254 research outputs found

    Publication list of Zoltán Ésik

    Get PDF

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    If the Current Clique Algorithms are Optimal, so is Valiant's Parser

    Full text link
    The CFG recognition problem is: given a context-free grammar G\mathcal{G} and a string ww of length nn, decide if ww can be obtained from G\mathcal{G}. This is the most basic parsing question and is a core computer science problem. Valiant's parser from 1975 solves the problem in O(nω)O(n^{\omega}) time, where ω<2.373\omega<2.373 is the matrix multiplication exponent. Dozens of parsing algorithms have been proposed over the years, yet Valiant's upper bound remains unbeaten. The best combinatorial algorithms have mildly subcubic O(n3/log3n)O(n^3/\log^3{n}) complexity. Lee (JACM'01) provided evidence that fast matrix multiplication is needed for CFG parsing, and that very efficient and practical algorithms might be hard or even impossible to obtain. Lee showed that any algorithm for a more general parsing problem with running time O(Gn3ε)O(|\mathcal{G}|\cdot n^{3-\varepsilon}) can be converted into a surprising subcubic algorithm for Boolean Matrix Multiplication. Unfortunately, Lee's hardness result required that the grammar size be G=Ω(n6)|\mathcal{G}|=\Omega(n^6). Nothing was known for the more relevant case of constant size grammars. In this work, we prove that any improvement on Valiant's algorithm, even for constant size grammars, either in terms of runtime or by avoiding the inefficiencies of fast matrix multiplication, would imply a breakthrough algorithm for the kk-Clique problem: given a graph on nn nodes, decide if there are kk that form a clique. Besides classifying the complexity of a fundamental problem, our reduction has led us to similar lower bounds for more modern and well-studied cubic time problems for which faster algorithms are highly desirable in practice: RNA Folding, a central problem in computational biology, and Dyck Language Edit Distance, answering an open question of Saha (FOCS'14)

    On finite complete rewriting systems, finite derivation type, and automaticity for homogeneous monoids

    Get PDF
    This paper investigates the class of finitely presented monoids defined by homogeneous (length-preserving) relations from a computational perspective. The properties of admitting a finite complete rewriting system, having finite derivation type, being automatic, and being biautomatic are investigated for this class of monoids. The first main result shows that for any consistent combination of these properties and their negations, there is a homogeneous monoid with exactly this combination of properties. We then introduce the new concept of abstract Rees-commensurability (an analogue of the notion of abstract commensurability for groups) in order to extend this result to show that the same statement holds even if one restricts attention to the class of n-ary homogeneous monoids (where every side of every relation has fixed length n). We then introduce a new encoding technique that allows us to extend the result partially to the class of n-ary multihomogenous monoids

    On finite complete rewriting systems, finite derivation type, and automaticity for homogeneous monoids

    Get PDF
    This paper investigates the class of finitely presented monoids defined by homogeneous (length-preserving) relations from a computational perspective. The properties of admitting a finite complete rewriting system, having finite derivation type, being automatic, and being biautomatic are investigated for this class of monoids. The first main result shows that for any consistent combination of these properties and their negations, there is a homogeneous monoid with exactly this combination of properties. We then introduce the new concept of abstract Rees-commensurability (an analogue of the notion of abstract commensurability for groups) in order to extend this result to show that the same statement holds even if one restricts attention to the class of n-ary homogeneous monoids (where every side of every relation has fixed length n). We then introduce a new encoding technique that allows us to extend the result partially to the class of n-ary multihomogenous monoids

    Corporate influence and the academic computer science discipline. [4: CMU]

    Get PDF
    Prosopographical work on the four major centers for computer research in the United States has now been conducted, resulting in big questions about the independence of, so called, computer science

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    Seventh Biennial Report : June 2003 - March 2005

    No full text
    corecore