2,474 research outputs found

    A study of the influence of the gauge group on the Dyson-Schwinger equations for scalar-Yang-Mills systems

    Full text link
    The particular choice of the gauge group for Yang-Mills theory plays an important role when it comes to the influence of matter fields. In particular, both the chosen gauge group and the representation of the matter fields yield structural differences in the quenched case. Especially, the qualitative behavior of the Wilson potential is strongly dependent on this selection. Though the algebraic reasons for this observation is clear, it is far from obvious how this behavior can be described besides using numerical simulations. Herein, it is investigated how the group structure appears in the Dyson-Schwinger equations, which as a hierarchy of equations for the correlation functions have to be satisfied. It is found that there are differences depending on both the gauge group and the representation of the matter fields. This provides insight into possible truncation schemes for practical calculations using these equations.Comment: 47 page

    1987 small grain performance test

    Get PDF

    Passive indirect diffuse imaging

    Get PDF
    A passively illuminated scene presents a variety of photon pathways: direct and indirect, which convey varying levels of information about the scene across different dimensions of the light field. In indirect passive imaging, the object of interest is occluded from the imager which has no control over illumination. Using a second-order (non-linear) image formation model we demonstrate (experimentally) the feasibility of passive indirect diffuse imaging.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    The random component-wise power method

    Get PDF
    This paper considers a random component-wise variant of the unnormalized power method, which is similar to the regular power iteration except that only a random subset of indices is updated in each iteration. For the case of normal matrices, it was previously shown that random component-wise updates converge in the mean-squared sense to an eigenvector of eigenvalue 1 of the underlying matrix even in the case of the matrix having spectral radius larger than unity. In addition to the enlarged convergence regions, this study shows that the eigenvalue gap does not directly affect the convergence rate of the randomized updates unlike the regular power method. In particular, it is shown that the rate of convergence is affected by the phase of the eigenvalues in the case of random component-wise updates, and the randomized updates favor negative eigenvalues over positive ones. As an application, this study considers a reformulation of the component-wise updates revealing a randomized algorithm that is proven to converge to the dominant left and right singular vectors of a normalized data matrix. The algorithm is also extended to handle large-scale distributed data when computing an arbitrary rank approximation of an arbitrary data matrix. Numerical simulations verify the convergence of the proposed algorithms under different parameter settings

    Separability of neural responses to standardised mechanical stimulation of limbs

    Get PDF
    Abstract Considerable scientific and technological efforts are currently being made towards the development of neural prostheses. Understanding how the peripheral nervous system responds to electro-mechanical stimulation of the limb, will help to inform the design of prostheses that can restore function or accelerate recovery from injury to the sensory motor system. However, due to differences in experimental protocols, it is difficult, if not impossible, to make meaningful comparisons between different peripheral nerve interfaces. Therefore, we developed a low-cost electronic system to standardise the mechanical stimulation of a rat’s hindpaw. Three types of mechanical stimulations, namely, proprioception, touch and nociception were delivered to the limb and the electroneurogram signals were recorded simultaneously from the sciatic nerve with a 16-contact cuff electrode. For the first time, results indicate separability of neural responses according to stimulus type as well as intensity. Statistical analysis reveal that cuff contacts placed circumferentially, rather than longitudinally, are more likely to lead to higher classification rates. This flexible setup may be readily adapted for systematic comparison of various electrodes and mechanical stimuli in rodents. Hence, we have made its electro-mechanical design and computer programme available onlin

    A positive fixed point theorem with applications to systems of Hammerstein integral equations

    Get PDF
    We present new criteria on the existence of fixed points that combine some monotonicity assumptions with the classical fixed point index theory. As an illustrative application, we use our theoretical results to prove the existence of positive solutions for systems of nonlinear Hammerstein integral equations. An example is also presented to show the applicability of our results.Comment: 11 page

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 359)

    Get PDF
    This bibliography lists 164 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jan. 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Aerospace Medicine and Biology. A continuing bibliography with indexes, supplement 151

    Get PDF
    This bibliography lists 195 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1976

    Implications of TRIPS Flexibilities for Access to Non-communicable Disease Medicines in Lower and Middle Income Countries

    Get PDF
    Over 60% of deaths in the world are due to noncommunicable diseases (NCDs), principally referring to cardiovascular diseases, diabetes, cancer and chronic respiratory disease. Nearly 80% of these NCD deaths occur in low- and middle-income (LMIC) countries, where it is difficult for people to access essential medicine for treatment. The problem of effective access results in part from the exorbitantly high prices that arise from the negative effects of global patent protection. The WTO Trade-Related Aspects of Intellectual Property Rights Agreement (TRIPS) offers flexibilities, such as compulsory licenses and parallel importing, to remedy those negative effects. Hence, two fundamental questions arise. To what extent do LMIC countries benefit from these safeguards when it comes to providing essential medicines for their populations? What options and political barriers do these countries have when making the case for being able to make NCD essential medicines accessible to their populations, and what lessons can be learned from the successes of increased and affordable access to AIDS/HIV medicines from the early 2000s? Through introspection of emerging case studies, this article explores ways to reduce barriers to essential medicines for NCDs under the WTO TRIPS frameworks and other relevant regulations related to pharmaceutical trade and patents
    corecore