151 research outputs found

    Cell line name recognition in support of the identification of synthetic lethality in cancer from text

    Get PDF
    Motivation: The recognition and normalization of cell line names in text is an important task in biomedical text mining research, facilitating for instance the identification of synthetically lethal genes from the literature. While several tools have previously been developed to address cell line recognition, it is unclear whether available systems can perform sufficiently well in realistic and broad-coverage applications such as extracting synthetically lethal genes from the cancer literature. In this study, we revisit the cell line name recognition task, evaluating both available systems and newly introduced methods on various resources to obtain a reliable tagger not tied to any specific subdomain. In support of this task, we introduce two text collections manually annotated for cell line names: the broad-coverage corpus Gellus and CLL, a focused target domain corpus. Results: We find that the best performance is achieved using NERsuite, a machine learning system based on Conditional Random Fields, trained on the Gellus corpus and supported with a dictionary of cell line names. The system achieves an F-score of 88.46% on the test set of Gellus and 85.98% on the independently annotated CLL corpus. It was further applied at large scale to 24 302 102 unannotated articles, resulting in the identification of 5 181 342 cell line mentions, normalized to 11 755 unique cell line database identifiers

    An analysis of gene/protein associations at PubMed scale

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Event extraction following the GENIA Event corpus and BioNLP shared task models has been a considerable focus of recent work in biomedical information extraction. This work includes efforts applying event extraction methods to the entire PubMed literature database, far beyond the narrow subdomains of biomedicine for which annotated resources for extraction method development are available.</p> <p>Results</p> <p>In the present study, our aim is to estimate the coverage of all statements of gene/protein associations in PubMed that existing resources for event extraction can provide. We base our analysis on a recently released corpus automatically annotated for gene/protein entities and syntactic analyses covering the entire PubMed, and use named entity co-occurrence, shortest dependency paths and an unlexicalized classifier to identify likely statements of gene/protein associations. A set of high-frequency/high-likelihood association statements are then manually analyzed with reference to the GENIA ontology.</p> <p>Conclusions</p> <p>We present a first estimate of the overall coverage of gene/protein associations provided by existing resources for event extraction. Our results suggest that for event-type associations this coverage may be over 90%. We also identify several biologically significant associations of genes and proteins that are not addressed by these resources, suggesting directions for further extension of extraction coverage.</p

    Exploring the boundaries: gene and protein identification in biomedical text

    Get PDF
    Background: Good automatic information extraction tools offer hope for automatic processing of the exploding biomedical literature, and successful named entity recognition is a key component for such tools. Methods: We present a maximum-entropy based system incorporating a diverse set of features for identifying gene and protein names in biomedical abstracts. Results: This system was entered in the BioCreative comparative evaluation and achieved a precision of 0.83 and recall of 0.84 in the “open ” evaluation and a precision of 0.78 and recall of 0.85 in the “closed ” evaluation. Conclusions: Central contributions are rich use of features derived from the training data at multiple levels of granularity, a focus on correctly identifying entity boundaries, and the innovative use of several external knowledge sources including full MEDLINE abstracts and web searches. Background The explosion of information in the biomedical domain and particularly in genetics has highlighted the need for automated text information extraction techniques. MEDLINE, the primary research database serving the biomedical community, currently contains over 14 million abstracts, with 60,000 new abstracts appearing each month. There is also an impressive number of molecular biological databases covering a

    NERBio: using selected word conjunctions, term normalization, and global patterns to improve biomedical named entity recognition

    Get PDF
    BACKGROUND: Biomedical named entity recognition (Bio-NER) is a challenging problem because, in general, biomedical named entities of the same category (e.g., proteins and genes) do not follow one standard nomenclature. They have many irregularities and sometimes appear in ambiguous contexts. In recent years, machine-learning (ML) approaches have become increasingly common and now represent the cutting edge of Bio-NER technology. This paper addresses three problems faced by ML-based Bio-NER systems. First, most ML approaches usually employ singleton features that comprise one linguistic property (e.g., the current word is capitalized) and at least one class tag (e.g., B-protein, the beginning of a protein name). However, such features may be insufficient in cases where multiple properties must be considered. Adding conjunction features that contain multiple properties can be beneficial, but it would be infeasible to include all conjunction features in an NER model since memory resources are limited and some features are ineffective. To resolve the problem, we use a sequential forward search algorithm to select an effective set of features. Second, variations in the numerical parts of biomedical terms (e.g., "2" in the biomedical term IL2) cause data sparseness and generate many redundant features. In this case, we apply numerical normalization, which solves the problem by replacing all numerals in a term with one representative numeral to help classify named entities. Third, the assignment of NE tags does not depend solely on the target word's closest neighbors, but may depend on words outside the context window (e.g., a context window of five consists of the current word plus two preceding and two subsequent words). We use global patterns generated by the Smith-Waterman local alignment algorithm to identify such structures and modify the results of our ML-based tagger. This is called pattern-based post-processing. RESULTS: To develop our ML-based Bio-NER system, we employ conditional random fields, which have performed effectively in several well-known tasks, as our underlying ML model. Adding selected conjunction features, applying numerical normalization, and employing pattern-based post-processing improve the F-scores by 1.67%, 1.04%, and 0.57%, respectively. The combined increase of 3.28% yields a total score of 72.98%, which is better than the baseline system that only uses singleton features. CONCLUSION: We demonstrate the benefits of using the sequential forward search algorithm to select effective conjunction feature groups. In addition, we show that numerical normalization can effectively reduce the number of redundant and unseen features. Furthermore, the Smith-Waterman local alignment algorithm can help ML-based Bio-NER deal with difficult cases that need longer context windows

    Foreword

    Get PDF
    The aim of this Workshop is to focus on building and evaluating resources used to facilitate biomedical text mining, including their design, update, delivery, quality assessment, evaluation and dissemination. Key resources of interest are lexical and knowledge repositories (controlled vocabularies, terminologies, thesauri, ontologies) and annotated corpora, including both task-specific resources and repositories reengineered from biomedical or general language resources. Of particular interest is the process of building annotated resources, including designing guidelines and annotation schemas (aiming at both syntactic and semantic interoperability) and relying on language engineering standards. Challenging aspects are updates and evolution management of resources, as well as their documentation, dissemination and evaluation
    • 

    corecore