209 research outputs found

    Real-Time QoS Routing Protocols in Wireless Multimedia Sensor Networks: Study and Analysis

    Get PDF
    Many routing protocols have been proposed for wireless sensor networks. These routing protocols are almost always based on energy efficiency. However, recent advances in complementary metal-oxide semiconductor (CMOS) cameras and small microphones have led to the development of Wireless Multimedia Sensor Networks (WMSN) as a class of wireless sensor networks which pose additional challenges. The transmission of imaging and video data needs routing protocols with both energy efficiency and Quality of Service (QoS) characteristics in order to guarantee the efficient use of the sensor nodes and effective access to the collected data. Also, with integration of real time applications in Wireless Senor Networks (WSNs), the use of QoS routing protocols is not only becoming a significant topic, but is also gaining the attention of researchers. In designing an efficient QoS routing protocol, the reliability and guarantee of end-to-end delay are critical events while conserving energy. Thus, considerable research has been focused on designing energy efficient and robust QoS routing protocols. In this paper, we present a state of the art research work based on real-time QoS routing protocols for WMSNs that have already been proposed. This paper categorizes the real-time QoS routing protocols into probabilistic and deterministic protocols. In addition, both categories are classified into soft and hard real time protocols by highlighting the QoS issues including the limitations and features of each protocol. Furthermore, we have compared the performance of mobility-aware query based real-time QoS routing protocols from each category using Network Simulator-2 (NS2). This paper also focuses on the design challenges and future research directions as well as highlights the characteristics of each QoS routing protocol.https://doi.org/10.3390/s15092220

    Adaptive scheduling in cellular access, wireless mesh and IP networks

    Get PDF
    Networking scenarios in the future will be complex and will include fixed networks and hybrid Fourth Generation (4G) networks, consisting of both infrastructure-based and infrastructureless, wireless parts. In such scenarios, adaptive provisioning and management of network resources becomes of critical importance. Adaptive mechanisms are desirable since they enable a self-configurable network that is able to adjust itself to varying traffic and channel conditions. The operation of adaptive mechanisms is heavily based on measurements. The aim of this thesis is to investigate how measurement based, adaptive packet scheduling algorithms can be utilized in different networking environments. The first part of this thesis is a proposal for a new delay-based scheduling algorithm, known as Delay-Bounded Hybrid Proportional Delay (DBHPD), for delay adaptive provisioning in DiffServ-based fixed IP networks. This DBHPD algorithm is thoroughly evaluated by ns2-simulations and measurements in a FreeBSD prototype router network. It is shown that DBHPD results in considerably more controllable differentiation than basic static bandwidth sharing algorithms. The prototype router measurements also prove that a DBHPD algorithm can be easily implemented in practice, causing less processing overheads than a well known CBQ algorithm. The second part of this thesis discusses specific scheduling requirements set by hybrid 4G networking scenarios. Firstly, methods for joint scheduling and transmit beamforming in 3.9G or 4G networks are described and quantitatively analyzed using statistical methods. The analysis reveals that the combined gain of channel-adaptive scheduling and transmit beamforming is substantial and that an On-off strategy can achieve the performance of an ideal Max SNR strategy if the feedback threshold is optimized. Finally, a novel cross-layer energy-adaptive scheduling and queue management framework EAED (Energy Aware Early Detection), for preserving delay bounds and minimizing energy consumption in WLAN mesh networks, is proposed and evaluated with simulations. The simulations show that our scheme can save considerable amounts of transmission energy without violating application level QoS requirements when traffic load and distances are reasonable

    Cross-layer design and optimization of medium access control protocols for wlans

    Get PDF
    This thesis provides a contribution to the field of Medium Access Control (MAC) layer protocol design for wireless networks by proposing and evaluating mechanisms that enhance different aspects of the network performance. These enhancements are achieved through the exchange of information between different layers of the traditional protocol stack, a concept known as Cross-Layer (CL) design. The main thesis contributions are divided into two parts. The first part of the thesis introduces a novel MAC layer protocol named Distributed Queuing Collision Avoidance (DQCA). DQCA behaves as a reservation scheme that ensures collision-free data transmissions at the majority of the time and switches automatically to an Aloha-like random access mechanism when the traffic load is low. DQCA can be enriched by more advanced scheduling algorithms based on a CL dialogue between the MAC and other protocol layers, to provide higher throughput and Quality of Service (QoS) guarantees. The second part of the thesis explores a different challenge in MAC layer design, related to the ability of multiple antenna systems to offer point-to-multipoint communications. Some modifications to the recently approved IEEE 802.11n standard are proposed in order to handle simultaneous multiuser downlink transmissions. A number of multiuser MAC schemes that handle channel access and scheduling issues and provide mechanisms for feedback acquisition have been presented and evaluated. The obtained performance enhancements have been demonstrated with the help of both theoretical analysis and simulation obtained results

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Performance enhancement of wireless communication systems through QoS optimisation

    Get PDF
    Providing quality of service (QoS) in a communication network is essential but challenging, especially when the complexities of wireless and mobile networks are added. The issues of how to achieve the intended performances, such as reliability and efficiency, at the minimal resource cost for wireless communications and networking have not been fully addressed. In this dissertation, we have investigated different data transmission schemes in different wireless communication systems such as wireless sensor network, device-to-device communications and vehicular networks. We have focused on cooperative communications through relaying and proposed a method to maximise the QoS performance by finding optimum transmission schemes. Furthermore, the performance trade-offs that we have identified show that both cooperative and non-cooperative transmission schemes could have advantages as well as disadvantages in offering QoS. In the analytical approach, we have derived the closed-form expressions of the outage probability, throughput and energy efficiency for different transmission schemes in wireless and mobile networks, in addition to applying other QoS metrics such as packet delivery ratio, packet loss rate and average end-to-end delay. We have shown that multi-hop relaying through cooperative communications can outperform non-cooperative transmission schemes in many cases. Furthermore, we have also analysed the optimum required transmission power for different transmission ranges to obtain the maximum energy efficiency or maximum achievable data rate with the minimum outage probability and bit error rate in cellular network. The proposed analytical and modelling approaches are used in wireless sensor networks, device-to-device communications and vehicular networks. The results generated have suggested an adaptive transmission strategy where the system can decide when and how each of transmission schemes should be adopted to achieve the best performance in varied conditions. In addition, the system can also choose proper transmitting power levels under the changing transmission distance to increase and maintain the network reliability and system efficiency accordingly. Consequently, these functions will lead to the optimized QoS in a given network
    corecore