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Abstract

We present new criteria on the existence of fixed points that combine some
monotonicity assumptions with the classical fixed point index theory. As an
illustrative application, we use our theoretical results to prove the existence of
positive solutions for systems of nonlinear Hammerstein integral equations. An
example is also presented to show the applicability of our results.
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1 Introduction
In this manuscript we pursue the line of research developed in the recent papers [1-5]
in order to deal with fixed point theorems on cones that mix monotonicity assumptions
and conditions in one boundary, instead of imposing conditions on two boundaries as
in the celebrated cone compression/expansion fixed point theorem of Krasnosel’skii. In
order to do this we employ the well-known monotone iterative method, combined with the
classical fixed point index. In Section 2 we prove two results concerning non-decreasing
and non-increasing operators in a shell, in presence of an upper or of a lower solution; in
Remark 2.4 we present a comparison with previous results in this direction.

In [3] Cid et al., in order to show the existence of positive solutions of the fourth-order

boundary value problem (BVP)

u® = ag(O)f W), te(0,1),

1.1)
u(0)=u(l)=0=u"(0)=u"(1),
where A > 0, studied the associated Hammerstein integral equation
1
u(t) = A/ k(t, s)g(s)f(u(s)) ds, 1.2)
0
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where k is precisely the Green’s function associated to the BVP (1.1). Having defined the

constant

te[0,1]

1
y* = max / k(t,5)g(s)ds,
0

the main result in [3], regarding the BVP (1.1), is the following.

Theorem 1.1 Assume that limﬁoo@ = +00 and there exists B € [0, +00] such that f is
non-decreasing on [0, B). If

N

O0<A< sup
se.) VS (9)

(with the obvious meaning when f (s) = 0), then the BVP (1.1) has at least a positive solution.

Note that the above theorem is valid for a specific Green’s function. On the other hand
the existence of nonnegative solutions for systems of Hammerstein integral equations has
been widely studied; see for example [6-22] and references therein. In Section 3 we give
an extension of Theorem 1.1 to the context of systems of Hammerstein integral equations
of the type

b
wn(t) = / (6, 5)u5)fs (119, a(s)) s,
“ (1.3)

b
uy(t) = )»2/ ke (£, 8)ga(8)f (1(s), wa(s)) dis,

providing, under suitable assumptions on the kernels and the nonlinearities, the existence
of a positive solution.

In order to show the applicability of our results, we discuss the following system of
second-order ODEs, subject to local and nonlocal boundary conditions, which generates
two different kernels:

u] () + Mfi (1 (8), u2()) =0, £€(0,1),
uy (£) + Aofo (w1 (2), u2(8)) =0,  £€(0,1),

u(0)=0, w1 (1) + u1(1) = 0,

(1.4)

u5(0) =0, uy(1) —&us(n) =0, ne(0,1),0<&<1,

computing all the constants that occur in our theory. We also prove that the system (1.4)
has a solution for every A1, 1, > 0. A similar result has been proven recently, in the context

of one equation subject to nonlinear boundary conditions, by Goodrich [23].

2 Two fixed point theorems in cones

A subset K of a real Banach space X is a cone if it is closed, K + K C K, AK C K for all
A>0,and K N (-K) = {#}. A cone K defines the partial ordering in X given by

x<y ifandonlyif y-xeK.
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We reserve the symbol ‘<’ for the usual order on the real line. For x,y € X, with x < y, we
define the ordered interval

yl={zeX:x<z=<y}.

The cone K is normal if there exists d > 0 such that for all x,y € X with 0 <x <y then
llxll < dliyll.
We denote the closed ball of center xy € X and radius r > 0 as

Blxo,r] = {x € X : |lx —x0]| <7},

and the intersection of the cone with the open ball centered at the origin and radius » > 0
as

I(,:Kﬂ{xeX:||x||<r}.

We recall a well-known result of fixed point theory, known as the monotone iterative
method (see, for example, [24, Theorem 7.A] or [25]).

Theorem 2.1 Let N be a real Banach space with normal order cone K. Suppose that
there exist o < B such that T: [, B] C N — N is a completely continuous monotone non-
decreasing operator with « < Ta and TB < B. Then T has a fixed point and the iterative
sequence o,y = T, with ag = «, converges to the greatest fixed point of T in [, B], and
the sequence By.1 = T By, with By = B, converges to the smallest fixed point of T in [a, B].

In the next proposition we recall the main properties of the fixed point index of a com-
pletely continuous operator relative to a cone, for more details see [26, 27]. In the sequel
the closure and the boundary of subsets of K are understood to be relative to K.

Proposition 2.2 Let D be an open bounded set of X with 0 € Dy and Dy # K, where Dy =
DN K. Assume that T : D — K is a completely continuous operator such that x # Tx for
x € 0Dg. Then the fixed point index ix (T, D) has the following properties:
(i) Ifthere exists e € K \ {0} such that x # Tx + Ae for all x € 0Dk and all A > 0, then
ix(T,Dg) = 0.
For example (i) holds if Tx £ x for x € dDy.
(i) I Tx|| = x|l for x € 3D, then ix(T,Dk) = 0.
(iti) If Tx # Ax for all x € 0Dy and all ) > 1, then ix(T,Dg) = 1.
For example (iii) holds if either Tx % x for x € 9Dk or || Tx|| < ||x|| for x € dDx.
(iv) Let D' be open in X such that D' C Dx. If ix(T, Dx) = 1 and ix(T, DY) = 0, then T
has a fixed point in Dy \D_}<. The same holds if ix(T,Dx) = 0 and iK(T,D}() =1.

We state our first result on the existence of non-trivial fixed points.

Theorem 2.3 Let X be a real Banach space, K a normal cone with normal constant d > 1
and nonempty interior (i.e. solid) and T: K — K a completely continuous operator.
Assume that

(1) there exist B € K, with TB < B, and R > 0 such that B[B,R] C K,
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(2) the map T is non-decreasing in the set
R
P = {xeK:xjﬁandE < ||x||},

(3) there exists a (relatively) open bounded set V C K such that ix(T,V) = 0 and either
KpCVorV CKg.

Then the map T has at least one non-zero fixed point x, in K such that

V\I_(R, incase Kp C 'V,

either belongs to P or belongs to - . —
Kp\V, incaseV CKx.

Proof Since B[B,R] C K, if x € K with ||x|| = R, then x < 8.

Suppose first that we can choose o € K with ||| = R and Ta > «. Since o < 8 and due
to the normality of the cone K we have [«, 8] C P, which implies that T is non-decreasing
on [, B]. Then we can apply the Theorem 2.1 to ensure the existence of a fixed point of T’
on [«, B], which, in particular, is a non-trivial fixed point.

Now suppose that such o does not exist. Thus Tx % x for all x € K with ||x|| = R, which
by Proposition 2.2(iii) implies that ix (T, Kz) = 1. Since, by assumption, ix (7, V) = 0 we get
the existence of a non-trivial fixed point x; belonging to the set V'\ Kr (when Kz C V) or
to the Kz \ V (when V C Kp). O

Remark 2.4 We note that we can use either Proposition 2.2(i), or Proposition 2.2(ii), in
order to check the assumption (3) in Theorem 2.3. We also stress that P is contained in
theset{x e K : S <|lx|l <d||B|l}. Therefore Theorem 2.3 is a genuine generalization of the
previous fixed point theorems obtained in [1-4]. Moreover, we show in the applications
that in many cases it is useful to apply Theorem 2.3 with a set V' different from K.

We observe that, following some ideas introduced in [2, Theorem 2.1], it is possible to
modify the assumptions of Theorem 2.3 in order to deal with non-increasing operators.
The next result describes precisely this situation.

Theorem 2.5 Let X be a real Banach space, K a cone with nonempty interior (i.e. solid)
and T: K — K a completely continuous operator.
Assume that

(1) there exist a € K, with Ta < a, and 0 < R < ||| such that Blo,R] C K,
(2") the map T is non-increasing in the set
P={xeK:R<|lx| < lall},
(3) there exists a (relatively) open bounded set V C K such that ix(T,V) =1 and either
KrCVorVCKg.
Then the map T has at least one non-zero fixed point such that

V\I_(R, incase Kp C 'V,

either belongs to P or belongs to - . —
Kp\V, incaseV CKg.
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Proof Let x € K be such that ||x|| = R. Then by (1') we have x < « and since x,« € P it
follows from (2') that

Tx>To >a > x.
Now, if for some x € 0Ky is the case that Tx < x then we are done. If not, Tx ﬁ x for all
x € dKg which by Proposition 2.2 implies that ix (T, Kg) = 0. This result together with (3')
gives the existence of a non-zero fixed point with the desired localization property. d
3 An application to a system of Hammerstein integral equations

‘We now apply the results of the previous section in order to prove the existence of positive
solutions of the system of integral equations

b
() = 1 / o, )1 (5 (14 (5), 1a(5)) s o= T (g, )0,
“ (3.1)

b
() = 2 / ot 9)22(5)f5 (11(5), 1(5)) s = T, 1) (9),

where we assume the following assumptions:

H;) A;>0,fori=1,2.
H,) k;:[a,b] x [a,b] — [0, +00) is continuous, for i =1,2.

(
(
(Hs) g :[a,b] — [0,+00) is continuous, gi(s) > 0 for all s € [a, b], for i =1,2.
(Ha) fi:10,+00) x [0, +00) — [0, +00) is continuous, for i =1,2.

(

Hs) There exist continuous functions ®; : [a, b] — [0, +00) and constants 0 < ¢; <1, a <
a; < b; < b such that for every i =1,2,

ki(t,s) < ®;(s) fort,se[a,b] and c¢;-P;(s) <k;(t,s) forte[a;,b;]ands € [a,b)],

and

b;
Yix = min / gi(s)k;(t,s)ds > 0.

tela;,b; a;

We work in the space C[a, b] x C[a, b] endowed with the norm

(1, 42) || = max{ |1 ]l oo 1242100 }

where || W] o := maXse[qp) [W(E)].

Set ¢ = min{cy, ¢o} and let us define
K;:= {w € Cla,b] : w(t) > 0 for all t € [a, b] and ter[rtli’r;i] w(t) > c||w||oo},
and consider the cone K in Cl[a, b] x Cla, b] defined by
K= {(m,u) € K x Ky},

which is a normal cone with d = 1.
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Under our assumptions it is routine to check that the integral operator
T, t2)(t) := (T2 (a1, ) (2), To iy, 1) (2))

leaves K invariant and is completely continuous.
Now we present our main result concerning the existence of positive solutions for the
system (3.1).

Theorem 3.1 Assume that the assumptions (Hy)-(Hs) hold and moreover:

(He) There exist constants By, By > 0 such that for every i = 1,2, fi(-,-) is non-decreasing on
[0, B1] x [0, Bo] (that is, if (w1, us), (vi,v2) € R? with 0 < u; <v; < B; fori =1,2, then
il ) < film,va) for i=1,2).

(H7) Forevery M > 0 there exists p = p(M) > 0 such that, for every i =1,2,

inf{fl(l;’ ) :(u,v) € [p, plc] x [O,,o/c]} > M,

inf{fZ(Z'v) :(u,v) € [0, p/c] x [p,p/c]} > M.

Then the system (3.1) has at least one positive solution in K provided that

1-or;
0<A;< sup 5 (3.2)
" e(O,Bl),rze(O,Bz)fi(rb 72)7/1'
where
b
Y, = max / gi(9)ki(t,8)ds >0, fori=1,2.
telah] J ,
Proof Due to (3.2) we can fix B; € (0, B;), i = 1,2, such that
Bi— Xy fi(B1, B2) > cBi, i=1,2. (3.3)

On the other hand, for M > max{)ml/1 , mllz } let p = p(M) > 0 as in (H7) and fix R <
1 ¢ Sk 2k

. _ 1-
mln{m : ﬂl: 1_+§ : ﬁZ;IO}'

Let us check that the assumptions of Theorem 2.3 are satisfied with

B(t) = (B, B2) forallt e [a,b],
and
= s K: mi i .
|4 {(ul u) €K ter[rzgﬂul(t) < pand ter{;l;gz] uy(t) < ,0]
Claim 1. B[B,R] CK and T < B.
1-c

Since B is constant and R < min{ o - B ﬁ - B2} a direct computation shows that
B[B,R] C K. Now, from (3.3) it follows for each ¢ € [a,b] and i =1,2

b
[T:B)(2) = Ai/ ki(t,5)gi(s)fi(B1, B2) ds < Liy; fi(B1, B2) < Bi.
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Moreover, since ||8; — TiBlloo < Bi» i = 1,2, and taking into account (3.3) we have for
tela,blandi=1,2,

b
B~ [TB1(0) = B~ 1 / ki(t,5)gi(S)f (B, B) ds
> Bi— Ay fi(Br B2) > cBi = cll Bi — TiBlloo-

As a consequence, we have T8 < 8, and the claim is proven.

Claim 2. T is non-decreasing on the set {x € K : x < }.

Let u = (u1,u;),v = (v1,v2) € K be such that 0 < u;(¢) < v;(t) < B; for all ¢ € [a,b] and
i =1,2. Since f is non-decreasing in [0, 8] x [0, 8,] we have for all t € [a,b] and i = 1,2,

b
(Tw)(t) - [Tiu] () = 1 / ki, )gi(s)[fi(v(s)) — fi(u(s)) ] ds = 0.

Moreover, for all ¢ € [a;,b;], r € [0,1] and i = 1,2,
b
[(Tv]() - [Tiul(t) = A; / ki(t, $)gi(s)[fi (v(s)) —fi(u(s))] ds
b
>, f ()G [H(VS)) — filul)] ds

b
> ok / ki(r,$)gi(s)[fi(v(s)) — fi(u(s)) ] ds
= c([T](r) = [T;u)(r)),

therefore mine(q, 5, ([Tiv1(t) — [Tid](£)) > cl| Tiv — Tittlloos i = 1,2, so Tu < Tv, and since
P C{xeK:x=<pB}, Tis also non-decreasing on P.

Claim 3. Kr C V and ix(T,V) = 0.

Firstly, note that since R < p then we have Kr C K, C V.

Now let e(t) =1 for t € [a, b]. Then (e, e) € K and we are going to prove that

(11, u2) # T'(uy, up) + (e, e)  for (uy,up) € 3V and u > 0.

If not, there exist (u1,u3) € 3V and u > 0 such that (uy, us) = T'(uy, uy) + (e, e).
Without loss of generality, we can assume that for all ¢ € [a;, b;] we have

p <u(t) < plc, r[nin w(t)=p and 0 =<u(t) <plc

telay,bi]

Then, for ¢t € [a1, b1], we obtain
b
w(t) = 4 / ky (¢, 5)g1 (8)fi (11(5), ua(s)) dis + pue(t)
b
> M / ky(t,$)g1(s)fi (1(5), ua(s)) ds + o = MMpyrs + 11> p + ju.
ap

Thus, we obtain p = minse(,, 4] 4(t) > p + 1 > p, a contradiction.
Therefore by Proposition 2.2 we have ix (7, V) = 0 and the proof is finished. d

Page 7 of 10
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Remark 3.2 The following condition, similar to the one given in [7], implies (H) and it

is easier to check.

(H7)* Foreveryi=1,2, limuﬁwofi(”;—;'m

= +00, uniformly w.r.t. #; € [0,00), j # i.

Remark 3.3 In order to deal with negative kernels k;(z,s) < 0 we can require conditions
(H,), (H3), and (Hs) on the absolute value of the kernel such that |k;(¢,s)| > 0 and condi-
tions (Hy), (He), and (H7) on sgn(k;) - f;.

As an illustrative example, we apply our results to the system of ODEs

ul (t) + Mfi (m(8), u2(8)) =0, £ €(0,1),

(3.4)
M/z/(t) + )szz (ul(t)’ MZ(t)) = 01 te (O’ 1))
with the BCs
ui(0)=0,  w(1)+u;(1)=0,
(3.5)
uy(0) = 0, uy(1) = Eus(n), n,& €(0,1).
To the system (3.4)-(3.5) we associate the system of integral equations
1
(®) = [ Kt (5209 ds
0 1 (3.6)
120) = [ Kalt 6 (5) s,
0
where the Green’s functions are given by
2—-t s<t,
ki(t,s) = (3.7)
2-8, s>t
and
¢
1 1_¢ - ) S ’ t -9 S t}
k()= — (15— | TET=h 5= Ji=s s (3.8)
1-¢§ 0, s> 0, s>t

The Green’s function k; was studied in [28] were it was shown that we may take (with our
notation)

Q=25 v

The choice of [a1, 1] = [0,1] gives

1
a= X Y15 =L
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The kernel k; was extensively studied in [28, 29] and is more complicated to be dealt
with, due to the presence of the nonlocal term in the BCs. In this case we may take

1-s :
= ifn<s<l, 1-¢&n?
®y(s) = kr(0,8) = { ¢ e
2(5) 2( S) 1—s—£(n—s) lf() S s< ", y2 2(1 _ é__)

1t 7

The choice, as in [29], of [ay, b2] = [0, by], where

1-£ .
b2= 2(1—72)’ 1f1+$)’]§2n,
(2+), ifl+&n>2n,
leads to
_1-gn-(1-)b B, if1+&n <20,

’ Vo = 2,62 2
1- 1-26n~"+£7n :
&n T if1+&n>2n.

We now fix, as in [28], n = 1/2, & = 1/4. This gives b, = 4/7 and

- o = 25 19
yz_sy 2—49¢ )/2,*—56-
Furthermore take
filug, uy) = (2 + sin(uz))uf, foluy, up) = (2 + sin(ul))ué, (3.9)

In the case of the nonlinearities (3.9), we can choose B; = B, = /2. We observe that con-
dition (H7)* holds, we note that ¢ = min{c, ¢, } = 1/2 and that

T .
sup ————— =+00, foreveryi.
r1€(0,7/2),r0€(0,7/2) 2fi(r, Vz))’i*

As a consequence, by means of Theorem 3.1, we obtain a non-zero solution of the system
(3.4)-(3.5) for every A1, A5 € (0,00).
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