595 research outputs found

    Adaptation Algorithms for Neural Network-Based Speech Recognition: An Overview

    Get PDF
    We present a structured overview of adaptation algorithms for neural network-based speech recognition, considering both hybrid hidden Markov model / neural network systems and end-to-end neural network systems, with a focus on speaker adaptation, domain adaptation, and accent adaptation. The overview characterizes adaptation algorithms as based on embeddings, model parameter adaptation, or data augmentation. We present a meta-analysis of the performance of speech recognition adaptation algorithms, based on relative error rate reductions as reported in the literature.Comment: Submitted to IEEE Open Journal of Signal Processing. 30 pages, 27 figure

    Dysarthric speech analysis and automatic recognition using phase based representations

    Get PDF
    Dysarthria is a neurological speech impairment which usually results in the loss of motor speech control due to muscular atrophy and poor coordination of articulators. Dysarthric speech is more difficult to model with machine learning algorithms, due to inconsistencies in the acoustic signal and to limited amounts of training data. This study reports a new approach for the analysis and representation of dysarthric speech, and applies it to improve ASR performance. The Zeros of Z-Transform (ZZT) are investigated for dysarthric vowel segments. It shows evidence of a phase-based acoustic phenomenon that is responsible for the way the distribution of zero patterns relate to speech intelligibility. It is investigated whether such phase-based artefacts can be systematically exploited to understand their association with intelligibility. A metric based on the phase slope deviation (PSD) is introduced that are observed in the unwrapped phase spectrum of dysarthric vowel segments. The metric compares the differences between the slopes of dysarthric vowels and typical vowels. The PSD shows a strong and nearly linear correspondence with the intelligibility of the speaker, and it is shown to hold for two separate databases of dysarthric speakers. A systematic procedure for correcting the underlying phase deviations results in a significant improvement in ASR performance for speakers with severe and moderate dysarthria. In addition, information encoded in the phase component of the Fourier transform of dysarthric speech is exploited in the group delay spectrum. Its properties are found to represent disordered speech more effectively than the magnitude spectrum. Dysarthric ASR performance was significantly improved using phase-based cepstral features in comparison to the conventional MFCCs. A combined approach utilising the benefits of PSD corrections and phase-based features was found to surpass all the previous performance on the UASPEECH database of dysarthric speech

    Review of Research on Speech Technology: Main Contributions From Spanish Research Groups

    Get PDF
    In the last two decades, there has been an important increase in research on speech technology in Spain, mainly due to a higher level of funding from European, Spanish and local institutions and also due to a growing interest in these technologies for developing new services and applications. This paper provides a review of the main areas of speech technology addressed by research groups in Spain, their main contributions in the recent years and the main focus of interest these days. This description is classified in five main areas: audio processing including speech, speaker characterization, speech and language processing, text to speech conversion and spoken language applications. This paper also introduces the Spanish Network of Speech Technologies (RTTH. Red Temática en Tecnologías del Habla) as the research network that includes almost all the researchers working in this area, presenting some figures, its objectives and its main activities developed in the last years

    Personalising synthetic voices for individuals with severe speech impairment.

    Get PDF
    Speech technology can help individuals with speech disorders to interact more easily. Many individuals with severe speech impairment, due to conditions such as Parkinson's disease or motor neurone disease, use voice output communication aids (VOCAs), which have synthesised or pre-recorded voice output. This voice output effectively becomes the voice of the individual and should therefore represent the user accurately. Currently available personalisation of speech synthesis techniques require a large amount of data input, which is difficult to produce for individuals with severe speech impairment. These techniques also do not provide a solution for those individuals whose voices have begun to show the effects of dysarthria. The thesis shows that Hidden Markov Model (HMM)-based speech synthesis is a promising approach for 'voice banking' for individuals before their condition causes deterioration of the speech and once deterioration has begun. Data input requirements for building personalised voices with this technique using human listener judgement evaluation is investigated. It shows that 100 sentences is the minimum required to build a significantly different voice from an average voice model and show some resemblance to the target speaker. This amount depends on the speaker and the average model used. A neural network analysis trained on extracted acoustic features revealed that spectral features had the most influence for predicting human listener judgements of similarity of synthesised speech to a target speaker. Accuracy of prediction significantly improves if other acoustic features are introduced and combined non-linearly. These results were used to inform the reconstruction of personalised synthetic voices for speakers whose voices had begun to show the effects of their conditions. Using HMM-based synthesis, personalised synthetic voices were built using dysarthric speech showing similarity to target speakers without recreating the impairment in the synthesised speech output

    EMG-to-Speech: Direct Generation of Speech from Facial Electromyographic Signals

    Get PDF
    The general objective of this work is the design, implementation, improvement and evaluation of a system that uses surface electromyographic (EMG) signals and directly synthesizes an audible speech output: EMG-to-speech

    Personalised Dialogue Management for Users with Speech Disorders

    Get PDF
    Many electronic devices are beginning to include Voice User Interfaces (VUIs) as an alternative to conventional interfaces. VUIs are especially useful for users with restricted upper limb mobility, because they cannot use keyboards and mice. These users, however, often suffer from speech disorders (e.g. dysarthria), making Automatic Speech Recognition (ASR) challenging, thus degrading the performance of the VUI. Partially Observable Markov Decision Process (POMDP) based Dialogue Management (DM) has been shown to improve the interaction performance in challenging ASR environments, but most of the research in this area has focused on Spoken Dialogue Systems (SDSs) developed to provide information, where the users interact with the system only a few times. In contrast, most VUIs are likely to be used by a single speaker over a long period of time, but very little research has been carried out on adaptation of DM models to specific speakers. This thesis explores methods to adapt DM models (in particular dialogue state tracking models and policy models) to a specific user during a longitudinal interaction. The main differences between personalised VUIs and typical SDSs are identified and studied. Then, state-of-the-art DM models are modified to be used in scenarios which are unique to long-term personalised VUIs, such as personalised models initialised with data from different speakers or scenarios where the dialogue environment (e.g. the ASR) changes over time. In addition, several speaker and environment related features are shown to be useful to improve the interaction performance. This study is done in the context of homeService, a VUI developed to help users with dysarthria to control their home devices. The study shows that personalisation of the POMDP-DM framework can greatly improve the performance of these interfaces

    GREC: Multi-domain Speech Recognition for the Greek Language

    Get PDF
    Μία από τις κορυφαίες προκλήσεις στην Αυτόματη Αναγνώριση Ομιλίας είναι η ανάπτυξη ικανών συστημάτων που μπορούν να έχουν ισχυρή απόδοση μέσα από διαφορετικές συνθήκες ηχογράφησης. Στο παρόν έργο κατασκευάζουμε και αναλύουμε το GREC, μία μεγάλη πολυτομεακή συλλογή δεδομένων για αυτόματη αναγνώριση ομιλίας στην ελληνική γλώσσα. Το GREC αποτελείται από τρεις βάσεις δεδομένων στους θεματικούς τομείς των «εκπομπών ειδήσεων», «ομιλίας από δωρισμένες εγγραφές φωνής», «ηχητικών βιβλίων» και μιας νέας συλλογής δεδομένων στον τομέα των «πολιτικών ομιλιών». Για τη δημιουργία του τελευταίου, συγκεντρώνουμε δεδομένα ομιλίας από ηχογραφήσεις των επίσημων συνεδριάσεων της Βουλής των Ελλήνων, αποδίδοντας ένα σύνολο δεδομένων που αποτελείται από 120 ώρες ομιλίας πολιτικού περιεχομένου. Περιγράφουμε με λεπτομέρεια την καινούρια συλλογή δεδομένων, την προεπεξεργασία και την ευθυγράμμιση ομιλίας, τα οποία βασίζονται στο εργαλείο ανοιχτού λογισμικού Kaldi. Επιπλέον, αξιολογούμε την απόδοση των μοντέλων Gaussian Mixture (GMM) - Hidden Markov (HMM) και Deep Neural Network (DNN) - HMM όταν εφαρμόζονται σε δεδομένα από διαφορετικούς τομείς. Τέλος, προσθέτουμε τη δυνατότητα αυτόματης δεικτοδότησης ομιλητών στο Kaldi-gRPC-Server, ενός εργαλείου γραμμένο σε Python που βασίζεται στο PyKaldi και στο gRPC για βελτιωμένη ανάπτυξη μοντέλων αυτόματης αναγνώρισης ομιλίας.One of the leading challenges in Automatic Speech Recognition (ASR) is the development of robust systems that can perform well under multiple settings. In this work we construct and analyze GREC, a large, multi-domain corpus for automatic speech recognition for the Greek language. GREC is a collection of three available subcorpora over the domains of “news casts”, “crowd-sourced speech”, “audiobooks”, and a new corpus in the domain of “public speeches”. For the creation of the latter, HParl, we collect speech data from recordings of the official proceedings of the Hellenic Parliament, yielding, a dataset which consists of 120 hours of political speech segments. We describe our data collection, pre-processing and alignment setup, which are based on Kaldi toolkit. Furthermore, we perform extensive ablations on the recognition performance of Gaussian Mixture (GMM) - Hidden Markov (HMM) models and Deep Neural Network (DNN) - HMM models over the different domains. Finally, we integrate speaker diarization features to Kaldi-gRPC-Server, a modern, pythonic tool based on PyKaldi and gRPC for streamlined deployment of Kaldi based speech recognition

    Advancing Electromyographic Continuous Speech Recognition: Signal Preprocessing and Modeling

    Get PDF
    Speech is the natural medium of human communication, but audible speech can be overheard by bystanders and excludes speech-disabled people. This work presents a speech recognizer based on surface electromyography, where electric potentials of the facial muscles are captured by surface electrodes, allowing speech to be processed nonacoustically. A system which was state-of-the-art at the beginning of this book is substantially improved in terms of accuracy, flexibility, and robustness

    Advancing Electromyographic Continuous Speech Recognition: Signal Preprocessing and Modeling

    Get PDF
    Speech is the natural medium of human communication, but audible speech can be overheard by bystanders and excludes speech-disabled people. This work presents a speech recognizer based on surface electromyography, where electric potentials of the facial muscles are captured by surface electrodes, allowing speech to be processed nonacoustically. A system which was state-of-the-art at the beginning of this book is substantially improved in terms of accuracy, flexibility, and robustness
    corecore