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Abstract

Motivation: The recognition and normalization of cell line names in text is an important task in bio-

medical text mining research, facilitating for instance the identification of synthetically lethal genes

from the literature. While several tools have previously been developed to address cell line recog-

nition, it is unclear whether available systems can perform sufficiently well in realistic and broad-

coverage applications such as extracting synthetically lethal genes from the cancer literature. In

this study, we revisit the cell line name recognition task, evaluating both available systems and

newly introduced methods on various resources to obtain a reliable tagger not tied to any specific

subdomain. In support of this task, we introduce two text collections manually annotated for cell

line names: the broad-coverage corpus Gellus and CLL, a focused target domain corpus.

Results: We find that the best performance is achieved using NERsuite, a machine learning system

based on Conditional Random Fields, trained on the Gellus corpus and supported with a dictionary

of cell line names. The system achieves an F-score of 88.46% on the test set of Gellus and 85.98%

on the independently annotated CLL corpus. It was further applied at large scale to 24 302 102 unan-

notated articles, resulting in the identification of 5 181 342 cell line mentions, normalized to 11 755

unique cell line database identifiers.

Availability and implementation: The manually annotated datasets, the cell line dictionary, derived

corpora, NERsuite models and the results of the large-scale run on unannotated texts are available

under open licenses at http://turkunlp.github.io/Cell-line-recognition/.

Contact: sukaew@utu.fi

1 Introduction

Biomedical text mining methods are increasingly capable of ac-

counting for the diversity of information found in this domain.

While proteins and their interactions received much attention in

BioNLP research in the last decade (Krallinger et al., 2007; Pyysalo

et al., 2008; Tikk et al., 2010; Tsuruoka and Tsujii, 2003), recent ef-

forts have increasingly focused on complex structured extraction

with targets such as general regulatory associations and gene
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expression (Kim et al., 2011), post-translational modifications and

epigenetics (Pyysalo et al., 2012), pathway construction (Ohta et al.,

2013) and a variety of other biological processes (Björne and

Salakoski, 2013; Miwa and Ananiadou, 2013; Pyysalo et al., 2013).

However, one important category of associations that has

received comparatively little attention so far consists of functional

interactions between gene products. Two genes in a functional inter-

action can, for instance, be associated to a specific disease or condi-

tion, or a particular phenotype. An example of such a case is a pair

of synthetically lethal (SL) genes, for which a mutation in one of the

two does not cause loss of viability, but the simultaneous inhibition

of both genes leads to cell death (Brough et al., 2011). Through the

identification of SL interaction pairs, it would for instance be pos-

sible to target specific tumours that have limited pharmacological

tractability.

One approach to identify SL interactions from the literature is by

analyzing studies in which a certain gene is found to be lethal in a

specific cell line. All known somatic mutations in that cell line can

then be combined with the gene found in the literature to form can-

didate SL pairs. Often, the known somatic mutations of a specific

cell line are not mentioned in the article, so a crucial step involves

the normalization of a specific cell line symbol from text to its stand-

ardized database identifier in authoritative resources such as

Cellosaurus (http://web.expasy.org/cellosaurus/), CCLE (Barretina

et al., 2012), COSMIC (Forbes et al., 2011) or CLDB (Romano et

al., 2009).

As cell lines play an important role in biomedical research,

they have attracted great interest from the text-mining

community. Several corpora such as GENIA (Kim et al., 2003),

AnEM (Ohta et al., 2012) and CellFinder (Neves et al., 2012) have

included cell line mentions among their annotation targets. Further,

numerous automated tools have been developed to recognize cell

lines from text. Notably, systems participating in the 2004 JNLPBA

Shared Task were required to recognize cell line mentions among

other targets in their named entity recognition (NER) challenge

(Kim et al., 2004). The best performance at this part of the

task was achieved by a machine learning (ML) approach with

59.23% F-score (Zhou and Su, 2004). In addition to ML

approaches, dictionary-based methods have also been used for cell

line name recognition, achieving an F-score of 69% on the recently

introduced CellFinder corpus (Neves et al., 2013).

There is significant variance in results reported for cell line

name recognition tools, making it challenging to choose a suitable

NER system for real-world tasks where reliable, broad-coverage

recognition and normalization of cell line names in text is required.

In addition, the lack of the ability to link mentions to external

resources has limited the usability of the cell line taggers. In this

study, we consider a variety of available resources and tools to

identify the most promising approach to recognize cell line names

from text, and assess differences between task definitions, methods

and annotated resources. To support this effort, we annotated two

corpora and release them for public use: Gellus, a broad domain

cell line annotation corpus used for training and testing, and CLL,

an independent evaluation corpus for established cell line

mentions.

We additionally implemented a method for normalizing the

tagged cell line names to a controlled cell line vocabulary,

Cellosaurus. Following the identification of the best recognition

and normalization approaches, we applied these to all PubMed

abstracts and PubMed Central full-text documents to identify and

normalize cell line name mentions in the entire publicly available

literature.

2 Approach

In this section, we describe our methodology in more detail. First,

we provide the specific definition of our cell line mention recogni-

tion task (Section 2.1). We then describe publicly available cell line

corpora, as well as those that are newly annotated in this work

(Section 2.2). Further, we outline the available NER tools that rec-

ognize cell line names (Section 2.3). Finally, we implement a normal-

ization procedure to map ambiguous textual symbols of cell lines to

their unique identifiers in external resources (Section 2.4).

2.1 Task definition
We firstly scope our task of cell line mention recognition by defining

what is considered a cell line. Following the definition of Cell Line

Ontology (CLO) (Sarntivijai et al., 2011), we define cell line as

a genetically stable and homogenous population of cultured cells

that shares a common propagation history via experimental and se-

lection processes. Cell lines can thus establish uniform and stable

populations that maintain their characteristics over long periods of

time, even indefinitely. Consequently, non-specific mentions such as

‘HUVECs’ are not considered cell lines in our work, while mentions

such as ‘HUVEC-C’ are.

Secondly, we consider it a crucial property of a cell line NER sys-

tem to recognize specifically those mentions in text that can be un-

ambiguously linked to established cell line names. This is important

for instance for the application to the identification of SL pairs, as

the identified cell lines from text need to be characterized with their

known mutations by consulting external resources. As a result, men-

tions such as ‘cancer cell line’ or ‘endothelial cell line’, which might

be useful in other applications, are considered too generic and thus

excluded from this study.

2.2 Data
Here, we briefly describe a cell line dictionary we constructed by

integrating information from various authoritative cell line

resources. Further, we describe two publicly available annotated

corpora, JNLPBA and CellFinder, and we finally present those

newly created in this study, Gellus and CLL.

2.2.1 Cell line dictionary

We gathered a dictionary of cell line names derived from the

Cellosaurus resource (version 6.5). We extracted all cell line names

(e.g. GOS-3), accessions (e.g. CVCL_2050), synonyms (e.g. GOS3),

as well as non-ambiguous identifiers to external resources such as

CCLE or CLDB (e.g. cl5278) from Cellosaurus. Additionally, we

augmented this data with mutation information obtained from

CCLE and Cosmic, which are specific for human cancer cell lines,

our application domain of interest for the envisioned use-case on SL

gene pairs.

In total, the dictionary contains 89 446 strings linked to 26 731

unique cell lines from 151 organisms. Within this set, 1174 cancer

cell lines can be associated to known somatic mutations.

2.2.2 JNLPBA

The JNLPBA corpus was created for the JNLPBA shared task (Kim

et al., 2004) based on the GENIA corpus (Kim et al., 2003). The cor-

pus consists of 2404 abstracts, divided into a training set of 2000

documents and a test set of 404 documents. The corpus is annotated

for mentions of physical entities of five types: CELL LINE, CELL TYPE,

DNA, RNA and PROTEIN. Like its source corpus, GENIA, the JNLPBA
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corpus consists of documents drawn from the relatively restricted

subdomain of transcription factors in human blood cells.

In the present study, we consider only the cell line mention rec-

ognition subtask of JNLPBA, filtering the corpus to remove annota-

tions of types other than CELL LINE. We further randomly divide the

original training set into training and development subsets for par-

ameter selection, selecting 1500 documents for the new training set

and 500 for the new development set. The resulting filtered corpus,

JNLPBACL, contains 4330 CELL LINE annotations.

2.2.3 CellFinder

The CellFinder corpus (version 1.0) (Neves et al., 2012) contains an-

notations of 10 specifically selected full-text articles (2177 sen-

tences) from the human embryonic stem cells domain. The

annotations mark six types of entities: ANATOMICAL PART, CELL

COMPONENT, CELL LINE, CELL TYPE, GENE/PROTEIN and SPECIES. (The cor-

pus was recently extended to kidney stem cell articles, introducing

annotation for gene expression (Neves et al., 2013). However, as

this version was not publicly available during our study, we used

CellFinder version 1.0 in our work.)

The corpus contains 5275 entity annotations, of which 440 are

CELL LINE. The annotations were created by two domain experts, and

the released corpus was created by merging both consensus and dis-

tinct annotations from the two annotators, leading to some overlap-

ping annotations in the data.

We prepared a filtered version of the corpus, CellFinderCL, by

keeping only CELL LINE annotations and discarding overlapped anno-

tations, resulting in 386 annotations. We divided the corpus into a

training set of seven documents and a test set of three documents.

(Specifically, we modified the 50/50% corpus split introduced by

Neves et al. (2012), adding two documents (PMIDs 15971941 and

16672070) to the training set to balance the annotation distribution

and increase the size of the training data for machine learning.)

2.2.4 Gellus

We created the Gent cell-line corpus (Gellus) by annotating cell line

names in 1212 documents drawn from PubMed abstracts and PMC

full text extracts. The documents were annotated to identify the

names of specific cell lines or established categories of cell lines

(Section 2.1). Only the spans of the actual names were marked, not

including premodifiers or head nouns such as ‘cells’. Half of the cor-

pus texts were drawn from the AnEM corpus (Ohta et al., 2012), a

collection of randomly selected PubMed abstracts and full paper ex-

tracts previously annotated for mentions of anatomical entities. The

other half was drawn from the BioNLP ST’13 Cancer Genetics (CG)

task documents (Pyysalo et al., 2013), a subset of PubMed abstracts

in the cancer genetics domain previously annotated to identify men-

tions of anatomical and molecular entities and events. The docu-

ments thus cover both a random subset of the literature and a

focused sample of cancer documents.

The Gellus annotation was performed by a biologist with exten-

sive experience in biomedical domain annotation. The brat annota-

tion tool (Stenetorp et al., 2012) was used for the human annotation

work. The Gellus annotation effort identified 650 CELL LINE men-

tions. An inter-annotator agreement analysis was carried out by an-

other biologist annotating 100 randomly selected documents

consisting of 84 tokens tagged as being part of a cell line name and

5212 ‘negative’ tokens not tagged as part of a name. Token-level in-

ter-annotator agreement for this portion of documents is 99.8% ac-

curacy, with Cohen’s kappa score of 0.9432. The very high accuracy

largely reflects agreement on the extremely common negative class

label. Alternatively, the inter-annotator F-score is 93.85%, still a

high level of agreement. We divide the corpus documents into 50/

17/33% training/development/test sets, stratified to maintain equal

distributions of random and cancer domain documents in the

subsets.

2.2.5 CLL corpus

To allow for an extrinsic evaluation of the recognition of unambigu-

ous cell line names from text, we annotated a balanced sample of

sentences containing names from the cell line dictionary (Section

2.2.1). To avoid bias toward a limited number of well-known and

well-described cell lines, we first sampled 3000 cell names at ran-

dom from the dictionary. For each sampled name, we then selected

at random a PubMed citation or a PubMed Central Open Access

(PMC-OA) full-text article that contained that specific name, using

strict, case-sensitive matching criteria and ensuring that no single

document was chosen twice for distinct names. Approximately 15%

of the names were matched in the literature, resulting in an initial

dataset of 454 documents with exactly one tagged candidate cell line

name each.

We then manually evaluated a randomly selected subset of 201

documents, marking whether the candidate name did in fact

represent a cell line. For candidates that were not cell lines, the cor-

rect entity type (e.g. gene/protein or organism) was marked. We sim-

ultaneously annotated all other cell lines names occurring in the

same sentence as the candidate mention. This Cell line corpus (CLL)

was used for the open-domain evaluation described in Section 3.4.

2.3 NER tools
To recognize cell line names in text, we consider both dictionary-

based tagging and selected publicly available NER tools that are ap-

plicable to the task. These tools include ABNER (Settles, 2005),

GENIA tagger (Tsuruoka et al., 2005) and Gimli (Campos et al.,

2013), trained on the JNLPBA corpus. Additionally, we apply the

retrainable NERsuite (http://nersuite.nlplab.org/) system on our

newly annotated training corpus Gellus (Section 2.2.4). We compare

the performance of these methods on various corpora using their

held-out test sets.

To accommodate for minor differences in the extent of anno-

tated spans in the different corpora, the evaluation criteria applied

in this study and reported throughout the manuscript accept any

overlap between a cell line mention tagged by a system and a gold

standard annotation as a match.

2.3.1 Dictionary look-up

We perform pattern matching using the cell line dictionary (Section

2.2.1) against all three corpora as a baseline for comparison with

ML-based methods. Dictionary-based tagging is performed using

two matching-specificity criteria: exact matching, aiming for high

precision, and approximate matching, for high recall. The approxi-

mate criterion considers strings to match regardless of case and add-

itionally only requires alpha-numerical characters to match; all

other characters, such as space and hyphen are ignored. Thus, for

example gos3 matches both GOS 3 and Gos-3 under the approxi-

mate matching criterion.

2.3.2 ABNER

The supervised ML-based tagger ABNER (Settles, 2005), is imple-

mented using Conditional Random Fields (CRFs) (Lafferty et al.,

2001) with orthographic and contextual feature sets (Settles, 2004).

The system is distributed with models trained on two corpora,

278 S.Kaewphan et al.
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BioCreative and JNLPBA, allowing the tagging of various types of

bio-entities, including cell lines.

ABNER provides a graphical user interface with a variety of fea-

tures including automatic tokenization, batch mode annotation and

a Java API which allows training ABNER on new corpora (Settles,

2005). We use the system out-of-the-box with the built-in JNLPBA

model to detect cell lines.

2.3.3 GENIA Tagger

The integrated GENIA tagger system provides various levels of text

analysis: part-of-speech (POS) tagging, text chunking and NER

(Tsuruoka et al., 2005). The tagging is based on a maximum entropy

classifier and a bidirectional inference algorithm (Tsuruoka and

Tsujii, 2005).

For POS tagging, the system is specifically tuned for analyzing

English biomedical text, as it is trained on a combination of corpora

from both biomedical and newspapers domains. For NER, the tag-

ger is trained on the JNLPBA corpus, and it can thus recognize cell

lines along with the other four JNLPBA entity types.

We use auto-tokenization, and apply the tagger with default set-

tings. Note that the GENIA tagger does not provide tools for train-

ing on new corpora.

2.3.4 Gimli

To recognize various types of biomedical entities including cell lines,

Gimli implements linguistic analysis with supervised ML (Campos

et al., 2013). The tagging component is based on CRFs and trained

on the GENETAG and JNLPBA corpora, complemented with exter-

nal lexicons and biomedical term resources. The best model pro-

vided with Gimli for cell line mention detection is a second-order

CRF model trained on the JNLPBA corpus.

Gimli also provides the possibility of training the system with

new corpora. However, as the system is distributed with a model

tuned by the authors for cell line name detection and we are inter-

ested in the performance of the system in general, we only used the

provided model with default settings in this study.

2.3.5 NERsuite

NERsuite is a generic named entity recognition toolkit based on the

CRFsuite (http://www.chokkan.org/software/crfsuite/) (Okazaki,

2007) implementation of CRFs. It defines a broad set of features

that are known to be beneficial for entity mention recognition tasks,

including features based on the token surface form, lemma, POS tag-

ging, shallow parsing and orthography. The toolkit has previously

been shown to achieve competitive performance in biomedical do-

main entity mention detection tasks (Campos et al., 2013).

For NERsuite, we trained new models on all corpora, selecting

the regularization and label bias parameters using a grid search of

parameter values and evaluating performance on the development

set. To assess the benefits of features derived from dictionary match-

ing, we trained for each corpus one model with and one without the

compiled cell line dictionary (Section 2.2.1), applying strict string

matching against the dictionary for feature generation. For final

evaluation, the system was trained on the combination of training

and development sets.

2.4 Normalization
A crucial step following the recognition of cell line mentions in text,

is their normalization or grounding, i.e. the disambiguation of occa-

sionally ambiguous abbreviations and synonyms to unique, well-

defined concepts in authoritative cell line databases such as

COSMIC and CCLE.

Once the symbols are recognized from text (Section 2.3), we fur-

ther link the detected mentions to Cellosaurus identifiers using both

exact and approximate matching criteria (Section 2.3.1). In detail,

we applied both criteria in a stepwise manner. First, we use the exact

matching approach to map tagged cell lines to Cellosaurus names

and synonyms. If none of the names or synonyms are matched, we

subsequently follow an approximate matching criterion where the

mentions along with the Cellosaurus names and synonyms are case-

lowered and punctuation-stripped prior to character matching.

3 Results and discussion

In this section, we first provide the results of our qualitative evalu-

ation of all available corpora (Section 3.1). For a comparative evalu-

ation, we present the results of all tools trained on JNLPBACL in

Section 3.2. We then perform evaluation with training and evalu-

ation on additional corpora, CellFinderCL and Gellus (Section 3.3),

with evaluation also on the open-domain corpus CLL (Section 3.4).

Finally, we apply the best-performing tool to the entire available lit-

erature and analyze the results in the framework of our application

to identify SL gene pairs (Section 3.6).

3.1 Qualitative evaluation
We studied the corpus annotation guidelines, individual CELL LINE

annotations and annotation statistics (e.g. most frequently anno-

tated strings) to assess qualitative differences among the corpora.

We observed a number of systematic differences in the annotation,

the most apparent relating to specificity constraints, the distinction

between names and other mentions, and the extent of annotated

spans. This section briefly presents the primary findings of this

evaluation.

The specificity of annotated mentions, i.e. the degree to which a

mention identifies a specific entity as opposed to a general category

of entities, is closely related to the feasibility of normalizing men-

tions to external database resources. Mentions such as ‘MCF-7’ and

‘CHO’ that can be unambiguously linked to particular cell lines in

external resources are considered specific cell line name mentions.

These are the primary target of our study. By contrast, mentions

such as ‘T cell line’ and ‘human monocytic cell line’ cannot be un-

ambiguously linked to unique identifiers, and are thus insufficiently

specific to qualify as cell line names in our task definition (Section

2.1). To quantify the specificity of CELL LINE annotations in the cor-

pora, we used approximate matching criteria (Section 2.3.1) to

match each annotated string against the cell line dictionary. The re-

sults show that the JNLPBACL corpus contains the smallest portion

of specific mentions (45%), compared to CellFinderCL (67%) and

Gellus (79%).

The newly introduced Gellus corpus only marks the minimal

span of specific established individual cell lines or cell line catego-

ries, while the JNLPBACL annotation includes head nouns and vari-

ous premodifiers. While most of the CellFinder CELL LINE

annotations are minimal, the corpus annotation contains a small

mix of longer spans, likely resulting in part from the annotation

merging. Note that for CellFinderCL, instances of annotation overlap

were resolved by eliminating nested annotations (Section 2.2.3).

Table 1 summarizes the general characteristics of the corpora

and selected overall statistics. In terms of the size of CELL LINE anno-

tations and unique strings, JNLPBACL contains the largest number of

annotations as well as unique strings, followed by the Gellus and
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CellFinderCL corpora. Both JNLPBACL and CellFinderCL are specific

to particular domains, while Gellus is a mixture of randomly se-

lected articles and articles specifically selected for relevance to can-

cer genetics.

3.2 Comparative evaluation
We evaluated the performance of the cell line taggers on the held-out

test sets of the three corpora, JNLPBACL (Section 2.2.2), CellFinderCL

(Section 2.2.3) and Gellus (Section 2.2.4). The results are summarized

in Table 2.

As ABNER, GENIA Tagger and Gimli are trained on the

JNLPBA corpus, we focus initially on the tagging results on

the JNLPBACL data set. As shown in Table 2, all tools reach similar

F-scores (66–70%), ranking from highest to lowest in the order

Gimli, NERsuiteþdict, Genia Tagger, ABNER and NERsuite.

Though the tools achieve similar F-scores, they differ more in terms

of the precision/recall balance. Gimli obtains the highest precision,

while NERsuiteþdict achieves the best recall. All taggers consider-

ably outperform dictionary matching on the JNLPBACL corpus.

Next we consider the cross-corpus performance of the tools. All

taggers trained on JNLPBA perform worse on CellFinderCL and

Gellus than the dictionary method, which achieves comparatively

high performance with exact matching. Remarkably high recall

(>90%) is observed on the Gellus corpus with the approximate

matching dictionary approach, but this inevitably comes with sig-

nificantly lower precision (<15%) as a trade-off. These results

support the observation of the qualitative analysis (Section 3.1) that

the annotation scope of JNLPBA differs notably from that of the

other two corpora in including also non-specific mentions.

Focusing on NERsuite, dictionary features improve the performance

of the tool on all tested corpora. A moderate improvement in F-score is

attained on JNLPBACL (<4p.p.), and very notable increases are observed

on the CellFinderCL (>16p.p.) and Gellus (>20p.p.) corpora. The differ-

ence in the increase in performance is also likely to be related to the pro-

portion of annotated cell lines that can be linked to the dictionary, as

discussed previously (Section 3.1).

3.3 Cross-corpus evaluation
As noted above, the performance of the ML-based taggers drops

dramatically when they are evaluated across corpora. In this section,

we further explore the influence of the corpus annotation scheme on

tagging performance using two additional corpora, CellFinderCL and

Gellus, to train NERsuite.

We first consider the intra- and cross-corpus performance of

NERsuite with and without dictionary features. The results are sum-

marized in Table 2. The performance of NERsuite and NERsuiteþdict

trained and tested on the CellFinderCL or Gellus corpora is similar to

training the tagger with the JNLPBACL corpus in that NERsuite achieves

a relatively high F-score when trained and tested on datasets drawn

from the same corpus. As noted in Section 3.2, the dictionary features

greatly improve the performance of NERsuite on both the CellFinderCL

and Gellus corpora, achieving state-of-the-art results (>85% F-score).

Table 1. Qualitative comparison of three corpora on different criteria

Corpus

Characteristics CellFinderCL* JNLPBACL Gellus

Annotation diversity** 17.10% (66/386) 58.38% (2528/4330) 32.31% (210/650)

Document size 10 full-texts 2404 abstracts 1212 documents***

Annotation span excl. head nouns incl. head nouns excl. head nouns

Domain Embryonic stem cells blood transcription factors random þ cancer

Cell line definition Specific Specific þ Generic Specific

Normalized cell lines (%) 66.84 (258/386) 45.24 (1959/4330) 79.38 (516/650)

*The statistics of cell line section of the derived corpus are slightly different from the original one.

**This represents the number of unique strings per number of mentions.

***The corpus consists of 300 PubMed abstracts and extracts from 912 PMC full text documents.

Table 2. Comparison of performance across different corpora for the overlap matching criterion

Test corpus (Precision/Recall/F-score)

Tool Train corpus JNLPBAcl CellFindercl Gellus

Dictionary (approximate) N/A 19.83/44.60/27.45 36.47/79.59/50.02 13.76/92.74/23.96

Dictionary (exact) N/A 54.14/42.40/47.56 74.84/76.87/75.84 55.46/86.59/67.61

GENIA tagger JNLPBA 66.92/69.80/68.33 20.00/23.13/21.45 40.50/55.87/46.96

ABNER JNLPBA 65.27/70.80/67.92 22.88/25.17/23.97 39.91/52.51/45.36

Gimli JNLPBA 71.69/68.40/70.01 32.35/23.81/27.43 42.86/43.02/42.94

NERsuite JNLPBACL 57.60/76.40/65.68 15.71/39.46/22.47 27.72/63.69/38.63

NERsuiteþ dict JNLPBACL 63.45/76.60/69.41 30.48/63.95/41.29 37.65/72.07/49.46

NERsuite CellFinderCL 31.99/23.00/26.76 54.71/81.63/65.51 30.13/37.43/33.39

NERsuiteþ dict CellFinderCL 60.13/33.80/43.27 85.91/87.07/86.49 72.40/74.30/73.34

NERsuite Gellus 73.16/31.00/43.55 51.85/28.57/36.84 79.39/71.51/75.25

NERsuiteþ dict Gellus 73.81/41.80/53.37 89.43/74.83/81.48 91.67/85.47/88.46

The numbers displayed in bold font represent the best performing systems for each test corpus. (Note that the evaluation on ABNER,

GENIA tagger and Gimli was done with provided models solely trained on the original JNLPBA training data).
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In addition, we also analyze the performance of NERsuite and

NERsuiteþdict trained on either CellFinderCL or Gellus corpora and

tested on the other corpus. A similar result, lower F-score, is observed

when the NERsuite is evaluated across corpora, regardless whether it

is trained on CellFinderCL or Gellus. However, the system achieves a

notably higher F-score on cross-corpus evaluation if it is supported

with dictionary-based features. In particular, the tagger with diction-

ary features performs well also on CellFinderCL if it is trained on

Gellus, and vice versa. The performance of NERsuiteþdict is slightly

higher if it is trained on the Gellus corpus. Nonetheless, the perform-

ance of NERsuite without dictionary feature trained on either

CellFinderCL or Gellus on JNLPBACL remains limited due to low recall.

In summary, the NERsuite tagger generalizes well if both the

training and test corpora have similar specificity constraints in their

annotation, such as the CellFinderCL and Gellus corpora. Additionally,

the results indicate that taggers trained on data not limited to a spe-

cific domain generalize better to other corpora than taggers trained

on domain-specific corpora. Finally, the performance of the tagger

can be notably increased by incorporating relevant dictionary fea-

tures. It should be noted that the choice of using NERsuite as retrain-

able system is due to its relative ease in incorporating the dictionary

features. Comparable performance can be expected from other CRF-

based retrainable systems with dictionary-derived features.

3.4 Evaluation of normalization potential
Our original definition of relevant cell line mentions specifically

included the need for recognized mentions to be linkable to external

database identifiers so that the somatic mutations and SL interactions

can be identified (Section 2.1). The CLL corpus was created specific-

ally to assess the normalization opportunities of our approach.

As described in Section 2.2.5, we automatically introduced CELL

LINE annotations to random articles from PubMed, using the diction-

ary as an external reference of cell line names and following the cell

line definition from CLO. The initial automatic annotation of 201

candidate cell line mentions was evaluated to have marked 147 cell

line and 54 non-cell line mentions. The entity types of tagged non-

cell lines include i) gene/gene product (37.03%), ii) chemical com-

pound (14.81%) iii) organism or a part of organism name (12.96%)

and other types (35.19%). Mentions of cell lines in the same sen-

tence which were not pre-tagged were also annotated, resulting in

an additional 194 CELL LINE annotations. Altogether, there were 341

cell line name mentions in 148 sentences. From this dataset, we dis-

carded all non cell line mentions creating CLL corpus suitable for

evaluating taggers in recognizing established cell lines.

We apply NERsuite trained on different corpora both with and

without dictionary features to assess the performance of the tagger

on normalizable cell line names. The results, shown in Table 3, are

well in line with those observed in Section 3.3 in that the best tagger

is NERsuite trained on the Gellus corpus and supported with dic-

tionary-based features. This model achieves state-of-the-art

performance with good precision/recall balance for the normalizable

cell lines, which is highly encouraging for the cell line recognition

task in our SL application.

3.5 Error analysis
As shown earlier, tagging cell lines can be carried out with relatively

high accuracy, however, there still remain marginal mistakes of the

tagger. To shed light on the remaining challenge, we perform an

error analysis by training NERsuite supported with dictionary limit-

ing to only Gellus train data and evaluate both false positive/nega-

tive predictions on the development set. We find that most of the

false negatives (10 out of 12 unique cell line mentions) are cancer

cell lines which are not included in our dictionary. Thus, we can ex-

pect an increase of the overall performance if an inclusive dictionary

of cell line names is used. The false positive predictions are mainly

caused by the overlapping symbols from other types of entities such

as diseases (e.g AGS or gastric adenocarcinoma), genes/proteins (e.g.

HK2 or hexokinase 2) and animal models (e.g. LLC or Lewis lung

carcinoma model). It seems to be more difficult to improve the per-

formance of the tagger by removing the false positives as they ap-

pear in contexts similar to cell lines.

3.6 Large-scale application
After thorough intrinsic evaluation of all tools and training corpora/

settings, we applied the best performing NERsuite model to detect

cell line names in the entire publicly available literature, including

23 343 329 PubMed citations and 958 773 PMC-OA full-text art-

icles. The processing of this large-scale set of unannotated docu-

ments will provide valuable information about the scalability of our

methods and their applicability to real-world use-cases and provide

a first publicly accessible literature-scale resource of normalized cell

line name mentions.

We used the best model of NERsuite trained on Gellusþdict to rec-

ognize cell lines. NERsuite trained on the Gellus corpus recognized

5 181 342 mentions of cell line names in 1 003502 of a total of

24 302102 documents. NERsuite alone took about 330 CPU core

hours to tag cell line names in the entire dataset, averaging 42.5

PubMed abstracts and 1.5 PMCOA full-text documents per second.

The run was parallelized on document level on a modern cluster

computer.

We further normalize the recognized cell lines on this large-scale

data set (Section 2.4). The results are very promising, with 91.89%

tagged cell lines matching a symbol in the dictionary. Among these,

6703 tagged mentions are linked to cancer cell lines, providing a

ready data set for future work on identifying SL gene pairs. As a re-

sult, we can see that the tool can also perform well on a large scale,

open-domain task, such as recognizing and normalizing the cell lines

in the whole literature, without compromising its performance.

4 Conclusions

We have presented a study of cell line mention recognition moti-

vated by the needs of a project to identify synthetically lethal gene

interactions in the literature. We analyzed publicly available ma-

chine learning-based taggers in comparison with dictionary-based

tagging to identify the best-performing approach, with particular

focus on mentions of specific cell line names.

We prepared resources that are essential to the development and

evaluation of cell line name recognition methods. For dictionary

matching, we assembled cell line-related information from

Cellosaurus and other resources. For the ML-based taggers, we

Table 3. The results of NERsuite trained on different models and

applied on the CLL corpus

Trained Model Precision (%) Recall (%) F-score (%)

CellFinderCL 80.00 28.15 41.65

CellFinderCLþ dict 86.90 69.50 77.23

JNLPBACL 75.92 52.49 62.07

JNLPBACLþ dict 82.93 79.47 81.16

Gellus 92.90 40.47 56.38

Gellusþ dict 90.22 82.11 85.98
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prepared derived versions of the publicly available JNLPBA and

CellFinder corpora filtered to CELL LINE annotation. We also created

two additional manually annotated cell line corpora, Gellus and CLL.

Gellus provides broad-coverage training data for ML-based taggers,

and the CLL corpus, which marks sentences likely to contain normal-

izable cell line names, allows for extrinsic evaluation on an independ-

ently derived reference dataset.

We assessed tagger performance in both intra-corpus and cross-

corpus settings, using approximate matching criteria to accommo-

date for differences in annotated mention spans. We additionally

used the retrainable NERsuite system to evaluate the capability of

dictionary features to improve tagger performance. Tools trained on

JNLPBACL were found to perform well on the test set of the same

corpus but to generalize poorly to other corpora. The results of

cross-corpus analysis using NERsuite showed that the Gellus and

CellFinderCL corpora can be used to train broadly compatible tag-

gers, with training on Gellus providing the best results overall.

The best-performing cell line name tagger, NERsuite trained on

the Gellus corpus and supported by dictionary features, achieved a

state-of-the-art best result of 88% F-score, far surpassing dictionary-

based approaches. The tagger also achieved state-of-the-art perform-

ance when evaluated on the CLL corpus, demonstrating its suitability

to recognizing cell lines that can be related to unique identifiers.

Finally, we estimated the performance of the system for SL appli-

cation, tagging and normalizing cell line names on the entire pub-

licly available literature. The system was found to scale well and

evaluation of its outputs against a cell line name dictionary indicated

good generalization performance to large-scale data.

To conclude, we have introduced new resources and a new sys-

tem for the task of identifying specific cell line name mentions from

text, achieving state-of-the-art performance. As part of an on-going

project, the system applied to the entire literature recognized estab-

lished cancer cell lines allowing future work in identifying synthetic-

ally lethal gene pairs from the literature. After cell line name

recognition, we can form synthetic lethality relationship between

cancer cell lines and human candidate genes. Depending on the data

availability, we plan to continue our work on extracting the associ-

ation between the cell line and candidate gene from text using

rule-based and machine learning approaches. The textual support

association can strengthen the synthetic lethality link between

mutated gene and SL-candidate gene.
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