287 research outputs found

    Proprioceptive Invariant Robot State Estimation

    Full text link
    This paper reports on developing a real-time invariant proprioceptive robot state estimation framework called DRIFT. A didactic introduction to invariant Kalman filtering is provided to make this cutting-edge symmetry-preserving approach accessible to a broader range of robotics applications. Furthermore, this work dives into the development of a proprioceptive state estimation framework for dead reckoning that only consumes data from an onboard inertial measurement unit and kinematics of the robot, with two optional modules, a contact estimator and a gyro filter for low-cost robots, enabling a significant capability on a variety of robotics platforms to track the robot's state over long trajectories in the absence of perceptual data. Extensive real-world experiments using a legged robot, an indoor wheeled robot, a field robot, and a full-size vehicle, as well as simulation results with a marine robot, are provided to understand the limits of DRIFT

    Planning Hybrid Driving-Stepping Locomotion for Ground Robots in Challenging Environments

    Get PDF
    Ground robots capable of navigating a wide range of terrains are needed in several domains such as disaster response or planetary exploration. Hybrid driving-stepping locomotion is promising since it combines the complementary strengths of the two locomotion modes. However, suitable platforms require complex kinematic capabilities which need to be considered in corresponding locomotion planning methods. High terrain complexities induce further challenges for the planning problem. We present a search-based hybrid driving-stepping locomotion planning approach for robots which possess a quadrupedal base with legs ending in steerable wheels allowing for omnidirectional driving and stepping. Driving is preferred on sufficiently flat terrain while stepping is considered in the vicinity of obstacles. Steps are handled in a hierarchical manner: while only the connection between suitable footholds is considered during planning, those steps in the resulting path are expanded to detailed motion sequences considering the robot stability. To enable precise locomotion in challenging terrain, the planner takes the individual robot footprint into account. The method is evaluated in simulation and in real-world applications with the robots Momaro and Centauro. The results indicate that the planner provides bounded sub-optimal paths in feasible time. However, the required fine resolution and high-dimensional robot representation result in too large state spaces for more complex scenarios exceeding computation time and memory constraints. To enable the planner to be applicable in those scenarios, the method is extended to incorporate three levels of representation. In the vicinity of the robot, the detailed representation is used to obtain reliable paths for the near future. With increasing distance from the robot, the resolution gets coarser and the degrees of freedom of the robot representation decrease. To compensate this loss of information, those representations are enriched with additional semantics increasing the scene understanding. We further present how the most abstract representation can be used to generate an informed heuristic. Evaluation shows that planning is accelerated by multiple orders of magnitude with comparable result quality. However, manually designing the additional representations and tuning the corresponding cost functions requires a high effort. Therefore, we present a method to support the generation of an abstract representation through a convolutional neural network (CNN). While a low-dimensional, coarse robot representation and corresponding action set can be easily defined, a CNN is trained on artificially generated data to represent the abstract cost function. Subsequently, the abstract representation can be used to generate a similar informed heuristic, as described above. The CNN evaluation on multiple data sets indicates that the learned cost function generalizes well to realworld scenes and that the abstraction quality outperforms the manually tuned approach. Applied to hybrid driving-stepping locomotion planning, the heuristic achieves similar performance while design and tuning efforts are minimized. Since a learning-based method turned out to be beneficial to support the search-based planner, we finally investigate if the whole planning problem can be solved by a learning-based approach. Value Iteration Networks (VINs) are known to show good generalizability and goal-directed behavior, while being limited to small state spaces. Inspired by the above-described results, we extend VINs to incorporate multiple levels of abstraction to represent larger planning problems with suitable state space sizes. Experiments in 2D grid worlds show that this extension enables VINs to solve significantly larger planning tasks. We further apply the method to omnidirectional driving of the Centauro robot in cluttered environments which indicates limitations but also emphasizes the future potential of learning-based planning methods.Planung von Hybrider Fahr-Lauf-Lokomotion für Bodenroboter in Anspruchsvollen Umgebungen Bodenroboter, welche eine Vielzahl von Untergründen überwinden können, werden in vielen Anwendungsgebieten benötigt. Beispielszenarien sind die Katastrophenhilfe oder Erkundungsmissionen auf fremden Planeten. In diesem Kontext ist hybride Fahr-/Lauf-Fortbewegung vielversprechend, da sie die sich ergänzenden Stärken der beiden Fortbewegungsarten miteinander vereint. Um dies zu realisieren benötigen entsprechende Roboter allerdings komplexe kinematische Fähigkeiten, welche auch in adäquaten Ansätzen für die Planung dieser Fortbewegung berücksichtigt werden müssen. Anspruchsvolle Umgebungen mit komplexen Untergründen erhöhen dabei zusätzlich die Anforderungen an die Bewegungsplanung. In dieser Arbeit wird ein suchbasierter Ansatz für kombinierte Fahr-/Lauf-Fortbewegungsplanung vorgestellt. Die adressierten Zielplattformen sind vierbeinige Roboter, deren Beine in lenkbaren Rädern enden, so dass sie omnidirektional fahren und laufen können. Auf ausreichend ebenem Untergrund wird generell Fahren bevorzugt, während der Planer Laufmanöver in der Nähe von Hindernissen in Erwägung zieht. Schritte werden dabei in einer hierarchischen Art undWeise realisiert: Während des Planens werden nur Verbindungen zwischen geeigneten Auftrittsflächen gesucht. Nur solche Schritte, die im Ergebnispfad enthalten sind, werden anschließend zu detaillierten Bewegungsabläufen verfeinert, welche die Balance des Roboters sicherstellen. Um präzise Fortbewegung in anspruchsvollen Umgebungen zu ermöglichen, betrachtet der Planer die spezifischen Aufstandsflächen der vier Füße. Der Ansatz wurde sowohl in simulierten als auch in realen Tests mit den Robotern Momaro und Centauro evaluiert, wobei der Planer in der Lage war, Lösungspfade von ausreichender Qualität in zulässiger Zeit zu generieren. Allerdings ergeben die benötigte feine Planungsauflösung und die hochdimensionale Roboterrepräsentation große Zustandsräumen. Diese würden für komplexere oder größere Planungsprobleme die zulässige Rechenzeit und den verfügbaren Speicher überschreiten. Damit der Planer auch eben diese komplexeren oder größeren Planungsprobleme handhaben kann, wird eine Erweiterung des Ansatzes beschrieben, welche mehrere Repräsentationslevel mit einbezieht. In unmittelbarer Umgebung des Roboters wird die zuvor beschriebene detaillierte Repräsentation genutzt, um hochwertige Pfade für die nahe Zukunft zu erzeugen. Mit zunehmendem Abstand vom Roboter wird die Auflösung gröber und die Anzahl der Freiheitsgrade in der Roboterrepräsentation sinkt. Um den mit dieser Vergröberung einhergehenden Informationsverlust zu kompensieren, werden diese Repräsentationen mit zusätzlicher Semantik ausgestattet, welche das Szenenverständnis erhöht. Darüber hinaus wird beschrieben, wie die Repräsentation mit dem höchsten Abstraktionsgrad zur Berechnung einer effektiven Heuristik genutzt werden kann. Die Evaluation in Simulationsumgebungen zeigt, dass der Planungsprozess um mehrere Größenordnungen beschleunigt werden kann, während die Ergebnisqualität vergleichbar bleibt. Allerdings sind das manuelle Gestalten der zusätzlichen Repräsentationen und das dazugehörige Parametrisieren der Kostenfunktionen sehr arbeitsintensiv. Um diesen Aufwand zu reduzieren, wird daher eine Methode beschrieben, welche die Gestaltung einer abstrakten Repräsentation durch ein Convolutional Neural Network (CNN) unterstützt. Während eine grobe, niedrigdimensionale Roboterrepräsentation und ein dazugehöriges Aktionsset einfach definiert werden können, wird ein CNN auf künstlich erzeugten Daten trainiert, um die abstrakte Kostenfunktion zu lernen. Anschließend kann die so erzeugte abstrakte Repräsentation genutzt werden, um die bereits zuvor erwähnte effektive Heuristik zu berechnen. In der Evaluation des CNNs auf verschiedenen Datensätzen zeigt sich, dass die gelernte Kostenfunktion auch mit Daten aus realen Umgebungen funktioniert und dass die generelle Ergebnisqualität oberhalb der Ergebnisse mit manuell erzeugten Repräsentationen liegt. Die Anwendnung der Methode zur Planung hybrider Fahr-/Lauf-Fortbewegung zeigt, dass die so erzeugte Heuristik gleichwertige Ergebnisse wie die Heuristik auf Basis manuell erzeugter Repräsentation liefert, während der Aufwand zur Gestaltung und Parametrisierung deutlich verringert wurde. Da sich gezeigt hat, dass eine lernbasierte Methode den klassischen suchbasierten Ansatz effektiv unterstützen kann, wird in dieser Arbeit abschließend untersucht, ob das gesamte Planungsproblem durch eine lernbasierte Methode gelöst werden kann. Value Iteration Networks (VINs) sind in diesem Zusammenhang ein vielversprechender Ansatz, da sie bekanntlich ein gutes zielorientiertes Planungsverhalten lernen und das Gelernte auf unbekannte Situationen verallgemeinern können. Allerdings ist ihre bisherige Anwendung auf kleine Zustandsräume begrenzt. Durch die zuvor beschriebenen Ergebnisse motiviert, wird eine Erweiterung von VINs beschrieben, so dass diese auf verschiedenen Abstraktionsleveln planen, um größere Planungsprobleme in Zustandsräumen entsprechender Größe darzustellen. Experimente in 2D-Rasterumgebungen zeigen, dass die beschriebene Methode VINs in die Lage versetzt, deutlich größere Planungsprobleme zu lösen. Darüber hinaus wird die beschriebene Methode benutzt, um omnidirektionale Fahrmanöver für den Centauro-Roboter in anspruchsvollen Umgebungen zu planen. Gleichzeitig werden hier aber auch die momentanen, hardware-bedingten Grenzen rein lernbasierter Ansätze sowie ihr zukünftiges Potential aufgezeigt

    Multi-expert learning of adaptive legged locomotion

    Get PDF
    Achieving versatile robot locomotion requires motor skills which can adapt to previously unseen situations. We propose a Multi-Expert Learning Architecture (MELA) that learns to generate adaptive skills from a group of representative expert skills. During training, MELA is first initialised by a distinct set of pre-trained experts, each in a separate deep neural network (DNN). Then by learning the combination of these DNNs using a Gating Neural Network (GNN), MELA can acquire more specialised experts and transitional skills across various locomotion modes. During runtime, MELA constantly blends multiple DNNs and dynamically synthesises a new DNN to produce adaptive behaviours in response to changing situations. This approach leverages the advantages of trained expert skills and the fast online synthesis of adaptive policies to generate responsive motor skills during the changing tasks. Using a unified MELA framework, we demonstrated successful multi-skill locomotion on a real quadruped robot that performed coherent trotting, steering, and fall recovery autonomously, and showed the merit of multi-expert learning generating behaviours which can adapt to unseen scenarios

    Learning-based methods for planning and control of humanoid robots

    Get PDF
    Nowadays, humans and robots are more and more likely to coexist as time goes by. The anthropomorphic nature of humanoid robots facilitates physical human-robot interaction, and makes social human-robot interaction more natural. Moreover, it makes humanoids ideal candidates for many applications related to tasks and environments designed for humans. No matter the application, an ubiquitous requirement for the humanoid is to possess proper locomotion skills. Despite long-lasting research, humanoid locomotion is still far from being a trivial task. A common approach to address humanoid locomotion consists in decomposing its complexity by means of a model-based hierarchical control architecture. To cope with computational constraints, simplified models for the humanoid are employed in some of the architectural layers. At the same time, the redundancy of the humanoid with respect to the locomotion task as well as the closeness of such a task to human locomotion suggest a data-driven approach to learn it directly from experience. This thesis investigates the application of learning-based techniques to planning and control of humanoid locomotion. In particular, both deep reinforcement learning and deep supervised learning are considered to address humanoid locomotion tasks in a crescendo of complexity. First, we employ deep reinforcement learning to study the spontaneous emergence of balancing and push recovery strategies for the humanoid, which represent essential prerequisites for more complex locomotion tasks. Then, by making use of motion capture data collected from human subjects, we employ deep supervised learning to shape the robot walking trajectories towards an improved human-likeness. The proposed approaches are validated on real and simulated humanoid robots. Specifically, on two versions of the iCub humanoid: iCub v2.7 and iCub v3

    Sample-Efficient Reinforcement Learning of Robot Control Policies in the Real World

    Get PDF
    abstract: The goal of reinforcement learning is to enable systems to autonomously solve tasks in the real world, even in the absence of prior data. To succeed in such situations, reinforcement learning algorithms collect new experience through interactions with the environment to further the learning process. The behaviour is optimized by maximizing a reward function, which assigns high numerical values to desired behaviours. Especially in robotics, such interactions with the environment are expensive in terms of the required execution time, human involvement, and mechanical degradation of the system itself. Therefore, this thesis aims to introduce sample-efficient reinforcement learning methods which are applicable to real-world settings and control tasks such as bimanual manipulation and locomotion. Sample efficiency is achieved through directed exploration, either by using dimensionality reduction or trajectory optimization methods. Finally, it is demonstrated how data-efficient reinforcement learning methods can be used to optimize the behaviour and morphology of robots at the same time.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Safe Robot Planning and Control Using Uncertainty-Aware Deep Learning

    Get PDF
    In order for robots to autonomously operate in novel environments over extended periods of time, they must learn and adapt to changes in the dynamics of their motion and the environment. Neural networks have been shown to be a versatile and powerful tool for learning dynamics and semantic information. However, there is reluctance to deploy these methods on safety-critical or high-risk applications, since neural networks tend to be black-box function approximators. Therefore, there is a need for investigation into how these machine learning methods can be safely leveraged for learning-based controls, planning, and traversability. The aim of this thesis is to explore methods for both establishing safety guarantees as well as accurately quantifying risks when using deep neural networks for robot planning, especially in high-risk environments. First, we consider uncertainty-aware Bayesian Neural Networks for adaptive control, and introduce a method for guaranteeing safety under certain assumptions. Second, we investigate deep quantile regression learning methods for learning time-and-state varying uncertainties, which we use to perform trajectory optimization with Model Predictive Control. Third, we introduce a complete framework for risk-aware traversability and planning, which we use to enable safe exploration of extreme environments. Fourth, we again leverage deep quantile regression and establish a method for accurately learning the distribution of traversability risks in these environments, which can be used to create safety constraints for planning and control.Ph.D

    Combining Sensors and Multibody Models for Applications in Vehicles, Machines, Robots and Humans

    Get PDF
    The combination of physical sensors and computational models to provide additional information about system states, inputs and/or parameters, in what is known as virtual sensing, is becoming increasingly popular in many sectors, such as the automotive, aeronautics, aerospatial, railway, machinery, robotics and human biomechanics sectors. While, in many cases, control-oriented models, which are generally simple, are the best choice, multibody models, which can be much more detailed, may be better suited to some applications, such as during the design stage of a new product

    Bayesian Learning-Based Adaptive Control for Safety Critical Systems

    Full text link
    Deep learning has enjoyed much recent success, and applying state-of-the-art model learning methods to controls is an exciting prospect. However, there is a strong reluctance to use these methods on safety-critical systems, which have constraints on safety, stability, and real-time performance. We propose a framework which satisfies these constraints while allowing the use of deep neural networks for learning model uncertainties. Central to our method is the use of Bayesian model learning, which provides an avenue for maintaining appropriate degrees of caution in the face of the unknown. In the proposed approach, we develop an adaptive control framework leveraging the theory of stochastic CLFs (Control Lyapunov Functions) and stochastic CBFs (Control Barrier Functions) along with tractable Bayesian model learning via Gaussian Processes or Bayesian neural networks. Under reasonable assumptions, we guarantee stability and safety while adapting to unknown dynamics with probability 1. We demonstrate this architecture for high-speed terrestrial mobility targeting potential applications in safety-critical high-speed Mars rover missions.Comment: Corrected an error in section II, where previously the problem was introduced in a non-stochastic setting and wrongly assumed the solution to an ODE with Gaussian distributed parametric uncertainty was equivalent to an SDE with a learned diffusion term. See Lew, T et al. "On the Problem of Reformulating Systems with Uncertain Dynamics as a Stochastic Differential Equation

    Incorporating prior knowledge into deep neural network controllers of legged robots

    Get PDF
    corecore