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ABSTRACT

A passively illuminated scene presents a variety of photon pathways: direct and indirect, which convey varying
levels of information about the scene across different dimensions of the light field. In indirect passive imaging,
the object of interest is occluded from the imager which has no control over illumination. Using a second-order
(non-linear) image formation model we demonstrate (experimentally) the feasibility of passive indirect diffuse
imaging.
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1. INTRODUCTION

Traditional passive imaging typically relies on direct (line-of-sight) photons emitted/reflected by an object for
the image formation process. In a typical scene, light from an illumination source is reflected from object(s) of
interest to the imager, which measures the direct (single-bounce) photons. In this work, we consider the problem
of image formation where the scene/object of interest is occluded or outside the field-of-view (e.g. around the
corner) of the imager. In such cases, the photons incident on the imaging aperture follow an an indirect (non-
line-of-sight) path from the object, via intermediate reflecting/scattering surfaces, to the imaging aperture.1,2

More specifically, here we consider scattering surfaces, such as white walls which are are optically rough, with a
predominantly diffuse bi-directional reflectance function (BRDF). Our goal is to infer an unseen two-dimensional
(2D) reflective pattern from the indirect photons gathered through one or more diffuse reflections. Using a
second-order (non-linear) image formation model and maximum likelihood image reconstruction algorithm we
demonstrate the feasibility of the indirect passive imaging with experimental results.

Figure 1. Schematic (left), and first-order/second-order photon pathways (right) of the representative hallway scene.
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2. IMAGE FORMATION MODEL AND IMAGE RECONSTRUCTION

As shown in Fig. 1 (left), we consider a representative U-shape hallway scene, illuminated by a light small area
white LED source, as an illustrative indirect imaging problem. In this case, the hallway walls are painted with
scattering white pigment paint, which can be modeled by a micro-facet BRDF model.3 For the image formation
model, as shown in Fig. 1 (right), we consider the path of light rays, which begins at the light source and ends
at the imaging aperture. Here we define the order of a light ray as the number of reflections, from the 2D
reflective wall pattern, it undergoes before reaching the imaging aperture. For example, the first-order (Red) ray
is reflected once and the second-order ray (Green dashed) is reflected twice off the 2D wall pattern, see Fig. 1
(right). We express the total detector plane measurement as a linear superposition of all the different orders of
light rays yielding the following measurement ~g on the detector array:
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where gi denotes the ith detector pixel measurement, θj denotes the reflectivity of the jth 2D wall pattern pixel,

np is the total number of pixels on the 2D wall pattern, m
(k)
i is the coefficient corresponding to the kth-order

light path. Thus, the coefficient m
(0)
i represents all the photons measured at the ith detector pixel that do not

interact with the wall pattern. Similarly, the coefficient m
(1)
i,j represents all the first order photon reflections

from jth 2D wall pattern pixel measured at the ith detector pixel. For diffuse wall reflections, it is reasonable
to approximate the aforementioned measurement model with up to second-order reflections to a good accuracy.
This yields a second-order image measurement model:
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Thus for any image detector pixel, we can use the parameters m, as defined in Eq. 2, to represent the physical
forward-model. We we can express the m parameters collectively as a vector: ~m = [m0,m1,m2, ...,m11,m12, ...].

The image detector measurement vector can be defined as: ~g(~θ) = [g1(~θ), g2(~θ), · · · , gN (~θ)], where ~θ = [θ1, θ2, · · · , θnp
]

represents the unknown pixelated 2D wall pattern reflectance. Our forward-model estimation utilizes the maxi-
mum likelihood (ML) principle.4 We approximate the shot-noise limited measurement process with a Gaussian
noise model yielding a maximum likelihood physical model estimation:

argmin
~m
{
∥∥∥ ~fm − ~f(~m)

∥∥∥2 + λ ‖~m‖2} s.t. ∀i mi ≥ 0 (3)

Repeating the estimation process for every camera pixel provides the complete physical model of the imaging
system: M = (~m1, ~m2, ...). For a given camera pixel we use a set of experimentally derived measurements of
known 2D wall patterns to form an estimate of the forward-model parameters.

Our image reconstruction algorithm is based on the maximum likelihood principle to obtain an estimate of
the 2D wall pattern subject to the binary constraint (dark/bright pixels):

argmin
~θ

∥∥∥~fmeas − ~f(M, ~θ))
∥∥∥2 s.t. ∀i θi ∈ 0, 1 (4)

We employ an experimentally derived forward-model (M) to compute the likelihood function. Subject to the
binary constraint we compute the likelihood function for all possible 2D binary wall patterns and choose the one
with the maximum likelihood.
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Figure 2. Example image measurement in hallway scene (left), and representative (binary) image reconstructions (right)
results with varying levels of (pixel) errors obtained from experimental data for 3x3 2D wall patterns.

3. EXPERIMENTAL RESULTS

In our experimental study, we consider 3x3 or 4x4 pixellated 2D wall patterns for the image reconstruction
problem. An E-Ink display is placed on one of the walls (shown as “painting” in Fig. 1), to serve a programmable
2D reflective pattern that can display a desired grayscale pixellated pattern. A high-dynamic range low noise
sCMOS camera is used for image data acquisition.

For 3x3 reconstruction, we employ set of 250 grayscale 2D test patterns, displayed on the E-ink display, to
estimate the second-order image formation model parameters. For the 3x3 wall patterns the number of relevant
coefficients in our second-order image formation model for each detector pixel is 55, including one 0th order
coefficient, nine 1st order coefficients, and forty-five 2nd order coefficients. It is worth noting that while the
second-order image formation coefficient estimates are about two orders of magnitude smaller than the first-
order coefficients, the second-order coefficient are crucial to the success of image reconstruction process. Another
disjoint set of 150 2D test patterns are used for the actual imaging performance analysis. Fig. 2 shows an
example image measurement and three representative binary 2D wall patterns estimated from the experimental
data. For binary 3x3 2D wall patterns, we record an average of 0.4 pixel errors out of 9 pixels for the tested
binary patterns.

Note that for 4x4 reconstruction, there are 153 model parameters correspondingly, including one 0th order
coefficient, sixteen 1st order coefficients and one hundred thirty-six 2nd order coefficients. To deal with the
difficulty introduced by the increased number of parameters, we increased the number of total measurement to
2000 and have used 1600 of them for model estimation, the rest of these measurements were used for testing.
Fig. 3 shows a representative example of experimentally estimated forward-model parameters for 4x4 2D wall
patterns. A five-fold cross validation is performed to verify effectiveness of this method. Fig. 3 shows some
examples of reconstructed 4x4 patterns. We observe on average 1.5 pixel errors (out of 16 pixels) for the
tested binary patterns. Note the the reconstruction fidelity (i.e. pixel error rate) does indeed increase with

Figure 3. Example forward-model (experimentally derived) parameters for 4x4 2D wall patterns.
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the complexity of the 2D wall patterns, e.g. in terms of increased spatial resolution from 3x3 to 4x4. This
is expected as the distance in the measurement space (i.e. image measurement) between any two distinct
wall patterns decreases (on average) with increasing spatial resolution while the measurement noise uncertainty
remains relatively unchanged. Furthermore, some 2D wall patterns are more challenging to reconstruct versus
other wall patterns due to the geometry of the hallway scene leading to non-uniform spatial resolution. Thus
given the geometry of the hallway scene, the position of the illumination source (and its size and shape), the
position of the painting, and the surface reflectivity (diffuse) of the walls there exists some inherent imaging
resolution for given the source illumination strength and image measurement exposure time.

Figure 4. Example 4x4 original and reconstruction results obtained using experimental data.
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4. CONCLUSIONS

In this work, we propose a second-order (non-linear) indirect passive image formation model for 2D image
reconstruction from diffuse surface reflections. Using a ML reconstruction algorithm in conjunction wit our
second-order (non-linear) image formation model, we experimentally demonstrate 2D image reconstructions of
3x3 and 4x4 binary 2D refelective patterns on a wall around a corner.
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