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Abstract

Anatomical entities such as kidney, muscle
and blood are central to much of biomedical
scientific discourse, and the detection of men-
tions of anatomical entities is thus necessary
for the automatic analysis of the structure of
domain texts. Although a number of resources
and methods addressing aspects of the task
have been introduced, there have so far been
no annotated corpora for training and evaluat-
ing systems for broad-coverage, open-domain
anatomical entity mention detection. We in-
troduce the AnEM corpus, a domain- and
species-independent resource manually anno-
tated for anatomical entity mentions using a
fine-grained classification system. The cor-
pus texts are selected randomly from citation
abstracts and full-text papers with the aim of
making the corpus representative of the en-
tire available biomedical scientific literature.
We demonstrate the use of the corpus through
an evaluation of the broad-coverage MetaMap
tagger and a CRF-based system trained on the
corpus data, considering also a combination
of these two methods. The combined sys-
tem demonstrates a promising level of per-
formance, approaching 80% F-score for men-
tion detection for a relaxed matching criterion.
The corpus and other introduced resources are
available under open licences from http://
www.nactem.ac.uk/anatomy/.

1 Introduction

Entity mention detection is a prerequisite for most
efforts to systematically analyse and represent the
structure of scientific discourse. In the life sciences,
a comprehensive analysis must include entities at
multiple levels of biological organization, from the

molecular to the organism level. The detection of
references to anatomical entities such as “kidney”
and “blood” is thus required for the automatic struc-
tured analysis of biomedical scientific text.

Although a wealth of lexical and ontological re-
sources covering anatomical entities are available
(Rosse and Mejino, 2003; Smith et al., 2007; Boden-
reider, 2004; Haendel et al., 2009), such resources
do not alone confer the ability to reliably detect
mentions of anatomical entities in natural language
(Gerner et al., 2010a; Travillian et al., 2011; Pyysalo
et al., 2012b). To support the development and eval-
uation of reliable anatomical entity mention detec-
tion methods, corpus resources annotated specifi-
cally for the task are necessary.

In this study, we aim to create a reference standard
for evaluating methods for anatomical entity men-
tion detection and for training machine learning-
based methods for the task. We seek to select
a set of texts that are representative of the rele-
vant scientific literature, i.e. open-domain in the
sense of avoiding bias toward, for example, specific
species, levels of biological organization (e.g. sub-
cellular or gross anatomy), parts of documents (e.g.
abstracts), or subdomains of life science. In sup-
port of our annotation, we draw on a granularity-
based, species-independent upper-level ontology of
anatomy as well as relevant species-specific onto-
logical resources.

The overall aim of our efforts is to create methods
and resources for comprehensive event-based anal-
ysis (Ananiadou et al., 2010) of biomedical scien-
tific discourse involving anatomy-level entities and
processes. In aiming to establish a stable basis
for anatomical entity mention detection, the present
study is an important step toward this goal.
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e ORGANISM SUBDIVISION organism subdivision CARO head, limb
ANATOMICAL SYSTEM anatomical system CARO vascular system
ORGAN compound organ CARO liver, heart
MULTI-TISSUE STRUCTURE multi-tissue structure CARO artery
TISSUE portion of tissue CARO epithelium
CELL cell CARO epithelial cell
DEVELOPING ANATOMICAL STRUCTURE developing anatomical structure UBERON embryo
CELLULAR COMPONENT cellular component GO mitochondrion
ORGANISM SUBSTANCE portion of organism substance CARO blood
IMMATERIAL ANATOMICAL ENTITY immaterial anatomical entity CARO lumen
PATHOLOGICAL FORMATION - carcinoma

Table 1: Annotations targets with applied label, corresponding ontology classes, and common examples.

2 Corpus Annotation

2.1 Ontological Basis

Following our previous efforts on anatomical en-
tity classification (Pyysalo et al., 2012b), we base
our definition of annotated mention scope, the sub-
division of anatomical entities into classes, and
the class labels applied in our annotation primar-
ily on the Common Anatomy Reference Ontology
(CARO) (Haendel et al., 2008). CARO is a small,
species-independent ontology of anatomical entities
based on the upper-level structure of the Founda-
tional Model of Anatomy (FMA) ontology of hu-
man anatomy (Rosse and Mejino, 2003; Rosse and
Mejino, 2008). CARO has been proposed as a stan-
dard for unifying the upper-level structure of the
various existing species-specific ontologies and is
adopted by many of the over 40 ontologies involv-
ing the anatomy domain in the Open Biomedical
Ontologies (OBO) foundry1 (Smith et al., 2007).
CARO adheres to disjoint classes and single inher-
itance, and divides anatomical structures primarily
by granularity (Kumar et al., 2004), a systematic no-
tion familiar to those working in the life sciences.

Although we draw primarily on CARO, we fol-
low the well-established cellular component subon-
tology of the Gene Ontology (GO) (Ashburner et
al., 2000) in grouping sub-cellular structures under
a single upper-level category. For developing struc-
tures that resist granularity-based categorization due
to occupying different levels at different stages of
development, we adopt a separate DEVELOPING

ANATOMICAL STRUCTURE category, as done also
in e.g. Uberon (Haendel et al., 2009).

1http://obofoundry.org/

2.2 Annotation Scope

We diverge from the scope of anatomy ontologies in
two important aspects in our annotation.

First, ontologies of anatomy commonly incorpo-
rate everything from molecules to whole organisms
within their scope. However, in entity mention de-
tection, many molecular level anatomical entities
fall within the scope of the established gene/protein
mention detection tasks (e.g. (Kim et al., 2004; Tan-
abe et al., 2005)), and whole organism mentions
similarly largely within what is covered by existing
methods and resources for organism mention detec-
tion (Gerner et al., 2010b; Naderi et al., 2011). To
avoid overlap with established tasks and to focus on
the novel aspects of anatomical entity mention de-
tection, we exclude biological macromolecules and
mentions of organism names from the scope of our
annotation, as argued in (Pyysalo et al., 2012b).

Second, these ontologies typically represent
canonical anatomy, an idealized state that is rarely
(if ever) encountered in reality (Bada and Hunter,
2011). As our annotation is intended to cover ref-
erences to real-world anatomy, we explicitly include
in the scope of our annotation also healthy as well as
pathological variants of canonical anatomy. We in-
clude also entities derived from these anatomical en-
tities through (planned) processing such as surgical
or laboratory procedures, even when these processed
entities are no longer properly part of the original
organism. Finally, we annotate pathological forma-
tions such as scars and carcinomas that are part of
individual organisms but have no correspondence in
canonical anatomy (Smith et al., 2005).

Table 1 presents the class labels applied in the an-
notation with the corresponding ontology classes.
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In contrast, the 3 cases of metastatic cancer of the GB had no blood flow signal in the wall of the GB

Pathological form Organ OSubst MTS Organ
Part-ofPart-of

Figure 1: Example sentence with annotation. OSUBST and MTS abbreviate for ORGANISM SUBSTANCE and MULTI-
TISSUE STRUCTURE, respectively.

2.3 Representation
The primary corpus annotation marks mentions of
anatomical entities as contiguous spans of characters
in text, each of which is assigned a type (Figure 1).
As the CARO-based categorization has comprehen-
sive coverage and disjoint classes, each annotation
can be assigned exactly one type (class label).

In addition to identifying and typing anatomical
entity mentions, we further apply binary attributes
(“flags”) marking the following characteristics of
each mention:

DEVELOPING developing variant of anatomical
entity, e.g. fetal liver

PATHOLOGICAL pathological variant of anatomi-
cal entity, e.g. carcinoma cell

PLANT anatomical entity that is part of a plant
(member of the Viridiplantae kingdom), e.g.
roots, leaf

PROCESSED variant of anatomical entity that has
undergone planned processing, e.g. tissue spec-
imen

Any combination of attributes can apply to a single
mention. These attributes allow the identification of
subsets of annotations that may be out of scope for
some efforts (e.g. pathological or processed entities)
and facilitate the analysis of mention detection sys-
tem performance by identifying particular problem-
atic categories.

2.4 Annotation Criteria
In very brief summary, we annotate spans of text that
refer to anatomical entities as defined above. Men-
tions that involve only metaphorical senses of such
entities (“on the other hand”) or artificial analogues
(“artificial heart”) are not annotated.

The primary targets of our annotation are anatom-
ical entity names (e.g. “lymphocyte”) and nominal
mentions of anatomical entities (e.g. “muscle tis-
sue”). Both names and nominal mentions are anno-
tated similarly, without distinction. We exclude pro-
nouns (it, that) from annotation even when they un-

cytoplasm of phagocytic microglia

Organism substance Cell
Part-of

thyroid and eye muscle membranes

Tissue Tissue
Frag

Figure 2: Part-of relation marking entity mention span-
ning a prepositional phrase (above) and Frag relation
marking coordination with ellipsis (below).

ambiguously refer to an anatomical entity; we con-
sider the identification and resolution of such men-
tions part of the distinct coreference resolution task
(see e.g. Pradhan et al. (2011)).

In addition to names and nominal mentions, we
mark adjectives that have an unambiguous sense
of relating to a specific anatomical entity. Thus,
for example, both “kidney” and “renal” (relating to
the kidneys) are annotated as ORGAN in expres-
sions such as “kidney failure” and “renal failure”.
The choice to annotate adjectival references is mo-
tivated by the expected needs of applications mak-
ing use of automatically detected anatomical entity
mentions. For example, for semantic search target-
ing documents relating to organ failure, a document
discussing “renal failure” is obviously relevant and
should be recovered.

Syntactically, annotations mainly cover base
noun phrases without determiners, i.e. nouns with
premodifiers relevant to identifying the specific
anatomical entity referred to. We exclude noun
phrase postmodifiers such as prepositional phrases
from the span of single annotations, but apply a
separate level of annotation for part-of relations
that allow such alternate spans to be recovered
when they identify an anatomical entity (Figure 2
top). Similarly, we decompose coordinated ref-
erences to anatomical entities involving ellipsis to
non-overlapping spans, but mark the cases using a
frag(ment) relation type (Figure 2 bottom). (Due to
space considerations, we omit detailed discussion of
these relation annotations.) Together with the prop-
erties described in Section 2.3, these constraints as-
sure that any single token is assigned at most one
class label and allow the annotation to be repre-
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Matching criterion
Task Strict Left boundary Right boundary
Mention detection (single class) 89.2%/ 82.0%/ 85.4% 93.0%/ 85.5%/ 89.1% 94.6%/ 86.9%/ 90.6%
Detection and classification (multi-class) 85.6%/ 78.7%/ 82.0% 87.0%/ 80.0%/ 83.3% 90.2%/ 82.9%/ 86.4%

Table 2: Inter-annotator agreement results (precision / recall / F-score).

sented in the standard BIO format and to be straight-
forwardly applied with many existing entity mention
taggers.

By contrast to previously introduced domain re-
sources for e.g. molecular entity and organism men-
tion detection (Tanabe et al., 2005; Gerner et al.,
2010b), we do not incorporate any specificity con-
straints in our annotation criteria. That is, non-
specific expressions such as “tissue” and “organ” are
marked identically to specific ones such as “epithe-
lium” and “heart”. This choice seeks to assure the
generality of the task and methods for addressing it.

2.5 Text Selection

Texts for the corpus were drawn from two sources:
the PubMed2 database of publication abstracts, and
the PubMed Central3 (PMC) Open Access subset
of full-text publications. PubMed, containing more
than 20 million citations, has a very broad coverage
of domain scientific texts but is limited to publica-
tion abstracts, while PMC has lower coverage but
does provide over 400,000 full-text documents un-
der open licenses. By sampling both sources, we
seek to assure the corpus is relevant to IE efforts re-
gardless of their choice of texts.

To avoid bias toward e.g. subdomains of biol-
ogy or specific species, we selected texts from both
sources by random sampling. For PubMed, we sim-
ply selected a random set of citations and extracted
their abstract and title texts. For PMC, we initially
extracted all non-overlapping section texts (PMC
XML <sec> elements) as well as caption texts
(<caption> elements), and then selected a ran-
dom set of extracts. This selection seeks to maxi-
mize the diversity of the texts in the full-text sec-
tion of the corpus, and the selection of extracts larger
than isolated sentences aims to allow the corpus to
be used to study methods making use of broader
context, e.g. by incorporating constraints such as
one sense per discourse (Gale et al., 1992).

2http://pubmed.com
3http://www.ncbi.nlm.nih.gov/pmc/

We selected a total of 500 documents using this
protocol, half from PubMed and half from PMC
document extracts. (Descriptive statistics of the ab-
stracts and full-text extracts subcorpora are given
later in Table 3.)

2.6 Annotation Process

Primary annotation was created by a PhD biologist
with extensive experience in domain information ex-
traction and text annotation (TO). The use of any rel-
evant resources, such as the full article being anno-
tated or species-specific anatomy ontologies in the
OBO foundry, was encouraged for resolving unclear
or ambiguous cases during annotation. Initial anno-
tation was produced entirely manually. To further
assure the quality of the annotation, a series of au-
tomatic tests was performed and used as the basis
of a further manual round of revision.4 Annotation
guidelines were initially created based on those cre-
ated by our previous domain-specific effort (Pyysalo
et al., 2012a) and revised throughout the annotation
effort to document specific decisions made during
annotation. The annotations were created using the
BRAT annotation tool (Stenetorp et al., 2012).

To evaluate the annotation consistency, we per-
formed an inter-annotator agreement (IAA) exper-
iment. After brief training with annotation guide-
lines provided by the primary annotator, a random
10% of the corpus was independently annotated by
a PhD computer scientist with experience in domain
text annotation and anatomy ontologies (SP). IAA
was evaluated using the same criteria as applied in
experiments (see Section 3.4), holding the primary
annotation as gold. The results are shown in Table 2.
We find very good agreement both for mention de-
tection (ignoring classification) as well as for the full
task, indicating that the task is well defined and the
annotation consistency high.

4No automatically suggested annotations were incorporated
into the corpus without manual verification.
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3 Methods

We next present the methods applied in our anatomi-
cal entity mention detection experiments. We aim to
evaluate the capacity of the newly annotated corpus
to support reliable mention detection and to estab-
lish initial baseline results for the newly introduced
resource, and thus focus only on relatively straight-
forward applications of existing methods.

3.1 MetaMap
MetaMap5 (Aronson, 2001) is a tool capable of
detecting mentions of concepts from the exten-
sive UMLS Metathesaurus (Bodenreider, 2004)
in text. The metathesaurus and MetaMap have
broad coverage of concepts relevant to biology
and medicine and provide a categorization of
concepts into 133 semantic types, ranging from
Amino Acid to Health Care Activity to
Vertebrate, many directly relevant to anatomi-
cal entities. MetaMap is a key component of the
process used by the National Library of Medicine
(NLM) to index publications in the PubMed
database and has been applied in numerous other in-
formation extraction and information retrieval tasks
(Aronson and Lang, 2010).

In initial experiments, we applied MetaMap to
training set documents to identify the subset of the
133 semantic classes relevant to anatomy, select-
ing 14 classes (including e.g. Cell, Tissue and
Body Substance) for final experiments.6 Dur-
ing testing, we used command-line arguments to re-
strict output to the selected semantic classes. The
core tagging functionality of MetaMap is rule-based,
and it does not support training on tagged data
for concept mention detection. With the exception
of the semantic class selection, the evaluation of
MetaMap reflects an “off-the-shelf” application of
the general-purpose tool.

3.2 CRF tagging
Conditional Random Fields (CRF) (Lafferty et al.,
2001) are graphical models that are frequently ap-

5http://metamap.nlm.nih.gov/
6In brief, we tagged the training data with MetaMap, ex-

tracted the subset of semantic classes giving more than 5%
precision against the gold annotations, and manually analysed
these to select this subset. The selected classes are detailed in
supplementary material available on the project webpage.

plied to sequence labeling tasks, and CRFs form
the basis of state-of-the-art methods for many en-
tity mention tagging tasks. We performed experi-
ments using the NERsuite entity mention recogni-
tion toolkit, based on the CRFsuite implementation
of CRFs (Okazaki, 2007). NERsuite provides an
extensive set of features applied in entity mention
detection, allowing the tool to achieve performance
competitive with state-of-the-art methods for many
biomedical domain tasks through retraining with-
out task-specific adaptation7. Retraining the tool for
new tasks is also straightforward, allowing applica-
tion to new tasks with modest effort.

We set the L2 regularization parameter of the
learning method using held-out evaluation with
training set data, picking out of a set of values 2n

(n ∈ Z) the one giving best performance.8 Other
learning method parameters were left at default val-
ues.

3.3 System combination

As a third system, we apply a straightforward com-
bination of the MetaMap and CRF tagging systems,
where we initially tag the data using MetaMap and
then incorporate the classes assigned by MetaMap
as features for training and testing with NERsuite
(stacking). More specifically, we create a BIO-
tagged version of MetaMap output segmented to
match NERsuite tokenization, and assign each token
the BIO tag based on the MetaMap semantic type
code (e.g. B-cell) as a feature.

Excepting for the addition of these MetaMap-
derived features, NERsuite is applied as described
above (Section 3.2).

3.4 Experimental setting

We split the corpus data into two primary parts: a
training set consisting of 60% of the documents and
a test set of the remaining 40%. The data splits
were performed independently for the two subcor-
pora (abstracts and full-text extracts), using strati-
fied sampling to assure broadly comparable statisti-
cal properties between the sets. The test set was held
out during development and only applied for the fi-
nal experiments.

7http://nersuite.nlplab.org/
8Specifically, C2 = 2−5 was selected.
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Dataset
Source Item Train Test Total

Abst.
Document 150 100 250
Word 28,960 18,199 47,159
Entity 1,182 764 1,946

FTE
Document 150 100 250
Word 26,306 17,955 44,261
Entity 697 492 1,189

Total
Document 300 200 500
Word 55,266 36,154 91,420
Entity 1,879 1,256 3,135

Table 3: Overall corpus statistics. Statistics given sepa-
rately for the abstracts (abst.) and full-text extracts (FTE)
subcorpora as well as for the total.

We perform experiments in two settings: a single-
class setting where the task is restricted to the detec-
tion of anatomical entity mentions without classifi-
cation, and a multi-class setting where the correct
class label must further be assigned to each detected
mention. As MetaMap uses UMLS semantic classes
that do not fully align with the applied CARO-based
classes, MetaMap is only applied in the single-class
setting.

For evaluation, we adopted the protocol, crite-
ria and metrics of the established BioNLP/JNLPBA
shared task 2004 (Kim et al., 2004). To assure com-
patibility, we created our evaluation tool on the ba-
sis of the shared task evaluation script. The eval-
uation is thus based on entity-wise (microaverage)
precision/recall/F-score metrics, and tagging perfor-
mance is separately evaluated under strict match, left
boundary match and right boundary match criteria.
In the former setting, a predicted entity must exactly
match the extent of a gold standard entity, while in
the latter two settings, it is enough that the left/right
boundary matches.

3.5 Format
The annotation is distributed in the standard column-
based BIO format applied for e.g. CoNLL 2003
(Tjong Kim Sang and De Meulder, 2003) and
JNLPBA (Kim et al., 2004) data, among other es-
tablished datasets.

4 Results

4.1 Corpus statistics
Table 3 presents the overall corpus statistics. We
note that the abstracts and full-text extracts (FTE)

Type Count
CELL 776
MULTI-TISSUE STRUCTURE 639
ORGAN 381
PATHOLOGICAL FORMATION 368
ORGANISM SUBSTANCE 291
CELLULAR COMPONENT 199
TISSUE 169
ORGANISM SUBDIVISION 162
IMMATERIAL ANATOMICAL ENTITY 60
ANATOMICAL SYSTEM 51
DEVELOPING ANATOMICAL STRUCTURE 39

Table 4: Annotation statistics by type.

subcorpora are of comparable size in terms of their
word counts, but the number of annotations is 1.6
times higher in the abstracts subcorpus (1.5 cor-
recting for number of words). This difference in
anatomical entity mention density between abstracts
and full texts parallels the findings of Cohen et al.
(2010) on the relative density of gene, drug and dis-
ease mentions. We further note that the estimated
density of anatomical entity mentions in abstracts
(approx. 41 per 1000 words) and full texts (27 per
1000) are broadly comparable to the gene mention
density estimates of Cohen et al. (61 and 47 for ab-
stracts and full texts, respectively).

Table 4 presents a breakdown by annotation type.
There are large differences in the number of anno-
tations by type, with the majority class CELL out-
numbering the rarest type 20-fold. While the total
number of annotated examples is likely to be suf-
ficient for training machine learning-based taggers
and most of the classes contain a respectable num-
ber of examples, the statistics suggest that the least
frequently annotated types may represent challenges
for learning.

4.2 Entity Mention Detection

Table 5 presents the experimental results for anatom-
ical entity mention detection (single-class). In terms
of F-score, we find the same ranking of the three
methods for all three criteria, with the CRF-based
tagger outperforming the rule-based MetaMap, and
the combination method outperforming its compo-
nents. Although it is not surprising that a dedicated
machine learning-based system is capable of outper-
forming a general-purpose, largely rule-based sys-
tem, this result does reflect positively on both the
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Matching criterion
Method Strict Left boundary Right boundary
MetaMap 50.78% / 64.49% / 56.82% 54.67% / 69.43% / 61.17% 58.18% / 73.89% / 65.10%
NERsuite 77.98% / 52.15% / 62.50% 81.43% / 54.46% / 65.27% 90.00% / 60.19% / 72.14%
MetaMap + NERsuite 82.09% / 62.42% / 70.92% 84.61% / 64.33% / 73.09% 90.68% / 68.95% / 78.34%

Table 5: Overall single-class anatomical entity mention detection results (precision / recall / F-score).

Matching criterion
Method Strict Left boundary Right boundary
NERsuite 72.07% / 42.12% / 53.17% 72.75% / 42.52% / 53.67% 85.69% / 50.08% / 63.22%
MetaMap + NERsuite 75.41% / 51.75% / 61.38% 76.45% / 52.47% / 62.23% 83.99% / 57.64% / 68.37%

Table 6: Overall anatomical entity mention detection and classification results (precision / recall / F-score).

consistency of the annotation as well as the suffi-
ciency of the size of the newly introduced corpus.
In this application, we find that MetaMap tends to
favor recall over precision – perhaps reflecting its
focus on IR applications (Aronson and Lang, 2010)
– while the trained machine learning-based models
are clearly biased in favor of high precision.

As expected on the basis of the results of previous
evaluations using similar experimental setups (Kim
et al., 2004), results are notably better under the re-
laxed matching criteria. In particular, requiring only
the right boundaries of annotations to match yields
F-scores nearly 10% points higher than under strict
matching. Recalling that the annotations primar-
ily mark base noun phrases, this suggests that the
systems comparatively frequently identify the head
word of an anatomical entity mention correctly but
differ from gold annotation regarding the choice of
premodifiers included in the span of the annotation.
As limited variation in premodifier selection is ar-
guably acceptable for many applications and relaxed
matching criteria are frequently applied in domain
tagging tasks (Kim et al., 2004; Wilbur et al., 2007),
we propose to consider performance under the re-
laxed right boundary match criterion as the primary
result for evaluation using the new corpus.

Table 6 presents the results for anatomical entity
mention detection and classification using the 11-
class categorization used in annotation.9 While per-
formance in terms of F-score is approximately 10%
points lower than for the single-class task, this drop
is comparatively modest given the large number of

9Note that evaluation using MetaMap only is not possible as
its semantic classes differ from those used in the annotation.

distinct classes, indicating that the number of an-
notations of most individual classes is sufficient for
learning.

While these initial results are not as high as for
established entity mention detection tasks in the do-
main (Wilbur et al., 2007; Rebholz-Schuhmann et
al., 2011), we consider the level of performance
quite good given the many new challenges relat-
ing to the task. Further, as the mention detection
methods were also applied with only modest specific
adaptation to the task, we believe there remain many
opportunities for further development of methods
for the task.

4.3 Discussion

Many commonly targeted mention types in both
the “general” and the biological domain are fre-
quently characterized by obvious surface features:
the names of people and locations are capitalized in
many languages, as are genera in scientific species’
names, and many gene and chemical names have
comparable features distinguishing them from com-
mon nouns (consider e.g. p53, IgE, c-myc, Ca2+,
H2SO4). By contrast, many typical anatomical en-
tity mentions are common noun compounds lacking
obvious distinguishing surface features. This fact
likely contributes to the comparatively low perfor-
mance of the CRF-based tagger when applied with-
out support from lexical resources.

A further challenge that arises comparatively fre-
quently in anatomical entity mention detection is
ambiguity between entity mentions and other words
sharing the same surface form. For example, while
Barack Obama, Sweden, p53 and H2SO4 can be
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safely identified as mentions of a person, country,
gene, and chemical without reference to context,
face should not be marked as an anatomical entity
mention in face the facts, nor should Airways in
British Airways. Thus, approaches relying on simple
matching against lexical resources will not suffice
for accurate anatomical entity mention detection.

Our evaluation results demonstrated a clear ad-
vantage to combining detection based on lexical re-
sources with machine learning-based tagging, an ap-
proach we believe will be key to the further develop-
ment of reliable anatomical entity mention tagging
that we will seek to explore in detail in future work.
To facilitate analysis of the performance of the meth-
ods, we provide the predictions of each method in
supplementary data on the project homepage.

5 Related work

A number of domain corpora such as GENIA (Ohta
et al., 2002), BioInfer (Pyysalo et al., 2007), and the
recently introduced CellFinder corpus (Neves et al.,
2012) include annotation for at least some classes
of anatomical entities. However, such corpora typ-
ically cover only specific subdomains of the litera-
ture, such as transcription factors in human blood
cells (GENIA), protein-protein interactions (BioIn-
fer), or stem cells (CellFinder). To the best of our
knowledge, this is the first effort introducing a cor-
pus annotated for anatomical entity mentions that
specifically aims to be representative of the entire
available literature. We note that there is a well-
established precedent to this goal: sentences for
the de facto standard corpus for gene/protein name
recognition, GENETAG (Tanabe et al., 2005), were
similarly selected from PubMed abstracts without
domain restrictions.

The BioNLP/JNLPBA shared task 2004 (Kim et
al., 2004) targeted the detection of mentions of five
types of biological entities, including two that would
fall within in the scope of our CELL annotation
(“Cell type” and “Cell line”). Other than this com-
paratively early shared task, collaborative domain
efforts such as BioCreative (Krallinger et al., 2008)
and CALBC (Rebholz-Schuhmann et al., 2011) have
not targeted anatomical entity mentions.

Some recent studies have considered the use of
ontological resources for the detection of anatomi-

cal entity mentions in natural language expressions.
In previous work (Pyysalo et al., 2012b), we studied
the classification of isolated noun phrases extracted
from PubMed to identify anatomy terms. Travillian
et al. (2011) considered two lexical matching appli-
cations to detect anatomical entities from two OBO
resources in user-provided terms. However, these
efforts have not involved the annotation or detection
of mentions in context, which we view as critical for
real-world entity mention detection method devel-
opment and evaluation.

6 Conclusions

We have introduced a manually annotated corpus for
open-domain anatomical entity mention detection,
consisting of 500 documents (over 90,000 words)
drawn from publication abstracts and full texts. The
primary corpus annotation consists of the identifi-
cation of over 3,000 references to both healthy and
pathological anatomical entities, marked using a de-
tailed 11-class categorization based on established
biomedical domain ontologies. We demonstrated
the use of the new corpus through a comparative
evaluation of MetaMap, a general semantic class
tagger; NERsuite, a CRF-based machine learning
system; and a stacked combination of the two, find-
ing that under a relaxed matching criterion, the com-
bination approaches 80% F-score at mention detec-
tion and 70% F-score at mention detection and clas-
sification. This level of performance is encourag-
ing for a first application and suggests that reliable
open-domain anatomical entity mention detection is
not an unrealistic target.

We hope that the introduced corpus can serve as a
reference standard for the further development and
evaluation of methods for anatomical entity men-
tion detection. This corpus, the introduced evalua-
tion tools, and other resources created in this study
are made available under open licences from http:
//www.nactem.ac.uk/anatomy/.
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