1,859 research outputs found

    Improved wear performance of ultra high molecular weight polyethylene coated with hydrogenated diamond like carbon

    Get PDF
    Hydrogenated diamond like carbon (DLCH) thin films were deposited on medical grade ultra high molecular weight polyethylene (UHMWPE) by radio frequency plasma enhanced chemical vapor deposition. The DLCH coating thicknesses ranged from 250 to 700. nm. The substrates were disks made of UHMWPEs typically used for soft components in artificial joints, namely virgin GUR 1050 and highly crosslinked (gamma irradiated in air to 100. kGy) UHMWPEs. Mechanical and tribological properties under bovine serum lubrication at body temperature were assessed on coated and uncoated polyethylenes by means of nano-hardness and ball-on-disk tests, respectively. Morphological features of the worn surfaces were obtained by confocal microscopy and scanning electron microscopy. This study confirms an increase in surface hardness and good wear resistance for coated materials after 24. h of sliding test compared to uncoated polyethylene. These results point out that to coat UHMWPE with DLCH films could be a potential method to reduce backside wear in total hip and knee arthroplasties.Ministerio de Ciencia y Educación MAT2006-12603- C02-01, CSD2008-0002

    Effect of DLC Coating on Tribological Behavior of Cylinder Liner-piston Ring Material Combination When Lubricated with Jatropha Oil

    Get PDF
    AbstractThe expansion of modern engines would have been unfeasible without advanced lubricant chemistry and proper lubricant formulation. Introduction of diamond like carbon (DLC) coatings opens further possibilities in improving performance of engine and transmission components, which cannot longer be achieved only by lubricant design.DLC coatings show extremely good promise for a number of applications in automotive components as they exhibit excellent tribological properties. In this paper, the tribological performance of hydrogenated amorphous carbon (a-C: H)DLC coating with Jatropha oil was evaluated using a four ball Tribometer also with commercial synthetic lubrication oil (SAE 40) used as base lubricant. Experimental results demonstrated that the hydrogenated amorphous carbon (a-C: H)DLC coating exhibited better performance with Jatropha oil in terms of wear and friction under similar operating conditions compared to the uncoated stainless. Thus, usage of hydrogenated amorphous carbon (a-C: H)DLC coating with Jatropha oil in the long run may have a positive impact on engine life

    Diamond like carbon coatings for potential application in biological implants—a review

    Full text link
    Production of wear debris has been linked to the failure of numerous hip implants. With the current focus on increasing the implant longevity, thus wear and corrosion resistance is important. Hard coatings have the potential to reduce the wear and corrosion. Diamond like Carbon (DLC) coatings exhibit properties that could make them viable for implants. This paper critically reviews previously published research into usage of DLC coatings for implants. Overall DLCs seem to be an effective coating for implants but with the variance in results, further testing is required for clarification of us

    Friction Reduction in Powertrain Materials: Role of Tribolayers

    Get PDF
    This study aims at understanding the micromechanisms responsible for reduction in friction and wear in the engine cylinder bore/liner materials when tested under lubricated and unlubricated conditions. The tribolayers formed in-situ during sliding contact are unique to each tribosystem and a detailed study of these tribolayers will shed light on the friction reduction mechanisms in powertrain materials. Boundary lubricated tribological performance of grey cast iron (CI) tested against non-hydrogenated diamond-like carbon coating (NH-DLC) resulted in 21% lower coefficient of friction (COF) and an order of magnitude lower volumetric wear compared to CI and steel counterfaces. Dilution of the engine oil by ethanol containing E85 biofuel, consisting of 85% ethanol and 15% gasoline, was beneficial as COF and volumetric wear losses were further reduced. TEM/EELS studies of the NH-DLC counterface provided evidence for OH adsorption of the dangling carbon bonds at the coating surface leading to low friction. Advantage of E85/engine oil blend was also evident during boundary lubricated sliding of eutectic Al-12.6% Si alloy against AISI 52100 steel. The oil residue layer (ORL) formed during boundary lubricated sliding incorporated nanocrystalline regions of Al, Si, ZnS, AlPO4 and ZnO surrounded by amorphous carbon regions. Higher proportions of Zn, S, and P antiwear compounds formed in the ORL when tested using the E85/oil (1:1) blend compared to the unmixed engine oil as the hydroxyl groups in ethanol molecules facilitated ZDDP degradation. Mico-Raman spectroscopy indicated two types of tribolayers formed during unlubricated sliding of thermally sprayed low carbon steel 1010 coating deposited on linerless Al 380 cylinder bore: i) Fe2O3 layer transformed from FeO during dry sliding and ii) Fe2O3 layer with a top amorphous carbon transfer layer when run against H-DLC coated TCR with COF of 0.18. The NH- and H-DLC coatings, that provide low friction under room temperature conditions, fail at temperatures \u3e 200 °C. It was shown that W containing DLC (W-DLC) coatings offered low and stable COF of 0.07 at 400 °C while a Ti incorporated multilayer MoS2 (Ti-MoS2) coating maintained COF between 0.11 at 25 °C to 0.13 at 350 °C. The low friction provided by these coatings was attributed to formation of high temperature lubricious oxides: tungsten trioxide (WO3) in case of W-DLC and MoO3 in case of MoS2, as revealed by Raman analyses of the tribolayers formed on counterface surfaces. Tribolayer formation during sliding friction of multuilayered graphene (MLG), a potential lubricant, depended on the material transfer and relative humidity (RH). Sliding friction tests performed on MLG in air (10- 45% RH) and under a dry N2 atmosphere showed that progressively lower friction values were observed when the RH was increased, with maximum COF of 0.52 in dry N2 and lowest COF of about 0.10 at 45% RH. Microstructural studies including cross-sectional FIB/HR-TEM determined that sliding induced defects which comprised of edge fracture, fragmented/bent graphene stacks compared to pristine graphene and disordered regions between them. In summary, this work shows that delineating the micromechanisms responsible for reduction in friction and wear is critical for development of appropriate materials and coatings for powertrain components

    Incorporation of Nitrogen and Nano-diamonds into Diamond-Like Carbon Coatings on Ti-6Al-4V for Enhancement of Wear and Corrosion Resistance

    Get PDF
    Titanium and its alloys are widely used for industrial applications. However, extended use of titanium in some applications has been severely limited due to its poor surface properties. Diamond-like carbon (DLC), which is a special group of amorphous carbon materials, can be highly beneficial in this regard. In the past decades, nitrogen incorporation into DLC has gained significant attention due to enhanced quality in terms of stress reduction, electrochemical and mechanical properties. However, so far the reports on the chemical structure of nitrogen-doped DLC have not been conclusive as nitrogen tends to form different bonding configuration with carbon depending on deposition methods. In the present thesis, a low energy End-Hall ion beam source (E-H source) was used to deposit nitrogen-incorporated DLC thin films on Ti-6Al-4V sheets. The adhesion, mechanical and electrochemical properties of DLC and nitrogen- incorporated DLC (N-DLC) were investigated. In order to improve interfacial adhesion, Ti-6Al-4V sheets were first treated in a microwave plasma enhanced chemical vapour deposition (MPCVD) reactor to grow nanodiamond particles on their surface. DLC and N-DLC coatings were then deposited on them by ion beam deposition. Silicon wafers were also used as the substrate for reference. Raman spectroscopy, X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and optical profilometry were used to characterize the chemical and morphological structure of the coatings. Nanoindentation and Rockwell C testing were used for measuring the mechanical and adhesion properties, respectively. DLC showed a hardness value of 11 GPa, whereas N-DLC showed slightly lower hardness because of the increased graphitic bonding, demonstrated by Raman and XPS results. The optical profilometer measurements shows a decrease in surface roughness with nitrogen doping while Rockwell C testing shows that the nanodiamond particles grown on titanium alloy surface greatly enhance the adhesion of DLC and a small amount of nitrogen doping further improves the adhesion. N-DLC coated samples showed reduced coefficient of friction (COF) when measured against UMPHE balls. The COF showed monotonic decrease with increase in nitrogen concentration. Significant reduction in the wear rates were observed for N-DLC against SS 440C steel balls. The samples with N/C ratio of 0.27 show the lowest wear rate. The corrosion resistance was evaluated by Tafel polarization and Electrochemical Impedance Spectroscopy. N-DLC with pre-deposited nanodiamonds on titanium substrate alloys showed significant improvement in corrosion resistance compared to bare titanium alloy substrate in 0.89% NaCl solution

    Overview on the antimicrobial activity and biocompatibility of sputtered carbon-based coatings

    Get PDF
    Due to their outstanding properties, carbon-based structures have received much attention from the scientific community. Their applications are diverse and include use in coatings on self-lubricating systems for anti-wear situations, thin films deposited on prosthetic elements, catalysis structures, or water remediation devices. From these applications, the ones that require the most careful testing and improvement are biomedical applications. The biocompatibility and antibacterial issues of medical devices remain a concern, as several prostheses still fail after several years of implantation and biofilm formation remains a real risk to the success of a device. Sputtered deposition prevents the introduction of hazardous chemical elements during the preparation of coatings, and this technique is environmentally friendly. In addition, the mechanical properties of C-based coatings are remarkable. In this paper, the latest advances in sputtering methods and biocompatibility and antibacterial action for diamond-based carbon (DLC)-based coatings are reviewed and the greater outlook is then discussed.This research is sponsored by national funds through FCT—Fundação para a Ciência e a Tecnologia, under the projects UIDB/00285/2020, UID/EMS/00285/2019 and UIDB/04650/2020, ATRITO-0 (co-financed via FEDER (PT2020) POCI-01-545 0145-FEDER-030446) and On-SURF (cofinanced via FEDER (PT2020) POCI-01-0247-FEDER-024521). Also, this work is supported by European Regional Development Fund (ERDF), through the Centro 2020 Regional Operational Programme under project CENTRO-01-0145-FEDER-000012-HealthyAging2020, and through the COMPETE 2020—Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT-Fundação para a Ciência e a Tecnologia, under projects POCI-01-0145-FEDER-007440 and UID/NEU/04539/2019

    Diamond like carbon coatings for potential application in biological implants – a review

    No full text
    Production of wear debris has been linked to the failure of numerous hip implants. With the current focus on increasing the implant longevity, thus wear and corrosion resistance is important. Hard coatings have the potential to reduce the wear and corrosion. Diamond like Carbon (DLC) coatings exhibit properties that could make them viable for implants. This paper critically reviews previously published research into usage of DLC coatings for implants. Overall DLCs seem to be an effective coating for implants but with the variance in results, further testing is required for clarification of us

    Tribological performance of graphite-like carbon films with varied thickness

    Get PDF
    Graphite-like carbon (GLC) films with different thickness were deposited on 316 L stainless steel using closed field unbalanced magnetron sputtering system to investigate the influence of film thickness on the microstructure, mechanical and tribological properties. The results showed that the surface of the deposited films exhibited granular-like morphology, and the sp2 content, surface roughness increase with the increase of film thickness, leading to the lower of hardness and higher of the internal stress. Both of the friction curves obtained by nano-tribological tests and fretting wear experiments revealed a three-stage evolution tendency with the same wear mechanism for the first two stages. The intermediate thick GLC film had the lowest specific wear rate, whilst the fretting fatigue life increased with film thickness

    Development of protective coatings to improve the Ti6Al4V alloy behavior in orthopedic applications

    Get PDF
    332 p.Hoy en día, debido al aumento de la esperanza de vida, al elevado ritmo de vida y al aumento del número de personas que practican deporte, es necesario que el ser humano esté activo y dinámico durante más tiempo. Esto implica una serie de problemas a nivel osteo-articular que pueden limitar la actividad física y la calidad de vida de las personas. En algunos casos, estas complicaciones pueden llegar a necesitar una total o parcial reconstrucción o reemplazo de un tejido, hueso o articulación. Es en este punto en el que los biomateriales pueden ayudar a cubrir todas estas necesidades.Un estudio realizado en 2011 estimó que para el 2030, en Estados Unidos harán falta 4 millones de prótesis de cadera y rodilla. Sin embargo, no sólo está aumentando el número de prótesis implantadas, sino que también se ha apreciado un aumento en el número de cirugías de revisión.Los implantes ortopédicos presentan una serie de limitaciones habitualmente relacionadas con el biomaterial empleado para su fabricación. En el caso de las prótesis de rodilla y cadera, que son las dos aplicaciones en las que este estudio está centrado, el biomaterial empleado en su fabricación es la aleación Ti6Al4V.El Ti6Al4V es una de las aleaciones más empleadas para implantes óseos debido a su excelente biocompatibilidad, buena resistencia a corrosión, y propiedades mecánicas. Sin embargo, posee una limitación, su comportamiento tribológico es muy pobre ya que presenta una baja resistencia al degaste que puede provocar el fallo prematuro del dispositivo implantable. Además, existen otros tipos de fallo generados por una falta de osteointegración entre el implante y el hueso, y por la presencia de una infección bacteriana. En este sentido, esta tesis se ha centrado en mejorar el comportamiento de la aleación Ti6Al4V para aplicaciones ortopédicas desarrollando distintos recubrimientos multifuncionales mediante diferentes técnicas de tratamiento superficial, la Deposición Física en Fase Vapor (PVD) y la Electro Oxidación por Plasma (PEO).En relación a la prótesis de rodilla, este trabajo se ha centrado en reducir el desgaste producido en la meseta tibial (con de la aleación Ti6Al4V como biomaterial), generado por las vibraciones que tienen lugar entre este componente metálico y el componente polimérico (polietileno de ultra alto peso molecular). Este efecto se conoce comúnmente como efecto fretting. Del mismo modo, se ha proporcionado a los recubrimientos un carácter biocida para reducir el riesgo de infección bacteriana. Con este fin, se ha empleado la técnica de Deposición Física en Fase Vapor (Physical Vapor Deposition, PVD) para el desarrollo de recubrimientos de Ti-C-N y se ha incorporado una capa adicional de plata para evitar la adhesión bacteriana y su consiguiente crecimiento (Fig. 1). Fig. 1. Esquema de la solución desarrollada para la aplicación de implantes de rodilla.En la siguiente figura (Fig. 2) se presenta de manera esquemática el trabajo relacionado en el desarrollo de recubrimientos protectores para implantes de rodilla y que se presenta en forma de dos contribuciones. Fig. 2. Esquema de los estudios llevados a cabo en el desarrollo de recubrimientos de Ti-C-N. Se desarrollaron cinco recubrimientos originales, C1-C5, y se seleccionaron dos, Ti-C-N_1 y Ti-C-N_2, tras una caracterización previa. Se depositó una capa de Ag en el mejor recubrimiento (Ti-C-N_2) dando como resultado el recubrimiento Ti-C-N_2+Ag. Se realizaron ensayos de fretting y análisis de adhesión bacteriana en Ti-C-N_2 y Ti-C-N_2+Ag.En la primera contribución se presentan los primeros pasos llevados a cabo para la búsqueda de recubrimientos con alta resistencia al desgaste. Mediante la tecnología de PVD con el método de arco catódico, se han desarrollado cinco tipos de recubrimientos de Ti-C-N (Fig. 3), variando los parámetros del proceso de deposición, dando como resultado capas con diferentes porcentajes de titanio, carbono y nitrógeno, y distintas propiedades físicas y microestructurales. Fig. 3. Ejemplo de una micrografía obtenida por SEM de uno de los recubrimientos Ti-C-N.Una vez realizado el proceso de caracterización de todos los recubrimientos desarrollados, los ensayos tribológicos demostraron que todos los recubrimientos desarrollados mejoraban la respuesta tribológica del Ti6Al4V (Fig. 4). En base a los anteriores resultados, se seleccionaron los recubrimientos C2 y C5, que presentan la mejor resistencia a desgaste y el menor coeficiente de fricción, para continuar con una caracterización adicional. Fig. 4. Micrografías SEM obtenidas en las huellas generadas en los ensayos de fretting. a) Ti6Al4V, b) C1, c) C2, d) C3, e) C4 y f) C5.En la segunda contribución, se ha llevado a cabo una caracterización holística de los recubrimientos seleccionados en la primera contribución (codificados C2 y C5 en la primera contribución y recodificados como Ti-C-N_1 y Ti-C-N_2 en la segunda). En este caso, se analizó el comportamiento a tribocorrosión de las dos capas seleccionadas y del sustrato. El estudio de la sinergia entre el desgaste mecánico y el proceso electroquímico es esencial para entender en profundidad lo que ocurre en el cuerpo humano, cuando el implante está rodeado de fluidos biológicos corrosivos. Tras estos ensayos, se ha observado que sólo uno de los recubrimientos, el Ti-C-N_2, supera satisfactoriamente las condiciones de ensayo (Fig. 5), con un desgaste mínimo, una buena resistencia a corrosión y un efecto impermeable que evita la migración de iones desde el sustrato al exterior. Fig. 5. Potencial de circuito abierto durante el proceso de deslizamiento en los ensayos de tribocorrosión para el Ti6Al4V sin recubrir y los recubrimientos Ti-C-N_1 y Ti-C-N_2.Tras seleccionar el Ti-C-N_2 como el recubrimiento más prometedor, se depositó una fina capa de plata mediante el método de magnetrón sputtering para aportarle propiedades biocidas (Fig. 6). Con el fin de simular las condiciones de fretting reales producidas en la meseta tibial, se llevaron a cabo ensayos fretting con suero bovino fetal y con el contramaterial real (polietileno de ultra alto peso molecular). La respuesta tribológica del recubrimiento Ti-C-N_2 es muy prometedora, mientras que la de la capa de plata resulta bastante pobre. La baja dureza de la plata parece ser la responsable de esa falta de resistencia al desgaste. Fig. 6. Composición química en profundidad del Ti-C-N_2+Ag obtenida mediante análisis de GD-OES.En cuanto a la respuesta obtenida en los ensayos de adhesión bacteriana frente a Staphylococcus aureus y Staphylococcus epidermidis, la capa de plata ha mostrado un excelente comportamiento antibacteriano (Fig. 7). Además, teniendo en cuenta que el mayor riesgo de contraer una infección se produce en la primera hora tras la implantación de la prótesis, la baja resistencia al desgaste de la capa adicional de plata resulta beneficiosa ya que, una vez que el dispositivo ha sido introducido en el cuerpo, la eliminación rápida de la misma es muy deseable. Fig. 7. Las imágenes del microscopio de fluorescencia obtenidas para el sustrato Ti6Al4V, y las superficies Ti-C-N_2 y Ti-C-N_2+Ag cubiertas con S. aureus (a) y S. epidermidis (b) muestran un descenso de la colonización bacteriana en el Ti-C-N_2+Ag.Mediante la investigación recogida en las dos primeras contribuciones se ha podido conseguir un recubrimiento biocompatible, con excelente resistencia al desgaste, bajo coeficiente de fricción, alta resistencia a corrosión, impermeable, y finalmente, con propiedades antibacterianas.En relación a la prótesis de cadera, este estudio se ha dirigido a proporcionar a la superficie del dispositivo implantable las características favorables que promuevan el crecimiento celular y mejoren la osteointegración del vástago de Ti6Al4V. Asimismo, al igual que en el implante de rodilla, se buscaron una excelente resistencia al desgaste y propiedades antibacterianas. Para esta segunda aplicación, se ha usado la técnica de la Electro Oxidación por Plasma (PEO) para el desarrollo de recubrimientos protectores de TiO2 con las características mencionadas (Fig. 8). Fig. 8. Esquema de la solución desarrollada para la aplicación de implantes de cadera.En la siguiente figura (Fig. 9) se presenta la actividad llevada a cabo en el desarrollo de recubrimientos de TiO2 para implantes de cadera. Fig. 9. Esquema de los estudios llevados a cabo en el desarrollo de recubrimientos TiO2. Se desarrollaron dos recubrimientos (PEO-1 y PEO-2) y se caracterizaron mediante ensayos de tribocorrosión y análisis de adherencia bacteriana.En el trabajo presentado en la tercera contribución, se han desarrollado recubrimientos de óxido de titanio (PEO-1 and PEO-2) usando la tecnología PEO. Además, se han introducido elementos promotores del crecimiento celular como el calcio y el fósforo. Estos recubrimientos tienen un contenido significativo de TiO2 en forma de rutilo, una microestructura porosa y rugosa y son más hidrófobos que el Ti6Al4V. Todas estas características los hacen apropiados para la absorción de proteínas y el posterior anclaje de células (Fig. 10). Fig. 10. Izquierda) Micrografía SEM de uno de los recubrimientos desarrollados, donde se puede observar la estructura rugosa. Derecha) Espectro de la composición química obtenida mediante análisis EDS.En los ensayos de tribocorrosión, los recubrimientos desarrollados han mostrado coeficientes de fricción más altos que el sustrato sin tratar debido a la elevada rugosidad conferida por la presencia de poros. Además, han mostrado una resistencia al desgaste mejorada en comparación con la aleación de Ti6Al4V como consecuencia de la relativa alta dureza proporcionada por su naturaleza cerámica, la estabilidad química y las mejores propiedades mecánicas proporcionadas por el alto porcentaje de TiO2 en fase rutilo (Fig. 11). La resistencia a corrosión no ha sido afectada en ningún caso por el proceso de desgaste. Fig. 11. Topografía de las huellas de desgaste: a) Ti6Al4V, b) PEO-1 and c) PEO-2.Con el fin de proporcionar propiedades antibacterianas a los recubrimientos anteriores, se ha incorporado yodo como agente biocida en los mismos. Los resultados obtenidos en los ensayos de adherencia bacteriana, llevados a cabo con cepas colección, han sido positivos frente a Staphylococcus epidermidis (Fig. 12). Sin embargo, con las cepas Staphylococcus aureus no se ha apreciado efecto biocida. Fig. 12. Porcentaje medio de superficie recubierta por S. epidermidis.Como conclusión general de este trabajo de tesis se puede afirmar que se han mejorado las propiedades de la aleación Ti6Al4V para aplicaciones ortopédicas mediante el desarrollo de dos recubrimientos diferentes con las técnicas de PVD y PEO. Esto puede reflejarse en un aumento en la vida útil del dispositivo implantable debido tanto a la mayor resistencia al desgaste que poseen estos recubrimientos como a la menor posibilidad de contraer una infección bacteriana como resultado de las propiedades biocidas conferidas.La memoria de la tesis doctoral se presenta en el formato por contribuciones. Así, se aportan tres publicaciones en revistas indexadas en la base de datos Journal Citation Report: las tres en revistas del primer cuartil (la última en revisión por el editor). Además, la memoria recoge un capítulo de libro (¿Titanium and Titanium alloys as Biomaterials¿ in: Gegner, J. (Ed.), Tribology ¿ Fundamentals and advancements, Intech, Rijeka, Croatia, 2013, 155-181) relativo al estado del arte en el área del titanio y sus aleaciones usados como biomateriales para implantes óseos.Los hallazgos logrados en esta tesis, son parte del trabajo desarrollado en el marco del proyecto FUNCOAT (CSD2008-00023) financiado por el Ministerio Español bajo el programa CONSOLIDER INGENIO-2010, y por el Gobierno Vasco bajo el programa EMAITEK.IK4 TEKNIKE

    Advanced Surface Treatments on Titanium and Titanium Alloys Focused on Electrochemical and Physical Technologies for Biomedical Applications

    Get PDF
    Titanium and its alloys are becoming very promising materials in biomedicine due to their excellent properties. However, their poor tribological behavior characterized by high friction coefficient and severe adhesive wear is their main limitation. Surface modification technologies based on electrochemical and physical techniques have been successfully employed to improve the tribological performance and osseointegration of Titanium materials, ensuring an effective protection against both wear and corrosion. For instance, anodizing and plasma electrolytic oxidation (PEO) are two electrochemical techniques that allow the growth of an oxide film of high hardness and good adhesion. The formation of these oxide films in electrolytes with bioactive elements has been reported to enhance cell functionalities and improve the tribocorrosion performance of Titanium surfaces considerably. Similarly, physical vapor deposition (PVD) technologies such as cathodic arc evaporation (CAE) and magnetron sputtering (MS) are commonly used today for the growth of protective hard coatings on different Titanium components in the biomedical field. Diamond-like-carbon (DLC) and transition metal nitride (MeNx) and carbide (MeCx) protective films grown by PVD have proven to be excellent candidates to enhance Titanium and Titanium alloys performance and durability, owing to their excellent adhesion, high hardness, low friction coefficient and enhanced wear and corrosion resistance
    corecore