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Summary

Speech is the most natural medium of communication between humans, and an
increasingly important tool to control technical devices. Therefore speech is of
tremendous significance to every human being, and to society as a whole.

However, speech must normally be pronounced in a clearly audible manner, par-
ticularly if it is to be transmitted via a technical device, for example a cellphone,
or processed e.g. by a speech recognizer. This is problematic in a number of
situations: First, when a person communicates via spoken speech, the environ-
ment may be disturbed. This happens in public places, for example libraries or
restaurants, as well as in meetings or open-plan offices. Second, confidential
communication is impossible: PINs or passwords, which are frequently needed
to gain access to a voice-controlled computer system, are particularly endan-
gered. Third, speech-disabled persons may be excluded from both interaction
with other humans and using speech-controlled devices.

Therefore the development of alternative methods of capturing and processing
speech is becoming increasingly popular. Our method of choice is Silent Speech
recognition by surface electromyography (EMG), where the electrical potentials
of a user’s articulatory muscles are captured by surface electrodes attached to
the face: This makes it possible to capture and process speech even if no acoustic
signal is produced, or can be measured (the latter may be interesting in places with
high background noise).

This thesis aims at enhancing and improving myoelectric Silent Speech recog-
nition. Based on a standard speech recognition toolchain, we systematically de-
velop methods and algorithms to adapt these components in a way specifically
suited for the EMG signal. While our main goal is to improve the recognition ac-
curacy of the Silent Speech recognizer, we also include analyses at the signal and
model level, so that we gain a better understanding of the system. Our baseline
is an EMG-based speech recognizer which was state-of-the-art at the beginning
of our research, we show that we can substantially improve its power, flexibility,
and robustness.
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The main achievements of this thesis are as follows:

EMG Signal Capture and Processing The myoelectric signal is a complex su-
perposition of signals from many different sources (muscles and muscle fibers).
Therefore we introduce an EMG recording system based on electrode arrays,
which are grid structures with multiple EMG measuring points, and show that
we can use the resulting high-dimensional signal to gain information about these
sources which is not available in classical recording systems. The first concrete
application is an artifact removal algorithm using source separation techniques.

Flexible myoelectric modeling We observed during our experiments that stan-
dard phone models, which are used in conventional speech recognition, are not
well suited for our system, particularly not when only a small amount of training
data is available. We introduce Phonetic Feature Bundling, a robust and power-
ful alternative to phone modeling which yields a remarkable Word Error Rate
reduction of up to 40.8% relative.

Analysis and enhancement of silently mouthed speech It is well-known that
silently mouthed speech exhibits properties different from normal (“audible”)
speech. This causes accuracy degradation when a system is applied across dif-
ferent speaking modes. An analysis of silent speech at the signal level leads us
to the development of a signal-based adaptation method which ameliorates this
problem and improves the recognition of silent speech.

Session independency and adaptation The myoelectric signal changes when the
electrodes are removed and reattached between recording sessions. Clearly this
is a major issue in practical usage scenarios. We show that session-independent
systems are possible, so that an enrollment immediately before usage is no longer
necessary. In addition, adaptation can be used to further improve such a system;
we show in particular that unsupervised adaptation is possible: EMG data can be
accrued during usage of the system and be used for improving the recognizer.
This is amajor step forward since such data is available in far larger amounts than
supervised training data, whose generation requires that a user invests time and
care.

Online demonstration system We present an online, real-time demonstration
system which makes use of most of the methods developed in this thesis. This
proves our concepts to have an immediate practical impact, and shows the po-
tential of applied EMG-based speech recognition.



Zusammenfassung

Sprache ist das natürlichste zwischenmenschliche Kommunikationsmedium und
darüberhinaus für die Steuerung von technischen Geräten zunehmend wichtig.
Daher hat Sprache eine enorme Bedeutung, sowohl für jeden einzelnen Men-
schen als auch für die Gesellschaft insgesamt.

Sprache muss normalerweise klar hörbar sein, besonders dann, wenn eine ma-
schinelle Verarbeitung (z.B. durch einen Spracherkenner) oder Übertragung (et-
wa mittels mobiler Telefonie) erwünscht ist. Dies ist unter mehreren Aspekten
problematisch: Erstens beeinträchtigt laute Sprachkommunikation die Umge-
bung. Dies kann öffentliche Orte betreffen, wie Bibliotheken oder Restaurants,
aber kann auch in Besprechungen oder im Großraumbüro ein Problem sein.
Zweitens ist vertrauliche Kommunikation unmöglich: Gerade PINs oder Pass-
wörter, die man beispielsweise zum Zugriff auf ein sprachbasiertes Interakti-
onssystem übermitteln möchte, sind gefährdet. Drittens sind sprachbehinderte
Menschen unter Umständen sowohl von der Kommunikation mit Menschen als
auch von der sprachlichen Interaktion mit Maschinen ausgeschlossen.

Daher werden inzwischen verstärkt alternative Sprachkommunikationsformen
erforscht. Die in dieser Arbeit verwendete Methode ist Spracherkennung durch
Oberflächenelektromyographie (EMG): Die elektrischen Potentiale der Artiku-
lationsmuskeln werden gemessen, indem man Elektroden auf das Gesicht des
Sprechers aufbringt. Dadurch wird es möglich, Sprache auch dann zu erfassen
und zu verarbeiten, wenn kein akustisches Signal erzeugt wird oder messbar ist
(der zweite Aspekt ist zum Beispiel bei starken Hintergrundgeräuschen interes-
sant).

Diese Arbeit befasst sich mit der Erweiterung und Verbesserung eines myoelek-
trischen Spracherkenners. Die Komponenten der in der Spracherkennung übli-
chen Prozesskette werden systematisch für die EMG-basierte Spracherkennung
angepasst, bzw. es werden neue Algorithmen und Methoden entwickelt. Das
Hauptziel ist die Verbesserung der Erkennungsgenauigkeit, darüber hinaus er-
weist es sich als lehrreich, Analysen des Signals und der Erkennermodelle durch-
zuführen. Ein EMG-basierter Spracherkenner, der zu Beginn dieser Arbeit Stand
der Technik war, dient als Grundlage für diese hier vorgestellten Experimente; es
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wird gezeigt, dass sich Genauigkeit, Flexibilität und Robustheit dieses Erkenners
beträchtlich verbessern lassen.

Die Hauptergebnisse der Arbeit lassen sich wie folgt zusammenfassen:

Verarbeitung des EMG-Signals Das myoelektrische Signal ist eine komplexe
Überlagerung von Signalen, die aus verschiedenen Quellen (Muskeln und Mus-
kelfasern) stammen. Daher wurde ein Aufnahmesystem entwickelt, das auf Elek-
trodenarrays – Gitterstrukturen mit regelmäßig angeordneten EMG-Messpunk-
ten – basiert und es ermöglicht, Informationen über diese Quellen zu extrahieren,
die man mit klassischen Aufnahmesystemen nicht erhalten kann. Die erste kon-
krete Anwendung dieses Systems ist ein Artefaktbereinigungsalgorithmus, der
auf Quellenseparation basiert.

Flexible myoelektrische Modellierung Es zeigte sich im Verlauf dieser Arbeit,
dass phon-basierte Modellierung, die in der konventionellen Spracherkennung
verwendet wird, nicht gut für das hier vorgestellte System geeignet ist, besonders
dann nicht, wenn nur sehrwenig Trainingsdaten verfügbar sind. Eswird Phonetic
Feature Bundling als robuste und leistungsfähige alternative Modellierungsform
eingeführt und gezeigt, dass damit Verbesserungen der Wortfehlerrate von bis
zu 40.8% relativ erreicht werden.

Analyse und Verbesserung lautloser Sprache Es ist bekannt, dass sich die Eigen-
schaften lautlos artikulierter und normal gesprochener Sprache unterscheiden.
Dies verringert die Erkennungsgenauigkeit eines Systems, das über Sprachmodi
hinweg angewendet wird. Eine Analyse der EMG-Signale liefert die Grundlage
zur Entwicklung einer signalbasierten Adaptionsmethode, die den Unterschied
zwischen den EMG-Signalen normaler und lautloser Sprache verringert und so-
mit die Wortfehlerrate verbessert.

Sitzungsunabhängigkeit und Adaption Das EMG-Signal verändert sich, wenn
zwischen Aufnahmesitzungen die EMG-Elektroden entfernt und neu angebracht
werden – dies ist ein bedeutendes Problem in praktischen Anwendungsszena-
rien. In dieser Arbeit wird gezeigt, dass sitzungsunabhängige Systeme möglich
sind. Damit ist ein Training des Systems direkt vor der Anwendung nicht mehr
nötig, zusätzlich kann ein sitzungsunabhängiges System durch Adaptionsmetho-
den verbessert werden. Insbesondere wird gezeigt, dass unüberwachte Adaption
möglich ist: Daten können während der Benutzung des Systems gesammelt und
zur Verbesserung der Erkennungsleistung verwendet werden. Dies ist ein be-
deutender Fortschritt, weil solche Daten in weit größerer Menge als überwachte
Trainingsdaten verfügbar sind; um letztere zu erhalten, ist ein gewisser Zeitauf-
wand vom Benutzer erforderlich.
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Online-Demonstrationssystem Es wird ein echtzeitfähiges Demonstrationssys-
tem präsentiert, das mehrere der in dieser Arbeit entwickelten Methoden ver-
wendet. Dies beweist, dass die hier vorgestellten Konzepte eine unmittelbare
praktische Bedeutung haben, und zeigt das Potential der angewandten EMG-
basierten Spracherkennung.
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Chapter 1

Introduction and Motivation

This chapter serves as a motivation for the present dissertation, and as an
introduction to the field. We introduce spoken language as a cornerstone of
human communication, motivate the development of Silent Speech Interfaces,
and give an overview of existing techniques. Finally, the structure and con-
tributions of this thesis are presented.

1.1 Speech as an Ubiquitous Means of
Communication

It is widely accepted that spoken communication is a key capability of human
beings. Certainly, speech is the most complex form of communication which is
known to us, and its importance cannot be underestimated: In our daily lives,
speech is used for efficient transmission of vital information, for the organiza-
tion of life in a complex, multi-faceted society, for communicating desires and
intentions, and for social interaction, just to name a few examples.

However, it requires relatively complex technology to store or transmit spoken
language. This makes speech a very volatile form of communication: all but
150 years ago, spoken communication was limited to personal conversation or
speeches in front of at most medium-sized audiences, bound to the present and
bound to a specific location. Speech and language could only be conserved in
written form, in chronicles, books, or letters.
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We argue that speech has evolved drastically since this time: The telephone,
first patented in 1876 by Alexander Graham Bell, allowed for the first time to
talk to persons at distant locations [Bro94]. Just one year later, in 1877, Thomas
Edison invented the “phonograph”, the first device ever which could record and
playback arbitrary sounds [Str]. These developments are among themost famous
in a series of groundbreaking inventions which took place during the last two
centuries: they drastically changed our society and, concerning the topic of this
thesis, affected the use of speech, which is now used for more andmore purposes.

In which ways is speech being used nowadays? During the past decades, the
evolution of speech-based communication has even increased its pace. Mobile
phones became widely available around 25 years ago and have gained enormous
popularity since then, making speech communication ubiquitous: Instantaneous
spoken communication with any person, anywhere on the world, has become a
reality. A further purpose of speech which has emerged during the past decades
is operating technical devices: speech-driven programs and appliances range
from telephone-based customer service dispatch and voice-controlled personal
assistants, which normally recognize a small set of words, to large-vocabulary
dictation and translation systems which recognize and process fluent (“continu-
ous”) speech.

1.2 Introducing Silent Speech Interfaces

In the last paragraphwe justified the assertion that speech-basedmobile commu-
nication and speech-controlled human-computer interaction have become ubiq-
uitous technologies with enormous practical importance. However they induce
several specific problems [DSH+10, SW10]: First, acoustic speech signals are
transmitted through air and are thus susceptible to environmental noise. There-
fore speech recognizers degrade quite drastically when they are used in places
like crowded restaurants, airports, etc. Also cellphone-based communication is
severely hindered.

Second, speech needs to be clearly audible, particularly when it is to be transmit-
ted or processed by technical systems. In quiet places, like libraries, meetings,
etc., this disturbs bystanders, making this means of communication unsuitable
in a variety of situations.

Third, private spoken communication is vulnerable: There is a real danger of
being overheard. This is undesired or embarrassing at best and dangerous at
worst, when confidential information is to be transmitted. Speech-controlled
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services which require PINs, passwords, or security information are particularly
affected.

Fourth, speech-disabled people may be excluded both from speech-based com-
munication with other persons and from speech-driven human-machine inter-
action. There exists a variety of reasons why a person might be unable to speak,
the most severe of them is a paralysis of the full body, the so-called locked-in
syndrome. For the purpose of this thesis, we consider cases where the articu-
latory muscles still function normally, but a voice may not be produced; such a
situation is typical for laryngectomy patients, where the vocal chords have been
removed.

Silent Speech Interface (SSI) technology allows to utter speech silently and thus
provides a way to solve the problems described above: confidential information
can be submitted securely, silent speech does not disturb or interfere with the
surroundings, and it is possible to create speech prostheses for speech-disabled
patients.

Modern sensor technology provides the means to construct a variety of Silent
Speech interfaces, for an overview of current research see section 1.3. Our ap-
proach to capture speech without using the acoustic signal uses surface Elec-
troMyoGraphy (EMG) [Kra07, Chapter 11], which is the process of recording
electrical muscle activity using surface electrodes. Since speech is produced by
the activity of the human articulatory muscles, the myoelectric signal patterns
captured from a person’s face allow to trace back the corresponding speech.
Since EMG relies on muscle activity only, speech can be recognized even when
it is produced silently, i.e. mouthed without any vocal effort. In section 1.4
the state-of-the-art of EMG-based speech processing is presented; a summary
of background knowledge regarding the origin and measurement of the EMG
signal is found in section 2.1.

1.3 Silent Speech Processing Technologies

Research in the field of Silent Speech Interfaces (SSI) has got several decades of
history. In the following an overview of available technologies is given, based
on the excellent summary article [DSH+10]. EMG-based approaches are of par-
ticular interest to us, they are considered in detail in section 1.4.

According to [DSH+10], the “first ‘true’ SSI system, although with very limited
performance”, was based on electromyography: In 1985, Sugie and Tsunoda de-
vised a recognition system which could discriminate five Japanese vowels, cap-
turing facial EMG with three sensors [ST85]. The system used signals from 3
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EMG channels, captured from the speaker’s face, for recognition of 5 Japanese
vowels. A different method was presented in 1992: Hasegawa and colleagues
proposed a “lipreading” system driven by camera images of the lips, also per-
forming phone recognition [HO92].

Since these early beginnings, the variety of Silent Speech processing systems has
increased a lot. The technologies may be grouped into three categories:

• Capture of very quiet speech signals. This may be done by bone con-
duction, stethoscopic microphones, etc., and requires that at least a small
sound is produced. Nonetheless, these technologies address the same prob-
lems as true silent speech interfaces and are therefore considered in this
summary.

• Capture of vocal tract or articulator configurations, e.g. by electromyogra-
phy, or by visual or ultrasound imaging. This allows to recognize speech
even when no sound is produced and is our method of choice.

• Direct interpretation of brain signals related to speech production. This is
by far the most complicated method due to the complexity of the human
brain activity.

Each of these methods has advantages and drawbacks, and some of them might
not be suitable for all possible tasks in Silent Speech recognition. In the following,
a detailed list is given.

The following acoustics-based approaches, i.e. approaches that capture a (quiet)
acoustic signal, exist:

• Acoustic speech recording with a stethoscopic microphone is a well-
researched and promising method [NKCS06, HKSS07]. Here, acoustic sig-
nals are conducted via the body and are captured with a stethoscope-like
microphone originally invented by Nakajima and colleagues [NKSC03].
Due to the high sensitivity of this technology, the system can process al-
most inaudible speech sounds, for which Nakajima coined the term “Non-
audible murmur” (NAM).

• A special application of stethoscopic microphones in the field of speech
protheses is the capture of speech signals generated by an electrolarynx.
Such devices are used for persons who lack vocal folds (typically as a re-
sult of cancer), they generate an artificial vocal excitation so that speaking
becomes possible, but the resulting speech is known to be very unnatural
[MH05b]. However, it has been shown that with the NAM technology,
it is possibly to capture very quiet electrolaryngeal speech, which is un-
hearable for bystanders. This signal can then be processed to make the
resulting speech more natural [HOS+10, TBLT10, NTSS12].
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• Acoustic activity may be captured using electromagnetic sensors (elec-
troglottography) [TSB+00, NBHG00, Tar03, PFC06, QBM+06] or vibration
sensors [BT05, PH10]. Like NAM, these methods rely on speech signals
transmitted via the human body, so they require that some kind of acous-
tic signal is produced.

The common property of these approaches is their use of the body as a medium
for sound signal conduction, thus avoiding the aforementioned inherent prob-
lems of standard audio recording by microphones, and enabling the capture of
almost silent speech signals. Since we consider whispering as a form of covert
communication, the above list is to be extended with a last technique: Whispered
speech can, of course, also be captured by standard microphones for subsequent
recognition [ITI05, JSW05] or enhancement [SMA09].

Still, in certain situations, even a very quiet acoustic signal might be unavailable
or undesired, or it might be lacking in quality or naturalness. In such cases, dif-
ferent speech capturing methods are required. The following approaches record
activity of the vocal tract, i.e. of the articulators. It is expected that such infor-
mation is sufficient in order to completely retrace the corresponding speech, yet
it may be difficult to obtain a full representation of the vocal tract activity (for
example, video-based methods might capture the lip position, but fail to yield
information about the tongue).

• A silent speech interface based on ultrasound (US) imaging of the vocal
tract was first proposed by Denby and colleagues in 2004 [DS04]. As in
[HO92], optical capture of the lip movement can additionally be used. Dur-
ing the past 10 years, a substantial amount of research on this method has
been performed (see e.g. [DODS06, HAC+07, HBC+10, FCBD+10]). Most
image-based systems are limited to the recognition of whole words, i.e.
the input data features are compared with templates of the words to be
recognized. Recent papers, e.g. [HBD12], tackle the problem of process-
ing continuous speech by using a direct mapping between image features
and acoustics, bypassing the recognition phase. Classical systems are quite
impractical, since the user’s head has to be mounted on a fixation device,
however portable systems are just underway [DCH+11].

• Exact measurements of articulator activity are created by Electromagnetic
Articulography (EMA) [SGW+87, HFB+06]. For EMAmeasurements, small
electrical coils are glued to the subject’s articulators. A magnetic field is
generated outside the human body, and an electrical current is induced in
the coils. Small cables connect the coils to a recording apparatus, which
captures the generated signal, from which the exact positioning of the ar-
ticulators may be obtained. To the best of our knowledge, full EMA-based
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Silent Speech Interfaces have not yet been reported, however EMA has
been used for giving feedback to patients with speech disorders [KBC99]
and for acoustic-articulatory inversion, i.e. for computing articulator infor-
mation from acoustic signals for use in speech recognition and synthesis
[UMRR12]. The main drawback of the EMA technology is its invasiveness,
in particular, electrical coils need to be glued to the subjects lips, tongue,
etc., and the coils need to have a cable connection to a recording device.

• Despite the invasiveness of EMA, directly tracking the activity of the ar-
ticulators is highly desirable. In 2008, Fagan and colleagues [FEG+08] pro-
posed to replace the coils by very small permanent magnets, which cause
almost no discomfort for the user and might in the future even be im-
planted. The activity of the magnets is then measured outside the human
body, and the resulting signal can be used for a Silent Speech Interface
[HEF+10, GRH+10, HEF+13, HBC+13]. This very promising technique has
been named “Permanent-magnetic articulography” (PMA), a particular ad-
vantage is its mobility: Recent systems are fully portable, thus potentially
allowing usage in everyday situations in the near future.

• Electromyography (EMG) has been used for some of the earliest non-
acoustic speech processing systems [ST85, MDTM89]. Here the electrical
activity of the articulatory muscles is captured with electrodes, see section
2.1 for details. In section 1.4, we review the research on EMG-based speech
processing.

Finally, it should be possible to capture speech information at its source, namely,
at the human brain. Many difficulties arise from any such approach, since accu-
rately measuring brain activity is a challenging task. Electroencephalography,
where the electrical activity of the cortex is measured with surface electrodes
attached to the user’s head, is a straightforward and relatively cost-effective ap-
proach, unfortunately it only yields a very crude and incomplete image of the
brain activity. In particular, it is very hard to determine the exact source posi-
tion of a signal, so it is all but impossible to directly recognize activity patterns
related to different articulators. Imaging methods, like fMRI, are usually not
considered for this task since their time resolution is too low: It is known that
during normal speech, around 10-30 phones per second are generated, so any
recording method would have to capture at least 10-30 samples per second. This
is a far higher recording frequency than standard imaging systems are currently
able to achieve, the typical amount of time required for a full brain scan ranges
around 2-3 seconds. Yet, faster systems are under way, for example, [FMS+10]
reports the development of an fMRI method allowing to capture multiple images
per second.
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Nonetheless, brain signals are used for communication and control. Brain com-
puter interfaces are intended to enable communication for severely disabled pa-
tients [DdRMH+07]. Usually, they allow the discrimination of a small number
of classes of brain activity, they are not normally speech-based. The following
methods of brain activity based Silent Speech recognition have been investigated:

• Isolated word recognition by surface electroencephalography was investi-
gated in [SLH97, Wes06, PWCS09]. Notably, widely varying recognition
rates were observed, depending on the subject and the setup.

• Interpretation of signals from electrodes implanted into the speech-motor
cortex brain area was investigated by Brumberg et al. [BNCKG10]. Of
course, this is a highly invasive technology which is only suitable for
severely disabled patients for whom no other means of communication
remains.

No brain signal based Silent Speech interface even comes close to achieving con-
tinuous speech recognition based on smaller units than words. Therefore, from
the standpoint of applicability, investigating the second class of Silent Speech
interfaces, where articulatory activity is measured, is most promising. Here the
EMG approach compares favorably in terms of usability, power, non-invasive-
ness, and cost [DSH+10].

1.4 Related Work in Myoelectric Speech
Recognition

As reported above, research on EMG-based speech recognition began with the
works of Sugie et al. [ST85] and Morse et al. [MDTM89]. The early systems ex-
hibited rather low performance. Competitive results were first reported in 2001
by Chan and colleagues [CEHL01], reaching an average word accuracy of 93% on
a 10-word vocabulary consisting of the English digits. A good performance could
be achieved even when words were spoken non-audibly, i.e. when no acoustic
signal was produced [JLA03], paving the way towards a true Silent Speech inter-
face.

The following years saw few progress, until renewed interest in Silent Speech
interfaces, possibly due to the increasing use of cellphones, spurred further re-
search in EMG-based speech recognition [DSH+10]. In 2005, L. Maier-Hein
conducted a sizable study on optimal parameters and setups for an EMG-based
speech recognition system based on the Varioport biosignal recorder, one of the
first mobile devices of its kind. The results of these experiments were mostly laid
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down inMaier-Hein’s diploma thesis [MH05a] and in the subsequent publication
[MHMSW05]. The optimal setup from that study is still in use and was applied
for the majority of experiments in this thesis, it is described in section 3.1.1; only
recently, we developed a new data recording setup based on multi-channel EMG
arrays, see section 3.1.2 and chapter 7.

The introduction of phone models to EMG-based speech recognition, achieved
in 2006 by S. Jou [JSW+06], can be considered as the next major stepping stone
towards a practically useful system. Before this result, EMG-based speech rec-
ognizers worked on a whole-word basis, comparing a word to be recognized
with a template. This limits the recognizer vocabulary to just a few words, since
for each word which might possibly be recognized, training examples must be
recorded. Phone-based modeling allows to assemble models for whole words
out of the constituting phones (speech sounds), as described in section 2.3.2.
This enables potentially unlimited vocabularies as well as data sharing and reuse,
among other benefits. Syllable-based recognition, being a compromise between
unflexible whole-word units and small phone units, has also been considered
[WKJ+06, LLMAM10]. The experiments presented in this thesis start from the
recognition system devised in [JSW+06], including some modifications which
have been reported in [JSW07].

Beyond the scope of this thesis, further research topics in EMG-based speech
processing include

• optimized feature extraction for single-electrode systems [MCDH11], in
this study novel signal preprocessing methods are investigated in the con-
text of the EMG array setup

• the application of electromyography in special circumstances, e.g. for fire-
fighters and special forces who may be prevented from speaking because
they wear a breathing apparatus [JD10],

• recognition of disordered speech, i.e. speech produced by disabled persons
[DPH+09]

• language-dependent challenges, e.g. nasality detection [FTD12]

• direct synthesis of speech from EMG signals [TWS09, Lee10, NJWS11,
JWNS12], which among other advantages allows modeling prosodic in-
formation [JJWS12].
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Figure 1.1 – Structure of the experiments and results presented in this thesis

1.5 Structure and Contributions of this Work

This thesis is structured as follows. The first part consists of chapters 1 and 2 and
introduces the reader to the purpose of this thesis, to the required background,
and to related work in both EMG-based speech recognition and other types of
Silent Speech interfaces. The main part consists of chapters 3 to 8 and presents
the experimental setup, the baseline recognizer which serves as a starting point
for this study, and the key results. Chapter 9 concludes the thesis.

Since this thesis aims at investigating, analysing, and improving all parts of the
EMG speech recognition processing chain, the main part is rather large and com-
prehensive. In order to obtain a structured approach, the results are arranged in
relation to this processing chain.

This concept is depicted in figure 1.1. The top row shows the main building
blocks of the recognizer, i.e. signal capturing, feature extraction, unit modeling,
Hidden Markov models as an instance of sequence modeling, and finally, lan-
guage modeling. The nonstandard term unit modeling is used to refer to the
modeling of single frames, without considering sequence constraints.

The lower rows each correspond to one chapter of the main part of the thesis
and relate it to specific parts of the processing chain. We begin with chapter 3,
where the EMG recording setup is introduced and the properties of the corpora
are presented. While an established electrode configuration based on a set of sin-
gle electrodes was taken from earlier studies [MHMSW05], a new setup based
on multi-channel EMG arrays was developed as part of this thesis. Chapter 4
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presents the speech recognizer which was available at the beginning of this the-
sis [JSW+06, Jou08] and upon which the experiments and improvements in this
thesis are built. An analysis of the capabilities of this recognizer is performed,
yielding insight into typical properties of the EMG signals of speech.

The key achievements are presented in chapters 5, 6, and 7, covering the entire
processing chain (except language modeling, which is not specific to EMG-based
speech recognition and therefore of limited interest in this work). The main
contributions of this thesis are as follows:

• Bundled phonetic feature modeling: The specific properties of the EMG
data and the small size of the available corpora require an innovative mod-
eling structure. Bundled Phonetic Features combine concepts from con-
text dependent model optimization, modeling of phonetic properties, and
information fusion, achieving a Word Error Rate reduction of up to 40.8%
relative. See chapter 5.

• Analysis and adaptation for silent speech: The goal of the EMG-based
speech recognizer is the recognition of silently mouthed speech, how-
ever so far, few investigators considered the discrepancy between silently
mouthed and audibly spoken speech. In this thesis a multi-speaker corpus
is used to evaluate measures to quantify this discrepancy and to develop
a novel signal-based adaptation approach, the Spectral Mapping method.
Spectral Mapping reduces the Word Error Rates on silent speech by up to
11.5% relative. See chapter 6.

• Electrode Arrays for EMG recording: Previous EMG-based speech recog-
nition systems used a small set of up to around 10 EMG electrodes for sig-
nal capture. In this thesis we establish a new recording system based on
electrode arrays, which allows the application of advanced signal process-
ing methods; first results are presented on the application of Independent
Component Analysis for artifact reduction. See chapter 7.

Chapter 8 connects the theoretical results of the thesis with issues of practical
application. The following aspects are covered.

• Session independency: It is demonstrated that session-independent and
session-adaptive systems are feasible. Session independency means that
a user can prepare the system by recording training data at any suitable
time, and when he or she needs to apply the system, no further enrollment
is necessary. This is a great benefit when EMG-based speech recognition is
to be practically applied. We then show that session-independent systems
may be further improved by session adaptation, in particular, even unsu-
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pervised adaptation is possible, where data can be accrued during system
usage without requiring any particular effort by the user.

• Online demonstration system: A prototype demonstration system using
Bundled Phonetic Feature modeling and session adaptation was created.
This system has been demonstrated in a variety of settings and situations,
including scientific conferences and trade fairs, and was showcased in me-
dia and television, including German ZDF and British BBC news.





Chapter 2

Physiological and Technological
Background

EMG-based Speech Recognition requires capturing and interpreting a complex
biological process. Therefore, the first part of this chapter assembles physio-
logical and technical background information which is required to undertake
the task of collecting facial electromyographic signals with the purpose of
extracting the underlying speech activity. The second part deals with the
physiology of speaking and introduces fundamental concepts regarding the
description and classification of speech sounds. In part three we present the
building blocks of a classical speech recognition system and introducemethods
and terminology which are used in later parts of this thesis. Finally, in part
four we describe two important methods for feature dimensionality reduction,
namely, Principal Component Analysis and Linear Discriminant Analysis.

2.1 Electromyography – Origin and Capture

2.1.1 Physiology of Human Muscle Contraction

The Musculoskeletal System The outer structure of the human body is de-
termined by the musculoskeletal system, i.e. by the joint structure composed of
bones, muscles, tendons, ligaments, cartilage, etc. The skeleton supports the dif-
ferent parts of the body and creates a rigid structure, allowing only well-defined
movements at specific locations andwith limited degrees of freedom. Thismeans
that displacements of parts of the body are only possible at the joints, where two
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Figure 2.1 – Structure of the human muscle (adapted from [USNIoHb], public do-
main)

or more bones connect. The possible movements are limited by the structure of
the joints and by the supporting ligaments.

Movement of body parts is caused by muscle activity. Muscles can contract,
thus pulling parts of the body together, but are unable to exert force by pushing.
Therefore, in many cases muscles in the body come in pairs, so that the con-
traction of one muscle (the agonist) has the opposite effect of the contraction of
another muscle (the antagonist).

Human muscles are subdivided in two categories: Smooth musculature, which
occurs in inner organs and is not voluntarily controlled, and striated muscula-
ture, which gains its name from exhibiting a specific periodic structure that is
visible under a microscope as a series of stripes. Striated muscles appear as heart
muscles and as skeletal muscles; the latter are the only muscles in the human
body which can be controlled by conscious decisions of the brain. Since speech
is produced by conciously moving the articulators, in the following we only con-
sider skeletal muscles.

Figure 2.1 depicts the composition of a typical muscle, here attached to a bone
via a tendon. The muscle consists of muscle cells, or muscle fibers, which mostly
comprisemyofibrils. The myofibrils can change their length, thus causing a con-
traction of the muscle. In the following the initiation and execution of such a
contraction is described.

Properties and Role of Neurons Neurons (or nerve cells) are the basic building
blocks of the human brain and the nervous system: Thus the functionality of the
brain, as well as the transmission of information and control commands between
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Figure 2.2 – A single neuron. The dendrites collect input signals, the soma performs
computations, and the axon conducts the output signal to another cell, e.g. another
neuron or a muscle fiber (adapted from [Wik13b], CC-BY-SA-3.0 license).

brain and body, heavily depend on them. Neurons appear in various functions
and shapes, but they all share two key properties:

• First, they exhibit a complex, highly branched and interconnected struc-
ture. This allows the exchange of information between neurons and the
formation of complex neuronal networks, which also connect with other
cells of the body. For this thesis, the connection to muscle cells will be of
particular interest.

• Second, neurons are able to perform basic computations. While a single
neuron is only limitedly powerful, neural networks (far more potent than
their computer-simulated counterparts) are able to process complex infor-
mation. The neural network consisting of the brain and the connected ner-
vous system is the foundation of any (conscious and unconscious) control
processes in the human body.

The components of a neuron are shown in figure 2.2: Simply speaking, the den-
drites collect electrical or chemical input signals. These signals propagate as
electrical currents to the soma, the bulbous central part of the neuron, where a
temporal and spatial summation over the input signals takes place. Finally, the
neuron is activated if the voltage in the soma exceeds a certain threshold: An ac-
tion potential forms. This action potential propagates along the axon, which thus
serves as output conductor for this neuron. The axon connects to other neurons
or other cells of the human body.

The shape and life cycle of action potentials is well known [Sch06, Chapter 3–5]:
In a non-excited resting state, the neuron exhibits a potential of around -70mV
compared to the outside. When the neuron is depolarized by incoming stimuli so
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that its inner potential is greater than approximately -40mV, voltage-triggered
ion channels in the cell membrane open, bringing forth an influx of positively
charged ions. This causes the inner potential of the neuron to rise to a maxi-
mum level of around +30mV, which is independent of the strength of the input
excitation (“all-or-nothing principle”).

The action potential is a localized depolarization of a part of the axon, traveling
away from the soma. Since ion channels exist anywhere on the axon, the action
potential sustains itself by further influx of positively charged ions. This makes
action potentials suitable for information transport across large distances: in-
deed, the longest neurons in the human body reach from the spinal cord down
to the toes, so their length may exceed one meter [Sch06, Chapter 3]. Within the
body, axons are bundled to make signal transport more robust, such a bundle is
called a nerve.

When a neuron is stimulated continuously, action potentials are repeatedly gen-
erated. While all action potentials have identical strength, their frequency carries
information about the strength of the excitation. The complex way information
is gathered from the dendrites, the all-or-nothing principle, and the frequency
encoding of excitation strength makes the activation pattern of a neuron a rather
intricate nonlinear process.

Neural Control ofMuscle Contraction In general, a voluntarymuscle contrac-
tion is initiated by a part of the brain called themotorcortex. It is part of the outer
layer of the brain, i.e. the cortex, where most “high-level” neural processes take
place. The motorcortex is located at the center of the head, stretching roughly
from ear to ear. Classically, it is assumed that there is a mapping between sec-
tions of the motorcortex and the body parts which these sections control [Sch06,
Chapter 6], however newer studies indicate that the structure of themotor cortex
might be even more complicated [MAKG08].

An activation signal from the motorcortex propagates to a motoneuron, which
serves as a final point of control for a set ofmuscle fibers. Amotoneuron also pro-
cesses input signals which cause muscular reflexes like the knee-jerk reflex—this
means that such reflexes are directly created by the motoneurons, without inter-
vention of the brain. For muscles of the lower body, the controlling motoneuron
is located in the spinal cord, for the facial muscles, motoneurons are located
within the brain, in specific structures known as cranial nerve nuclei [Sch06,
Chapter 9].

Each skeletal muscle fiber is activated (made to contract) by one single motoneu-
ron; however, a motoneuron can control a varying number of muscle fibers. The
union of a motoneuron and the associated muscle fibers is called a motor unit
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Figure 2.3 – Microstructure of muscle filaments (from [Col], CC-BY-3.0 license).
The violet Myosin filaments slide along the green Actin filaments.

(MU). In case of the extraocular muscles, which require a very fine-grained con-
trol, onemotoneuron controls 10 to 15muscle fibers, whereas for the legmuscles,
up to 5000 muscle fibers are controlled by one motoneuron [MP04]. Similarly,
the number of motor units per muscle varies, numbers between 100 and 1000 are
reported [BS80].

Since a motor unit is controlled by one single motoneuron, the associated mus-
cle fibers are always activated in unison. When this happens, this motor unit
is said to be recruited. In this case an action potential is generated. It propa-
gates along the axon of the motoneuron, which branches close to the muscle
and is connected to its associated muscle fibers at the neuromuscular junctions.
A neuromuscular junction is a gap of around 30nm into which chemical trans-
mitter substances are released when the motoneuron “fires”: As with neurons,
these transmitter substances cause the opening of ion channels in the muscle, in-
ducing a muscular action potential based on positively charged ions. The action
potential travels along the muscle fibers, sustaining and reinforcing itself. The
involved ion types include K+, Na+, and Ca2+, the latter is primarily responsible
for muscle contraction [Hop06].

The Contraction Cycle The constituting parts of the myofibril aremyosin and
actin filaments, which form an interlacing pattern in the myofibril, as depicted
in figure 2.3. This structure is called a sarcomere.

The myosin molecule exhibits a specific structure, whose key part is the head,
which can link with the actin filament. During a contraction process, the myosin
heads enter a cycle in which they connect to actin filaments, change their shape
so that the sarcomere shortens, and then disconnect from the actin filament.
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So the myosin filaments “slide” along the actin filaments, giving this sequence
the name Sliding Filament Model [Hux00]. The necessary energy is provided by
a chemical reaction of the myosin head and the Adenosine triphosphate (ATP)
molecule, available from the blood stream.

The contraction cycle is initiated by a chemical reaction involving the Ca2+ ions
which are set free due to an incoming action potential. For a perceivable muscle
shortening, the cycle must be repeated a large number of times. This repeated
muscle activation stems from the sequence of incoming action potentials, so an
increased activation frequency of the motoneuron directly causes the connected
muscle fibers to generate more power. Furthermore, muscle power is regulated
by the number of recruited motor units: these two principles account for the fine
control of muscular force generation [MBSY73].

2.1.2 The Myoelectric Signal

Capturing Bioelectric Signals The human body produces a wide variety of
electrical activity, ranging from strong potentials like the electrocardiac signal
coming from heart activity to the small currents of neurons in the brain. These
signals can be captured with electrodes.

Currents and potentials in the human body are produced by ion flows. Yet, tech-
nical systems require electron currents for processing. In the biophysiological
context, electrodes are systems whose purpose is the conversion of ion flows into
electron currents. They may take different forms: in particular, for medical uses
of electromyography indwelling or needle electrodes are distinguished from sur-
face electrodes [FC86]. Further electrode types are possible, ranging from intra-
cortical electrodes which capture brain activity directly from the cortex [KWV00]
to contactless capacitative electrodes [KHM05]. Application of needle electrodes
requires penetrating the human skin, which introduces discomfort and infection
risk. Furthermore, when measuring the EMG signal, typical needle electrodes
impede the normal contraction of the muscle. Therefore, indwelling electrodes
are mostly used in clinical contexts, e.g. to detect pathological changes in the
neural innervation of the muscle [NWL08]. The remainder of this study only
considers surface electrodes.

Typical surface electrodes used for signals like electromyography or electroen-
cephalography are silver-silver chloride (Ag-AgCl) electrodes. This means that
a solid body consisting of silver is covered with the corresponding salt (i.e. sil-
ver chloride). When such an electrode touches a liquid, the metal phase and
the liquid phase enter into a chemical reaction, which makes the metal body re-
lease ions into the liquid. Since the chemical potentials of the two phases are
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different, an electric potential difference emerges between them. The simplest
description of this process is the Helmholtz Double Layer model, which treats
the phase boundary as an electrical capacitor [Kra07, Chapter 11]. At this phase
boundary, the conversion of ion current and electrical current takes place.

Electrodes can be constructed to work on the bare skin, however this implies a
very high transfer resistance between electrode and skin, making high-quality
data capturing difficult. For this reason, typical electrodes, including the ones
used for the experiments reported in this thesis, require application of a conduc-
tive gel between electrode and skin, which contains a solution of natrium chlo-
ride (NaCl) salt. The overall properties of the electrode are thus determined by
the chemical properties of the metal (i.e. silver) and halogen (i.e. chloride) which
constitute the electrode, and the conductive gel.

Since electrodes measure a potential difference, any measurement requires at
least two electrodes. There are two main ways of deriving any such signal
[FC86]: Unipolar derivationmeans that one electrode is placed at a positionwhere
a signal is to be measured, and the other electrode is placed at a neutral point
(for Electromyography, this might be above a bone, i.e. at a place without mus-
cular activity). Bipolar derivationmeans that two electrodes are placed on active
surface (above a muscle), close to each other. The advantage of this approach
is that certain artifacts (in particular, disturbance from electrical activity in the
surroundings) cause identical activity at both electrodes: since the difference of
the two potentials is measured, such artifacts are automatically suppressed.

In both forms of derivation, the signal from the two electrodes is fed into a dif-
ferential amplifier, A/D converted and can then be further processed by a digital
computer. Of course, in many practical scenarios a larger number of channels
and thus electrodes is required.

Electromyography: Measurement of Muscular Activity Measuring muscle
activity is a classical application of electrode technology. Ag/AgCl electrodes
are attached above a muscle in either unipolar or bipolar configuration, in the
latter case, it is imperative to place the electrodes along the direction of the mus-
cle fibers, so that action potentials within muscle fibers are correctly captured.

As described in section 2.1, during contraction each muscle fiber exhibits its own
action potential. However, since all fibers of a motor unit are activated simulta-
neously, the smallest unit of electrical muscle activity which can in principle be
observed by surface electromyography is the summation of the action potentials
of the fibers of the activated motor unit, a so-called Motor Unit Action Potential
(MUAP) [dL79]. Since muscle contraction requires a sequence of action poten-
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tials, one obtains a sequence of MUAPs, a so-called Motor Unit Action Potential
Train (MUAPT).

A typical EMG signal consists of the superposition of a multitude of MUAPTs,
originating from different sources within a muscle and even from different mus-
cles, particularly in regions where many overlapping muscles are present (e.g.
the face). Therefore the observed EMG signal attains properties of a stochas-
tic process [FC86], making its interpretation a challenging task. Detecting and
separating MUAPTs is a primary concern in healthcare- and physiology-related
applications of electromyography [LL82, LXL82, NWL08, dLAW+06].

As described in chapter 4, our method of interpreting EMG signals uses a differ-
ent principle. It is not the goal to break down the EMG signal into its constituing
MUAPs, which for facial EMG signals is a formidable task [dLAW+06]. Instead,
the approach is based on pattern matching: the facial EMG signals are processed
by a classifier in order to obtain the underlying speech, without making the at-
tempt to fully trace back the sources of the observed activity.

2.1.3 Artifacts and Challenges

In bioelectrical signals, artifacts are interfering voltages which distort the mea-
sured signal [Kra07, Chapter 11]. They may be caused by a variety of factors
related to the measured subject (biological artifacts) and the technology (techni-
cal artifacts).

Technical artifacts are caused for example by amplification noise, bad electri-
cal contact points (e.g. between electrodes and amplifier), and interference from
external power sources, which is usually observed as a strong 50 Hz or 60 Hz
frequency component in the signal. Causes for biological artifacts in the EMG
signal include movements of the user and sweating, ECG interspersion (i.e. heart
activity) is sometimes also observed.

Defining the term “artifact” liberally, deteriorated signal quality is furthermore
caused by the peculiarities of the intended application. In the face, capturing
EMG by means of surface electrodes necessarily implies that each electrode cap-
tures signals from several muscles. If information about a particular muscle is
desired, this cross-talk may be considered an artifact as well. Additionally, signal
distortions in EMG-based speech recognition are caused by facial movements
which are not related to speaking, like swallowing, chewing, smiling, etc.

All these artifacts are detrimental to optimal signal quality and recognizer per-
formance. Application-related artifacts can be minimized by careful setup and
recording procedures, for example, our subjects were asked to avoid extraneous
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facial movements. Technical artifacts are reduced by using high-quality compo-
nents, and by assuring optimal recording conditions, for example locations with
low electrical interference. Biological artifacts are similarly avoided e.g. by using
air-conditioned rooms for recording. Still, artifacts necessarily occur, and arti-
fact detection and reduction is one particular application of the new EMG array
technology described in chapter 7.

2.1.4 Applications of Electromyography

Electromyography is an established technology with a multitude of applications.
A classical one is medical diagnosis and treatment: Muscle contraction behavior
can be checked using electromyography in order to discover muscle pathologies.
This extends to the study of the neuromuscular pathways, i.e. the connections be-
tween a patient’s brain and body, and allows diagnosis of a variety of diseases of
the brain and nervous system, including Parkinson’s disease, cerebral palsy, and
stroke [dLAW+06]. For these applications, one frequently uses a decomposition
of the EMG signal into its constituent MUAPTs [LL82, LXL82, NWL08, HZ07],
also see the further background notes in chapter 7. A whole tome about the topic
of EMG-based analysis of neuromuscular disorders is [PS12].

The planning and execution ofmovements has also been studied by electromyog-
raphy (clearly, if any form of extensivemovement is involved, EMG is necessarily
captured by surface electrodes). Such investigations deal with a variety of set-
tings: from competitive sports to everyday life, from healthy people to disabled
persons, etc. [CC93] offers an extensive review.

EMG is furthermore applied in rehabilitation, ergonomics, and biofeedback, just
to name somemore examples frommedicine and physiology. An extensive treat-
ment is found in [MP04, Chapters 12 - 17].

In this study, we are particularly interested in machine-learning related uses of
EMG. Since EMG is a biosignal which can be generated even by a large group
of physically handicapped patients, assistive technologies easily come to mind.
We mention in particular the control of limb prostheses with electromyogra-
phy [CvdS09, SG82, EHP01], [MP04, Chapter 18]: Here the goal is to control,
as naturally as possible, an artificial arm or leg. Unfortunately, as explained in
[CvdS09], fully intuitively control of prostheses with a large number of degrees
of freedom has not yet been realized. Yet, investigations on this topic are pro-
gressing speedily, driven by recent advances both in EMG recording hardware
and real-time classification techniques.

The myoelectric signal is also used as the basis of human-computer interfaces
(HCI), and the research conducted for this thesis falls into this category. From
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a pattern recognition standpoint, current applications in assistive technologies
for disabled patients are frequently limited to relatively simple setups, where a
few distinct commands e.g. for controlling a computer mouse are distinguished
[MLM04, BSA00]. In this study we present an HCI based on speech recognition
by facial electromyography: This is clearly a far more complex machine learning
task, since a high number of different activity patterns have to be recognized in
order to discern speech.

2.2 Speech Production and Perception

Physically, sound can be described as a superposition of pressure waves moving
through a medium. The term “pressure wave” means that the wave is formed
by compressions and rarefactions of the molecules of the medium. Since these
compressions occur in the direction of the propagation of the pressure wave,
sound waves are longitudinal waves. Like any physical wave, the sound pressure
wave can be described by a sine function, where by definition locations of max-
imal compression correspond to maxima of the sine, and locations of maximal
rarefaction correspond to minima of the sine (see figure 2.4).

Figure 2.4 – Sound as a Pressure Wave. The sound wave may be described by a part
of a sine function, where by definition locations ofmaximal compression correspond
to maxima of the sine, and locations of maximal rarefaction correspond to minima
of the sine.

This exposition only considers sound waves propagating through air, since this
is the scenario in which spoken communication occurs. In this case, the prop-
agatation speed is approximately 331.5 + 0.6T m

s
, where T is the temperature,

measured in degrees Celsius [HAH01, Chapter 2.1]. It should be noted that the
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air molecules participating in the sound wave are not transported along with the
wave, they just oscillate around their resting position.

The amplitude of the sound wave, as shown in figure 2.4, corresponds to the
amount of energy needed for displacing the molecules. This amount of energy
is related to the perceived loudness of the sound wave, however the relationship
is quite complex [Ols72]. While the human ear can normally perceive sounds
of up to 20kHz (substantially decreasing with age), the bandwidth necessary for
understanding human speech has a far lower upper limit; a maximal frequency
of 8kHz is considered sufficient. This gives rise to a standard speech sampling
rate of 16 kHz. It can be shown that the most speech signal energy is found at
frequencies even below 8kHz, as an example, consider figure 2.9, which shows
spectrograms of two speech signals (oncewhispered, once normally spoken). Par-
ticularly in the case of normal speech, it is obvious that most signal energy is
found in the lower half of the spectrogram, i.e. below 4kHz. For more details on
speech sounds, please refer to section 2.2.2.

In section 2.2.1 it is described how speech sounds are produced. Otherwise, we
are interested in the high-level properties of human speech: Section 2.2.2 ex-
plains how the large variation in human speech sounds is possible. Section 2.2.3
describes the speaking modes which are used in this thesis: audible, whispered,
and silent speech. Finally, in section 2.2.4 we report on speech perception.

2.2.1 Anatomy of the Speech Production System

Human speech is produced by the articulatory apparatus, which is shown in fig-
ure 2.5. The air pressure waves which form human speech are created in the
lungs, they then pass the larynx and the vocal tract, where they undergo com-
plex modifications which account for the variety of speech sounds, and finally
emanate from the mouth and the nostrils of the speaker.

In the lungs, air pressure is built up. The first organ which modulates the
airstream and influences the produced speech sounds are the vocal chords, lo-
cated in the larynx. The glottis is defined as the combination of vocal chords and
the space enclosed by them.

If the vocal chords are held tense, so that the airflow sets them into vibration, a
voiced sound is created. The main characteristic of this sound is the fundamental
frequency, which is the frequency at which the vocal chords vibrate; it ranges
from 60 Hz for a large man to as high as 300 Hz for a small woman or a child
[HAH01]. The fundamental frequency is determined by the length and the taut-
ness of the vocal chords, so it can be varied in a certain range. This gives rise to
intonation, which plays an important role in speech perception. The waveform
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Figure 2.5 – Schematic diagram of the human articulatory apparatus (adapted from
[USNIoHa], public domain)

generated by the vocal chords exhibits further frequencies, namely the harmonics
(integer multiples) of the fundamental frequency.

If the vocal chords are held slack, so that they do not vibrate, an unvoiced sound
is generated. This sound may be described as an audible turbulence without
discernible fundamental frequency: instead, a broad spectrum of high-frequency
components is observed, closely resembling white noise1.

After leaving the glottis, the airstream passes through the vocal tract, consisting
of the oral and nasal cavity, and the articulators therein (tongue, lips, etc.). While
the glottis creates the speech excitation, and thus the distinction between voiced
and unvoiced sounds, the vocal tract is where the majority of speech sound mod-
ulation takes place. Section 2.2.2 reports on the mechanisms the vocal tract uses
for this purpose.

The process of speech sound generation is frequently described with the source-
filter model, see figure 2.6. It consists of a sound source (the glottis), creating
either voiced or unvoiced excitation, and a filter (the vocal tract), modifying the
excitation signal. Mathematically, a filter boosts or attenuates certain frequen-
cies of the input signal, so that in frequency domain, it can be described as a
simple multiplication [SH90]. This is expressed by formula (2.1) describing the

1The turbulent noise emanating from the glottis as the basic excitation of unvoiced sounds
should not be confused with the audible turbulence when a (voiced or unvoiced) fricative sound
is pronounced: In the former case, the turbulence is created by the glottis, in the latter case, the
turbulence is due to constrictions in the vocal tract.
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Figure 2.6 – The source-filter model of speech production

the source-filter model: In frequency domain, the speech signal X(ω), i.e. the
output of the vocal tract, is computed from the excitation E(ω) and the vocal
tract frequency response H(ω) with the formula

X(ω) = E(ω) ·H(ω). (2.1)

Describing the vocal tract as amathematical filter is quite accurate for vowels, i.e.
sounds which are produced without a constriction in the vocal tract, however the
airstream modifications for consonant generation cannot be described by filters
alone. Nonetheless, the source-filter model is widely used since it is simple and
effective.

2.2.2 Phonetics and Phonology

Speech sounds (or phones) are generated from the voiced or unvoiced excitation
by the interplay of the articulators. Different sounds result from different config-
urations of the articulators, modifying the airstream in a variety of ways. Phones
can roughly be divided into two basic classes [HAH01]:

• Vowels are articulated without major constrictions in the vocal tract. In
this case, the vocal tract acts as a filter: the most strongly emphasized
frequencies are called formants, they unambiguously characterize a vowel
sound. Vowels are always voiced. It is possible to articulate continuous
transitions between vowels, giving rise to diphthongs and even triphthongs.

• Articulation of Consonants is characterized by a constriction in the vocal
tract. This constriction may take several forms, giving rise to a set of very
different speech sounds, as described below. Consonants can be voiced or
unvoiced.

Since a vowel is pronounced with a vocal tract free of (major) obstructions, the
main factor in determining its sound is the position of the tongue. Furthermore,
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Figure 2.7 – IPA vowel quadrangle [Int99]

lip rounding changes vowel characteristics, and in the case of nasal vowels, which
exist in languages like French and Portuguese, air emerges through both mouth
and nose. Thus, we have four main parameters describing vowel articulation:
Vertical and horizontal tongue position, lip rounding, and nasalization.

Vowels are frequently described by the vowel quadrangle, which is shown in
figure 2.7. The symbols are part of the International Phonetic Alphabet [Int99],
which has been developed in order to provide a unified notation for all possible
speech sounds, of all possible languages. In the vowel quadrangle, three of the
four main properties are shown: the closeness or height (vertical position of the
tongue), the backness (horizontal position of the tongue), and the rounding of the
lips.

Closeness and backness are charted on the vertical and horizontal axis, respec-
tively, and it becomes clear that these are actually continuous variables; yet in
order to be able to write vowels as discrete symbols, the standard IPA alphabet
only distinguishes seven vowel heights and five degrees of vowel backness. The
third dimension, given by pairs of symbols, signifies the roundedness of the lips.
Nasalization is not shown in the basic IPA vowel chart, in writing it is indicated
with a tilde symbol over the vowel.

For consonants, a classification scheme based on the vocal tract obstruction is
used. The main factors in describing a consonant are themanner of articulation,
the position of articulation, and voicing. Possible manners of articulation are as
follows:

• Fricatives are produced by forcing the airflow through a narrow gap be-
tween two articulators put close to each other, for example, pronouncing
the phone [f] involves the upper lip and the lower teeth
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Figure 2.8 – IPA chart for consonants [Int99]

• Plosives are produced by shortly stopping the airflow altogether, as for the
phone [p], where the lips close off the airstream

• Approximants are produced when two articulators are placed close to each
other, but not close enough to create turbulence as in the fricative case.
Examples (in English language) include the phones [l] and [r], as well as
semivowels like [y] as in “yes”

• Lateral sounds, e.g. [l], are produced by blocking the central oral cavity
with the tongue, so that air emerges along the side of the tongue.

• Nasals like [m] and [n] are produced by closing off the oral cavity, letting
air emerge through the nose only. They must be distinguished from nasal
vowels, where air emerges from mouth and nose simultaneously

• Flaps occur when an active articulator shortly hits a passive one. In con-
trast to a plosive sound, no air pressure is built up behind the place where
the articulators connect.

• Trill sounds, like the Spanish trilled [ṙ], are airstream-caused periodic vi-
brations of an articulator.

The articulation position is the point of main constriction, ranging from bilabial
(for sounds which are produced with the lips, like [b] and [p]) to glottal (main
constriction at the glottis, like [h]). Voicedness is the third distinctive feature
of consonants, many of which exist in voiced/unvoiced pairs, like e.g. [t] and
[d]. The set of consonants is represented in the consonant table from the IPA
chart (figure 2.8), with manner of articulation on the vertical axis, position of
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articulation on the horizontal axis, and paired symbols representing a pair of
voiced and unvoiced consonants.

One observes from figures 2.5 and 2.8 that most articulation positions can be
directly associated with articulators, for example, there are bilabial consonants
which are formed with the lips, dental and alveolar consonants which are formed
with the teeth resp. the tooth ridge (alveolar ridge), etc. The tongue frequently
plays an important role as well. The exception to this rule are retroflex con-
sonants, which are characterized not by a concrete position of articulation, but
instead by being articulated with a curled tongue; they are rare in European lan-
guages.

Properties like place or manner of articulation, or the tongue position from the
vowel quadrangle, are called phonetic or articulatory features [Kir99]. In this
study we prefer the term phonetic features (PFs) since these properties are not
directly derived from the movement of the articulators, but rather from the study
of phonetics. In this thesis, phonetic features play a key role in the modeling for
the EMG-based spech recognizer, see chapter 5.

Of course, no existing language uses all possible phones, and even if a subset of
phones exist in a given language, not all existing phone contrasts cause differ-
ences in the meaning of words. Therefore, phonetics distinguishes phones from
phonemes: while phones differ in their acoustic realization, phonemes convey
meaning differences. If a pair of words which just differ by one phone exists,
these phones are realizations of different phonemes: for example, in the English
language, [b] and [p] are different phonemes since the words “bill” and “pill” are
different. A word pair like “bill”/“pill” which only differs by one phone is called
minimal pair.

A phoneme may be realized by different phones, so-called allophones: For exam-
ple, in the English language the phoneme /l/2 has at least two allophones, namely
the voiced lateral-alveolar approximant [l] as in “lip” and the velarized “dark l”
[ł] as in “pill”. Finally, we note that phonemes are strongly language-dependent,
whereas phones may to a certain extent be shared between languages (this is a
key requirement for building multilingual speech recognition systems [Sch00]).

2.2.3 Speaking Modes: Whispered and Silent Speech

So far, we have described normally spoken, or audible speech. This thesis aims
at enabling speech communication with the special purpose of communicating

2Phonemes are commonly written between slashes, like /l/, phones are written in square
brackets, like [l].
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covertly, without disturbing bystanders or compromising confidentiality. For
this purpose, we investigate both whispered and silent speech, we particularly
focus on the difference between these speaking modes in chapter 6.

Whispered speech is a speaking mode which consists entirely of unvoiced
speech, so for all voiced phones, the excitation signal created by the vibrating
vocal chords is replaced by a voiceless turbulence. Since whispered speech is in-
tended for communicating privately, it is typically pronouncedmore quietly than
normal speech, so that it is only audible in a very close vicinity. Yet, unperturbed
whispered speech evidently carries all information necessary for understanding
its content; it is also notable that minimal pairs which only differ in the voicing
of a single phone may still be distinguished in whispered speech [Dan80].

The phonetic properties of whispered speech and audible speech diverge to a
certain extent, caused by the different excitation signal, but also by the changed
configuration of the vocal tract which is necessary to prevent the vocal chords
from vibrating. Typical differences are (taken from [ITI05], see also the refer-
ences therein):

• The signal energy is lower in whispered speech than in audible speech,
particularly for lower frequencies (which in audible speech carry the main
energy of the signal)

• The formant frequencies of the vowels shift upwards, and likewise, the for-
mant boundaries between vowels change

• Voiceless consonants are least affected by switching from audible to whis-
pered speech, and vowels are most affected: This causes the notable result
that in whispered speech, vowels do no more bear the main energy of the
signal, as they do in normal, audible speech.

Further differences have been observed, for example, the duration of certain
phones or syllables is increased in whispered speech [Sch72]. For a listing of
more studies regarding the phonological difference between whispered and nor-
mal speech, we refer to the comprehensive background information in [Osf11].

Whispered speech has mostly been studied acoustically. Yet, research based
on other methods exists: H. Yoshioka collected electropalatographical record-
ings of whispered speech [Yos08], measuring tongue contact patterns for the
two phones /s/ and /z/ in whispered speech. Higashikawa et al. performed
kinematic measurements of the jaw opening [HGMM03]. Whispered speech
has also been considered for acoustic speech recognition, here it is observed
that recognition across speaking modes requires several special adaptation steps
[ITI05, JSW04, Jou08]. However to our knowledge, there exist no studies which



30 Physiological and Technological Background

deal with the articulation of whispered speech at the muscle level, or with the
manifestation of the whispered speaking mode in the facial EMG signal.

We define Silent Speech as follows: The speaker is told to move the articulators
as normally as possible, while suppressing the pulmonary airstream, so that no
sound is heard.

During our recordings, we made two major observations. First, it is often diffi-
cult to produce totally silent speech. This applies in particular to plosive conso-
nants and fricatives, where the process of articulation fundamentally depends on
an airstream. Some of our subjects reacted to this problem by producing these
sounds in a very quiet whisper, which our recording supervisors corrected as
soon as these whispers became understandable. However, as long as no com-
plete words could be discerned in silent speech recordings, very quiet articula-
tion sounds were not rejected. Those subjects who managed to articulate silent
speech without actually producing any sound at all frequently reported that they
felt that their articulation of certain sounds, particularly plosives, changed dras-
tically compared to audible speech.

The second observation relates to Silent Speech consistency. Inconsistencies
are expected for two reasons: first, our subjects did not have any experience
in speaking silently, and second, auditory feedback, which plays a major role
in normal articulation (see section 6.1 for more details), fails for silent speech.
A particular inconsistency which was corrected by the recording supervisors as
soon as it was observed is loss of articulatory movements: When an (inexperi-
enced) subject spoke silently over several minutes, sometimes his or her articu-
latory movements became less and less pronounced, disappearing almost com-
pletely over time if the supervisor did not intervene. Clearly, this is a problem
when silent speech is produced by inexperienced persons. We ran some initial
experiments on giving feedback to our subjects during the recording of silent
speech, in order to devise an automatic method to avoid such issues. However
none of the investigated methods was robust enough to be made the basis of a
large-scale recording [HJWS11].

As a final remark on silent speech, we report that several studies regarding
speech production by hearing-impaired persons exist (for example, [OM82]).
These studies clearly show that when a person does not hear his or her own
voice, the properties of the produced speech change. Yet, we assume that these
results do not fully carry over to silently produced speech, since not only auditory
feedback is missing, but the process of articulation itself is affected.

Silent speech can (unfortunately) not be studied acoustically (in chapter 6, we
investigate the articulation differences between silent and audible speech at
EMG signal level). However, it is instructive to visualize whispered and audible
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Figure 2.9 – Exemplary spectra of the sentence “The defense lawyers expect jury se-
lection will take up to two weeks”, whispered (above) and normally spoken (below).
The spectrograms are aligned for comparability. The mark (*) indicates a typical
vowel, the mark (#) indicate a fricative.

speech. A classical speech representation is the spectrogram, where the speech
signal is divided into frames, and the frequency components of the frames are
plotted over time. Figure 2.9 shows logarithmized spectrograms of the sentence
“The defense lawyers expect jury selectionwill take up to twoweeks”, oncewhis-
pered (above), once normally spoken (below).

Two typical speech sounds which are easily visually distinguished are high-
lighted: The mark (*) indicates a vowel, in the lower spectrogram, where normal
speech is displayed, the fundamental frequency and its multiples are recogniz-
able as “ripples”. The formant coutours can be seen asmaxima over the spectrum;
they are also visible in the whispered speech spectrogram, however a fundamen-
tal frequency contour does not exist. At position (#), a typical voiced fricative
(the [z] from the word “lawyers”) is seen. Again, in the audible speech spec-
trogram the fundamental frequency multiples are seen as ripples, and for both
audible and whispered speech, a high-frequency noise indicates the presence of
a fricative.

2.2.4 Speech Perception

For the purpose of this thesis, the productional aspect of speech plays a more
important role than the perceptional aspect. Still, speech perception is a central
aspect when dealing with speech recognition, and within the context of this the-
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sis, it is relevant to the question of articulatory control, as detailed in section 6.1.
Therefore this part contains a short summary of the properties and functionality
of the human ear.

Figure 2.10 – The ear (from [Wik13a], CC-BY-2.5 license)

Figure 2.10 shows the anatomy of the human ear, which is divided into three
parts—the outer ear, which collects incoming sounds, the middle ear, which am-
plifies the sound wave, and the inner ear, where sounds are converted into nerve
impulses, thus being usable as an input to the brain.

The outer ear collects sound waves, for which its cup-like form is optimized.
The collected waves pass through the auditory canal to the middle ear, which is
delimited by the tympanic membrane. The middle ear has a twofold function: It
acts as an amplifier, and the sound wave is converted from an air wave into a
fluid wave, i.e. a wave in a liquid medium. This conversion and amplification is
performed by the three auditory ossicles, which are small bones located within
the middle ear.

The auditory ossicles transfer the speech waveform to the inner ear, whose main
component is the spiral-shaped cochlea. Here, the hair cells are found, which are
excited by the incoming fluid sound waves. Different hair cells are excited by
different frequencies (this stems from variations in their diameter and stiffness),
so that the inner ear essentially performs a frequency decomposition of the sound
signal. The hair cells are directly connected to the cochlear (or auditory) nerve,
which links the ear to the brain.

Thus, humans (and many animals) perform hearing by mechanically generating
a frequency decomposition of incoming sounds. This observation gave rise to
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several common signal preprocessing algorithms in acoustic speech recognition,
which are often based on the Fourier transform, see section 2.3.1.

2.3 Introduction to Automatic Speech
Recognition

Figure 2.11 – Components of a traditional speech recognizer. The processing chain
starts with speech input (upper left), which is used to train the acoustic model. When
the acoustic model has been created, speech can be decoded, yielding text output
(lower right).

A significant part of this study, as well as of prior studies (e.g. [Jou08]), deals
with adapting the standard speech recognition chain towards the properties of
the EMG signal and the EMG representation of the process of speaking (audibly
or silently). Therefore this chapter contains a walkthrough of standard speech
recognition, with the purpose of serving as a reference point in later chapters.
Also note that an acoustic speech recognizer is used for a process we call la-
bel bootstrapping: The models of the EMG-based speech recognizer are initial-
ized from scratch, with the help of time-alignments (or labels) created from the
acoustic signal; see section 4.1.1 for more information.

Figure 2.11 presents the components of a classical speech recognizer. The speech
signals which serve as input are recorded with any type of microphone and A/D
converted (digitalized) for further processing. Usually sampling is performed at
16kHz. We always use read speech as input for training and testing, which is
divided into utterances, i.e. short recordings of speech in the approximate length
of one sentence. We assume throughout this thesis that the textual content of
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the utterances, the transcription, is known and accurate, with the only exception
of unsupervised session adaptation, see section 8.2.3.

After digitalization, features are extracted, which represent the speech signal in
a manner suitable for classification. The next step is the training of the recog-
nizer: Here a set of training data is processed to generatemodels of acoustic units
(for example, phones). The collection of all model information extracted from
the training data is called the acoustic model; consequently, in this thesis we in-
troduce the term myoelectric model to describe all information in the trained
recognizer which stems from the EMG input signal. Finally, when the acoustic
model has been created, decoding can be performed on (unknown) speech in-
put, yielding a hypothesis of the textual content of the spoken utterance. During
this process, the language model yields a priori information about the likelihood
of certain sequences of words, irrespective of the acoustic signal. Finally, the
(pronunciation) dictionary (not shown in figure 2.11) contains pronunciations for
all words occurring during training and decoding. Thus it has the important
role of linking words and their pronunciations. While in contemporary large-
vocabulary speech recognition dictionary creation can be a daunting task, for
this thesis a fixed dictionary is used, which is described in section 4.

2.3.1 Acoustic Feature Extraction

The raw speech waveform is not directly useful for speech recognition and pro-
cessing: it contains too much redundant and superfluous information, and the
relevant information is not readily available. In particular, a single amplitude
value by itself contains almost no usable information.

Feature extraction aims at emphasizing signal properties relevant for speech
sound classification, while reducing redundant information. Furthermore, the
speech signal is an (albeit highly-sampled) continuous signal, from which a dis-
crete sequence of phones is to be recognized. Therefore, one step of acoustic
feature extraction is framing or windowing: The signal is divided into short time
segments, and from each of these segments a single feature vector is extracted,
thus discretizing the time dimension of the speech signal on a coarse scale. The
output of feature extraction is a matrix of dimensionalityN ×D, whereD is the
dimension of each feature vector, and N is the number of time frames. We use
the convention that time runs from top to bottom, so each row of the matrix is a
D-dimensional feature vector.

Speech feature extraction has been researched formany decades; herewe present
Mel Frequency Cepstral Coefficients (MFCC) as a contemporary standard. MFCC
feature extraction consists of the following steps:
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• The speech signal is divided into frames with a frame width of 16ms and
a frame shift of 10ms. This frame shift is a long-established standard, it
reflects the properties of phones: A phone is assumed to last at least 30ms,
which then amounts to three frames. These are allowed to be acoustically
different (consider, for example, a plosive sound, which consists of a short
silence followed by a burst and an aspiration). A longer frameshift would
preclude subdividing a phone into parts, a shorter frameshift brings no
further improvement, but increases the computation time.

• Each frame is multiplied with a Hamming window [Ham89] to reduce dis-
tortion in the following step:

• The frame-wise spectrum is computed by the Discrete Fourier Transform.

Thus we have obtained a discrete representation of the speech signal in the fre-
quency domain. The idea of using a frequency representation is motivated by
the properties of the human ear, see section 2.2.4.

• A filterbank is used for dimensionality reduction. This means that
weighted averages over adjacent frequency components are computed,
such that the total number of coefficients in the feature vector is reduced.
The number and shape of the filters is determined by perceptional consid-
erations: The human ear distinguishes lower frequencies at a much finer
scale than higher frequencies. This gives rise to the Mel scale [SVN37],
which ranks perceived pitch versus actual frequency. The conversion is ap-
proximately logarithmic, i.e. at high frequencies, the perceived pitch rises
muchmore slowly than the actual frequency. Therefore, theMel filterbank
consists of a set of triangular filters, where filters at lower frequencies are
much denser and more narrow than filters at high frequencies. Typical
numbers of Mel filters range around 30. For a more general treatment of
dimensionality reduction see section 2.4.

• The logarithm of the frame-wise Mel spectra is taken, then each frame is
processed with the discrete cosine transform (alternatively, the Discrete
Fourier Transform can be used), transforming the features into Cepstral
Domain. This step amounts to a deconvolution of the excitation source and
the vocal tract filter (compare the source-filter model of speech production
described in section 2.2.1).

• Of the resulting representation, the first 13 coefficients per frame are kept,
again reducing the signal dimensionality. Optionally, context information
can be modeled by stacking adjacent feature frames. The context width
can be varied e.g. between 1 and 10. If higher context widths are used, Lin-
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Figure 2.12 – Three-state context-independent phone HMM for the word “Hello”.
The upper row of circles indicates the possible sequence of states, the lower row of
rectangles shows the emission probabilities.

ear Discriminant Analysis (LDA) (see section 2.4) should be applied after
stacking in order to perform dimensionality reduction.

MFCCs are quickly computed and are known to give good recognition results. It
is clear that they are based on a frequency decomposition of the speech signal,
but go well beyond a simple application of the Fourier transform, since they take
speech perception into account.

2.3.2 Unit Modeling and Sequence Modeling

We define a model as a stochastic representation of certain properties of the
(speech) input signal. Here we deal with the acoustic model, which represents
the acoustic properties of speech, i.e. the acoustic realization of phones and
phonemes, and the possible sequences of phones whichmake up the words of the
vocabulary. As we mentioned above, the language model, which assigns proba-
bilities to sequences of words, and the dictionary, which maps words to phone
sequences, are additional knowledge sources, see section 2.3.6.

The model structure is a key design decision when building a speech recognizer.
Its importance stems from the requirement that one wishes to recognize a po-
tentially unlimited set of words, even if these words do not appear in the train-
ing data set. Therefore, models of words must be composed from smaller units,
for example from syllable models or phone models. The latter is the standard
in speech recognition and is described in this section. Furthermore, the model
structure has an impact on the extent of data sharing between word models, and
consequently on the required amount of training data, it influences the compu-
tational efficiency of the algorithm, the ability to deal with coarticulation effects,
accents, etc. Section 5 of this thesis presents a novel modeling approach for the
EMG-based speech recognition system.
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Formally the acousticmodel consists of two parts, the unitmodel and the sequence
model. We use the nonstandard term “unit model” to refer to the modeling of the
acoustic properties of phones or phonetic features, which is done at the frame
level. Sequence models determine the possible sequences of phones, up to word
or utterance level.

In the simplest case, unit models represent phones or subphones (i.e. the begin-
ning, middle, or end part of phones). They are usually based onGaussianmixture
models, see section 2.3.3; for now we only require that given any feature vector,
a unit model is able to provide a probability that the feature vector matches the
model3.

Sequence modeling is normally performed with a Hidden Markov Model (HMM),
which provides a framework for combining unit models into words and utter-
ances. This is done by augmenting the unit models, which are ignorant of their
context, with transition probabilities which model the probability with which a
certain sequence of unit models occurs. For such kinds of models, the term se-
quence models has been coined.

In order to give an intuitive explanation of the HMM concept, consider figure
2.12. A model of the word “Hello” is shown, which according to the dictionary
consists of the four phones [H], [E], [L], and [OU]. In general linguistic usage,
such a single-utterance model is also called an “HMM”, even though this is some-
what inaccurate since it is just a representation of a single utterance within the
HMM.

The blue circles representing subphones are the states of the HMM. The further
constituting parts are as follows:

• The transition probabilities are represented by the arrows connecting the
HMM states. We did not label the arrows with probability values since
practically all contemporary speech recognizers do not use different tran-
sition probabilities. Instead it is assumed that all transitions which are
allowed are equally probable, and that the possibility of word sequences
is determined by the language model. Transitions which are not indicated
by arrows are impossible, for example, the HMM in figure 2.12 is unable
to model the word “hole” ([H] [OU] [L]).

• The white rectangles assigned to the HMM states are the unit models. In
the case of figure 2.12, there is a one-to-one correspondence between unit

3The mathematician might argue that Gaussian (mixture) models yield values of a probability
density function, not true probabilities. This goes beyond the scope of this explanation and is of
no concern anyway; yet, it might be more exact to say that a unit model must yield a scalar value
describing how well a feature vector and the model match, this scalar value may or may not be
a probability.



38 Physiological and Technological Background

models and HMM state names, but we will see below that this is not always
the case.

Thus, we see that the HMM links unit models, which describe feature vectors but
do not “know” anything about the context in which they occur, and transition
probabilities, which describe how phone or subphone units are composed into
words, but rely on the unit models to actually match a feature vector sequence.
Within the context of an HMM, the probability distributions yielded by the unit
models are called emission probabilities4.

Hidden Markov Modeling has evolved into a standard in acoustic speech recog-
nition, having the great advantage that efficient algorithms for HMM-related
problems are available. Out of these, we mention

• the forward algorithm, which allows to compute the probability of an ut-
terance HMM given a sequence of feature vectors and thus constitutes a
first step towards decoding, i.e. recognizing unknown speech.

• the forward-backward algorithm and its deterministic counterpart, the
Viterbi algorithm, which are used to determine optimal assignments of
HMM states and feature frames. Such as assignment is called a path
through the HMM.

Due to space constraints, we do not present these algorithms in detail, instead
we refer to standard literature: a textbook treatise of HMM theory and concepts,
as well as a more formal definition, can be found in [HAH01, Chapter 8]. A good
tutorial introduction into HMM-related algorithmics is [Rab89].

2.3.3 Gaussian Mixture Models

In this section we deal with the concrete design of unit models, namely with their
standard realization as Gaussian mixture models (GMMs).

First consider a single Gaussianmodel in theRD, which is given by its probability
density function

N (x |µ,Σ) = (2π)−
D
2 |Σ|−

1
2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (2.2)

The Gaussian distribution is completely determined by its two parameters, the
mean µ and the covariance matrix Σ. One can intuitively visualize a Gaussian
as a “bubble” in space, representing the location and the spreading of the data.

4This term stems from the concept of generative modeling, i.e. the HMM states generate ob-
served feature vectors. Some background information is found in [Bis07, Chapter 1.5].
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If a data set with an irregular distribution is to be modeled, a single Gaussian
distribution is frequently not flexible enough.

GMMs are simple yet powerful models which solve this problem and are there-
fore often used, in particular, almost all contemporary acoustic speech recogniz-
ers are based on GMM unit modeling. It can be shown that GMMs are a reason-
able approximation for any probability distribution [Bis07, Chapter 2.3.9]. We
will also see that there are powerful and efficient algorithms for estimating their
parameters, making GMMs a versatile modeling concept.

A GMM is a weighted sum of single Gaussians, thus its density function is given
by

pGMM(x |w,µ,Σ) =
K∑
k=1

wkN (x |µk,Σk), (2.3)

where µ = {µ1, . . . , µK} are the component means, Σ = {Σ1, . . . ,ΣK} are the
component covariance matrices, andw = {w1, . . . , wK} is the set of component
weights, which are nonnegative and required to sum to one. The single Gaussian
model is a special case of the Gaussian Mixture model, and it is clear that the
GMM satisfies the key requirement which we stated for unit models, namely,
that it is possible to compute the probability of a feature vector x given themodel:
This is done by evaluating pGMM(x).

When a recognizer based on GMMs is to be trained, one needs to estimate the
model parameters, i.e. the set of means and covariance matrices, and the com-
ponent weights. We make the assumption that we have a set of training data
samples which is assigned to the unit model whose GMM parameters we wish to
estimate. In the case of HMM training, such an assignment would be computed
with the forward-backward or Viterbi algorithm.

In order to perform model parameter estimation, it is necessary to define a target
criterion according to which µ,Σ, and w are chosen. The standard optimization
target, which is the only one which we use for this thesis, is the maximum like-
lihood (ML) criterion: The likelihood of the training data is to be maximized. So
we define the (logarithmized) likelihood function of the training data, given the
set of training samples x = {x1, . . . , xN} and the GMM parameters µ, Σ, and
w, as follows:

L(x,w,µ,Σ) =
∑
x∈x

log
∑
k

wkN (x |µk,Σk), (2.4)

So the likelihood is computed by evaluating the component Gaussian distribu-
tions at each training data vector and then summing over all training data sam-
ples. Onemight furthermore wish to estimate the optimal numberK of Gaussian
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components, but we here assume that K is fixed. Now if there is just one Gaus-
sian, i.e. K = 1, equation (2.4) can be maximized analytically, the solution is
given by

µML =
1

N

N∑
n=1

xn and ΣML =
1

N

N∑
n=1

(xn − µML)(xn − µML)
T

(for the derivation see any standard textbook, e.g. [Bis07, Chapter 2.3.4]).

Unfortunately, for K > 1 there is no closed-form solution for maximizing (2.4)
[Bis07, Chapter 9.2]. Instead, an iterative optimization is performed with the
Expectation Maximization (EM) algorithm, which alternatingly recomputes the
feature vector assignments and the Gaussian parameters. We do not give an
explicit formula here since we mostly need the Gaussian parameter reestimation
in the context of HMM modeling, see section 2.3.5. For details about the EM
algorithm for Gaussian mixtures, as well as for a proof of its effectiveness, we
refer once more to the excellent textbook [Bis07].

2.3.4 Context Dependency

In the description above, we assumed that for a subphone like H-e, there exists
one and only one unit model H-e. This unit model would be used in all words
containing the phone [h].

Using such a context-independent (CI) structure is certainly possible, since vari-
ability of phone realizations is covered by the Gaussian mixture model. However
it has been shown in Kai-Fu Lee’s doctoral dissertation [Lee88] (we refer to the
monograph [Lee89] which Lee published based on his PhD thesis) that the mod-
eling accuracy and, in particular, the recognition accuracy of a speech recognizer
improves when context-dependent models are used. This means that while the
structure of the HMM remains as before, the emission probabilities, i.e. the unit
models, are changed to reflect not only the current phone, but also the neighbor-
ing (context) phones.

Figure 2.13 shows the setup of such an HMM, where a context width of 1 is
used, i.e. each phone model depends on its direct left and right neighbors (wider
context widths are possible and have been used, too). The notation e.g. E(H |L)
refers to a unit model for the phone [e] with left context [h] and right context
[l]. Note that this GMM still represents only the phone [e], not the sequence
[hel]. Lee reports word-level error reductions of close to 50% relative when using
context-dependent modeling [Lee89, Chapter 6.6].
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Figure 2.13 – Three-state Context-Dependent Phone HMM for the word “Hello”,
showing the assignment of unit models to HMM states. Each unit model depends
on the two neighboring phones as well as on the current phone.

A key challenge in applying context-dependent systems stems from the fact that
modeling each phone separately depending on its entire context would expo-
nentially raise the number of models to be created. This is illustrated with an
example computation: Our English-language setup consists of 45 phones plus a
special silence phone. Assuming that the non-silence phones are modeled with
three substates, we have 3 ·45+1 = 136models. Using context-dependent mod-
eling with a context width of 1, we get around 453 > 90,000 context-dependent
phones, yielding more than 270,000 subphone models. The amount of data to
reasonably train such a system would be immense: Assume that each unit model
is GMM-based with (only) five Gaussian components, and that each Gaussian
component requires 100 frames for good estimation (which is not much). Then
we need 270,000 · 5 · 100 training data frames, with a frame shift of 10ms, this
amounts to 1,350,000 seconds, or 375 hours, of required training data. Even if
this amount of data is available, it is not clear that the data is sufficiently balanced
to allow good training of all GMMs.

According to [Lee89], this problem is solved by creating joint unit models for
a group of similar contexts. One could form models by grouping phonetic fea-
tures: For example, model E(PLOSIVE |ALVEOLAR) would be used to represent
the phone [e] in words like “tell” or “bed”, but not “let” since [l] is not a plo-
sive. This is a knowledge-based model structure, since the grouping of contexts
is performed according to phonetic knowledge; it is relatively straightforward,
but there are several disadvantages:

• It cannot easily be assumed that such a model actually groups contexts
which cause similar effects to the center phone.

• There is no guarantee that each model receives enough training data to be
estimated reliably.
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• It is difficult to adapt the granularity of the context clusters to the available
amount of training data.

• Finally, optimizing the context clusters in a practical setting requires a
large amount of manual work.

Therefore an automatic clustering is the method of choice. Lee’s original algo-
rithm uses a bottom-up procedure to merge similar contexts [Lee89, Chapter 6.4],
where the similarity between contexts is given by an information-theoretic en-
tropy measure (for background information on information theory and entropy
see e.g. [CT91]). After Lee’s encouraging results, variations of context-clustering
algorithms were rapidly developed. A slightly more recent method, proposed by
Bahl and colleagues in 1991 [BdSG+91], remains in widespread use today and is
also ourmethod of choice. It uses phonetic decision trees, whichwork onGaussian
Mixture Models. Here, specific models are iteratively created from general ones
by splitting models based on on phonetic questions: this constitutes a top-down
approach.

The algorithm works incrementally and creates more and more specific models,
up to a certain stopping criterion. The basic idea is to go from general models
(encompassing many contexts) to specific ones (covering just a few contexts) by
splittingmodels based on a predefined set of phonetic questions. These questions
ask about phonetic features of the neighboring phones, examples include: Is the
left-context phone a fricative? or Is the right-context phone voiced?. The model
generation algorithm is applied in this thesis in a modified fashion, see section
5.2.2 for a detailed description.

After a phonetic decision tree has been generated, the emission probability for a
given HMM state can be computed. We give a concrete example, based on the
context decision tree fragment shown in figure 2.14.

The root node represents the end part of the phone [ao] (as in “fall”). If the correct
model for the phone [ao] in the word “fall” is to be determined, we start at the
root node and answer the questions, based on the phone sequence [f],[ao],[l]: the
first question asks “Is the left-context phone (-1) a fricative?”. Since the answer is
“yes”, we continue at node AO(1)-e. The next question asks “Is the right-context
phone (+1) voiced?”, since [l] is voiced, the answer to the next question is also
“yes”, so we arrive at node AO(5)-e. This process continues until a leaf node is
reached, the leaf node now has an assigned GMM which is used to compute an
emission probability. No models are assigned to non-leaf nodes.

The iterative creation of the context decision tree is based on an optimality cri-
terion which in each step considers all possible splits of all existing current leaf
nodes and chooses the best available split. The criterion for the choice of the
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AO-e 

-1 = FRICATIVE? 

AO(1)-e AO(2)-e 

yes no 

AO(5)-e AO(6)-e 

+1 = VOICED? 

AO(3)-e AO(4)-e 

-1 = PLOSIVE? 

+1/-1 = ...? +1/-1 = ...? +1/-1 = ...? +1/-1 = ...? 

yes no yes no 

Figure 2.14 – Fragment of a context decision tree in speech recognition

splitting question in each step is the information gain or entropy loss5 when the
split is performed [Lee89, FR97]. The criterion thus reflects the discrepancy be-
tween the new phonetic categories which would be created by performing the
split: The more they differ, the more benefit is expected from performing the
split. The algorithm stops when a predefined number of decision tree leaves has
been created, with the additional constraint that the amount of training data per
leaf does not fall below a certain threshold. The number of tree leaves is opti-
mized experimentally.

The result of the decision tree algorithm is a set of context-dependent models,
created in a data-driven manner to optimize the representation of the observed
contexts in the training data.

2.3.5 Bootstrapping and Training

The goal of the training process is the generation of parameters for the Gaus-
sian mixture models (GMM) which form the emission probabilities of the HMM
framework. As described above, HMM transition probabilities are not trained.

5Note that the terminology regarding the entropy criterion is somewhat nonuniform, [FR97]
uses the term “entropy gain”, even though the gain is caused by a loss of entropy.
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The GMM parameters consist of the mixture component weight, mean vector,
and covariance matrix for each Gaussian component of the GMMs, as described
in section 2.3.3. Furthermore one might wish to determine the optimal number
of components for each GMM, and in the context-dependent case, the phonetic
decision tree which determines the model structure must be created. We assume
that a set of preprocessed transcribed training data is available, where the term
transcribed means that the textual content of the training data is known (super-
vised training). This is always the case for the systems considered in this thesis,
but in many practical cases, a transcribed training data corpus may not be avail-
able. Such cases merit the use of techniques which do not require transcriptions,
like unsupervised adaptation, which we apply to session-independent systems,
see section 8.2.3.

We first consider context-independent modeling. In order to initialize the GMM
parameters, an assignment of the feature vectors to the subphone models is re-
quired, and it is by no means uncommon to create such an alignment with the
help of an already existing speech recognizer. There also exist speech corpora
where alignments have been created manually, e.g. the TIMIT corpus [GLF+93],
however creating manual time-alignments is an extremely time-consuming pro-
cess. If alignments exist, initial Gaussian means may be computed with the k-
means algorithm (see e.g. [HAH01, Chapter 4.4]) or the merge-and-split algo-
rithm [UNGH00]; the latter automatically estimates the optimal number of com-
ponents in the Gaussian mixtures. Covariances are normally initialized with the
identity matrix.

If no alignment is available, but the amount of training data is large enough, it
may be sufficient to initialize all GMM means and covariances uniformly (flat
start) [You08]. We can not use flatstart in the experiments presented in this
thesis since the amount of training data has proved to be too small. Instead, we
use an acoustic speech recognizer to obtain initial alignments for EMG signals
of audibly spoken and whispered speech, see section 4.1.1. For silent speech, a
different approach is required, see section 6.3.

The second step deals with finding the optimal parameters for the Gaussians. As
described in section 2.3.3, the target function for optimization is the likelihood
function L, frequently used in logarithmized form for easier computation. In
contrast to the usage in section 2.3.3, we incorporate theHMM state (which in the
case of context-independent modeling directly corresponds to a unit model) into
L. ThenL depends on the following parameters, where the indexm = 1, . . . ,M
stands for the model (i.e. the GMM), and k = 1, . . . , Km stands for the Gaussian
component of the GMM m:
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• X = {x1[t], . . . , xN [t]}, the set of all training utterances, where we use t
as a (discrete) time parameter, i.e. t = 1, . . . , Tn for n = 1, . . . , N

• w = {wm,k m = 1, . . . ,M ; k = 1, . . . , Km}, the set of component
weights. It is constrained to have the property that for each model m,∑

k wm,k = 1.

• µ = {µm,k m = 1, . . . ,M ; k = 1, . . . , Km}, the Gaussian means

• Σ = {Σm,k m = 1, . . . ,M ; k = 1, . . . , Km}, the Gaussian covariances

• P = {P1, . . . , PN}, the possible paths through the HMMs for each training
utterance x1, . . . , xN . The HMM for an utterance is derived from its tran-
scription. Each Pn is a set of possible paths through the HMM for training
utterance xn, the set of possible paths is determined by the HMM topology.
Each single path p ∈ Pn is a sequence of length Tn of model indices.

With these definitions, the log-likelihood function is

L(X ,w,µ,Σ, P) =
∑
xn∈X

log
∑
p∈Pn

Tn∑
t=1

Kp(t)∑
k=1

wp(t),kN (xn[t] |µp(t),k,Σp(t),k),

i.e. for each training data sample, we evaluate all possible paths and then sum
over their probabilities. Note that this equation may also be formulated in
slightly different ways.

As in the case of single GMMs, the log-likelihood L cannot be analytically maxi-
mized. Fortunately, there exists an efficient algorithm for the optimization of L.
It is an instance of the general Expectation Maximization (EM) algorithm which
we mentioned in section 2.3.3; the update rules for the parameters of the GMM
models are known as Baum-Welch optimization rules.

We here report the process of HMM training, including the Baum-Welch rules.
First assume that we have a “current” set of GMM parameters w, µ, Σ, they
might be initialized using k-means or a similar algorithm. Now two steps are
alternatingly performed:

• Expectation step: The assignment probabilities γm,k(x) are computed. A
data sample x = xn[t] is by definition assigned to one or more Gaus-
sian components of one of more models. This is expressed by the as-
signment probabilities γm,k(x), where for each x we make the constraint∑

m,k γm,k(x) = 1. These assignment probabilities are essentially derived
from the probabilities of the paths through the HMM, they can be com-
puted with the forward-backward algorithm or the Viterbi algorithm.
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• Maximization step: After having fixed the assignment probabilities, we
compute new values for w, µ, and Σ as follows:

wm,k =
Nm,k

Nm

,

µm,k =
1

Nm,k

∑
xn∈X

∑
x∈xn

γm,k(x)x,

Σm,k =
1

Nm,k

∑
xn∈X

∑
x∈xn

γm,k(x)(x− µm,k)(x− µm,k)
T ,

(2.5)

where we have defined Nm,k =
∑

x∈X γm,k(x), Nm =
∑

k Nm,k, and N =
#X =

∑
m,k Nm,k (the total amount of training data samples).

We remark that the amount of training data Nm,k for any Gaussian component
is usually not an integer number: Instead it results from the summation of the
fractional assignment probabilities of each feature vector to this Gaussian. In
other words, training samples are “shared” between Gaussians, each receiving
a fraction of this sample according to the assignment probability. For further
details about these algorithms, we refer the reader to [Rab89, Bis07].

L is the probability that the observed samples are generated by the underlying
probability distributions, i.e. by the Gaussian mixtures. This gives rise to the
term generative modeling for the parameter estimation method described above.
Generative modeling constrasts with discriminative methods, where parameters
are optimized towards discrimination accuracy. Several such methods exist,
including MCE (Minimum Classification Error) training [JCL97], MMIE (Maxi-
mumMutual Information Estimation) training [BBdSM86, WP02], and LMHMM
(Large Margin HMM) training [JLL06, SS07]. However, all these methods are
computationally expensive, particularly since each sample is used to estimate the
assigned models and competing models, whereas in generative modeling, each
sample only affects the models it is assigned to. In this thesis, only generative
modeling is used.

We finally consider the generation of context-dependent models. The process
of estimating model parameters, described above, does not depend on the ex-
act structure of the models, the only requirement is that we have an assigned
model for each HMM state. What we have to do is to generate the set of context-
dependent models, based on the training data.

This is done as follows. First, a recognizer based on context-independent models
is trained. Then the decision tree creation algorithm is run based on this initial
model structure, see section 2.3.4, generating a set of context-dependent phone
models. Now a full retraining of the unit models is performed, based on the new
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context-dependent structure. We do not give further details on the process of
training context-dependent models here, since it large coincides with the gener-
ation of Bundled Phonetic Feature models, which is described in detail in chapter
5.

2.3.6 Decoding and Language Modeling

Essentially, decoding an unknown speech utterance (assumed to be available in
preprocessed form, as usual) requires evaluating HMM models for all possible
combinations of words. Then the word combination which yields the highest
probability is the recognition hypothesis. HMM evaluation could be performed
with the forward-backward or Viterbi algorithms.

Of course, if the recognition vocabulary (the set of words known to the recog-
nizer) contains more than a small number of words, this approach becomes im-
practical, or even impossible if the length of an utterance is not known before-
hand. Therefore, more versatile methods have to be used.

A very common method uses a search tree which is composed from pronunci-
ations of all possible words in the vocabulary. The search tree contains HMM
states as nodes and is constructed as a prefix tree, so that words having identical
beginnings would be represented by a path in the tree which branches at the
phone or state node where the word pronunciations diverge. Initial (root) nodes
of the tree correspond to phones which appear at the beginning of words6, final
(leaf) nodes correspond to a full word, which can be determined by following the
unique path from a root node to the leaf. The search tree can be visualized as a
highly branched HMM. In particular, an emission probability is attached to each
tree node.

Inmost state-of-the-art speech recognizers, decoding is performed time-synchro-
nously, which means that an iteration over frames of the input utterance is per-
formed. In each step, the nodes of the search tree are dynamically taggedwith to-
kens representing partial hypotheses and their probabilities, i.e. each token con-
tains the probability that the assigned tree state is reached at this frame. When
a frame is processed, all hypotheses are propagated to their possible successors,
and their probabilities are updated using the emission probabilities attached to
the tree nodes. Hypotheses which have lower probabilities than competing hy-
potheses in the same tree node are removed, and more importantly, all hypothe-
ses whose probability falls below a certain (dynamic) threshold are removed, and

6strictly speaking, this gives rise not to a single tree, but to a forest of multiple trees
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only a maximum number of hypotheses is kept at all—this is very important in
order to keep the complexity of the algorithm under control.

If a leaf node of the tree is reached, this means that a specific word has been
decoded, in the next step, the hypothesis is propagated to the initial nodes, so
that sequences of words can be recognized. The algorithm terminates when the
input data has been fully processed, then the best existing hypothesis token at
any leaf node yields the final recognition result. This algorithm is known as
Viterbi Beam Search [HAH01, Chapter 12], the conceptualization using a search
tree and dynamic tokens is called token passing [YRT89].

A language model contains probabilities for sequences of vocabulary words, in-
dependent of the observed acoustics. Possible language models include n-gram
language models, where each sequence of n words receives a probability, and
grammars, which only allow specific sequences of words. For a detailed discus-
sion of language modeling, we refer to [HAH01, Chapter 11]. In the case of the
tree-based decoding described above, language model probabilities are interpo-
lated into the recognition result whenever a word-final (leaf) node is reached
[SMFW01].

Due to space constraints, this description of the speech decoding process is kept
very brief. For example, we did not mention implementation details like the
propagation of word histories in the tokens, dealing with context dependency,
and limiting the number of active tokens by pruning those with very low proba-
bilities. Decoding is an active area of research, for further information we refer
to the overview in [HAH01, Chapters 12 and 13].

2.4 Dimensionality Reduction by PCA and LDA

The above section introduced feature dimensionality reduction, which is impor-
tant in the light of the famous concept called “Curse of Dimensionality”: When
a classifier is trained with relatively high-dimensional input data, and relatively
few training samples, undertraining may occur. This is a problem for all machine
learning algorithms and stems from the underlying assumption that we wish to
be able to classify a potentially unlimited set of real-world data, and that we use
the training data to gain insight into the properties of this set: This means that
we need to learn general properties of the data.

All real-world data has got some amount of inherent variability (including ar-
tifacts, see section 2.1.3). When undertraining occurs, this inherent variability
gains too much influence, so that the learned models represent the specific mi-
crostructure of the training data (sometimes exceptionally well), but do not gen-
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eralize well on unseen data. This means that recognition accuracy on unseen
data will degrade, sometimes drastically.

An extreme example of undertraining may be visualized as follows: Assume we
intend to train a Gaussian classifier (using just one Gaussian, not a mixture) in
a three-dimensional (3D) feature space. We consider the data points belonging
to one class: If we have tens, or hundreds of sample feature vectors, it is easy
to compute their mean and covariance matrix, and training is finished. If the
samples are typical representatives of the data we intend to model (and approx-
imately Gaussian distributed), the resulting classifier should work quite reason-
ably.

Now assume that only three sample vectors are available for this estimation.
Thenwe can find a plane in the feature spacewhich contains all three data points.
The resulting Gaussian model is drastically wrong: First, the plane has zero vol-
ume in the 3D space, so we model our class as having no volume at all. Second,
such a degraded data representation will cause the classifier to malfunction: It
will assign zero probability to any data point outside the plane (even if the dis-
tance to one of the three training samples is very small), and any data point
located on the plane would receive infinite probability. Clearly, such a model
fails to yield reasonable results.

Even though this example is extreme, undertraining is a common problem in
high-dimensional models, no matter which classifier is used: In all cases, the
classifier loses robustness when unseen data is to be processed. Obviously, the
allowable input data dimensionality depends on the available amount of training
data: If more data is available, higher-dimensional models may be trained. For
many practical purposes, including the experiments conducted in this thesis, the
amount of training data is fixed, so we need to reduce the data dimensionality in
order to allow robust classifier training.

One method of dimensionality reduction was introduced above: filterbanks re-
duce fluctuations in the frequency domain and are applicable to the specific task
of generating speech features. However they do not generalize to other types of
input data; in particular, EMG data is not processed in the frequency domain (see
section 4.1.2), which precludes the application of filterbanks. In this section we
explain two common methods of dimensionality reduction which can in princi-
ple be applied to all kinds of input data, namely, Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA).
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2.4.1 Mathematical Concepts

For the exposition of PCA and LDA, several concepts from linear algebra are
required. Here we summarize these notions, without intending to give a full in-
troduction into linear algebra; for background information we refer to standard
textbooks. As a prerequisite, we assume that the reader is familiar with the el-
ementary theory of (finite-dimensional) vector spaces and linear maps between
them, as well as with inner products (or scalar products, which we denote ⟨x, y⟩)
and the concept of orthogonality.

Elementary Algebraic Definitions The prototypical finite-dimensional real
vector spaces are the spaces RD (and their subspaces), with component-wise
addition and scalar multiplication. It is easy to show that any real finite-
dimensional vector space with M dimensions is isomorphic to the RM , the iso-
morphism is defined by a coordinate representation: Assume that we have an
M -dimensional vector space V , and that B = {b1, . . . , bM} is a basis of V , i.e.
span (b1, . . . , bM) = V , and the bi are linearly independent. Then each element
x ∈ V has got a unique representation x = λ1b1+ . . .+λMbM with real numbers
λi, and we can write x by giving its coordinates relative to B:

x ∼=


λ1

λ2
...

λM

 .

There is an explicit way to compute a coordinate representation in the spe-
cific case of an orthonormal basis. Assume that {b1, . . . , bN} is such a basis, i.e.
⟨bi, bj⟩ = 0 for each pair i ̸= j, and ∥bi∥ = ⟨bi, bi⟩ = 1 for all i. Then the coordi-
nate representation of a vector x is given by the real numbers λ1, . . . , λM which
satisfy x =

∑M
m=1 λmbm, and it is easily shown that

λn = ⟨x, bn⟩. (2.6)

We next define projections. In general, a projection is a linear map P : V → V
of a vector space into itself, so that the entire image of P remains fixed under P .
Projections can be said to “flatten” the input data space, i.e. several dimensions
are removed. This is visible in figure 2.15, where two projections are shown: In
both cases, the two-dimensional input data is projected onto a line A. k is the
direction of the projection, the right-hand figure shows an orthogonal projection,
where A and k are orthogonal. Projections can be explicitly defined by basis
representations, as follows: Assume that b1, . . . , bD is a basis of the RD, such
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Figure 2.15 – Two examples of projections, which are a specific class of linear map-
pings which reduce the dimensionality of a linear space. Here two projections P
from the two-dimensional space R2 onto the one-dimensional line R1 are shown;
on the left side, a general projection, on the right side, an orthogonal projection.

that b1 . . . , bM is a basis of A, and bM+1, . . . , bD is a basis of k. Then any point
x ∈ RD can be written as x =

∑D
d=1 λdbd, λd ∈ R, and the projection P is

explicitly given by

P : x = λ1b1 + . . .+ λDbD 7→ P (x) = λ1b1 + . . .+ λMbM , (2.7)

so basis vectors belonging to k are omitted. Equations (2.7) and (2.6) finally
yield an explicit formula for computing an orthogonal projection, which is all
we will need for describing the PCA: Assume that A and k are orthogonal, then
{b1, . . . , bD} can be chosen to form an orthonormal basis, and the projection P
which projects x to the space span (b1, . . . , bM) is given by

P (x) =
M∑
d=1

⟨x, bd⟩bd ∼=

 ⟨x, b1⟩
...

⟨x, bM⟩

 . (2.8)

Projections are at the heart of dimensionality reduction based on linear maps:
Indeed, both PCA and LDA consist of a projection of the input data onto a
lower-dimensional subspace, and then describing the resulting data by coordi-
nates within this subspace. Equation (2.8) shows that in such a case, the coordi-
nate representation of the projection of any x ∈ RD only has M < D dimen-
sions, thus a dimensionality reduction has been achieved.

We now define the PCA algorithm. PCA can be defined in (at least) two equiva-
lent ways, namely, by variance maximization or by projection error minimization.
We introduce PCA by variance maximization and then show that the error min-
imization formulation yields the same result.
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2.4.2 Principal Component Analysis (PCA)

Assume that a set X = {x1, . . . , xN} ⊂ RD of D-dimensional data samples (i.e.
feature vectors) is available, where we assume that the mean of these samples
is zero, and where we define ΣX to be the sample covariance matrix of X . The
goal of PCA is to project these feature vectors onto a M -dimensional subspace
A of the feature space, where M < D. We always assume that we have pre-
determined a value forM ; there are extensions (and even more formulations) of
the PCA algorithm which allow to determine M from the data [Bis07, Chapter
12.2]. The projected data is to be called X̃ = {x̃1, . . . , x̃N} ⊂ RM , and we always
understand this to be a coordinate representation with respect to a basis of A, as
in equation (2.8).

We require the basis of A to be orthogonal, which is not a restriction, since
every subspace of the RD has an orthonormal basis. More interestingly, we also
require the projection to be orthogonal. This can be justified by the fact that out
of all possible projections of a point x on a subspaceA, the orthogonal projection
minimizes the distance (or projection error) ∥x− P (x)∥.
In order to define the PCA, we need to devise a suitable criterion for optimization.
In the one-dimensional case, where the projection spaceA is a line, the projection
is given in coordinates by P (x) = ⟨u1, x⟩ = uT

1 x for a vector u1 of unit length
according to equation (2.8). The criterion is that the variance of the projected
data, given by

σX̃ =
1

N

N∑
n=1

x̃2
n =

1

N

N∑
n=1

uT
1 xnx

T
nu1 = uT

1ΣXu1, (2.9)

is maximized. Note that the projected data still has zero mean. It is not difficult
to find a vector u1 which maximizes this criterion; the standard solution is found
by performing a constrained optimization of (2.9) using a Langrange multiplier,
see e.g. [Bis07, Chapter 12.1]: u1 must be an eigenvector of ΣX , namely the one
belonging to the largest eigenvalue of ΣX . Below we prove this statement by
giving a full justification for the validity of the PCA algorithm even for a multi-
dimensional A, the one-dimensional projection is then just a special case.

In order to define PCA in multiple dimensions, i.e. for M > 1, we first need to
find a criterion which generalizes equation (2.9). We will use the trace operator:
The trace Tr(R) of a square matrix R ∈ RD is the sum of its diagonal elements.
If R is diagonalizable, Tr(R) is the sum if the eigenvalues of R (counted with
multiplicity), so in particular, there exists the important invariance property that
Tr(R) is invariant under basis changes: Tr(S−1RS) = Tr(R) for any invertible
matrix S.
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Now assume that we project on a multi-dimensional subspace A, which has an
orthonormal basis {u1, . . . , uM}: The projection is then given by

P (x) = UTx with U =
(
u1 u2 . . . uM

)
∈ RD×M . (2.10)

Just like in the one-dimensional case, the covariance matrix of the projected data
is given by ΣX̃ = UTΣXU .

We note one complication in the definition of the multi-dimensional PCA,
namely, as long as the optimization criterion only depends on the projection
subspace A, it is satisfied by any orthonormal basis of A (indeed, even in the
one-dimensional case we obviously have two solutions u1 which maximize (2.9),
namely±u1). So the basis ofA is not uniquely defined, and the standard method
to determine u1, . . . , uM , which we describe below, just chooses the most sim-
ple of all possible bases of A: A detail which is skipped even by many standard
textbooks (including [Bis07]). However, we will see that as long as all eigenval-
ues of the data covariance matrix ΣX are different, the projection subspace A is
uniquely determined.

Nowwe are equipped with the prerequisites to define the maximization criterion
for the multi-dimensional PCA. Using the trace operator suggests itself since it
does not depend on the particular basis of the projection subspace A, as desired.
We choose A to maximize

Tr(ΣX̃) = Tr(UTΣXU), (2.11)

where U contains an orthonormal basis of A, as in (2.10). This criterion may
also be justified geometrically: The average squared distance of the projected
data points x̃1, . . . , x̃N from the origin is given by σX̃ in the one-dimensional
case, and by Tr(ΣX̃) in the multi-dimensional case (this follows from multiple
application of the Theorem of Pythagoras). Thus the multi-dimensional criterion
(2.11) and the one-dimensional criterion (2.9) reflect the same geometric property
of the projected data.

A direct constrained maximization of (2.11) turns out to be mathematically non-
trivial since there is a continuum of solutions. The problem can be solved by
imposing additional constraints on the solution, typically it is assumed that the
M + 1-dimensional PCA subspace includes the M -dimensional subspace for all
M ∈ N, see e.g. [Bis07]. Yet a solution can also be found without making this
assumption, as follows.

Assume that λ1 ≥ λ2 ≥ . . . ≥ λD are the sorted eigenvalues of ΣX
7. We

need to consider all possible subspaces A with dimension M and find (the)

7Such an eigenvalue decomposition necessarily exists for any symmetric matrix ΣX .
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one which maximizes Tr(ΣX̃) = Tr(UTΣXU), where the columns of U =(
u1 u2 . . . uM

)
contain an orthonormal basis of A.

Below we prove that for any such U ,

Tr(ΣX̃) = UTΣXU
‡
≤ λ1 + . . .+ λM . (2.12)

This implies that any transformation matrix U which yields equality at ‡ solves
the M -dimensional PCA problem. In particular, one solution is obtained by
choosing u1, . . . , uM as the eigenvectors ofΣX belonging to theM largest eigen-
values λ1, . . . , λM : These are easily computed and thus yield the standard solu-
tion for the multi-dimensional PCA. Yet it should be clear that any orthogonal
transformation of the orthonormal basis of A contained in U yields the same
subspace A and thus equally solves the problem. We obtain the solution to the
one-dimensional projection (u1 must be an eigenvector with eigenvalue λ1) as a
special case, and we also see that the subspace A is uniquely defined if and only
if λM > λM+1.

Proof of inequality (2.12):
Let λ1 ≥ λ2 ≥ . . . ≥ λD the sorted eigenvalues of ΣX . We can write them as
the diagonal elements of a matrix Λ:

Λ =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λD

 ,

then there is an orthogonal matrix V (i.e. a matrix whose rows and columns form
an orthonormal basis of RD), such that ΣX = V TΛV .

Assume that ΣX̃ = UTΣXU . Then for W = V U = ((wij)) ∈ RD×M , it holds
that ΣX̃ = W TΛW , and thus for the j-th diagonal element dj of ΣX̃ , we have
dj =

∑D
i=1w

2
ijλi, 1 ≤ j ≤ M . Consequently,

Tr(ΣX̃) =
M∑
j=1

dj =
M∑
j=1

(
D∑
i=1

w2
ijλi

)
=

D∑
i=1

(
M∑
j=1

w2
ij

)
λi =

D∑
i=1

αiλi (2.13)

with αi =
∑M

j=1w
2
ij . The columns of W ∈ RD×M contain an orthonormal basis

of a subspace of RD, thus their squared norm is one, and similarly, the squared
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Figure 2.16 – PCA for a one-dimensional projection space. The line L is in the
direction of maximal variance.

norm of the rows ofW must be less or equal one:

D∑
i=1

w2
ij = 1 for all j ∈ {1, . . . ,M}

M∑
j=1

w2
ij ≤ 1 for all i ∈ {1, . . . , D}.

(2.14)

The first part of (2.14) implies

D∑
i=1

M∑
j=1

w2
ij = M. (2.15)

From equations (2.13) – (2.15) we obtain Tr(ΣX̃) =
∑D

i=1 αiλi with 0 ≤ αi ≤ 1

and
∑D

i=1 αi = M , and since the λi are sorted by decreasing value, we imme-
diately conclude that Tr(ΣX̃) ≤ λ1 + . . . + λM , which is what we intended to
show. ■
Thus, we have fully defined the Principal Component Analysis (PCA), using
the variance maximization criterion (2.11): The PCA projection of X on an M -
dimensional subspace is obtained by choosing the subspace spanned by the M
eigenvectors of ΣX with the M highest eigenvalues. An example for M = 1 is
shown in figure 2.16. We see that given a set ofD-dimensional data, finding the
PCA projection amounts to computing the second-order statistics of the input
data, and finding the eigenvectors of a D × D-matrix. This may be done us-
ing standard numerical methods and is very efficient, even for high-dimensional
data.

Finally, it is easy to show that PCA can also be defined in a second way, yield-
ing the same result. We again fix the following prerequisites: We have a set
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X = {x1, . . . , xN} of D-dimensional input data with zero mean, and we search
a projection onto an M -dimensional subspace. The goal is now to minimize the
squared projection error, given by

E(U,X) =
N∑

n=1

∥xn − P (xn)∥2 , (2.16)

where P (x) = UTx is the projection to be found. E(U,X) measures the error
which is made when we replace all xn with P (xn).

Above, we remarked that it suffices to consider orthogonal projections. So as-
sume that we have an orthonormal basis b1, . . . , bM of a projection subspace,
which is extended to an orthonormal basis of theRD by the vectors bM+1, . . . , bD.
Let U =

(
b1 . . . bM

)
, and similarly V =

(
bM+1 . . . bD

)
. Then with a ge-

ometric argument similar to the one used to justify the multi-dimensional PCA
criterion, it can be shown that Tr(V TΣXV ) is the average squared distance of
the data points xn to the projection subspace:

E(U,X) = Tr(V TΣXV ).

Since b1, . . . , bD is a basis of the whole RD, it is also clear that Tr(UTΣXU) +
Tr(V TΣXV ) = Tr(ΣX), which is a constant. Now one immediately concludes
that minimizing E(U,X) = Tr(V TΣXV ) amounts to maximizing Tr(UTΣXU).
This was our original variance maximization criterion, so we have shown that
the criteria (2.16) and (2.11) yield the same result.

2.4.3 Linear Discriminant Analysis

Finally we discuss Linear Discriminant Analysis (LDA) as a dimensionality re-
duction tool, using [Bis07, Chapter 4.1.4] as our main reference. In contrast to
PCA, the central assumption is now thatwe have class assignments for all our data
points, and that the goal of dimensionality reduction is finding a low-dimensional
data representation for training a classifier.

A typical example of LDA is shown in figure 2.17. There are two classes of data
points, and we intend to find a projection on a one-dimensional line. The PCA
subspace is shown as a red line, and it is clear that it is optimal for representing
the data points, but suboptimal for classifying them. The figure also shows a
better solution: Projecting the samples on the green “LDA” line would yield fully
separated classes even in one dimension.

Creating an exact algorithm to compute such a projection is somewhat more in-
volved than doing PCA, in particular, we need to define a suitable optimization
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Figure 2.17 – Linear discriminant analysis: Assume that we have a dataset with
known class assignments (depicted by light and dark points), and that we intend to
train a classifier based on dimensionality-reduced features. Then the PCAprojection
(red line) may not be optimal: It would cause a substantial overlap between classes.
The problem is solved by the LDA projection (green line).

criterion. Exact class separability cannot be the criterion of choice, in particu-
lar since it is not usually achievable: In practice, classes overlap even without
dimensionality reduction. Also, a criterion depending on single data points vi-
olating a class boundary would be extremely sensitive to outliers, and even a
perfect solution might be inadequate since we later on wish to classify unseen
data.

As for the PCA, instead of looking at single data points we consider statisti-
cal properties of the classes as a whole. In order to give an intuitive intro-
duction to LDA, we consider the most simple case: We have two data sets
Y = {y1, . . . , yNY

} and Z = {z1, . . . , zNZ
} for which an optimally separating

projection is to be found, and we limit the projection subspace to one dimension,
i.e. a line. As for the PCA, we assume that the full set of samples X = Y ∪ Z
has zero mean (µX = 0): Then we will be able to find a projection on a subspace
going through the origin.

The projection has the form

P (x) = wTx = ⟨w, x⟩

for a direction vector w and any sample x ∈ X . In order to find w, we make the
following definitions:

• The class-wise means are named µY resp. µZ . Note that they are not re-
quired to be zero (only the entire data set must have zero mean). Also, the
class-wise covariance matrices are named ΣY and ΣZ . NY andNZ are the
number of elements per class, and N = NY +NZ .
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• The total scatter ΣT is the covariance matrix of the entire data set.

• The between scatter ΣB is the covariance matrix of the class means, each
weighted with the number of elements per class:

ΣB =
1

N
(NY µY +NZµZ)

(remember that we assumed that the mean of the entire data set is zero:
Otherwise we would have to replace µY by µY −µX , and µZ by µZ −µX ).

• The within scatter is the average of the within-class covariance matrices,
again weighted with the number of elements per class:

ΣW =
1

N
(NYΣY +NZΣZ).

The scatter matrices then satisfy the important property ΣT = ΣW + ΣB .

The LDA criterion (also known as Fisher criterion) is to simultaneouslymaximize
the between scatter and minimize the within scatter: This means that we find
a projection which pushes the classes far apart, but also makes each class as
compact as possible. From figure 2.17, one can see that in direction of the “LDA”
line, this criterion is indeed satisfied.

In order to mathematically formulate the LDA criterion, we need to compute the
scatters of the projected data, which works exactly as in equation (2.9): The be-
tween scatter of the projected data is the scalar value wTΣBw, the within scatter
of the projected data is similarly computed as wTΣWw. Now the fisher criterion
can be written as

w = argmax
ŵ

J(ŵ) = argmax
ŵ

ŵTΣBŵ

ŵTΣW ŵ
.

A maximum can be found by solving a generalized eigenvalue problem for ΣB

and ΣW , i.e. w is computed to solve the expression

ΣB · w = ΣW · w · δ (2.17)

with a scalar δ, and w is chosen so that δ is maximized.

We can legitimately ask whether such a w exists, and what its properties are.
In case ΣW is invertible, we can left-multiply equation (2.17) by Σ−1

W and obtain
(Σ−1

W ΣB)w = δw, so we see thatw is just an eigenvector ofΣ−1
w ΣB , which always

exists sinceΣ−1
W ΣB is a symmetric matrix. However, ifΣW is not invertible, J(w)

is undefined for a w chosen to be an eigenvector of ΣW with zero eigenvalue. In
terms of the input data, such a w indicates a direction in which all classes have
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Figure 2.18 – Two examples where the within-class scatter is zero along one direc-
tion. In the first case (left), projecting on that direction would yield no discrimina-
tion at all, in the second case (right), the direction yields excellent classification.

zero variance, as shown in figure 2.18: It might be acceptable to project on such
a direction, or it might yield no discrimination at all. The criterion J(w) fails to
distinguish such cases.

Such a situation may emerge in fields like image processing, where one might
wish to process a few hundred images each having tens of thousands of pix-
els. In our case, eigenvalues are rarely exactly zero, but very small eigenvalues
frequently occur when a small amount of high-dimensional input data is to be
processed. Even then, the maximization of J(w) becomes numerically unstable.
This problem stems from the division in the definition of J(w) (in particular,
PCA does not suffer from this issue), and it has been observed in practical ap-
plications, see e.g. [QZH09]. A standard solution is regularization [Fri89]: In
its simplest form, the within-scatter matrix ΣW is replaced by ΣW + βI , where
I is the identity matrix, and β > 0 is a regularization parameter. ΣW + βI
is a regular matrix: Since ΣW is a covariance matrix, it cannot have negative
eigenvalues, thus all eigenvalues of ΣW + βI must be strictly positive. For our
high-dimensional array system, presented in chapter 7, we observed good results
using this method, even with varying parameters β.

Finally, we define the multidimensional LDA. Here we assume that the set of
samples is devided intoK classes, and that we wish to project the input data on
an M -dimensional subspace. Now the projection takes the form P (x) = W Tx
for aM ×D matrixW . The definitions of the total scatter, between scatter, and
within scatter are directly generalized to the multidimensional case, and we just
need a new maximization criterion. A standard choice [Fuk90] is

J(W ) = Tr((W TΣWW )−1(W TΣBW )), (2.18)
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which is justified by similar arguments as the multi-dimensional PCA criterion.
This equation is maximized by solving a generalized eigenvalue problem, like
in the one-dimensional case [Fuk90]. We remark that optimizing the criterion
(2.18) yields a subspace of at mostK−1 dimensions (i.e. one dimension less than
there are sample classes), since the rank ofΣB is at mostK−1. So the projection
subspace dimensionality M must be smaller than the number of classes.

We finally note that there are several variations of the LDA criterion, for ex-
ample, the total scatter can replace the within scatter due to the relation ΣT =
ΣW + ΣB . We implemented several such variations, but on our EMG data we
never found any substantial difference between these approaches.



Chapter 3

Experimental Setup and Corpus

This chapter describes the two EMG recording setups which are used in this
thesis, and gives statistics about the recorded data corpora. The setups differ in
the EMG capturing: For the majority of the experiments, we use a setup based
on 6 EMG channels, derived at carefully selected positions in the face. The
most recent experiments are based on electrode arrays, which are electrode
grids with multiple measuring points. Based on the two setups, three data
corpora have been used for experiments, two of which were created as part of
this thesis.

3.1 The Cognitive Systems Lab EMG Acquisition
System

This section deals with EMG signal capturing for the specific purpose of record-
ing speech-related muscle activity. Two setups are presented, namely a six-
channel setup based on single electrodes, and a setup based on electrode arrays
which was developed as part of this thesis.

Figure 3.1 shows the major muscles of the human face. Not all of these muscles
are easily captured by electromyography: The respective muscle should be lo-
cated close to the skin surface, and an electrode placed above the muscle should
not interfere with the process of speaking. Additional constraints are imposed
by the recording hardware, in particular, for the recordings with our single-
electrode setup, only six to eight EMG channels could be recorded. However,
each EMG channel is expected to capture signals from different nearby muscles.
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Figure 3.1 –Major muscles of the human head and face (from http://www.yorku.
ca/earmstro/, used with permission)

Due to the limited number of EMG channels, we do not assume that our recording
setup captures all speech-related activity. While it is attempted to cover the most
important muscles, the resulting data is classified statistically without endeav-
oring to perform a decomposition of the recorded signals into their constituting
components (a nontrivial problem even with optimal muscle coverage).

The following sections describe the two recording setups in detail.

3.1.1 Single-Electrode Setup

The majority of the experiments in this thesis is based on a six-channel “single-
electrode” setup, which was developed in 2005 by L. Maier-Hein [MH05a]. We
use surface electrodes with a circular recording area having a diameter of 4 mm:
given the finely grained motor unit control of the facial muscles, it is clear that
any such electrodewill pick up signals of plenty ofmotor units and even of differ-
ent muscles. The electrodes are standard Ag/AgCl electrodes. Conductive gel is
applied to the electrode/skin junction in order to reduce the contact impedance.
Two corpora were recorded with this setup, namely the EMG-PIT corpus and the
EMG-UKA corpus, see section 3.2.

The optimal setup from [MH05a] is shown in figure 3.2: It covers a large set
of facial muscles (see figure 3.1), while limiting the number of channels to six.
This is a technical limitation of the recording hardware, but on the other hand,
the smaller the number of EMG electrodes, the less discomfort to the user, and
the shorter the preparation time. This setup has proved easy-to-use and stable,

http://www.yorku.ca/earmstro/
http://www.yorku.ca/earmstro/
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Figure 3.2 – Electrode positioning for the single-electrode setup (muscle chart
adapted from http://www.yorku.ca/earmstro/, with permission)

therefore is has been used ever since its creation, including for the PhD thesis of
S. Jou [Jou08].

The six recorded EMG channels capture activity from the levator anguli oris
(channels 2, 3), the zygomaticus major (channels 2, 3), the platysma (channels
4, 5) the depressor anguli oris (channel 5), the anterior belly of the digastric
(channel 1) and the tongue (channel 1, 6) [MHMSW05, UCL02]. EMG channels
2 and 6 use bipolar derivation, the other channels are derived unipolarly, with
a reference electrode on the nose (channel 1) respectively two connected refer-
ence electrodes behind the ears (channels 3, 4, 5). Note that in our experiments,
we follow [JSW+06] in removing channel 5, which tends to yield unstable and
artifact-prone signals.

The relationship between the facial muscles, the articulatory gestures these mus-
cles generate, and the produced sounds is well-researched, albeit quite intricate.
Table 3.1, a reproduction of table 2.2 from the original study by L. Maier-Hein
[MH05a], summarizes the roles of the major articulatory muscles in the move-
ment of the articulators. The relationship between the articulators and the pro-
duction of sounds has been described in sections 2.2.1 and 2.2.2, we do not repeat
the details here: In general, the sound of vowels is mostly determined by the posi-
tion of the tongue and the lips, whereas consonants articulation is characterized
by an obstruction in the vocal tract which frequently requires the interplay of
various articulators.

http://www.yorku.ca/earmstro/
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Muscle Name Function
Orbicularis oris On contraction, this muscle adducts the lips by drawing

the lower lip up and the upper lip down, probably in con-
junction with some of the other facial muscles. It may also
pull the lips against the teeth. This muscle can also round
the lips by its sphincter action.

Zygomaticus major Raises upper lip for [f] along with the muscles that raise
the angles of the mouth. On contraction, this muscle
draws the angle of the mouth upward and laterally. The
upward movement probably works with levator anguli
oris to achieve the raised upper lip in labiodental frica-
tives. The lateral movement may be used in the produc-
tion of [s].

Levator Anguli Oris This muscle draws the corner of the mouth upwards and,
because of the fibers that insert into the lower lip, may
assist in closing the mouth by drawing the lower lip up,
for the closure phase in bilabial consonants.

Depressor Anguli Oris This muscle depresses the angles of the lips. This action
may work with depressor labii inferioris to prevent the
mouth from closing entirely when spreading for vowels
like [i] and [e]. Because of the fibers that insert in the
upper lip, this muscle may also aid in compressing lips by
drawing the upper lip down.

Platysma The platysma can aid depressor anguli oris and depressor
labii inferioris to draw down and laterally the angles of
the mouth.

Anterior Belly of the
Digastric

The function of this muscle is to draw the hyoid bone up
and forward. It also serves to bring the tongue forward
and upward for alveolar and high front vowel articula-
tions. In pulling up the hyoid bone, it may also pull up
the larynx thereby tensing the stretching the vocal cords
and raising the pitch. If the hyoid bone is fixed, the an-
terior belly of the digastric can serve to lower the jaw in
conjunction with the geniohyoid, mylohyoid and lateral
pterygoid muscles.

Table 3.1 – Functionality of the muscles involved in speech production (taken from
[MH05a])
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When audible or whispered speech are recorded, the audio signal is simultane-
ously captured with a standard close-talking headset microphone connected to
a USB soundcard; we use the term parallel acoustic data to refer to these record-
ings. Wearing the headset does not interfere with the EMG electrodes. The EMG
signal is delayed by 50 ms so that it aligns with the audio signal, this anticipa-
tory effect of the EMG signal was investigated in detail in [JSW+06], following
earlier work in [CEHL02]. Note that this effect is not related to the recording
hardware or setup, but is a genuine property of the myoelectric signal which has
been reported in literature [CK79]. It is also used in other contexts, for example,
the DIVA model of articulation [GGT06], which is described in detail in section
6.1, uses a movement onset latency of 42 ms with respect to the neuromuscular
activation.

Figure 3.3 – EMG Recorder and Recording Software screenshot for the single-
channel electrode setup (left picture from [MH05a])

EMG recordings are performed with the Varioport biosignal recorder (Becker
Meditec, Germany), which is shown in the left-hand part of figure 3.3. From left
to right, one can see the EMG amplifier, the recorder, and an electrical insulation
device which separates the electrical currents of the recorder and the connected
PC or laptop. The recorder is battery-powered. Technical specifications of this
system include an amplification factor of 1170, 16 bits A/D conversion, a resolu-
tion of 0.033 microvolts per bit, and a frequency range of 0.9-295 Hz. Sampling is
performed with a 600 Hz sampling rate, which is slightly lower than suggested
in [FC86], but nonetheless captures most EMG activity measurable at the skin
surface; the sampling rate is limited by the serial connection between the EMG
recorder and the controlling PC, among other factors.

We note that two different EMG amplifiers were used for recordings: Record-
ings for the EMG-PIT corpus used an 8-channel amplifier, and recordings for the
EMG-UKA corpus used a (newer) 6-channel amplifier. These two amplifiers ex-
hibit different analog filter characteristics, which has got a visible impact on the
presence of artifacts in the recorded signal. In particular, low-frequency artifacts
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Figure 3.4 – Example for EMG signals (single-electrode setup, channel 1) of the ut-
terance “We can do it”, recorded with two different EMG amplifiers. The left signal
(from the EMG-PIT corpus, recorded with the 8-channel amplifier) exhibits substan-
tially more low-frequency artifacts than the right-hand signal (from the EMG-UKA
corpus, recorded with the 6-channel amplifier).

are substantially more prevalent in the EMG-PIT corpus than in the EMG-UKA
corpus. Example signals of the utterance “We can do it” are shown in figure 3.4.

Besides the EMG input, the Varioport recorder allows the capturing of up to two
auxiliary channels, one of which is used for hardware synchronization of the
recorded EMG signal and acoustic signal: At the beginning of the recording of
each utterance, a synchronization signal for the EMG and acoustic data is created
by the recording software and made available at the parallel port of the record-
ing PC. The parallel port is connected to one auxiliary channel of the Varioport
recorder, so that the synchronization signal is recorded together with the EMG
data; note that we use an electrical insulation device for this connection, too. For
synchronization with the audio data, we use stereo (i.e. two-channel) recording:
The first stereo channel contains the actual acoustic signal, the second channel
contains the synchronization signal.

For recording control, the in-house software UKA EEG/EMG Studio developed by
C. Mayer et al. [May] is used. The user interface is shown in the right-hand part
of figure 3.3: The six recorded EMG channels are displayed in real-time, so that
artifacts can be detected and, hence, avoided during the recording process. The
subject sees the prompt window on the right side, in order to start a recording,
the red button must be pressed. While the button remains pressed, recording
of the EMG signal takes place. The control window, containing settings for the
experiment supervisor, is not shown.

The recorded EMG and acoustic data, including the synchronization signal, is
saved on the hard disk in an uncompressed format. At the end of a session, a
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text file containing information about the recorded utterances, including a tran-
scription of their content, is created.

3.1.2 Electrode Array Setup

Electrode Arrays are grid structures with multiple measuring points for bioelec-
tric signals. They may be as small as 2x2 electrodes [dLAW+06], but can also be
much larger, e.g. [YZXL13] uses an array with 16× 6 = 96 channels. The multi-
channel high-density EMG measurements which are made possible by EMG ar-
rays offer possibilities for artifact reduction, feature extraction, and signal analy-
sis, which we discuss in detail in section 7. Therefore, one part of this thesis has
been the creation of a facial EMG recording setup which makes use of EMG ar-
ray technology, and the subsequent recording of a data corpus of multi-channel
EMG recordings of speech. We first reported on this new setup in [WSJS13].

Figure 3.5 – EMG Recorder and Recording Software screenshot for the electrode
array setup

For this purpose, the multi-channel EMG amplifier EMG-USB2 was purchased
from OT Bioelettronica, Italy (http://www.otbioelettronica.it), together
with a set of matching arrays. The amplifier supports the capturing of up to 256
channels; further technical specifications include an amplification factor of up
to 10000 and a maximum sampling rate of 10240 Hz, a configurable bandwidth
between 3 Hz and 4400 Hz, and 12 bit A/D conversion [OT ]. A DRL circuit
[WW83] is used to reduce common mode voltage noise. In our experiments, we
used a sampling rate of 2048 Hz.

The acoustic signal is simultaneously recorded with a close-talking microphone
for the audible and whispered speaking modes, yielding parallel acoustic and
EMG data. Synchronization of the EMG and acoustic signals is performed as
for the single-electrode setup: the EMG amplifier allows to record up to 16 non-
amplified auxiliary channels, one of which is used for the synchronization signal;

http://www.otbioelettronica.it
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the acoustic data contains the synchronization signal in the second stereo chan-
nel. The EMG signal is delayed by 50 ms to align with the audio signal, as in the
single-electrode setup.

The left-hand part of figure 3.5 shows the EMG-USB2 amplifier, together with
some instrumentation. It can be seen that in contrast to the Varioport device, the
EMG-USB2 amplifier is a non-portable, “tabletop” device.

Figure 3.6 – The EMG arrays which were used in this study. The left-hand array
has 8 EMG channels with a distance of 5 mm, the right-hand array has 8 × 8 =
64 channels with a distance of 1 cm in both directions. The 64-channel array was
cropped to 4× 8 electrodes, as indicated by the black line. Images from [Sch11].

Figure 3.6 shows the two types of EMG arrays which were used for the experi-
ments presented in this thesis. We use an 8-channel array with 5 mm IED (inter-
electrode distance) and a 64-channel array with eight rows of eight electrodes
with 1 cm IED. The 64-channel array is user-configurable and can be flexibly
cropped according to the experimental requirements: for facial EMG recordings,
we cut off the right half of the array, so that 4× 8 = 32 electrodes remain. The
EMG arrays require electrolyte gel, just like the classical electrodes described
in section 3.1.1, however the manufactorer provides electrolyte gel in form of a
cream—our subjects found this much more comfortable than standard medical-
issue electrode gel.

The EMG channels are arranged sequentially, so that both unipolar and bipolar
recordings are possible: For unipolar recordings, a ground electrode is placed on
the subject’s neck, for bipolar recordings, the difference of each pair of chan-
nels with consecutive numbers is computed. This means that e.g. for the eight-
channel array, we obtain seven bipolar EMG signals, namely from the differences
2 − 1, 3 − 2, …, 8 − 7. Similarly, for the (full) 64-channel array, one obtains 56
bipolar EMG signals, bipolar signals stemming from distant electrode pairs (like
9− 8, 17− 16, etc., see figure 3.6), these signals are considered invalid.
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Speaking mode Average data length per
session, in seconds

sessions /
speakers

Train Test Total
Development (“pilot”) set

audible EMG 180 52 232 28/14
silent EMG 184 53 237 27/14
Total amount of data: 3:35 hours

Evaluation (“main”) set
audible EMG 197 57 254 62/62
silent EMG 186 54 240 62/62
Total amount of data: 8:30 hours

Table 3.2 – EMG-PIT data corpus

Recordings with the array-based setup were controlled using the OT Biolab soft-
ware delivered with the EMG-USB2 amplifier. OT Biolab offers real-time visual-
ization of a large number of recorded channels, and the signal is made available
at a system socket for reading by the recording software. For recording, we used
the in-house software BiosignalsStudio [HPA+10], a flexible, modular toolbox for
biosignal recording with various setups and devices. We programmed a custom
interface for our recordings, similar to the interface used for the single-electrode
setup, which is shown in the right-hand part of figure 3.5.

3.2 Data Corpora

3.2.1 The EMG-PIT Data Corpus

The EMG-PIT corpus was cooperatively recorded by CarnegieMellon University,
Pittsburgh, PA, USA, and the Voice Lab of the University of Pittsburgh. The
responsible experimenters were S. Jou and M. Dietrich, who recorded the EMG
data as part of their respective PhD theses [Jou08, Die08].

The EMG-PIT corpus uses the single-electrode setup described in section 3.1.1;
its key feature is a large number of recorded speakers: Altogether, the corpus
comprises 76 speakers. This allows experiments on speaker-independent recog-
nition, see section 8.1.2. All subjects were female native speakers of English, aged
18 – 35 years.

The EMG-PIT corpus consists of two parts, the pilot part and the main part. For
the pilot part, each subject was recorded twice, for the main part, each subject
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was recorded only once. The recordings were part of a larger study, as detailed
in [Die08], however the data which is used in this thesis was always recorded
as a consecutive block (this is relevant for assuring a constant data quality since
during long-term EMG recording, the electrode-skin contact and hence the EMG
signal may vary substantially).

The subjects read phonetically balanced sentences in a quiet room and a con-
trolled setting (recognizing conversational, unplanned speech using EMG is be-
yond the scope of this thesis). The sentence lists were in English language, they
were taken from the Broadcast News domain, a well-researched standard domain
in acoustic speech recognition. Each sentence list consisted of 50 sentences, di-
vided into a batch of 10 BASE sentences which were identical for all speakers and
all sessions, and one batch of 40 SPEC sentences, which varied across sessions. In
each session these sentences were recorded twice, once for each speaking mode,
i.e. for audible speech and for silent speech. For brevity, we call the EMG sig-
nals from these parts audible EMG, and silent EMG, respectively. The sentence
sets were identical for both speaking modes, so that the database covers both
speaking modes with parallel utterances. The total of 50 BASE and SPEC ut-
terances in each part were recorded in random order. For all experiments, the
SPEC sentences are used as training data, and the BASE sentences are used as
test data. Furthermore, we set the main part of the EMG-PIT corpus aside, so
that it could be used as an evaluation set. The EMG-PIT corpus is summarized in
table 3.2, note that in one session, the silent recordings were damaged and had
to be removed.

3.2.2 The EMG-UKA Data Corpus

The EMG-UKA corpus was recorded during the creation of this thesis and con-
stitutes an integral part of it. The main goals which the EMG-UKA corpus ad-
dresses were obtaining a large number of recording session from one speaker,
and recording EMG data of whispered speech in addition to audible and silent
speech. Therefore, the full EMG-UKA corpus has three non-disjoint subsets: The
multi-session subset, which is intended for experiments on session independency
and session adaptation (see chapter 8), the multi-mode subset, which contains
recordings of all three speaking modes and is used for multi-mode and cross-
mode recognition (see chapter 6), and the single-session subset, which consists
of all audible EMG recording sessions of the entire corpus. The recording setup
for this corpus was the exact same single-electrode setup as was used for the
EMG-PIT corpus, however the EMG amplifier was different, see section 3.1.1.
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Speaking mode Average data length per
session, in seconds

sessions /
speakers

Train Test Total
Single-Session subset

audible EMG 147 42 189 61/8
Total amount of data: 3:12 hours

Multi-mode subset
audible EMG 156 44 200

30/8whispered EMG 160 45 205
silent EMG 158 44 202
Total amount of data: 5:04 hours

Multi-session subset
audible EMG 142 41 183 48/2
Total amount of data: 2:26 hours

Entire EMG-UKA corpus: 6:35 hours

Table 3.3 – EMG-UKA data corpus. Note that the subsets are not disjoint.

The recording protocol of the EMG-UKA corpus follows the EMG-PIT corpus to
ensure compatibility. In particular, we used the same English sentence lists as
were used for recording the EMG-PIT corpus. The subjects did not speak En-
glish natively, however we made sure that the subject’s knowledge of English
pronunciation was sufficiently good for the intended purpose of speech recog-
nition, and during the recordings, the supervisor corrected major pronunciation
mistakes. The 50 sentences per recording session were recorded either once, in
audible speech, or three times: Once audible, once whispered (yieldingwhispered
EMG), once silently mouthed. The number of recording sessions per speaker
varied between 1 and 32. As for the EMG-PIT corpus, the 50 BASE and SPEC
utterances in each part were recorded in random order. In all experiments, the
BASE sentences are used as test set, and the SPEC sentences are used for train-
ing or adaptation. Since the properties of the EMG-PIT corpus and EMG-UKA
corpus are similar, we refrained from setting aside an evaluation set based on the
EMG-UKA corpus. Table 3.3 displays a summary of the EMG-UKA corpus.

3.2.3 The EMG-ARRAY Data Corpus

The EMG-ARRAY corpus was recorded with the recording system described in
3.1.2. Since so far no established results on the optimal size, shape, and place-
ment of the electrode arrays exists, we recorded a development data set com-
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Figure 3.7 – Array placement for the 16-channel Setup A (left) and the 40-channel
Setup B (right)

prising two setups, which are shown in figure 3.7: Setup A uses two 8-channel
arrays on the chin and on the cheek, following the recording positions of the
single-electrode setup as much as the shape of the arrays permits. In particu-
lar, we performed side experiments showing that the chin array, which captures
signals of the tongue muscles, is necessary to achieve good recognition rates.
The 16 channels resulting from this electrode setup were recorded in unipolar
derivation. For Setup B, the cheek array is replaced with a larger array having
4× 8 electrodes. The chin array remains in its place. With setup B we achieved
a cleaner signal using bipolar derivation, resulting in a total of 35 channels: 7
channels come from the chin array, and 4 ·7 = 28 channels come from the cheek
array.

Besides varying the array placement, a subset of sessions with an extended
amount of data was recorded. For these sessions we recorded 160 training sen-
tences, based on the original sentence lists of the EMG-PIT corpus, and 20 test
sentences. In order not to increase the testing vocabulary, the 20 test sentences
consist of the original BASE test sentence set repeated twice, however the 160
training sentences are unique. Each of these 180-sentence sessions contains a
subset of 50 sentences which is compatible to the structure of the sessions of the
EMG-PIT corpus.

This yields a development set consisting of four non-disjoint data subsets: The
A-1 subset consists of the 50-sentence sessions recorded with array placement
A, and the A-2 subset consists of the 180-sentence sessions recorded with array
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Speaking mode Average data length per
session, in seconds

sessions /
speakers

Train Test Total
Development Set (audible EMG only)

A-1 (50 sent.) 142 37 179 7/3
A-2 (180 sent.) 505 72 579 3/2
B-1 (50 sent.) 149 42 191 7/6
B-2 (180 sent.) 571 83 654 4/4
Total amount of data: 1:34 hours

Evaluation Set
B-1 (50 sent.)

audible EMG 160 42 202
12/10

silent EMG 161 42 203
B-2 (180 sent.)

audible EMG 587 84 671
12/10

silent EMG 589 84 673
Total amount of data: 4:29 hours

Table 3.4 – EMG-ARRAY data corpus. Note that some of the 50-sentence sessions of
the development set, and all 50-sentence sessions of the evaluation set, are subsets
of a 180-sentence session.

placement A. Similarly, we have the B-1 and B-2 subsets. All recordings of the
development corpus consist of audible EMG only.

During the course of the initial experiments, we showed that the B-2 setup yields
better results than the other setups [WSJS13]. Therefore, we recorded an evalu-
ation corpus of 12 sessions based on the B-2 setup, including recordings of silent
speech as well: as for the other corpora, we recorded identical sentence sets for
the audible and silent speaking modes. Each session contains a subset compati-
ble to the B-1 corpus, i.e. exhibiting 40 training sentences and 10 test sentences
per speaking mode. In order to avoid undue strain on the subjects, and since
we did not expect any new insights, we did not include whispered speech in the
EMG-ARRAY corpus.

The full EMG-ARRAY corpus is summarized in table 3.4.





Chapter 4

The Baseline EMG-based Speech
Recognizer

This chapter presents and analyses the baseline system which was available
at the beginning of this thesis [Jou08]; it was the first EMG-based speech
recognition system ever which used phones as modeling units and could thus
recognize arbitrary vocabulary. We report how the baseline system performs
on our corpora, optimize several of its parameters, and present an analysis
on its capabilities. For the latter purpose, we develop a recognition setup for
frame-based classification of phones and phonetic features.

4.1 System Structure

The structure of the EMG-based speech recognizer is charted in figure 4.1. The
EMG recognition extends the setup of a conventional speech recognizer, which
is shown in figure 2.11, in particular by the use of acoustic data for bootstrapping.
Also, in EMG-based speech recognition we do not train an acoustic model, but
rather a myoelectric model.

The four main blocks of the recognition system are: signal capturing and feature
extraction, training, decoding, and the bootstrapping of the system, which is not
at all very different from the acoustic case. Like conventional speech recogniz-
ers, our system integrates linguistic (language model and dictionary) informa-
tion. All recognition experiments in this thesis were performed with the Janus
Recognition Toolkit (JRTk) [FGH+97], using the Ibis decoder [SMFW01]. Below
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Figure 4.1 – Structure of the baseline EMG recognition system

we give a detailed description of the components of the baseline system, with
the exception of the signal capturing part, which is covered in section 3.1.

4.1.1 Label Bootstrapping

The term “Label Bootstrapping” refers to the process of obtaining subphone-
level time alignments (“labels”) of the training data, where the term “subphone”
stands for the beginning, middle, and end of a phone, see section 2.3.2. These
time-alignments are required at two stages: First, we compute a Linear Discrim-
inant Analysis transformation on the preprocessed training data, which requires
information about the assignment of feature frames to the classes to be discrimi-
nated. Second, we use time-alignments for the initialization of the GMMs which
form the recognizer model structure. In this chapter, we only describe the most
simple case of obtaining time alignments for the audible EMG training utter-
ances. In chapter 6 we detail the process of bootstrapping a silent speech EMG
recognizer.

For label bootstrapping, we use the acoustic data which has been recorded in
parallel with the EMG data, following [JSW+06]. This acoustic data is forced-
aligned with a standard Broadcast News (BN) speech recognizer based on the
Janus Recognition Toolkit [YW00]. The recognizer uses a feature preprocessing
based on Mel-Frequency Cepstral Coefficients with Vocal Tract Length Normal-
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Figure 4.2 – The moving average filter which separates HF and LF components in
the raw EMG signal

ization and Cepstral Mean Subtraction, after which Linear Discriminant Analy-
sis dimensionality reduction on a 15-frames (-7 …+7) context is performed. The
acoustic model is context-dependent using two context phones per side (“quint-
phones”), contexts are clustered as described in section 2.3.4, yielding 6000 dis-
tributions sharing 2000 codebooks. The baseline performance of this acoustic
speech recognizer is 10.2%Word Error Rate (WER) on the clean speech condition
(F0) of the official BN test set [YW00, JSW+06]. The computed time-alignments
from this system can be used directly to initialize the EMG models.

4.1.2 Feature Extraction

The feature extraction for the recognizer was established in [JSW+06]. It is based
on time-domain features, which describes a very broad set of features sharing
the property of being based on a time-domain representation of the signal, as
opposed to features which are derived e.g. from a frequency-based or wavelet-
based signal representation.

Five time-domain features per EMG channel are used, as follows. Assume that
x[n] is the incoming signal with normalized mean. We first filter x[n] with a
17-point weighted moving average filter H , whose impulse response is charted
in figure 4.2. We call the filtered EMG signal w[n] the low-frequency signal. The
remainder p[n] := x[n]−w[n] is the high-frequency signal, its absolute (rectified)
value is r[n] := |p[n]|. We point out that w[n] and p[n] are still time-domain sig-
nals. One can equivalently describe this filtering operation as a double applica-
tion of a simple nine-point averaging filter, i.e. one obtainsw[n] by the following
computation:

w[n] =
1

9

4∑
k=−4

v[n+ k], where v[n] =
1

9

4∑
k=−4

x[n+ k]. (4.1)
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We now compute the following features: From the low-frequency signal, we
compute its frame-based time-domain mean and power, and from the high-
frequency signal, we compute the frame-based time-domain rectified mean,
power, and zero-crossing rate. The combination of these features is called TD0,
where “TD” stands for “time-domain”, and the number 0 indicates that no context
information is considered at feature level [WS10].

Nowwe use the following definitions from [JSW+06]: For any given input signal
y, My is its frame-based time-domain mean, Py is its frame-based power, and zy
is its frame-based zero-crossing rate. Now the feature TD0 can be written as
follows:

TD0 = [Mw, Pw, Pr, zp,Mr]. (4.2)

Frame size and frame shift are set to 27 ms respectively 10 ms. The frame shift
of 10ms is standard in acoustic speech recognition (see e.g. [HAH01]).

It was shown in [JSW+06] that context information is required for optimal recog-
nition. We flexibly integrate context information by performing a stacking of
adjacent feature frames with a specified context width k obtaining an enlarged
feature vector: For an input sequence of features f [n], we define the stacked
feature with context k by

S(f, k) = f̃ [n], (4.3)

where for each frame f̃ [n]:

f̃ [n] = [f [n− k], f [n− k + 1], . . . , f [n], . . . , f [n+ k]].

This means that our five-dimensional input feature is extended to 5 · (2k + 1)
dimensions. We fix the value k at 10 and obtain the channel-wise featureTD10 =
S(TD0, 10). Since the channel-wise features are now also stacked, we end up
with 5 · 5 · 21 = 525 dimensions in the TD10 feature. Note that different context
widths are used in the experiments based on the EMG-ARRAY corpus described
in chapter 7.

Finally a linear discriminant analysis (LDA) transformation is computed. For
this step we require a time-alignment of the training utterances, assigning one
sub-phone class to each frame. Since our English dictionary uses 45 phones, we
have 3 · 45 + 1 = 136 phone classes including the silence class. When the LDA
transformation is computed, we retain the 12 most discriminant dimensions.

We note at this point that many of the above parameters may be varied, causing
changes in the recognizer performance. For the initial experiments reported in
this chapter, we chose our parameters so that they give optimal results on the de-
velopment corpora, see section 4.3 for more information about the optimization
of parameters.
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4.1.3 Modeling and Training

The baseline recognizer uses three-state left-to-right Hidden Markov Models
(HMMs), where each state represents a context-independent subphone (see sec-
tion 2.3.2). These HMMs thus follow the setup set out in section 2.3.2, see figure
2.12. The emission probabilities of the HMM states are Gaussian Mixture Models
(GMMs), transition probabilities are not trained.

The training of the recognizer consists of two steps:

• First, we initialize the Gaussian Mixture Models (GMMs) which underly
the HMM states. This is done by merge-and-split training [UNGH00].

• Second, we perform four iterations of Viterbi training.

The merge-and-split initialization step uses time-alignments which are com-
puted from the parallel acoustic data as long as audible EMG is concerned, see
section 4.1.1 for more details. During Viterbi training, improved time-alignments
are computed from the EMG data as part of the Baum-Welch optimization rules
(see section 2.3.5). Finally, the output of the training step is a set of Gaussian
mixture models, one for each subphone which occurs in the training data.

4.1.4 Language Modeling and Decoding

For decoding, we apply a standard trigram language model trained on Broad-
cast News data. On the test set, the trigram perplexity of the language model
is 24.24. The decoding uses time-synchronous Viterbi beam search, as described
in section 2.3.6. After a first hypothesis is generated, optional lattice rescoring
based on a matrix of word penalty and language model weighting parameters
can be performed in order to obtain optimal recognition results; in this thesis,
lattice rescoring is not used. Evaluation of the baseline system is performed on
the single-electrode corpora (i.e. EMG-PIT and EMG-UKA). As described in sec-
tion 3.2, we always use the batch of speaker-specific audible SPEC utterances as
training set, and the audible BASE utterances as testing set.

We follow [JSW+06] in limiting the decoding vocabulary to the 108 words ap-
pearing in the test set. The limited decoding vocabulary is a consequence of the
small amount of session-dependent training data provided by the EMG-PIT and
EMG-UKA corpora, the (newer) EMG-ARRAY corpus contains a set of larger ses-
sions. Also, in chapter 8, results on session-independent systems are presented,
where we have the opportunity to work with a much larger amount of training
data than in the session-dependent case, and where the decoding vocabulary is
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Figure 4.3 – Overview of Word Error Rates with the baseline system. Bars indicate
standard deviation, computed over all sessions.

consequently enlarged to 2102 words—the full set of words in the EMG-PIT and
EMG-UKA corpora.

4.2 Baseline Results

We begin the evaluation of our baseline system with an overview of the recog-
nition performance on the audible part of the EMG-PIT corpus and the single-
session part of the EMG-UKA corpus. All experiments are session-dependent,
which means that training and testing is performed on the same session. We
compute results on all single-electrode corpora, including the evaluation corpus,
to serve as a reference for later chapters.

As performance measure we use the Word Error Rate (WER), which is given by
aligning the hypothesis and the reference text at word level and then counting
the numbers NI , ND, NS of insertions, deletions, and substitutions: thus we
compute the Levenshtein distance between hypothesis and reference. The WER
is then defined as

WER =
NI +ND +NS

N
· 100%, (4.4)

where N is the total number of words in the reference. A smaller WER means
that the recognition accuracy improves. Clearly, this measure is only applicable
if the reference text is known, which is the case for all our corpora. The WER
for one session is always averaged over all testing utterances of that session.

The average WER of the recognizer on the three corpora is given in figure 4.3
and table 4.1. For this experiment we chose optimal settings, where optimization
was performed on the development corpora only, see section 4.3 for details.
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Corpus Number of
sessions

AverageWord
Error Rate

Standard
Deviation

EMG-UKA 61 38.6% ± 17.0%
EMG-PIT (pilot) 28 47.5% ± 16.2%
EMG-PIT (main) 62 52.6% ± 14.3%

Table 4.1 –Word Error Rates and standard deviations of the baseline system for the
three single-electrode corpora

As a general observation, we see that theWER on the EMG-UKA corpus is lower
than on the two parts of the EMG-PIT corpus. Indeed we made the observation
that the analog high-pass filter of the amplifier which we used for the EMG-UKA
corpus seems to perform better in removing low-frequency movement artifacts.
However, the result should not be considered significant, since the sets of speak-
ers for the two corpora have substantially different characteristics (see section
3.2): The EMG-PIT corpus contains one or two sessions per speaker, and the
speakers had no prior experience in silent speech. In the EMG-UKA corpus, we
have up to 32 sessions for one experienced speaker, but there are also speakers
who recorded just one session.

In figure 4.4 we see a breakdown of the results on the EMG-PIT pilot corpus
and on the EMG-UKA corpus; for the former, we have the results by session, on
the latter, we average over all sessions of the respective speakers and give the
standard deviation where more than one session was used. It can be observed
that the results by speaker vary greatly, for example, on the EMG-PIT corpus
the best session WER is 20%, and the worst session WER is 78%. However, most
speakers achieve rather consistent results across all their recorded sessions, with
the notable exception of speaker 7 from the EMG-UKA corpus. So far we cannot
answer the question what makes a speaker a good speaker: One may assume
the influence of skin conditions and muscle properties, as well as articulation
idiosyncrasies.

4.3 Parameter Optimization

As machine learning systems are wont to do, the EMG-based speech recognizer
has a large number of parameters which may be chosen within a wide numerical
range. This section deals with the influence of parameter variations on the recog-
nition results. The purpose of this section is notably not to optimize every single
parameter of the system, which we believe to be pointless at the current stage of
development of the system. We rather intend to show that parameter variations
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Figure 4.4 – Overview of Word Error Rates by Speaker for the Development Cor-
pora. Results on the EMG-PIT pilot corpus are given by session, on the EMG-UKA
corpus, we averaged over all sessions of each speaker. Bars indicate standard devi-
ation.

yield “continuous” changes in the Word Error Rate, thus a rough optimization of
the most important parameters should be sufficient in order to guarantee robust
results. In particular, for many minor parameters, the system behaves robustly
when these parameters are (moderately) perturbed. We take these observations
as an indicator of the stability of our setup and for the validity of our experi-
ments. All experiments are performed on the pilot part of the EMG-PIT corpus
and on the Single-Session part of the EMG-UKA corpus.

We identified the following major parameters in the system:

• The time-domain feature preprocessing (TD0)

• Context width during the creation of the TDn feature

• Number of retained dimensions after LDA

• Merge-and-split parameters (e.g. the threshold amount of training data
beyond which a Gaussian can be split)

• Number of iterations during Viterbi training.

The greatest parameter variation can be performed in the feature extraction part,
on which we focus in this section. We also varied the set of parameters during
training (i.e. the merge-and-split parameters and the Viterbi training settings,
including the beam settings and the number of iterations). Here we found that
as long as the parameters remain within a certain range, no clear optimum is
observed, eventually we decided to keep the standard settings unchanged.

EMG feature preprocessing in the context of speech recognition was already
researched before work on this thesis started. Jou et al. showed that time-
domain features of the kind presented above are superior to a collection
of frequency-based features, in particular when context information is used
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Figure 4.5 – Average Word Error Rates for the development corpora, for different
numbers of retained dimensions after LDA. Bars indicate standard deviation.

[JSW+06]. Clearly, there are many variants and extensions of the above time-
domain features, and it exceeds the scope of this thesis to investigate them all.
Notwithstanding, we ran several experiments with some variations of these fea-
tures, without observing significant changes in the performance of the recog-
nizer, among these feature variations were inclusion of features like the wave-
form length [HLW03] or different moving average filters. We assume that as
long as one limits oneself to the kind of frame-based time-domain features which
we present here, there is awide range of features which yield similar average per-
formance. If it is desired to improve beyond this level, one should consider more
advanced signal processing methods, which we do in chapter 7.

The parameters which we found to yield substantial WER changes are the fea-
ture dimensionality after LDA application and the TD stacking width. Figure 4.5
shows the WER for different numbers of retained dimensions after LDA, and for
three TD stacking widths (5, 10, and 15). We consistently observe a minimum
WER at the dimensionality 12.

The feature space dimensionality impacts the training performance due to the
“Curse of Dimensionality”, explained in section 2.3.1: When the model dimen-
sionality is high and the amount of training data is fixed, increasing the dimen-
sionality of the feature space will cause a reduction of recognition accuracy (i.e.
an increasing WER). Indeed this is observed from figure 4.5: When using more
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Figure 4.6 – Average Word Error Rates for the development corpora, for different
context stacking widths. Bars indicate standard deviation.

than 12 dimensions after LDA, the WER rises, independently of the stacking
width. So we conclude that for the given amount of training data, the optimal
feature space size is indeed 12, nomatter whether we add extra information. This
result is rather consistent across speakers and sessions. Wewill reinvestigate this
problem in light of our high-dimensional EMG arrays in chapter 7.

Finally, we investigate a related factor, namely the optimal context stacking
width. Figure 4.6 shows the resulting word error rates for 12 and 32 retained
dimensions after LDA application and for stacking widths ranging from 1 to 25
(note that we do not use TD0 features, i.e. no stacking at all, since this would
result in only 25 dimensions prior to LDA, which we cannot sensibly project to
a 32-dimensional subspace; however it is clear from figure 4.6 that using no con-
text stacking would yield suboptimal results anyway). We observe that for 32
dimensions, the optimal stacking width is 10. For 12 dimensions, the result is
less clear: For the EMG-PIT pilot corpus, the optimal stacking width is again 10,
for the EMG-UKA corpus, the optimum is at 5, which gives poorer results on the
EMG-PIT corpus. We observe the tendency that the optimum stacking context
width is around 10, so as a compromise, we use TD10 as final feature for our
further experiments.
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4.4 Phone-Level Analysis

The system we presented in section 4.1 is composed of several components, as
charted in figure 4.1. Consequently, the results from sections 4.2 and 4.3 are
based on a fusion of “knowledge” from these components: In particular, the vo-
cabulary size is rather small compared to large-scale conventional speech recog-
nition, so the vocabulary and the language model add a great amount of infor-
mation to the EMG features.

In this section we report on the recognizer performance at the phone level
[WS11a]. This means that we forgo our HMMmodeling, as well as the language
model, and perform a purely frame-based recognition of phones. With this ex-
periment we intend to gain a deeper understanding of the properties and capa-
bilites of our unit modeling, particularly when compared with standard acous-
tic speech recognition. Additionally, the results will guide us on our way to-
wards improving the recognizer with a versatile modeling method, as presented
in chapter 5.

The detailed technical specifications of the frame-based phone recognizer are as
follows: Our feature preprocessing remains as described in section 4.1.2, using
TD10 features and LDA for dimensionality reduction to 12 retained dimensions.
We create session-dependent Gaussian Mixture Models (GMMs) for each of our
45 phones1. The GMMs are initialized with merge-and-split training based on
the acoustic time-alignments, followed by four iterations of the EM algorithm for
GMMs [Bis07, Chapter 9]. These GMMs therefore correspond to the unit models
of the full recognition system. During training we do not alter the assignment
of signal frames to phones, i.e. new Viterbi alignments are not computed; in-
stead, the acoustic phone-level alignments computed in section 4.1.1 are taken as
ground truth both for the training and testing phase. Testing consists of match-
ing the hypothesis of the GMM classifier against the frame-level reference taken
from the alignment. Note that we remove all silence frames from the training
and testing data in order to avoid unbalanced results: Since speakers frequently
made a short pause between pressing the recording button and actually starting
to speak, the “Silence” phone is by far the most frequent phone of both corpora,
and it is very easy to be distinguished from non-silence phones.

On the pilot part of the EMG-PIT corpus, we achieve a phone accuracy of 16.8%,
on the EMG-UKA corpus, the accuracy is 16.6%. Of course, despite the removal of
silence frames, these results are based on a highly unbalanced class distribution:

1We also created subphone models, i.e. models for the beginning, middle, and end parts of a
phone. In this case we observed that the parts of a phone are often confused, across phones, the
confusion patterns are very similar to the phone model case.
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Figure 4.7 – Confusion matrices for frame-based phone recognition based on EMG
data: EMG-PIT Corpus, pilot part (top), EMG-UKA corpus (bottom)
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The number of frames per class in the training data ranges from 100 to 6500
on the pilot part of the EMG-PIT corpus, and from 250 to 15000 on the (larger)
EMG-UKA corpus. Still, we are able to draw conclusions based on the phone-level
confusion, i.e. we consider the distribution of recognition errors across different
phones.

The phone-level confusion is graphically represented in figure 4.7. Each row rep-
resents a reference phone, and each column represents a hypothesized phone.
The darkness of a cell indicates the frequency of this confusion: In a perfect sys-
tem, all cells on the diagonal would be black, and all other cells would be white.
All plotted confusions are relative, in the sense that the rows of the confusion
matrix sum to one.

We observe that vowels are quite frequently confused with each other, the most
obvious case is the set of “A-like” vowels in the upper left, including [AA] (as in
far), [AE] (as is bat), [AO] (as in flaw), [AH] (as in fun), and even the diphthong
[AW] (as in power). Note that a certain amount of confusion is unavoidable
particularly when diphthongs are concerned, since their realization inevitably
stretches over more than one frame. Additionally, it must be assumed that the
acoustic alignments representing the ground truth are not always perfect: some
phones might have beenmispronounced by the speakers, the articulation bound-
aries between certain vowels might vary depending on the accent of the speaker,
and HMMs are known for issues in boundary frame assignment.

We now consider consonants. We observe several major “confusion groups”,
which we define as groups of phones which are frequently mutually confused.
The bilabial consonants [B], [P], and [M] fall into one confusion group: On the
EMG-UKA corpus, of all [B]s, around 22% are recognized as [B], 20.9% are rec-
ognized as [M], and 16.4% are recognized as [P]. A similar pattern holds for [P]s
and [M]s.

The alveolar consonants [D], [N], and [T] form a very similar group, for example,
of all [D]s, 11% are recognized as [D], 9.7% are confused with [N], and another
9.3% are confused with [T]. Further confusion groups include [G] and [K], [S]
and [Z], which are the voiceless and voiced alveolar fricative, respectively, and
[CH], [JH], and [SH] (as in church, John, shell).

From the confusion groups, we draw the conclusion that the place of articulation
is detected relatively well, but that detecting voicing or themanner of articulation
(e.g. plosive versus nasal) are problematic. This can be explained by considering
how different phones are articulated, as detailed in section 2.2.2: The place of
articulation is determined by the large-scale movement of the articulators, so it
should be well-detectable from the activity of the articulatory muscles.
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Figure 4.8 – Confusion matrices for frame-based phone recognition based on acous-
tic data: EMG-PIT Corpus, pilot part (top), EMG-UKA corpus (bottom)
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Category EMG data Acoustic data
EMG-PIT
(pil.)

EMG-UKA EMG-PIT
(pil.)

EMG-UKA

Manner 47.73% 47.65% 69.38% 75.92%
Position 55.59% 51.24% 56.48% 66.43%
Voicing 62.63% 63.37% 80.77% 80.14%

Table 4.2 – Classification accuracies for phonetic feature classes on EMG data and
acoustic data.

The manner of articulation obviously also depends on the configuration of the
articulators, but here the differences are more subtle (compare for example the
sounds [b] and [m]). One furthermore notes from this example that in some ar-
ticulatory movements are partially shared between phones, in the case of [b] and
[m], the initial part of these phones requires identical articulatory movements,
namely closing the lips. This would cause high confusion between some of the
frames belonging to the phones [b] and [m].

Finally, voicing depends on glottal activity, which is not captured by our EMG
setup and it therefore very hard to recognize. Yet, the result that in whispered
speech, minimal pairs differing only in the phonological voicing of a single phone
can be discerned (see section 2.2.3), gives hope that there are also differences in
the articulation of voiced and voiceless consonants which are recognizable from
the EMG signal, even in silent speech. This expectation is supported by current
results with the PMA technology [HBC+13].

The EMG phone confusion patterns reported here differ substantially from those
observed in acoustic speech recognition, where one typically observes that voic-
ing and manner of articulation are recognized very well, but that confusion is
possible among low-energy sounds like [P], [T], and [K] [Kir99, Chapter 3.2.2],
which is not so much the case for EMG since these sounds require very different
articulator configuations. For comparison, figure 4.8 shows confusion results on
the acoustic data of the EMG-PIT (pilot) and EMG-UKA corpus, which supports
this observation and also shows an additional confusion group consisting of the
nasals [M], [N], and [NG], which is not present for EMG. The accuracy of the
acoustics-based system is much higher, at 33.0% and 35.5% for the EMG-PIT and
EMG-UKA corpus, respectively.

To complete the study on frame-based recognition, frame-based classification
of phonetic features instead of phones is performed: this means that phones are
grouped into classes based on certain phonetic categories. In the next chapter
an exact definition of phonetic features is given, for now, it suffices to say that
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we are interested in the broad distinctions discussed above: voicing, manner,
and position of articulation. The phonetic categories are defined as follows: For
voicing, there are two obvious classes (voiced and unvoiced), where all vowels
fall into the voiced category. For the manner of articulation, we take the fol-
lowing categories from the IPA chart (see section 2.2.2): plosive, nasal, fricative,
affricate, approximant. The articulation positions which are to be distinguished
are: bilabial, labiodental, alveolar, palatal, velar, glottal. These classes follow the
pattern set by the underlying EMG-based speech recognizer taken from [Jou08],
they do not fully cover the entire IPA chart since some articulations (e.g. pha-
ryngeal and uvular) do not occur in English language, and some others are only
covered by a single phone (for example, the only lateral approximant would be
[l], so we adjoin it to the group of approximants).

The results are summarized in table 4.2. Since the sample sizes by class vary,
we average the accuracies over the classes: For each class, we compute the ratio
of correctly classified frames to the total number of frames which the acoustic
reference alignment assigns to this class, and then compute the average of these
accuracies. This means that in all cases, the chance level for classification is

1
# classes . Confusion plots are shown in figure 4.9.

The observations from the phone-based system are confirmed: On the EMG-PIT
corpus, the articulation position is recognized from EMG data with 55.59% av-
erage accuracy, and the manner of articulation is recognized with only 47.73%
average accuracy, despite the fact that there are six position classes and only five
manner classes. Voicing is rather hard to recognize, with only 62.63% accuracy
on two classes. Yet, this is above chance level. The results are similar on both
corpora, but differ very much from the results on acoustic data, where the man-
ner of articulation is much better recognized than the position of articulation,
and voicing is recognized best of all.

Finally, the PF confusion plots in figure 4.9 reveal a notable pattern. For EMG-
based classification of the articulation position, there are two visible confusion
groups: Bilabial and labiodental consonants are frequently confused, and so are
consonants assigned to one of the other four articulation positions. Confusions
between the groups are less frequent. We derive from section 2.2.2 that these two
groups differ in the activity of the lips, which are obviously central for articula-
tion of bilabial and labiodental consonants, but are less active in the other cases,
where the tongue plays a more central role.

For the classification of manner of articulation, and for the acoustic case, no clear
plattern is observed, and the single-electrode setup clearly does not suffice to de-
termine whichmuscles cause the confusion and recognition patterns we observe.
Yet, it is clear that EMG-based phone classification recognizes articulatorymove-
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Figure 4.9 – Confusion plots for phonetic feature recognition. The plots show the
confusion for position resp. manner of articulation, on both corpora and for EMG
signals and acoustic signals.
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ments in a consistent manner: Even though the accuracy is substantially lower
than for acoustics, this is an encouraging result, since it proves that our stated
goal of eventually extracting and classifying articulatory movements is realistic.



Chapter 5

Phonetic Features and the
Feature Bundling Algorithm

In this chapter we introduce a new and innovative modeling structure for the
EMG-based speech recognizer. The newmodels are based on the fusion ofmul-
tiple knowledge sources in form of Phonetic Feature models, which represent
partial information about phones. The key novelty is that dependencies be-
tween phonetic features are modeled, yielding Bundled Phonetic Features
(BDPF), which reduce the Word Error Rate of our recognizer by up to 40.8%
relative.

5.1 Phonetic Features as Modeling Units

The EMG-based speech recognizer which was presented in chapter 4 is based on
context-independent subphones as modeling units. This means that each frame
of the EMG signal is regarded as the realization of the beginning, middle, or
end state of a phone. In order to improve results, a new modeling paradigm is
developed, which is presented in this chapter. It is based upon three principles:

• Phonetic Feature modeling As demonstrated in chapter 4, phonetic fea-
tures (PFs) can serve as classes to be discriminated by a frame-based recog-
nizer. Any phone can be described as a set of phonetic features (compare
section 2.2.2), so it should be possible to combine the results of PF classifiers
for phone classification and, consequently, for continuous speech recogni-
tion. Prior results, reviewed in section 5.1.1, show that this concept can
yield better results than standard phone-based modeling.
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Phones h e l ou w er l d 

Phonetic  Features 

Alveolar    

Glottal  

Plosive  

Fricative  

Approximant    

··· 

Vowel    

Front (Vowel)  

Round (Vowel)  

«HELLO WORLD» 
Pronunciation Dictionary Lookup 

Figure 5.1 – Derivation of Phonetic Features from phones

• Data-driven model optimization We wish to create optimized models
which capture the articulatory variability of the data and may be prop-
erly trained with a relatively small amount of training samples. Context-
dependent modeling (compare section 2.3.4) is the standard answer to
this question as far as acoustic speech recognition is concerned, however
the limited training data amount precludes its application at least in our
session-dependent systems.

• Data reuse The current EMG data corpus is relatively small compared
to corpora used in classical acoustic speech recognition. Therefore it is
greatly desirable to find a way to make efficient use of training data by
reusing it in different contexts.

In this chapter, these principles are combined to form a new and innovative
modeling structure for our recognizer, which we first presented in [SW10]. It
is shown that compared to the baseline system presented in chapter 4, this new
structure yields a relative WER improvement of up to 40.8% relative.

5.1.1 A Review on Phonetic Features

As in section 4.4, we define Phonetic Features (PFs) as properties of phones, like
the place or the manner of articulation. This assignment is canonic, it is derived
directly from the standard IPA charts for vowels (figure 2.7) and consonants (fig-
ure 2.8).
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Phonetic Features have been studied for many decades, albeit under different
names. The original theory of distinctive features is primarily attributed to
the Russian-American linguist Roman O. Jakobson [Wil66], who developed his
framework more than 50 years ago ([JFH52], cited according to [HOW06]). The
goal of this distinctive features theory was, of course, not computer-based speech
recognition, but rather understanding the properties of language: for example,
it was asked how differences between words are perceived by a listener. Classi-
cally, it is assumed that word differences are formed by contrasts between whole
sounds of a word (i.e. phonemes, see section 2.2.2), but it might be possible that
such meaning differences are conveyed by smaller contrasts, like the contrast in
a single binary-valued phonetic feature, for example, by the voicing contrast in
the words bill versus pill [HOW06].

In terms of computer-based speech recogntion, phonetic features were studied
on a large scale by K. Kirchhoff in her doctoral dissertation [Kir99], although
there exist prior studies, see [Kir99, Chapter 2.4]. In Kirchhoff’s work, the term
Articulatory Features is used, with the restricting remark: “The articulatory fea-
tures we are concerned with in this thesis are not detailed numerical descriptions
of the movements of articulators during speech production. Rather, they are ab-
stract classes which characterize the most essential aspects of articulation in a
highly quantized, canonical form [...]” [Kir99, Chapter 1].

Modeling the movement of the articulators may not be necessary in acoustic
speech recognition, but on the long run this will certainly be a topic in EMG-
based speech recognition, as it is with othermodalities, for example EMA [Ric09].
Hence in order to use clear terminology, we avoid the term “articulatory fea-
tures” and talk about “phonetic features” instead. This also allows to use a some-
what more general definition than Kirchhoff, where phonetic features are re-
quired to “have well-defined correlates in articulatory space” [Kir99, Chapter
2.4.2], and include purely functional phonetic features without a clear represen-
tation in articulatory space, like “Consonant” or “Syllabic”.

Kirchhoff studied conventional acoustic speech recognition. PFs are understood
as multi-valued variables describing properties of phone articulation. Typical
PF include Voicing, Manner of articulation, Place of articulation, Vowel Position
(front – back), and lip Rounding. The central achievements of Kirchhoff’s study
are an increased robustness of a hybrid phone/PF classifier compared to a stan-
dard phone-based recognizer in the presence of ambient noise, and the proof
that PF models encode information which is not available in a standard phone-
based recognizer. However, it is also observed that the PFs can enhance, but
not replace, the original phone-based system due to “the poorer separability of
phonetic classes in articulatory feature space compared to the acoustic feature
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space” [Kir99, Chapter 4.7]. Finally, it is hypothesized that including interde-
pendencies between phonetic features could make the classification more robust
[Kir99, Chapter 5.2].

The basic structure and implementation of the PF recognition system employed
in this thesis is taken from the experiments of F. Metze [MW02, Met05], wherein
the phonetic features are integrated into a conventional (acoustic, phone-based)
speech recognizer by means of a Multi-Stream architecture. This architecture is
described in detail in the following section 5.1.2. Just as Kirchhoff, Metze derives
PFs from the underlying phones; in contrast to Kirchhoff, he uses binary PFs,
e.g. the feature “Plosive” may be present (in English, this is true for the sounds
[p], [b], [t], [d], [k], and [g]) or absent (this includes not only the majority of
consonants, but also all vowel sounds). The derivation of binary-valued PFs from
phones is displayed in figure 5.1.

Metze achieves results similar to Kirchhoff, in particular, an improved robustness
towards spontaneous and hyper-articulated speech. Furthermore, discriminative
training methods (e.g.Minimum Classification Error (MCE) [JCL97] orMaximum
Mutual Information Estimation (MMIE)) are investigated at the PF level. As in
Kirchhoff’s works, it is observed that PFs cannot fully replace the original phone-
based system.

This multi-stream system was first applied to EMG-based speech recognition by
Szu-Chen Jou [JSW07, Jou08] as part of his PhD thesis. In [JSW07], applying the
optimal PF multi-stream setup to EMG-based speech recognition is reported to
yield a WER improvement of 11.8% relative, based on a single recording session
of one single speaker, with 380 training sentences. In [Jou08, Chapter 4.7.8], the
system is reapplied to a larger corpus, still yielding 6.2% relative improvement.

Within the context of this thesis, the main result so far is that it is worthwhile
to study phonetic features not only as an analysis tool, as was done in section
4.4, but also as a modeling tool, thus realizing the first principle defined above,
i.e. Phonetic Feature modeling. The first benefit which should be expected is
that PF models might be better estimated when few training data is available,
since the available amount of training data is divided among a smaller amount
of classes. Note that for this purpose, it might not be required to form classes
based on phonetic categories: it is expected that other phone groupings would
also work, as long as the contained phones share some common properties which
allow modeling the class as a whole. Yet, the results on PF classification from
section 4.4 suggest that using phonetic features as a starting point automatically
yields classes which share common properties, in both the EMG and the acoustic
case. In section 5.2, we leverage these robustly estimated PF models to obtain a
realization of the second principle defined above, i.e. model optimization. The
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… 
      present                             absent         present                   absent 

… 

Phone 1   Phone n … Phonetic Feature 1 Phonetic Feature k 
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Figure 5.2 – Composition of phone scores from Phonetic Feature scores: the multi-
stream model

question whether Phonetic Features might be more robust towards artifacts than
standard phone models is beyond the scope of this study.

The remainder of this chapter is structured as follows: In section 5.1.2 we first
describe and evaluate the original multi-stream PF system, which corresponds to
the one applied in [Jou08]. In section 5.2, Bundled Phonetic Feature modeling is
introduced as a key result of this study, and a detailed evaluation is performed.
Finally, in section 5.3, the results are summarized and a conclusion is drawn. All
experiments are session-dependent, and as in the last chapter, we use the pilot
part of the EMG-PIT corpus and the EMG-UKA corpus as development data and
the main part of the EMG-PIT corpus for evaluation.

5.1.2 The Multi-Stream Architecture

The structure of the multi-stream system originating from [Met05, Jou08] is de-
picted in figure 5.2. Here, the emission log probability of a phone within the
HMM framework is computed as a weighted sum of log probabilities from var-
ious streams, i.e. knowledge sources. One knowledge source corresponds to the
standard phone model, so we have a set of Gaussian Mixture Models (GMMs)
corresponding to the set of phones. The other knowledge sources correspond to
phonetic features, where we have the “present” and “absent” models.

Note that the following minor points are not shown in the figure: For the “Silent”
phone a separate model is used, so that the silent phone affects neither the
“present” nor the “absent” model of any PF, and we have models corresponding
not to phones, but to subphones, i.e. the beginning, middle, or end of a phone,
see section 2.3.2. This transfers to the PF modeling: Each PF stream has seven
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Figure 5.3 – Average number of frames per phonetic feature in the training data.
The first 10 features each have more than 1,000 frames.

models for the beginning, middle, or end of a present or absent feature, plus one
silence model.

As an example, the end of “H” in the word “hello” would be modeled using

• the model “H-e” (end of phone “H”) in the phone stream,

• the model “Non-Alveolar-e” in the “Alveolar” stream,

• the model “Glottal-e” in the “Glottal” stream,

• the model “Non-Plosive-e” in the “Plosive” stream,

• etc.

The final score, i.e. the (negative) log-likelihood

− log p(x|model H-e) =: Score(model H-e),

of an observation x for the model “H-e” is then computed by the formula

Score(model H-e) = WeightPhone · Score(phone H-e)
+WeightAlveolar · Score(Non-Alveolar-e)
+WeightGlottal · Score(Glottal-e)
+WeightPlosive · Score(Non-Plosive-e)
+ further PF scores.

In particular, there is one final score for the model “H-e”, as in a conventional
model. This allows a direct integration of the multi-stream architecture into the
standard HMM framework for speech recognition (see section 4.1).
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For the following experiments, we have to make an informed choice which pho-
netic features should be used for modeling. In [JSW07], eight PF streams are used
in the multi-stream decoding setup. The WER improves when more streams are
added, but only up to five streams, where a saturation effect is observed. This
might be due to the varying amount of frames per present phonetic feature: only
those features where sufficient training data is available are well modeled.

We counted the number of frames available for each phonetic feature per session.
The average over all sessions is depicted in figure 5.3; there are ten PFs where
the average number of frames exceeds 1000, with a notable leap to the eleventh
PF. Out of these 10 features, two are redundant in the sense that they are exact
complements of previous features: “Vowel” and “Unvoiced”.

In the following experiments, the 10 most frequent PFs are used. We note that
these 10 PFs do not fully cover all possible English articulations, for example,
many articulation position from the IPA chart (see section 2.2.2) are disregarded.
Since for now we just intend to use PF modeling to augment phone modeling,
this is not considered a problem, we rather prefer to make sure that our models
are well trained.

Since presence and absence of PFs are equally modeled in the multi-stream
model, the two redundant features “Vowel” and “Unvoiced” can be left out; they
are already covered by the absent complementary PFs, i.e. “Non-Consonant” and
“Non-Voiced”. So we obtain eight PF streams, the phone stream contributes as
well. We make the further constraint that all PF streams must have the same
weight. It is possible to learn such weights (Discriminative Model Combina-
tion [Bey00]), and experiments in acoustic speech recognition on a setup similar
to our own are presented in [Met05, Chapter 7.2]. We refrain from applying
Discriminative Model Combination on the PF setup developed so far since the
system is substantially changed in section 5.2, where phonetic feature bundling
is introduced. See section 5.2.3 for remarks on optimal stream weighting for
Bundled Phonetic Features, and on the exchangability of streams.

5.1.3 Results and Analysis

We evaluate PF-based modeling on the EMG-PIT pilot corpus and the single-
session part of the EMG-UKA corpus, just as for the baseline system. The phone-
based recognizer is augmented with phonetic features with various weightings
ranging from 0.00 (i.e. the PFs are not used) to 0.09. Note that these are per-
feature weights, i.e. the total weight of the PFs ranges up to 0.72. Also, in order
to make the training of the different recognizers comparable, the training data
alignments which are iteratively computed by the Viterbi algorithm during train-
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Figure 5.4 –WER for different weightings of the Phonetic Feature Streams, without
Phonetic Feature bundling. Bars indicate standard deviation.

ing (see section 2.3.5) are based only on the phone stream, not on the PF streams;
thus they are identical for all trained systems.

Figure 5.4 shows the results of these experiments. Clearly, PF modeling gives
improvement, however raising the PF streamweight beyond about 0.05, which is
a total PF weight of 0.40, causes the results to deteriorate. On the EMG-PIT pilot
corpus, PF modeling with the PF streams weighted at 0.05 improves the WER
from 47.47% for the phone-based system (compare table 4.1) to 42.96%, which
is 47.47%−42.96%

47.47% = 9.5% relative; on the EMG-UKA corpus the improvement is
from 38.55% WER to 36.83% WER, which is only 4.5% relative, albeit from a far
better baseline. The observation that one cannot increase the PF stream weights
beyond a certain threshold without causing accuracy deterioration confirms the
results in [Kir99, Met05].

In order to establish the significance of the WER improvement, we performed
recognition on the main part of the EMG-PIT corpus, i.e. on the evaluation set,
using the optimal PF stream weighting of 0.05. From table 4.1, one sees that the
phone system performs with 52.61% WER on this corpus. The PF-based system
with a weighting of 0.05 per feature achieves 48.06% WER on average. The im-
provement is 8.65% relative, a result which is completely in accord with [Jou08].

We perform statistical validation by computing the session-wise improvement
which PF modeling yields. The average absolute improvement per session is
4.55% with a 95% confidence interval ranging from 2.67% to 6.43%. From this
result we conclude that the improvement is significantly above zero.
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The multi-stream model is a realization of the third principle defined in section
5.1, i.e. data reuse. Indeed, the models in each stream are trained based on the
entire training data set, where the feature extraction is not altered for different
streams. Therefore, each feature frame is used nine times (once for the phone
stream, once for each PF stream), and given that we do nothing more but using
different partitionings of the training data, it is a remarkable success that this
method yields a significant performance improvement.

5.2 Bundled Phonetic Features

This section describes the phonetic feature bundling algorithm, which is one of
the central results of this thesis and a core component of the EMG-based Silent
Speech Recognizer. We first presented this algorithm in [SW10].

5.2.1 Introduction and Motivation

First recall that it is intended to create a new modeling structure based on three
principles: (1) Phonetic Feature modeling, (2) data-driven model optimization,
and (3) data reuse. The last section 5.1.2 reports significant improvements by
applying principles (1) and (3), but principle (2) has not yet been implemented.

A classical method to create optimized models in acoustic speech recognition is
context-dependent modeling, see section 2.3.4, which is reported to yield WER
improvements of up to almost 50% relative. How is this result achieved? The
first key observation is that phone models should not be considered in isola-
tion: Instead, the realization (i.e. the sound, or in the EMG case the articulator
movements) of a phone depends on its neighboring phones (its “context”). This
is accounted for by creating context-dependent models, where each phone de-
pends on its left and right neighbor(s). Unfortunately this new structure implies
that the number of trained unit models increases drastically, which is where the
second key component of the algorithm comes into play: Phone contexts are
automatically clustered according to a suitable similarity measure, so that the
number of contexts which must be modeled is reduced.

In [WS09], we showed that context-dependent modeling significantly improves
theWER of a speaker-independent EMG-based speech recognizer. However, this
result does not transfer to session-dependent systems because the training data
corpus is too small. We observed that the WER of the session-dependent recog-
nizer increases when context-dependent modeling is used, and that the WER in-
variably gets worse when the number of context-dependent models is increased.
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Figure 5.5 – Example of a partial PF tree (before PF bundling) for the VOICED
stream. Only the “end” models, corresponding to the end part of the PF “VOICED”,
are shown. When a model for a specific phone is required, the algorithm traverses
the tree, choosing the right branch by answering a phonetic question, e.g. for the
phone [R], the question “0=VOICED?” (Is the current phone voiced?) is true, so the
“VOICED-e” model would be used.

Context-dependent models are based on a refinement of context-independent
phone models. The idea can be applied to our session-dependent EMG-based
speech recognizers by changing the modeling paradigm: We start with the pho-
netic feature models from the previous section instead of phone models and then
use decision-tree based model splitting to obtain more specific models. In the fol-
lowing paragraphs the algorithm is described in detail.

5.2.2 The PF Bundling Algorithm

Reconsider the multi-stream system as shown in figure 5.2. For PF bundling,
each PF stream is considered separately, the phone stream is left unchanged.

According to the setup described in section 5.1, each stream comprises seven
models, corresponding to the beginning, middle, or end of the present or absent
phonetic feature, plus a special silence model. Note that the models for begin-
ning, middle, and end of a PF are never combined (one might opt for a more
general joint modeling of these substates, but we observed that this does not
yield any benefit). In the remainder of this section, we call this model structure
unbundled PFs for short.

The unbundled PF models may be implemented using a very simple phonetic de-
cision tree, as shown in figure 5.5 using the “end” models of the “Voiced” stream
as an example. Starting at the tree root, the phonetic question “0=VOICED” (Is
the current phone voiced?) determines which model is to be used, based on the
current phone.
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Figure 5.6 – Example of a partial BDPF tree for the VOICED stream. The upper
nodes with yellow background are predefined and are also present when context-
independent unbundled PFs are used (see figure 5.5); when BDPF models are used,
the BDPF tree is generated from this basis. Questions ask for presence or absence
of a PF in the current (0), preceding (-1), or following (+1) phone.

The purpose of phonetic feature bundling is to find an optimizedmodel structure,
balancing the requirement that there should not be too many different models
(which would be difficult to properly estimate with a small training data corpus),
and the requirement that the models should be fine-grained enough to capture
the articulatory variability between different phones and phonetic features. A
phonetic decision tree represents an iterative refinement of models, whichmakes
it perfectly suited for balancing these requirements. In figure 5.6, it is shown
how the basic phonetic decision tree is extended with more branchings based
on phonetic feature questions, yielding models which correspond to “bundles”
of phonetic features, e.g. “voiced fricative”. The longer the paths in the tree are,
the more specific the models become. At the bottom of the figure, questions like
“-1=...” and “1=...” can be seen: By convention such formulas refer to the left or
right context phone in an HMM, allowing the bundled PF models to incorporate
context dependency.

The set of possible questions is predefined, it is based on questions for about 100
PFs. These PFs cover a large variety of subgroups of the IPA charts for vow-
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els and consonants (see section 2.2.2), so we have rectified one problem of the
unbundled PFs, namely that they do not allow discriminating all phones of the
English language.

Each combination of a PF and a context position (-1, 0, 1) defines a question,
figure 5.6 displays several examples. In addition, questions may be augmented
by additionally asking whether the previous, current, or next phone is located
at a word boundary. Due to the limited amount of training data, we do not
consider larger context widths than±1, and in the experiments below, we allow
the context questions to be suppressed altogether: this means that questions may
only be asked for the current phone, and not for context phones. For the models
which are created by this algorithm, we coined the name Bundled Phonetic
Features (BDPF).

We remark that first results on applying the decision tree method with pho-
netic features (VOWEL and CONSONANT) as root nodes were already obtained
for acoustic speech recognition in [YS03], albeit without using a multi-stream
system. Only small WER improvements could be achieved, ranging around 3%
relative, which is less than what we achieve with unbundled phonetic features.
In section 5.2.3, we reconsider this system and give a possible explanation for
this result.

In order to create a phonetic decision tree for any of the PF streams, the decision
tree growing algorithm from [BdSG+91] is performed, similar to the creation of
context dependent models (see section 2.3.4):

1. Firstly, the algorithm is initializedwith the set of six“unbundled” PFmodels
representing the beginning, middle, and end of the respective present or
absent phonetic feature, plus a silence model. These models are arranged
into three decision trees, each like the one in figure 5.5, the silence model
does not participate in the splitting process.

2. Now the recognizer with the “unbundled” PFmodels is trained according to
the steps described in section 4.1.3. In particular, GMMs for the PF models
are created, which is a requirement for choosing optimal model splits.

3. For each present or absent phonetic feature, all available phonetic contexts
whose central phone matches the phonetic feature are collected (up to the
predetermined maximal context width).

4. A new system is trained, having the following structure: the set of Gaus-
sian component distributions remains unbundled. However, each phonetic
context receives its own set of mixture weights. This is an example of pa-
rameter tying, balancing the requirements of fine granularity and train-
ability. In the context of phonetic decision tree growing, the important
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property of the new modeling structure is that it yields a well-computable
criterion for model splits.

5. In each step, all current leaf nodes and all possible questions are considered
in order to determine the optimal split for this step (a minimum amount
of training data is required for a node to participate in the splitting). The
criterion for the optimal split is the loss of entropy in the mixture weights
[FR97]: The entropy of the joint mixture weight distributions is subtracted
from the entropy of the two resulting mixture weight distributions which
will emerge if the split is performed. If this computation results in a high
value, this means that the split will cause a high entropy loss, or informa-
tion gain. Note that this only works because all phonetic contexts which
match the same present or absent phonetic feature share the same Gaus-
sian components, and that the computation is very quick, since themixture
weights just reflect the amount of training data samples for the underlying
Gaussian components (compare equation 2.5), which is readily available.

6. The optimal split, which is the split which yields the highest entropy loss, is
performed, thus creating two child nodes corresponding to BDPF models.
The leaf node which was split is now a branching node in the decision tree.

7. Steps 5 and 6 are repeated until a termination criterion is met. In this
study, the termination criterion is that a fixed number of leaves have been
created, and we use the additional constraint that all nodes must receive
enough training data. Further down, the effect of varying the termination
criterion is investigated.

This algorithm is applied to all eight PF streams in the multi-stream framework.
Finally, the recognizer is trained again, now using the newly created set of mod-
els. Note that we refrain from recomputing the LDA transformation, since we did
not observe any benefit from this step. Training is performed according to the
setup described in section 4.1.3, as usual: The GMM models are initialized with
Merge-and-Split training, followed by four iterations of the Viterbi algorithm.

When PF bundling is performed, the original binary PF models are specialized
more and more. During this process, BDPF models “converge” towards phone
models, in the sense that a suitable series of phonetic questions uniquely deter-
mines a phone (e.g. in English, the description unvoiced labiodental fricative is
only satisfied by the phone [f]). This is a key property of BDPF models: they
are optimized models ranging between binary PF models, i.e. the most coarse
possible model, and (context-dependent or context-independent) phone models,
i.e. the most specialized possible model. The specialization is determined in a
data-driven way, thus ensuring an optimal representation of the training data.
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Figure 5.7 – Performance of Bundled Phonetic Features versus reference systems.
Bars indicate standard deviation.

As an example for the usage of the BDPFmodels, assume that the VOICED stream
with the PF tree shown in figure 5.6 needs to compute a score for the end part
of the [r] phone of the word “true”, consisting of the phone sequence [t] [r]
[oo], and for a given feature vector. Computation is based on the PF tree in
figure 5.6. Using a context width of one, the middle phone could be written as
“R(T|OO)”. Score computation starts at the tree root, and the context “R(T|OO)”
is used to answer the question “Is the central phone voiced?” In this case the
answer is “yes” since [r] is voiced, so we continue at the node “VOICED-e”. The
next question is “Is the central phone a fricative?”. Since this is false, we now
reach the node “VOICED NON-FRICATIVE-e” and continue accordingly, this
time with a question about the left context phone [t] (“-1=...”), until a leaf node,
corresponding to a trained GMM model, is reached.

5.2.3 Results and Analysis

Basic BDPF System For a first evaluation of the BDPF recognizer, we fix the
following parameters:

• As in 5.1, eight PF streams are used, namely the ones corresponding to PFs
which receive more than 1000 training data samples.

• The BDPF tree generation stops when 120 nodes are created, or when each
node receives less than 50 training samples. Note that this criterion is
evaluated per stream, so eventually, we will obtain 8 · 120 = 960 BDPF
models.
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System EMG-PIT (pilot) EMG-UKA
WER rel. impr. WER rel. impr.

Phone-based (Baseline) 47.47% - 38.55% -
Unbundled PFs 42.96% 9.5% 36.83% 4.5%
Context-independent
BDPFs

39.95% 15.8% 31.61% 8.1%

Context-dependent
BDPFs

33.95% 28.5% 22.82% 40.8%

Table 5.1 – Summary ofWord Error Rates of the Phonetic Feature systems. Relative
improvement are towards the phone-based baseline system.

• We consider both the context-independent system (i.e. the system where
phonetic questions about the left and right contexts are not allowed) and
the fully context-dependent BDPF system with a maximal context of ±1.

Later on, we will show that these parameters are optimal. The feature extraction
is taken from the baseline system: We use the TD10 feature, and we use the 12
most discriminant dimensions after LDA. As described above, LDA is computed
on the context-independent phones; we also performed experiments on recom-
puting the LDA for each PF stream, but did not observe substantial improvement
from this step.

Figure 5.7 and table 5.1 show the Word Error Rates of the following four rec-
ognizers: the standard phone-based recognizer, the recognizer with “unbun-
dled” phonetic features and optimal settings from section 5.1.3, and the context-
independent and context-dependent BDPF recognizer. The result clearly shows
that BDPF modeling yields a substantially improved accuracy: On the EMG-PIT
corpus, the average WER decreases from 42.96% for unbundled PFs to 33.95% for
the context-dependent BDPF system, which is a relative improvement of 21.0%.
Compared to the phone-based system with 47.47% WER, the relative improve-
ment is 28.5%. On the EMG-UKA corpus, the WER drops from 36.83% for un-
bundled PFs to 22.82% for context-dependent BDPFs, which is an improvement
of 38.0%. The context-dependent BDPF system yields a relative improvement
over the phone-based system of more than 40%.

The context-independent BDPFs also perform well, with 7.0% resp. 14.2% rela-
tive improvement towards unbundled PFs and 15.8% resp. 8.1% relative improve-
ment towards the phone-based system. However, this improvement is not con-
sistent, for some sessions we actually observe that the WER rises when context-
independent PF bundling is applied.
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Figure 5.8 – Performance of the context-dependent BDPF System with different
weightings of the phone stream. Bars indicate standard deviation.

System Optimization In this section, the aspect of parameter optimization is
discussed. As in section 4.3, optimization is performed with a focus on under-
standing properties of the system, rather than tuning the system for maximal
performance. Note that all following experiments are based on the context-
dependent BDPF system, i.e. questions for the left and right phone context are
allowed in the decision tree creation stage.

As a first step, we ask how much the phone stream needs to contribute when
BDPF streams are used. For this experiment, we retain the constraint from sec-
tion 5.1.2 that all BDPF streams must have the same weight. The phone stream
weight is varied from 0.0 to 0.4. The Word Error Rates obtained with these ex-
periments are displayed in figure 5.8: Increasing the phone streamweight causes
an almost linear rise of the WER on both the EMG-PIT (pilot) and the EMG-UKA
corpus. We note that the variance between sessions is large, for example, on the
sole session of speaker 5 of the EMG-UKA corpus, the WER falls from 35.40% to
30.30% when the phone stream weight is increased from 0 to 0.025. In contrast,
on session 2 of speaker 1 we achieve a WER of 34.30% without phone stream
and 42.40% with a phone stream weight on 0.025. For the vast majority of ses-
sions, using the phone stream, even with a very low weight, causes declining
accuracy. From the observations, we conclude that the overall best system is
achieved without the phone stream, and all further experiments are therefore
based on the BDPF streams alone.

The next experiment answers the question howmany BDPF streams are required
for optimal recognition performance, and how the performance of the recognizer
changes when the number of streams is varied. In section 5.2, we argued for
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Figure 5.9 – Performance of the context-dependent BDPF System with different
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using eight streams, but under very different conditions. In those experiments
unbundled PFs were used, where the streams each have very different properties
in terms of available training data for the models for present and absent PFs, and
in terms of the encoded information.

So for the following experiment, phonetic decision trees and BDPF models for
27 BDPF streams were trained, corresponding to the 27 most frequent PFs in our
setup, omitting redundant PFs. For testing, streams were incrementally added
in order of PF frequency, so the first eight streams correspond to the standard
streams chosen in section 5.1.2. The total weight of 1.0 was split equally across
all PF streams, the phone stream was never used.

In figure 5.9 the result of this experiment is charted: It is clearly visible that
only the first five or so streams contribute to the improvement of the recogni-
tion result. After this, the system neither improves nor degrades. The latter
is remarkable since e.g. for the PF “PALATAL”, only 100 training data samples
are present (see figure 5.3), but the explanation is simple: Both the models for a
present and absent phonetic feature are part of the corresponding PF stream and
participate in splitting.

Since the model splits depend on the available amount of training data, it is clear
that for a streamwhere the present PF receives little training data, most splits are
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performed on models for the absent phonetic feature. In the most extreme case,
there exist sessions where e.g. the set of BDPF models for the PALATAL stream
consist of three unsplit models for the substates (beginning, middle, and end)
of the PALATAL feature, and for all other BDPFs in this stream, the PALATAL
feature is not present. Additionally, for example the PALATAL stream, being
the 27th stream to be added, of course only contributes to the total score with a
weight of 1/27 ≈ 4%, so a major influence on the result cannot be expected.

Figure 5.9 additionally plots the average number of Gaussians, i.e. the model
size, summed over all contributing streams, and averaged over all sessions and
speakers. We see that with an increasing number of BDPF streams, the system
size grows linearly: each BDPF stream, independent of its root phonetic feature,
comprises a similar number of Gaussian models. This result is very consistent
across speakers.

A major observation taken from figure 5.9 is that using just one, or even two
streams, is not enough to unleash the full potential of the BDPF models: around
five streams are required. This may partially explain the small WER improve-
ment of Yu and colleagues [YS03], who create a decision tree similar to the ones
employed in this study in an acoustic speech recognition scenario, obtaining only
a small improvement (up to 3% relative). In that work, only a single knowledge
stream, corresponding to a single phonetic decision tree, is used, whereas our
study is firmly based on the multi-stream scenario. Another explanation may be
that the corpus used in [YS03] is far larger than our EMG-PIT and EMG-UKA
corpora (up to 160 hours of speech training data). It is expected that on such
a large corpus, classical context-dependent models would also perform well, so
that the BDPF modeling yields only a small improvement. This result underlines
the importance of BDPF modeling, which brings flexible, optimized models to
comparatively small data corpora.

We ran additional experiments on varying the relative weighting of the BDPF
streams according to a discriminative criterion (Discriminative Model Combi-
nation (DMC) [Bey00]). However, no consistent performance improvement or
degradation was obtained by using DMC (additionally, the computation time for
model training rose drastically). We propose that this is due to the fact that the
BDPF streams converge when the phonetic decision tree is large enough: a split
which is important in one stream is expected to occur at some point in any other
stream, too. This means that the PF streams have similar discriminative power.
In the following we quantify this statement, showing that it is indeed true as
long as multiple streams are used. In order to gain insight into the discrimina-
tive power of the BDPF streams, we ran the following experiment. We trained
10 context-dependent BDPF streams, in the order depicted in figure 5.9 (the limit
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Number (n) of Non-discriminable phone pairs
BDPF streams EMG-PIT pilot Corpus EMG-UKA Corpus
1 74.9 ± 34.8 83.5 ± 59.3
2 29.6 ± 13.7 32.7 ± 26.9
3 16.7 ± 8.5 18.4 ± 14.6
4 11.0 ± 5.7 12.4 ± 9.1
5 7.8 ± 4.1 9.2 ± 6.2
6 5.9 ± 3.2 7.2 ± 4.5
7 4.6 ± 2.5 5.9 ± 3.5
8 3.6 ± 2.0 4.9 ± 2.8
9 2.9 ± 1.6 4.2 ± 2.2
10 2.4 ± 1.2 3.6 ± 1.8

Table 5.2 – Number of non-discriminable phone pairs with different numbers of
BDPF streams (mean and standard deviation). The values are averaged over all n-
tuples of BDPF streams. See text for details.

of 10 streams was chosen to keep the computation time under control). Then we
considered all n-tuples of distinct streams, for n = 1, . . . , 10.

For each such tuple, we determined how many pairs of phones could be discrimi-
nated based on these streams. For simplicity, only the phonetic decision trees for
the middle subphone were considered. A phone pair is said to be discriminable
if at least one BDPF stream groups these two phones into different categories, i.e.
decision tree leaves. Clearly, the more BDPF streams there are, the more phone
pairs can be discriminated.

In order to keep the experiment simple, we did not consider phone contexts in
this experiment, and we likewise disregarded the word boundary tag, which ad-
ditionally serves to discriminate models (see the description in section 5.2.2).
Since we use 47 phones for the decision trees (45 “true” phones, a silence phone,
and a special padding phone for unknown contexts), we obtain 47·46

2
= 1081

phone pairs.

The average and standard deviation of the count of nondiscriminable phone pairs
for different numbers of BDPF streams is shown in table 5.2. The average was
taken over all possible tuples of BDPF streams and all sessions of the respective
corpus. It can be seen that with only one BDPF stream, a large number of phone
pairs (84 resp. 74 on average) cannot be discriminated. With more streams, the
number of nondiscriminable phone pairs falls drastically. This corresponds well
with the result from figure 5.9, where we observed that one BDPF stream alone
does not yield good recognition results, but that just a few more streams suffice
to attain optimal performance.
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When we use eight BDPF streams, there are around 3 – 5 phone pairs on average
which are never discriminated. Some of these pairs are irrelevant in the classi-
fication process, for example, if one of the phones is the special padding phone.
Beyond this, typical non-discriminable pairs include phones which only contrast
by voicedness, as well as phone pairs whose pronunciations are very similar. The
latter is true for some vowel contrasts, e.g. a typical nondiscriminable phone pair
comprises the two different phones for the ’oo’ vowels in the English words “do”
and “hood”.

This result matches the assumptions we made on the process of EMG-based
speech recognition (see section 4.4): In particular, phones where articulator
movements are very similar may be hard to discriminate. We also note that the
number of nondiscriminable phone pairs is consistently lower for the EMG-PIT
corpus than for the EMG-UKA corpus, even though the WER on the EMG-PIT
corpus is higher: This might be due to pronunciation mistakes by the non-native
speakers who recorded the EMG-UKA corpus, however, so far we do not have
any proof for this hypothesis.

Finally, we relate the number of nondiscriminable phone pairs to theWord Error
Rates of the EMG-based speech recognizer. For each session of the pilot part
of the EMG-PIT corpus and the EMG-UKA corpus, we consider the WER for
n = 1, . . . , 27 BDPF streams, and we compute the number of nondiscriminable
phone pairs with n = 1, . . . , 27 BDPF streams. For this experiment, the streams
are always considered in the standard ordering, as shown in figure 5.9.

We observe a relation between the WER and the number of nondiscriminable
phone pairs: Averaged over all sessions, the WER and the number of nondis-
criminable phone pairs correlate with a correlation coefficient of 0.51 on the
EMG-UKA corpus and 0.66 on the EMG-PIT pilot corpus. So we see that there is
a relation between lack of phone discrimination and Word Error Rate.

From the results of the phone discrimination experiments we draw two conclu-
sions. First, we see that adding more streams brings a different model struc-
ture, but beyond five streams or so, hardly more discriminative power is gained.
Therefore we fix the number of BDPF streams which are used in all future ex-
periments to eight streams, based on the PF streams which were also used in
the unbundled case: This allows comparison of the unbundled and bundled PF
setups, yields optimal results, and avoids unnecessary computations.

Second, table 5.2 asserts that over all sessions and all possible combinations of
eight BDPF streams, the number of nondiscriminable phone pairs remains quite
stable (the standard deviation is small). Thus is does not matter very muchwhich
set of BDPF streams is used, as long as there are enough different ones. This
finally proves our assertion stated above that BDPF streams indeed have similar
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Figure 5.10 – Performance of the context-dependent BDPF System with different
decision tree size limits. Bars indicate standard deviation.

discriminative power, as long as several ones are used. However, if we consider
just one stream, we take from table 5.2 that the amount of nondiscriminable
phones varies quite drastically: So the single BDPF streams appear to differ in
their discrimination capabilities.

The last parameter optimization relates to the decision tree creation process. So
far, the stopping criterion for the decision tree creation was the fixed number of
120 leaves, or that no current leaf node received enough training data to allow
a split. Figure 5.10 shows the performance of the recognizer when the maxi-
mum number of leaves is varied: The optimum for the EMG-PIT corpus is 100
leaves, for the EMG-UKA corpus, the optimum is reached at 140 leaves, however
beyond 80, the differences are insignificant. At higher numbers, the results do
not change any more, since in this case, there is not enough data per node to
continue splitting, so the process stops early and the maximum number of tree
leaves is not reached: Our experiments show that the number of actually cre-
ated leaves is bounded at around 140 – 160, averaged over all trees. When lower
thresholds than 140 leaves are used, the maximum number of leaves is almost
always reached.

We also varied theminimum amount of training data required for splitting a node
and found similar results: Within a broad range, varying the stopping criterion
for the decision tree split does not yield significant changes. For this reason we
refrained from evaluating other stopping criteria for the decision tree splitting.
For all further experiments in this thesis, the number of 120 leaves per decision
tree was chosen as the average between the optima on the two corpora.

Significance of the Results In order to validate the results obtained within this
chapter, experiments were performed on the evaluation data set, i.e. the main
part of the EMG-PIT corpus. The following hypotheses are to be checked: First,
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System WER rel. impr. abs. impr. with conf.
Phone-based (Baseline) 52.6% - -
Unbundled PFs 48.1% 8.6% 4.5% ± 1.88%
Context-independent
BDPFs

45.2% 6.0% 2.9% ± 1.90%

Context-dependent
BDPFs

35.7% 21.0% 9.5% ± 1.85%

Table 5.3 – Word Error Rates of the different PF systems on the evaluation set
(EMG-PIT main corpus), with relative improvements and absolute improvements
with confidence intervals.

we wish to assert that the improvement from the phone-based baseline system
to the unbundled PF system is significant. This would confirm the results from
[Jou08] on a new corpus. Second, we claim that context-independent BDPFmod-
eling yields significantly reduced WERs compared to unbundled PFs. Third, we
claim that allowing context questions in the BDPF creation process yields an-
other significant improvement. All experiments are performed with the respec-
tive optimal parameter settings.

The results on the evaluation corpus are summarized in table 5.3. For each sys-
tem, we give the absolute and relative improvements towards the previous sys-
tem, for the absolute improvements, we computed 95% confidence intervals. All
confidence intervals have lower boundaries well above zero, so we conclude
that all improvements are statistically significant. The relative improvement
of the context-dependent BDPFs towards the phone-based baseline system is
32.1%—this is in line with the results on the development corpora, on the EMG-
PIT pilot corpus, we achieved 28.5% relative improvement, on the EMG-UKA
corpus, the relative improvement was 40.8%. The large variation between the
corpora reflects the large variation between the results for different speakers,
which we already reported in section 4.2.

5.3 Summary

This chapter introduced Bundled Phonetic Features (BDPF) as the basic modeling
unit for the EMG-based speech recognizer. The BDPFs are used within a multi-
stream framework, which is a major prerequisite for their effectiveness.

The modeling structure is based on three prinicples, namely Phonetic Feature
modeling, optimized models, and data reuse, where the PF bundling algorithm
creates optimized models, and the multi-stream framework is a powerful method
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for data reuse. The key property of the BDPFs is that they represent optimal
models ranging between binary PF models and phone models (with or without
context dependency), i.e. between very general and very specificmodels, and that
the optimization is performed in a data-driven way, with the target criterion of
optimizing the representation of the training data. Now that a robust and power-
ful modeling structure for our EMG-based speech recognition systems has been
established, future workmight include investigation of discriminative criteria for
the decision tree creation (e.g. [WHNT+10]), as well as standard discriminative
training methods, however this is beyond the scope of this thesis.





Chapter 6

Recognition Across Different
Speaking Modes

This chapter deals with EMG-based speech recognition across different speak-
ingmodes, which comprise normally spoken, whispered, and silently mouthed
speech. We review the mechanism of articulation control; this serves as a ba-
sis for the discussion of speaking mode discrepancies, and helps explaining
some of the observations presented in this chapter. Recognition results on
cross-mode and multi-mode systems, which cover several speaking modes in
training and testing, are presented, tackling the problem of accurately boot-
strapping a silent speech recognizer. Finally, the discrepancy between speak-
ing modes is analyzed both at model level and signal level, giving rise to the
key result of this chapter: The Spectral Mapping algorithm, a signal-based
adaptation method to compensate for the difference between the EMG sig-
nals of audible and silent speech, reduces the Word Error Rate by up to 11.5%
relative.

The experiments presented so far were performed only on EMG signals of au-
dible speech (audible EMG). Since the key purpose of the EMG-based speech
recognizer is the recognition of silent speech, this chapter deals with EMG-based
speech recognition across different speaking modes. The experiments show that
discrepancies between these speaking modes exist, and it is the purpose of this
chapter to present means of analyzing and coping with them. Speaking modes
include audible (normally spoken), whispered, and silently mouthed speech, they
are defined in section 2.2.3. We call the corresponding EMG recordings of speech
audible EMG, whispered EMG, and silent EMG, respectively.
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This chapter is structured as follows. We begin with a review of the process of
articulatory control: How does the brain generate the complex muscular activa-
tion patterns which are needed to produce intelligible speech? To answer this
question, a well-known contemporary model, the DIVA model [GGT06], is pre-
sented. The question of articulatory control is clearly important in all fields of
speech-related research, but we consider it particularly important in this chapter
since in silent speech, a very important component of the articulation process,
namely the acoustic feedback which stems from a speaker hearing his or her own
voice, is missing. We propose that the speaking mode discrepancies described in
this chapter are partly caused by the lack of acoustic feedback.

The experimental section of this chapter starts with the introduction of cross-
mode andmulti-mode recognition systems. Here the term “cross-mode” indicates
that training and testing are performed on data from different speaking modes.
“Multi-mode” refers to systems where training is performed on data from more
than one speaking mode. Consequently, a system which uses the same speaking
mode for training and testing is called a “single-mode” system. Results are pre-
sented on cross-mode and multi-mode systems with whispered EMG and silent
EMG.

Based on the multi-mode systems, we focus on silent speech and analyze the
discrepancy between the audible and silent speaking modes. For this purpose,
model-based methods and signal-based methods are devised. From a signal-
based discrepancy measure, the PSD ratio, we deduce the Spectral Mapping algo-
rithm, a signal-based adaptation method crafted to make EMG signals of audible
and silent speech more similar. It is shown that spectral mapping improves the
cross-mode recognition of silent EMG by up to 11.5% relative, the multi-mode
systems improve by up to 11.4% relative when applied to silent EMG.

All experiments presented in this chapter are performed with the session-
dependent BDPF-based recognizer presented in chapter 5, using optimal settings.
We use the EMG-PIT corpus and the multi-mode part of the EMG-UKA cor-
pus, as before, the main part of the EMG-PIT corpus is used for final statistical
evaluation. Note that for all systems, results between different speaking modes
are directly comparable, since recordings of different speaking modes use the
same set of sentences (see section 3.2). This chapter in based on our publications
[JWS10a, JWS10b, WJS11, WJS12, WJS14].
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6.1 Controlling the Articulatory Apparatus

Figure 3.1 shows an overview of the facial muscles. The facial muscles move
the articulators, which include the lips, jaw, tongue, etc. The position of the
articulators in turn determines which phone is produced. The generation and
classification of speech sounds is described in section 2.2, it can be observed that
the established phonetic categories, e.g. the vowel quadrangle or the consonant
features manner and position, are based on articulator configuration and posi-
tions.

However, controlling the articulators in actual speech is a complex process:

• Each phone is created by the movements of multiple articulators

• The problem of determining articulator trajectories for a given phone se-
quence is ill-posed, i.e. multiple solutions exist [RKT03]

• Each articulator may be affected by various muscles, and these muscles
need very precise control in order to achieve the desired result

• In continuous speech, sounds may be altered or suppressed, and coarticu-
lation causes blurring between adjacent phones. Still, the produced speech
remains understandable, which requires a high amount of fine-tuning (and
the help of the listener).

Furthermore, humans are able to produce speech under a variety of constraints
and conditions, which have to be compensated for. This includes artificial con-
straints (e.g. when a bite block is inserted into the mouth), but also applies to
adolescent persons, where the size and properties of the articulators change over
time. Humans can also adapt to deficiencies on the listeners side (e.g. we speak
more clearly if the listener has hearing difficulties).

So far, there is no method to fully measure or visualize the processes which oc-
cur in the human brain during speech production. Instead, several models have
been developed to explain properties of human speech. Here one well-known
model is presented, namely the DIVA model, which was developed by Frank H.
Guenther and colleagues at Boston University1 [GGT06] and is considered one
of the leading approaches in the field.

DIVA (Directions Into Velocities of Articulators) covers a range of phenomena
which are observed in speech production and learning. It is a neurocomputa-
tional model, thus it provides theoretical explanations about processes in the
human brain, but also allows computational simulation. The key components of

1Resources on the DIVA model are found at http://www.bu.edu/speechlab/research/
the-diva-model

http://www.bu.edu/speechlab/research/the-diva-model
http://www.bu.edu/speechlab/research/the-diva-model
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Figure 6.1 – Simplified DIVA model chart following [GGT06, figure 1]. The white
rectangles correspond to component neural networks.

the model are several neural networks whose interplay maps target phone se-
quences into velocities of articulators. The articulatory trajectories are passed
on to a simulated vocal tract.

The DIVA neural networks represent parts of the articulation process. A key
feature is control: Articulator positions are controlled by the feedforward con-
trol subsystem, and acoustic and somatosensory feedback from the articulation
process affect the articulation via the feedback control subsystem. Figure 6.1
shows a simplified chart of the DIVA model (compare [GGT06, figure 1]).

There exists a relationship between the DIVAmodel and the human brain which
is well-supported by experimental observation. In particular, some of the com-
ponents shown in figure 6.1 can be identified in human brain anatomy, for ex-
ample, the Articulator Velocity and Position Map corresponds to the motor cortex
(see section 2.1). Such results suggest that important conclusions about human
speech production can be drawn from the DIVA model, even though it might
be very hard to prove that all its parts accurately reflect the speech production
process.

From figure 6.1, it can be seen that the DIVA model contains two targets for the
articulation process, which are used for both feedforward and feedback control,
namely the acoustic and the somatosensory targets. The acoustic target essen-
tially describes the sound of a speech unit, the somatosensory target relates to
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the tactile perception which is associated with a speech segment. The DIVA neu-
ral networks learn how to create sounds which realize these targets [Gue95], see
below; when DIVA has been trained, the model can generate speech from a tar-
get phone sequence, and it can regenerate an acoustic speech fragment which
is played to it—this underlines that the DIVA neural networks are substantially
more versatile than mere feed-forward networks.

The existence of the acoustic target suggests that at the brain level, knowledge
about the desired acoustic representation of a sound is used, and that this knowl-
edge is only mapped to articulator trajectories at a later stage. Also, the acoustic
targets in the feedback subsystem indicates that the process of speech genera-
tion will be severely affected when acoustic feedback fails, as is the case for silent
speech. The existence of the somatosensory target indicates the importance of
tactile perception in speech production.

Speech sound generation starts at the Speech Sound Map. It encodes frequent
speech sounds of the target language, where according to [GGT06], a speech
sound may be “a phoneme, syllable, word, or short phrase that is frequently
encountered in the native language and therefore has associated with it a stored
motor program for its production.” So we see that speech sounds within the
DIVA framework are defined more liberally than in typical speech recognition
systems, which use a rather rigid structure (see section 2.3).

Common speech sounds are triggered by the activation of single neurons in the
input layer of the speech sound map. Uncommon phonetic sequences are not
represented in this way, instead, if they are to be articulated, they must be com-
posed out of smaller units. The set of speech sounds is not hard-coded in the
DIVA neural network, instead, it must be generated during training.

Beginning at the speech sound map, the articulation process follows a feedfor-
ward pattern. The speech soundmap encodes acoustic and somatosensory target
regions (see [Gue95] for details about these target regions), which influence the
articulator velocity and position map: Here the conversion of desired speech
sounds into articulatory movements takes place. Finally, the output of this map
controls a simulated vocal tract (according to [GGT06], the current implementa-
tion of the DIVA model uses a modified version of the synthesizer described in
[Mae90]). Thus the output layer of the articulator velocity and position map re-
flects the degrees of freedom of the articulation process, for example, the raising
or lowering of jaw or lips, and the multiple possible movements for the tongue;
see [Gue95, table 3] for a complete summary. During articulation, feedback is
collected and fed into the acoustic and somatosensory error maps, which in turn
influence the articulator velocity and position map and thus correct articulation
errors.



122 Recognition Across Different Speaking Modes

Training of the DIVA model is based on a babbling phase, during which random
articulatory movements are produced. These movements create acoustic and
somatosensory feedback, which are used to train the neural connections within
the DIVA component networks. The tuning of the neural network, based on
the randomly generated data, uses standard algorithmic methods and is (shortly)
described in [GGT06, Appendix B]. However, it should be noted that this training
is “self-organized” in the sense that “there are no ‘training sets’ for the system’s
mappings as in standard backpropagation algorithms” [Gue95, Section 1].

It is of great interest how the structure of the neural networks, in particular the
topology of the speech sound map input layer, emerges. While the topology of
the output layer is determined by the degrees of freedom of the simulated vocal
tract, the input layer of the speech sound map, encoding the set of “common”
speech sounds, is undefined at first. It is tuned after the babbling phase, the
process works by playing training samples to the model and simultaneously ac-
tivating the corresponding neuron of the speech soundmap, see [GGT06, Section
6] for details.

This training phase is notable since it resembles the way an infant is assumed to
acquire speech skills, namely, by hearing the speech of other persons, and trying
to reproduce it [GGT06, Section 6]. At first, the “babbling” of a small child only
produces isolated phones or syllables, quite different from adult speech; during
the development of the child’s cognitive and physiological abilities, more and
more complex speech sounds are generated [Gue95, Section 2.1].

This final issue touches the question how complex structures in the brain are
built up during infancy. There exist several studies (not all related to the DIVA
model), which hypothesize that indeed, the speech sound map input layer has a
physical representation in the human brain: Single neurons which may be ac-
tivated in order to generate particular speech sounds actually exist [KKU+02].
These neurons are assumed to have similar properties as the famousmirror neu-
rons [RC04]: Mirror neurons in the brains of humans and certain animals are
active when any kind of action is performed or observed: Thus they are said to
be the foundation of learning by imitation, which is a major human capability,
as well as of human social behavior. Regarding the process of speech skill acqui-
sition, it is assumed that the input layer of the speech sound map is formed by
neurons which functionally correspond to such mirror neurons [GGT06, Section
3.1]. [RC04] uses the formulation that humans might “possess an echo-neuron
system [...] that motorically ‘resonates’ when the individual listens to verbal
material”. This might explain how children learn how to speak, and how they
quickly adapt to the language(s) they hear during early childhood.
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Here we conclude the overview of the DIVA model, of course, many details can-
not be reported here due to space limitations. A central property of the model is
the relevance of high-level acoustic (auditory) and somatosensory (tactile) tar-
gets for speech production, rather than articulatory targets.

This has got an important consequence for the experiments on Silent Speech
conducted in this thesis: it becomes clear that lack of acoustic feedback, which
occurs during production of Silent Speech, impacts the production of speech, and
thus the articulatorymovements. This is empirically verified by the deteriorating
articulation accuracy of hearing-impaired persons [OM82], see section 2.2.3.

The lack of acoustic feedback, but also the articulation differences between audi-
ble and silent speech (see section 2.2.3), are expected to manifest as a discrepancy
between the EMG signals of these speaking modes. This is clearly a detriment
when building a silent speech recognizer, on the other hand, EMG can be used
as a research tool to study silent articulation.

6.2 Recognition of Whispered Speech

6.2.1 Single-Mode Training

As a first step towards multi-mode EMG-based speech recognition, we investi-
gate how our recognizer deals with EMG signals of whispered speech, i.e. whis-
pered EMG.We only use the multi-mode part of the EMG-UKA corpus, since the
EMG-PIT corpus does not contain recordings of whispered speech.

For training a recognizer on whispered EMG, we apply the BDPF-based recog-
nizer just as for audible EMG, using the optimal parameters from section 5.2.3.
Since parallely recorded acoustic data for whispered speech is available, we used
standard label bootstrapping for initialization, as described in section 4.1.1: We
manually checked some of the generated time-alignments and found them rea-
sonably accurate, despite the fact that the underlying BN speech recognizer was
trained on normally spoken speech.

Four experiments are performed, resulting from different combinations of train-
ing and test data: We train our recognizer either on audible or on whispered
EMG, and likewise, we test the recognizer on audible or on whispered EMG.
This is denoted as follows: for example, a system trained on whispered EMG
and tested on audible EMG is marked by “Whis → Aud”.

The results are charted in figure 6.2: Blue bars show recognition results on au-
dible EMG, orange bars show recognition results on whispered EMG, and the
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Figure 6.2 – Speaker breakdown of Word Error Rates for audible and whispered
speech on the EMG-UKA corpus. The label A → B means that the recognizer was
trained on speaking mode A and tested on speaking mode B. Bars indicate standard
deviation.

semi-transparent bars indicate the results on cross-mode systems, i.e. Aud →
Whis and Whis → Aud. Note that the Aud → Aud system is identical to the
optimal system from the last chapter 5, however the average WER given here
is different since we only use the multi-mode subset of the EMG-UKA corpus,
instead of its whole audible part.

It can be observed that for all speakers, the WERs for both single-mode systems
are within the same range, indicating that whispered speech is recognized as well
as audible speech. Surprisingly, the WER on the cross-mode systems frequently
increases, sometimes dramatically: This indicates that the articulator activity is
different for audible and whispered speech, and that the extent of this difference
is very much speaker-dependent. The worst cross-mode results are observed
for speaker 1; for speakers 2 and 8, it can be seen that the loss of accuracy for
the cross-mode systems is lower than for the other speakers. In the EMG-UKA
corpus, speakers 2 and 8 are the most experienced speakers, i.e. the speakers
with the largest number of recording sessions, so it can be assumed that practice
improves the consistency of speech across different speaking modes. On the
other hand, during recording it was observed that speaker 1 found consistent
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Figure 6.3 – AverageWord Error Rates on audible and whispered speech, for single-
mode, cross-mode, and multi-mode (MM) training. The number in parentheses
stands for the number of training sentences on the multi-mode systems. Bars in-
dicate standard deviation.

whispering very difficult, so the highWER of this speaker across speakingmodes
might also be attributed to incorrect articulation.

6.2.2 Multi-Mode Training

As a second experiment, we train multi-mode (MM) systems on training data
from both the audible and whispered speaking mode. This allows us to train
systems on 80 training sentences, which is twice asmuch as for the single-session
systems. For comparison, we report results for multi-mode systems trained on
40 training sentences as well: For this purpose we split our training database, so
that the 40 multi-mode training sentences are assured to have different textual
content. The 80-sentence systems are expected to perform better than the 40-
sentence systems due to the increased amount of training data.

Figure 6.3 shows that this is indeed the case. First, we observe that the multi-
mode systems trained with 40 training sentences perform only slightly worse
than the single-mode systems, and substantially better than the cross-mode sys-
tems. This indicates that while audible EMG and whispered EMG are different,
they well complement each other. This is reconfirmed by the experiments on
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PPPPPPPPPTrain
Test

Audible EMG Whispered EMG

Audible EMG 25.7% 38.5%
Whispered EMG 42.5% 27.7%

Multi-Mode (40 sent.) 27.7% 28.7%
Multi-Mode (80 sent.) 21.5% 23.1%

Table 6.1 – Summary of Word Error Rates for single-mode, cross-mode, and multi-
mode training with audible and whispered EMG

80 training sentences from the audible and whispered speaking modes: Here the
results are substantially better than on the single-mode systems. Table 6.1 sum-
marizes the results of the experiments on whispered EMG.

This result is relevant because it is a design goal of EMG-based speech recog-
nizers to allow seamless switching between different speaking modes. While
speaking mode awareness might be achieved by using single-mode recogniz-
ers and detecting the current speaking mode prior to the main recognition pro-
cess, we believe this method to be cumbersome and error-prone. In contrast, a
recognizer which provides out-of-the-box recognition of EMG data with multi-
ple speaking modes offers far greater flexibility. Additionally, speaking mode
boundaries might not always be well-defined: Whispered speech, as an example,
may range from a “stage whisper” to very quiet, almost inaudible speech, and
during silent articulation certain phones, e.g. plosives, might still be heard, see
section 2.2.3.

6.3 Recognition of Silent Speech

6.3.1 Single-Mode Training

When we intend to train a recognizer for silent EMG in the same way as the
recognizers for audible or whispered EMG were trained, we encounter the prob-
lem that acoustic-generated labels, which are necessary for bootstrapping the
recognizer (see section 4.1.1), are not available. In [WJTS09], we devised two
methods for training a recognizer for silent EMG: The Cross-Modal testing ap-
proach means that a recognizer is trained on audible EMG data and tested on
silent EMG data. Cross-Modal labeling means that time-alignments (“labels”) for
the silent EMG data are computed by forced-aligning the EMG data with a rec-
ognizer previously trained on audible EMG. These labels are used for training
specific models for silent EMG, or for training a multi-mode recognizer.
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These methods are easily integrated into the framework used in this thesis. As-
suming that session-dependent recognizers for audible EMG are available, the
silent EMG time-alignments are computed, after which silent EMG can be used
for training just like audible andwhispered EMG.We now perform similar exper-
iments as in the last section, namely, we train our recognizer either on audible
or on silent EMG, and likewise, we test the recognizer on audible or on silent
EMG. Figure 6.4 shows a speaker breakdown of the results of these experiments
for both the EMG-PIT pilot corpus and the EMG-UKA corpus, using the same
notation as above, e.g. “Sil→ Aud” means that a system is trained on silent EMG
and tested on audible EMG.

It can be observed that generally, the WER for silent EMG is notably higher
than for audible EMG. On the EMG-UKA corpus, audible EMG is recognized
with 25.7% WER, and silent EMG is recognized with 46.9% WER. On the EMG-
PIT pilot corpus, audible EMG is recognized with 37.9% WER, whereas for silent
EMG, only 79.2% WER are attained.

There is a great variance between speakers: On the EMG-PIT pilot corpus we
observe a few speakers where the recognition of silent EMG is relatively good,
in particular, speaker 5, however for many other speakers, the cross-modeWERs
are very high. The same observation is made on the EMG-UKA corpus: As for
whispered speech, speakers 2 and 8 perform best both on the single-mode Sil→
Sil setup and on the cross-mode setups, attaining silent speechWord Error Rates
30.5% and 31.5%, respectively. The other speakers perform worse. However, the
results of each speaker are quite consistent (the standard deviation is low), which
is a notable result: Since all speakers achieve good results on audible EMG, it is
clear that the decline in recognition accuracy is due to the discrepancy between
the audible and silent speaking modes.

6.3.2 Multi-Mode Training

In the second step, multi-mode systems using audible and silent speech are
trained. As in section 6.2.2, we can train these systems on 80 training sentences,
twice as much as the 40 training sentences with which the single-mode systems
are trained. For comparison, we report results on multi-mode systems with 40
training sentences as well.

Figure 6.5 displays the results of this experiment, which are very similar across
the two corpora: The WER of the 40-sentence multi-mode system is lower than
the WER of the cross-mode systems, but higher than the WER of any of the
single-mode systems, both on audible and silent EMG and on both corpora. En-
couragingly, for 80 training sentences, we obtain a substantial improvement, and



128 Recognition Across Different Speaking Modes

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Average

W
o

rd
 E

rr
o

r 
R

a
te

Speaker number

 EMG-PIT pilot corpus 

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 Average

W
o

rd
 E

rr
o

r 
R

a
te

Speaker number

Aud->Aud Sil->Aud Aud->Sil Sil->Sil

 EMG-UKA corpus 

Figure 6.4 – Speaker breakdown of Word Error Rates for audible and silent speech.
The label A → B means that the recognizer was trained on speaking mode A and
tested on speaking mode B. Bars indicate standard deviation over sessions.

in particular, the 80-sentence multi-mode systems achieve clearly better recog-
nition of silent EMG than the 40-sentence single-mode systems.

On audible EMG, the average WER is slightly higher for the 80-sentence multi-
mode system than for the single-mode system. This is markedly different from
the results on whispered EMG presented in figure 6.3, where we observed that
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Figure 6.5 – Word Error Rates on audible and silent speech, for single-mode, cross-
mode, and multi-mode (MM) training. The number in parentheses stands for the
number of training sentences on the multi-mode systems. Bars indicate standard
deviation.

both speaking modes profited from using 80-sentence multi-mode training; it
must be concluded that the discrepancy between audible and silent EMG is far
larger than between audible and whispered EMG.

As a final experiment in multi-mode training, we use the EMG-UKA corpus to
train systems using the training sets from all three speaking modes. This means
that 120 training sentences are used for each session. In figure 6.6, we compare
the results on this setup to the results on different systems, namely on the single-
mode recognizers, and additionally on the 80-sentence multi-mode recognizers
trained on audible and silent resp. audible and whispered EMG.

We observe that applying the multi-mode system yields a WER improvement
on all three speaking modes, yielding the best multi-mode WERs so far: audible,
whispered, and silent EMG are recognized with 19.9%, 21.9%, and 38.4%WER, re-
spectively. Altogether, we conclude that training multi-mode systems is feasible
and yields good recognition rates. It should be noted that the results reported
above do not depend on prior information about the speaking mode of the test
data, so it should even be possible to switch the speaking mode in the middle of
a sentence, e.g. to convey confidential information like PINs or passwords.
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Figure 6.6 –Word Error Rates on audible, whispered, and silent speech, for different
training setups (all stands for multi-mode training on all three speaking modes).
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6.4 Quantification of Speaking Mode Variation
by Phonetic Decision Trees

In this sectionwe turn to developingmeasures to quantify the impact of speaking
mode variabilities on the EMG-based speech recognizer. Unless stated otherwise,
the results refer to the audible and silent speaking modes, since for the purpose
of the EMG-based speech recognition system, silent speech is considered to be
more important than whispered speech.

In order to evaluate the measures presented below, an estimate for the discrep-
ancy between the audible and silent EMG data in a particular session is required.
For this purpose we train a multi-mode recognizer on audible EMG and silent
EMG and test it separately on the test sets of these two speaking modes. We
then use the difference between the Word Error Rates between these speaking
modes as a measure for their discrepancy.

Since good recognition of silent EMG is our primary goal, we assert that the
WER difference is suitable for our purpose: it reflects the loss of accuracy when
switching from audible to silent EMG test data. Note that the WER difference
measure is session-dependent, just like our recognizers, so the variations in base-
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Figure 6.7 – Entropy gains for a speaker with high discrepancy (left)/low discrep-
ancy (right) between the recognition performance on audible and silent EMG, plot-
ted over the number of splitting questions asked. The results are averaged over all
PF trees. The scaling of the vertical axis is arbitrary, it stems from the phonetic
decision tree splitting algorithm.

line accuracy of different sessions which are not related to the speaking mode
are factored out.

Obviously, the WER difference is an empirical measure which requires to train
and apply the recognition system. Our first goal is to predict the speaking mode
discrepancy, measured by the WER difference, ideally without having to train
and test the recognizer, and without having to use the test data transcriptions as
an oracle.

The method presented in this section considers the phonetic decision trees which
the phonetic feature bundling algorithm uses to create optimal phonetic feature
models, see section 5.2.2. This means that generating models, i.e. training the
recognizer, is required, but no testing phase is needed in order to obtain a result.
We first presented this approach in [WJS12], using an idea from [SW01].

The technique works as follows: We tag each phone of the training data set
with its speaking mode (audible or silent). We then let the decision tree split-
ting algorithm ask questions about these attributes, in addition to the standard
questions about phonetic features. When a model split is performed according
to a speaking mode question, this indicates a discrepancy between audible and
silent speech for the phonetic features and contexts collected in this model. The
magnitude of this discrepancy is reflected in the entropy gain (see section 2.3.4)
associated to this split. It should be noted that using speaking mode questions
only has a minimal and inconsistent impact (± 2%) on the average recognition
results, so we do not separately report results on multi-mode systems with or
without speaking mode questions.

We follow the approach from [SW01] and examine the entropy gains associated
with the model splitting process: Figure 6.7 plots the cumulative entropy gain for
speaking mode questions and phonetic feature questions over the total number
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of questions asked, for a speaker where theWER difference between audible and
silent EMG speech is relatively large (left) respectively relatively small (right).
The values are averaged over all eight PF trees. It can be seen that for the speaker
with smallWER difference, the speaking mode questions do not contribute much
to the entropy gain at all, while in the case of a speakerwith highWER difference,
the speaking mode questions are responsible for a large amount of the entropy
gain. Note that we limited the range of the horizontal axes of figure 6.7 to the
total size of the smallest BDPF tree in the system.

This observation suggests to use the entropy gain as a discrepancy measure be-
tween audible and silent EMG. This approach draws its validity from the fact that
BDPF bundling splits Gaussian mixture models in a data-drivenmanner without
resorting to any kind of prior knowledge or assumption: thus the results of the
algorithm give an insight into properties of the underlying models.

In order to obtain a single value describing the entropy gain, we consider all
PF trees and look at the question which yields the highest entropy gain of all
questions about the speaking mode. It is possible to use different criteria (e.g.
averages over all speaking mode questions), but since in a decision tree ques-
tions are strictly sorted according to decreasing entropy gain, using the highest
entropy gain has the advantage that this measure depends only on the first few
questions of the decision tree.

We use this maximum entropy gain (MEG) as a measure for the discrepancy
between speaking modes: If there is hardly any difference between speaking
modes, the MEG should be small, possibly even zero if no speaking mode ques-
tion at all has been asked. If the EMG signals of different speaking modes differ
a lot, there should exist a high entropy gain associated to a speaking mode ques-
tion. Note that it is entirely possible that a tree only contains one single speaking
mode question (e.g. the very first question) which nonetheless yields the highest
gain among all questions.

Figure 6.8 plots the MEGs for all the sessions of the EMG-UKA corpus (on the
vertical axis) and compares them with the difference of the Word Error Rates of
silent and audible EMG on the respective multi-mode system.

The maximum entropy gain varies across sessions from 0 to 1497, with an aver-
age of 441, and correlates with the WER difference between audible and silent
EMG with a correlation coefficient of 0.70. The best session, where no questions
about the speaking mode occur, is from speaker 2, the session with the high-
est entropy gain is from speaker 1. This shows that the MEG can, to a certain
extent, predict the loss of recognition accuracy when switching between audi-
ble and silent speech. A more detailed analysis of figure 6.8 shows that there
is a sizeable cluster of sessions with very low entropy gain and very low WER
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Figure 6.8 – Scatter plot of the Maximum Entropy Gain (MEG) and the WER differ-
ence per session between silent and audible EMG for the EMG-UKA corpus, with
regression line.

difference, when the WER difference gets higher, we observe higher maximum
entropy gains as well as a greater variation between different sessions.

For the EMG-PIT pilot corpus, we obtain a very different result: Here the MEG
hardly correlates at all with the WER difference between silent and audible
speech. In particular, for the second session of speaker 1, the MEG is zero, but
the WER difference is 61%, i.e. silent EMG is recognized far worse than audible
EMG. A closer inspection of the training process shows that in this session, the
Viterbi algorithm, which computes the alignment of the EMG data as one step of
the HMM training algorithm (see section 2.3.5 for a detailed description), failed to
converge for almost all of the silent EMG utterances, so that no time-alignments
are produced. In these cases, our training implementation automatically skips
these utterances, so that eventually, almost no silent EMG training data is con-
sidered in this session. If the training data consists of mostly one speaking mode,
speakingmode questions do not yield any gain and therefore do not occur, which
explains the failure of the maximum entropy gain measure in this case.

This effect occurs with several other sessions of the EMG-PIT corpus as well,
albeit not as extremely. Our attempts to modify the Viterbi algorithm by in-
creasing the beam thresholds responsible for limiting the search space during
the path calculation proved unsuccessful: This makes it clear that for some of
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the speakers in the EMG-PIT corpus, the quality of the silent EMG data is very
bad, and it is also obvious that the entropy gain measure is not suitable for very
large discrepancies between audible and silent EMG: At least, the model training
must run without errors. We also note that the incomplete training of some of
the sessions of the EMG-PIT corpus adversely affects the recognition results on
the EMG-PIT corpus displayed in figures 6.4 and 6.5.

We also computed the maximum entropy gain measure on multi-mode systems
trainedwith audible andwhispered EMG from the EMG-UKA corpus, whichwere
described in section 6.2. Since the cross-mode systems using whispered and au-
dible EMG work comparatively well, we expect a lower MEG than for silent and
audible EMG. Indeed, in this case the average MEG is only 87 compared to 441
for silent and audible EMG. Also, in 17 out of the 30 sessions no speaking mode
questions at all are asked, so that the MEG is zero. While this proves that audible
and whispered speech go along well, the correlation between the MEG and the
WER difference between audible and whispered EMG is only 0.35, lower than
for audible and silent EMG.

We conclude this section by presenting another model-based measure for the
discrepancy between speaking modes, which we introduced in [WJS11]: In the
phonetic decision trees, the fraction of tree leaves dependent on the speaking
mode is counted [SM10, EGJM95]. Here a leaf node of the phonetic decision tree
is considered “mode-dependent” if any question which is asked when traversing
the tree from its root to the leaf asks for a speaking mode. The fraction of “mode-
dependent tree nodes” (MDN) out of the set of all nodes is then used as a measure
for the speaking mode discrepancy.

Computing this measure on the multi-mode sessions of the EMG-UKA corpus
yields a fraction of MDNs ranging from 0.2% to 94.9%, with an average of 36.3%.
Again we can compute the correlation between this measure and theWER differ-
ence, which is 0.64, slightly lower than for the maximum entropy gain. A further
advantage of the maximum entropy gain is its robustness towards different sizes
of the phonetic decision tree, which was described above: Due to the design of
the tree growing algorithm, the speaking mode question which yields the maxi-
mum entropy gain is always the first speaking mode question ever asked. Thus
when the stopping criterion for the decision tree growth is varied within rea-
sonable limits, the maximum entropy gain measure never changes, whereas of
course, the fraction of mode-dependent nodes may vary with different phonetic
decision tree sizes.

We finally remark that both decision-tree based methods yield quite similar re-
sults over all eight PF trees. This is an indicator both for the robustness of
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Figure 6.9 – Scatter plot comparing the average energy ratio of pairs of correspond-
ing utterances and the difference of word error rates (WER) on silent and audible
EMG for each session of the EMG-UKA corpus, with regression line. The WER dif-
ference is computed on the multi-mode system. The correlation coefficient is 0.69.

decision-tree based analysis of speaking mode discrepancies, and for the robust-
ness of the BDPF models.

6.5 Energy-based Quantification of Speaking
Mode Variations

In this section we turn to measuring the speakingmode discrepancy based on the
EMG signals alone, without using the recognition system at all. A very simple
measure is based on themagnitude of the EMG signals: In [WJTS09] we showed
that the magnitude of the EMG signal of silent utterances is significantly lower
than that of corresponding audible utterances, where corresponding utterances
are defined as having the same textual content.

We can use this observation to define a speaking mode discrepancy measure
based on the energies of the EMG signal [WJTS09]. We proceed as follows: For
each EMG utterance, we compute the average energy by channel, defined by the
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formula

E =
1

N

N∑
n=1

x2
n,

where N is the number of samples, and (xn)n=1...N is the raw EMG signal with
normalized mean. Now we compute the ratio of energies for each pair of corre-
sponding audible and silent EMG utterances, and finally, we average these ratios
over all channels and all pairs of utterances.

Figure 6.9 displays a scatter plot of the energy ratio measure which was defined
above versus the WER difference, computed on the EMG-UKA corpus. It can be
seen that there is a relationship between the energy ratio and theWER difference,
which behaves similar to the entropy gain: There is a cluster of sessions with
small WER difference (up to 22%) and energy ratio close to one, whereas for
sessions with high WER difference, the energy ratio is higher (1.7 and above).
Remarkably, the energy ratio is always above one, which means that on average,
we observe higher energy in audible EMG than in silent EMG in all sessions.

It can be seen from figure 6.9 that the majority of sessions exhibits reasonable
difference between the recognition rates on audible and silent EMG, as well as
relatively small energy ratios. The high correlation coefficient between theWER
difference and the energy ratio is mainly due to a few “outliers”, i.e. sessions with
very high WER differences. Thus it must be concluded that predicting the value
of the WER difference from the energy ratio may not yield optimal results in
a practical setting. However, a coarser prediction with practical importance is
possible.

We observe two groups of sessions, namely those with high WER difference
(above 22%), and those with lowWER difference. This boundary is of course not
canonical (it is taken based on the observation in figure 6.9), but we consider
it legitimate nonetheless, in particular since the low-WER sessions form a very
compact group. Clearly, we desire to avoid obtaining sessions belonging to the
first group.

Figure 6.9 shows that the category of a given session can be deduced from the
energy ratio: All sessions with a WER difference above 22% also have energy ra-
tios of above 1.7. Such a heuristical classification is helpful in practical scenarios:
For example, if a speaker records audible and silent speech in order to prepare
for using a multi-mode recognizer, the recording system could determine the en-
ergy ratio, which is possible in real time, and warn the speaker that the recorded
data may be suboptimal if the energy ratio gets too high.

We also computed the energy ratio on the EMG-PIT pilot corpus. However we
did not achieve robust results, which must probably be attributed to the low-
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Figure 6.10 – PSD of EMG channel 6 of a silent speaker with high WER for cross-
mode recognition (left) and a silent speaker with low WER across speaking modes
(right). In the first case, the magnitude of PSD curves differs greatly, in the second
case, almost no difference is observed.

frequency artifacts which are found in the EMG data of the EMG-PIT corpus, see
section 3.1.1. While it should be possible in principle to filter out these artifacts,
we refrained from doing so since the newer EMG-UKA corpus was recorded with
an improved amplifier whose analog filter automatically took care of this issue.

6.6 Spectrum-based Quantification of Speaking
Mode Variations

In [JWS10a, JWS10b], we presented another approach to measure speakingmode
discrepancies, which extends and improves the energy-based method presented
in the last section. In this approach we consider the energy content of the EMG
signal per frequency region for audible, whispered, and silent EMG.

The method works as follows. First a spectral representation of the EMG record-
ings of one session is computed on a per-utterance and per-channel basis. In
order to obtain a smooth estimate of the EMG spectrum, we base this compu-
tation on the Power Spectral Density (PSD), which is a useful estimator for the
smoothed frequency components of the EMG signals [JWS10a]. The PSD is esti-
mated using Welch’s method [Wel67]: The EMG signal is divided into windows
with a length of 30 samples and an overlap of 20 samples, the FFT is computed
on these windows, and the resulting spectra are averaged. Finally, the PSDs are
averaged over all utterances.

As an example, the left part of figure 6.10 shows PSD curves of EMG channel 6 for
the first session of Speaker 1. This speaker exhibits consistently high WERs on
silent speech and on cross-mode recognition for whispered speech (see 6.4 and
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Figure 6.11 – Scatter plot comparing the ratio between power spectral density (PSD)
of audible EMG and PSD of silent EMG and the difference of word error rates (WER)
on silent and audible EMG for each session of the EMG-UKA corpus, with regression
line. The PSD is maximized over frequency bins and averaged over all channels of a
session, theWER for silent EMG is from the multi-mode system. See text for details.

6.2). The curve shapes are similar across modes, but the amplitudes differ for
the speaking modes: In particular, the PSD of silent EMG is always much lower
than the PSD of audible EMG. Whispered EMG is located in-between. The right
part of figure 6.10 charts PSD curves of a well practiced silent speaker with good
recognition rates for all speaking modes in all setups (single-mode, cross-mode,
multi-mode). In this case, the PSD curves for audible, whispered, and silent EMG
are almost identical.

This suggests that the spectral contents of the EMG signals may be used as a
measure of the EMG signal discrepancy between speaking modes. In order to
obtain a scalar value, we consider, for each EMG channel, the ratio between the
PSDs of the audible EMG signal and the silent or whispered EMG signal as a
function of the frequency. As before, this ratio is averaged over the utterances
of a session. We finally take themaximum of this ratio, average over all channels,
and so obtain a single value per session mirroring the difference between audible
and whispered or silent EMG. This value is named PSD Ratio. Since this is our
main target, we only consider silent speech.
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Figure 6.12 – Scatter plot comparing the ratio between power spectral density (PSD)
of audible EMG and PSD of silent EMG and the difference of word error rates (WER)
on silent and audible EMG for each session of the EMG-PIT pilot corpus, with re-
gression line. The PSD is maximized over frequency bins and averaged over all
channels of a session, the WER for silent EMG is from the multi-mode system. We
observe that the results from the EMG-UKA corpus do not transfer. See text for
details.

Figure 6.11 shows a scatter plot of the PSD ratio versus the WER difference be-
tween audible and silent speech, for each session of the EMG-UKA corpus. As
for the Maximum Entropy Gain criterion (see figure 6.8), it can be observed that
all sessions where the WER difference is low exhibit a small PSD ratio, whereas
for sessions with higher WER difference, the PSD ratio may also increase. All
PSD ratios are above one, i.e. for all sessions, the audible EMG spectrum contains
more energy than the silent EMG spectrum on average. The WER difference is
predicted quite well by the PSD ratio: the correlation coefficent is 0.63.

Similar to the energy ratio, the PSD ratio computation does not yield robust re-
sults on the EMG-PIT pilot corpus. Figure 6.12 shows a scatter plot of the PSD
ratio versus the WER difference between audible and silent speech on the EMG-
PIT pilot corpus: In stark contrast to figure 6.11, we see that for all speakers and
sessions, without exception, the PSD ratio is very close to one. This clearly stems
from the strong artifacts which are present in the EMG-PIT corpus (see section
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3.1.1, in particular figure 3.4), and precludes using the PSD ratio to predict the
performance of a speaker on silent speech: It is obvious that no relation between
PSD ratio andWER difference can be derived from the data plotted in figure 6.12.

6.7 Spectral Mapping to Compensate Speaking
Mode Discrepancies

So far, we have been describing the discrepancy between audible and silent
speech. The spectrum-based approach described in the previous section allows
even more: We can improve the recognition of silent speech with a frequency-
based adaptation technique. This algorithm is called Spectral Mapping, we intro-
duced it in [JWS10a]. It works as follows:

1. The utterances of a session are transformed into the frequency domain via
the (fast) Fourier Transformation (FFT).

2. For each pair of parallel silent and audible EMG utterances, the ratio of
the frequency components is computed. The result is averaged over all
utterances of the session. We call this frequency-dependent ratiomapping
factor.

3. Each silent EMGutterance is transformed into the frequency domain by the
FFT, then each frequency component is multiplied by the corresponding
mapping factor, and the resulting frequency representation of the signal
is transformed back into the time domain by the inverse FFT. Note that
audible EMG utterances are left unchanged.

4. After this procedure, features are extracted from the transformed signals
as usual. The resulting features are then used for any of the training and
testing approaches described in section 6.3.

We evaluate the Spectral Mapping algorithm on both the single-mode and the
multi-mode recognizers, considering audible and silent EMG. Figure 6.13 shows
the Word Error Rates for these systems, averaged over all sessions of the EMG-
PIT pilot corpus and the EMG-UKA corpus.

The Aud→Aud system is not influenced by Spectral Mapping. The WER for
the Sil→Sil system changes minimally, which is expected since training and test
data are identically transformed: this suggests that our algorithm does not sig-
nificantly distort the EMG signal. For both cross-modal systems we observe a
significant gain: On the EMG-UKA corpus, the Aud→ Sil system improves from
61.6%WER to 54.8%WER, which is an improvement of 11.0% relative, and the Sil
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Figure 6.13 – Effect of Spectral Mapping. For each system, the left-hand bar shows
the WER without Spectral Mapping, and the right-hand bar shows the WER with
Spectral Mapping, where Spectral Mapping is always applied to the silent EMG
training and test data. The label e.g. “Sil → Aud” indicates that the system was
trained on the silent EMG training data and tested on the audible EMG test data.
Bars indicate standard deviation.

→ Aud system improves from 62.2% WER to 43.3% WER, a substantial improve-
ment of 30.4% relative. Similarly, we observe improvements on the EMG-PIT
pilot corpus, although the absolute WERs are much higher: The Aud → Sil sys-
tem improves from 93.4% WER to 84.4% WER (9.6% relative), and the Sil→ Aud
system improves from 90.9% WER to 78.7% WER (13.4% relative).

Substantial gains are observed on the multi-mode systems as well. On the EMG-
UKA corpus, the WER of the multi-mode system on silent speech improves by
4.7% relative, on the EMG-PIT corpus, the improvement is 11.4% relative. When
the multi-mode system is applied to audible EMG, the result is less clear: on the
EMG-UKA corpus, we obtain an improvement of 17.8% relative, on the EMG-PIT
corpus, no improvement is observed.

This shows that the Spectral Mapping algorithm helps to reduce the discrepancy
between audible and silent EMG. This can also be observed by considering the
Maximum Entropy Gain measure defined in section 6.4. When applying Spectral
Mapping, we observe that for 29 out of 30 sessions, the maximum entropy gain
decreases, the average of 441 reduces to only 182.
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It is notable that Spectral Mapping also works on the EMG-PIT corpus, on which
the PSD ratio discrepancy measure did not yield any consistent result. This is
a strong indicator that the EMG-PIT data is not fundamentally different from
the EMG-UKA data: instead, we consider it very probable that the artifacts con-
tained in the EMG-PIT data negatively affect the PSD ratio, which is based on
maximizing over all frequency bins, but do not preclude the application of Spec-
tral Mapping, where all frequency bins are considered separately.

In our opinion, this also justifies that we refrained from improving our speaking
mode discrepancy measures so that they would work on the EMG-PIT corpus:
The newer EMG-UKA corpus does not contain these low-frequency artifacts, due
to the improved amplifier which was used for the recordings, so this particular
problem has been resolved. (Of course, there are definitely other kinds of ar-
tifacts in our corpora which are not suppressed by a high-pass filter. Also see
section 7.4, which deals with artifact removal for the EMG-ARRAY corpus.)

As a final experiment, we applied Spectral Mapping to the multi-mode system
trained on all three speaking modes. According to section 6.3.2, the average
baseline WER without Spectral Mapping is 19.9%, 21.9%, and 38.4% on audible,
whispered, and silent EMG, respectively.

We apply Spectral Mapping only to the silent EMG data, with the mapping fac-
tor being computed between silent and audible EMG, as described above. This
yields a silent EMG WER of 34.8%, which is a relative improvement of 9.4%, i.e.
the improvement is in the same range as for the other systems. The resulting
WERs are 19.3% on audible EMG and 21.0% on whispered EMG, which is a slight
improvement of 2.9% and 4.2% relative, respectively.

6.8 Statistical Evaluation

For statistical evaluation we use the main part of the EMG-PIT corpus, as usual.
This means that we cannot validate any hypothesis including whispered EMG.
Still, we have two hypotheses:

1. Spectral Mapping improves the silent EMG WER on a cross-mode recog-
nizer trained on audible EMG

2. Spectral Mapping improves the silent EMG WER on a multi-mode recog-
nizer trained on audible and silent EMG

The WER of the multi-mode system on audible EMG did not improve on the
pilot part of the EMG-PIT corpus, and we expect this result to transfer to the
main part. Therefore no hypothesis is made regarding that experiment.
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System Word Error Rate on Silent EMG Improvement
no Spec. Map. with Spec. Map. relative absolute

Cross-Mode 90.2% 79.8% 11.5% 10.4% ± 3.04%
Multi-Mode 80.2% 75.8% 5.5% 4.4% ± 1.95%

Table 6.2 – Word Error Rates of the cross-mode and multi-mode systems on silent
EMG for the EMG-PIT main corpus

The resulting WERs and the absolute improvements with confidence intervals
are displayed in table 6.2. For both systems we obtain significant improvements:
The lower boundaries of the confidence intervals are well above zero. Thus we
have established that the Spectral Mapping algorithm significantly improves the
WER of our recongizer on silent EMG, even though the relative improvements
somewhat vary on the different corpora. The best improvement is achieved on
the evaluation corpus: The relative improvement of the cross-mode system is
11.5%.

6.9 Summary

In this chapter, we dealt with EMG-based speech recognition across different
speaking modes. For this purpose, cross-mode and multi-mode recognizers were
introduced. We showed that such recognizers work, although speaking mode
discrepancies have a negative impact on their accuracies.

We analysed how such discrepancies manifest in the EMG data. This was done
using measures at model level and at signal level. Our main observation was that
signal energy discrepancies between audible and silent EMG correlate with the
Word Error Rate difference between these speaking modes. Based on this ob-
servation, we devised the Spectral Mapping algorithm, a signal-based adapta-
tion method specifically aimed at reducing the discrepancy between audible and
silent EMG. We proved that Spectral Mapping significantly reduces the WER on
silent EMG for both the cross-mode recognizer (trained on audible EMG) and the
multi-mode recognizers, obtaining a maximum relative improvement of 11.5%.





Chapter 7

Array-based EMG Recording

In this section, we present a new EMG recording system based on Electrode
Arrays, which are grid structures with multiple measuring points for bioelec-
tric signals. We report on initial experiments on deploying this new system
and show that in contrast to our single-electrode systems, an additional PCA
preprocessing step is necessary to obtain good baseline results. Finally, we
introduce Independent Component Analysis (ICA) as a signal decomposition
method and use it to define an artifact removal algorithm specially devised
to take advantage of the high-dimensional EMG data which is obtained from
electrode arrays.

This chapter reports on our experiments using EMG signals recorded by Electrode
Arrays [WSJS13]. Electrode Arrays are structures exhibiting a large number of
electrodes arranged in a grid pattern, thus they yield a very comprehensive pic-
ture of the underlying EMG activity. However, this capability comes at a price:
As is shown in this chapter, the resulting high-dimensional signal needs to be
processed carefully in order to obtain a suitable feature representation and good
speech classification accuracy.

One major goal of using EMG arrays is enabling the use of a large class of mod-
ern signal processing algorithms. These algorithms are specifically devised to
make use of high-dimensional representations of an underlying signal to extract
information which is not available if just one, or a few, channels are recorded.
The most well-known examples for such algorithms are (Blind) Source Separation
[Car98] and Beamforming [VB88]. Both aim at extracting activity sources from
the input signal: in the case of Blind Source Separation, this is done making only
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weak statistical assumptions about the data, as described in section 7.4, for now
it is our method of choice.

The high-dimensional input signal is expected to exhibit an obvious, but impor-
tant property: its channels must contain information from similar sources, but
recorded at different positions. This spatial diversity is the core of many sig-
nal decomposition algorithms, not only in biosignal processing. Intuitively, one
could say that like studying an unknown physical object by looking at it from
several directions, spatially diverse recordings can be used to analyze a complex
signal from various “perspectives” in order to gain a better understanding.

A further advancement which we expect from the EMG array technology is to
better localize activity. With the single-electrode system, each EMG channel con-
tains a summation of signals from local activity sources, but there is no way to
gain detailed information about what comprises this activity: EMG signals from
different muscles and muscle fibers, as well as different kinds of artifacts, may
have been captured. The situation is better when EMG arrays are used: In this
case, source separation may be applied, and we showed that the extracted EMG
sources can be localized within the area covered by the EMG array ([HJWS], see
also [WHH+13]). Relatedly, when single electrodes are reattached between ses-
sions, there is no way to algorithmically determine whether the exact same loca-
tions as before are recorded, or to compensate for a possible position shift. When
EMG arrays are used, it is possible to compensate for an array repositioning by
interpolating EMG signals between measuring points, and more importantly, it
is possible to estimate the approximate position shift and rotation, as we show
in [WSJS14]. Both these results are quite recent and cannot be covered in this
thesis due to time constraints, yet we consider them an indicator of the potential
of the EMG array approach.

The experiments presented here are based on the EMG-ARRAY data corpus, see
sections 3.1.2 and 3.2.3. The remainder of this chapter is structured as follows:
We first summarize current applications of electrode arrays, particularly from
the EMG field. In section 7.2 we report on our baseline system, observing that
the results exhibit some unexpected degradation, which we attribute to under-
training during the LDA computation. Principal Component Analysis (PCA) is
introduced in section 7.3 as a remedy for this problem, finally yielding our array-
based baseline system; it is shown that this system exhibits similar performance
as the ones trained on the single-electrode corpora. Starting from this system, in
section 7.4 we present an artifact reduction algorithm using Independent Com-
ponent Analysis (ICA) and show that it can yield improved Word Error Rates:
This is the first concrete application of the electrode array technology.
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7.1 Related Work in Electrode Array Technology
and Application

Electrode arrays for EMG measurement were first applied in the 1980’s for stud-
ies in the medical domain [MMS85, dLM88, RRS87]. Here, the primary concern is
to break up the EMG signal into its constituentMotor Unit Action Potential Trains
(MUAPTs) [LvDJ+04, GOA05, HZ04, dLAW+06], see section 2.1.2 for a detailed
description of the emergence and properties of such MUAPTs.

MUAP decomposition algorithms detect single MUAPs in the time domain,
which are then clustered into series. This clustering primarily considers the
shape of the extracted action potentials, additionally a model of the time interval
between discharges is used: The time between MUAPs stemming from the same
motor unit is assumed to follow a Gaussian distribution, so the temporal distribu-
tion of these time intervals is a Gaussian process. This “background knowledge”
yields information about the expected emergence of a particular MUAP within a
series of MUAP discharges (i.e. a MUAPT), and is very important for decompos-
ing superimposed activity sources1.

MUAP clustering requires that extracted MUAPs may be compared for similar-
ity. While the detailed implementation of this comparison varies between re-
searchers, almost all methods draw their potential from the spatial diversity of
the recorded signal, which is where EMG arrays come into play: Only by using
the information from high-density multi-channel EMG recording, enough infor-
mation for discriminatingMUAPs is obtained. This sheds light on the core idea of
electrode array recording, which we introduced above: EMG activity is recorded
from slightly different “angles”, i.e. locations, yielding different observations of
essentially the same activity. From these observations, versatile algorithms allow
to extract information which cannot be derived from a single-channel observa-
tion. However, it is important to craft an algorithm which makes use of these
multiple observations. If EMG array data is used naïvely, without fusing infor-
mation from different channels, no improvement over single-electrode systems
should be expected.

Electrode arrays are not yet frequently used outside the medical and research
communities, possibly because mobile, affordable, and easy-to-use amplifica-
tion and recording devices are still under development. However, further
practical applications have been considered, for example in prosthesis control

1This can be compared to speech recognition, where both an acoustic model and a language
model are used (see section 2.3.6): The language model does not contain any information about
the acoustic realization of words or utterances, but it yields indispensable background knowledge
about the speech process.
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[SG82, EHP01]. Here, the goal is to control a limb prothesis as intuitively as
possible. EMG signals are a logical choice for this purpose (at least as long as
muscular activity is still present), and since it is required to capture multiple
control signals if a large number of degrees of freedom is desired (e.g. for con-
trolling single fingers of a hand prosthesis), a small number of single electrodes
may not yield sufficiently accurate information [CvdS09].

Finally, we remark that source localization for bioelectric signals has also been
applied to electroencephalographic (EEG) signals; in fact, here the methods ap-
pear to be far more standardized than in the EMG field. As an example, we men-
tion the Low Resolution Brain Electromagnetic Tomography (LORETA) method,
which aims at detecting EEG activity sources and localizing them within the
three-dimensional brain: This is a challenging problem since even a high-density
EEG cap only offers a two-dimensional recording of EEG activity at the head sur-
face. Yet, LORETA is an established procedure; for further reading, a classical
review is [PMEKL02].

7.2 A Baseline System for High-Dimensional
EMG-based Speech Recognition

In the first experiment (see our publication [WSJS13]), we use our BDPF rec-
ognizer, with optimal settings as determined in chapter 5, and feed it with the
EMG features from the array recording system, which is described in detail in
section 3.1.2. Here we made the observation that the amplitude of the raw EMG
signals differs between the array setup and the single-electrode system, which
may have an impact on the EMG features. For comparability, we chose not to
vary the TDn features at this point, however we performed several initial ex-
periments on feature extraction for the EMG-ARRAY corpus and found that it
is advantageous to multiply the Zero-Crossing Rate feature (see section 4.1.2)
with a renormalization factor of 1/100, balancing for the smaller variance of the
raw input EMG data. Also, in order to obtain more robust LDA estimates, we
use LDA regularization, as described in section 2.4.3, with a regularization factor
β = 1.0. We observed that this factor may be varied within a reasonable range
without significantly changing the resulting WERs.

The first set of experiments is based on the development set of the EMG-ARRAY
corpus, as laid out in section 3.2.3 (see table 3.4). We perform four different ex-
periments, varying in the EMG array setup (16 or 35 channels) and in the amount
of input data: As described in section 3.2.3, a subset of our sessions comprises
160 training sentences and 20 test sentences, so we can do (session-dependent)
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Figure 7.1 – Average Word Error Rates on the EMG-ARRAY development corpus
for the initial array system, with different stacking context widths. Only audible
EMG was used. Bars indicate standard deviation.

experiments on a substantially larger data set than in previous sections. In order
to be able to compare our results to the ones from previous sections, we also run
experiments with 40 training sentences and 10 test sentences. Only audible EMG
is used.

Our four different setups are:

• Setup A-1: 16 EMG channels, 40 training sent., 10 test sent.

• Setup A-2: 16 EMG channels, 160 training sent., 20 test sent.

• Setup B-1: 35 EMG channels, 40 training sent., 10 test sent.

• Setup B-2: 35 EMG channels, 160 training sent., 20 test sent.

Figure 7.1 shows the Word Error Rates for different stacking widths, averaged
over all sessions of each setup.

We consider the optimal context stacking widths for the four systems. One ob-
serves major differences: For setup A-1, with 16 channels and 40 training sen-
tences, the Word Error Rate (WER) varies between 35.3% and 51.8%, with the
optimum reached at a context width of 15 (i.e. TD15). For the B-1 setup, with
35 channels but the same amount of training data, the optimal context width ap-
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pears to be TD5with a WER of 41.0%, widening the context causes deteriorating
results, the worst WER is 68.7% for the TD15 stacking.

For the setups with 160 training sentences, the recognition performance is con-
sistently better due to the increased amount of training data. With respect to
context widths, we observe that the A-2 setup, again with 16 EMG channels, at-
tains its optimal performance at a stacking width of 10, with a WER of 14.6%, for
setup B-2, TD10 stacking is optimal, too, with a WER of 12.7%.

While the behavior of these systems varies between recording sessions (mostly
due to the small test data set), there is a quite consistent trend which we ob-
serve over the four setups, namely, the optimal context width decreaseswhen the
number of input channels rises, and it increases when a larger amount of train-
ing data is available. The one exception is the A-2 setup. However, as shown
in table 3.4, we have only three sessions for experiments with the A-2 setup, so
we attribute this discrepancy to statistical inaccuracy. Notably, the trend gets
more pronounced when a higher LDA dimensionality is used (as for example in
[WSJS13], where we used 32 dimensions after LDA).

What might cause this behavior? It is clear that addingmore context information
might cause deteriorating results if the enlarged context is not consistent. This
is certainly possible for our EMG data: The TD15 feature stretches across more
than 300 ms, a span which quite probably covers several adjacent phones. How-
ever, we see that a larger context is advantageous for the 16-channel systems,
and that results should only gradually change when the stacking context width
varies (see figure 4.6 for results on the single-electrode system). May context
data have different properties in EMG data recorded with different setups?

A second hypothesis leads to the Curse of Dimensionality described in section 2.3:
Increasing the feature vector dimensionality may cause deteriorating classifica-
tion results if the system becomes undertrained, i.e. the models cannot be suitably
estimated since the amount of training data is too small. This issue is evident in
EMG-based speech recognition, as can be seen from our experiments in section
4.3: When the number of retained dimensions after the final LDA preprocessing
step was increased beyond 12, the recognition accuracy decreased even though
more information was fed into the system. However, the different setups A-1,
A-2, B-1, and B-2 described above all use a post-LDA dimensionality of 12, so the
GMM models should not be affected by the input data dimensionality.

We assume that the deterioration of recognition accuracy for small amounts of
training data and high feature space dimensionalities is caused not by the GMM
training, but by the LDA estimation itself. When an LDA transformation is com-
puted with a small amount of training data relative to the sample dimension-
ality, the LDA within-scatter matrix becomes (almost) singular, as described in
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section 2.4.3. This has been observed to reduce the effectiveness of the LDA al-
gorithm [QZH09] and quite probably is the case in our setup: With only a few
minutes of training data, we may have a sample dimensionality before LDA of
up to 35 · 5 · 31 = 5425 for the 35-channel system with a TD15 stacking.

7.3 PCA Preprocessing to Avoid LDA Sparsity

One established method to alleviate the numerical instability in high-dimen-
sional LDA computation is an application of Principal Component Analysis
(PCA) prior to LDA estimation [SW96]. Notably, PCA does not suffer from the
same kind of numerical instability as LDA since its definition is not based on a
maximization of a ratio (compare the LDA criterion (2.18) with the PCA crite-
rion (2.11)). In this section we present our experiments on applying PCA prior
to LDA to the task of EMG-based speech recognition using electrode arrays.

The algorithm is straightforward: We first compute TDn features as usual. Then,
a dimensionality-reducing PCA transformation is estimated on the TDn features
of the training data, and LDA estimation is subsequently run on the transformed
training data. When both transformations have been computed, training and
testing run as usual, with all data being transformed by both PCA and LDA.

The clear drawback of this method is that if too many PCA components are
deleted, the resulting system performance should degrade since PCA ignores the
data class assignments and could thus suppress information which is important
for classification. So it is crucial to retain the right number of PCA components.
One might automatically determine this number from the data, but as described
in section 2.4.2, we have not yet applied such methods and therefore always fix
the number of retained PCA components across all speakers and sessions.

Besides the introduction of PCA preprocessing, all other system parameters (in
particular, the number of LDA components) are kept fixed, so that comparisons
can be made and conclusions can be drawn. We evaluate our algorithm by run-
ning session-dependent training and testing, as usual, and expect to obtain an
improved WER as long as the PCA parameters are suitably chosen. Beyond an
improved recognition accuracy, we also expect a more consistent result regard-
ing the optimal feature stacking width.

Figure 7.2 presents the average WERs for all four setups, with different numbers
of components after the PCA step. The leftmost data point is the average WER
for 100 retained components, from left to right, the number increases up to the
entirety of available components. The result without PCA application is on the
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Figure 7.2 – Word Error Rates on the EMG-ARRAY development corpus for differ-
ent PCA dimensionality reduction setups. Only audible EMG was used. Observe
that the feature space dimension before the PCA step increases from left to right
and from top to bottom.
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Setup A-1 A-2 B-1 B-2
Best Result without PCA 35.3% 14.6% 40.1% 12.7%
Opt. Stacking Width without PCA 15 10 5 10
Opt. Number of Dimensions without
PCA

2480 1680 1925 3675

Best Result with PCA 32.5% 16.0% 36.2% 10.9%
Opt. Stacking Width with PCA 15 15 10 10
Opt. Number of Dimensions with PCA 1300 2100 900 1700
Relative Improvement by PCA 7.9% -9.6% 11.5% 14.2%

Table 7.1 – Optimal Results and Parameters with and without PCA, on the EMG-
ARRAY development corpus

very right. In all cases, we jointly plot the WERs for training data sets 1 and 2
(40 and 160 training sentences).

We see that the PCA step indeed helps to overcome LDA sparsity. For example,
in the B-1 setup, the optimal context width without PCA application is 5, yielding
a WER of 40.1% (right side, second plot from top). With PCA application, the
optimal number of retained PCA dimensions for the TD5 context width is 500,
yielding a WER of 39.4%: a very slight improvement. However, we can still do
better: With a substantially increased context width of 10, we get the best WER
of 36.2%, at a dimensionality of 900 after PCA application (right side, third plot
from top). This is an improvement of 11.5% relative.

This is true for three of the other four setups, see table 7.1 for an overview. For
setup B with 35 EMG channels, we always obtain relative improvements of more
than 10%, and for the B-1 setup, the optimal context width increases, as expected.
For setup A with only 16 EMG channels, we obtain lower improvements: For 40
training sentences, i.e. setup A-1, the improvement is 7.9% relative, and for 160
training sentences, i.e. setup A-2, PCA brings no improvement. This is a consis-
tent result: In the A-2 setup, the ratio between training data amount and data di-
mensionality is largest, so the LDA sparsity problem should be least pronounced
here. We note that there is some variation in the optimal PCA dimensionality,
which we do not consider to be statistically significant since for all setups we
have relatively few sessions to experiment with; however we see that with only
100 retained PCA components, we frequently obtain very bad results: this is ex-
pected since with so many suppressed PCA components, we certainly suppress
some relevant information as well. We also note that the effect of PCA increases
when a higher LDA dimensionality is chosen: In [WSJS13], we report results of
PCA application when 32 dimensions are retained after LDA, in that case, the
improvements by PCA application exceed 10% relative in all four setups.



154 Array-based EMG Recording

Setup B-1 B-2
Tested on Aud. EMG Sil. EMG Aud. EMG Sil. EMG

No Spectral Mapping
WER without PCA 43.1% 71.2% 24.7% 62.6%
WER with PCA 41.0% 70.6% 24.6% 63.7%

With Spectral Mapping
WER without PCA 44.4% 70.4% 25.0% 56.2%
WER with PCA 40.8% 67.9% 26.4% 56.2%

Table 7.2 – Results for multi-mode systems on the evaluation corpus. For the B-
1 setup, we used TD5 stacking without PCA, and TD10 stacking with PCA (900
retained components). For the B-2 setup, we used TD10 stacking without PCA, and
TD10 stacking with PCA (1700 retained components).

Finally, we perform statistical validation of our results on the evaluation part
of the EMG-ARRAY corpus. Note that only setup B was recorded in the eval-
uation corpus since with optimal settings, our initial experiments showed that
it yields better average WERs than setup A. We run two experiments, namely
using setups B-1 and B-2, where the sets of sessions for the two experiments are
identical: the entire B-1 data is a subset of the B-2 data. For now, we only use
audible EMG.

Our hypothesis is that PCA preprocessing, with the optimal stacking width and
optimal number of retained dimensions, yields an improvement over the best
setup without PCA. The optimal settings are taken from table 7.1: The B-1 ex-
periments use TD5 stacking without PCA, and TD10 stacking with PCA, where
after the PCA application, 900 components are kept. For the B-2 experiments,
we always use TD10 stacking, when PCA is applied, 1700 components are kept.

On the B-1 setup, we obtain a WER of 47.4% without PCA, and 42.3% with PCA
application. This is an absolute improvement of 5.1% with ± 3.0% confidence
interval, so the improvement is statistically verified.

On the B-2 setup, we surprisingly do not obtain any improvement at all: Instead,
the WER rises from 20.18% without PCA to 20.71% with PCA, which is insignif-
icant, but nonetheless a degradation. We can explain the discrepancy between
the two evaluation setups by the larger amount of training data for the B-2 setup
(160 versus 40 training sentences). Still, it is clear that the effect of PCA applica-
tion was overestimated on the four-session B-2 development corpus.

Finally, table 7.2 displays evaluation results on multi-mode systems trained on
audible and silent EMG (see section 6.3). These systems use the full training
data of the sessions of the EMG-ARRAY evaluation corpus, i.e. 80 sentences (40
audible and 40 silent) in case of the B-1 setup, and likewise, 320 sentences in case
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of the B-2 setup. Yet we keep the evaluation parameters fixed: For the B-1 setup,
we compare TD5 stacking without PCA and TD10 stacking with PCA, using 900
PCA components. For the B-2 experiments, TD10 stacking is used, with 1700
retained components when PCA is applied. We also display results both with
and without Spectral Mapping, see section 6.7.

The result confirms our observations on audible EMG. On the B-1 setup, PCA
application yields an improvement, the largest one of 8.1% relative is obtained
on audible EMG test data when Spectral Mapping is applied. However, these im-
provements do not turn out to be significant. On the B-2 setup, we do not obtain
improvements. We finally note that these experiments also support our result
from section 6.7: Spectral Mapping improves the recognition accuracy of multi-
mode systems on Silent EMG. In particular, we observe major improvements on
the B-2 setup.

We finally remark that in [WSJS13], we reported results on this experiment with
an LDA dimensionality of 32, which can be assumed to give more room for spar-
sity problems. Indeed, the reported improvements obtained by PCA application
are substantially higher, particularly for setup A; see [WSJS13, Table 1].

We can draw the conclusion that at least for the 35-channel setups and for the
given amount of training data, PCA preprocessing helps to overcome LDA spar-
sity. There remains the question whether this result is optimal, in the sense that
the LDA sparsity problem is completely solved. The results in figure 7.2 suggest
that the results could be even better: For example, we see that for the A-1 setup,
TD15 features yield good results. Even if this result does not transfer to the A-2
setup, we conclude that high context widths do carry information which help to
classify speech based on EMG signals. Yet for setup B, we see that the results are
worse for TD15 features than for TD10 features.

We conclude that even the PCA preprocessing does not completely solve the
issue of optimal LDA computation. This means that very high-dimensional input
data is still problematic, and that the context width must be chosen somewhat
smaller for high-dimensional input data than for low-dimensional input data.
We can, however, confirm a result from our baseline system, namely that the
optimal context width when LDA sparsity is not an issue ranges between 10 to
15 frames on each side, as we determined in section 4.3. This may be derived
from figure 7.2: For setup A, when PCA is applied with the optimal number of
retained components, the resultingWER remains almost unchanged between the
TD10 and TD15 features, for both 40 or 160 training sentences. This means that
almost no additional information can be derived from the enlarged context. The
observation is similar for the B-2 setup. Only for the B-1 setup, where the input
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Corpus Average WER
EMG-PIT (pilot) 34.0%
EMG-UKA 22.8%
EMG-ARRAY (setup A) 32.5%
EMG-ARRAY (setup B) 36.2%

Table 7.3 – Comparison of averageWord Error Rates on audible EMG for the single-
electrode corpora and the EMG-ARRAY corpus, with 40 training utterances

data dimensionality is highest and the number of training sentences is small,
TD15 performs worse than TD10, albeit just slightly when PCA is used.

One method to further improve the LDA estimation might be to determine the
optimal number of PCA components on a per-session basis. However, this is
expected to be time-consuming if themeasure should be the resulting recognition
accuracy: then repeated recognition runs would have to be performed on a cross-
validation set. There also exist other, advanced LDA estimation methods (for
example HLDA [KA98]), which have been used successfully in acoustic speech
recognition and other fields.

In the remainder of this section, we use PCA+LDA (with optimal settings) as our
new standard preprocessing for the EMG-based speech recognition system. Thus
we now have three “baseline” results, namely, on the EMG-PIT (pilot) corpus, on
the EMG-UKA corpus, and on the two setupsA and B of the EMG-ARRAY corpus,
always using 40 training sentences and 10 test sentences. Table 7.3 summarizes
the averageWERs and shows that the EMG-ARRAY corpus performs reasonably
well.

7.4 Independent Component Analysis for
Artifact Removal

We now present an artifact removal algorithm based on the multi-channel EMG
signal provided by electrode arrays. This algorithm, which we published in
[WHH+13, WJH+ar], is the first application of the newly introduced array-based
recording setup: Beyond yielding recognition accuracy improvements, it shows
that EMG-based speech recognition can be improved by using information con-
tained in high-dimensional EMG signals. We first give an introduction into the
concept of source separation and independent component analysis, upon which
our method is based, then we present and evaluate our algorithm.
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7.4.1 Review of Blind Source Separation and Independent
Component Analysis

Quoting the comprehensive reference paper [Car98], Blind Signal Separation
(BSS) “consists in recovering unobserved signals or ‘sources’ from several ob-
served mixtures”. The key assumptions which are expressed in this statement is
that we have an underlying superposition of activity sources, that only mixtures
of these sources can be observed (measured), and that we have several measure-
ments.

We give a very brief overview about the principles of source separation, which
lead to Independent Component Analysis (ICA) as a particular approach. The
following exposition is based mostly on [Car98], for background on information-
theoretic measures we refer to textbooks like [CT91].

First we define the term mixture. So assume that we have M signal sources
s1, . . . , sM , where each sm is a digital signal: sm = (sm[0], sm[1], . . . , sm[N ]).
Now the most general set of mixtures xk, k = 1, . . . , K which one could possibly
observe consists of the input signals, processed as a whole by arbitrary functions
Φk:

xk = Φk(s1, . . . , sM) with xk = (xk[0], xk[1], . . .).

Note that there is no reason to assume that the Φk acts on each sample indepen-
dently: Instead, each Φk might transform all input sequences as a whole. Also
note that K needs not equal M .

What constraints dowe have to impose onΦ in order to have a reasonable chance
of estimating the source sequences sm? For the purposes of this introduction, we
first assume linearity: Each source sequence undergoes a linear transformation,
and each mixture consists of a summation of the transformed sources. The as-
sumption of linearity is approximately satisfied in many practical applications
(for example, air waves exhibit linearity properties), but might also be inaccu-
rate (e.g. glass fiber cables might allow nonlinearly propagating waves). If we
additionally assume that the properties of the transformation do not change over
time, the mixing function may be expressed by linear filters:

xk =
M∑

m=1

fk,m ∗ sm, (7.1)

where the fk,m are filters, and ∗ represents the convolution operation. Filters are
a very important concept in signal processing and frequently occur in nature, a
particular example which is of relevance for us is the vocal tract filter, see section
2.2.1. For more information about filters, we refer to standard signal processing
textbooks (e.g. [KK02], in German language).
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Convolutive mixtures, as in equation (7.1), can be inverted if some assumptions
are satisfied. The approach is then called (Blind) Deconvolution, and several so-
lutions have been proposed, see for example [BS95, AS98]. For “classical” Inde-
pendent Component Analysis, we make an even stronger assumption, namely
that the mixture is instantaneous:

xk[n] =
M∑

m=1

ak,msm[n] for any time n. (7.2)

Each sample x[n] depends only on the sources at time n. This is the “textbook”
source separation task, and several well-established algorithms may be used to
find a solution. Yet depending on the concrete task, the assumption of instan-
taneousness may be too strong, and it means that we disregard the temporal
evolution of the sources, even though it could be helpful for solving the source
separation problem.

We are now able to define the classical Blind Source Separation task. First, we
write equation (7.2) in matrix form, obtaining

x = A · s (7.3)

where x = (x1, . . . , xK)
T and s = (s1, . . . , sM)T are vectors of time series.

The goal is to invert the mixture. This essentially means inverting the matrix A,
which is only possible if it is quadratic: Thus we make the additional assumption
that there are as many sources as there are mixtures. For real-world signals, this
is certainly a doubtful assumption, since sometimes the number of sources is not
even known: It might be more accurate to say that we expect to extract exactly
as many components as there are observed mixtures.

It should be clear that even the simplified matrix equation (7.3) cannot be solved
without further assumptions, because neither A nor s are known. So we have
to make an additional assumption, which is the cornerstone of classical BSS,
namely, the sources s1, . . . , sM are assumed to be statistically independent. In
terms of probability distributions, this can be expressed as follows: If si follows
a probability distribution pi(ςi), written si ∼ pi, and the vector s has the M -
dimensional distribution p(ς1, . . . , ςM), i.e. s ∼ p, then p can be decomposed as

p(ς1, . . . , ςM) =
M∏

m=1

pm(ςm).

The independence condition is a constraint both strong and weak: It is a math-
ematically strong condition on the joint distribution of the sources, yet it does
not restrict the behavior of the single sources at all. There is the notable result
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that this assumption almost suffices to determine an inverse of A from equation
(7.3). The last missing piece is to require that out of the signal sources we in-
tend to recover, at most one has a Gaussian distribution. Then one can show the
following theorem (cp. [Com94, Theorem 11]):

Assume that x = A ·s, whereA is an invertible (square) matrix, and s is a vector of
independent “sources”, of which not more than one follows a Gaussian distribution.
If the matrixB is chosen so that the components of y = B ·x are independent, then
the vector y contains the sources s, up to reordering and rescaling.

This means that if we manage to find an unmixing matrix B which makes the
components of y = B ·x independent, the BSS problem is solved. Further knowl-
edge of the sources is not required, which explains the naming “Blind Source
Separation”.

B is uniquely determined up to reordering or rescaling of its rows. Clearly, this
is the best solution one can obtain, since there is no way to determine the original
order of the sm from the mixtures (in real-world applications, there is, of course,
no “original order”), and the original scaling of the sources is equally lost by the
mixing. Clearly, the assumption that the signal sources must be independent and
non-Gaussian might be inaccurate for certain problems.

There are several ways to determine B, and we note that they differ in practice
more than in theory: If the conditions are optimal, the solution B should be the
same in all cases. Yet in practice, particularly if the amount of observed data for
estimating B is small, different BSS algorithms may vary in performance.

First, there are BSS approaches which are based on the existence of a model as-
sumption for the true distribution of the source vector s. If such a model exists,
one can optimize B so that the distributions of y and s match as closely as pos-
sible. The discrepancy between the distributions of y and s can be measured
by the Kullback-Leibler divergence, which is easily computed. Clearly, with such
an approach we step back from the true idea of Blind Source Separation, how-
ever it can be (empirically) shown that such algorithms are quite robust even
if the model for the distribution is slightly misspecified, and it can be (theoret-
ically) shown that the model assumption can be greatly weakened: instead of
computing the mismatch between distributions, it may be sufficient to compute
the mismatch between higher-order statistical measures (e.g. cumulants). So in-
stead of having a detailed model for the source distribution, it may be sufficient
to have knowledge about some rather general properties of the sources (like the
cumulants, or the higher-order moments).

Blind Source Separation approaches rely on approximations of themutual infor-
mation, which measures the degree of dependence between two random vari-
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Figure 7.3 – EMG Signals of the chin array before ICA processing (left) and after
ICA processing (right). The ICA decomposition shows visibly distinct EMG signal
(“target”) components (1 - 3) and artifact noise (4 - 7).

ables. If we have two random variables X and Y , defined by their density func-
tions pX(x) and pY (y) and the joint density p(x, y), their Mutual Information is
defined by

MI(X, Y ) =

∫
p(x, y) log

p(x, y)

pX(x)pY (y)
.

x and y may be scalar variables or vectors.

It is easily shown that themutual information is zero ifX and Y are independent,
and greater than zero otherwise. Thus for the BSS problem, one can use the
mutual information between the components of the estimated source vector y =
B · x as an optimization target, giving rise to Independent Component Analysis.

Unfortunately, estimating the mutual information from observed data is quite
complicated, and it is even more complicated to estimate a gradient in order to
update the matrix B. So the standard implementations of ICA always use an
approximation of the mutual information, often based on cumulants. For our
experiments we use the Infomax ICA algorithm according to [BS95], as imple-
mented in theMatlab EEGLAB toolbox [DM04], andwe refer to [BS95] for details
about the implementation of the optimization.



7.4 Independent Component Analysis for Artifact Removal 161

7.4.2 The Artifact Detection and Removal Algorithm

Before proceeding to the description of the artifact removal algorithm, it is in-
structive to visually inspect the results of the ICA decomposition of our EMG
signals. One typical example is shown in figure 7.3, where one sees a short part
of a recording (chin array in bipolar configuration) on the left side, and the ICA
decomposition on the right side. The decomposition matrix was estimated on
the data from an entire session, and we note at this point that we always apply
ICA to the two arrays (chin and cheek) separately, since both arrays capture very
different EMG sources.

We see in figure 7.3 (left part) that the original EMG channels look quite similar
to each other. This is unsurprising, since these EMG signals were measured at
very close points; the inter-electrode distance for the chin array is only 5mm. We
also see that there is some amount of noise interference. We infer from the figure
that considered by themselves, adjacent channels contain almost identical infor-
mation, and if only naïve feature extraction is used, one could probably leave out
several of the channels without experiencing recognition accuracy degradation.

There is substantially more information available than can be seen in the raw
signals: The ICA decomposition (figure 7.3, right part) yields three compo-
nents which appear to contain EMG, we call them target components. The
other four ICA components appear to contain noise. We expect that the re-
moval of the noise channels before feature extraction improves the recog-
nition results. We developed two strategies, which we initially reported in
[WHH+13, Him13, WJH+ar]:

• Direct method: As described above, we take the ICA components, identify
and remove artifact components, and then compute the EMG features on
the remaining ICA components.

• Backprojection: We take the ICA components, identify and remove ar-
tifact components as before, and then back-project these components to
the original signal. Mathematically, this can be described as applying the
ICA decomposition, setting the artifact ICA components to zero, and then
multiplying the altered set of ICA components with the inverse of the ICA
matrix. From the back-projected signals, we now compute EMG features
as usual.

In addition, we can extract features from the ICA components without remov-
ing any artifact components, and we compare the resulting WER to the baseline
system without ICA application.

Artifact components are identified by the following three measures, which
are computed on the ICA components and which we initially described in
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[WHH+13]. The thresholds were tuned on the development part of the EMG-
array corpus, a description on how the optimal thresholds were determined is
found in [Him13].

• Autocorrelation measure: This method typically identifies very regular
(periodic) artifacts, like power line noise. We compute the autocorrela-
tion sequence of the ICA component and then take the value of the first
maximum after the first zero-crossing of the sequence. This value is a mea-
sure for the degree of periodicity of the sequence. If it is greater than 0.5,
this component is deemed an artifact.

• High-frequency noise detection: The surface EMG signal has frequency
range of 0Hz - 500Hz [ZX11]. Therefore a component with distinct high-
frequency parts is considered an artifact. We compute the discrete-time
Fourier transform of the ICA component and divide the frequency axis into
two intervals: The “signal” interval from 0Hz to 500Hz, and the “noise”
interval from 500Hz to 1024Hz (the Nyquist frequency). We then compute
the areas of the amplitude of the Fourier transform over the two intervals
and divide the “signal” area by the “noise” area. If the quotient is smaller
than 1.3, this component is deemed an artifact.

• EMG signal range: The main energy of the EMG signal is found between
50Hz and 150Hz [ZX11]. As before, we take the ICA component and divide
the frequency axis into two parts: A “signal” interval from 50Hz to 150Hz,
and “noise” part from 0Hz to 50Hz and from 150Hz to 1024Hz. Then we
divide the “signal” area by the “noise” area. If the quotient is below 0.25,
we deem this component an artifact. For this measure, we found that the
power spectral density yielded slightly more robust estimates than a stan-
dard Fourier transformation.

Our measures are first computed on each ICA component of each utterance of
the training data set. In a second step, we combine the results: For a component
to be considered an artifact, we require that at least one of the three methods
considers this component an artifact on a minimum percentage of (training) ut-
terances. This “artifact threshold” is varied between 35% and 95%, where a lower
value causes more components to be removed. We observed that the threshold
makes a difference when components vary across utterances, e.g. when the con-
tact between electrode and skin deteriorates over time; yet there are only few
components which exhibit such behavior.
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Figure 7.4 – AverageWord Error Rates of the ICA-based artifact removal algorithm
with different artifact thresholds on the development corpus, B-1 setup. Only audi-
ble EMG was used. Bars indicate standard deviation.

7.4.3 Evaluation of the Artifact Removal Algorithm

We evaluate the ICA-based artifact removal algorithm on the development set
of the EMG-ARRAY corpus. Thus we have four setups, namely the setups A-1,
A-2 (with 16 EMG channels) and B-1, B-2 (with 35 EMG channels). We also have
different artifact removal configurations:

• No ICA application at all. The system computes features from the raw
EMG data.

• The system uses ICA preprocessing, but without any artifact removal.

• Direct method: We compute the ICA decomposition of the signals, remove
artifact channels as determined by our algorithm, and then compute EMG
features from the remaining ICA components.

• Backprojection: We remove artifact components from the ICA data as be-
fore, and then process the remaining components with the inverse ICA
matrix.

The latter two methods additionally allow the variation of the artifact threshold.
In all cases, PCA+LDA is applied to the extracted features, with the exception
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Figure 7.5 – Average Word Error Rates with the ICA-based artifact removal algo-
rithm, for all four setups. Bars indicate standard deviation.

of the A-2 setup, where we use LDA but not PCA according to table 7.1. The
optimal TDn stacking context width and the optimal number of retained PCA
components are taken from table 7.1.

Results on all configurations for the B-1 setup are shown in figure 7.4. The opti-
mal settings for the B-1 setup were used, namely TD10 stacking and PCA appli-
cationwith 900 components after the PCA step. One can see that in this case, ICA
without artifact removal yields an insignificant improvement: The WER drops
from 36.2% to 36.1%. If artifact components are removed, theWER improves sub-
stantially: The best result is attained with the direct method and a 95% artifact
threshold, the WER is now only 31.2%: a relative improvement of 13.8%. With
backprojection, there is still some improvement, with an optimalWER of 34.2% at
an artifact threshold of 80%. However we observe that the direct method works
better than backprojection, and that the results between the direct method and
backprojection are not fully consistent.

Figure 7.5 summarizes the results of the artifact removal algorithm for the other
three setups, again using the respective optimal settings taken from table 7.1 (in
particular, for the A-2 setup, no PCA preprocessing is used). We see that the en-
couraging results from the B-1 setup do not carry over to other configurations: In
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particular, for the 16-channel array, ICA application causes theWER to increase,
and removing ICA channels does not improve the results either. This is not the
case for setup B, yet for the 160-channel system, we do not observe improvement
by application of the artifact removal algorithm either.

Finally, we report on the performance of the artifact removal algorithm on the
evaluation part of the EMG-ARRAY corpus. Since our experiments so far do not
show a consistent improvement when applying the algorithm, we refrain from
stating a statistical hypothesis at this point.

We run two experiments, as before: In the first step, we only consider the audible
EMG. In a second step, we train and evaluate multi-mode systems. In all cases,
we use the optimal PCA settings from table 7.1.
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Figure 7.6 – AverageWord Error Rates of the ICA-based artifact removal algorithm
with different artifact thresholds on the audible part of the EMG-ARRAY evaluation
corpus. We used optimal PCA settings. Bars indicate standard deviation.

Figure 7.6 displays the average Word Error Rates with ICA application and ar-
tifact removal on the audible part of the EMG-ARRAY evaluation corpus. We
see that contrary to the results on the development corpus, the artifact removal
algorithm yields improvements on both the B-1 and B-2 setup when applied ac-
cording to the direct method. Backprojection yields higher WERs. The result is
not consistent across the setups: For the B-1 setup, an artifact threshold of 95%
is optimal, for the B-2 setup, a 35% threshold is substantially better.
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Setup B-1 B-2
Tested on Aud. EMG Sil. EMG Aud. EMG Sil. EMG

No Spectral Mapping
WER without ICA 41.0% 70.6% 24.6% 63.7%
WER with ICA (all comp.) 33.6% 72.0% 21.2% 58.6%
WER with ICA and artifact
removal (95% / 35% thr.)

37.3% 68.0% 20.8% 56.0%

With Spectral Mapping
WER without ICA 40.8% 67.9% 26.4% 56.2%
WER with ICA (all comp.) 36.8% 68.6% 22.3% 55.5%
WER with ICA and artifact
removal (95% / 35% thr.)

35.8% 66.1% 23.1% 53.8%

Table 7.4 –Word Error Rates for the ICA-based artifact removal algorithm onmulti-
mode systems. All systems used optimal settings according to table 7.1, the artifact
threshold was set to 95% for the B-1 setup and 35% for the B-2 setup.

Finally, table 7.4 summarizes the performance of the artifact removal algorithm
on themulti-mode systems trained based on the evaluation corpus. We compare
three experiments, namely, no ICA application, ICA application without chan-
nel removal (“all components”), and ICA plus artifact removal according to the
optimal settings taken from figure 7.6, i.e. direct method with a 95% resp. 35%
threshold. Also, Spectral Mapping is additionally applied.

We see that in all cases, the WER with artifact removal is substantially lower
than without any ICA application. However, in some cases simple ICA applica-
tion performs even better. So we conclude that while application of ICA, with
or without detection and removal of noise channels, is frequently helpful for ob-
taining a better signal representation, it is not yet clear what exactly makes this
representation good, and how to obtain consistent results.

Future work will further investigate this issue, particularly in light of improved
signal decomposition methods. It will also be necessary to reconsider the in-
terplay of the various signal and feature processing steps which are part of our
setup, i.e. ICA, PCA, and LDA: In [WHH+13,WJH+ar], we reported substantially
better performance for the ICA-based artifact removal algorithm; the major dif-
ference between those experiments and the ones reported in this thesis is the
lower number of retained dimensions after LDA (12 versus 32). It is certainly pos-
sible that a more restrictive LDA dimensionality reduction also helps to remove
artifacts at feature level, which might explain why in some cases, particularly
for the 16-channel setup A, the ICA-based artifact removal step as applied in this
thesis did not improve the average WER of our systems towards the baseline.
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7.5 Summary

This chapter introduced our new EMG recording system based on electrode ar-
rays. Our first step was the establishment of a baseline recognition setup, which
uses two EMG arrays with a total of 35 channels recorded in bipolar derivation.
Here we showed that PCA application is required as an additional preprocessing
step in order to allow good LDA estimation.

The first concrete application of the array-based recording setup is an artifact
removal algorithm based on Independent Component Analysis (ICA). In the ma-
jority of the experiments we ran, we obtain substantially improved Word Error
Rates compared to the baseline system without ICA application. Yet, we ob-
served that these improvements are not consistent, which hints to the necessity
of further research, particularly with respect to signal transformations: First, the
interplay of ICA, PCA, and LDA is to be studied, second, improved source sepa-
ration and localization methods might bring further accuracy gains.

Even though the results of applying our ICA-based artifact removal algorithm
are somewhat inconsistent, we consider the approach a success nonetheless: It
proves that information can be extracted from EMG array recordings which is
not available in the classical single-channel setup. It is clear from the defini-
tion of ICA that there is no point in applying it to the EMG signals from the
single-channel setup, since in that case, the captured sources are too diverse,
and the number of EMG channels too low, to obtain a sensible signal source de-
composition. (We did some side experiments in this regard, which verified this
assumption.) So we conclude that the EMG array recordings contain information
which the classical EMG-PIT and EMG-UKA corpora do not contain, and which
can be used to improve EMG-based speech recognition. With the experiments
in this chapter, we have laid a foundation for such experiments, and we leave it
to future research to build on these results.





Chapter 8

Applying EMG-based Speech
Recognition

This chapter describes necessary steps towards deploying the EMG-based
speech recognizer in a practical scenario. We consider session indepen-
dency to be a major step towards real-world usability of the system: a
session-independent recognizer may be trained by a user at his or her con-
venience, and can then be applied without further enrollment whenever the
need arises to communicate silently. We show that session-independent sys-
tems exhibit quite satisfactory performance, which can be further improved
by online adaptation of the system. Speaker independency is also considered,
however such systems are not yet ready for practical usage.

As a proof of the real-world usability of EMG-based speech recognition, and as
an application of the results obtained in this thesis, an online demonstration
system was created, using many of the algorithms and techniques devised in
this thesis.

Whenever a new technology emerges, the question of practical applicability
arises both from the general public and from the scientific community. We be-
lieve that Silent Speech interfaces have the potential to revolutionize assistive
technologies for speech-disabled patients, as well as to greatly reduce the inher-
ent problems of conventional speech communication in public places, i.e. com-
promised privacy, disturbance of the environment, and susceptibility to environ-
mental noise. Among Silent Speech processing technologies, the EMG approach
is considered to have great potential [DSH+10].
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The goal of this thesis is not only to develop algorithms and methods which im-
prove the “offline” recognition of pre-recorded silent speech, but also to work
towards application of the technology in real-life scenarios. This influenced the
research conducted in this thesis, as follows: First, issues which might impede
practical usage of EMG-based speech recognition were to be identified and re-
solved, and second, a quick and powerful demonstration system was to be devel-
oped.

Which are the issues when applying our system in practice? From a user’s per-
spective, we identified the following major points:

• Quick setup and ease of use: The attachment of electrodes should be pos-
sible very quickly, ideally taking just as long as it normally takes to an-
swer a (mobile) phone call. The risk of mistakes (wrong attachment, bad
electrode-skin contact, etc.) should be low.

• Low intrusiveness: Using the system should not induce discomfort to the
user.

• Fast enrollment: As most machine learning technologies, EMG-based
speech recognition requires a training phase before being usable. It is de-
sired to minimize the required amount of user-specific training, especially
immediately before use.

• Robustness: The system should be as robust as possible, and it should de-
grade gracefully in the presence of errors. Robustness includes dealing
with varying environmental conditions and situations, as well as different
speaking or articulation styles.

• Flexibility: As few constraints as possible should be imposed on the user.

Furthermore, questions of pricing and availability play a role. While EMG-based
continuous speech recognizers are not yet commercially available, their market
potential has been judged positively e.g. by [DSH+10]. We do not elaborate on
this topic here.

This thesis addresses the above issues in the following ways.

• A system which is quickly and easily set up is provided by the array-
based recording apparatus presented in chapter 7. The experience of our
recorded subjects, as well as of the student assistants who supervised these
recordings, suggest a clear improvement over the old, single-electrode
setup: Instead of identifying positions for around 10 single electrodes, it
is now only necessary to affix two arrays. Additionally, it becomes much
easier to correct misplacements at the algorithmic level, research on this
topic is just underway [WSJS14]. Dry EMG electrode arrays, which are
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already commercially available e.g. by OT Biolettronica, are expected to be
used in the future and will eliminate contact problems related to gelled
electrodes (drying-out, bad application of the gel, etc.).

• EMG-based Silent Speech capturing is judged quite convenient, for exam-
ple by [DSH+10]; in particular, the system is portable and very lightweight.
Note that portable amplifiers which allow to capture a large number of
channels and can work with the EMG arrays are available, even though
they have not been used for this thesis.
Nonetheless it is clear that further improvement in usability and user com-
fort is desired. Our users sometimes found it disconcerting that conductive
gel needs to be applied to the electrodes. The array-based recording system
offers a partial remedy: here the electrode gel is replaced by an electrolyte
cream, which feels similar to standard skin cream and is therefore much
more agreeable than standard medical-purpose gel. As mentioned above,
future efforts will include using dry electrodes, which may be held onto
the face without requiring gel.

• Fast enrollment of the system may have several meanings. In the opti-
mal case, a speaker could apply the system out-of-the-pocket, without any
need for training: This would mean creating speaker-independent models.
We found it more applicable to train session-independent systems, where
a speaker pre-trains the system at an arbitrary time, and the system can
then be applied without any need for recording further training samples.
Session-independency is an issue because applying the system means at-
taching the electrodes; so far we do not expect a user to wear the EMG elec-
trodes continuously. Differences in electrode positioning, skin properties,
and environmental conditions may degrade session-independent systems.
Fast enrollment by session independency and session adaptation is the ma-
jor technical achievement presented in this chapter, leading towards our
online demonstration system.

• Robustness is a goal in all experiments conducted for this thesis. A direct
measure of robustness is the Word Error Rate, yet we note in passing that
recognition errors may have different impact on the understanding of the
recognized speech: A wrongly recognized function word, like an article,
hardly matters, whereas errors on content-bearing words are much more
serious. We do not pursue this topic here, our definition of “robustness”
remains as simple as possible: We intend to obtain low Word Error Rates,
even under varying conditions.
So far we have tackled the following aspects. BDPF modeling, presented in
chapter 5, yielded a general improvement of recognition rates. Robustness
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inmulti-mode scenarios where the audible, whispered, and silent speaking
mode are mixed has been dealt with in chapter 6, where the Spectral Map-
ping algorithm was introduced. Artifact suppression is one application of
the EMG array technology presented in chapter 7. Below, we deal with
robustness across sessions and speakers: When the electrodes are removed
or reattached, or when training and test data stem from different speak-
ers, recognition results degrade. Session independency and adaptation are
shown to successfully address this problem. Speaker independency cannot
yet be achieved without a substantial loss of accuracy.
Still, speech recognition is not expected to yield completely error-free re-
sults in conversational, unplanned speech. One possible remedy for this
issue is to apply a direct synthesis of speech signals from EMG, bypassing
vocabulary and language modeling issues. We conducted several initial
experiments, outside the scope of this thesis [TWS09, NJWS11, JWNS12]
(co-work with Matthias Janke), showing that this approach is feasible. We
observed that errors in the synthesis cause a degradation of the output
speech, but that the content and intended meaning often remain under-
standable.

• So far, the system’s flexibility is somewhat limited due to the fixed 108-
word vocabulary which has been used in all previous experiments. We
will see that this limit can be raised when a larger amount of training data
is used, and indeed, beyond fast enrollment, the session-independent sys-
tems presented in this chapter allow using much more training data than
is available for the session-dependent systems. This enables us to use an
enlarged vocabulary of 2102 words for the experiments presented below.

This chapter is structured as follows: In the first section 8.1 we report on our ex-
periments on session-independent modeling, which is understood as combining
different sessions of one and the same speaker. Results on speaker-independent
systems are also reported, although they are less promising than the session-
independent approach.

We then consider session adaptation, where a session-independent background
system is adapted towards a new target sessionwith a small amount of adaptation
data: In section 8.2 we show that adaptation further improves the recognition ac-
curacy, even when the content of the adaptation data is unknown (unsupervised
adaptation). Thus the issue of fast enrollment is addressed.

Finally, in section 8.3 we present our online demonstration system, which uses
session adaptation as a key component.
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8.1 Recognition Across Multiple Sessions and
Speakers

8.1.1 Session-independent Systems

Session-independent (SI) systems are characterized by using a large number of
recording sessions from one and the same speaker for training and testing, so that
the sets of training and test sessions are disjoint. The multi-session part of the
EMG-UKA corpus, consisting of audible EMG data from 32 sessions of speaker
2 and 16 sessions of speaker 8, provides the means to conduct such experiments.
Experiments on the array-based system are not performed since there are not
enough sessions per speaker available.

EMG-based speech recognition across multiple sessions was first reported on in
the extensiveworks of L.Maier-Hein [MHMSW05,MH05a], but only for awhole-
word recognition task. We presented initial results on session-independent (and
session-adaptive) training of BDPF models in [WS11b], using a subset of the cor-
pus used in this chapter.

We use SI systems based on 7 or 15 training sessions. Seven-session systems are
created in the following way:

• The 32 sessions of speaker 2 are divided into four blocks of eight sessions.
The 16 sessions of speaker 8 are divided into two blocks of eight sessions.

• We train and test eight systems on each block with a leave-one-out pat-
tern, i.e. each system is trained on seven of the sessions and tested on the
remaining session, which we designate the target session. Altogether we
obtain 48 systems, each with a different target session out of the 48 ses-
sions in the multi-mode EMG-UKA corpus. Each such system is trained on
the 7 · 40 = 280 training utterances of 7 sessions.

SI systems based on 15 training sessions are created similarly, using two blocks
of 16 sessions for speaker 2 and one block of 16 sessions for speaker 8. For each
block we trained 16 systems with a leave-one-out pattern, the resulting 48 sys-
tems each receive 15 · 40 = 600 training utterances.

The sessions are sorted in chronological order of recording, i.e. the sessions of
the second block were recorded after all sessions of the first block, and so on. All
experiments are based on the optimal BDPF system from chapter 5, since only
audible EMG data is used, the Spectral Mapping algorithm described in chapter
6 is not applicable. Also note that the LDA transformation is computed on the
training data set of each system, in particular, there is only one LDA transfor-
mation for each trained system. As we saw in chapter 7, the LDA estimation is
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susceptible to the amount of data used for its estimation. However, we do not
pursue this issue here, since the data dimensionality is small, and the amount
of training data is larger than in our baseline session-dependent system, so that
singularity issues are not expected. We do, however, reconsider the number of
retained features after LDA application. Here we may expect that the optimal
number of features rises when more training data is available.

It is also clear that a larger amount of training data yields better recognition re-
sults. Below, we compare the 7-session and 15-session SI systems and show that
this is indeed the case. Since SI training gives us the chance to work with vastly
more data than in the session-dependent (SD) setup, we can perform recogni-
tion experiments on an extended vocabulary consisting of 2102 words: This is
the entire set of words from the EMG-UKA corpus, denoted the Full vocabu-
lary. Enlarging the recognition vocabulary is very important with respect to the
usability of the system, since a vocabulary of 108 words only allows rather ele-
mentary communication, whereas the enlarged vocabulary should be sufficient
for a basic conversation. We refer to the original 108-word vocabulary, which is
still used for comparison, as Base vocabulary. For the experiments on unsuper-
vised adaptation, we additionally need a smaller, session-dependent vocabulary
(the Spec vocabulary), see section 8.2.3.

We frequently compare the SI systems to the 48 session-dependent baseline sys-
tems available from the multi-session part of the EMG-UKA corpus. It should be
noted that this comparison is valid since the test sets of these systems are identi-
cal (all testing is done on the BASE data of the multi-mode part of the EMG-UKA
corpus).

The first experiment deals with finding optimal parameters for the SI systems.
Figure 8.1 presents the average Word Error Rates of the four setups, differing in
the decoding vocabulary and in the amount of training data (7 or 15 sessions).
On the horizontal axis of each plot, the number of retained components after the
LDA step is charted.

We first observe that for both the SI and SD case, increasing the amount of words
in the decoding vocabulary yields a substantial loss of accuracy. In terms of
LDA application, by comparing figures 4.5 and 8.1 it is immediately observed
that the results differ from the SD baseline system, where the optimal number of
retained components was 12: This number is suboptimal for the SI systems, the
optimum is reached at around 16 – 24 LDA components. Since two of the systems
(the best one, with 15 training sessions and a 108-word decoding vocabulary,
and the worst one, with 7 training sessions and 2102-word decoding vocabulary)
attain optimal performance at 24 LDA components, we choose this number for all
further experiments on session-independent and session-adaptive recognition.
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Figure 8.1 – Average Word Error Rates for the session-independent system, versus
different numbers of retained features after LDA, decodingwith the Base vocabulary
(left) and the Full vocabulary (right). Bars indicate standard deviation.

Note that we still use 12 LDA components for the session-dependent systems
which are used for comparison. This approach is considered valid since for the
comparison between two setups with vastly different training data conditions,
an “one-size-fits-all” philosophy is clearly wrong and would lead to an unfair
comparison between the different systems, no matter whether the smaller or
greater dimensionality might be chosen. Instead, we run each experiment with
its optimal settings.

With our parameters fixed, we now turn to comparing the different recognition
setups. Figure 8.2 compares the WERs of the SD system and the two SI systems
by block, i.e. averages have been taken over the eight-session blocks described
above. The average WERs are also given, they are additionally summarized in
table 8.1.

It can be seen that in the majority of cases, SI systems trained on 15 sessions
yield almost as good recognition as the SD systems, without using any training
data of the target session at all. For some blocks, the 15-session SI systems even
outperform the SD systems, however on blocks 3 and 4 of speaker 2, the SI sys-
tems do not perform well. This hints to unusually high variations in recording
conditions between these sessions, possibly because their recording spread over
several months—during this time, tiny variations in electrode positioning might
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Figure 8.2 –AverageWord Error Rates for the session-independent systems, broken
down by blocks. Bars indicate standard deviation.

have remained undetected. It is also clear that the systems improve when the
number of training sessions is increased. We also made this (expected) observa-
tion for session-dependent systems [WS11b].

From these results, we can draw the conclusion that session-independent recog-
nition works well, as long as it is assured that recording conditions match. A
mismatch between recording conditions is clearly present in blocks 3 and 4 of
speaker 2: This went undetected during our data corpus collection, since we did
not run the recognizer during our offline recordings. However, in a practical
setting the user would immediately notice such a mismatch, so that for example,
the array positioning could be corrected.

The impact of this result on practical applications is high: Now a speaker may
pre-train his or her system at any point prior to usage, and then apply it without
further enrollment. There remains the open question whether it is necessary to
record multiple recording sessions in order to make the system robust with re-
spect to a new session (by definition, a setup using data from one single session
for training and another session for testing is also session-independent). Pre-
sumably, using more training sessions allows the models to represent a larger
variation in recording conditions, which should yield more stable behavior to-
wards session variations in the test data.
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Average WER and standard deviation
Setup Base decoding vocabulary Full decoding vocabulary
SI (7 sessions) 34.9% ± 29.9% 67.1% ± 28.5%
SI (15 sessions) 27.0% ± 27.8% 62.3% ± 28.5%
SD 20.5% ± 11.3% 59.2% ± 17.0%

Table 8.1 – Word Error Rates and standard deviations for different setups and both
decoding vocabularies

The above experiments do not answer this question, since between the 7-session
and 15-session SI systems, we increased the amount of training data and the
number of training sessions simultaneously. Therefore as a last experiment in
SI recognition, we investigate to what extent the number of training sessions
influences the recognition results when the amount of training data is kept fixed.

We employ the following setups:

• Systems are trained on 120 utterances, using 3 to 7 sessions from one 8-
session block for training, and one of the remaining sessions for testing.

• Systems are trained on 180 utterances, using 6 to 15 sessions from one 16-
session block for training, and one of the remaining sessions for testing.

This means that only a subset of the SPEC training data of each session is taken;
this subset is randomly selected. When less than 7 resp. 15 sessions are used
for training, we follow a fixed pattern to determine which sessions are used.
Altogether we obtain 48 systems for each setup, each tested on one of the 48
sessions of our corpus as usual. This makes the results comparable to our prior
setup.

Figure 8.3 depicts the WERs with the setups described above, where we per-
formed decoding on the 108-word Base vocabulary since the number of training
utterances is too small to allow the full 2102-word vocabulary. We see that in
general, training on more sessions improves the resulting WER, with one ex-
ception (with 180 training sentences, 15 sessions perform slightly worse than 12
sessions).

On the 120-sentence setup, the session-wise difference between theWERs on the
3-session and the 7-session setup is 6.2% (absolute) with a confidence interval
ranging from -0.2% to 12.6%, so statistical significance of the resulting improve-
ment is not asserted. Similarly, on the 180-sentence setup, the WER difference
between the 6-session training and the 15-session training is 4.6% (absolute) with
a confidence interval ranging from -1.6% to 10.8%.
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Figure 8.3 – Average Word Error Rates for session-independent systems with a
fixed amount of training data which is taken from a varying number of sessions.
Bars indicate standard deviation.

Summarizing our experiments on session indepencency, it is clear that the
method works and is feasible. We saw that the SI systems with 15 training
sessions almost reach the accuracy of session-dependent systems. 15 training
sessions amount to 600 utterances, or around 45 minutes of training data (see
table 3.3), which is far more than the training data from the one target session. It
appears that the discrepancy between sessions is a major detriment for the rec-
ognizer, which requires substantial amounts of data to be compensated for. On
the other hand, the ability to deal with unseen sessions is a major benefit, besides
improving practical applicability of the system it allows to accrue far more data
than could ever be collected in one session. Under suitable circumstances, the
required amount of data for session-independent recognition should be available
in practice. We will return to this topic below in section 8.2, where we show that
session adaptation may combine the advantages of SI and SD systems, even in
the “unsupervised” case.

8.1.2 Speaker-independent Systems

With session-independent recognition being established, we consider speaker in-
dependency the next goal. Speaker independency means that a system is tested
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Figure 8.4 – Average Word Error Rates for speaker-independent systems, trained
on the EMG-PIT pilot corpus using a leave-one-out setup (training was performed
on the 13 speakers who were not tested) and on the EMG-PIT main corpus. The 14
test speakers are from the EMG-PIT pilot corpus. All results are on the 108-word
Base vocabulary.

on data from a speaker who was not part of the training data set: A system
working in this way would allow a user to apply an EMG-based silent speech
recognizer without any prior training at all.

The EMG-PIT corpus was recorded with the specific purpose of allowing to train
systems on data from a large number of speakers. So we base an initial exper-
iment, first reported in [WS09, WS10], on the pilot part of the EMG-PIT cor-
pus, using a leave-one-out method as follows: 14 speaker-independent systems
are trained, each using the training data from 13 speakers and the testing data
from the remaining speaker, in both cases combining the two sessions from each
speaker. As for the experiments on session-independency, we only use audible
EMG. We also performed an experiment using all the data from the EMG-PIT
main corpus for training a speaker-independent system: This amounts to 62 ses-
sions, i.e. more than 4.3 hours of training data. Testing was again performed on
the test sets of the pilot speakers. We use the 108-word Base vocabulary.

The results of both experiments are charted in figure 8.4. We observe that
speaker-independent systems exhibit a drastically higher WER than session-
independent systems: No speaker attains less the 60% WER in any experiment.



180 Applying EMG-based Speech Recognition

The average WER is 78.9% for the leave-one-out systems trained on the EMG-
PIT pilot corpus, and 91.5% for the system trained on the EMG-PIT main corpus:
So using more data for recognizer training causes deteriorating results. We also
observe that the results are not consistent: Neither does more training data help,
nor can we distinguish “good” and “bad” speakers.

We conclude that speaker-independent recognition is not feasible at this point:
The extracted TDn features appear to be very much speaker-dependent. How-
ever, new insights are to be gained from investigations on the EMG array system:
In the near future, we expect clearer insights into different sources of EMG ac-
tivity, and we expect to have the means of extracting signals from these sources.
It may be possible to map such activity sources between different speakers, thus
compensating for speaker discrepancies by versatile feature extraction.

8.2 Fast Enrollment by Model Adaptation

In the previous section we showed that session-independent (SI1) systems are
feasible. However, the SI systems do not reach the full potential of session-
dependent (SD) systems: When a system trained on 7 sessions is applied to the
test data of an unseen target session, this results in a higher WER than the cor-
responding session-dependent system, even though the SI system receives seven
times more training data than the SD system. With 15 training sessions, the SI
systems do improve, but even here we can legitimately assume that SD systems
with the same amount of training data would work far better (in [WS11b] we
reported on some experiments with different training data sizes for SD and SI
systems, clearly showing that both systems improve when more training data
is added). Still, we intend session-independent systems to perform as good as
possible, since this is a major feature in practical scenarios.

The adaptation algorithms which are described and investigated in this chapter
aim at combining the advantageous properties of large “background” systems
and small specific systems, where the designations large and small refer to the
available amount of training data. The standard application of adaptation in
acoustic speech recognition, fromwherewe take our algorithm, is transforming a
large speaker-independent system towards a specific speaker. Here it is clear that
the speaker-independent “background” system is much larger than any speaker-
specific system. For example, the current version of the well-knownGlobalPhone

1Note that as defined above, the abbreviation SI always means “session-independent”, not
“speaker-independent”.
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corpus consists of more than 400 hours of transcribed speech data [SVS13], far
more than one speaker could ever produce in a supervised setting.

Adaptation has many applications and comes in many flavors. In chapter 6,
we presented the Spectral Mapping algorithm as a signal-based method adapt-
ing silent EMG towards audible EMG, using prior knowledge about the EMG
signal properties. In this chapter, we only consider model adaptation using the
Maximum Likelihood Linear Regression (MLLR) algorithm [GW96]: Trainedmod-
els are adapted to better fit the target data. This kind of adaptation is a form of
training, and indeed, MLLR even shares its target function with standard Maxi-
mum Likelihood Baum-Welch training, as described below. Further applications
of adaptation in speech recognition include gearing a system towards dealing
with specific background noise, dialects or accents, etc.; adaptation is also ap-
plied increasingly often in other domains, including e-mail spam filtering [BS07]
and visual object recognition [SKFD10].

MLLR requires existing pre-trained background models, as well as adaptation
data to reestimate the GMM parameters. In this thesis, adaptation is always per-
formed between sessions, i.e. training, adaptation and test data stem from differ-
ent sessions, but from the same speaker. Training is performed on the combined
SPEC data from several sessions, yielding any of the session-independent sys-
tems described in section 8.1.1. Adaptation data comes from the target session:
the SPEC data of the target session is used for adaptation, and the BASE data is
used for evaluating the recognizer, as usual. This makes our systems comparable
to session-dependent systems, which are trained on this adaptation data. Adap-
tation between speakers is not considered due to the low baseline performance
of the speaker-independent systems.

Ideally, an adapted system performs better than both the background SI system
and the SD system trained on just the adaptation data. Below it is proved that
session adaptation indeed improves the recognition accuracy beyond the limits of
both session-independent and session-dependent systems. These limits depend,
of course, on the available amount of training data, as becomes clear from the
results of section 8.1.1: Session-adaptive systems only make sense if the amount
of data on which the SI background system is trained is substantially larger than
the amount of SD data, otherwise the SD systems perform better.

In the remainder of this section, the theoretical background of the MLLR adap-
tation method is explained, and the results of applying MLLR are presented.
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8.2.1 Review of the MLLR Method

In this section we briefly review the MLLR as it is implemented in our sys-
tem, mostly based on the classical overview article [GW96] by Gales and Wood-
land. We compare the concept of adaptation to the standard maximum likeli-
hood training described in section 2.3.5, illustrate the prerequisites and benefits
of adaptation, and finally describe the MLLR algorithm.

Gales and Woodland describe the purpose of adaptation as follows ([GW96, Ab-
stract]): “One of the key issues for adaptation algorithms is to modify a large
number of parameters with only a small amount of adaptation data.” This em-
phasizes the key concept of adaptation: Pre-existing background models are
modified based on some small amount of new adaptation data, and the back-
ground system should be larger than the system one could create solely from the
adaptation data. Indeed, the MLLR algorithm yields no theoretical benefit over
EM training if the amount of adaptation data is large, compared to the training
data used for the background system. Only if the amount of adaptation data is
small, MLLR can play out its strength.

We also see that MLLR requires that background models exist: This is a major
difference to the standard training procedure described in section 2.3.5, which
creates Gaussian models from scratch.

MLLR as employed here is a model adaptation method, which means that the
(myoelectric) model is transformed to better match the adaptation data2. Thus
the Gaussian parameters (means, covariances, and possibly component weights)
are updated: MLLR adaptation is a form of training, just like standard Baum-
Welch training.

For now we make the prerequisite that transcriptions of the adaptation data are
available, i.e. their textual content is known. We can additional assume that
assignments of feature vectors to HMM states, and to the underlying Gaussian
components, have been computed e.g. by the Viterbi algorithm or the Forward-
backward algorithm. This means that one could perform one step of EM training
at this stage, incurring a recomputation of all Gaussian parameters.

MLLR shares its optimization target function with the EM training described in
section 2.3.5, namely, the likelihood of the adaptation data, given by equation 2.4,
is to be maximized. However in constrast to Baum-Welch EM training, this is not
done by completely replacing the Gaussian parameters: instead a transformation
of the parameters is estimated, as follows.

2A feature-space MLLR [Gal97] also exists and shares some properties with model-space
MLLR.



8.2 Fast Enrollment by Model Adaptation 183

The new mean for a Gaussian component distribution is computed by ([GW96,
Chapters 2, 3]3)

µ̂ = Aµ+ b, (8.1)

where the transformation is given by the full matrixA and the bias vector b. µ is
the old mean, which is thus linearly transformed. Similarly, the new covariance
is computed by the equation ([GW96, Chapter 4])

Σ̂ = BTHB, (8.2)

where H is the estimated transformation, and B is the inverse of the Cholesky
factor of the original inverse covariance matrix, i.e. Σ−1 = CCT with a lower
triangular matrix C having positive diagonal entries, and B = C−1. H depends
on the newly computed mean µ̂, so that in practice, the update of mean and
covariance matrix is done in two steps.

The transformations A, b, and H are computed based on the collected statistics
of the adaptation data. For details about their estimation we refer to the original
article [GW96]; here we are interested in understanding the properties of the
MLLR. As the equations show, the original values of µ and Σ enter the computa-
tion of the respective new values (in contrast to standard Baum-Welch training,
see equation 2.5). Yet it is clear from equation 8.1 that any vector µ̂ can be the
result of the linear shift µ̂ = Aµ+ b, and since A and b are estimated so that the
likelihood of the adaptation data is maximized, it follows that naïve application
of equation 8.1 yields the same estimate for µ̂ as the Baum-Welch rule given by
equation 2.5 does. A similar reasoning holds for the covariance update given by
equation 8.2.

Given this observation, why is it sensible to use MLLR at all? When MLLR is
applied, the underlying background system is trained with far more data than
one may use for the adaptation step. This typically means that the background
system has substantially more Gaussians thanmight properly be trained with the
adaptation data, and here the second component of theMLLR concept comes into
play: The set of Gaussian component distributions is partitioned into a relatively
small number of (disjoint) subsets, and all Gaussians which are members of one
such subset are jointly transformed, pooling their assigned adaptation data. This
allows the reestimation of a large number of Gaussian parameters with a small
amount of adaptation data and is the principal reason why MLLR is applicable
to adaptation tasks.

In our implementation, the grouping of Gaussians is performed using a binary re-
gression class tree, similar to the principle outlined in [Gal96] (but with a simpler

3Gales and Woodland use a slightly different notation, where A and b are combined into one
matrixW = (A|b).



184 Applying EMG-based Speech Recognition

splitting criterion). Using a tree structure for determining clusters of Gaussians
to be adapted is advantageous because it flexibly accomodates different amounts
of adaptation data: This concept already played a role for our recognizer in the
BDPF clustering procedure described in section 5.2.2.

The regression class tree is created as follows: First a set of all Gaussian compo-
nent distributions is formed, regardless of the unit model they belong to. This
set of all Gaussians is assigned to the regression class tree root node. Now the
tree nodes are recursively split as follows: For each node, all mean vectors of
the Gaussians contained in this node are considered, and the Gaussians are split
into two disjoint groups by running the k-means algorithm with k = 2 on the
mean vectors. The covariances of the Gaussians are ignored. Finally two child
nodes of the original node are created, containing the two subsets of Gaussians
created by the k-means algorithm. Now the two child nodes are processed recur-
sively, until the splitting process is stopped at a specific tree depth (for example,
at depth 2, four leaf nodes are created).

This regression tree does not depend on the adaptation data (which at this stage
might not even be available), but only on the models of the background sys-
tem. Therefore, it is unknown during splitting how much adaptation data will
be available for any tree node, or any Gaussian.

When the regression class tree has been computed, adaptation transformations
A, b, and H as specified in equations 8.1 and 8.2 are computed for each tree
node (including non-leaf nodes). For a node transformation to be computed, it is
required that the amount of training data exceeds a certain minimum threshold:
Otherwise, no transformation is computed, instead an applicable transformation
is searched by ascending the tree until a node with sufficient training data is
found.

Figure 8.5 shows an example for such a regression tree: The tree depth, predeter-
mined before adaptation data is even collected, is 2, so we have four leaf nodes.
All available Gaussians in the system are partitioned into the disjoint subsets
G4, …, G7, and G2 = G4 ·∪G5, G3 = G6 ·∪G7, G1 = G2 ·∪G3. Transforma-
tions Wi = {Ai, bi, Hi} have been computed. The partition G5 did not receive
enough adaptation data to exceed the threshold, therefore no transformationwas
computed here: instead the transformation W2, which is computed on the joint
training data from partitionsG4 andG5, is used for all Gaussians in the partition
G5. Note that the subset G4 is not affected and uses the transformation W4.

When transformations have been computed, they are applied to the Gaussian
models according to equations 8.1 and 8.2. Note that the mixture weights re-
main unchanged in our implementation. As for Baum-Welch training, next the
assignment of feature frames to Gaussian models can be recomputed, yielding a
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Figure 8.5 – Example MLLR regression tree with depth 2. The node labels Gi in-
dicate a partitioning of the set of all Gaussian component distributions, such that
each parent node contains the Gaussians of its child nodes, and no two nodes on
the same level share a Gaussian. Each node receives an adaptation transformation
W , which is computed on the adaptation data of the assigned Gaussians if enough
adaptation data is available. In the example, nodeG5 does not have enough training
data, so the applicable transformation is searched by ascending the tree (in this case,
transformationW2 is found).

typical iterative EM algorithm. When this iteration stops, e.g. after a fixed num-
ber of iterations, the recognizer is evaluated as usual on the transformed models.

The algorithm described above is called supervised MLLR, since we have adap-
tation data with accurate phone-level alignments, just as in standard training.
The phone-level alignments can be computed from the transcription of the ut-
terance if they are not present, which does not present any problems (this is the
E step of the EM training of HMMs, performed with the Viterbi algorithm or the
forward-backward algorithm, see section 2.3.5). However, if the transcription
of an utterance is unavailable, obtaining robust phone-level alignments becomes
more challenging.

This situation occurs when ongoing adaptation of the EMG-based speech rec-
ognizer is desired even during normal usage. Here EMG data is produced, but
the textual content of this data is unknown. Applying adaptation even in this
case leads to unsupervised MLLR: We assume that we have EMG data for adap-
tation, but that no transcriptions are available. (Our corpus exclusively contains
transcribed data, yet we can of course disregard the transcriptions.)

In order to deal with such a situation, the MLLR algorithm is extended by an
additional decoding step on the adaptation data, yielding a hypothesized tran-
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scription. Of course, some or many of the recognized words might be plainly
wrong: Using this hypothesis as a basis for MLLR would possibly deteriorate the
model quality instead of enhancing it.

In order to estimate the quality of parts of a hypothesis, confidence measures have
been developed. These use information from the decoding stage to estimate the
probability of recognition errors. We applied a confidence computation method
developed by Kemp and Schaaf for acoustic speech recognition, it is the “gamma”
method from [KS97].

This confidence computation algorithm is based on lattices, which are compact
representations of different possible decoding hypotheses in the form of directed
graphs: The graph nodes represent words, and edges represent possible suc-
cessors and predecessors in the set of hypotheses. (Lattices have been devel-
oped mainly for performance reasons and memory saving, a list of the n best
hypotheses for a given utterance would equally well allow the computation of
confidences if n is large enough.)

The words in the lattice are saved together with their (log-)probabilities coming
from the myoelectric model and the language model. This means that the total
probability of a word at a given timeframe can be computed from the lattice,
essentially by applying the forward-backward algorithm at word level. If the
probability of a word at a given position in the hypothesis is high, this means
that most, or even all, hypotheses from the lattice contain this word at its posi-
tion. If the word probability is small, the recognizer created many different word
hypotheses with similar likelihoods at this timeframe.

Theseword-level probabilities are used as a confidencemeasure: When the adap-
tation transformations A, b, and H are computed, each training data sample is
weighted with the local confidence, ranging between 0 (do not use this sample)
and 1 (give this sample full weight). No confidence threshold is used. Finally,
the estimation of transformations and the update of the Gaussian parameters is
performed as in the supervised case.

Good recognition accuracy on the background model is a key prerequisite for us-
ing unsupervised adaptation. If the generated hypotheses are not good enough,
one will either compute the MLLR based on wrong input transcriptions, thus
diminishing the recognition accuracy rather than improving it, or one obtains
many low confidences, so that only a small fraction of the training data is used.
Also, it is important to optimally tune the recognizer so that best results are ob-
tained.
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Figure 8.6 – WERs for the session-independent system with different numbers of
adaptation sentences for supervised adaptation. Bars indicate standard deviation.

8.2.2 Supervised Session Adaptation

In this section we apply the MLLR algorithm for session adaptation in a super-
vised setting, following our publication [WS11b]. As background systemswe use
the SI recognizers trained on 7 respectively 15 training data sessions. Adaptation
always uses a part of the SPEC sentences of the target session, i.e. the session
on which testing is to be performed. We fix the MLLR parameters as follows:
The regression tree is computed to a depth of 2, and the minimum amount of
adaptation data per node is set to 100 (this is small enough to assure that a trans-
formation can be computed for each node). Four iterations of MLLR training and
frame assignment reestimation are performed. We also ran additional experi-
ments with different parameters and found only small variation as long as the
parameters remain within a useful range; in particular, increasing the amount of
nodes in the adaptation tree does not yield any benefit as long as the amount of
adaptation data remains small.

Figure 8.6 shows WERs for the resulting session-adaptive systems, for both SI
background systems and both decoding vocabularies. The number of adapta-
tion sentences ranges from 10 to 40. We observe that MLLR always brings an
improvement: Even with only 10 adaptation sentences, the WER decreases dras-
tically, for example, with the 7-session background system and the 108-word
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Decoding vocabulary
Base Full

WER improvement: Adaptation versus SI system
7-session background system 13.6% ± 5.7% 10.2% ± 4.6%
15-session background system 9.6% ± 5.0% 9.6% ± 4.5%

WER improvement: Adaptation versus SD system
7-session background system -0.8% ± 3.9% 2.3% ± 5.2%
15-session background system 3.1% ± 3.8% 6.5% ± 5.5%

Table 8.2 – AbsoluteWER improvements with 95% confidence intervals with super-
vised session adaptation. The improvement yielded over the session-independent
system is significant (the confidence intervals do not contain 0 in all four cases).
Significance of the improvement over the session-dependent system cannot be as-
serted.

decoding vocabulary, the WER falls from 34.9% to 25.0%, a relative improvement
of 28.4%.

The improvement is greater for larger numbers of adaptation sentences, even
though beyond 30 sentences, there emerges a certain saturation effect. With
30 adaptation sentences or beyond, the session-adaptive systems perform better
than the SD baseline systems in three out of four cases, which proves the robust-
ness of the session-adaptive systems: We consider this a very important result
regarding future practical application of the EMG-based speech recognizer.

Finally, in order to validate the results we computed confidence intervals for
the improvements obtained by the MLLR algorithm, using the full 40-sentence
adaptation data. Note that for this experiment, a separate evaluation set is un-
available, so that this validation has to be performed on the same 48 sessions on
which we optimized our setup.

Table 8.2 shows the absolute WER improvements when comparing the MLLR
system to the SI and SD systems. It can be seen that the confidence intervals for
the improvements of the MLLR system over to the SI system are substantially be-
yond 0 for all four combinations of decoding vocabulary and background system,
so we conclude that the positive effect of MLLR is indeed significant.

When comparing theMLLR system and the session-dependent system, theMLLR
system may perform worse than the SD system: this occurs for the 7-session
background system and the Base decoding vocabulary. In the other cases, we
obtain slight improvements, but table 8.2 shows that so far, we cannot conclude
that these improvements are sigificant.
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Decoding vocabulary
Base Full

WER improvement: Unsupervised Adaptation versus SI system
7-session background system 4.7% ± 2.2% 6.0% ± 3.2%
15-session background system 3.8% ± 1.8% 6.0% ± 2.7%

Table 8.3 – Absolute WER improvements with 95% confidence intervals of unsu-
pervised session adaptation over the session-independent systems. Significance of
the improvement can be asserted since all confidence intervals are beyond zero.

8.2.3 Unsupervised Session Adaptation

The final adaptation experiments deal with unsupervised session adaptation. We
use exactly the same adaptation data as above, however we assume that this data
is not transcribed, i.e. its content is unknown. This would by the typical situation
when the data has been accrued during practical usage of the system.

As described in section 8.2.1, one can use such utterances for adaptation by per-
forming a decoding step to generate hypotheses and, consequently, phone-level
time-alignments. Confidences are used to estimate which parts of a hypothesis
are probably correct and should be used for adaptation.

In order to decode the adaptation data, i.e. the SPEC data of the target sessions,
we cannot use the Base vocabulary since it only contains the words appearing in
the BASE test set (see section 4.1.4). Therefore we define a new type of vocabu-
lary for the purpose of decoding adaptation data. We call it the Spec vocabulary,
it is session-dependent and contains all words appearing in the SPEC data of the
respective session. The number of words in the Spec vocabulary varies between
259 and 311, with an average of 299, so the Spec vocabulary is almost three times
larger than the 108-word Base vocabulary which we used in all experiments pre-
sented so far for decoding the BASE set.

Figure 8.7 charts the WERs for unsupervised adaptation, as well as for the origi-
nal SI systems and supervised adaptation. For both supervised and unsupervised
MLLR, the entire SPEC set of the target session is used for adaptation. We see
that unsupervised MLLR indeed brings improvement: For 7-session background
training, the WER on the BASE evaluation data drops from 34.9% to 30.2% (13.5%
relative improvement) when decoded with the Base vocabulary, and from 67.1%
to 61.1% (8.9% relative improvement) on the Full vocabulary. Similar improve-
ments are observed on the 15-session background systems.

Table 8.3 shows the average absolute improvements for each of the four possible
setups, with confidence intervals. All improvements are significant, since the
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Figure 8.7 – WER comparison for unsupervised and supervised MLLR adaptation
with 40 adaptation sentences. In all unsupervised MLLR experiments, the session-
dependent Spec vocabulary was used for decoding the adaptation data. The BASE
evaluation set was decoded with the 108-word Base or 2102-word Full vocabulary
as indicated.

confidence intervals do not contain zero. However, it is clear from figure 8.7
that supervised MLLR is still far better than unsupervised adaptation.

In order to gain understanding of the system, we inspected the hypotheses which
are generated during the decoding of the adaptation data. These hypotheses are
by no means free of errors: On the adaptation data, the average WER is 44.4%
on the 7-session background system and 40.2% on the 15-session background
system. Note that these WERs are expected to be higher than on the BASE eval-
uation set, since the Spec vocabulary is larger than the Base decoding vocabulary.

Figure 8.8 shows an example of a typical hypothesis of the first session of speaker
2, whose WER on the test data is reduced from 34.30% to 26.30% by unsupervised
MLLR. Here the reference is “The federal aviation administration is fiercely de-
fending its operations in testimony before congress”, the hypothesis on the un-
adapted system is “The federal aviation administration is fiercely defending its
operations in testimony more card is”, so the last three words are wrongly de-
coded. Since the reference contains 13 words, and we have two substitutions
and one insertion between the reference and the hypothesis, the WER of this
particular utterance is thus 3

13
≈ 23%. We see from figure 8.8 that indeed, the
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0.96

TESTIMONY

0.72

MORE

0.32

CARD

0.28

IS

0.47

Figure 8.8 – Example hypothesis during unsupervised adaptation, with confidences.
The reference was “The federal aviation administration is fiercely defending its op-
erations in testimony before congress”, so the last three words were wrongly rec-
ognized. They exhibit lower confidence levels than the correctly recognized part of
the utterance.

last three words receive far lower confidence probabilities than the first part of
the utterance, so the MLLR algorithm will “do the right thing”.

It can be said that using confidences incurs a loss of data. This is caused by the
way confidences are folded into the accumulation of statistics for MLLR (see sec-
tion 8.2.1): A sample is weighted (multiplied) with its confidence, so formally, a
sample with a confidence smaller than 1.0 is only partially used for the compu-
tation. This contrasts with the supervised case, where each sample is fully used.
On average, in the unsupervised case the 7-session SI background system causes
only 8156 frames per PF stream to be accumulated, whereas the supervised sys-
tem uses the total of 10737 frames (not counting “silence” frames). When the
background system is trained on 15 sessions, 8244 frames per stream are used.

From figure 8.2, we observed that there are some sessions which perform very
badly (≈ 80% WER) on the SI system. Here unsupervised adaptation usually
does not improve the results either, since the background system is too bad to
allow creating good hypotheses. However when supervised MLLR is used, or
when a session-dependent system is trained, these sessions perform quite well.
This is one reason why the average WER improvement of supervised MLLR is
well beyond the improvement obtained by unsupervised MLLR: A bad match
between background system and adaptation data thus precludes using unsuper-
vised MLLR. A working real-life system could in the future avoid this problem
by immediately warning the speaker that the recording setup needs to be fixed.

In the last experiment, we again direct our attention to the question of practical
applicability. So far, we used the small Spec vocabulary for decoding the adap-
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Figure 8.9 – Word Error Rates for unsupervised adaptation using the session-
dependent Spec vocabulary and the vastly larger Full vocabulary. The results only
deteriorate very slightly. Bars indicate standard deviation.

tation data: As described above, this means that a speaker would be constrained
to using this vocabulary if adaptation data is to be collected. In real-world situ-
ations, a larger vocabulary is desired, so we now use the Full 2102-word vocab-
ulary not only for system evaluation, but also for decoding the adaptation data.
This agrees with practical usage, because the adaptation data will in the future
be collected during normal usage of the system: In such a case, the allowable
vocabulary should be as large as possible.

Figure 8.9 charts theWER on the BASE evaluation set for different systems using
unsupervised MLLR. Somewhat surprisingly, when the full 2102-word vocabu-
lary is used, the resultingWERs only deteriorate very slightly: For example, with
the 7-session background system, the WER rises from 30.2% to 31.0% resp. 61.1%
to 62.5% when evaluation is performed with the 108-word (Base) resp. 2102-word
(Full) vocabulary.

This is convincing evidence for the robustness of the confidence computation:
Accumulation of adaptation statistics works even though the decoding of the
adaptation data becomes much harder. The latter reflects in the WER on the
adaptation data, which rises from 44.4% to 53.0% on the 7-session background
system and from 40.2% to 50.6% on the 15-session background system. Conse-
quently confidences are lower for the Full vocabulary decoding than for Spec
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vocabulary decoding, we observe that on average only 7192 resp. 7204 frames
are used for adapting the 7 resp. 15 session background system when decoding
uses the Full vocabulary, compared to 8156 resp. 8244 frames when the adapta-
tion data is decoded with the Spec vocabulary. We conclude that even though
the WER on the Full vocabulary of 2102 words is still relatively high, using this
vocabulary does allow the use of the unsupervised adaptation algorithm, which
is a key prerequisite when the method is to be used in a real-life setting.

8.2.4 Summary of Adaptation Experiments

In this section, we introduced session-independent (SI) systems and showed that
they perform well: With 600 training utterances from 15 sessions, the accuracy
of session-independent systems comes close to the one of our session-dependent
systems. We then convincingly showed that MLLR-based session adaptation is
feasible for EMG-based speech recognition and yields significant improvements
over unadapted session-independent systems.

In all experiments, a key issue was the amount of available data: We saw that
the performance of session-independent systems, as well as the quality of adap-
tation, increases whenmore data is available for training or reestimating models.
Standard Baum-Welch training, as well as supervised MLLR adaptation, require
transcribed training data: The textual content of this data must be known. Usu-
ally, such data is recorded in a controlled setting, i.e. the user reads a series of
predetermined text prompts, as described in section 3.2.

Such training data is “expensive”: Particularly when speaker-specific systems are
desired, each user would have to invest time and care to record his or her own
data set. Speaker-independent systems, pre-trained by professional speakers,
would offer a remedy here, but we saw that these are not good enough yet.

Here unsupervised adaptation comes into play: This approach is the only train-
ing method considered in this thesis which does not require that the content of
the adaptation data is known. So adaptation data could be collected during nor-
mal usage of the EMG-based speech recognizer, allowing to obtain substantially
more data than in a controlled setting, without any effort of the user.

Unsupervised adaptation clearly does not yet reach the full potential of super-
vised adaptation, but this does not matter : First, significantly more data can be
used, and second, the better the underlying system becomes, the better the adap-
tation works. Thus a recognizer using unsupervised adaptation improves con-
tinuously, provided that the original background system is good enough.
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It is a very important result that unsupervised adaptation even works with a rel-
atively large underlying vocabulary of more than 2000 words, since this allows
useful communication. Clearly, 2000 words is not an upper bound: When even
more training data of a speaker has been accumulated (say, several hours), we
can legitimately expect far better recognition performance, and far larger allow-
able vocabularies, than we obtained so far. Also, unsupervised adaptation would
continuously update the systemwhen signal properties change during long-term
usage (e.g. the skin properties, as well as articulation style, might change over
the course of months or even years). Altogether, we conclude that despite some
limitations, session-independent and session-adaptive systems provide a power-
ful means to bridge the gap between research-oriented experiments as presented
in chapters 4 – 7, and future practical usage of the system.

8.3 A Real-Time Demonstration System

The final section of this thesis presents an online, real-time demonstration sys-
tem which has been developed based on the algorithms and methods established
in this thesis. We summarize the structure and assembly of the system, give a
usage example, and finally summarize insights and experiences gained from the
public outreach generated by our demonstrations.

8.3.1 Introduction

The creation of a prototype system was planned right from the beginning of this
thesis, and it was tackled as soon as the first major result, the Bundled Phonetic
Feature modeling, was achieved. The prototype serves the purpose of proving
the validity of our method to the interested public, but also as a means of un-
derstanding real-life issues regarding the usage of our system. So far, it is based
on the six-channel single-electrode setup—an array-based system is in prepara-
tion, however since the EMG-USB2 amplifier, which is currently used for array
recordings, is not portable, we only expect to present this system at a later stage,
when a mobile recording device will have been integrated.

The prototype is not the first one of its kind: S. Jou, who developed the ini-
tial phone-based myoelectric speech recognizer as part of his PhD thesis, devel-
oped an initial demonstration for his recognizer, winning the 2006 Interspeech
demo award [Jou08]. Our prototype substantially improves this original system,
in particular by using the newly developed Bundled Phonetic Feature modeling
(see chapter 5), and by allowing continuous recognition in a session-adaptive
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scenario. These methodological improvements result in a much higher recogni-
tion accuracy, which allows us to define a much more complex recognition task
than in the prior system.

Our prototype features two demonstration scenarios: The first scenario allows to
utter freely formed sentences from the Broadcast News domain, constrained only
by the 108-word vocabularywhichwe use for our standard decoding experiments
on the EMG-UKA corpus, described in section 4.1.4. Even though the Broadcast
News domain is not a typical domain which we expect to play a role in practical
applications, we chose it as the basis of this demonstration system since we have
large matching background corpora: So a good fit between training, adaptation,
and test sentences is guaranteed.

In order to create a scenario which better matches possibly uses of the system, we
created a second setup, based on sentences which might be uttered in a typical
silent phone call. Switching between the two scenarios is possible at any time,
implying that both demo scenarios share the same training. Thus we have a mis-
match between the training/adaptation data and the test data in this case: This
is alleviated by using a context-free grammar to structure the possible set of ut-
terances; an example conversation mimicking a silent phone call might proceed
as follows:

Caller: Good afternoon. Do you have a minute for talking?
Silent Speaker: Good afternoon. Yes, I am sitting in a meeting.
Caller: Uh, but you are able to speak?
Silent Speaker: Yes, since I am using my new Silent Speech recog-
nizer. I can talk to you by simply mouthing words.
Caller: Oh, OK. When should we meet in person?
Silent Speaker: A good time would be seven o’clock. Let us have din-
ner at a restaurant.
Caller: This would be fine with me.
Silent Speaker: Great, see you there.

Here the silent speaker would be able to modify the conversation by several pre-
determined alternatives, e.g. by giving another meeting time or place.

The prototype for EMG-based continuous speech recognition is a software pack-
age consisting of the recording software and the speech recognition backend en-
gine, both running on a Microsoft Windows PC (Windows XP and Vista have
been successfully tested). Besides the software, demonstrating the system re-
quires the recording hardware (amplifier, electrodes, audio headset, and syn-
chronization system) as it is used for recordings with the single-electrode setup
described in section 3.1.1. Indeed, enrollment data is recorded in exactly the same
way as the EMG-PIT and EMG-UKA corpus data.
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The frontend software is the UKA EEG/EMG Studio, which was already described
in section 3.1.1. It not only features a well-designed user interface for data cap-
turing, but also contains a demonstration mode in which it interacts with the
JRTk speech recognition engine. Both are used for the prototype, as described
below. While the key purpose of the demonstrator is the presentation of silent
speech recognition, we also included the sentence-based speech translation en-
gine developed by S. Jou [Jou08] as an optional component.

The backend software is a collection of EMG recognition scripts written in TCL,
working with the JRTk engine. These scripts are used twice: First, the back-
ground system for MLLR adaptation must be trained prior to using the demon-
stration (this can also be done on a different computer, e.g. a fast server). Second,
as soon as enrollment data for MLLR has been recorded, JRTk is used to perform
the adaptation and compute updated models.

In the following section, details about the setup of these components is given.

8.3.2 Demo Setup and Presentation

Training of the session-independent background system works exactly as de-
scribed in section 8.1.1, we do not repeat the description here. Currently, session-
independent background systems exist for speakers 2 and 8 of the EMG-UKA
corpus, they were trained using six training sessions each consisting of around
70 utterances: For the demonstration, we used slightly enlarged sentence sets,
consisting of both a standard 50-sentence corpus as used in our offline exper-
iments, and several additional sentences taken from the “phone call” scenario.
Here the number of usable training sentences varies slightly. Otherwise, stan-
dard training settings are used.

Assuming that a suitable background system exists, and that the recording appa-
ratus has been prepared for recording data from a demo subject, presenting the
prototype now requires two steps:

• Recording of the adaptation sentences and computation of the adapted
models.

• Real-time presentation, using either of the two demonstration scenarios
described above.

For adaptation, we typically use a set of around 70 sentences, as described above.
They are recorded just like any data, i.e. the UKA EEG/EMG Studio is set to
recording mode, so that it presents text prompts, allowing the user to collect
supervised data. Data is only collected in the audible speaking mode.
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Figure 8.10 – Demonstration of the EMG-based speech recognizer during the CeBIT
2010 fair

When this data has been created, a TCL script comprising the necessary steps
for adaptation is started: For the online demonstration, this requires creating a
session database and several auxiliary files, computing time-alignments for the
adaptation data, and actually collecting statistics and performing the MLLR. Our
current main system runs on an Intel Core2 Duo dual-core laptop at 2.53 GHz
CPU frequency, here the entire adaptation is performed in 5 – 10minutes. During
the computation of the MLLR, the frontend is not required and may be switched
off, however the electrodes should not be detached.

When adapted models have been computed and written to disk, the demonstra-
tor is ready for use. The UKA EEG/EMG Studio frontend is set to demonstration
mode, which causes the JRTk backend to start up and enter a waiting loop. The
user can now record a single utterance, when the recording is finished, the file is
written to disk, and a semaphore file is created to signal the backend that decod-
ing should start. When JRTk has finished decoding the utterance, the resulting
text is again written to disk, and another semaphore file is created to make the
UKA EEG/EMG Studio read the hypothesis from disk. The hypothesis is then dis-
played on the screen. On any modern laptop, this process is faster than real-time
(for example, processing a 6-second utterance takes 1 – 2 seconds).
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8.3.3 Outreach and Feedback

The prototype system has been presented a large number of times, in very differ-
ent occasions. Demonstrations occured on scientific events, in particular, on the
2009 Interspeech conference in Brighton, UK, where a special session on Silent
Speech Interfaces took place. An even greater audience, consisting of both pro-
fessionals and lay-persons, was reached on the 2010 CeBIT fair (see figure 8.10),
which is the largest IT fair worldwide, and on the 2011 fair of the AAAS (Ameri-
can Association for the Advancement of Science). Television appearances of the
EMG-based Silent Speech interface include German ZDF and British BBC news.

From the standpoint of the researcher, such demonstrations serve the triple pur-
pose of establishing the practical suitability of the underlying methods, gaining
insight into real-life challenges which must be addressed (like the ones men-
tioned at the beginning of this chapter), and accumulating user feedback (includ-
ing ideas for usage scenarios of the system). The latter is also a benefit for specta-
tors watching the demonstration, and for the general public: Potential users are
made aware of our technology, and by giving feedback, they are able to influence
the development and features of the EMG-based speech recognizer.



Chapter 9

Conclusion and Future Work

This final section concludes the thesis and presents directions for future work.
We explain in particular how the newly developed algorithms and methods
may serve as stepping stones for the ongoing development of the EMG-based
speech recognizer, working towards the ultimate goal of applying the system
in the real world. This leads to some concrete suggestions for future work,
which we give at the very end of this chapter.

We argued in this thesis that EMG-based speech recognition is an active, dy-
namic field of research, and that the results obtained in this thesis are impor-
tant stepping stones towards the ambitious goal of practical deployment of the
myoelectric Silent Speech interface. We conclude our work by summarizing its
central results and contributions and presenting them in a wider context, with a
focus on both future reseach efforts and practical usage. We intend to show that
the results are part of a wide-scale research effort, which began years ago and
certainly is going to be continued in the future.

We point out highlights of the system, butwe also raise questionswhere a desired
result has not been achieved. Clearly, a relatively new topic like Silent Speech
recognition offers plenty of remaining work for future researchers, so we finally
lay out some suggestions and ideas for future work.
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9.1 Summary of Thesis Results

The key achievements of this thesis were presented in section 1.5, they struc-
turally follow the central chapters of this work. They were, in order of presen-
tation:

• Introduction of Bundled Phonetic Feature modeling

• Analysis of Silent Speech, and the Spectral Mapping algorithm

• Establishment of the electrode array system

• Session independency and session adaptation

• The online demonstration system

Of these, the first three results are of a theoretical nature, whereas the latter
two bridge the gap to practical applications of the technology. All newly devel-
oped algorithms yield Word Error Rate (WER) improvements, but what have we
gained beyond that?

We believe that many of our results lay important foundations for both practical
application and future research. In this section we argue why this is the case;
some concrete suggestions for future investigations are presented in section 9.2.

The BDPF Models We first consider our modeling improvements. The BDPF
approach described in chapter 5 clearly yields a major accuracy improvement,
with over 40% WER reduction. All further experiments in this thesis are heavily
based on the BDPF system, in particular, the online demonstration only becomes
possible by using BDPF models. We expect this to remain true in the future:
At least as long as session-dependent systems remain more robust than session-
independent ones, BDPF modeling will be a method of choice.

From a theoretical standpoint, BDPF models allow to use the power of flexi-
ble modeling for the small session-dependent EMG corpora, extending the idea
of flexible context-dependent speech recognition developed more than 25 years
ago. One can additionally argue that BDPF models, due to their automatic, data-
driven generation, satisfy a kind of techological optimality criterion: We state
that it is always desirable to create features, models, parameters, etc. in a data-
drivenway, rather than resorting to fixed assumptions, educated guesses orman-
ual parameter optimization. Here classical (in particular, context-independent)
phone models represent such a fixed structure with no inbuilt flexibility, and
from our initial experiments reported in chapter 4, it becomes clear that they
are not optimal (particularly for very small corpora, they tend to incur under-
training). BDPF models are not only better than phone models because they
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yield improved WERs, but also because they are generated so that they fit the
data. (This does by no means preclude that the BDPF tree creation brings its
own set of parameters which have to be optimized, e.g. the number of tree leaves:
The resulting models are still much more flexible and data-optimized than phone
models. Also, the BDPF models behave quite robustly with respect to parameter
variations, as described in section 5.2.3).

Altogether, we conclude that the BDPF modeling yielded a major theoretical and
practical benefit, and that is forms an indispensable basis for all further experi-
ments.

Silent andAudible Speech This thesis comprises a detailed investigation on the
properties of Silent Speech, and on how to deal with it. We consider this a key
concern of our work, since processing Silent Speech will be the main purpose of
a system used in practice. Silent speech was tackled from three directions (with
some additional results on whispered speech):

• Signal-based discrimination of audible and silent speech: How do EMG
signals of audible and silent speech differ?

• Influence on the recognizer: How does the recognizer react to discrepan-
cies between speaking modes? Here we used the BDPF tree as a diagnostic
tool.

• How to compensate for the different speaking modes: The Spectral Map-
ping algorithm.

These three points cover many aspects of silent speech and yield important in-
sights: For example, the results on cross-modal testing and cross-modal labeling
show that silent speech suffers both from being different from audible speech and
from being inconsistent. Yet we also proved that it is possible to speak silently
and obtain the same signal quality as in audible speech: Speakers 2 and 8 from
the EMG-UKA corpus are examples for this.

Still, some research questions remain unresolved. Theoretical aspects include
phone-specific investigation of speaking mode differences: while we published
some initial results in [JWS10a, JWS10b], a detailed analysis remains missing.
Also, while the Spectral Mapping algorithm generates a substantial and signifi-
cant WER improvement on silent speech, the result is still worse than on corre-
sponding audibly spoken speech. A more versatile signal postprocessing (e.g. by
considering phone assignments) might bring some improvement here, and we
have laid the foundations for such research. We additionally assume that major
improvements will be attained by enhancing the recording procedure: It is prob-
ably necessary to give the speaker some kind of feedback on the generated EMG
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signal in order to obtain good silent speech. The initial results we published in
[HJWS11] may be a guideline towards developing versatile feedback methods.

Array-based recording system: Versatile EMG processing The initial exper-
iments of this thesis are based on a classical single-electrode setup which has
been in use since 2005 [MH05a]. A new recording system based on electrode
arrays was developed, expecting advances in signal source decomposition and
localization, among other advantages. We have shown that signal source de-
composition can be used to build an artifact removal algorithm. Further goals of
the EMG array technology remain outstanding; still, our results on Independent
Component Analysis show that EMG arrays can be used to extract information
which is not available from the single-electrode setup, and that novel algorithms
can be based on such information.

Therefore, we expect that EMG array technology will play a central role in future
research, and we give some specific suggestions below. Additionally, we state
the hypothesis that it will be very hard to achieve substantial gains by vary-
ing the signal preprocessing for the single-electrode system: at least for audible
EMG, the current feature set probably is as good as it gets. We can justify this
assumption with some of our side experiments (not reported in this thesis): vari-
ations of the feature set, like different frame length or different feature variations,
never caused the system to substantially improve or degrade, more complicated
features, like frequency features, even caused accuracy deterioration (see e.g.
[WJS07, JSW+06]). This might mean that we have reached a level of feature
quality which is not easily exceeded.

There is also a theoretical argument: The facial EMG signal is very complex
since it consists of superimposed signals from a multitude of sources, yet a small
number of single electrodes with rather large surface cannot capture all this com-
plexity: We mostly obtain a representation of local EMG activity, without being
able to discern where this activity comes from. Time-domain features, in all
their variations, essentially represent the degree of local activity, and the obser-
vation that feature variations did not causemajor accuracy changes suggests that
whatever information can be found in the signal by standard methods is already
robustly represented in the currently used time-domain features (including the
context stacking).

Session independency, speaker independency, and adaptation We have
clearly shown that session-independent systems are not only feasible, but can
actually yield similar performance as session-dependent systems, provided that
enough training data is available. This is a significant result with a major im-
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pact on practical applicability, since session independencymeans that the system
might be pre-trained by a speaker and is then usable without further enrollment:
This is an absolute requirement for the vast majority of practical application sce-
narios.

Our session adaptation methods further extend this line of research: In partic-
ular, unsupervised adaptation allows to continuously improve the system based
on data collected during usage and thereby bridges the gap between training
data, which currently still has to be collected in a time-consuming (and boring)
process, and real-life data accrued during practical system usage, large amounts
of which are easily available. On the long run, the Silent Speech recognizer will
be trainable with more diverse data than the specific set of sentences which is
currently used. Then, unsupervised methods will open the way to using vastly
larger amounts of training data than have ever been used before for EMG-based
speech recognition.

9.2 Suggestions for Future Work

In the above section, we summarized the main results of this thesis and pointed
out results which lay a foundation for future extensions of our research. Here
we intend to make some concrete suggestions for future experiments, based on
experiences from the work conducted in this thesis. Of course, we do not claim
that this list of propositions is complete, or that these methods will actually yield
the expected results: Future researchers will answer these questions.

Further integration of EMG array technology A line of research which will
certainly play a role in the future is the EMG array technology. We have shown
that the high-dimensional array data allows information extraction in a way
which is impossible for single-electrode data. Particularly, an artifact detection
algorithm based on Independent Component Analysis (ICA) has been developed.
In which further ways could one make use of the power of EMG arrays?

Firstly, it will be important to better understand the components and evolution
of the EMG signal. This might be tackled as follows.

• Localize EMG signal components: This can be done with a method based
on ICA, we presented preliminary results in [Hei13, Chapter 4] and in the
conference publication [WHH+13].

• Determine whether certain localized components work well for recogniz-
ing certain articulatory movements or phonetic features.



204 Conclusion and Future Work

• Determine whether other ICA/source separation approaches (for example,
deconvolution [BS95, AS98]) yield better results than out-of-the-box in-
stantaneous ICA.

• In parallel to improving the ICA approach, the raw signal can also be used;
in our ongoing work [WSJS14] we use RMS features to detect array repo-
sitioning between sessions, and there is indication that there features, al-
though they are simpler than the TDn features, are actually very useful
for this purpose. Therefore, the EMG feature extraction should be rein-
vestigated in the light of EMG arrays. From a possible application of RMS
features we expect a better visualization and consequently a better under-
standing of the EMG activity patterns.

• Modeling the temporal evolution: Can one observe EMG components
which propagate along the direction of the muscle fibers? Extracting
such components might help enormously in decomposing the signal. Here
methods of causality (e.g. Granger causality [Gra69]) might be applicable,
as they are for EEG signals (see e.g. [BMB+12]).

Further investigations on audible and silent EMG Out of the possible direc-
tions with respect to improving the quality of silent speech recognition, we men-
tion three concrete suggestions:

• Phone-based analysis: We reported some initial results on the realization
of phones or phonetic features in audible and silent speech in [JWS10a,
JWS10b]. A detailed study could build on these results, now with an en-
larged corpus and a better baseline accuracy due to improved parameters.
The prior results could possibly be enhanced by considering frames larger
than the usual 27ms: There are some initial hints that computing the signal
energy at the phone level (i.e. with frames of varying size, each as long as
a phone) yields a useful signal representation. Such a representation could
be used to improve the Spectral Mapping algorithm.

• Integration of the array system: Extracted signal components, as in the
ICA experiments, could be examined for differences between audible and
silent speech.

• User feedback: In the future, we hope that direct synthesis [TWS09,
NJWS11, JWNS12] becomes fast enough to be performed in real-time. In
this case, synthesized speech could be played to the user even during
recording, yielding accurate feedback and alleviating the loss of articu-
lation preciseness when speaking silently.
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User studies So far, all users have been healthy individuals, mostly from the
student populations of the cities of Karlsruhe and Pittsburgh. We suggest to plan
data recording for speech-disabled persons: This would yield important results
not only about practical challenges for deploying the system in this way, but also
about the user experience. During the work for this thesis, it became clear that
the need for non-acoustic speech processing techniques is high in the speech-
disabled community, and that valuable assistance could be gained by opening up
the system in such a way.

One prerequisite for this would be that speaker bootstrapping, in particular when
only silent speech is used, becomes easier and more robust. An enlarged vocab-
ulary would also be a requirement: Here we hope for positive influence of larger
amounts of training data, which can be obtained by using unsupervised methods.

In general, both for speech-handicapped people and for general usage, we state
that the time is right for our Silent Speech device to go to the people, rather
than stay behind the university walls. We hope that the results of this thesis
help to pave the way towards such broad usage of Silent Speech recognition and
processing.
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Speech is the natural medium of human com-
munication, but audible speech can disturb 
bystanders, compromise privacy, and exclude 
speech-disabled people. This dissertation pre-
sents a speech recognizer based on surface 
electromyography, where electric potentials 
of the facial muscles are recorded by surface 
electrodes. This allows capturing speech even 
when it is uttered silently, overcoming the said 
difficulties of conventional speech communica-
tion and processing.

The work covers the entire silent speech  
processing chain, from the capturing of high-
quality EMG signals to optimal modeling of pho-
netic-articulatory properties to the speech rec-
ognition backend, including a detailed analysis 
of the specific properties of electromyographic 
signals of silently articulated versus normally 
spoken speech. The research conducted in this 
thesis substantially improves the state-of-the-
art in electromyographic speech recognition in 
terms of accuracy, flexibility, and robustness. 
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