MHD) and radiation on stretching and shrinking surfaces [4–12].
The effect of the MHD parameter is an important factor in many industrial and engineering
applications, for example, MHD power generators, metallurgical process, crystal growth,
metal casting, and cooling of nuclear reactors [13]. Thermal radiation is also important in
designing innovative energy conversion systems operational at high temperatures [14].

In general, most previous studies have considered isothermal surface conditions;
however, heating or cooling can occur under non-isothermal conditions for many practical
applications such as in microelectromechanical (MEM) condensation applications, a thin-
film solar energy collector device, the cooling of metallic plate in a cooling bath, metal
spinning, paper production, and aerodynamic extrusion of plastic sheets [15,16]. In this
respect, Soundalgekar and Ramana Murty [17], and Grubka and Bobba [18] considered
flow over moving and stretching surfaces under non-isothermal conditions, respectively.
This type of heating condition also has been reported by several researchers [19–22].

In 1995, Choi and Eastman [23] introduced nanofluids, which are a mixture of a
base fluid and a single type of nanoparticle, to enhance thermal conductivity. Various
studies on such fluids have been conducted [24–29]. Recently, some studies have found
that advanced nanofluid consists of another type of nanoparticle that is mixed in with
the regular nanofluid and improves its thermal properties, namely a ”hybrid nanofluid”.
Prior experimental studies using hybrid nanoparticles have been conducted by several
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researchers [30–32] and numerical studies on the flow of hybrid nanofluids were studied by
Takabi and Salehi [33]. Moreover, dual solutions of hybrid nanofluid flow were examined by
Waini et al. [34–39]. Other physical aspects have been considered by several authors [40–49]
and review papers are also available [50–55].

In this study, we aim at investigating the effects of Cu-Al2O3 hybrid nanoparticles
on the radiative MHD flow over a permeable non-isothermal shrinking surface. The
simultaneous effects of radiation and the hybrid nanoparticles are examined and the
influence of magnetic field and variation of the temperature index is also considered. To
the best of our knowledge, based on the above studies, the flow of hybrid nanofluids over
non-isothermal shrinkage surfaces is not yet available in the literature, and therefore the
results of this study are new. Most importantly, in this study, two solutions are discovered
and the long-term stability of these solutions is investigated.

2. Mathematical Formulation

Let us consider the two-dimensional, laminar, and incompressible flow of a hybrid
nanofluid over a permeable non-isothermal shrinking surface, as shown in Figure 1. The
surface velocity is represented by uw(x) = ax where a > 0 is constant and v0 is the constant
mass flux velocity. The flow is subjected to the combined effect of a transverse magnetic
field of strength B0 and the radiative heat flux qr, which is assumed to be applied normal
to the surface in the positive y-direction. Accordingly, the hybrid nanofluid Equations (see
Grubka and Bobba [18], Rashid et al. [20], Waini et al. [34]) are:

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

=
μhn f

ρhn f

∂2u
∂y2 −

σhn f

ρhn f
B2

0u (2)

u
∂T
∂x

+ v
∂T
∂y

=
khn f(

ρCp
)

hn f

∂2T
∂y2 − 1(

ρCp
)

hn f

∂qr

∂y
(3)

subject to:
v = v0, u = λuw(x), T = Tw(x) at y = 0

u → 0, T → T∞ as y → ∞
(4)

where u and v represent the velocity components along the x- and y-axes and the tempera-
ture of the hybrid nanofluid is given by T.

Figure 1. The flow configuration.

The expression of the radiative heat flux is as follows [9]:

qr = −4σ∗

3k∗
∂T4

∂y
(5)
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where σ∗ and k∗ denote the Stefan–Boltzmann constant and the mean absorption coeffi-
cient, respectively. Following Rosseland [56], after employing a Taylor series, one gets
T4 ∼= 4 T3

∞ T − 3T4
∞. Then, Equation (3) becomes the following:

u
∂T
∂x

+ v
∂T
∂y

=
1

(ρCp)hn f

[
khn f +

16σ∗T3
∞

3k∗

]
∂2T
∂y2 (6)

Furthermore, the thermophysical properties can be referred to in Tables 1 and 2. Data
from these tables are adapted from previous studies [26,33,34,57]. Note that ϕ1 (Al2O3)
and ϕ2 (Cu) are nanoparticles volume fractions, and the subscripts n1 and n2 correspond
to their solid components, while the subscripts hn f and f represent the hybrid nanofluid
and the base fluid, respectively.

Table 1. Thermophysical properties of nanoparticles and water.

Properties
Nanoparticles Base Fluid

Cu Al2O3 Water

ρ
(
kg/m3) 8933 3970 997.1

Cp (J/kgK) 385 765 4179
k (W/mK) 400 40 0.613

σ (S/m) 5.96 × 107 3.69 × 107 0.05
Prandtl number, Pr 6.2

Table 2. Thermophysical properties of nanofluid and hybrid nanofluid.

Thermophysical Properties Correlations

Dynamic viscosity μhn f =
μ f

(1−ϕhn f )
2.5

Density ρhn f =
(

1 − ϕhn f

)
ρ f + ϕ1ρn1 + ϕ2ρn2

Heat capacity
(ρCp)hn f =

(
1 − ϕhn f

)
(ρCp) f + ϕ1(ρCp)n1 +

ϕ2(ρCp)n2

Thermal conductivity khn f
k f

=

ϕ1kn1+ϕ2kn2
ϕhn f

+2k f +2(ϕ1kn1+ϕ2kn2)−2ϕhn f k f

ϕ1kn1+ϕ2kn2
ϕhn f

+2k f −(ϕ1kn1+ϕ2kn2)+ϕhn f k f

Electrical conductivity σhn f
σf

=

ϕ1σn1+ϕ2σn2
ϕhn f

+2σf +2(ϕ1σn1+ϕ2σn2)−2ϕhn f σf

ϕ1σn1+ϕ2σn2
ϕhn f

+2σf −(ϕ1σn1+ϕ2σn2)+ϕhn f σf

For the similarity solution of Equations (1), (2), and (6), the surface temperature is
taken as follows (see Grubka and Bobba [18], Rashid et al. [20]):

Tw(x) = T∞ + T0(x/L)m (7)

where L is a characteristic length of the sheet and T0 is a temperature characteristic. The
ambient temperature T∞ is assumed to be constant and m represents the temperature
power-law index, with m = 0 indicating an isothermal surface and m > 0 indicating a
non-isothermal surface.

Now, using the following similarity transformation:

ψ =
√

aν f x f (η), θ(η) =
T − T∞

Tw − T∞
, η = y

√
a

ν f
(8)

with the stream function ψ. Here, u = ∂ψ/∂y and v = − ∂ψ/∂x, then:

u = ax f ′(η), v = −√aν f f (η) (9)
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From Equation (9), by setting η = 0, one obtains:

v0 = −√aν f S (10)

where f (0) = S is the constant mass flux parameter which determines the permeability of
the surface. Here, S < 0 and S > 0 are for injection and suction cases, respectively, while
S = 0 represents an impermeable case.

On using Equations (8) and (9), Equation (1) is identically fulfilled. Now, Equations (2) and (6)
are reduced to:

μhn f /μ f

ρhn f /ρ f
f ′′′ + f f ′′ − f ′2 −

σhn f /σf

ρhn f /ρ f
M f ′ = 0 (11)

1
Pr

1(
ρCp

)
hn f /

(
ρCp

)
f

(
khn f

k f
+

4
3

R

)
θ′′ + f θ′ − m f ′θ = 0 (12)

subject to the following:

f (0) = S, f ′(0) = λ, θ(0) = 1,
f ′(η) → 0, θ(η) → 0 as η → ∞

(13)

where primes denote differentiation with respect to η. Note that λ < 0 and λ > 0 represent
the shrinking and stretching surfaces, while λ = 0 is a rigid surface. In addition, Pr
is the Prandtl number, while R and M are the radiation and the magnetic parameters,
respectively, which are defined as follows:

Pr =

(
μCp

)
f

k f
, R =

4 σ∗T3
∞

k∗k f
, M =

σf

ρ f a
B2

0 (14)

The coefficient of the skin friction Cf and the local Nusselt number Nux are given as
follows [9]:

Cf =
μhn f

ρ f u2
w

(
∂u
∂y

)
y = 0

, Nux =
x

k f (Tw − T∞)

(
− khn f

(
∂T
∂y

)
y = 0

+ (qr)y = 0

)
(15)

Using Equations (8) and (15), one obtains:

Re1/2
x Cf =

μhn f

μ f
f ′′ (0), Re−1/2

x Nux = −
(

khn f

k f
+

4
3

R

)
θ′(0) (16)

where Rex = uw(x)x/ν f defines the local Reynolds number.
It should be noted that for ϕhn f = S = M = R = 0, Equations (11) and (12) reduce

to Equations (5) and (6) from Grubka and Bobba [18] when λ = 1.

3. Stability Analysis

The temporal stability of the dual solutions as time evolves is studied. This analysis
was first introduced by Merkin [58], and then followed by Weidman et al. [59]. Firstly,
consider the new variables as follows:

ψ =
√

aν f x f (η), θ(η) =
T − T∞

Tw − T∞
, η = y

√
a

ν f
, τ = at (17)

Now, the unsteady form of Equations (2) and (3) are employed, while Equation (1)
remains unchanged. On using (17), one obtains:

μhn f /μ f

ρhn f /ρ f

∂3 f
∂η3 + f

∂2 f
∂η2 −

(
∂ f
∂η

)2
−

σhn f /σf

ρhn f /ρ f
M

∂ f
∂η

− ∂2 f
∂η∂τ

= 0 (18)
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1
Pr

1(
ρCp

)
hn f /

(
ρCp

)
f

(
khn f

k f
+

4
3

R

)
∂2θ

∂η2 + f
∂θ

∂η
− m

∂ f
∂η

θ − ∂θ

∂τ
= 0 (19)

subject to the following:

f (0, τ) = S, ∂ f
∂η (0, τ) = λ, θ(0, τ) = 1,

∂ f
∂η (∞, τ) = 0, θ(∞, τ) = 0

(20)

Then, consider the following perturbation functions [59]:

f (η, τ) = f0(η) + e− γτ F(η), θ(η, τ) = θ0(η) + e− γτG(η) (21)

Here, Equation (21) is used to apply a small disturbance on the steady solutions
f = f0(η) and θ = θ0(η) of Equations (11)–(13). The functions F(η) and G(η) in Equa-
tion (19) are relatively small as compared with f0(η) and θ0(η). The sign (positive or
negative) of the eigenvalue γ determines the stability of the solutions. By employing
Equation (21), Equations (18) to (20) become:

μhn f /μ f

ρhn f /ρ f
F′′′ + f0F′′ + f ′′0 F − 2 f ′0F′ −

σhn f /σf

ρhn f /ρ f
MF′ + γF′ = 0 (22)

1
Pr

1(
ρCp

)
hn f /

(
ρCp

)
f

(
khn f

k f
+

4
3

R

)
G′′ + f0G′ + θ′0F − m

(
f ′0G + θ0F′)+ γG = 0 (23)

subject to the following:

F(0) = 0, F′(0) = 0, G(0) = 0,
F′(∞) = 0, G(∞) = 0

(24)

Without loss of generality, we set F′′ (0) = 1 [60] to get the eigenvalues γ in Equa-
tions (22) and (23).

4. Results and Discussion

By utilising the package bvp4c in MATLAB software, Equations (11)–(13) were solved
numerically. This solver employs the three-stage Lobatto IIIa formula [61]. The effect of
several physical parameters on the flow behaviour is examined. The total composition
of Al2O3 and Cu volume fractions are applied in a one-to-one ratio. For instance, 1% of
Al2O3 (ϕ1 = 1%) and 1% of Cu (ϕ2 = 1%) are mixed to produce 2% of Al2O3-Cu hybrid
nanoparticles volume fractions, i.e., ϕhn f = 2%. Meanwhile, ϕhn f = 0 indicates a regular
viscous fluid.

The values of −θ′ (0) for various values of m and Pr when ϕhn f = S = M = R = 0
and λ = 1 (stretching sheet) are compared with Grubka and Bobba [18], and Ishak
et al. [15] and the results for each m and Pr considered are comparable, as shown in Table 3.
In addition, it should be noted that the values of −θ′ (0) increase for higher values of m and
Pr. Furthermore, Table 4 provides the values of Re1/2

x Cf and Re−1/2
x Nux when ϕhn f = 2%,

S = 2, and λ = −1 (shrinking sheet) for different physical parameters. The consequence
of increasing m and R values is to reduce the local Nusselt number Re−1/2

x Nux for both
branch solutions. However, the skin friction coefficient Re1/2

x Cf is not affected by these
parameters. Moreover, the values of Re1/2

x Cf and Re−1/2
x Nux for the first solution increase,

but they decrease for the second solution as M increases.
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Table 3. Values of −θ′(0) under different values of m and Pr when ϕhn f = S = M = R = 0 and
λ = 1 (stretching sheet).

m Pr Grubka and Bobba [18] Ishak et al. [15] Present Results

0 1 0.5820 - 0.5820
1 - 1.0000 - 1.0000
2 - 1.3333 - 1.3333
3 - 1.6154 - 1.6154
1 0.72 0.8086 0.8086 0.8086
- 1 1.0000 1.0000 1.0000
- 3 1.9237 1.9237 1.9237
- 10 3.7207 3.7207 3.7207

Table 4. Values of Re1/2
x Cf and Re−1/2

x Nux when ϕhn f = 2%, S = 2 and λ = −1 (shrinking
sheet) for different physical parameters.

m R M
First Solution Second Solution

Re1/2
x Cf Re−1/2

x Nux Re1/2
x Cf Re−1/2

x Nux

0 0 0 1.3622 11.8319 0.8566 11.8066
0.5 - - 1.3622 11.5596 0.8566 11.5177
1 - - 1.3622 11.2748 0.8566 11.2126
1 1 - 1.3622 9.9890 0.8566 9.5366
- 2 - 1.3622 8.8910 0.8566 7.6301
- 3 - 1.3622 8.0105 0.8566 5.7594
- 3 0.01 1.3834 8.0575 0.8354 5.5222
- - 0.05 1.4554 8.2064 0.7634 4.2952
- - 0.1 1.5284 8.3426 0.6904 0.4505

The variations of Re−1/2
x Nux against R when λ = −1, S = 2, M = 0.1, ϕhn f = 2%,

and Pr = 6.2 for various values of m are presented in Figure 2. Reductions in the values of
Re−1/2

x Nux on both solutions are observed with an increase in R and m. Moreover, the si-
multaneous effect of R and ϕhn f on Re−1/2

x Nux when λ = −1, S = 2, M = 0.1, m = 1,
and Pr = 6.2 can be observed in Figure 3. The values of Re−1/2

x Nux on the first solution
decrease with a high percentage of ϕhn f for smaller values of R. This finding seems to
contradict the fact that the added hybrid nanoparticles improve the heat transfer rate due
to synergistic effects as discussed by Sarkar et al. [50]. However, it is interesting to note
that this behaviour is opposite when higher values of R are applied to the system where
the enhancement in the values of Re−1/2

x Nux are observed with a high percentage of ϕhn f .
From these observations, we conclude that the rate of heat transfer could be controlled by
manipulating the values of R and ϕhn f .

Next, the variations of Re1/2
x Cf and Re−1/2

x Nux against S for various values of ϕhn f

and M are presented in Figures 4–7, respectively. The enhancement in the values of Re1/2
x Cf

and Re−1/2
x Nux on the first solution are observed with an increase in S, ϕhn f and M values.

The dual solutions are also obtained when a suitable suction strength is imposed on the
shrinking surface. The flow is unlikely to exist since the vorticity could not be confined
in the boundary layer. These figures reveal that a sufficient suction strength is needed
to preserve the flow over a shrinking sheet. The similarity solutions are terminated at
S = Sc (critical value) and this point is known as the bifurcation point of the solutions. The
boundary layer separation is also delayed with an increase in ϕhn f and M by expanding the
domain of S. Here, the critical values are Sc1 = 1.8974, Sc2 = 1.8733, and Sc3 = 1.8519
for ϕhn f = 0%, 1%, and 2%, respectively. Meanwhile, for M = 0, 0.05, and, 0.1, the
critical values are Sc1 = 1.9474, Sc2 = 1.9003, and Sc3 = 1.8519, respectively. It can be
seen that the presence of those parameters suppressed the vorticity generation due to the
shrinking of the sheet and the steady boundary layer flow is maintained.
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Figure 2. Variations of the local Nusselt number Re−1/2
x Nux against the radiation parameter R for

different values of m.

Figure 3. Variations of the local Nusselt number Re−1/2
x Nux against against the radiation parameter

R and for different values of ϕhn f .
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Figure 4. Variations of the skin friction coefficient Re1/2
x Cf against suction parameter S for different

values of ϕhn f .

Figure 5. Variations of the local Nusselt number Re−1/2
x Nux against suction parameter S for different

values of ϕhn f .
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Figure 6. Variations of the local Nusselt number Re1/2
x Cf against suction parameter S for different

values of M.

Figure 7. Variations of the local Nusselt number Re−1/2
x Nux against suction parameter S for different

values of M.
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The influence of m and R on the variations Re−1/2
x Nux against S are given in

Figures 8 and 9, respectively. The heat transfer rate is higher for the isothermal surface
(m = 0) as compared with the non-isothermal surface (m > 0). An increase in R leads to a
reduction in the values of Re−1/2

x Nux. In addition, the boundary layer separation occurs at
the same point where the critical value is Sc = 1.8519 for all values of m and R considered.

Figure 8. Variations of the local Nusselt number Re−1/2
x Nux against suction parameter S for different

values of m.

Figure 9. Variations of the local Nusselt number Re−1/2
x Nux against suction parameter S for different

values of R.
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The profiles of the velocity f ′(η) and the temperature θ(η) for several pertinent pa-
rameters are presented in Figures 10–17. There are dual solutions for f ′(η) and θ(η) which
satisfy the infinity boundary conditions (13) asymptotically. For more detail, the profiles of
f ′(η) and θ(η) for several values of S when λ = −1, M = 0.1, ϕhn f = 2%, m = 1, R = 3,
and Pr = 6.2 are given in Figures 10 and 11. Note that the profiles of the first and the
second solutions are merged towards some values of S. This behaviour can also be seen in
Figures 2–9 where the similarity solutions ended at S = Sc.

Figure 10. Velocity profiles f ′(η) or different values of suction strength S.

Figure 11. Temperature profiles θ(η) for different values of S.
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Figure 12. Velocity profiles f ′(η) for different values of ϕhn f .

Figure 13. Temperature profiles θ(η) for different values of ϕhn f .
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Figure 14. Velocity profiles f ′(η) for different values of M.

Figure 15. Temperature profiles θ(η) for different values of M.
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Figure 16. Temperature profiles θ(η) for different values of m.

Figure 17. Temperature profiles θ(η) for different values of R.
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Next, an increase in ϕhn f and M values lead to an upsurge in the velocity f ′(η) but
reduces the temperature θ(η) on the first solution, as shown in Figures 12–15, respectively.
Physically, the addition of the nanoparticles makes the fluid more viscous, and thus slows
down the flow; the added nanoparticles also dissipate energy in the form of heat and
consequently exert more energy which enhances the temperature. However, in this study,
we discover that the velocity increases, but the temperature decreases, as ϕhn f increases.
Furthermore, an increase in magnetic strength enhances the magnitude of Lorentz force
and results in an increment in the velocity and a reduction in the temperature for the
shrinking sheet case.

Moreover, Figures 16 and 17 show the consequence effects of m and R on the tem-
perature θ(η). It is seen that both branch solutions of θ(η) show an increasing pattern for
larger values of m and R; in addition, the boundary layer thickness of the first and the
second solutions expand as m and R increase. For m > 0, the temperature in the flow
field increases due to direct variation of the wall temperature along the shrinking surface.
Moreover, the radiation is dominant over conduction with an increase in R. Therefore, the
temperature θ(η) increases due to the high radiation energy presence in the flow field.

The variations of γ against S when λ = −1, ϕhn f = 2%, and M = 0.1 are described
in Figure 18. For the positive value of γ, it is noted that e− γτ → 0 as time evolves (τ → ∞).
In the meantime, for the negative value of γ, e− γτ → ∞ . These behaviours show that the
first solution is stable and physically reliable, while the second solution becomes unstable
over time.

Figure 18. Variations of the minimum eigenvalues γ against suction S.

5. Conclusions

The flow and heat transfer over a permeable non-isothermal shrinking surface with
radiation and magnetohydrodynamic (MHD) effects were examined in this paper. The
findings revealed that dual solutions appeared when satisfactory suction strength was
applied on the shrinking surface. Moreover, the heat transfer rate was enhanced with a
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high percentage of ϕhn f when higher values of the radiation parameter, R, were applied
to the system; additionally, the heat transfer rate was higher for the isothermal surface
(m = 0) as compared with the non-isothermal surface (m > 0). Increased ϕhn f and M
values also enhanced the skin friction coefficient Re1/2

x Cf and the local Nusselt number
Re−1/2

x Nux. The effect of m, as well as R, was to increase the temperature θ(η) inside
the boundary layer. Lastly, it was discovered that the first solution was stable, and thus
physically reliable in the long run.
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Abstract: Polyharmonic spline (PHS) radial basis functions (RBFs) have been used in conjunction
with polynomials to create RBF finite-difference (RBF-FD) methods. In 2D, these methods are usually
implemented with Cartesian nodes, hexagonal nodes, or most commonly, quasi-uniformly distributed
nodes generated through fast algorithms. We explore novel strategies for computing the placement
of sampling points for RBF-FD methods in both 1D and 2D while investigating the benefits of using
these points. The optimality of sampling points is determined by a novel piecewise-defined Lebesgue
constant. Points are then sampled by modifying a simple, robust, column-pivoting QR algorithm
previously implemented to find sets of near-optimal sampling points for polynomial approximation.
Using the newly computed sampling points for these methods preserves accuracy while reducing
computational costs by mitigating stencil size restrictions for RBF-FD methods. The novel algorithm
can also be used to select boundary points to be used in conjunction with fast algorithms that provide
quasi-uniformly distributed nodes.

Keywords: radial basis functions; RBF-FD; node sampling; lebesgue constant; complex regions;
finite-difference methods

MSC: 65D12; 65D25

1. Introduction

In [1–6], Polyharmonic Splines (PHSs) and polynomials were combined to generate
radial basis function finite-difference (RBF-FD) methods. One of the key benefits of combin-
ing PHSs with polynomials was the fact that high-order accuracy could be obtained from
resulting RBF-FD differentiation matrices. Another improvement was the elimination of
the requirement to select optimal shape parameters. When implementing RBF-FD methods,
the choice of shape parameter plays a crucial role in the conditioning of interpolation ma-
trices as well as accuracy [7,8]. As a result, the need to balance accuracy and conditioning
through the tuning of the shape parameter becomes a problem itself. The use of PHSs with
polynomials eliminates this requirement. Instead of having to select shape parameters to
handle different resolutions, the only parameter selection required is the degree of the PHS
and polynomials used, which is pre-selected and remains constant.

The need to tune the shape parameter can be observed in the stagnation error of RBF-
FD methods strictly using RBFs. These methods encountered convergence, which plateaued
or worsened as the number of sampling points increased. This was directly due to the
fact that as the resolution increases, the shape parameter needed to be tuned. As a result,
accuracy was traded off in order to maintain the conditioning of interpolation matrices.
The implementation of RBF-FD matrices using PHSs and polynomials eliminated such
stagnation error. These methods maintain accurate approximations while also eliminating
the complexities of shape parameter selection.

Along with these advantages for using PHSs with polynomials came one key con-
straint: the number of nodes used in each stencil was required to be approximately twice
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the size of the number of polynomial basis functions appended. For example, in [1,2],
stencils comprising of 37 nodes were used. In this case, only polynomials up to degree 4
could be appended to the RBFs. The accuracy of the resulting approximation depends on
the degree of the polynomials appended. Thus, for higher-order methods, larger stencils
are required. This results in increased computational costs as the differentiation matrices
used became less sparse since derivative calculations at each node require function values
from an increased number of nearest neighbors. The stencil size then becomes a limiting
factor when attempting to achieve a given order of accuracy efficiently.

RBF-FD methods using PHSs and polynomials are usually implemented using Carte-
sian points, hexagonal points, or quasi-uniformly distributed points. A few references that
looked into the placement of sampling points for finite-difference methods include [9–13];
however, for RBF-FD methods in 2D, the general strategy has been to generate a set of
quasi-uniformly distributed nodes based on repel algorithms in order to achieve a set
spacing. The algorithms for computing these scattered nodes can be found in [14–16]. The
points in [14,15] are generated using a spatial density function to inform the spacing of
the nodes throughout the domain. Similarly, the points in [16] are generated in order to
achieve a predetermined average separation between points. In this paper, we consider
finding the placement of sampling points for RBF-FD methods using PHSs and polynomi-
als by minimizing a piecewise-defined Lebesgue constant. This will be accomplished by
modifying a column-pivoting QR algorithm previously used to find near-optimal sampling
points for polynomial interpolation, also known as the approximate-Fekete points.

The modified column-pivoting QR algorithm presented in this work provides a novel
sampling method for RBF-FD methods with three major benefits. First, the sampled points
mitigate a key computational constraint of RBF-FD methods implemented with PHSs and
polynomials. That is, it dramatically reduces the number of nodes per stencil for high-order
approximation as compared to other node distributions such as Cartesian or hexagonal
points. This reduces the computational requirements of the RBF-FD method while retaining
high-order accuracy as it has been shown that the accuracy of these methods depends
on the polynomial degree and not the number of nodes in each stencil [6]. The newly
sampled points provide sparser differentiation matrices. The second benefit of the modified
column-pivoting QR algorithm is the ability to compute sampling points with a simple,
robust method. The implementation of the algorithm only requires a set of candidate
points and a choice of basis. The basis used in the novel method is chosen to match the
basis used for the RBF-FD computations. Thus, once a set of candidate points is chosen
and input into the algorithm, a set of sampling points is provided. This provides a simple
algorithm for point selection with few variable parameters. Lastly, the algorithm can be
used to inform the placement of boundary points for complex 2D regions. These boundary
points can then be used in conjunction with scattered repel point algorithms, which provide
quasi-uniformly distributed interior points.

We introduce the basics for RBF-FD methods in Section 2. In Section 3, we introduce
the novel piecewise-defined Lebesgue constant used to compare sampling point locations
for local RBF-FD methods. In this section, we also introduce the modified column-pivoting
QR algorithm used to generate sampling point locations for RBF-FD methods. In Section 4,
we investigate the behavior of varying sampling point locations in 1D. Section 5 extends
the results from 1D into 2D. Lastly, Section 6 implements test cases using the newly
generated points.

2. Background

2.1. RBF Setup

A thorough introduction to RBFs methods can be found in [17–20]. The RBF in-
terpolant is a linear combination of translates of a radially-symmetric function denoted
by φ

(
‖x−xj‖

)
. In 1D, interpolating through the points

(
xj,yj

)
gives us the interpolant

of the form
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s(x)=
n

∑
j=0

cjφ
(
‖x−xj‖

)
, (1)

where the coefficients ck are found by solving the linear interpolation system:⎡⎢⎢⎢⎢⎢⎢⎣
φ(‖x0−x0‖) φ(‖x0−x1‖) . . . φ(‖x0−xn‖)
φ(‖x1−x0‖) φ(‖x1−x1‖) . . . φ(‖x1−xn‖)
φ(‖x2−x0‖) φ(‖x2−x1‖) . . . φ(‖x2−xn‖)

...
...

. . .
...

φ(‖xn−x0‖) φ(‖xn−x1‖) . . . φ(‖xn−xn‖)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
c0
c1
c2
...

cn

⎤⎥⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎣
y0
y1
y2
...

yn

⎤⎥⎥⎥⎥⎥⎥⎦. (2)

Common examples of RBFs are listed in Table 1. Most of these examples, the multiquadric,
the inverse multiquadric, and the Gaussian RBFs in particular, contain the presence of the
shape parameter, ε. These shape parameters must be tuned in order to balance conditioning
and accuracy, and in the case where the number of sampling nodes used becomes large
enough, the accuracy stagnates or decreases due to the need to condition the interpolation
matrices (alternative options to shape parameter tuning are presented in [20] but are not
considered in this study).

Table 1. Example RBFs.

RBF Basis Function Parameter

Polyharmonic Spline φ(r)= rm m∈ 2N−1

Multiquadric φ(r)=
√

1+(εr)2 ε∈R

Inverse Multiquadric φ(r)= 1
1+(εr)2 ε∈R

Gaussian φ(r)= e−(εr)2
ε∈R

Using PHSs and polynomials, we can write the approximation as

s(x)=
n

∑
j=0

cj|x−xj|2m−1+
l

∑
j=0

cj+n+1xj. (3)

See [20] for more details on RBF approximations with appended polynomials. To imple-
ment a 2D finite-difference method with RBFs, the nearest neighbors are to be used in
the finite-difference weight calculations. This is accomplished using MATLAB’s KDTree
and knnsearch functions. To calculate the RBF-FD weights at a given point, a stencil size is
chosen and the nearest neighbors are found. These nearest neighbors are the points used
in the RBF-FD calculation for the given point. Figure 1 below illustrates two examples
of what these stencils should look like in a complex 2D region, such as the bumped-disk
shape. The sampling points are marked by the dots, while the center point is marked by an
asterisk with the relevant stencil points being outlined by circles.
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Figure 1. Fifteen-node stencil example for the bumped-disk region.

2.2. Calculating RBF-FD Weights

To find the RBF-FD weights for a given operator L, we first consider the system with
strictly RBFs, as shown in Equation (4).⎡⎢⎣‖x0−x0‖2m−1

2 . . . ‖x0−xk‖2m−1
2

...
. . .

...
‖xn−x0‖2m−1

2 . . . ‖xn−xk‖2m−1
2

⎤⎥⎦
⎡⎢⎣w0

...
wk

⎤⎥⎦=

⎡⎢⎣ L‖x−x0‖2m−1
2 |x=xc

...
L‖x−xk‖2m−1

2 |x=xc

⎤⎥⎦. (4)

Appending the polynomial terms, as in Equation (3), expands the linear system, as shown
in Equations (5) and (6). This calculates the differentiation weights, w0, . . . ,wk, for the
point x= xc using an k+1 point stencil with RBFs being appended with the polynomials
1,x,y. Thus, the top-left sub-matrix is the usual RBF interpolation matrix. We see that a
Vandermonde matrix consisting of the same stencil points, but using a monomial basis,
is appended to the RBF interpolation matrix. For illustration, the PHSs in this case are
combined with polynomials up to the first degree; in most cases, polynomials of higher
degree are appended. Here, solving for the weights gives us an RBF-FD approximation for
the differentiation operator, L, using PHSs with polynomials.

Vw=L, (5)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

‖x0−x0‖2m−1
2 . . . ‖x0−xk‖2m−1

2 1 x0 y0
...

. . .
...

...
...

...
‖xn−x0‖2m−1

2 . . . ‖xn−xk‖2m−1
2 1 xk yk

1 . . . 1 0 0 0
x0 . . . xk 0 0 0
y0 . . . yk 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

w0
...

wk
wk+1
wk+2
wk+3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

L‖x−x0‖2m−1
2 |x=xc

...
L‖x−xk‖2m−1

2 |x=xc

L1|x=xc

Lx|x=xc

Ly|x=xc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

As previously mentioned, the system in Equation (5) does not contain any shape
parameters, thus eliminating the need to find the optimal value for such a parameter.
Instead, the conditioning of the matrix in the left-hand side is achieved by appending the
polynomials while using an appropriate stencil size.

2.3. Accuracy Considerations

The convergence rate of RBF-FD methods combining PHSs and polynomials depends
on the degree of polynomials used and is independent of both the parameter, m, which
defines the PHS, and the stencil size. Thus, approximations converge at the rate of O(hp),
where h is the spacing and p is the degree of polynomials appended. Figure 2 below depicts
an example of the convergence rate these RBF-FD methods provide. In this case, a hexago-
nal nodal set is used on the unit square. A 51 point stencil is used such that there are enough
nodes in the stencil to handle the inclusion of polynomials up to degree p= 5. The PHS used
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is φ(r)= r3. The relative error of the approximation of d
dx (1+sin(4x)+cos(3x)+sin(2y))

is plotted against the spacing, h, along with the expected convergence rate for each degree
of polynomials used in dashed lines.

10-210-1
10-6

10-4

10-2

100

102
First-order Derivative Accuracy

p=2
p=3
p=4
p=5

Figure 2. Convergence rates of a first-order derivative approximation using PHS and polynomials.

3. Node Sampling for RBF-FD Methods

To find sampling points for RBF-FD methods, we calculate the set of points with
a minimal Lebesgue constant. Lebesgue constants are commonly used to determine
the optimality of sets of sampling points for polynomial interpolation. The goal will
be to formulate a piecewise-defined Lebegue constant for RBF-FD methods. Previous
works [9–12] have looked to find point locations for finite-difference methods but do not
formulate piecewise-defined Lebesgue constants and have not focused on RBF-FD methods
using PHSs and polynomials. A few works, however, have considered Lebesgue constants
for RBF-FD methods for other purposes [21,22].

3.1. The Piecewise-Defined Lebesgue Constant for RBF-FD Methods

To formulate a notion of the Lebesgue constant for RBF-FD methods, we first recall
that for polynomial interpolation, given a set of n+1 sampling points, [(x0,y0), . . . ,(xn,yn)],
the Lebesgue constant is defined as:

Λ= sup
f

‖p f ‖∞

‖ f ‖∞
= sup

(x,y)

n

∑
j=0

|lj(x,y)|. (7)

Here, p is the approximation of functions f ∈C([−1,1]) and the lj’s are the cardinal func-
tions which satisfy:

lj(xk,yk)=

{
1 k= j
0 k �= j.

(8)

To define the Lebesgue constant for RBF-FD methods, the cardinal functions must be
formulated similarly. Furthermore, the cardinal functions must be considered in a piecewise
manner to account for the local nature of RBF-FD methods. This is accomplished by
considering the piecewise cardinal functions.

Consider 1D piecewise polynomial interpolation with 4 sampling points,(
−1,− 1

3 , 1
3 ,1

)
, using a 3 point stencil. In this case, there are two stencil groupings as

outlined in Figure 3 below. For this example, the piecewise cardinal functions are shown in
Figure 4. Each piecewise cardinal function contains a discontinuity at x=0. For a given
x, each piecewise cardinal function, lj(x), is defined using the 3 closest sampling points.
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Thus, for x∈ [−1,0], the piecewise cardinal functions are defined using points
(
−1,− 1

3 , 1
3

)
,

while for x∈ (0,1], the piecewise cardinal functions are defined using points
(
− 1

3 , 1
3 ,1

)
.

Figure 3. Stencil grouping example.
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Figure 4. Piecewise cardinal function example. Clockwise starting from the top left: l1(x), l2(x), l4(x),
l3(x).

For RBF-FD methods, the piecewise cardinal functions are defined similarly. Consider
using a k-point stencil with degree p=1 polynomials being appended. The given 2D
region is discretized into a fine mesh, Ω, to calculate the piecewise cardinal functions on.
Then, the k nearest neighbors from a given set of sampling points, [(x0,y0), . . . ,(xn,yn)], are
found for each point in Ω. The cardinal function coefficients for a given stencil grouping,[
(x′0,y′0), . . . ,

(
x′k,y′k

)]
, can be calculated by solving the following system in Equation (9).⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

‖x′0−x′0‖2m−1
2 . . . ‖x′0−x′k‖2m−1

2 1 ′x0 y′0
...

. . .
...

...
...

...
‖x′k−x′0‖2m−1

2 . . . ‖x′k−x′k‖2m−1
2 1 x′k y′k

1 . . . 1 0 0 0
x′0 . . . x′k 0 0 0
y′0 . . . y′k 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0,0 . . . c0,k
...

...
...

ck,0 . . . ck,k
ck+1,0 . . . ck+1,k
ck+2,0 . . . ck+2,k
ck+3,0 . . . ck+3,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[ I
0

]
. (9)

Once the piecewise cardinal function coefficients, C= ci,j for i= 0, . . . ,k, j= 0, . . . ,k, are
obtained, the matrix of piecewise cardinal functions is built according to Equation (10).
Here, (xx0 . . .xxm)⊆Ω denote the points in the fine mesh that have

[
(x′0,y′0), . . . ,

(
x′k,y′k

)]
as
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the k-nearest neighbors, and the indices i0 . . . ik are such that x′0 = x′i0
. . .x′k = x′ik

. Once this
process is repeated for all possible stencil groupings, the full matrix of piecewise cardinal
functions will have been tabulated, and the Lebesgue constant for RBF-FD methods is
defined as ΛRBF−FD = sup(x,y)∑n

j=0 |lj(x,y)|.

l =

⎡⎢⎣ li0(xx0) . . . lik (xx0)
...

...
...

li0(xxm) . . . lik (xxm)

⎤⎥⎦,

l =

⎡⎢⎣ ‖xx0−x′0‖2m−1
2 . . . ‖xx0−x′k‖2m−1

2 1 xx0 yy0
...

. . .
...

...
...

...
‖xxm−x′0‖2m−1

2 . . . ‖xxm−x′k‖2m−1
2 1 xxm yym

⎤⎥⎦C. (10)

3.2. Modified Column-Pivoting QR Algorithm (MCpQR Algorithm)

In the previous section, we discussed the metric used to determine the optimality of a
set of sampling points for RBF-FD methods using PHSs and polynomials. In this section,
we discuss how to sample point locations using this optimality measure. The algorithm
proposed is a modification of an algorithm commonly used to find near-optimal sampling
points for polynomial interpolation.

Finding optimal and near-optimal sampling points for polynomial interpolation has
been studied extensively [23–33]. A robust algorithm for near-optimal polynomial interpo-
lation sampling is modified to be used for RBF-FD methods. This method, which performs
column-pivoting QR factorizations, was originally implemented to approximate the Fekete
points. These points maximize the denominator of the cardinal function determinant
definition shown in Equation (11):

lj(x,y)=
det
(
Vn
[
(x0,y0), . . . ,

(
xj−1,yj−1

)
,(x,y),

(
xj+1,yj+1,

)
. . . ,(xn,yn)

])
det(Vn[x])

, (11)

where Vn is the Vandermonde matrix defined as:

Vn[x]=Vn[(x0,y0), . . . ,(xn,yn)]

=

⎡⎢⎢⎢⎢⎢⎣
φ0(x0,y0) φ1(x0,y0) φ2(x0,y0) . . . φn(x0,y0)
φ0(x1,y1) φ1(x1,y1) φ2(x1,y1) . . . φn(x1,y1)
φ0(x2,y2) φ1(x2,y2) φ2(x2,y2) . . . φn(x2,y2)

...
...

...
. . .

...
φ0(xn,yn) φ1(xn,yn) φ2(xn,yn) . . . φn(xn,yn)

⎤⎥⎥⎥⎥⎥⎦.

Here, n denotes the number of basis columns in the Vandermonde matrix.
By maximizing this denominator term, the Fekete points provide bounds for the

cardinal functions, as well as the Lebesgue constant. These bounds are ‖lj‖∞ ≤1 and
Λ≤n+1. To approximate the Fekete points, a greedy algorithm was used in [24,26]. The
domain is first discretized into candidate points, x=(xi,yi)

M
i=1 ∈Ω. Then, to select N

approximate-Fekete points, the corresponding N-column Vandermonde matrix, VN−1[x]∈
RMxN , is generated. Finally, the greedy algorithm in Algorithm 1 is applied to A=V′

N−1[x].

Algorithm 1 Greedy Volume Submatrix Algorithm

• Select ind1 as the index of the column of A with maximum length.
• Given indexes ind1, . . . , indk, select indk+1 such that the volume generated by columns

ind1, . . . , indk, indk+1 is maximal.

217



Mathematics 2021, 9, 1845

This greedy algorithm can be easily implemented using a column-pivoting QR factor-
ization. A 1D example is given in Algorithm 2 below. A deeper explanation of approximate-
Fekete points can be found in [24,26].

Algorithm 2 Example Column-Pivoting QR Algorithm

n= 21; % number of interpolation points
m= 1000; % number of candidate points
xx= linspace(−1,1,m);
A = gallery(’chebvand’,n,xx) % generate Vandermonde matrix with Chebyshev basis
[Q, R, E]=qr(A,’vector’)
pts=xx(E(1:n))

A modified Column-pivoting QR Algorithm (MCpQR algorithm) is used to find
sampling nodes for RBF-FD methods combining PHSs and polynomials on complex regions
in 2D. The proposed method provides a robust algorithm for finding sampling nodes on
general complex regions. Furthermore, these nodes display the expected behavior in terms
of accuracy and convergence and build upon those results by providing differentiation
matrices with increased sparsity through the mitigation of crucial stencil size constraints.

In order to find sampling points using the MCpQR algorithm, a set of candidate
points and a basis to populate the matrix upon which we perform the column-pivoted
QR factorization is required. Suppose the region is discretized into candidate points
x=(xi,yi)

M
i=0 ∈Ω. To find sampling points in the RBF-FD setting, a basis needs to be

selected. In the case of RBF-FD methods, the locations of the centers are required in order
to determine the RBF basis. Furthermore, changing the location of the sampling nodes also
changes the RBF basis. Thus, in order to select a basis to use for the MCpQR algorithm,
we first make a starting guess for the sampling node locations. The matrix used in the
MCpQR algorithm must also account for this dynamic basis. The obvious choice of basis
then becomes the piecewise cardinal function basis. That is, to find n+1 sampling points,
the matrix calculated using Equation (10), L in Equation (12), is chosen as the matrix to
perform the MCpQR algorithm on. Specifically, we perform the algorithm on L′ since
column selection on L′ represents selecting candidate points.

L=

⎡⎢⎢⎢⎢⎢⎣
l0(x0,y0) l1(x0,y0) . . . ln(x0,y0)
l0(x1,y1) l1(x1,y1) . . . ln(x1,y1)
l0(x2,y2) l1(x2,y2) . . . ln(x2,y2)

...
...

. . .
...

l0(xM,yM) l1(xM,yM) . . . ln(xM,yM)

⎤⎥⎥⎥⎥⎥⎦. (12)

Since the piecewise cardinal function basis is dependent on the sampling node loca-
tions, a starting guess is used to populate L. From here, the MCpQR algorithm is iterated.
We found that in most cases, 1 iteration is enough to obtain significantly better Lebesgue
constants for RBF-FD methods. In some rare cases, up to 5 iterations are required.

It is important to note the computational costs of the MCpQR algorithm. The compu-
tational costs of the algorithm may be broken down into two main parts: the calculation
of the matrix L and the implementation of the column-pivoting QR factorization. Due to
the piecewise nature, the matrix L is sparse. This is depicted in the 1D example shown in
Figures 3 and 4. Thus, we can save computational costs by only calculating the non-zero
parts of L. Each row in L has the same number of non-zero elements as there are points
in the stencil used. Further, candidate points with the same set of nearest neighbors can
be grouped together to form a linear system in which the cardinal function coefficients
are solved for (Equation (9)). We notice that to solve this system, we must compute the
inverse of the RBF-FD matrix of dimensions (k+1+d)× (k+1+d), where d is the number
of polynomials basis functions appended. Thus, for the unique stencil grouping, the cost
is O(k+1+d)3. This approach populates L in a piecewise manner. We note this cost is
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similar to the computational cost of generating the differentiation matrix for a given set of
sampling points, which requires solving the system in Equations (5) and (6).

Once the matrix L is populated, a QR factorization is performed. This factorization
costs O

(
(M+1)(n+1)2

)
. This factorization comprises the majority of the computational

cost. We see that the algorithm can benefit by limiting the number of candidate points,
M+1. We discuss in Sections 4 and 5 strategies for reducing this cost.

4. Results in 1D

To study the behavior of node configurations for RBF-FD methods using PHSs and
polynomials, we begin with an investigation in 1D. Along with the MCpQR algorithm,
we can consider other point locations generated by mappings made possible due to the
simpler nature of 1D domains. We compare the points from the MCpQR algorithm with
the mapped points in terms of eigenvalue stability and Lebesgue constant optimality.

4.1. Mapped Point Sets

A few references that have looked into the placement of sampling points for finite-
difference methods in 1D include [9–12,34]. The strategies used in these works include
adding nodes near the boundary to stabilize differentiation operators, moving nodes near
the boundary to optimize piecewise polynomial error formulae, and transforming node
locations using a mapping to stabilize differentiation operators. It is important to see that
these strategies focus on the placement of nodes near the boundaries. We will investigate
the effects of similar behavior near the boundary for 1D RBF-FD methods using PHSs and
polynomials in this section.

In 1D, we leverage the mapping proposed in [35] to control the placement of nodes
near the boundary. This mapping was implemented in [12,34] to generate point sets for 1D
finite-difference methods and in [36] for RBF approximations in 1D. The mapping, which
we shall refer to as the KTE mapping, is defined as:

xkte =
arcsin(αxcheb)

arcsin(α)
. (13)

xcheb represents a set of Chebyshev points. The outputted xkte approach Chebyshev points
as α→0, while for α=1, xkte are equispaced points. Alternatively, we also consider the
inverse of this mapping, which we shall call the IKTE mapping defined by:

xikte =
sin
(
arcsin

(
αxequi

))
α

. (14)

xequi represent a set of equispaced points. The outputted xikte approach equispaced points
as α→ 0, while for α= 1, xkte are Chebyshev points.

With these two mappings, we have one tunable parameter, α, that controls the spacing
of points near the boundary with a set of Chebyshev or equispaced points being the input
for the mappings. This allows us to investigate the behavior of point locations near the
boundary in terms of Lebesgue constant optimality and eigenvalue stability. In view of
the importance that certain eigenvalues have in the analysis of real models formulated by
Partial Differential Equations (PDEs), we refer for completeness also to [37,38].

For example, we consider a 37 point stencil, φ(r)= r5, polynomials up to degree
p=14, and 1000 nodes on the interval [−1,1] for RBF-FD calculations. For the KTE and
IKTE mapping, we use MATLAB’s fmincon to find the α that minimizes the Lebesgue
constant. For the KTE mapping, we plot the inputted Chebyshev points and the resulting
Dirichlet Laplacian eigenvalues on the left column of Figure 5. The spacing for the points
resulting from finding the α that minimizes the Lebesgue constant and the corresponding
Dirichlet Laplacian eigenvalues are depicted in the right column of Figure 5. In this case, the
Lebesgue constant for the Chebyshev points and the mapped points are ΛRBF−FD =2.69
and ΛRBF−FD =1.82, respectively. We notice that in this case, the mapped points are
equispaced away from the boundary and become clustered close to the boundary. Both sets
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of points have negative, real eigenvalues; however, the mapped points have eigenvalues of
smaller magnitude due to having a larger minimum spacing than the Chebyshev points.
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Figure 5. Chebyshev points, KTE optimized points, and their eigenvalues for a 37 point stencil with
polynomials up to degree p= 15. In this case, both point sets produce purely real eigenvalues.

Alternatively, we plot the results for the IKTE mapping in Figure 6. We notice that
for equispaced points, the eigenvalues are imaginary. After using the IKTE mapped
points, the eigenvalues return to being purely real. In this case, the Lebesgue constant
for the equispaced points and the mapped points are ΛRBF−FD =4.59 and ΛRBF−FD =
1.82, respectively.

One thing we notice is that α that minimizes ΛRBF−FD is very close to 1 from both
mappings. That is, the KTE mapping maps the Chebyshev points to points close to
equispaced points, and the IKTE mapping maps the equispaced points to points close to
the Chebyshev points. This behavior illustrates the fact that the two mappings impact
the behavior of clustering near the boundary in different ways, depending on what set of
points is being inputted. Figure 7 illustrates the behavior of ΛRBF−FD for different values
of α using the IKTE mapping. The subfigure on the right uses a log scale for α to illustrate
the behavior of ΛRBF−FD for α close to 1. The optimal α is circled.

The results from the KTE and IKTE mapping in this case lead us to conclude that
some clustering near the boundary gives the best results due to the fact that the equispaced
points lead to eigenvalues with a non-zero imaginary part, while both mapped sets lead to
purely real eigenvalues. Although the KTE and IKTE mappings inform the behavior of the
placement of nodes for RBF-FD methods by tuning just one parameter, these mappings
cannot be translated to 2D complex regions. As a result, we need a robust algorithm for
placing points near the boundary in 2D: the MCpQR algorithm.

220



Mathematics 2021, 9, 1845

0 200 400 600 800 1000

x
k

1

1.5

2

2.5

3

x k+
1
-x

k

10-3 Equispaced Points

0 200 400 600 800 1000

x
k

0

0.5

1

1.5

2

2.5

3

3.5

x k+
1
-x

k

10-3IKTE Optimized Points

-2.5 -2 -1.5 -1 -0.5 0

106

-1.5

-1

-0.5

0

0.5

1

1.5
105 Eigenvalues

0 200 400 600 800 1000
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
108 Eigenvalues

Figure 6. Equispaced points, IKTE optimized points, and their eigenvalues for a 37-point stencil with
polynomials up to degree p=15. The equispaced points produce complex eigenvalues, while the
IKTE optimized points produce purely real eigenvalues.
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Figure 7. Lebesgue constant for the IKTE mapped points using a 37-point stencil with polynomials
up to degree p= 15. The optimal α is circled.

4.2. MCpQR Algorithm Point Sets

Based on the results in Section 4.1, we see that a set of points that are equispaced in
most of the domain and clustered close to the boundary provide better eigenvalues. As a
result, we would like to be able to generate a similar point set using the MCpQR algorithm.
This algorithm would then be used to generate point sets for complex 2D regions.

Using the same selections for PHS, polynomial degree, stencil size, and number of
points as used in Section 4.1, we implement the MCpQR algorithm to compute point
locations for RBF-FD methods. As mentioned previously, we require a starting guess
of points to populate the piecewise cardinal function basis. Naturally, from the results
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Section 4.1, we use the equispaced points as the starting guess. The spacing for the points
computed by the MCpQR algorithm along with the Dirichlet Laplacian eigenvalues are
plotted in Figure 8. We notice that the algorithm is again able to compute points with
purely real eigenvalues. The eigenvalues closely resemble those from the KTE mapping in
Figure 5. In this case, we achieve ΛRBF−FD = 1.85
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Figure 8. MCpQR algorithm point spacing and Dirichlet Laplacian eigenvalues compared to equis-
paced points.

We notice that the points computed by the MCpQR algorithm are again near-
equispaced for most of the domain and clustered close to the boundary. One way to
decrease unnecessary computational costs is to optimize only the points close to the end
points of the domain. Thus, we choose a set of equispaced points away from the boundary
and keep them fixed. Then, we can choose the spacing of the points near the boundary
using our novel algorithm. The candidate points are populated only near the boundary,
eliminating the need to incorporate candidate points on the majority of the [−1,1] interval.
This greatly reduces the computational costs outlined for the QR factorization in Section 3.2.
Figure 9 illustrates the resulting point set when implementing this boundary-restricted
approach. Starting with 1000 equispaced points, we restrict the 1000−2k interior points
and allow the k points closest to −1 and 1 to be moved. The resulting points achieve
ΛRBF−FD = 1.85, the same value that resulted from an unrestricted algorithm. Additionally,
we notice that the spacing near the boundary and eigenvalues are similar to the unrestricted
algorithm. Thus, we are able to obtain these points for RBF-FD methods by just moving
selecting points near the boundary using the MCpQR algorithm.
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Figure 9. MCpQR algorithm point spacing and Dirichlet Laplacian eigenvalues compared to equis-
paced points. In this case, the majority of the points are fixed.

5. Results in 2D

Following the results in 1D, we naturally progress to point sets for RBF-FD methods
in 2D. The MCpQR algorithm can be used in 2D as long as we have the required basis
and candidate points. We begin with rectangular domains and follow with more complex
2D regions. We will demonstrate that the MCpQR algorithm provides a simple, robust
algorithm for finding point sets for RBF-FD methods with reduced computational cost.

5.1. Unit Square Results

The first 2D region we consider is the unit square. The unit square allows us to
consider the tensor product of resulting 1D point sets. We consider again a 37-point
stencil, φ(r)= r5, polynomials up to degree p= 4, and 961 nodes on the interval for RBF-FD
calculations. In this case, the 961 nodes are a tensor product of 31 nodes on the [−1,1]
interval. Polynomials up to degree p= 4 append 15 polynomial basis functions, the same
number appended for polynomials up to degree 14 in 1D. Figures 10–12 plot the resulting
QR algorithm points when using tensor product 1D points, hexagonal points, and scattered
points as starting guesses. The tensor product 1D points are obtained by taking the tensor
product of the points found using the QR algorithm in 1D, as shown in Figure 9.

We notice that for explicit time-stepping, the hexagonal points and the scattered points
provide the best eigenvalues. Using these sets for starting guesses, the MCpQR algorithm
moves the points near the boundary to decrease the Lebesgue constant while preserving
the general behavior of the eigenvalues. This is important, as for complex regions, we can
place the hexagonal points within the complex region, draw the boundary of the complex
region and move the points near the boundary with the algorithm. This will provide
a method similar to the algorithm used to obtain scattered points for complex regions.
We note that the tensor product points result in less optimal eigenvalues. The MCpQR
algorithm does not move the points near the boundaries for these sets. Thus, these point
sets should not be considered.

In Figure 13, we implement the MCpQR algorithm without fixing any nodes. The
closely matched results from Figures 11 and 13 show that limiting the algorithm to just
moving the points near the boundary produces adequate point sets while eliminating the
computational costs required by moving points both close to and away from the boundary.
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We notice that the points obtained from the MCpQR algorithm strongly depend on the
starting guess. Thus, we can conclude from this that the points from the QR algorithm can
only be considered as local minima, not global minima.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Tensor Points

-5000 -4000 -3000 -2000 -1000 0
-1.5

-1

-0.5

0

0.5

1

1.5
Eigenvalues

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
QR Algorithm Points

-5000 -4000 -3000 -2000 -1000 0
-1.5

-1

-0.5

0

0.5

1

1.5
Eigenvalues

Figure 10. Tensor product points and resulting MCpQR algorithm points with Dirichlet Lapla-
cian eigenvalues.
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Figure 11. Hexagonal points and resulting MCpQR algorithm points with Dirichlet Laplacian eigenvalues.
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Figure 12. Scattered points and resulting MCpQR algorithm points with Dirichlet Laplacian eigenvalues.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Hexagonal Points

-4000 -3000 -2000 -1000 0
-8

-6

-4

-2

0

2

4

6

8
Eigenvalues

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
QR Algorithm Points

-4000 -3000 -2000 -1000 0
-8

-6

-4

-2

0

2

4

6

8
Eigenvalues

Figure 13. Hexagonal points and resulting MCpQR algorithm points with Dirichlet Laplacian
eigenvalues. No interior points are fixed.

Next, we investigate the behavior of point sets for complex 2D regions. For complex
regions, we consider the scattered points along with the points resulting from inputting
hexagonal points into the QR algorithm since these two sets performed the best on the unit
square. We notice three key benefits of using the MCpQR algorithm to generate points for
RBF-FD methods in the examples above.

First, the robustness and simplicity of the algorithm allow us to easily generate point
sets for any given region. As mentioned previously, the only requirements are a given
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basis and a set of candidate points. The only tunable parameters in this case are how many
candidate points to use since the RBF-FD method already determines the basis used.

Second, in this case, the MCpQR algorithm-generated points produced eigenvalues
with smaller imaginary parts. Thus, these points produced eigenvalues closer to the true
Dirichlet Laplacian eigenvalues. This implies that for convective PDEs, less hyperviscosity
may be needed to be applied in order to handle spurious eigenvalues that arise from the
imaginary parts of the Dirichlet Laplacian.

Lastly, the points generated by the MCpQR algorithm allow for a decrease in the
stencil size requirements for RBF-FD methods. It has been previously recommended that
stencil sizes be at least twice the number of polynomial basis functions appended. Thus,
for the example used for the unit square, the stencil size should contain at least 30 points to
maintain the conditioning of the system in Equation (5). The use of the points generated by
the MCpQR algorithm alleviates the stencil size requirement. For this example, we are able
to find points for the RBF-FD method that allow for the use of a 19 point stencil. This is
done by first starting with a hexagonal point set using an adequate stencil size (30 in this
example), performing the MCpQR algorithm, and using the resulting set as the starting
guess to again run the MCpQR algorithm but now with a smaller stencil size. This is then
iterated until the conditioning of the system degrades. The resulting point set for a 19 point
stencil is shown in Figure 14.
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Figure 14. Resulting points for a 19-point stencil with Dirichlet Laplacian eigenvalues. These points
were obtained by iteratively applying the MCpQR algorithm for smaller stencils.

5.2. Complex 2D Regions

We adapt the MCpQR algorithm to generate point sets for RBF-FD methods on
complex 2D regions. We employ the same strategy: determine a starting point set, fix the
interior nodes, and implement the MCpQR algorithm to choose the location of points near
the boundary. We use the hexagonal points as the starting guess for the MCpQR algorithm
since these points were shown to perform the best in Section 5.1.

For complex regions, we populate the hexagonal points on the unit square, draw
the complex region, and keep only the points lying on the interior of the shape. The
boundary points of the complex region are then appended to the point set used as the
starting guess. In Figure 15, both the starting guess and the resulting MCpQR algorithm
sampling nodes for the bumped-disk region are plotted, along with their respective Dirich-
let Laplacian eigenvalues. This case considers the bumped-disk region using a 37 point
stencil, φ(r)= r3, and polynomials up to degree p= 4. In this example, 734 nodes are used
for RBF-FD calculations.

We note that the described method for populating the initial guess produces points
that lie too close to each other. This occurs when the boundary points for the shape are
located close to the hexagonal grid. As a result, the Dirichlet Laplacian eigenvalues are
affected due to the close proximity of certain points. We notice that the MCpQR algorithm
is able to remedy the clustering of points near the boundary and improve the behavior of
the eigenvalues.
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Figure 15. Hexagonal points and resulting MCpQR algorithm points with Dirichlet Laplacian
eigenvalues for the bumped-disk region.

Figure 16 displays the results for another complex region: the peanut region. This
example also considers a 37-point stencil, φ(r)= r3, and polynomials up to degree p=4.
Here, 830 nodes are used for the RBF-FD calculations. Similar improvements in the spacing
of points from the starting guess are observed.
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Figure 16. Hexagonal points and resulting MCpQR algorithm points with Dirichlet Laplacian
eigenvalues for the peanut region.

We see that the strategy described in this section provides another method for popu-
lating point locations for RBF-FD methods on complex regions. The MCpQR algorithm is
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able to handle complex regions. Furthermore, as mentioned in Section 5.1, the MCpQR
algorithm is able to be implemented with a few simple parameter selections (number of
candidate points and basis) and allows for decreased computational costs as a result of
lower stencil size requirements. Tables 2 and 3 list the stencil size requirement improve-
ment obtained by using the iteratively chosen points for different selections of polynomial
degree and PHS degree for both the bumped-disk and peanut regions.

Table 2. Stencil size reduction for different selections of polynomial degree and PHS degree for the
bumped-disk region.

Bumped-Disk Region, 734 Nodes

Polynomial Degree PHS Degree
Two Times the Number of
Polynomial Basis Vectors

Required Stencil Size
(Optimized Pts)

deg = 3 r3 k = 20 15

deg = 3 r5 k = 20 15

deg = 3 r7 k = 20 15

deg = 4 r3 k = 30 19

deg = 4 r5 k = 30 21

deg = 4 r7 k = 30 21

deg = 5 r3 k = 42 31

deg = 5 r5 k = 42 31

deg = 5 r7 k = 42 27

Table 3. Stencil size reduction for different selections of polynomial degree and PHS degree for the
peanut region.

Peanut Region, 830 Nodes

Polynomial Degree PHS Degree
Two Times the Number of
Polynomial Basis Vectors

Required Stencil Size
(Optimized Pts)

deg = 3 r3 k = 20 15

deg = 3 r5 k = 20 15

deg = 3 r7 k = 20 15

deg = 4 r3 k = 30 21

deg = 4 r5 k = 30 25

deg = 4 r7 k = 30 25

deg = 5 r3 k = 42 31

deg = 5 r5 k = 42 31

deg = 5 r7 k = 42 33

It should be noted that the MCcQR algorithm points and the scattered repel algorithm
points perform similarly on complex regions with regards to stencil requirements and
eigenvalue stability. Figure 17 plots the repel algorithm points on the bumped-disk region
with φ(r)= r3 and polynomials up to degree p= 3. In this case, the repel algorithm points
are able to handle a stencil size of 15 as well. Applying the MCpQR algorithm reduces
the repel points starting guess measure from ΛRBF−FD = 8.91 to ΛRBF−FD = 3.56; however,
there is no such improvement with regards to eigenvalue stability.
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Figure 17. Scattered repel algorithm points and resulting MCpQR points with Dirichlet Lapla-
cian eigenvalues.

The 1D results from Section 4 suggest there should be some point clustering near
the boundary of the region. It seems the MCpQR algorithm is not able to recreate the
same behavior from 1D in 2D complex regions. After inputting the repel algorithm points
(a quasi-uniformly distributed set with no clustering near the boundary) as a starting
guess, the MCpQR does not improve the eigenvalues. This may be due to the fact that
the algorithm is generating ’local minima’ type point sets. As a result, it is concluded that
these repel algorithm points perform well on 2D complex regions.

One major benefit the MCpQR algorithm can provide on complex 2D regions is bound-
ary point selection. Currently, the repel algorithm discretizes an equispaced boundary and
keeps the boundary points fixed throughout the algorithm [4]. In this case, the algorithm
does not inform any selection of boundary points. The MCpQR algorithm can be used in
conjunction with the repel algorithm to identify which boundary points to use along with
the interior points resulting from the repel algorithm. Consider the bumped-disk region
using a 37-point stencil, φ(r)= r3, and polynomials up to degree p=4. In Figure 18, we
see that if we implement the scattered repel algorithm points with too few points on the
boundary, the MCqQR algorithm selects additional points to place on the boundary. In this
case, the number of boundary points increases from 31 to 63. We notice the improvement
in the imaginary part of the eigenvalues. Thus, the MCpQR algorithm can be applied to
determine a minimum number of boundary points to use with the scattered repel algorithm
points. This again improves eigenvalue stability while decreasing computational cost by
keeping the number of boundary points to a minimum. Figure 19 illustrates the same
results for the peanut region using a 37 point stencil, φ(r)= r3, and polynomials up to
degree p= 4. In this case, the number of boundary points increases from 31 to 68, and the
same improvement in the imaginary part of the eigenvalues is observed. We see that the
MCpQR algorithm can be used in conjunction with the scattered repel point algorithm to
generate a set of boundary points along with a set of quasi-uniformly distributed interior
points with reduced computational requirements and improved eigenvalue stability.
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Figure 18. MCpQR boundary selection for scattered repel algorithm points on the bumped-disk region.
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Figure 19. MCpQR boundary selection for scattered repel algorithm points on the peanut region.

6. Test Cases Using MCpQR Algorithm Points

The accuracy of the RBF-FD method implemented with the optimized points is verified
by finding the solution to test case PDEs. After implementing the MCpQR algorithm to find
sampling points and differentiation matrices for the complex region (peanut and bumped-
disk), Ω, we find the solution to each test case listed below. A fourth-order Runge–Kutta
method is used for time-stepping.

230



Mathematics 2021, 9, 1845

6.1. Diffusion Equation with Forcing Term

The first test case involves finding the solution, u(t,x,y), at time t= 10 for the follow-
ing PDE:

ut =Δu+sin(t), (15)

u0 = 0, (16)

u∂Ω = 0. (17)

This test case is implemented using a 37-point stencil, φ(r)= r3, and polynomials of
degree p=4. The expected rate of convergence is O

(
h4) since the rate is dependent on

the degree of polynomials used. Running this test case, the same rate of convergence
is observed with the optimized points. This is illustrated in Figure 20, which plots the
relative error against the average spacing between each sampling point. In this case, a node
refinement process is used, and the true solution is taken to be the solution resulting from
the case using the finest spacing.

10-210-1100
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10-3

10-2

10-1
Bumped-disk Region

10-210-1100
10-7

10-6

10-5

10-4

10-3

10-2
Peanut Region

Figure 20. Solution convergence for the diffusion equation with forcing term using optimized points.

6.2. Wave Equation with Hyperviscosity

The second test case requires the implementation of the hyperviscosity methods. This
case involves finding the solution, u(t,x,y), at time t= 20 for the following PDE:

utt =Δu, (18)

u0 = f (x,y), (19)

(ut)0 = 0, (20)

u∂Ω = 0. (21)

Hyperviscosity methods were first introduced in [39] and further studied in [40,41]. These
methods allow stable numerical time-stepping for RBF-FD methods. Without hypervis-
cosity, the differentiation matrices for convective PDEs using RBF-FD methods presented
spurious eigenvalues. By damping the spurious eigenvalues while simultaneously preserv-
ing the relevant physical properties, the hyperviscosity methods effectively achieve stable
numerical time-stepping while still preserving accuracy in the PDE solutions.

The point sets from the MCpQR algorithm are used for hyperviscosity methods.
Implementing hyperviscosity methods requires the approximation of high order powers of

231



Mathematics 2021, 9, 1845

the Laplacian operator to use as a filter for stable time-stepping. The technique is to then
add the high order Laplacian operator to the governing equation of the PDE. As a result,
spurious eigenvalues existing in the right (positive, real) half-plane are then shifted into
the left (negative, real) half-plane.

Consider the following setup: [
u
v

]
t
=L

[
u
v

]
, (22)

where L is some operator whose differentiation matrix, obtained by implementing RBF-FD
methods with PHSs and polynomials, contains spurious eigenvalues. The hyperviscosity
method is implemented by redefining the system as:[

u
v

]
t
=L

[
u
v

]
+(−1)K+1γh2K−1

[
Δku
Δkv

]
, (23)

where k denotes the order of the Laplacian used in the hyperviscosity implementation, h
represents the average node-spacing, and γ is a parameter that tunes the hyperviscosity filter.

It is important to select a suitable value for the parameter γ. If γ is chosen to be
too large, the eigenvalues are forced further out in the left half-plane. Thus, the solution
to the PDE will be limited to smaller time-stepping. Furthermore, large values of γ
may end up filtering the physically relevant lower modes, thereby, creating accuracy
errors. If the hyperviscosity parameter is chosen to be too small, then the possibility of
still having eigenvalues existing in the right half-plane, and thus generating an unstable
method, remains.

To approximate the higher order Laplacian operators, Gaussian RBFs, φ(r)= e−(εr2),
are used due to the simplicity of higher order Laplacian formulas, which are generalized
in [20]. In the case of 2D complex regions, the operators can be approximated by:

Δ0φ(r)=φ(r), (24)

Δ1φ(r)= ε2
[
4(εr)2−4

]
φ(r), (25)

Δ2φ(r)= ε4
[
16(εr)4−64(εr)2+32

]
φ(r), (26)

Δ3φ(r)= ε6
[
64(εr)6−576(εr)4+1152(εr)2−384

]
φ(r). (27)

The hyperviscosity system for the PDE described in Equations (18)–(21) is then defined
as: [

u
v

]
t
=

[
(−1)K+1γh2K−1Δk I

Δ (−1)K+1γh2K−1Δk

][
u
v

]
,

= L̂
[

u
v

]
,

where v=ut.
This test case is implemented using a 28-point stencil, φ(r)= r9, polynomials of degree

p= 4, and Δ3-type hyperviscosity. Again, the expected rate of convergence is O
(
h4) since

the rate is dependent on the degree of polynomials used. Running this test case, the O
(
h4)

rate of convergence is again observed with the optimized points. This is illustrated in
Figure 21, where we plot the relative error against the average spacing between each
sampling point. For this example, a Bessel function of the first kind on the unit disk is used
to provide the initial and boundary conditions. The relative error is then calculated using
an exact solution to the PDE.
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Figure 21. Solution convergence for the wave equation with hyperviscosity for hexagonal and
optimized points.

7. Conclusions

A piecewise-defined Lebesgue constant for RBF-FD methods is introduced. Based
on the commonly used Lebesgue constant for polynomial interpolation, this measure
allows us to sample points for RBF-FD methods combining PHSs and polynomials. We
studied the behavior of point sets in 1D, simple 2D regions, and complex 2D regions.
Points were generated by modifying a column-pivoting QR algorithm previously used
to find optimal points for polynomial interpolation. The resulting points mitigate stencil
size restrictions resulting from the use of RBF-FD methods, thus reducing computational
cost while preserving accuracy and convergence properties. This method also provides a
simple, robust algorithm for point generation with few parameters needing to be tuned.
Lastly, we implement the MCpQR algorithm to inform the location of boundary points to
be used in conjunction with the scattered repel algorithm points. In the future, 3D regions
may be considered as well. One framework for a 3D application is given in [42]. The
column-pivoting QR algorithm may be modified to handle RBF-FD methods for 3D by
appending corresponding polynomial bases.
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Abstract: Welding operations may be subjected to different types of defects when the process is not
properly controlled and most defect detection is done a posteriori. The mechanical variables that are
at the origin of these imperfections are often not observable in situ. We propose an offline/online
data assimilation approach that allows for joint parameter and state estimations based on local
probabilistic surrogate models and thermal imaging in real-time. Offline, the surrogate models are
built from a high-fidelity thermomechanical Finite Element parametric study of the weld. The online
estimations are obtained by conditioning the local models by the observed temperature and known
operational parameters, thus fusing high-fidelity simulation data and experimental measurements.

Keywords: data assimilation; model order reduction; finite elements analysis; high dimensional
data; welding

1. Introduction

Welding is used extensively in the nuclear industry, for assembly and as a repair
technique. It is often used in maintenance operations of different kind that involve various
geometries and welding parameter settings. Very high temperatures applied in a localized
zone cause expansion and nonuniform thermal contractions, resulting in plastic deforma-
tions in the welding and its surrounding areas. Thus, residual stresses and permanent
deformations are produced in the welded structure. These could induce a variety of defects
such as hot tearing/cracking if the process is not properly controlled. Other defects may
appear such as porosity, lack of fusion or lack of penetration that need to be identified after
an operation.

The detection of defects in weld beads is usually performed after the welding operation
is fully performed [1]. When a defect is identified, the entire operation needs to be done
again. Therefore, it would be desirable to obtain real-time estimations of the current
mechanical state of the assembly using in situ measurements. With such estimations at
hand, welding operations could be stopped and/or controlled whenever predicted or
forecasted mechanical states are outside acceptable tolerance regions.

To this end, we propose to develop a digital twinning approach [2] whereby high-
fidelity model predictions will be continuously adjusted with respect to thermal images
acquired online during the welding operation. The simulation will rely on a state-of-the-art
mesoscale transient thermoelastoplastic finite element model. The fusion between FEA
and in situ measurements will be done by accounting for well-chosen parametric sources
of uncertainties in the simulation model, leaving freedom for the digital twin to react and
adapt to the sequence of thermal images. We aim for the data assimilation to be done
following a statistical and, if possible, Bayesian framework [3], to enable incorporating
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engineering knowledge about the uncertain parameters of the model, and allow deriving
credible regions for the predictions and forecasts of mechanical states.

Unfortunately, data assimilation problems, i.e., sequential inverse or sequential calibra-
tion problems, are notoriously expensive to solve when the numerical models are systems
of partial differential equations [4–6]. In the context discussed above, the parameters of
spatially detailed nonlinear FEA models would need to be optimized in real-time. This
is intractable. We will therefore develop an appropriate piecewise linear meta-modeling
technique to achieve real-time efficiency.

Over the last decades, surrogate modeling via model order reduction has been suc-
cessfully developed for a variety of applications relying on high-fidelity modeling. This
is especially true for data-driven approaches based on projecting the high-fidelity model
in low-dimensional subspaces [7–13], among which POD-generated subspaces [14–16]
can be seen as an extension of the principal component analysis to continuous variables.
Projection-based model order reduction methods are known to reduce the computational
complexity of high-fidelity models by precomputed candidate solutions corresponding to
various points in the parameter domain (snapshot), and reusing the generated information
to fasten online solution procedures. However, even by using efficient hyper-reduction
schemes [17–20], reduced simulations of welding operations are still computationally too
demanding for process monitoring. This is in particular due to (i) the lack of reducibility
of moving heat source problems in general [17,21,22] and (ii) the relatively high online
cost associated with hyper-reduced models (hyper-reduction generalizes well in large
parameter domains owing to the fact that in the online phase, the nonlinear equations of
the original simulation model are solved on a reduced integration domain [23,24]).

To circumvent these difficulties, we propose to develop an offline/online meta-
modeling technique based on a mixture of probabilistic principal component analysis
models (PPCA). For any given position of the heat source, the thermomechanical state,
augmented by the vector of uncertain parameters, will be postulated to follow a Gaussian
distribution with low-rank covariance structure. This model will be identified using the
method of snapshots. Offline, we will run the high-fidelity mechanical simulations corre-
sponding to a fine sampling of the parameter space. In a second step, the Gaussian model
will be identified using the maximum likelihood approach probabilistic PCA described by
Bishop [25]. Online, parameter estimation will reduce to Gaussian conditioning (i.e., the
Kalman method), which can be made efficient when the covariance matrix exhibits a low-
rank structure. We will show numerically that this strategy allows us to successfully, and
for the first time, set up a data assimilation framework for welding operations, blending
high-fidelity thermomechanical simulations and thermal imaging in real-time to predict
and forecast mechanical states.

In a second stage of developments, we will treat the case where the position of the
heat source is to be estimated from thermal imaging. This is of practical interest when the
position of the welding torch is not accurately known or tracked during joining operations.
To achieve this goal, we build, numerically and offline, a correlation model statistically
linking the position of the hottest spots detected on the thermal image to the actual
position of the welding torch. Then, the data assimilation method based on the PPCA
can be easily adapted, using a probabilistic mixture of PPCA instead of a single Gaussian
model. Of course, conditioning the mixture of PPCA remains analytically tractable, and
computationally efficient as, as it will be shown, few PPCAs are associated with non-
vanishing coefficients at any given time (i.e., the estimation of the position of the torch from
thermal images is accurate). Even in this setting, the low-rank structure of the mixture of
PPCAs ensures that data assimilation is performed in real-time, without sacrificing the
accuracy provided by the high fidelity thermomechanical model.

In all cases, future states may be predicted by conditioning future statistical models to
available observations. This is technically done by Gaussian (mixture) conditioning of all
future mechanical states to current posterior distributions of unknown model parameters.
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The approach proposed in this paper is closely related to other data assimilation
methods available in the literature. Filtering methods based on parametrized models
(e.g., Kalman or particle filters) typically construct a Markov model for the propagation of
parameter distributions in time, progressively assimilating data as they are made available.
Our approach can be seen as a degenerate such filter whereby past data are ignored, only the
current thermal image influencing the posterior distribution of unknown model parameters.
Taking past data into account can be done, for instance, by concatenating mechanical states
from current and past assimilation times over a sliding window (i.e., an autoregressive
model). For the particular experimental setup considered in this work, taking past data into
account brought no significant change in predictive parameter distributions, which justifies
our development of a past-agnostic assimilation method. In terms of meta-modeling,
we could have used nonlinear meta-modeling techniques such as polynomial chaos or
neural network regression [26–28], but the choice of a linear model (PPCA) allows us
to solve analytically the conditioning problem, thus bringing robustness to the method,
which cannot be expected when using Markov Chain Monte Carlo solvers or sequential
importance sampling [5]. Our approach is clearly inspired by the parametrized background
data-weak approach [29], which adopts a variational point of view, while our method
is Bayesian, thereby delivering credible intervals and not point estimates. Similar to
the parametrized background data-weak method, we perform state estimation in large
dimensions by using a background covariance matrix generated by parametric variations
of a high-fidelity PDE system. The low rank structure of this covariance matrix is used
to fasten online Gaussian conditioning, circumventing the usual N3 complexity issue by
making use of standard algebraic techniques [25,30].

Our paper is organized as follows. In Section 2, we present the experimental config-
uration of our test case. Section 3 aims to present the thermomechanical model and the
inverse problem, detailing the known and unknown parameters. In Section 4, we will
introduce the construction of the local surrogate models using Probabilistic PCA, and in
Section 5, two different use cases are considered: a situation where the heat source position
is known and another one where it needs to be estimated. Forecasting is also discussed.
Finally, in Section 6 we present results for all the configurations introduced in Section 5
using noisy simulation data when the torch position is known and real experimental data
when it is not. Appendices A–C give, respectively, details on the algebraic expressions used
to accelerate the computations, some more forecasting results and material parameters of
the specimen.

2. Experimental Configuration

To test the proposed approach, we need to find an application that can replicate
similar welding conditions (in terms of materials and parameter variety) to those of a
real maintenance operation that can be performed in a laboratory environment with
proper instrumentation.

The target application is the stress prediction in a 316L stainless steel (The chemical
composition and some of the temperature dependent material parameters are given in
Appendix C) specimen submitted to Programmierter–Verformungs–Risstest (PVR) hot
cracking tests. PVR tests, developed during the 1970s by the Austrian company Boehler,
consist of making a fusion line using bead-on-plate TIG-welding with argon shielding
while the specimen is uniaxially tensile loaded [31]. It allows the control of the tensile
deformation progressively, which means that it can show cracks of different origin, most
notably solidification and liquidation cracking. The large surface of the specimen allows
easy positioning of thermocouples on both sides of it, as shown in Figure 1, and it is
also possible to film the surface of the specimen with an infrared camera. Thus, process
parameters and infrared images of the welding operation are the observational data from
which 3D stresses and temperatures will be estimated.
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Figure 1. Experimental configuration of a PVR test with two thermocouples.

The experiments are performed with a 6-axes Panasonic robotic arm and equipped
with a ValkWelding torch and the tensile loading is applied with a Lloyd Instruments LS100
plus. Two parameters related to the heat source are fixed before the experiment: the speed
(v) and the power (Q), which is the product of voltage (U) and current (I). The experiments
are instrumented with two thermocouples and filmed with a SC7500 FLIR infrared camera.
The infrared video will provide real-time measures on part of the specimen. While both
sides of the specimen have thermocouples, only the surface that is not being welded is
filmed. This way, reflections from the welding arc and the robot itself are avoided.

3. Digital Twin

3.1. Thermomechanical Model
3.1.1. Thermo-Elasto-Plasticity

Numerical simulation of welding is a very complex problem, as it needs to take into
account a great number of parameters to represent multiscale and multiphysics phenomena,
using temperature dependent material properties that are not always properly known.
Usually, the interactions between the metallurgy, the heat, and the mechanical problems
need to be simulated. In the case of 316L stainless steel, the metallurgic interactions are
negligible [32], and thus the model is reduced to a weakly coupled nonlinear parametric
thermo-elasto-viscoplasticity problem.

We consider a model of unsteady thermo-elasto-viscoplasticity over spatial domain
Ω ∈ R3, whose boundary will be denoted by ∂Ω, and time domain T ∈ [0, T]. For all
(x, t) ∈ Ω × T , the unsteady heat equation reads as

ρcp
∂T
∂t

−∇ · k∇T = qd (1)

where T : Ω × T → R is the temperature field, ρ is the mass density, k is the thermal
diffusion coefficient and cp is the specific heat capacity.

The above equation is complemented by boundary condition

T = T0 (2)

on domain boundary ∂ΩT . Moreover,

− k∇T · n = γ(T4 − T4
0 ) + ζ(T − T0) (3)
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on domain boundary ∂Ωq, where γ is the radiation coefficient and ζ is the thermal
convection coefficient. At time t = 0, the temperature T is equal to T0 everywhere in the
computational domain.

For all (x, t) ∈ Ω × T , the mechanical equilibrium reads as

∇ · σ = 0 (4)

This equation is complemented by boundary conditions

u = ud (5)

on part of the domain ∂Ωu, and
σ · n = 0 (6)

on part of the domain ∂Ωt. The coupled thermomechanical problem is closed by the
following constitutive relation:

σ = C : (ε(u)− εp − α(T − T0)Id) (7)

where ε(u) := 1
2
(
∇u +∇uT) is the total strain, εp is the plastic strain and α(T − T0)Id is

the thermal strain, with α the coefficient of thermal expansion and Id the identity tensor.
The plastic strain is fully determined by a Von Mises plasticity model with isotropic and
kinematic hardening.

f (σ, R, X) :=

√
3
2
(σ̃ − X) : (σ̃ − X)− R(p) ≤ 0 (8)

ε̇p = λ
d f
dσ

(9)

ṗ = λ
dR
dp

(10)

X =
2
3

C(p)α (11)

α̇ = ε̇p − γ(p)α ṗ (12)

λ ≥ 0 λ f (σ) = 0 (13)

where R(p) is the limit of the elastic domain due to isotropic hardening, λ is the plastic
multiplier and σ̃ = σ − 1

3 Tr(σ)I is the deviatoric part of the stress tensor.
In the specimen of a PVR test, the traction boundary conditions are enforced by

Dirichlet boundary conditions:

u(x, t) = Ud
t

tw
∀x ∈ ∂Ωu (14)

The main mechanical quantity of interest is the first principal stress, denoted by σI :

σI = max
n∈R3

n · σ · n
||n||2 (15)

The first principal stress is the highest principal stress. It has a huge influence on hot
cracking during the welding process.

3.1.2. Thermomechanical Load

The choice of a model for the moving heat source is a key point in numerical simula-
tion of welding. The most commonly used one is Goldak’s double-ellipsoid model [33],
represented in Figure 2. It is important to note that the heat distribution is different in
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the front and the rear of the heat source, thus the model depends on the current central
position of the heat source P(t) = (x(t), y(t), z(t)) ∈ R3,

P(t) = P0 +

(
t

(PF − P0)V
− εP(t)

)
(PF − P0) (16)

In the equation above, P0 ∈ R3 is the position of the heat source at the start of the
welding operation, and PF ∈ R3 is the position at the end of the operation. T = (PF − P0)V
corresponds to the total welding time, which depends linearly on the velocity V of the
source. εP(t) is a small (normalized) time delay that accounts for potential errors in the
control of the welding robot (This is a very simple model, which could easily be modified
to include fluctuations of the velocity field.). This parameter will be identified online.

Assuming that the heat source moves in the direction x, the final equation is

q(x, y, z, t) =

⎧⎪⎪⎨⎪⎪⎩
12
√

3ηQ
(ar+a f )bc

√
π3 exp

(
−3(x−X)2

a2
f

+ −3(y−Y)2

b2 + −3(z−Z)2

c2

)
, x ≥ X.

12
√

3ηQ
(ar+a f )bc

√
π3 exp

(
−3(x−X)2

a2
r

+ −3(y−Y)2

b2 + −3(z−Z)2

c2

)
, x < X.

(17)

where ar, a f , b and c are unknown parameters describing the geometry of the double
ellipsoid (In practice, we calibrate ar, b, c, η and K where K is the ratio between ar and a f :
ar = Ka f ), Q = UI is the power, with U the voltage, I the current and η the efficiency.

Figure 2. Goldak’s double-ellipsoid model.

3.1.3. Space and Time Discretization

The thermomechanical problem is discretized in space using the standard P1 Lagrange
finite element method. In the following, T(t) and σ�(t) will respectively denote the vector
of finite element nodal temperature and the vector of components of the stress tensor at the
quadrature points.

The thermomechanical problem is discretized in time using the standard backward
Euler finite difference scheme.

3.2. “Truth” Online Inverse Problem

We now describe the problem of data assimilation and online forecasting for the
welding operation.

3.2.1. Parametrized Probabilistic Setting

The power Q of the heat source and its velocity V are supposed to be controlled with
a good degree of accuracy. The mechanical load Ud is also well controlled during the
experimental procedure. In order to build the “truth” digital twin, we further assume that
the thermal capacity and diffusivity of the material are well characterized. The mechanical
behaviour of the structure (thermal expansion, elasticity and plasticity) are also assumed
to be well characterized, qualitatively and quantitatively. This is consistent with EDF’s
decades of experience in modeling, characterizing and simulating such welding processes.
Finally, the thermal and mechanical boundary conditions are reasonably well quantified in
our experimental setting.
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However, several sources of uncertainties negatively affect the predictive capabilities
of the simulation model:

• The position P of the center of the heat source is not perfectly well known. We will
consider that parameter εt is random, i.e., is a source of epistemic uncertainty.

• The spatial distribution of the heat source is not known with precision. We surmise
that that the main contribution to the overall uncertainty of the model is the spatial
length-scale of the Goldak model.

Therefore, the parameter space P = M× Θ space comprises two distinct blocks:

• The set of known parameters μ = {Q, V} ∈ M, which will vary from one welding
operation to the next, but can be controlled with precision.

• The set of unknown parameters θ = {ar, b, c, η, K, } ∈ Θ, which are given a probability
distribution θ ∼ pθ that encodes the prior knowledge available about these parameters.

3.2.2. “Truth” Online Bayesian Conditioning

Data will be assimilated at homogeneously distributed times T̄ = {t0 = 0, t1 =
Δt, t2 = 2Δt, . . . tNt = NtΔt}. The assimilation time step Δt is adjusted so that the number
of assimilation steps Nt is the same for all simulations, independently of the velocity V of
the heat source,

Δt =
(PF − P0)

Nt
V (18)

Online at time tk ∈ T̄ , we assume that surface temperatures are measured noisily (i.e.,
with the thermal camera). We will write

dk
T = HTTk

|θ,μ + εk
s (19)

where H is a fixed Boolean operator acting on the vector of finite element temperature nodal
values Tk at time step k. The additive measurement noise is supposed to be zero-mean
Gaussian distributed εT ∼ N (0, ΣM = σ2

M Id). The sources of the temperature measure
uncertainty are varied and might include light reflections or lack of knowledge of material
parameters like the emissivity at different temperatures [34]. The measure error parameter
σ2

M will be calibrated empirically comparing the measure from two sensors available in
EDF’s welding lab.

Assuming that the successive noise vectors {εk}k∈[0,t]∩T̄ are independent, the statisti-
cal inverse problem to be solved online is the following.

At time t ∈ T̄ , the posterior distribution of unknown parameters given the past
measurements is

p(θ|dk, μk) ∝ Πk′≤kLk′(θ; dk′)pθ(θ) (20)

where
Lk(θ; dk) = N (dk; HTTk

|θ,μ, ΣT) (21)

Unfortunately, evaluating the likelihood function in real-time is unfeasible, even when
using standard Markov assumptions.

4. Real-Time Predictions with Gaussian Mixture of Local Surrogate Models

In the previous section, the truth inverse problem was presented, and it was concluded
that it is not well suited for real-time applications. To overcome this, in this section the
construction of Gaussian local surrogate models from snapshots of a Finite Elements
parametric study is discussed.

4.1. Local Multiphysics PCA Model

Our proposal is to make local surrogate models for a linear joint representation of the
state, known parameters and unknown parameters for every position of the heat source
at the assimilation times. The positions are fixed in a grid between the initial position
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P0 and the final position PF with a regular separation ΔP. The parametric solutions are
clustered by the position P(t) of the heat source and associated to the position Pk = kΔP if
|P(t)− Pk| < ΔP

2 . The local model at position Pk reads as

sk =

⎛⎜⎜⎝
Tk

σk

μk

θk

⎞⎟⎟⎠ = s̄k + Φkαk + εk
s (22)

with αk ∼ N (0, Id) and εk
s ∼ N (0, σ2 Id). Operator Φk—a decoder—is fixed for each

position and possesses nφ columns. It is obtained by using all parametric solutions of
the welding problem corresponding to position Pk. This probabilistic model encodes the
dependency between all the state variables and the known and unknown parameters in
the form of a multivariate Gaussian:

sk ∼ N (s̄k, ΦkΦkT + σ2
s Id) (23)

The choice of using local models aims at avoiding the use of a global reduced basis, as
it is well known that moving heat sources generate irreducible parametric solutions [17].
Notice as well that there is no Markovian assumption in the model. In other words,
measurements at times {tl}l<k do not provide any new information about the state at
time k.

Using Gaussian assumptions on αk and εs follows a certain logic as well. With sk being
Gaussian, we can deduce that dk, the observed data at time k is also Gaussian distributed.
This means that p(sk|dk, μ) will also be Gaussian and can be calculated analytically, allowing
us to greatly accelerate the computation times.

4.2. Maximum Likelihood PCA

In order to calibrate the surrogate model, we assume that a snapshot of ns extended
states is available, which we denote by S = {S1, S2, . . . , Sns}. This snapshot should cover
the time and parameter domains appropriately.

In 1999, Tipping and Bishop [35] showed that a probabilistic formulation of PCA can
be obtained from a Gaussian latent variable model, where the basis vectors are maximum-
likelihood estimates. Given Equation (22), there are explicit expressions for the maximum
likelihood estimates of the parameters:

Φ = Uq

√(
Λq − σ2 Id

)
R (24)

where Uq contains the left singular vectors associated to the greatest q < ns singular values
of a Singular Value Decomposition (SVD) of the snapshot matrix S . The diagonal matrix Λq
is also obtained from the SVD, and it contains the greatest q singular values in decreasing
order. R is an orthogonal rotation matrix that, in practice, will be chosen to be the identity
matrix. Finally, σ2 is related to the truncation error:

σ2 =
1

ns − q

ns

∑
j=q+1

λ2
j . (25)

where λj are the smaller singular values.
This means that the generative PCA model can be easily computed from a SVD of the

output of a parametric study of the thermomechanical finite elements model.
The snapshots S = {S1, S2, . . . , SNt} are generated using a straightforward procedure.

All the parameters in P are assumed to be uniformly distributed over a hyper-cube and will
be sampled using Latin Hypercube Sampling [36]. The minimum and maximum values for
each parameter are given by experts.
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The samples are generated as follows. For every (μ, θ) sampled with LHS the finite
element simulation is ran over T (μ) = [0, T(μ)], delivering a history of Nt snapshots. Ad-
ditional postprocessing could be performed depending on the physics that are represented
in the state vector s.

5. Online Prediction

In this section, we treat the resolution of the inverse problem. Two cases have to be
considered depending on whether the torch position is known or not: The first case, when
the heat source position is known at all times, is straightforward and the predictions are
obtained using a single well-identified PPCA model. In the second case, the torch position
needs to be estimated with some uncertainty. The predictions are now computed from a
mixture of PPCAs. Finally, the forecast of future states is discussed.

5.1. Known Position

Let us assume that the heat source position is known at all times. This happens when
all measurements are synchronized and knowing how much time has passed from the
starting point allows perfect knowledge of the position Pk via the speed or when the robotic
arm is equipped with a sensor measuring the advanced distance and this signal is available.
This corresponds to a situation where εP(t) = 0 in Equation (16).

When the position Pk is known, the closest model is also known and it is enough
to estimate the current state and unknown parameters. This is done by computing the
posterior distribution p(sk|dk, μ), which is Gaussian as seen in Section 4. It can be computed
analytically and it is completely determined by its mean msk |dk ,μ and covariance Σsk |dk ,μ

and it. Introducing the notation Σsk = ΦkΦkT + σ2
T Id, the mean and covariance are

μsk |dk ,μ = s̄k + Σsk HkT
(

HkΣsk HkT + σ2
m Id

)−1
(dk − d̄k) (26)

Σsk |dk ,μ = Σsk − Σsk HkT
(

HkΣsk HkT + σ2
m Id

)−1
HkΣsk (27)

where Hk is a Boolean operator acting as the observation function.
The evaluation of this expression is very slow due to the size of the matrices involved.

To avoid this cost, we propose to compute the posterior distribution of the reduced coor-
dinates αk instead. Once again, the posterior distribution p(αk|dk, μ) is Gaussian, so it is
determined by its mean mαk |dk and covariance Σαk |dk :

mαk |dk ,μ = ΦkT HkT
(

HkΣsk HkT + σ2
m Id

)−1
(dk − d̄k) (28)

Σαk |dk ,μ = Id − ΦkT HkT
(

HkΣαk HkT + σ2
m Id

)−1
HkΦk (29)

The mean of the posterior distribution of sk can be then deduced using the reduced
basis Φk as follows:

μsk |dk ,μ = s̄k + Φkmαk |dk (30)

As for the covariance matrix, it can be calculated by

Σsk |dk ,μ = ΦkΣαk |dk ,μΦkT + εk
s (31)

The whole covariance matrix might be impossible to store in RAM if the number
of degrees of freedom is large. In this case, only the diagonal of the matrix product
ΦkΣαk |dk ,μΦkT is calculated.

For further details on the acceleration of these computations, see Appendix A.
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5.2. Unknown Position

As it is the case in EDF’s lab, we may not have access to the exact heat source po-
sition for lack of synchronicity between the measure sensors. In this case, εP(t) > 0 in
Equation (16) and the torch position needs to be estimated from the video frame, which
adds more uncertainty to the model. The filmed side of the specimen is the opposite side of
the weld and there exists a delay between the highest temperature on this side and the torch
position. Furthermore, this delay is dependent on material and operational parameters,
such as the speed.

Using the finite elements simulations used for the prior generation of the local PPCA
surrogate models, we created a Gaussian surrogate model that links the position of the
highest temperature measured on the camera side of the specimen xk and the known
parameters μ with the position of the heat source on the welded surface of the specimen
Pk. The model was fitted using a Matérn kernel with ν = 3

2 as a covariance function. The
output of the model is the probability distribution of the estimated heat source position P̂k.
We sample this distribution to find possible torch positions.

Not being able to determine the exact position, the data assimilation needs to be
adapted using a mixture of PPCAs. The multiphysics state for this video frame is named
sk̂ to indicate an unknown position. For each sample of the heat source position we
assign it the closest local PPCA model and a discrete assignment probability distribution is
calculated to find the active coefficients of the mixture. Assuming a total of J local models
are active, p(sk̂|dk, μ) is computed as a Gaussian mixture of the estimations of each local
model weighted by the discrete assignment probability pj ∀j ∈ J:

msk̂ |dk ,μ = ∑
j∈J

pjmsj |dk ,μ (32)

Σsk̂ |dk ,μ = ∑
j∈J

pjΣsj |dk ,μ (33)

The torch position estimation is sufficiently accurate to ensure that the number of
active PPCA models is not too large. The assimilation is still performed in real-time due to
the very quick evaluation of each individual PPCA.

5.3. Forecasting of Future States

Despite the lack of Markovian assumption in the model, it can be used to forecast
future states without observed experimental data by integrating previously estimated
unknown parameter values. Indeed, the unknown parameters are not changed online and,
assuming that they were estimated for a position Pk, θk could be used to obtain accurate
predictions of future states.

The position of the future state is defined by a displacement of jΔP in the direction
of the weld, where ΔP is the regular separator in the positions grid. This opens two
possibilities whether the torch position was known or was estimated from the data frame.
If the heat source position was known, the prediction is computed using the PPCA model
for position Pk+j = (k + j)ΔP, this is p(s̃k+j|μ, θk).

The other possibility is that the current position was estimated from the experimental
data. In this case, the displacement will be added to the position samples so that the
uncertainty on the torch position is maintained. Then, the prediction will be calculated
using the mixture of PPCAs.

6. Results

In this section, we will show the use of the proposed models. First of all, the exper-
imental configuration of a PVR hot cracking test is explained. Then, details about the
parametric finite element study from which the snapshots are generated will be given.

For the numerical tests, two sources of data are considered to show the case where
the torch position is well known and the case where and estimation of its position is
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needed. The first test will use noisy synthetic data obtained from a previously calibrated
Finite Element solution as input. The joint multiphysics state and unknown parameters
estimation are obtained using a single PPCA model. Then, we will consider a frame of an
infrared video of a PVR experiment. The torch position will be deduced from the image
and the estimation computed from a mixture of PPCAs.

Last, the forecasting capabilities of the model will be showcased for the prediction of
a state situated 12 mm further than the last studied position.

6.1. Experimental Procedure

A PVR hot cracking test was done at EDF R&D welding lab to obtain experimental
data. The 316L steel specimen is 200 mm long and 3.5 mm thick. Its width is 80 mm on both
ends and 40 mm in the center. The fusion line is 130 mm long. The specimen was placed in
a tensile testing machine which was configured to augment the tensile deformation speed
progressively from 0 mm/s to a maximum speed of 0.333 mm/s. The welding parameters
used in the experiment are shown in Table 1. Thus, the known parameters are v = 2 mm/s
and Q0 = U × I = 8.4 × 81 = 680.4 W. The welded specimen is shown in Figure 3.

Figure 3. Welded PVR specimen after the experiment.

Table 1. PVR experiment parameter values.

Current Voltage Travel Speed Shielding Gas Maximal Stroke Rate

81 A 8.4 V 2.00 mm/s Argon 20 mm/min

The experiment is instrumented with two type K thermocouples and a SC7500 FLIR
infrared camera. The thermocouples, one on each side of the specimen (see Figure 1), are
placed 110 mm from the bottom and 4 mm to the left from the center. The camera films the
surface that is not being welded in order to avoid reflections from the welding arc. Figure 4
shows the projection of a frame of the video on the FE mesh. The resolution of the camera
images is 320 × 256 pixels.

Previous uses of this configuration of thermocouples and infrared camera helped
with the calibration of the parameter σ2

m. To estimate the value of σ2
m, we compare the

measures of both sensors on a single point over time. The aim is to obtain an estimation of
deviations between measures. Figure 5 shows the comparison between the signals. Here,
both measures seem very close but show differences in some areas. Due to the configuration
of the camera, only temperatures above 400 ◦C should be considered. One more thing to
note is the peak that appears in the camera measure during the cooling phase, which was
probably caused by the reflection of light. Work is being done at the lab to improve the
quality of instrumentation and avoid this kind of issue. Considering the thermocouple and
camera measures as ΘT(t) and ΘC(t), respectively, the value of σ2

m is estimated as

σ2
m = Var(ΘT(t)− ΘC(t)) = 323.880246 (34)

which corresponds to a standard deviation of ~18 ◦C.
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Figure 4. Projection of infrared images on the FE mesh.

Figure 5. Temperature measures taken with a thermocouple and an infrared camera.

The thermocouple measures, and not the camera data, are also used to calibrate the
unknown parameter values for a high fidelity Finite Elements simulation of the experiment
that will be used as reference. This is a standard procedure that is done for every simulation
of an experiment at EDF and it involves the resolution of an optimization problem. The
result of the calibration of θ is shown in Table 2.

Table 2. Deterministic calibration of the unknown parameters.

a f b c η K

Calibrated value 6.657 mm 3 mm 1.5 mm 0.9 1.15

6.2. Prior Generation

In Section 4, we briefly discussed the generation of the prior that is obtained by
running finite element simulations for a Latin Hypercube Sampling of the parameter space
P , where every parameter is assumed to be uniformly distributed. The minimum and
maximum values for each parameter are issued from EDF’s decades of experience in both
welding and numerical analysis of welding. These values are shown in Table 3 for the
known parameters and in Table 4 for the unknown parameters.
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Table 3. Minimum and maximum values for the known parameters μ, as determined by the experts.

Heat Source Speed Voltage Current

Min. value 1 mm/s 8 V 70 A
Max. value 3 mm/s 12 V 90 A

Table 4. Minimum and maximum values for the known parameters θ, as determined by the experts.

a f b c η K

Min. value 3 mm 1 mm 0.5 mm 0.75 1.15
Max. value 12 mm 7 mm 2.5 mm 0.95 2.5

A total of 128 simulations of PVR experiments were run with code_aster [37], EDF’s
open-source thermomechanical simulation software. The selected physical fields for the
multiphysics state vector are the temperature (T) and the maximum principal stress σI . The
maximum principal stress is postprocessed from the stress tensor. It was chosen because it
is used in a hot crack criterion developed in a previous PhD [38] .

6.3. Numerical Tests
6.3.1. Estimation of the Heat Source Position

Before launching the two tests, the heat source position is identified using the surrogate
model presented in Section 5. Figure 6 shows the discrete probability of assignment from
1000 samples of the position distribution.

Figure 6. Possible PPCA bases with associated probability.

The most probable basis is 130, which corresponds to 65 mm from the starting position.
This position is the one that will be used as known position in the synthetic data test.

6.3.2. Tests with Noisy Synthetic Data

In this first test, the input data come from the calibrated finite elements simulation of
the experiment, with μ = (2.0, 680.4). The snapshot used as input is the one corresponding
to the highest probability. White noise of the same amplitude as the measure error estimated
for the camera has been added to the data. The observation function Hk restricts the view
to a region “seen” by the camera, and it is represented in Figure 7.
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Figure 7. Noisy simulation data on camera area.

The mean of the posterior distribution mk
sk |dk contains the estimation of the temperature

and maximum principal stress fields, as well as the unknown parameters. We can compare
these results to the calibrated finite elements simulation, from which the input data was
taken.

The results are compared along a line of 130 mm at the center of both sides of the
specimen, which coincides with the the weld line on the torch side. The 95% confidence
interval of the estimation is also plotted around the posterior mean in Figures 8 and 9. The
reconstruction of the temperature and stress fields is very accurate, with a global relative
error of 1.3693% for the temperature and 6.3419% for the principal stress. This relative
error is calculated as

ek
T =

||Tk
|μ,θ − sk

|T ||2
||Tk

|μ,θ ||2
(35)

ek
σI
=

||σk
I|μ,θ − sk

|σI
||2

||σk
I|μ,θ ||2

(36)

where Tk
|μ,θ and σk

I|μ,θ are the nodal temperature and principal stress simulation values,

respectively, and sk
|T and sk

|σI
are the estimated nodal temperature and principal stress,

respectively.
The confidence intervals are thin for the observed temperature data, as it is expected,

but it is larger around the peak on the non-observed surface. For the principal stress
estimations, although no data was seen, the estimated posterior mean is close to the
simulation on both surfaces.

The estimation of the unknown parameters θ is very close to the results of the de-
terministic calibration, with a relative error inferior to 10%, meaning that the parameter
calibration successfully identified the theta values used for the simulation. A comparison of
the values obtained by the deterministic calibration and the mean posterior theta estimation
is given in Table 5.

Table 5. Posterior estimation of the unknown parameters θ obtained from noisy synthetic data.

a f b c η K

Calibrated value 6.657 3 1.5 0.9 1.15
Estimated value 6.18868114 2.84188617 1.58588521 0.89049624 1.16543712
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Figure 8. Temperature estimations obtained from noisy synthetic data, FE simulation and confidence interval. (a) Camera
side. (b) Torch side.

Figure 9. Maximum principal stress estimations obtained from noisy synthetic data, FE simulation and confidence interval.
(a) Camera side. (b) Torch side.

6.3.3. Tests with Real Experimental Data

In this test, we will use the camera frame projected onto the mesh as input data for the
model. The camera is configured to capture temperatures above 400 ◦C, so the observation
function Hk is modified to only use data above 400 ◦C, which is the area represented in
Figure 10.

The estimation is calculated as a mixture of the results given by the local PCA models
in Figure 6. The amount of active local models is small and each individual conditioning is
computed very fast. All the confidence intervals are the 95% confidence intervals.

On the camera side, the estimations can be compared to the measured temperature. In
Figure 11, we can see that the model estimates a temperature that follows the experimentally
measured one. Interestingly, the estimation deviates from the simulation, as seen in
Figure 12, where the temperature is higher for the FE results. We interpret this difference in
the estimation and the FE simulation as a model correction given by the partial observation
of the temperature. We remind the reader that the FE model was calibrated using only
the thermocouple measures and not the infrared camera. This difference between the FE
simulation and the measured data in Figure 12 may indicate that the calibration of θ using
the thermocouples is not good enough. This is supported by the fact that the estimated
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efficiency η, shown in Table 6 along with the other unknown parameters, is smaller at ~0.74
while the initial calibration estimated it at 0.9. A smaller efficiency would transfer less
temperature to the specimen, explaining the lower estimated temperature.

Figure 10. Experimental data—Temperatures above 400 ◦C.

Table 6. Posterior estimation of the unknown parameters θ obtained from infrared experimental
data.

a f b c η K

Calibrated value 6.657 3 1.5 0.9 1.15
Estimated value 6.40815805 3.8549261 1.47004239 0.73615823 1.09763587

Figure 11. Temperature estimations and camera data.

Note that on the camera side the confidence interval is very small for the temperature
estimation, as it is expected from observed data, while on the torch side the confidence
interval is larger, especially around the peak position. No mechanical data is observed,
and thus the maximum principal stress confidence intervals reflect the uncertainty of the
posterior estimation (see Figure 13).
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Figure 12. Temperature estimations obtained from infrared experimental data, FE simulation and confidence interval.
(a) Camera side. (b) Torch side.

Figure 13. Maximum principal stress estimation obtained from infrared experimental data, FE simulation and confidence
interval. (a) Camera side. (b) Torch side.

6.4. Forecasting

In this last example, the forecasting capabilities of the model will be shown. Let us
assume that we want to estimate the temperature and maximum principal stress fields in
a future position that has not been observed yet. This position is situated 12 mm further
than the one studied for the previous tests. All the information available is the value of
the known parameters and the posterior estimation of the unknown parameters with their
associated posterior covariance.

Choosing the active coefficient of the mixture of PPCAs for this position Pj = (k +
12)ΔP is the first problem to solve. When an image is available, the surrogate model for
position estimation takes the highest temperature identified in the image and returns the
probability distribution of the torch position. In the forecasting problem, we have no video
frame to find the highest temperature, so it is assumed to be shifted by the 12 mm and then
it is used to obtain the discrete assignment probability. The multiphysics state s̃j will be
predicted by conditioning its distribution by the known parameters μ and the estimated
unknown parameters θk with its associated posterior variance.

As with previous tests, the predicted estimations, p(s̃j|μ, θk), are compared to the
experimental data (when it is possible) and to a Finite Elements simulation over a line
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on both sides of the specimen. Figure 14 shows a frame of the video where the highest
temperature position is situated 12 mm to the right of the highest temperature position
found in Figure 10. The measures corresponding to that frame are compared to the
predictions in Figure 15. The estimation is very close to the camera data but the 95%
confidence interval is very large compared to the one in Figure 11, a case where the data
was observed, reducing the uncertainty.

Figure 14. Camera data of the future state.

Figure 15. Forecasted temperature and camera data.

The Finite Elements simulation was used as reference in Figures 16 and 17, where
we observe generally large confidence intervals on both sides of the specimen. Overall,
knowledge of the known and unknown parameters is enough to obtain predictions that
represent the behaviour of the temperature and maximum principal stress fields but with a
high degree of uncertainty, which can be greatly reduced by observation of the thermal
images. This is not the case when only the known parameters are observed. Additional
figures are shown in the Appendix B to support this claim.
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Figure 16. Forecasted temperature, FE simulation and confidence interval. (a) Camera side. (b) Torch side.

Figure 17. Forecasted maximum principal stress, FE simulation and confidence interval. (a) Camera side. (b) Torch side.

7. Conclusions

We have proposed a novel data assimilation methodology for automatized welding
operations monitored using thermal imaging. The approach is based on digital twinning,
a physically detailed thermomechanical finite element model assimilating online data
and predicting unseen mechanical quantities of interest such as stress fields. Sources of
variability are clearly identified and modeled using appropriate random parameters, the
distribution of which are designed based on expert knowledge. Data assimilation then
consists in finding the posterior distribution of the uncertain parameters given the sequence
of thermal images available at current process time.

The data assimilation framework is made in real-time by deploying and offline–online
meta-modeling technology. Sparse linear models are postulated for every position of the
welding torch, linking observations and hidden mechanical quantities to the parameters of
the welding process and to the random parameters. The coefficients of the linear models
are identified using the method of snapshots, using hundreds of prior high-fidelity compu-
tations. Online, predicting unseen mechanical states operation reduces to simple Gaussian
conditioning with a background covariance matrix exhibiting a low-rank structure. This is
made computationally efficient using standard algebraic manipulations.

Thanks to this model/data fusion technology, we have shown that we were, for
the first time, able to predict mechanical stress fields during welding in real-time, the
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predictions being continuously adjusted based on thermal imaging. We have shown that
our digital twin may produce predictions that differ significantly from those produced
by a high-fidelity model that is precalibrated using standard thermal sensing via a set of
thermocouples. We interpret this finding as an online model correction, the data acquired
online being richer, corresponding to thermal sensing closer to the regions of intense
thermal gradients.

Finally, we were able to forecast stress predictions into the future of welding operations,
by simply using current posterior distributions of unknown parameters and perform
uncertainty propagation. We have shown that such predictions where reasonably sharp
and could be used to stop welding operations in advance, when forecasting inadmissible
levels of stresses.

The developments presented in this paper are expected to be the foundations for
further theoretical and applied research. Future experiments may include additional
instrumentation to obtain more data such as measures of the strain field by digital image
correlation. In terms of algorithmic efficiency, the proposed meta-modeling methodology
is piecewise linear, homogeneously along the trajectory of the welding torch. We are
now investigating a data-driven clustering approach of the welding parameter domain,
which we expect will help us minimize the memory required to store the various meta-
models. In terms of application, the present developments focus on the prediction of
stresses during the operations, but could easily be extended to the prediction of residual
stresses. The exploration of parameter spaces describing geometrical variations of joining
operations is also of high practical interest. Finally, the proposed approach may constitute
the computational core of a model-based control technology aimed at adjusting the process
parameters online in order to ensure that the joining operations produce assemblies that
are of acceptable mechanical qualities.
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Appendix A. Fast Computation of Mean and Covariance

The mean and covariance of the posterior distribution have the following
explicit expression:

mαk |dk ,μ = ΦkT HkT
(

HkΦkΦkT HkT + (σ2
M + σ2

s )Id
)−1

(dk − d̄k) (A1)

Σαk |dk ,μ = Id − ΦkT HkT
(

HkΦkΦkT HkT + (σ2
M + σ2

s )Id
)−1

HkΦk (A2)

where Φk ∈ RN×NM is the PPCA basis, Hk ∈ RN×NC is the Boolean observation function,
dk ∈ RNC is the observed data, and σM and σs are the parameters guiding the mea-
sure and truncation errors. These matrices are of very high dimension, so evaluation is
potentially slow.
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Let us introduce the notation X := HkΦk et Z := (σ2
M + σ2

s )Id. Equations (A1) and
(A2) become

mαk |dk ,μ = XT
(

XXT + Z
)−1

(dk − d̄k) (A3)

Σαk |dk ,μ = Id − XT
(

XXT + Z
)−1

X (A4)

Appendix A.1. Mean of the Posterior Gaussian Distribution

In order to accelerate the evaluation, the following algebraic identity [25] is used:(
P−1 + BT R−1B

)−1
BT R−1 = PBT

(
BPBT + R

)−1
(A5)

where P ∈ RM×M, R ∈ RN×N and B ∈ RN×M. This expression can be verified by
multiplying both sides by (BPBT + R). The left side of the equation is quicker to evaluate
when M << N. If N << M, the right side is quicker to evaluate.

It is easy to see that XT(XXT + Z
)−1 in Equation (A3) corresponds to the right side of

Equation (A5) when P = Id, B = X and R = Z. In our case, the left side of Equation (A5)
is faster because NM, the number of PPCA modes, is smaller than NC, the number of mesh
nodes where the infrared camera is observed (NM << NC). The expression that should be
evaluated is

mαk |dk ,μ =
(

XTZ−1X + Id
)−1

XTZ−1(dk − d̄k) (A6)

Σαk |dk ,μ = I −
(

XTZ−1X + I
)−1

XTZ−1X (A7)

Notice that Z is a diagonal matrix, which means that computing Z−1 is trivial and
XTZ−1 is very fast.

Appendix A.2. Covariance of the Posterior Gaussian Distribution

In the case of the covariance matrix, it is convenient to use the Woodbury identity [30]:

(A + UBV)−1 = A−1 − A−1U
(

B−1 + VA−1U
)−1

VA−1 (A8)

where A ∈ RM×M, U ∈ RM×N , B ∈ RN×N and V ∈ RN×M.
If A = Id, U = XT , B = Z−1 and V = X, then we recognize that the right side of

Equation (A8) is the expression in Equation (A4). It is quicker to evaluate the left side
of Equation (A8) due to the dimensions of the problem. Thus, the covariance matrix is
computed as

Σαk |dk ,μ =
(

XTZ−1X + I
)−1

(A9)

Notice that Equation (A7) is part of Equation (A6), meaning that it only needs to be
computed once.

Appendix A.3. Example

We will show the results of two examples indicating the values for the different
dimensions. The first example uses input on all nodes on the whole surface of the specimen
(NC = 8093) and 20 PPCA modes (NM = 20). The second example uses input on the area
seen by the infrared camera (the surface shown in Figure 10, with NC = 3418) and 20 PPCA
modes (NM = 20).

The results shown in Table A1 are the average of 7000 runs for both examples using
each of the expressions presented previously. The computation time is greatly reduced
using the expression in Equations (A6) and (A7).
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Table A1. Computation time with both expressions with two different observation functions.

Old Expression New Expression

Whole surface 1.55 s 0.00377 s
Camera area 0.337 s 0.00212 s

Appendix B. Forecasting Results

In this appendix, we show some complementary forecasting results. In particular,
we want to compare a forecast performed with and without observing the posterior theta
values, as well as a comparison between the posterior covariance of a forecast and an
estimation obtained observing an infrared image.

We have shown that using the previously estimated unknown parameters θ, fore-
casting a future state is possible. Indeed, parametric uncertainty is the main source of
uncertainty in our model. The first result we want to show is a comparison between a
forecast obtained using only the known parameters μ and another one observing the mean
θ posterior. Figure A1 shows that without observing the mean θ posterior, the estimation is
not good and forecasting is not possible. This indicates that the prior distribution of the
unknown parameters might not be well chosen or that it reflects a spectrum of values that
is too large for this case.

Additionally, we want to compare the posterior covariance of a forecasted estimation
and an estimation obtained after observing an infrared image. It is clear that observing the
temperature field, the uncertainty is greatly reduced, as seen in Figure A2.

Figure A1. Forecasted temperature conditioning by the known parameters (μ) and by the known and unknown parameters
(μ, θ) with their correspondent confidence interval. (a) Compared to experimental camera data. (b) Compared to FE results.

Figure A2. Forecasted temperature conditioning by the known and unknown parameters (μ, θ) and posterior estimation
using the infrared camera data with their correspondent confidence interval. (a) Compared to experimental camera data.
(b) Compared to FE results.
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Appendix C. Relevant Material Parameters

In this final appendix, more details on the 316 stainless steel specimen is given. Most
of the thermal and mechanical material properties of steel are temperature dependent
and, thus, it is of great importance to take the variations into account. In Table A2, the
temperature dependent values of four material properties used in the simulations are
shown. These were obtained in previous research works by EDF R&D in collaboration
with CEA Saclay and Université de Bretagne Sud.

The chemical composition of the material is directly related to the occurrence of cracks.
In Table A3, the detailed chemical composition of the used specimen is given. The data
was directly obtained from the manufacturer.

Table A2. Temperature dependent material parameters: thermal conductivity, volumetric heat
capacity, thermal expansion coefficient and Young’s modulus.

Temperature (◦C) λ ( W
mm K) ρcp(

J
mm3 K

) α( 1
K) E (MPa)

20 14 × 10−3 3.784 × 10−3 15.5 × 10−6 190 × 103

100 15.2 × 10−3 - 16 × 10−6 -
200 16.6 × 10−3 4.036 × 10−3 16.6 × 10−6 -
300 17.9 × 10−3 - 17.1 × 10−6 -
400 19 × 10−3 4.302 × 10−3 17.5 × 10−6 -
500 20.6 × 10−3 - 18 × 10−6 -
600 21.8 × 10−3 4.557 × 10−3 18.4 × 10−6 140 × 103

700 23.1 × 10−3 - 18.7 × 10−6 -
775 - - - 56.3 × 103

800 24.3 × 10−3 4.823 × 10−3 19 × 10−6 -
850 - - - 56.3 × 103

900 26 × 10−3 - 19.2 × 10−6 -
1000 27.3 × 10−3 5.072 × 10−3 19.4 × 10−6 -
1150 - - - 37.3 × 103

1200 29.9 × 10−3 5.327 × 10−3 - -
1250 - - - 20.3 × 103

1384 - 5.572 × 10−3 - -
1390 - 7.823 × 10−3 - -
1394 - 11.175 × 10−3 - -
1400 32.5 × 10−3 - 19.6 × 10−6 -
1404 - 22.35 × 10−3 - -
1420 - 44.70 × 10−3 - -
1425 - 52.15 × 10−3 - -
1450 - 5.7 × 10−3 - -
1600 - 5.7 × 10−3 19.7 × 10−6 -
2400 32.5 × 10−2 - - -

Table A3. Chemical composition of the 316L stainless steel specimen (in percentages except for boron).

B (ppm) C Mn Si P S Cr Ni Mo Co Cu Al N

39 ± 4 0.016 1.59 0.540 0.027 0.0011 17.25 10.03 2.05 0.080 0.106 0.043 0.052
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