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1. Introduction

It is well known that the rapid growth and dissemination of the Internet has resulted in
huge amounts of information generated and shared, available in the form of textual data,
images, videos or sounds. This overwhelming surge of data is also true for specific areas
such as biomedicine, where the number of published documents, such as articles, books and
technical reports, is increasing exponentially. For instance, the MEDLINE literature database
contains over 20 million references to journal papers, covering a wide range of biomedical
fields. In order to organize and manage these data, several manual curation efforts have
been set up to identify, in texts, information regarding entities (e.g. genes and proteins) and
their relations (e.g. protein-protein interactions). The extracted information is stored in
structured knowledge resources, such as Swiss-Prot [1] and GenBank [2]. However, the ef‐
fort required to continually update these databases makes this a very demanding and ex‐
pensive task, naturally leading to increasing interest in the application of Text Mining (TM)
systems to help perform those tasks.

One major focus of TM research has been on Named Entity Recognition (NER), a crucial ini‐
tial step in information extraction, aimed at identifying chunks of text that refer to specific
entities of interest, such as gene, protein, drug and disease names. Such systems can be inte‐
grated in larger biomedical Information Extraction (IE) pipelines, which may use the auto‐
matically extracted names to perform other tasks, such as relation extraction, classification
or/and topic modeling. However, biomedical names have various characteristics that may
difficult their recognition in texts [3]:

• Many entity names are descriptive (e.g. “normal thymic epithelial cells”);

© 2012 Campos et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



• Two or more entity names sharing one head noun (e.g. “91 and 84 kDa proteins” refers to
“91 kDa protein” and “84 kDa protein”);

• One entity name with several spelling forms (e.g. “N-acetylcysteine”, “N-acetyl-cysteine”,
and “NAcetylCysteine”);

• Ambiguous abbreviations are frequently used (e.g. “TCF” may refer to “T cell factor” or
to “Tissue Culture Fluid”).

Consequently, several NER systems have been developed for the biomedical domain, using
different approaches and techniques that can generally be categorized as being based on
rules, dictionary matching or Machine Learning (ML). Each approach fulfills different re‐
quirements, depending on the linguistic characteristics of the entities being identified. Such
heterogeneity is a consequence of the predefined naming standards and how faithfully the
biomedical community followed them. Thus, it is recommended to take advantage of the ap‐
proaches that better fulfill the requirements of each entity type:

• Rule-based: names with a strongly defined orthographic and morphological structure;

• Dictionary-based: closely defined vocabulary of names (e.g. diseases and species);

• ML-based: strong variability and highly dynamic vocabulary of names (e.g. genes and
proteins).

Applying the best approaches is not possible in all cases, since each approach presents dif‐
ferent technical requirements [4]. However, when the appropriate resources are available,
ML-based solutions present several advantages over other methods, and provide the best
performance results.

The development of ML-based NER solutions integrates various complex steps that incorpo‐
rate different processing pipelines. Thus, along the past years, a variety of systems were de‐
veloped using the most different frameworks, techniques and strategies. This chapter gives
an overview of ML-based biomedical NER solutions, providing a brief description of the lat‐
est and most significant research techniques, and presenting an in-depth analysis of the
available systems and frameworks, considering the technical characteristics, provided fea‐
tures and performance outcomes. In the end, future directions and research opportunities on
ML-based NER solutions are discussed.

2. Methods

ML-based solutions use statistical models focused on recognizing specific entity names, us‐
ing a feature-based representation of the observed data. Such approach solves various prob‐
lems of rule and dictionary-based solutions, recognizing new entity names and new spelling
variations of an entity name. However, ML does not provide identifiers from curated re‐
sources, which can be solved by using a dictionary in an extra step. Nonetheless, the main
drawback of such solutions is the dependency on annotated documents, which are hard and
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expensive to obtain. Thus, the absence of such resource for a specific biomedical entity type
may limit the applicability of ML solutions.

The development of ML-based solutions requires two essential steps (Figure 1): train and
annotate. At first, the ML model must be trained using the annotations present on the anno‐
tated documents. This step can take some time depending on the complexity of the model
and on the available computational resources. After storing the model in a physical re‐
source, raw documents can be annotated, providing entity names based on the past experi‐
ence inferred from the annotated documents.

Documents 

with 

annotations

Raw 

documents

ML Model

Train

Annotate

Documents 

with automatic 

annotations

1st

2nd

Figure 1. Illustration of the development process of ML-based solutions.

Both training and annotation tasksdepend on various processing steps and resources. Figure
2 presents the pipeline of the required modules to implement ML-based NER solutions:

• Corpora: collection of texts related with the target domain;

• Pre-processing: process the input data in order to simplify the recognition process;

• Feature processing: extract, select and/or induce features from the pre-processed input
data;

• ML model: use the generated features to automatically define a set of rules that describe
and distinguish the characteristics and patterns ofentity names;

• Post-processing: refinement of the generated annotations, solving problems of the recog‐
nition process or extending recognized names;

• Output: input corpora with automatically generated annotations or the extracted informa‐
tion ina structured format.

Each module must perform one or various essential tasks. Moreover, each task can be per‐
formed using different algorithms or/and resources, depending on the target goal and pre-
defined requirements. The following sub-sections present the main goals of each module
and briefly describe alternative approaches to fulfill the requirements of each task.
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Figure 2. Overall pipeline of the required steps to develop ML-based NER solutions.

2.1. Corpora

In this context, a corpus is a set of text documents that usually contain annotations of one or
various entity types. Such annotations are used to train ML models, inferring characteristics
and patterns of the annotated entity names. Thus, the trained model is highly dependent on
the quality of the annotations present on those corpora. This dependency must be carefully
analyzed, since a corpus may contain annotations of a specific entity type but not reflecting
the whole spectrum of names. A corpus is also used to obtain performance results, in order
to understand the behavior of the system on real-life problems. Such evaluation enables the
comparison of distinct solutions to the same problem.

There are two types of annotated corpora, varying with the source of the annotations:

• Gold Standard Corpora (GSC): annotations are performed manually by expert annotators,
following specific and detailed guidelines;

• Silver Standard Corpora (SSC): annotations are automatically generated by computerized
systems.

Table 1 presents a list of relevant GSC available for the various biomedical entity types. As we
can see, most of the research efforts have been on the recognition of gene and protein names,
with various corpora containing several thousands of annotated sentences. Such effort is a
consequence of two different factors: the importance of genes and proteins on the biomedi‐
cal domain, and the high variability and no standardization of names. Various challenges were
organized for the recognition of gene and protein names, such as BioCreative [5] and JNLPBA
[6], and most advances on ML-based NER were achieved in those challenges.
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When the amount of annotated documents is not sufficient to reflect the whole spectrum of

names, corpora are mostly used for evaluation procedures, as is generally the case for the

identification of disorders and species names. The SCAI IUPAC corpus is also a good exam‐

ple of a specific sub-entity type corpus, containing only annotations of chemicals that follow

the IUPAC nomenclature. Finally, both AnEM and CellFinder are very recent corpora (re‐

leased on 2012), showing that the development of manually annotated corpora for the vari‐

ous entity types is still an ongoing work.

Entity Corpus Type Size (sentences)

Gene and Protein

GENETAG [7] Sentences 20000

JNLPBA [6] (from GENIA [8]) Abstracts 22402

FSUPRGE [9] Abstracts ≈29447*

PennBioIE [10] Abstracts ≈22877*

Species
OrganismTagger Corpus [11] Full texts 9863

Linnaeus Corpus [12] Full texts 19491

Disorders

SCAI Disease [13] Abstracts ≈3640*

EBI Disease [14] Sentences 600

Arizona Disease (AZDC) [15] Sentences 2500

BioText [16] Abstracts 3655

Chemical
SCAI IUPAC [17] Sentences 20300

SCAI General [18] Sentences 914

Anatomy AnEM1 Sentences 4700

Miscellaneous CellFinder2 Full texts 2100

Table 1. List of relevant Gold Standard Corpora (GSC) available for each biomedical entity, presenting the type of
documents and its size.
*Each MEDLINE abstract contains on average 7.2±1.9 sentences [19]. We considered the best-case scenario with ≈9
sentences.

1,2

As we can see on Table 1, only small sets of documents have been annotated, due to the
complexity of generating GSC. The CALBC [20] (Collaborative Annotation of a Large Bio‐
medical Corpus) project aimedto minimize this problem, providing a large-scale biomedical
SSC automatically annotated through the harmonization of several NER systems. This large
corpus contains one million abstracts with annotations of several biological semantic
groups, such as diseases, species, chemicals and genes/proteins.

1 http://www.nactem.ac.uk/anatomy
2 http://www.informatik.hu-berlin.de/forschung/gebiete/wbi/resources/cellfinder
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2.2. Pre-processing

Natural Language Processing (NLP) solutions can be accomplished by computerized sys‐
tems in an effective manner. However, it is necessary firstly to properly delimit the docu‐
ments into meaningful units. Most NLP solutions expect their input to be segmented into
sentences, and each sentence into tokens. Since real-world documents lack such well-de‐
fined structure, it is necessary to implement a few methods to perform such tasks.

2.2.1. Sentence splitting

Sentence splitting is the process of breaking a text document into its respective sentences. In
the end, each sentence should provide a specific local, logical and meaningful context for fu‐
ture tasks. Various solutions were developed to perform sentence splitting on biomedical
documents, such as JSBD [21], OpenNLP3 and SPECIALIST NLP4.The best performing solu‐
tions can achieve an accuracy of 99.7%.

2.2.2. Tokenization

Tokenisation is the process of breaking a sentence into its constituent meaningful units,
called tokens. It is one of the most important tasks of the IE workflow, since all the following
tasks will be based on the tokens resulting from this process. Consequently, various tools
were developed specifically for the biomedical domain, such as GENIA Tagger [22], JTBD
[21] and SPECIALIST NLP. In [23], the authors present a detailed comparison of various bio‐
medical tokenizers. The best solutions achieve accuracies around 96%.

2.2.3. Annotationencoding

In order to internally represent the annotated entity names, it is necessary to use an encod‐
ing scheme to give a tag to each token of the text. The simplest is the IO encoding, which tags
each token as either being in (tag “I”) a particular named entity or outside (tag “O”). This en‐
coding is defective, since it cannot represent two entities next to each other. The BIO encod‐
ing is the de facto standard, and it extends the IO encoding solving the boundary problem. In
this scheme, the “in” tag is subdivided into tag “B”, representing the first token or begin‐
ning of the entity name, and tag “I” for the remaining tokens. The BMEWO encoding ex‐
tends the BIO encoding by distinguishing the end of an entity (tag “E”) tokens from the middle
entity tokens (tag “M”), and adding a new tag (“W”) for entities with only one token.

2.3. Feature processing

Feature processing is a crucial NER task, since the predictions will be performed based on
the information that they encode, reflecting special phenomena and linguistic characteristics
of the naming conventions. Thus, the definition of a rich and carefully selected set of fea‐
tures is required in order to properly represent the target entity names.

3http://opennlp.apache.org
4http://lexsrv3.nlm.nih.gov/Specialist
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2.3.1. Linguistic

The most basic internal feature is the token itself. However, in most cases, morphological
variants of words have similar semantic interpretations, and can be considered as equiva‐
lent. For this reason, stemming or lemmatization can be used to group together all inflected
forms of a word, so that they can be analyzed as a single item. The basic idea of stemming is
to find the prefix that is common to all variations of the term. On the other hand, lemmatiza‐
tion is a more robust method, because it finds the root term of the variant word (e.g. the
lemma of “was” is “be”). Along with normalization techniques, it is also possible to asso‐
ciate each token with a particular grammatical category based on its context, a procedure
called Part-of-Speech (POS) tagging. Additionally, chunking can be also used, dividing the
text into syntactically correlated parts of words (e.g., noun or verb phrases). These linguistic
features only provide a local analysis of the token in the sentence. To complement this, fea‐
tures can be derived from dependency parsing tools to collect the relations between the vari‐
ous tokens in the sentence.

2.3.2. Orthographic

The purpose of orthographic features is to capture knowledge about word formation. For
example, a word that starts with a capital letter could indicate the occurrence of an entity
name (e.g. in the protein name “MyoD”). Various features can be used, reflecting the pres‐
ence of uppercase or lowercase characters, the presence of symbols, or counting the number
of digits and uppercase characters in a token.

2.3.3. Morphological

Morphological features, on the other hand, reflect common structures and/or sub-sequences
of characters among several entity names, thus identifying similarities between distinct to‐
kens. To accomplish this goal, three distinct types of morphological features are commonly
considered:

• Suffixes and prefixes:can be used to distinguish entity names. For instance, suffixes like
“ase”, “ome” and “gen” frequently occur in gene and protein names;

• Char n-grams: are sub-sequences of ncharacters from a given token. It extends suffixes
and prefixes by considering sub-sequences of characters in the middle of tokens;

• Word shape patterns: generate a sequence of characters to reflect how letters, digits and
symbols are organized in the token. For instance, “Abc: 1234” could be represented by the
following patterns: “Abc: *”, “Aaa#1111” and/or “a#1”.

2.3.4. Context

Higher-level relations between tokens and extracted features can be established through
windows or conjunctions of features, reflecting the local context of each token. The applica‐
tion of windows consists of adding features of preceding and succeeding tokens as features
of each token. On the other hand, conjunction of features consists of creating new features
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by grouping together features of the surrounding tokens. To apply those context methods, it
is important to limit the features to use as context information, since using the complete set
of features from the surrounding tokens wouldgenerate millions of new features. However,
pre-selecting the features used forbuilding the conjunctions may mean that informative con‐
junctions are not considered. Feature induction solves this problem, by iteratively consider‐
ing sets of atomic and conjunction features created from the initial feature set. On each
iteration, only candidates that provide useful information are included in the updated set of
features. Intuitively, features with high gain provide strong evidence for many decisions.

2.3.5. Lexicons

Adding biomedical knowledge to the set of features can further optimize NER systems. To
provide this knowledge, dictionaries of specific domain terms and entity names are matched
in the text and the resulting tags are used as features. Two different types of dictionaries are
commonly used: target entity names (match tokens with dictionaries with a complete set of
names of the target entity name), and trigger names (match names that may indicate the
presence of biomedical names in the surrounding tokens).

2.4. Machine learning model

As the input to the ML model, each feature should assume the value “1” if it is present on
the current token or “0” if it is not (Table 2).

Feature 1 Feature 2 … Feature m

Token 1 1 1 … 0

Token 2 0 1 … 0

… … … … …

Token n 0 0 … 1

Table 2. Illustration of the matrix of features as the input tothe ML model. Each vector defines the features present for
the corresponding token.

Each modeling technique uses the feature matrix to create a probabilistic description of the
entity names boundaries. The various ML models can be classified as being supervised or
semi-supervised, depending on unannotated data being used or not. Supervised learning,
which only uses annotated data, has received most research interest in recent years. Conse‐
quently, different supervised models have been used on NER systems, namely Conditional
Random Fields (CRFs) [24], Support Vector Machines (SVMs) [25], Hidden Markov Models
(HMMs) [26] and Maximum Entropy Markov Models (MEMMs) [27]. CRFs have been ac‐
tively used during the last years, since they present several advantages over other methods.
Firstly, CRFs avoid the label bias problem [24], a weakness of MEMMs. In addition, CRFs
also have advantages over HMMs, a consequence of their conditional nature that results in
relaxation of the independence assumptions [28]. Finally, although SVMs can provide com‐
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parable results, more time is required to train complex models.Semi-supervised solutions
use both annotated and unannotated data, in order to solve the data sparseness problem.
Thus, the main goal is to collect features of the unannotated data that are not present in the
annotated data, which may contribute to a better identification of the entity names bounda‐
ries. There are various approaches to implement semi-supervised solutions, such as Semi-
CRFs [29, 30], Semi-SVMs [31], ASO [32] and FCG [33].

2.5. Model Combination

The most recent results on biomedical NER clearly indicate that better performance results
can be achieved by combining several systems with different characteristics. As an example,
the top five systems of the BioCreative II gene mention challenge [5] used ensembles of NER
systems. In order to generate ML models that reflect different characteristics of the annotat‐
ed data, it is common to use different parsing directions (forward and backward) or differ‐
ent feature sets. Moreover, different approaches can be used to combine the generated
annotations, using union, intersection, machine learning [34] or lexicons [35].

2.6. Post-processing

Post-processing techniques are commonly used to solve some recognition mistakes, which
may be easily corrected through simple rules or methods:

• Remove or correct recognition mistakes: annotations with an odd number of brackets
may be removed or corrected.

• Extend or make annotations more precise: abbreviation resolution methods can be used to
extend detected annotations. Moreover, curated dictionaries can be also used to correct
generated annotations.

• Remove uninformative terms: some annotations may be known for being non-informative
or unwanted terms, and consequently must be removed.

2.7. Evaluation

In order to understand the behavior of the system, it is important to measure the accuracy of
the generated annotations. This can be performed by annotating a corpus and then compare
the automatic annotations with the ones provided by expert curators. Thus, each automatic
annotation must be classified as being a:

• True Positive (TP): the system provides an annotation that exists in the curated corpus;

• True Negative (TN): the non existence of an annotation is correct according to the curated
corpus;

• False Positive (FP): the system provides an annotation that does not exist in the curated
corpus;

• False Negative (FN): the system does not provide an annotation that is present in the cu‐
rated corpus.

Biomedical Named Entity Recognition: A Survey of Machine-Learning Tools
http://dx.doi.org/10.5772/51066

183



Exact and fuzzy matching can be used to obtain performance results and to better under‐
stand the behavior of the system. With approximate matching we can find the performance
when minor and non-informative mistakes are discarded. Such evaluation is important since
various post-NER tasks, such as relation extraction and topic modeling, can be performed
with imprecise annotations.

Performance results are obtained using three important measures: precision, recall and F-
measure. Those measures assume values between 0 (worst) and 1 (best). Precision measures
the ability of a system to present only relevant names, and it is formulated as:

Precision = relevant names recognized
total names recognized = TP

TP + FP (1)

On the other hand, recall measures the ability of a system to present all relevant names, and
is formulated as:

Recall = relevant names recognized
relevant names on corpus = TP

TP + FN (2)

Finally, F-measure is the harmonic mean of precision and recall. The balanced F-measure is
most commonly used, and is formulated as:

F - measure =2 Precision × Recall
Precision + Recall (3)

3. Tools

In order to understand and expose the current trends of ML-based NER solutions, it is im‐
portant to study existing tools and respective characteristics, analyzing their applicability on
real life problems. Since dozens of tools are available for the recognition of a specific entity
type (e.g. gene and protein), we decided to study the systems that better reflect the overall
progress of the domain. On the other hand, some entity types do not have any relevant ML-
based systems. For instance, species recognition is already efficiently performed by diction‐
ary-based solutions: LINNAEUS [12] and OrganismTagger [11] already achieve ≈95% and
≈97% of F-measure, respectively. Curiously, OrganismTagger uses a simple ML module that
gives a small contribution in the recognition of species strains. Also there are no ML solu‐
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tions for the recognition of anatomy names, since the AnEM corpus was just released (May,
2012). However, due to the characteristics of the corpus and the importance of anatomy enti‐
ty type in the biomedical domain, we believe that various solutions will be developed soon.

Table 3 presents an overview of the ML-based systems characteristics that we considered
for the various entity types, presenting the used programming languages, features, mod‐
els and post-processing techniques. The tools presented in the miscellaneous section can be
applied to more than one entity type, namely on gene/protein and disorders. However, dif‐
ferent entity types have different characteristics, requiring the applicability of distinct tech‐
niques and/or feature sets. As we can see, features such as chunking, dependency parsing
and conjunctions are only used in gene and protein names recognition, which require a
much more complex feature set. Moreover, the BioEnEx authors show that the use of some
morphological and orthographic features has a negative impact on the recognition of disor‐
der names [36].

The application of complex techniques is a reflex of the research effort spent on each entity
type. As expected, gene and protein names have been the main research target, with eight
systems. Four of those systems, including AIIAGMT and IBM Watson, were developed spe‐
cifically for these entity types. The other four systems were also adapted for the recognition
of disorders, such as ABNER and BANNER. It is also interesting to see that the systems de‐
veloped for the recognition of chemicals are not used in any other entity type or vice-versa.
We believe that this is a consequence of various factors: available corpora do not cover the
whole spectrum of chemical names or is sparse; and chemical names present different chal‐
lenges when compared with gene and protein names, namely high variability but different
levels of names standardization.

We also studied the various tools in terms of source code availability, since using and adapt‐
ing already implemented methods may streamline the development of new and improved
IE solutions. For instance, one can use Gimli or BANNER to implement new tools for the
recognition of different entity types (e.g., BANNER was used in the development of BioEn‐
Ex). It is also interesting to see that closed source solutions commonly present more ad‐
vanced and/or complex techniques. For instance, only IBM Watson applies a semi-
supervised algorithm and, with the exception of Gimli, only closed source solutions use
model combination strategies.

Regarding used features, we can observe that some features are common to every recogni‐
tion task, namely some orthographic, morphological and context features. Thus, we may ar‐
gue that those features are essential in the development of ML-based NER tools. One can
also observe that linguistic features are only used in the recognition of entity names that
present high variability and low standardization. Moreover, from the results of various tools
we can conclude that the use of dictionary matching as features always presents a positive
contribution, since adding domain knowledge provides an increased precision.
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Table 3. Overview of the ML-based systems characteristics considering the various target entity types and presenting
the used programming languages, features, models and post-processing techniques.

5,6

5 http://bioinformatics.ua.pt/gimli
6 http://nersuite.nlplab.org
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As stated above, nine of the ten tools use supervised models. From those, all the systems de‐
veloped in the last four years (from 2008 to 2012) take advantage of CRFs, which shows the
success of this modeling technique. However, there is a growing research interest in the ap‐
plication of semi-supervised models, since they may provide more general and non-corpus
specific solutions.

Finally, post-processing methods are commonly applied by closed source solutions, with the
exception of Gimli and BANNER that already take advantage of several high-end techni‐
ques. Thus, we can argue that parentheses processing and abbreviation resolution are essen‐
tial tasks, since its applicability is independent of the entity type.

Besides the study of the characteristics of each tool, we have also conducted a set of evalua‐
tion experiments to help elucidating about the solutions that perform the best. Figure 3
presents a performance comparison of the analyzed tools per entity type.

3.1. Gene and Protein names

Most of the developed solutions are focused on two main corpora, GENETAG and JNLPBA.
GENETAG is not restricted to a specific domain, containing annotations of proteins, DNA
and RNA (grouped in only one semantic type), which were performed by experts in bio‐
chemistry, genetics and molecular biology. This corpus was used in the BioCreative II chal‐
lenge [5], and it contains 15000 sentences for training and 5000 sentences for testing. For
evaluation, the matching is performed allowing alternative names provided by the expert
annotators. On the other hand, the JNLPBA corpus is a sub-set of the GENIA corpus, con‐
taining 2404 abstracts extracted from MEDLINE using the MeSH terms “human”, “blood‐
cell” and “transcription factor”. The manual annotation of these abstracts was based on five
classes of the GENIA ontology, namely protein, DNA, RNA, cell line, and cell type. This cor‐
pus was used in the BioEntity Recognition Task in BioNLP/NLPBA 2004 [6], providing 2000
abstracts for training and the remaining 404 abstracts for testing. On this challenge, the eval‐
uation was performed using exact matching. Since GENETAG is not focused on any specific
biomedical domain, its annotations are more heterogeneous than those of JNLPBA. A brief
analysis, considering protein, DNA and RNA classes, shows that GENETAG contains al‐
most 65% of distinct names, as opposed to the 36% found on JNLPBA.

As expected, a model trained on GENETAG provides annotations not focused on any specif‐
ic biomedical domain, which may be recommended for general real life applications. How‐
ever, the same semantic group contains annotations of DNA, RNA and gene/protein. On the
other hand, a model trained on the JNLPBA corpus may provide annotations optimized for
research on human blood cell transcription factors. On this corpus, the various entity types
are split on different semantic groups.

Overall, the systems present high performance results on both corpora, where the best per‐
forming systems achieve an F-measure of 88.30% on GENETAG and 73.05% on JNLPBA.
Both systems, AIIAGMT and Gimli, present complex solutions that include the application
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of linguistic and lexicon features and the combination of various CRF models with different
characteristics. When comparing open with closed source solutions, there is no significant
difference, since both apply high-end techniques and high performance results. Moreover,
Gimli is the open-source solution that provides more implemented features,with the best
performance results. Nevertheless, BANNER, BioEnEx and NER Suite also present positive
outcomes using simpler models and no combination techniques.

The high performance results achieved on this task, on both general and specific corpora,
indicate that the recognition of gene and protein names is ready to be used on real life prob‐
lems, presenting an acceptable error margin.

3.2. Disorder names

Following the UMLS description of disorder, it includes various semantic sub-groups with
different interpretations. Thus, a corpus must contain names of diseases, symptoms, abnor‐
malities and dysfunctions in order to reflect the whole spectrum of disorder names in the
best way as possible.Some of those sub-groups are important since new diseases are often
referred as a set of signs and symptoms until the disease receives an official name.

Only two corpora were used for the development of ML solutions: Arizona Disease Corpus
(AZDC) and BioText. AZDC presents a set of annotations that reflect the whole spectrum of
disorder names. The annotation process was performed manually by one expert and revised
by another. On the other hand, the BioText corpus was annotated for the identification of
disease and treatment mentions, not covering the whole spectrum of names. Moreover, the
primary goal of this corpus was to explore different types of relationships between diseases
and treatments. Thus, a high degree of annotation consistency was not required at the token
level. Regarding both corpora, we consider that the amount of annotated sentences (2500
and 3655) may not be sufficient to train an accurate ML model for real life applications. For
instance, the AZDC corpus provides 3228 disease mentions. In comparison, GENETAG con‐
tains ≈24000 primary gene and protein annotations and more than 17000 alternative men‐
tions for approximate matching.

Due to the restrictions of the available corpora, most solutions for the recognition of disor‐
ders are typically implemented through the application of dictionary-based approaches.
Nevertheless, various solutions were developed using only ML and the existing corpora.
Overall, those solutions present a simpler feature set when comparing with gene and pro‐
tein models.

As expected, a model trained on the AZDC corpus may provide general annotations consid‐
ering the whole spectrum of disorder names in one semantic group. On the other hand, a
model trained on the BioText corpus only provides annotations of diseases and treatments.
However, on both cases, a large amount of disorder names are missed since their statistical
description is not present on the training corpus.
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Considering exact matching, the best system achieves an F-measure of 81.08% on the AZDC
corpus, which is a good performance result. The improved performance of BioEnEx in com‐
parison to BANNER may be justified by the use of dependency parsing and the absence of
some orthographic features. On the other hand, the BioText inconsistencies cause the per‐
formance of systems to be overly pessimistic. As we can see, the best performing system on‐
ly achieves an F-measure of 54.84%.

In summary, we believe that the AZDC corpus provides a good benchmark for the recogni‐
tion of disorder names. However, the implementation of systems based only on that specific
corpus is doubtful, due to the small amount of annotated documents. Moreover, we also be‐
lieve that the BioText corpus is not the best solution for systems comparison, due to the re‐
ported inconsistences and achieved results.

3.3. Chemical names

Chemical names can be divided into two classes [38]: a closed (finite) class for trivial names,
and an open (infinite) class for names following strictly defined nomenclatures (e.g. IUPAC
names). The SCAI General corpus contains manual annotations of both classes. However,
we believe that 914 sentences with only 1206 mentions is not sufficient for development and
evaluation procedures, due to the amount and complexity of chemical names. On the other
hand, the SCAI IUPAC corpus only contains annotations of chemical names that follow the
IUPAC nomenclature. In this case, we believe that 20300 sentences are sufficient for ML
models to infer the patterns of the rule-based convention with success.

As expected, the systems developed using the IUPAC corpus deliver good results. The best
performing solution achieves 85.60% of F-measure using exact matching. As we can see,
ChemSpot and SCAI have similar characteristics in terms of model and features. However,
the achieved results are quite different. Such difference may be related with specific charac‐
teristics of the CRF training. The authors of ChemSpot argue that SCAI uses a third-order
CRF (instead of second-order) with optimized meta-parameters, which may over fit the
model and consequently provide worse performance on unseen instances.

The same model of ChemSpot that was trained on the IUPAC corpus was tested on the
SCAI corpus. As expected, it provides low recall results, since only IUPAC annotations are
generated. Overall, it presents an F-measure of 42.60%, which is a good result considering
that IUPAC annotations represent around 32% of all names present on the SCAI corpus.

Since the systems for IUPAC entity names provide positive outcomes, we believe that an op‐
timal solution for the recognition of chemical names must be hybrid, combining ML and dic‐
tionary-based solutions. Thus, ML may be used for IUPAC names and the dictionary
matching for trivial names and drugs. Actually, ChemSpot does exactly that, and achieved
an F-measure of 68.10% on the SCAI corpus, presenting an improvement of ≈11% against
previous solutions.
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Figure 3. Performance comparison of the various ML-based NER solutions per entity type and corpus.
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4. Conclusion

This chapter presented a detailed survey of machine learning tools for biomedical named
entity recognition. We started by introducing the various fundamental steps for the develop‐
ment of such tools. Afterwards, we described each step in detail, presenting the required
methods and alternative techniques used by the various solutions. Using that knowledge,
we presented various tools for each biomedical entity, describing the used methodologies
and provided features. Thus, solutions for recognition of gene/protein, disorder and chemi‐
cal names were studied in detail, exposing the main differences between the various sys‐
tems characteristics. Such analysis allowed us to expose the current trends of ML-based
solutions for biomedical NER, and compare the performance outcomes considering the dif‐
ferent systems’ characteristics. Thus, we can summarize the current trends by task:

• Corpora: annotated abstracts are the most used corpus type;

• Pre-processing: sentence splitting, tokenization and annotation encoding are fundamental
for input data processing;

• Features: most of orthographic, morphological, lexicon and context features are essential
in the recognition of any biomedical entity type. Linguistic features and conjunctions
present an important contribution in the recognition of non-standardized entity names;

• Model: supervised CRF models are widely used and present positive outcomes on all bio‐
medical entity types;

• Post-processing: parentheses processing and abbreviation resolution are essential tasks
and provided positive contributions on all entity types.

Overall, we can argue that the amount and quality of ML-based tools already provide a sig‐
nificant number of advanced features with good performances results. Such results show
that most tools are ready to be used on real life applications, providing acceptable error
margins.

Regarding future steps, we believe that using full text documents will be fundamental, since
they provide more information and completely different challenges, due to the increased
ambiguity. Moreover, the application of semi-supervised algorithms will take advantage of
the millions of unannotated documents. Such strategy presents various advantages, contri‐
buting to the development of ML-based solutions for entity types that have a reduced
amount of annotated corpora, and allowing the development of general models, independ‐
ent of the training corpora and ready to annotate any text with high accuracy. Finally, we
also believe that feature induction will be essential, enabling automatic generation of infor‐
mative features to extract new and unknown characteristics of entity names.
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5. Nomenclature

CRFs - Conditional Random Fields
HMMs - Hidden Markov Models
IE - Information Extraction
MEMMs - Maximum Entropy Markov Models
ML - Machine Learning
NLP - Natural Language Processing
POS - Part-of-Speech
SVMs - Support Vector Machines

Acknowledgements

This work received funding from FEDER through the COMPETE programme and from Fun‐
dação para a Ciência e a Tecnologia (FCT) under grant agreement FCOMP-01-0124-FED‐
ER-010029. S. Matos is funded by FCT under the Ciência2007 programme.

Author details

David Campos*, Sérgio Matos and José Luís Oliveira

*Address all correspondence to: david.campos@ua.pt

IEETA/DETI, University of Aveiro, Portugal

References

[1] Bairoch, A., & Boeckmann, B. (1992). The SWISS-PROT protein sequence data bank.
Nucleic acids research, 20, 2019-2022.

[2] Benson, D. A., Karsch-Mizrachi, I., Clark, K., Lipman, D. J., Ostell, J., & Sayers, E. W.
(2012). GenBank. Nucleic acids research, 40, D48-53.

[3] Zhou, G., Zhang, J., Su, J., Shen, D., & Tan, C. (2004). Recognizing names in biomedi‐
cal texts: a machine learning approach. Bioinformatics, 20, 1178-1190.

[4] Campos, D., Matos, S., & Oliveira, J. L. (2012). Current methodologies for biomedical
Named Entity Recognition. In Biological Knowledge Discovery Handbook: Preprocessing,
Mining and Postprocessing of Biological Data (to appear), Edited by Elloumi M, Zomaya
AY: John Wiley & Sons, Inc.

Text Mining192



[5] Smith, L., Tanabe, L. K., Ando, R. J., Kuo, C. J., Chung, I. F., Hsu, C. N., Lin, Y. S.,
Klinger, R., Friedrich, C. M., Ganchev, K., et al. (2008). Overview of BioCreative II
gene mention recognition. Genome biology, 9(2), S2.

[6] Kim, J. D., Ohta, T., Tsuruoka, Y., Tateisi, Y., & Collier, N. (2004). Introduction to the
bio-entity recognition task at JNLPBA. In International Joint Workshop on Natural Lan‐
guage Processing in Biomedicine and its Application, Geneva, Switzerland. Association
for Computational Linguistics: 70-75.

[7] Tanabe, L., Xie, N., Thom, L. H., Matten, W., & Wilbur, W. J. (2005). GENETAG: a
tagged corpus for gene/protein named entity recognition. BMC bioinformatics, 6(1),
S3.

[8] Kim, J. D., Ohta, T., Tateisi, Y., & Tsujii, J. (2003). GENIA corpus-semantically anno‐
tated corpus for bio-textmining. Bioinformatics, 19(1), i180-182.

[9] Hahn, U., Beisswanger, E., Buyko, E., Poprat, M., Tomanek, K., & Wermter, J. (2008).
Semantic Annotations for Biology-A Corpus Development Initiative at the Jena Uni‐
versity Language & Information Engineering (JULIE) Lab. In Proceedings of the 6th In‐
ternational Conference on Language Resources and Evaluation, 28-30.

[10] Kulick, S., Bies, A., Liberman, M., Mandel, M., Mc Donald, R., Palmer, M., Schein, A.,
Ungar, L., Winters, S., & White, P. (2004). Integrated annotation for biomedical infor‐
mation extraction. In Workshop on Linking Biological Literature, Ontologies and Databases
(Human Language Technology conference), Association for Computational Linguistics,
61-68.

[11] Naderi, N., Kappler, T., Baker, C. J., & Witte, R. (2011). OrganismTagger: detection,
normalization and grounding of organism entities in biomedical documents. Bioinfor‐
matics, 27, 2721-2729.

[12] Gerner, M., Nenadic, G., & Bergman, C. M. (2010). LINNAEUS: a species name iden‐
tification system for biomedical literature. BMC bioinformatics, 11, 85.

[13] Gurulingappa, H., Klinger, R., Hofmann-Apitius, M., & Fluck, J. (2010). An Empirical
Evaluation of Resources for the Identification of Diseases and Adverse Effects in Bio‐
medical Literature. In 2nd Workshop on Building and evaluating resources for biomedical
text mining, (7th edition of the Language Resources and Evaluation Conference); Val‐
etta, Malta, 15.

[14] Jimeno, A., Jimenez-Ruiz, E., Lee, V., Gaudan, S., Berlanga, R., & Rebholz-Schuh‐
mann, D. (2008). Assessment of disease named entity recognition on a corpus of an‐
notated sentences. BMC bioinformatics, 9(3), S3.

[15] Leaman, R., Miller, C., & Gonzalez, G. (2009). Enabling recognition of diseases in bio‐
medical text with machine learning: Corpus and benchmark. In 3rd International Sym‐
posium on Languages in Biology and Medicine, Jeju Island, South Korea, 82-89.

Biomedical Named Entity Recognition: A Survey of Machine-Learning Tools
http://dx.doi.org/10.5772/51066

193



[16] Rosario, B., & Hearst, M. A. (2004). Classifying semantic relations in bioscience texts.
In 42nd annual meeting of the Association for Computational Linguistics, Barcelona, Spain.
Association for Computational Linguistics, 430.

[17] Klinger, R., Kolarik, C., Fluck, J., Hofmann-Apitius, M., & Friedrich, C. M. (2008). De‐
tection of IUPAC and IUPAC-like chemical names. Bioinformatics, 24, i268-276.

[18] Kolárik, C., Klinger, R., Friedrich, C. M., Hofmann-Apitius, M., & Fluck, J. (2008).
Chemical names: terminological resources and corpora annotation. In Workshop on
Building and evaluating resources for biomedical text mining (Language Resources and Eval‐
uation Conference), 51-58.

[19] Yu, H. (2006). Towards answering biological questions with experimental evidence:
automatically identifying text that summarize image content in full-text articles. In
Proceedings of the AMIA Annual Symposium, American Medical Informatics Associa‐
tion, 834-838.

[20] Rebholz-Schuhmann, D., Yepes, A. J., Van Mulligen, E. M., Kang, N., Kors, J., Mil‐
ward, D., Corbett, P., Buyko, E., Beisswanger, E., & Hahn, U. (2010). CALBC silver
standard corpus. Journal of bioinformatics and computational biology, 8, 163-179.

[21] Tomanek, K., Wermter, J., & Hahn, U. (2007). A reappraisal of sentence and token
splitting for life sciences documents. Studies in health technology and informatics, 129,
524-528.

[22] Tsuruoka, Y., Tateishi, Y., Kim, J. D., Ohta, T., McNaught, J., Ananiadou, S., & Tsujii,
J. (2005). Developing a robust part-of-speech tagger for biomedical text. Advances in
informatics, 382-392.

[23] He, Y., & Kayaalp, M. (2006). A Comparison of 13 Tokenizers on MEDLINE. Bethes‐
da, MD: The Lister Hill National Center for Biomedical Communications.

[24] Lafferty, J., McCallum, A., & Pereira, F. C. N. (2001). Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In International Con‐
ference on Machine Learning, Williamstown, Massachusetts, USA. Morgan Kaufmann.

[25] Cherkassky, V. (1997). The nature of statistical learning theory. IEEE transactions on
neural networks / a publication of the IEEE Neural Networks Council , 8, 1564.

[26] Baum, L. E., & Petrie, T. (1966). Statistical inference for probabilistic functions of fi‐
nite state Markov chains. The Annals of Mathematical Statistics, 37, 1554-1563.

[27] McCallum, A., Freitag, D., & Pereira, F. (2000). Maximum entropy Markov models
for information extraction and segmentation. In International Conference on Machine
Learning, Stanford, California, USA. Morgan Kaufmann, 591-598.

[28] Wallach, H. M. (2004). Conditional random fields: An introduction. University of
Pennsylvania CIS Technical Report MS-CIS-04-21.

Text Mining194



[29] Mann, G. S., & Mc Callum, A. (2007). Efficient computation of entropy gradient for
semi-supervised conditional random fields. In Proceedings of the North American Asso‐
ciation for Computational Linguistics, Rochester, New York, USA. Association for Com‐
putational Linguistics, 109-112.

[30] Mann, G., & Mc Callum, A. (2008). Generalized expectation criteria for semi-super‐
vised learning of conditional random fields. In Proceedings of Association of Computa‐
tional Linguistics, Association of Computational Linguistics, 870-878.

[31] Bennett, K., & Demiriz, A. (1999). Semi-supervised support vector machines. Advan‐
ces in Neural Information processing systems, 368-374.

[32] Ando, R. K., & Zhang, T. (2005). A framework for learning predictive structures from
multiple tasks and unlabeled data. The Journal of Machine Learning Research, 6,
1817-1853.

[33] Li, Y., Hu, X., Lin, H., & Yang, Z. (2011). A Framework for Semisupervised Feature
Generation and Its Applications in Biomedical Literature Mining. IEEE/ACM Transac‐
tions on Computational Biology and Bioinformatics (TCBB), 8, 294-307.

[34] Campos, D., Matos, S., Lewin, I., Oliveira, J. L., & Rebholz-Schuhmann, D. (2012).
Harmonisation of gene/protein annotations: towards a gold standard MEDLINE. Bio‐
informatics, 28, 1253-1261.

[35] Hsu, C. N., Chang, Y. M., Kuo, C. J., Lin, Y. S., Huang, H. S., & Chung, I. F. (2008).
Integrating high dimensional bi-directional parsing models for gene mention tag‐
ging. Bioinformatics, 24, i286-294.

[36] Chowdhury, M., & Faisal, M. (2010). Disease mention recognition with specific fea‐
tures. In Proceedings of Association for Computational Linguistics, Association for Com‐
putational Linguistics, 83-90.

[37] Ando, R. K. (2007). BioCreative II gene mention tagging system at IBM Watson. In Pro‐
ceedings of the Second BioCreative Challenge Evaluation Workshop, Madrid, Spain, 101-103.

[38] Rocktaschel, T., Weidlich, M., & Leser, U. (2012). ChemSpot: A Hybrid System for
Chemical Named Entity Recognition. Bioinformatics.

[39] Chowdhury, F. M., & Lavelli, A. (2011). Assessing the practical usability of an auto‐
matically annotated corpus. In Proceedings of the Fifth Linguistic Annotation Workshop,
Portland, Oregon, USA. Association for Computational Linguistics, 101-109.

[40] Leaman, R., & Gonzalez, G. (2008). BANNER: an executable survey of advances in
biomedical named entity recognition. Pacific Symposium on Biocomputing Pacific Sym‐
posium on Biocomputing, 652-663.

[41] Settles, B. (2005). ABNER: an open source tool for automatically tagging genes, pro‐
teins and other entity names in text. Bioinformatics, 21, 3191-3192.

[42] Carpenter, B. (2007). LingPipe for 99.99% recall of gene mentions. In Proceedings of the
Second BioCreative Workshop, Madrid, Spain, 307-309.

Biomedical Named Entity Recognition: A Survey of Machine-Learning Tools
http://dx.doi.org/10.5772/51066

195




