
Sample-Efficient Reinforcement Learning of Robot Control Policies in the Real World

by

Kevin Sebastian Luck

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved October 2019 by the
Graduate Supervisory Committee:

Hani Ben Amor, Chair
Daniel Aukes

Georgios Fainekos
Jonathan Scholz

Yezhou Yang

ARIZONA STATE UNIVERSITY

December 2019

ABSTRACT

The goal of reinforcement learning is to enable systems to autonomously solve

tasks in the real world, even in the absence of prior data. To succeed in such situations,

reinforcement learning algorithms collect new experience through interactions with

the environment to further the learning process. The behaviour is optimized by maxi-

mizing a reward function, which assigns high numerical values to desired behaviours.

Especially in robotics, such interactions with the environment are expensive in terms

of the required execution time, human involvement, and mechanical degradation of the

system itself. Therefore, this thesis aims to introduce sample-efficient reinforcement

learning methods which are applicable to real-world settings and control tasks such

as bimanual manipulation and locomotion. Sample efficiency is achieved through

directed exploration, either by using dimensionality reduction or trajectory optimiza-

tion methods. Finally, it is demonstrated how data-efficient reinforcement learning

methods can be used to optimize the behaviour and morphology of robots at the same

time.

i

DEDICATION

This dissertation is dedicated to the memory of my dear friend Hong Linh Thai,

who was taken the chance to complete his own dissertation.

ii

ACKNOWLEDGMENTS

I am thankful for the support of quite a number of people who helped me during

the typical ups and downs of a PhD. First and foremost I would like to thank my

fiancée Tamara Jacqueline Blätte, who always believes in me and brings a smile to my

face every single day. Especially on these days when a robot would not do what it

was supposed to do.

I thank my advsior Prof. Heni Ben Amor for giving me the opportunity to collabo-

rate with him at the Interactive Robotics Lab, which brought me from the cold winter

in Finland to the desert climate of Phoenix. He gave me the academic freedom to follow

my ideas and evaluate them on real world tasks, both at ASU and in collaboration

with other research groups. I further thank my committee members Daniel Aukes,

Georgios Fainekos and Yezhou Yang for their support, comments and providing input

on my research.

I thank my collaborator and committee member Jonathan Scholz for his mentorship,

guidance and ideas when I visited DeepMind in London, UK. Fumin Wang and Mel

Vecerk made sure I always felt welcome in London and helped me to answer numerous

technical questions. The idea of using a cylinder suspended from a string for a real

world insertion task can be attributed to a conversation with Oleg Sushkov, probably

over lunch or during a coffee break on the rooftop overlooking King’s Cross. A special

thanks goes to Thomas Rothörl who not only introduced me to Scottish whiskey

during many a Friday night but with whom I also had many interesting, important

and insightful conversations during my time in London.

Many project ideas and their realizations can be attributed to me meeting a

sombrero-wearing PhD student one morning, 15 minutes before our class would start.

Michael Andrew Jansen introduced me to the fascinating world of insects and I was

lucky to meet such an enthusiastic person eager to work with me on projects in robotics.

iii

Subsequently, I did not only end up doing robotic experiments in the desert of Arizona

but also discovered my research interests in the adaptation of robot morphologies

using reinforcement learning.

I am thankful for the opportunity Roberto Calandra gave me to work with him and

the team at Facebook AI in Menlo Park, and believing in my ideas for the adaptation

of design and behaviour of robots. I thank Akshara Rai, Sarah Bechtle and Behnoosh

Parsa not only for their companionship during my time at Facebook AI, but also for

the orange juice on my desk in the morning. And the coffee breaks, of course. Special

thanks goes here to Ge Yang, who helped me to run my experiments when we needed

additional data for a conference deadline.

I am thankful for the members of my family - and my new family in-law - who

supported me over the years and during my research endeavors, which lead me

repeatedly to new countries and overseas.

I would also like to thank every member of the Interactive Robotics Lab who

supported me in my research and my academic advisor Arzuhan Kavak who answered

uncountable questions of mine. Other people who I owe thanks to are (in no particular

order): Laura Koponen, Teresa Weßels, Claudius Kleemann, Rebecca Alef, Johannes

Alef, Meike Trillmann, Annemarie Arnold, Thomas Hesse, Georg Lutz, Veronika Lutz,

Antony Hatton, Mehrdad Zaker, Paulina Davison, Joni Pajarinen, Simon Stepputtis,

Joe Campbell, Erik Berger, Gerhard Neumann, Jan Peters, and Ville Kyrki.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

1.1 Problem Statement . 4

1.2 Contributions . 8

1.2.1 Methodical Contributions . 9

1.2.2 Contributions towards Real-World Applications 10

1.2.3 Algorithmic Properties . 11

1.3 Thesis Outline . 12

2 SPARSE LATENT SPACE POLICY SEARCH . 15

2.1 Introduction . 16

2.2 Problem Statement . 18

2.3 Group Factor Policy Search . 19

2.3.1 Variational Inference for Policy Search . 20

2.3.2 Formulation of Group Factor Policy Search 22

2.3.3 Derivation of Update Equations . 26

2.3.4 Algorithm . 29

2.4 Evaluation . 29

2.4.1 Setup of the Evaluation . 31

2.4.2 Results . 32

2.4.3 Importance of the Choice of Groups . 33

2.5 Experiment: Lifting a Leg . 35

2.6 Experiment: Learning Locomotion on Granular Media 36

v

CHAPTER Page

2.7 Conclusion . 37

3 EXTRACTING BIMANUAL SYNERGIES WITH SAMPLE-EFFICIENT

REINFORCEMENT LEARNING. 39

3.1 Introduction . 40

3.2 Related Work . 42

3.3 Extracting Synergies with Policy Search . 44

3.3.1 Group Factor Analysis for Synergies . 44

3.3.2 Group Factor Policy Search . 46

3.3.3 Transfer Learning with GrouPS . 49

3.4 Experiments . 50

3.4.1 Experimental Setup . 51

3.4.2 Groups . 52

3.4.3 Used Basis Functions . 52

3.4.4 Reward Function. 53

3.4.5 Objects . 54

3.4.6 Time and Sample Size . 55

3.4.7 Reproducibility . 55

3.4.8 Experiments . 55

3.5 Results . 57

3.6 Discussion . 57

3.7 Conclusions . 62

4 IMPROVED EXPLORATION THROUGH LATENT TRAJECTORY

OPTIMIZATION IN DEEP DETERMINISTIC POLICY GRADIENT . . 63

4.1 Introduction . 64

vi

CHAPTER Page

4.2 Related Work . 66

4.3 Method . 68

4.3.1 Image Embedding . 69

4.3.2 Latent Dynamics . 70

4.3.3 Deep Reinforcement Learning . 71

4.3.4 Optimized Exploration . 74

4.4 Experiments . 75

4.4.1 Evaluation in Simulation on the Cheetah Task 77

Comparison between Ornstein-Uhlenbeck and optimized exploration 77

Comparison between different planning horizons 79

Comparison between different objectives . 79

4.4.2 Insertion in the real world . 82

4.5 Discussion . 83

4.6 Conclusion . 85

5 DATA-EFFICIENT CO-ADAPTATION OF MORPHOLOGY AND BE-

HAVIOUR WITH DEEP REINFORCEMENT LEARNING 87

5.1 Introduction . 88

5.2 Related Work . 89

5.3 Problem Statement . 91

5.4 Optimization of Morphology and Behaviour . 92

5.4.1 Using the Q-Function for Design Optimization 93

5.4.2 Design Generalization and Specialization of Actor and Critic 94

5.4.3 Exploration and Exploitation of Designs 95

5.4.4 Fast Evolution through Actor-Critic Reinforcement Learning 96

vii

CHAPTER Page

5.5 Experimental Evaluation . 98

5.5.1 Experimental Setting . 98

5.5.2 Co-adaptation Performance . 102

5.5.3 Visualization of the Latent Design Space 109

5.5.4 Evolution of Walker . 110

5.6 Conclusion . 110

6 FUTURE WORK . 115

6.1 Bridging the Gap from Simulation to Reality for the Co-Adaptation

of Morphology and Behaviour . 115

6.1.1 Assumptions Required for Successful Transfer Learning be-

tween Environments . 115

6.1.2 Proposed Approach for Transfer Learning between two En-

vironments . 118

6.1.3 Proposed Experiment for Evaluating the use of Transfer

Learning for the Co-Adaptation of Morphology and Design . 118

6.2 Using latent Design-dependent Action Spaces . 120

7 CONCLUSION . 123

REFERENCES . 125

APPENDIX

A COAUTHOR APPROVAL FOR CHAPTER 2. 133

B COAUTHOR APPROVAL FOR CHAPTER 3. 135

viii

LIST OF TABLES

Table Page

3.1 The Groups for the Joints of the Baxter Robot Chosen for the Experi-

ments Presented in this Chapter. 60

3.2 Comparison of GrouPS with the Proposed Modification for Reusing

Synergies from Different Tasks . 60

4.1 The Average Success Rate of Insertion for Policies Trained by DDPG

with Standard Ornstein-Uhlenbeck Exploration or Trajectory Optimiza-

tion with Varying Planning Horizons. 80

ix

LIST OF FIGURES

Figure Page

1.1 The Basic Reinforcement Learning Framework. 2

1.2 The Sim-to-Reality gap and the Lab-to-Reality gap. 7

1.3 Dimensionality Reduction Methods are Able to Map High-dimensional

State or Action Spaces to a Low-dimensional Manifold. 8

1.4 The performance of the Deterministic Policy of a Sample-Efficient

Reinforcement Learning Algorithm. 10

1.5 Thesis Overview . 13

2.1 The Main Idea of Group Factor Policy Search. 17

2.2 Graphical Model in Plate Notation for Group Factor Policy Search. 27

2.3 Two Simulated Arms with Six Degrees-Of-Freedom and the Same Base

in their Initial Position. 30

2.4 Comparison between PePPEr, PoWER, Natural Actor-Critic and Three

Instances of the GrouPS Algorithm on the Presented Simulated Task. . 30

2.5 Comparison between the Original Chosen Four Groups and Three

Permutations of the Groups. 33

2.6 Comparison between the Original Grouping and Two Other Variants

with a Different Splitting Point. 34

2.7 Final Policy Found by the GrouPS Algorithm After 100 Iterations. 35

2.8 A Policy Trained by GrouPS in the Desert of Arizona. 37

2.9 The Evaluation of GrouPS on a Bio-Inspired Robot Manufactured from

a Paper-Laminate. 37

3.1 A Bimanual Robot Learns to Lift an Object while Simultaneously

Identifying Synergies Among the Control Variables. 41

x

Figure Page

3.2 In Each Iteration a Sample, i.e. Trajectory, is First Simulated and to

be Accepted by the Process (or a Human Operator) for Execution. 52

3.3 The Current Height of an Object is Approximated by Color Filtering. . 53

3.4 The Four Different Objects Lifted Next to each other with the ICRA

Duck as Size Reference. 54

3.5 The Final Sequence of Actions for Lifting a Cardboard Box Found by

GrouPS. 54

3.6 One Final Sequence of Actions for Lifting the Orange Ball Found by

GrouPS. 55

3.7 A Comparison Between the GrouPS and PoWER Algorithm on a Lifting

Task with the Orange Ball. 56

3.8 The Final Pose of Trajectories for Lifting an Object. 58

3.9 A Sequence of Transformation Matrices W Computed in each Iteration t. 59

3.10 Two Synergies and their Combinations Found During the Execution of

the GrouPS Algorithm for Learning to Lift the Orange Ball. 59

4.1 A Baxter Robot Learning a Visuo-Motor Policy for an Insertion Task

using Efficient Exploration in Latent Spaces. The Peg is Suspended

from a String. 65

4.2 The Experimental Setup in which a Baxter Robot has to Insert a Blue

Cylinder into a White Tube. 66

4.3 The Original DDPG Algorithm can be Reformulated such that a Value

Function is Used . 72

xi

Figure Page

4.4 The Proposed Exploration Strategy Unrolls the Trajectory in the Latent

Space and Uses the Value/Q-Value to Optimize the Actions of the

Trajectory. 73

4.5 Comparison between DDPG Using Exploration with Optimization and

Classical Exploration using an Ornstein-Uhlenbeck Process on the

Simulated Cheetah Task. 78

4.6 Comparison between DDPG Using Exploration with Optimization

(Orange) and Classical Exploration Using an Ornstein-Uhlenbeck Pro-

cess (Blue) on the Simulated Half-Cheetah Task while Using a Value

Function as Critic. 78

4.7 Exploration through Optimization Evaluated with Different Horizons

for the Planning Trajectory on the Simulated Half-Cheetah Task. 79

4.8 Comparison between Three Different Objective Functions for Optimized

Exploration on the Simulated Half-Cheetah Task. 80

4.9 Comparison between Exploration with an Ornstein-Uhlenbeck and

Exploration through Optimization on the Insertion Task in the Real

World. 81

5.1 It is Proposed to Use an Actor and Critic for Design Exploration Instead

of Creating Design Prototypes and Evaluating their Performance in

Simulation or the Real World. 90

5.2 The Four Simulated Robots used in our Experiments. 99

5.3 Comparison of the Proposed Approach and Using Trials to Evaluate

the Optimality of Candidate Designs. 103

xii

Figure Page

5.4 Comparison Between the Proposed Approach of Using the Actor and

Critic to Optimize the Design Parameters and Using Trials to Evaluate

the Optimality of Candidate Designs. 103

5.5 Evaluation on the Half-Cheetah Task of Two Different Global Opti-

mization Algorithms when Optimizing the Design via Rollouts. 104

5.6 Comparison between the Proposed Method and Population-based Ap-

proaches from [1] Using the Simulator to Evaluate Design Candidates. . 106

5.7 Evaluation of the use of Population and Individual Networks. 107

5.8 Evaluation of using Batches of Start States in the Objective Function

in Eq. 5.6. 107

5.9 First Two Principal Components of the Six Dimensional Design Space

of Half-Cheetah as Computed with PCA . 108

5.10 The Visualized Cost Landscape of the Design Space of Half Cheetah. . . 109

5.11 The Visualized Cost Landscape of the Design Space of Walker. 110

5.12 The Visualized Cost Landscape of the Design Space of Hopper. 111

5.13 Design Space of the Daisy Hexapod. 112

5.14 First Two Principal Components of each Design Space as Computed

with PCA.. 113

5.15 A Selection of Designs for Half-Cheetah, Generated from the Principal

Components. 113

5.16 Designs ξOpt Selected by the Proposed Method for the Half-Cheetah

Task. 114

6.1 Latent Action Space Extracted with a Neural Autoencoder Network. . 122

6.2 Latent Action Space Sampled in the High-Dimensional Action Space . . 122

xiii

CHAPTER 1

Introduction

”The nice thing about artificial intelligence is

that at least it’s better than artificial stupidity.”

Terry Pratchett & Stephen Baxter

The Long War

The general goal of reinforcement learning (RL) [2, 3], a sub-field of machine

learning, is to alleviate the requirement for a human to define control policies for

autonomous agents. Defining these policies often requires significant effort, time and

analysis. Instead, the idea in reinforcement learning is to allow an agent to select

the actions to be performed on its own and assigning rewards to the resulting state

transitions [4] (Fig. 1.1). Agents using reinforcement learning algorithms strive to

choose actions in virtual or real environments such that a reward function, which

assigns a numerical value to state transitions with higher values for desired outcomes,

is maximized over a sequence of steps [2, 3, 5]. This process enables autonomous

systems which require only an objective function to master a given task. The true

power of reinforcement learning is that the reward function does not have to be fully

known by the algorithm itself. Instead, the reward function is a black-box [6], which

can be queried by the algorithm for values but whose exact nature is not necessarily

known. This property allows for the use of a wide range of reward functions, which

can even be non-differentiable, non-smooth or whose values can even be generated by

querying a human operator for a performance extimate.

1

Figure 1.1: An agent interacts with the environment via actions and receives the state
the environment is in and a reward. The reward is assigning a numerical value to
state-action pairs, which is higher if the outcome is desired.

Developments in reinforcement learning have led to a series of breakthroughs in the

recent past, such as beating the world champion in the Japanese board game Go [7] or

the card game Poker [8, 9]; achievements comparable to the breakthroughs in Chess

with Deep Blue in 1997 [10]. Similar achievements in the multiplayer computer games

Starcraft [11, 12] and Dota 2 are on the horizon. All these results became possible

through the collection and processing of large amounts of training data prior or during

deployment. However, the implicit assumption made in many of these scenarios is

that the environment and its variables are static and use deterministic transitions and

dynamics. Reinforcement learning in the real world remains a challenging problem,

especially if environmental variables are unknown, difficult to model in simulation

or non-stationary. The collection of large training data sets is often impossible or

costly, especially in robotics, and only sensible if the morphology and dynamics of the

(robotic) agent and respective environmental variables remain constant. Thus, the use

of sample- and data-efficient reinforcement learning algorithms is required. Sample-

efficient reinforcement learning algorithms aim to minimize the number of samples,

i.e. the number of episodes or executions in the environment, and not necessarily the

2

computational effort. This is under the assumption, that acquiring experience (in the

real world) requires significantly more time and effort than processing this data.

Robotics is one of the engineering sciences which benefits considerably from research

advances made in the field of reinforcement learning. Using reinforcement learning to

learn motor skills enables robots to solve tasks in manipulation [13–17], locomotion [18–

20] and even flying[21, 22]. In the area of manipulation tasks, reinforcement learning

algorithms help to find motor skills for grasping or manipulating objects in the real

world for complex robots with multiple degrees-of-freedom. Creating such motor

skills by hand is often undesirable due to the complexity of possible motions, periodic

changes in the environment, noisy or unreliable sensors, or inaccuracies when recording

movements on robots. While manipulation tasks can be trained in simulation, such

data created by simulators becomes increasingly unreliable as the robot interacts

physically with the environment due to the complex nature of forces generated through

contacts. This problem is also referred to as the simulation-to-reality gap [15]. Slow

progress is made to close the simulation-to-reality gap for certain tasks and robots [15].

I will present in this thesis a number of reinforcement learning algorithms suitable

for learning motor skills in the real world in the (complete) absence of simulators

and utilizing latent spaces. This approach circumvents the problem of the simulation-

to-reality gap but requires strategies to decrease the amount of time and samples

required for learning motor skills in the real world. Thus, all algorithms presented

in this work make either use of dimensionality reduction methods (Fig. 1.3) or

repurpose value functions as objective functions for a faster training process. By

utilizing low-dimensional latent spaces [23–27] during the training process, the number

of samples and data required can be reduced by exploiting the latent structures of

a given task, enabling a fast training process. This approach is based on the idea,

3

that the action and state space of many tasks can be represented by low-dimensional

manifolds, especially in manipulation and locomotion tasks [28–32].

1.1 Problem Statement

The work presented in this thesis aims to develop and provide algorithms suitable

for learning complex control strategies for physical systems in the real world. Two

main application areas are considered: Manipulation and locomotion. In the presented

manipulation tasks, a uni- or bi-manual robot has to handle objects with its end-

effectors to achieve a defined goal such as lifting an object or inserting a cylinder into

a tube. The underlying hypothesis is that the learning algorithms are able to uncover

movement strategies quickly and can be adapted to new tasks when provided with

an objective/reward function. In contrast to classical control algorithms or learning

algorithms requiring large datasets, sample- and data-efficient reinforcement learning

algorithms aim at avoiding three common problems:

Curse of Dimensionality The curse of dimensionality [33] describes the phenomenon

that a search space with an increasing number of dimensions increases its vol-

ume exponentially and, thus, reinforcement learning and other optimization

algorithms require more data during the training process. In reinforcement

learning, the curse of dimensionality can affect two spaces: the state space and

the action space. The state space describes the current state the environment

and robot are in and can encode such information as images, joint accelerations

and positions. The action space describes the possible actions the reinforcement

learning algorithm can choose from and are usually joint positions, velocities

or accelerations. It holds for both spaces, that the more degrees-of-freedom a

robot has, the higher is the dimensionality of state and action space. In turn,

the amount of samples required by learning algorithms for finding successful

4

policies to solve the given task increases. However, for many robots and tasks,

low dimensional sub-spaces can be found which, for example, encode task-related

motor skills. Learning along these low dimensional manifolds can decrease and

counter the effect which the curse of dimensionality has on the learning process.

This makes the use or integration of dimensionality reduction methods into

reinforcement learning algorithms highly desirable.

System Identification Simulating robotic hardware requires usually a process called

system identification [34, 35], that is identifying and fine-tuning the (mathe-

matical) model of a robot based on its behaviour in the real world. System

identification helps to reduce the sim-to-reality-gap by identifying all proper-

ties which are relevant or influence the dynamics of the overall-system. The

process itself, however is lengthy and time-consuming and ideally done only

once. Yet, most hardware changes its dynamical properties over its life time

due to wear-and-tear. Additionally, manufacturing new robots or altering their

designs introduces small manufacturing errors making each robot unique in its

dynamical properties. This requires periodic re-calibrations of the simulation

models, which is not practical in reality.

Simulation- and Lab-to-Reality-Gap A large body of work assumes that simula-

tions are available and model the real world accurately enough. However, while

this assumption might hold for a certain subset of non/low-contact tasks, in

which the robot or its end-effector have minimal interaction with the environment,

the gap between simulation and the real world widens in cases of contact-rich

tasks or when handling deformable objects and granular media. This is mostly

due to the computational requirement to make simplifications at contact points

between rigid objects in simulation. Additionally, the accuracy of simulations

5

might have to be decreased for reasonable upper limits of computation times for

reinforcement learning experiments. In other words, if one simulates a task with

simplified models, the overall run-time of the simulation and learning process

might be much smaller. This is comes at the price of increasing inaccuracies be-

tween real-world and simulation (Fig. 1.2). This often leads to situations, where

movement strategies learned in simulation do not achieve the same performance

in the real world or do not succeed at meeting the objectives. Increasing the

simulation accuracy in order to close the sim-to-reality-gap, on the other hand,

will lead to the situation where simulation takes considerably more time than

training directly in the real world and becomes generally unpractical.

Another problem occurs when experiments are brought from the lab to the real

environment. Most experimental systems are designed and used under controlled

laboratory environments. This usually means that environmental variables such

as temperature, humidity and light intensity are being held constant over the

course of the experiment or when learning control policies (Fig. 1.2). However,

the reality outside of the laboratories is that the human has little to no control

over environmental variables. Thus, a changing environment requires periodically

adapting robot behaviour to the changing conditions. Human oversight and

intervention is simply not practical on a large scale and thus autonomous systems

are required which are able to adapt themselves automatically. Moreover, while

classical control algorithms can provide a limited adaptability with respect to

environmental variables known to influence robot performance in a number of

cases, it is generally a priori not clear which variable or combination thereof

should be considered and how these affect the optimal policy. For example, in

a series of experiments in which a robot was trained both in the lab and the

6

Figure 1.2: Two elementary gaps exist in robot learning: The simulation-to-reality and
the lab-to-reality gap. The simulation-to-reality gap describes the often encountered
issue that, due to simplifications in modeling, behavioural strategies learned in simula-
tion do not transfer successfully to the real world. On the other hand, the lab-to-reality
gap occurs when behaviour is learned in a controlled lab environment, with known
and controlled environmental variables, and then transferred to an environment in the
real world. The environmental variables outside of laboratories cannot be controlled
and it is therefore often unknown which variables could contribute to success or failure
of motor skills and have to be taken into account by the behavioural policy.

desert of Arizona, it became apparent that the humidity of sand is a major

environmental variable to consider when learning locomotion strategies.

Considered together, these problems provide critical motivation for algorithms with

the ability to adapt quickly to previously unencountered real-world scenarios. This

need becomes even more apparent when considering the task of optimizing locomotion

strategies: Assume a legged robot is tasked with the autonomous exploration of an

unknown environment. More likely than not, this robot will be powered by solar

energy if its mission is long-term. Thus, this mobile robot has a specific contingent

of (electric) energy per day. In order to be able to cover as much terrain as possible,

the robot needs to use locomotion strategies which are energy-efficient, in order

to fulfill its task. Operating in unknown environments brings the problem of not

knowing the composition of the ground. From experiments on granular media we

know that the optimal locomotion strategies and their efficiency vary greatly given

7

Figure 1.3: Dimensionality reduction methods are able to map high-dimensional state
or action spaces to a low-dimensional manifold.

the ground composition. Therefore, this mobile robot would ideally be be able to

adapt its locomotion strategy quickly when encountering new terrain, which requires

data-efficiency.

1.2 Contributions

This dissertation will investigate the following hypothesis:

Exploration along low-dimensional manifolds allows for

sample-efficient reinforcement learning of

motor skills in the real world.

Consequently, this dissertation will introduce two main frameworks for sample-

efficient reinforcement learning. The first two chapters will introduce sample-efficient

reinforcement learning algorithms with an improved exploration strategy using a

low-dimensional representation of the action space. The main idea is to integrate

a dimensionality reduction method, here Group Factor Analysis, directly into a

reinforcement learning framework based on variational inference. Following up on

this idea of using low-dimensional spaces in reinforcement learning, a sample-efficient

deep reinforcement learning algorithm using trajectory optimization for exploration is

introduced in Chapter 4. Finally, in Chapter 5, it is demonstrated how sample-efficient

8

reinforcement learning algorithms can solve challenging problems such as the joint

optimization of morphology and behaviour which required previously large amount of

data. I will now summarize the methodical contributions.

1.2.1 Methodical Contributions

• A model-free and sample-efficient reinforcement learning algorithm using varia-

tional inference to find a latent action space for sampling.

• An extension of the aforementioned algorithm using previously learned synergies

for a faster adaptation to changed tasks.

• A model-based algorithmic framework for deep reinforcement learning in a latent

image embedding using trajectory optimization algorithms for fast exploration.

• Extension of the standard reinforcement learning framework and development

of a new objective function for the joint adaptation of morphology and design of

a robot using sample-efficient reinforcement learning algorithms.

All algorithms and methods introduced throughout the dissertation are evaluated

on tasks in simulation and the real world. Manipulation and locomotion tasks were

developed and solved, which are challenging and hard to solve for reinforcement learning

algorithms as these would most benefit from such sample-efficient strategies. For

example, the sample-efficient reinforcement learning algorithm presented in Chapter 4

requires 100 episodes less than the baseline using random noise on an insertion task in

the real world (Fig. 1.4). Additionally, the thesis ends with a contribution towards the

open problem of the data-efficient co-adaptation of morphology and design to highlight

the impact of sample-efficient reinforcement learning algorithms. These contributions

towards applications of sample-efficient reinforcement learning can be summarized as

follows:

9

0 100 200 300 400 500
Episodes

1

0

1

2

3

4

5

6

7

R
ew

ar
d

Ornstein-Uhlenbeck
Trajectory Optimization

Figure 1.4: The figure shows that the sample-efficient method (red) proposed in chapter
4 achieves an average reward of two already after 150 episodes/sampled trajectories
while the reinforcement learning algorithm using random (Ornstein-Uhlenbeck) noise
for exploration requires 250 episodes. The plot shows the average reward over five
experiments on an insertion task in the real world with sparse rewards.

1.2.2 Contributions towards Real-World Applications

• A framework to quickly learn manipulation synergies in the real world in less

than one hour on dense reward tasks.

• A framework to solve a sparse reward task in which a robot arm has to insert a

cylinder into a tube using only images. No additional state information, such as

joint states, is used. Rewards are only provided when the cylinder is successfully

inserted into the tube, otherwise rewards are zero. This task is entirely learned

and executed in the real world without using simulations.

• A framework to evolve the design and behaviour of a robot in a data-efficient

way and to reduce the amount of physical prototypes required.

10

1.2.3 Algorithmic Properties

I show for the algorithms introduced in chapter 2 and 3 that due to the use of

mean-field Variational Bayes [36, 37], an approximate inference approach similar to

Expectation Maximization (EM), the formulated lower bound of the expected reward

is maximized under the assumption of a factorized distribution. Assuming a fixed

dataset, the approximate inference approach is guaranteed to converge due to the

convexity of the lower bound with respect to each of the factors [2, 38]. However, as

for all approximate inference approaches, no global convergence guarantees for the

original distribution are possible, with the exception of the approximate distribution

being the same as the original. This holds especially true for the presented tasks in

the real world for which the actual distributions of states and dynamics are generally

unknown. The same problem exists for approaches introduced in chapter 4 and 5

which are using deep neural networks, for which no convergence guarantees can be

given. However, all aproaches presented in this thesis are empirically evaluated in

simulation and the real world on complex tasks in manipulation, locomotion and

balancing.

11

1.3 Thesis Outline

This thesis presents sample-efficient reinforcement learning algorithms suitable for

deployment in the real world in absence of any prior data, including the dynamics

of agents or transition probabilities of the environment. Each chapter of the thesis

document (Fig. 1.5) is either a published manuscript, currently in press and to be

published, or under review. Therefore, each chapter will include its own introduction,

discussion of related work, methods, results and conclusion. Chapter 2 introduces

the mathematical foundation of Sparse Latent Space Policy Search, a method which

extracts a latent action space for improved sample-efficiency. Chapter 3 follows up

with a detailed investigation of the discovered latent action spaces on a bi-manual lifting

task with a robot in the real world. Building up on the idea to use latent spaces and

developing dedicated sampling methods for actions, Chapter 4 introduces an improved

version of Deep Deterministic Policy Search which uses trajectory optimization in

an image embedding to find successful actions. This is evaluated in a sparse reward

task in the real world, in which a robot arm has to insert a cylinder into a tube

relying only on camera images. Finally, Chapter 5 presents a method which enables

the adaptation of both robot behaviour and morphology in the real world through

the use of deep reinforcement learning algorithms. Together, these works present a

coherent line of research starting with the development of novel and sample-efficient

reinforcement learning algorithms, their evaluation in real-world scenarios and, finally,

the application of data-efficient reinforcement learning to the joint optimization of

behaviour and morphology, highlighting their potential for future research.

12

Figure 1.5: An overview of the different chapters and the presented tasks on which the
algorithms were evaluated on. The chapters start to the left side with probabilistic,
linear methods and end, to the right side, with deep reinforcement learning algorithms.

”Halt! - Noch eine Frage,” - rief ich -”bevor wir weitergehen: Tun ihre Menschen

denken?” - ”Nein!” - rief er sofort mit dem Ton absolutester Sicherheit und nicht

ohne den Ausdruck freudiger Erregung, als habe er die Frage erwartet oder sei froh,

sie verneinen zu können. - ”Nein!” - rief er - ”das haben wir glücklick abgeschafft!”

Oskar Panizza, 1890

Die Menschenfabrik (engl.: The Factory of Men), Dämmerungsstücke

13

14

CHAPTER 2

Sparse Latent Space Policy Search

(Previously published as Luck, Pajarinen, Berger, Kyrki and Ben Amor 2016)

https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewPaper/12275

ABSTRACT

Computational agents often need to learn policies that involve many control variables,

e.g., a robot needs to control several joints simultaneously. Learning a policy with a high

number of parameters, however, usually requires a large number of training samples.

We introduce a reinforcement learning method for sample-efficient policy search that

exploits correlations between control variables. Such correlations are particularly

frequent in motor skill learning tasks. The introduced method uses Variational

Inference to estimate policy parameters, while at the same time uncovering a low-

dimensional latent space of controls. Prior knowledge about the task and the structure

of the learning agent can be provided by specifying groups of potentially correlated

parameters. This information is then used to impose sparsity constraints on the

mapping between the high-dimensional space of controls and a lower-dimensional latent

space. In experiments with a simulated bi-manual manipulator, the new approach

effectively identifies synergies between joints, performs efficient low-dimensional policy

search, and outperforms state-of-the-art policy search methods.

15

https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewPaper/12275

2.1 Introduction

Reinforcement learning (RL) is a promising approach to automated motor skill

acquisition [39]. Instead of a human hand-coding specific controllers, an agent au-

tonomously explores the task at hand through trial-and-error and learns necessary

movements. Yet, reinforcement learning of motor skills is also considered to be a

challenging problem, since it requires sample-efficient learning in high-dimensional

state and action spaces. A possible strategy to address this challenge can be found in

the human motor control literature [40]. Research on human motor control provides

evidence for motor synergies; joint co-activations of a set of muscles from a smaller

number of neural commands. The reduction in involved parameters results in a

lower-dimensional latent space for control which, in turn, reduces cognitive effort and

training time during skill acquisition. The existence of synergies has been reported in

a variety of human motor tasks, e.g., grasping [30], walking [41], or balancing [42].

Recently, various synergy-inspired strategies have been put forward to improve

the efficiency of RL for motor skill acquisition [31, 43]. Typically, these approaches

use dimensionality reduction as a pre-processing step in order to extract a lower-

dimensional latent space of control variables. However, extracting the latent space

using standard dimensionality reduction techniques requires a significantly large

training set of (approximate) solutions, prior simulations, or human demonstrations.

Even if such data exists, it may drastically bias the search by limiting it to the

subspace of initially provided solutions. In our previous work, we introduced an

alternative approach called latent space policy search that tightly integrates RL and

dimensionality reduction [44]. Using an expectation-maximization (EM) framework

[45] we presented a latent space policy search algorithm that iteratively refines both

16

Time

Group 1

Group 2

Group 3

Group 4

Samples

Time

Figure 2.1: The main idea of Group Factor Policy Search: A number of variables,
for example the joints of an arm or leg of a NAO robot, form one group. Given
several of such groups for the action vector (left matrix) the transformation matrix
W can be divided in several submatrices corresponding to those groups. Subsequently
each factor, given by a column in W, encodes information for all groups, e.g. four
in the example given above. Factors may be non-zero for all groups, for a subset of
groups, for exactly one group or zero for all groups. In the figure, grey areas corre-
spond to non-zero values and white areas to zero values in the sparse transformation
matrix. The transformation matrix is multiplied by the latent variables given by
Z̃ = (z̃1, · · · , z̃t, · · · , z̃T) distributed by z̃t ∼ N (0, trace(φ(st, t)φ(st, t)

T)I).

the estimates of the low-dimensional latent space, as well as the policy parameters.

Only samples produced during the search process were used.

In this chapter, we propose a different kind of latent space policy search approach,

which similarly to our previous work combines RL and dimensionality reduction,

but which also allows for prior structural knowledge to be included. Our method

is based on the Variational Bayes (VB) [46, 47] framework. Variational Bayes is a

Bayesian generalization of the expectation-maximization algorithm, which returns

a distribution over optimal parameters instead of a single point estimate. It is a

powerful framework for approximating integrals that would otherwise be intractable.

Our RL algorithm exploits these properties in order to (1) perform efficient policy

search, (2) infer the low-dimensional latent space of the task, and (3) incorporate prior

structural information. Prior knowledge about locality of synergies can be included by

specifying distinct groups of correlated sub-components. Often such prior knowledge

about groups of variables, e.g. co-activated joints and limbs, is readily available from

17

the mechanical structure of a system. Structural prior knowledge is also common in

other application domains. For example, in a wireless network the network topology

defines receiver groups [48].

Our approach draws inspiration and incorporates ideas from Factor Analysis, in

particular Group Factor Analysis [23], as can be seen in Fig. 2.1. Groups of variables,

e.g., robot joints grouped into arms and legs, are provided as prior structural knowledge

by a user. A factorized control policy is then learned through RL, which includes

a transformation matrix W. The transformation matrix holds factors that describe

dependencies between either all of the groups or a subset of them. The individual

factors can be regarded as synergies among the joints of the robot.

We will show that the resulting algorithm effectively ties together prior structural

knowledge, latent space identification, and policy search in a coherent way.

2.2 Problem Statement

Policy search methods try to find an optimal policy for an agent which acts in

an uncertain world with an unknown world model. At each time step t the agent

executes an action at in state st and moves to the next state st+1 with probability

p(st+1|st, at). After executing a certain number of actions, the agent receives a reward

feedback given by an unknown reward function based on the performed execution trace

(or trajectory/history) τ = (s1, a1, . . . , sT , aT , sT+1). The overall objective in policy

search is to maximize the expected reward over trajectories and policy parameters θ.

For bounded rewards, maximizing expected reward is equivalent to maximizing the

probability of a binary reward r [49]:

Eτ [r = 1] =

∫∫
p(τ,θ)p(r = 1|τ)dθdτ, (2.1)

18

where the probability of the trajectory p(τ,θ) contains the (stochastic) policy, r is a

binary variable indicating maximum reward, and p(r = 1|τ) ∝ exp {−c (τ)} [50] is the

conditional probability of receiving maximum expected reward given a cost function.

Assuming the Markov property and the independence of actions, the probability

of a trajectory can be written as

p(τ,θ) = p(θ)p(s1)
T∏
t=1

p(st+1|st, at)π(at|st,θ). (2.2)

The stochastic policy π(at|st,θ) depends on the parameters θ for which we addi-

tionally introduce prior distributions p(θ). This formulation will subsequently be

used for structuring the policy model. The prior distributions may also depend on

hyperparameters – for reasons of clarity, however, we will omit any such parameters

below. Furthermore, we assume that the initial state distribution p(s1) and transition

dynamics p(st+1|st, at) are unknown but fixed. Thus, they will cancel out as constant

values.

2.3 Group Factor Policy Search

We will now introduce a new policy search method, called Group Factor Policy

Search (GrouPS), that uncovers the latent space on-the-fly based on prior structural

information. In this section, we discuss how to incrementally improve the policy and

the actual form of the new policy model. We parameterize the policy using Group

Factor Analysis [23] in order to utilize prior information about the parameters and

their correlations. Since our policy is a linear stochastic model with prior distributions,

we first present a novel general Variational Inference framework for policy search that

takes priors into account. Subsequently, we discuss how the policy is parameterized,

and finally show the policy model update equations for Group Factor Policy Search

which we derive using the introduced Variational Inference method.

19

2.3.1 Variational Inference for Policy Search

In each iteration our new policy search method samples a distribution over trajec-

tories pold(τ) using the current policy, and based on pold(τ) finds a new policy which

maximizes a lower bound on the expected reward. This is repeated until convergence.

In order to find a new policy based on samples from the old one, we introduce

the sampling distribution pold(τ) and the approximated parameter distribution q(θ)

(defined later) into Equation 2.1. By applying the log-function and using Jensen’s

inequality [3, 51, Eq. (1.115)] we derive the lower bound

log

∫∫
pold(τ)q(θ)

p(τ,θ)

pold(τ)q(θ)
p(r = 1|τ)dθdτ

≥
∫∫

pold(τ)q(θ) log

(
p(τ,θ)

pold(τ)q(θ)

)
p(r = 1|τ)dθdτ.

(2.3)

Since pold(τ) was generated using the old policy it does not depend on θ and, assuming

the Markov property holds, we can simplify the lower bound to∫∫
pold(τ)q(θ) log

(
p(τ,θ)

pold(τ)q(θ)

)
p(r = 1|τ)dθdτ

=

∫∫
pold(τ)q(θ) log

p (θ)
T∏

t=1
π(at|θ, st)

q(θ)

 p(r = 1|τ)dθdτ

+

∫∫
pold(τ)q(θ) log

 p(s1)
T∏

t=1
p(st+1|at, si)

p(s1)
∏T

t=1 p(st+1|at, st)π′(at|st)

 p(r = 1|τ)dθdτ,

(2.4)

20

where π′(at|st) is the old policy. Simplifications and the fixed nature of π′(at|st) leads

then directly to the proposed lower bound with

=

∫∫
pold(τ)q(θ) log

p (θ)
T∏

t=1
π(at|θ, st)

q(θ)

 p(r = 1|τ)dθdτ

−
∫∫

pold(τ)q(θ) log

(
T∏

t=1

π′(at|st)

)
p(r = 1|τ)dθdτ

=

∫∫
pold(τ)q(θ) log

p (θ)
T∏

t=1
π(at|θ, st)

q(θ)

 p(r = 1|τ)dθdτ

+ const.

(2.5)

By assuming the factorization q(θ) =
∏
qi(θi) for the parameters and applying the

Variational Bayes approach, we get the approximated distributions of the parameters:

log qj(θj) = const+

∫
θ−j

∏
i 6=j

qi(θi)

∫
pold(τ) log

T∏
t=1

π(at,θ|st)
p(r = 1|τ)

R̂
dτdθ−j, (2.6)

where the parameter vector θ−j contains all parameters except θj . The normalization

constant R̂ is given by the integral

R̂ =

(∫
pold(τ)p(r = 1|τ)dτ

)−1

. (2.7)

21

This result is derived from the lower bound with

∫ ∫
pold(τ)q(θ) log

p(θ)
T∏

t=1
π(at|θ, st)

q(θ)

 p(r = 1|τ)dθdτ

=

∫ ∏
i

qi(θi)

∫
pold(τ)

(
log

(
p(θ)

T∏
t=1

π(at|θ, st)

)
−
∑
k

log qk(θk)

)
p(r = 1|τ)dτdθ

=

∫
θj

∫
θ−j

qj(θj)
∏
i 6=j

qi(θi)

∫
pold(τ)

(
log

(
p(θ)

T∏
t=1

π(at|θ, st)

)
−
∑
k

log qk(θk)

)
p(r = 1|τ)dτdθ−jdθj

=

∫
θj

∫
θ−j

qj(θj)
∏
i 6=j

qi(θi)

∫
pold(τ) log

(
p(θ)

T∏
t=1

π(at|θ, st)

)
p(r = 1|τ)dτdθ−jdθj

−
∫
θj

∫
θ−j

qj(θj)
∏
i 6=j

qi(θi)

∫
pold(τ)

∑
k 6=j

log qk(θk) + log qj(θj)

 p(r = 1|τ)dτdθ−jdθj

=

∫
θj

qj(θj)

∫
θ−j

∏
i 6=j

qi(θi)

∫
pold(τ) log

(
p(θ)

T∏
t=1

π(at|θ, st)

)
p(r = 1|τ)dτdθ−jdθj

−
∫
θj

qj(θj)

∫
pold(τ) log qj(θj)p(r = 1|τ)dτdθj + const.

.

(2.8)

Omitting the constant term we find that the maximization of this formula is given

when the inner parts of the two separated integrals over θj are equal. Thus, we can

find that the maximization is given by∫
pold(τ) log qj(θj)p(r = 1|τ)dτ =

∫
θ−j

∏
i 6=j

qi(θi)

∫
pold(τ) log

T∏
t=1

π(at,θ|st)p(r = 1|τ)dτdθ−j

⇔ log qj(θj) =

∫
θ−j

∏
i 6=j

qi(θi)
∫
pold(τ) log

T∏
t=1

π(at,θ|st)p(r = 1|τ)dτdθ−j(∫
pold(τ)p(r = 1|τ)dτ

) ,

(2.9)

where the last line is the final approximation.

2.3.2 Formulation of Group Factor Policy Search

In order to identify sets of correlated variables during policy search, we use a

linear stochastic policy of a form similar to the model used in Group Factor Analysis

22

Input: Reward function R (·) and initializations of parameters. Choose
number of latent dimension n. Set fixed hyper-parameters
aτ̃ , bτ̃ , aα, bα, σ2 and define groupings.

while reward not converged do

for h=1:H do # Sample H rollouts

for t=1:T do

at = WiZφ + Mφ + Eφ

with Z ∼ N (0, I) and E ∼ N (0, τ̃), where τ̃ (m) = τ̃mI

Execute action at

Observe and store reward R (τ)

Initialization of q-distribution

while not converged do

Update q (M) with Eq. (2.19)

Update q (W) with Eq. (2.22)

Update q
(
Z̃
)

with Eq. (2.25)

Update q (α) with Eq. (2.15)

Update q (τ̃) with Eq. (2.28)

M = Eq(M) [M]

W = Eq(W) [W]

α = Eq(α) [α]

τ̃ = Eq(τ̃) [τ̃]

Result: Linear weights M for the feature vector φ, representing the final
policy. The columns of W represents the factors of the latent
space.

Algorithm 1: Outline of the Group Factor Policy Search (GrouPS) algo-

rithm.

23

(GFA) [23]. The main idea of GFA is to introduce prior distributions for the parameters,

in particular a prior for a structured transformation matrix W. The transformation

matrix, responsible for mapping between a low-dimensional subspace and the original

high-dimensional space, is forced to be sparse and constructed using prior knowledge

about grouping of the dimensions, that is, W is a concatenation of transform matrices

W(m) for each group m. For example, if the dimensions of a vector represent the joints

of a legged robot, we can group joints belonging to the same leg into the same group

(see e.g. Fig. 2.1).

Applying the idea of Group Factor Analysis for directed sampling leads to a linear

model, i.e. a stochastic policy

a
(m)
t =

(
W(m)Zt + M(m) + E

(m)
t

)
φ (st, t) , (2.10)

where, for group m, the action a
(m)
t ∈ RDm×1 is a linear projection of a feature

vector φ (st, t) ∈ Rp×1. Each dimension of the feature vector is given by a basis

function, which may depend on the current state and/or time. In the remainder of

the chapter, we will write φ instead of φ (s, t) for simplicity, even though there is an

implicit dependency of φ on the current state of a trajectory. W(m) ∈ RDm×l is a

transformation matrix mapping from the l-dimensional subspace to the original space.

Each entry of the latent matrix Zt ∈ Rl×p is distributed according to a standard

normal distribution where N (0, 1), M(m) ∈ RDm×p is the mean matrix, and the entries

of the noise matrix E
(m)
t ∈ RDm×p are distributed by N (0, τ̃−1

m).

We can derive a stochastic policy from the model defined in Equation 2.10. Since

Zφ ∼ N (0, trace(φφT)I) (2.11)

24

holds (see e.g. [44]), we can substitute Zφ by the random variable z̃t ∈ Rl×1 resulting

in the policy

π(at|θ, st) =
M∏
m=1

N

(
a

(m)
t

∣∣∣∣∣W(m)z̃t + M(m)φ,
Tr
(
φφT

)
τ̃m

I

)
. (2.12)

If we take a closer look at the latent space given by Wz̃ we first find that the

length of each factor is determined by ‖φ(st, t)‖2
2. Secondly, a factor may be non-zero

only for one or a subset of groups as can be seen in Fig. 2.1. This leads to a sparse

transformation matrix and specialized factors.

As mentioned before, the form of our linear model in Equation 2.10 above is based

on Group Factor Analysis. While GFA typically maps a vector from the latent space

to the high-dimensional space, we map here a matrix from the latent space to the

original space and then use this matrix as a linear policy on the feature vectors. GFA

does not apply factor analysis (see e.g. [25]) on each group of variables separately, but

instead introduces a sparsity prior on the transformation matrix W thereby forcing

correlations between groups:

p (W|α) =
M∏
m=1

K∏
k=1

Dm∏
d=1

N
(
w

(m)
d,k

∣∣∣0, α−1
m,k

)
, (2.13)

with M being number of groups, Dm the number of dimensions of the m-th group

and K the number of factors, i.e. number of columns of W. The precision α is given

by a log-linear model with

logα = UVT + µu1
T + 1µT

v , (2.14)

where U ∈ RM×R, V ∈ RK×R and µu ∈ RM as well as µv ∈ RK model the mean

profile. R defines the rank of the linear model and is chosen R � min (M,K).

However, for the special case of R = min (M,K) the precision is given by a simple

gamma distribution [23]

q (αm,k) = G
(
aαm, b

α
m,k

)
(2.15)

25

with parameters

aαm = aα +
Dm

2
, (2.16)

bαm,k = bα +
1

2
Eq(W)

[
w

(m)
k

T
w

(m)
k

]
. (2.17)

The hyper-parameters aα and bα are fixed and set to a small positive value. The

prior distributions given above will lead to three kind of factors: (1) factors which are

nonzero for only one group, (2) factors which are nonzero for several groups or (3)

factors which are zero. In addition to the standard GFA prior distributions above, we

introduce further prior distributions for M and z̃ such that all prior distributions are

given with

M ∼ N
(
Mold, σ

2I
)
, z̃ ∼ N

(
0,Tr

(
φφT

)
I
)
,

αm,k ∼ G (aα, bα) , τ̃m ∼ G
(
aτ̃ , bτ̃

)
.

Fig. 2.2 shows a graphical model of Group Factor Policy Search, given by the

distributions stated above. Instead of Z the latent variable z̃t is used, which depends

on φ(st, t) given a state and a point in time.

2.3.3 Derivation of Update Equations

We assume fixed hyper-parameters aα, bα, aτ̃ and bτ̃ for the distributions which

we determine using the Variational Inference method presented earlier, assuming a

factorization of the q-distributions

q (θ) = q(Z̃)q (W) q (τ̃) q (M) q (α) (2.18)

and additionally the assumption q(Z̃) =
T∏
q(z̃t) with Z̃:,t = z̃t.

By using the factorization given above and the Variational Inference rule for

deriving the parameter distribution in Equation (2.6), we can derive the approximated

parameter distributions, which maximize the expected reward.

26

Figure 2.2: Graphical model in Plate notation for Group Factor Policy Search. The
basis functions φ(st, t) as well as the action vector a(m) are observed. Equation 2.12
shows the dependencies for a(m). The latent variables z̃ depend on the feature vector
as stated in Equation (2.11) . The parameter αm might either be given by a Gamma
distribution as stated in Equation (2.15) or by a log-linear model with dependencies
on parameters U and V.

The approximated distribution for the mean matrix is given by a multiplicative

normal distribution

qM (M) =
M∏
m=1

Dm∏
j=1

N
(
m

(m)
j,:

T
∣∣∣µM

mj,Σ
M
j

)
(2.19)

where the mean and covariance parameters in dependency of the group and dimension

are given by

ΣM
j =

(
σ−2I + Ep(τ)

[
p(r = 1|τ)

R̂

(
T∑
t=1

φφT

Tr
(
φφT

)Eτ̃ [τ̃m]

)])−1

(2.20)

and

µM
mj = ΣM

j ·
moldj,:

T

σ2
+ ΣM

j ·

Ep(τ)

p(r = 1|τ)

R̂

T∑
t=1

φ
(
a

(m)
t,j − Ew

[
w

(m)
j,:

]
Ez̃ [z̃t]

)
Tr
(
φφT

)
Eτ̃ [τ̃m]−1

 (2.21)

27

The q-distribution for the transformation matrix is similarly given by

qW (W) =
M∏
m=1

Dm∏
j=1

N
(
w

(m)
j,:

T
|µW

mj,Σ
W
m

)
(2.22)

with the mean and covariance parameters

ΣW
m =

(
Ep(τ)

[
p(r = 1|τ)

R̂

(
T∑
t=1

Ez̃

[
z̃tz̃

T
t

]
Tr
(
φφT

)
Eτ̃ [τ̃m]−1 + ¯̄αm,K

)])−1

, (2.23)

and

µW
mj = ΣW

m · Ep(τ)

[
p(r = 1|τ)

R̂

T∑
t=1

(
a

(m)
t,j − EM

[
m

(m)
j,:

]
φ
)
Ez̃ [z̃t]

T

Tr
(
φφT

)
Eτ̃ [τ̃−1

m]

]
. (2.24)

The diagonal matrix ¯̄αm,K is given by diag (¯̄αm,K) = (αm,1, αm,2, · · · , αm,K). The

distribution for the latent variables Z̃ depends on the trajectory and time. Hence the

reward can be seen as a probabilistic weight R̃ of a multiplicative normal distribution.

However, since we assume independent latent variables z̃rt we can ignore the reward

and get

qZ̃

(
Z̃
)

=
H∏
R̃

T∏
t=1

N
(
z̃rt |µZ̃

t ,Σ
Z̃
t

)
, (2.25)

with time-dependent parameters

ΣZ̃
t =

Tr
(
φφT

)−1
I +

M∑
m=1

EW

[
W(m)T

W(m)
]

Tr
(
φφT

)
Eτ̃m [τ̃−1

m]

−1

, (2.26)

and

µZ̃
t = ΣZ̃

t ·

 M∑
m=1

EW

[
W(m)

]T (
a

(m)
t −M(m)φ

)
Tr
(
φφT

)
Eτ̃ [τ̃m]−1

 . (2.27)

Unlike the other distributions, the precision is given by a multiplicative gamma

distribution

qτ̃ (τ̃) =
M∏
m=1

G
(
τ̃m|aτ̃ +

1

2
DmT, b

τ̃ +
1

2
bτ̃m
′
)

(2.28)

28

with one fixed parameter and one variable parameter. Estimation of the parameter

bτ̃m
′

is the most complex and computationally expensive operation given by

bτ̃m
′
= Ep(τ)

[
p(r = 1|τ)

R̂

T∑
t=1

Tr
(
φφT

)−1
(
a

(m)
t

T
a

(m)
t

− 2a
(m)
t

T
EM

[
M(m)

]
φ

+ 2Ez̃ [z̃t]
T
EW

[
W(m)

]T

EM

[
M(m)

]
φ

− 2a
(m)
t

T
EW

[
W(m)

]
Ez̃ [z̃t]

+ φTEM

[
M(m)T

M(m)
]
φ

+ Tr
(
EW

[
W(m)T

W(m)
]

Covz̃ [z̃t]
)

+Ez̃ [z̃t]
T
EW

[
W(m)T

W(m)
]
Ez̃ [z̃t]

)]
.

(2.29)

2.3.4 Algorithm

Algorithm 1 summarizes all update steps for performing Group Factor Policy

Search. The reward function R (·), number n of latent dimensions, and a set of

hyperparameters need to be provided by the user.

2.4 Evaluation

For evaluations and experiments the expectation Ep(τ)[·] used above in Eq.(16-20,25)

was approximated by a sample mean,

Ep(τ)[f(τ)] ≈ 1

H

H∑
i=1

f(τi) (2.30)

as proposed in [51], where τi is the i-th of the H realized trajectories and f(τ)

a function value, vector or matrix for τi and will be replaced by the parameter

approximations given above.

29

Figure 2.3: Two simulated arms with six degrees-of-freedom and the same base in
their initial position. Each end effector has a desired position for each time step, s
shown by the green and red dots. The final position at time step 25 is given by the
coordinate (0, 4). The numbers represent the joints with l for left and r for right.

Iterations
0 200 400 600 800 1000

S
u
m

.
D

is
ta

n
ce

s

0

20

40

60

80

100

120

140

160

180

NAC

PePPEr

POWER
1 Group

2 Groups

4 Groups

Figure 2.4: Comparison between PePPEr, PoWER, Natural Actor-Critic and three
instances of the GrouPS algorithm on the presented simulated task. Values correspond
to the summarized distances between each end effector and its desired position given
the current policy for the iteration. The mean value as well as the standard deviations
are shown.

30

2.4.1 Setup of the Evaluation

For the comparison between the above presented GrouPS algorithm and previous

policy search algorithms, a simulated task of a bi-manual robot operating in a planar

task space was used. Each of the two arms (see Fig. 2.3) has six degrees-of-freedom and

the same base for the first joint. The initial configuration of the arms is presented in

Fig. 2.3 as well as the desired positions for each end effector (tip of an arm). At each of

the 25 time steps we give a different goal position for each arm’s end effector, starting

from the left for the left arm and starting from the right for the right arm, with the

same final position at (0, 4) for both arms. In this task, the 12 dimensions of the action

vector a represent the joint angles for each arm. For the basis functions eleven isotropic

Gaussian distributions were used with φi(t) = N (t|µφ
i , 3) for t ∈ {1, 2, . . . , 24, 25}. In

total, 132 parameters have to be estimated given M ∈ R12×11.

As reference algorithms PoWER [51], Natural Actor-Critic (NAC) [52] and PePPEr

[44] were chosen: NAC is a policy gradient method while PoWER is an efficient

policy search method based on expectation maximization (EM). PoWER has been

experimentally validated in both simulated and physical robotic experiments [16].

PePPEr is also based on EM and incorporates policy search and dimensionality

reduction, but without priors and thus without a structured transformation matrix.

For comparison with PePPEr and PoWER the GrouPS algorithm was evaluated in

three different configurations: (1) One group which contains all joints of both arms,

(2) two groups, where each group contains the joints of one arm and (3) four groups

with two groups per arm and joints 1-4 in one and joints 5-6 in the second group. The

hyper-parameters of GrouPS were set to aτ̃ = bτ̃ = 1000, aα = bα = 1 and σ2 = 100.

No optimizations of the hyper-parameters were performed. Furthermore, to prevent

early convergence and collapsing of the distributions due to small sample sizes the

31

parameter W and τ̃ are resized after each iteration by a factor of 1.5. The same is done

after each iteration for PePPEr. However, the factor was set to
√

1.09 since higher

numbers lead to divergence in the parameters of the algorithm with unstable and

divergent results. PePPEr was implemented as presented in [44] and in each iteration

20 inner iterations for the optimizations of the parameters were used. The same setup

was used for GrouPS and for both algorithms the number of latent dimensions were

set to six. The static variance parameter for PoWER as presented in [51] and the

initial variance of the other algorithms were all set to 101.5, also for NAC with learning

parameter set to 0.5. In each iteration, we sampled 30 trajectories and evaluated the

trajectories based on the reward function

r(at, t) =
25∑
t=1

exp (− ‖ effl(at)− posl(t) ‖2)

+ exp (− ‖ effr(at)− posr(t) ‖2) ,

(2.31)

where the function effl(at) returns the position of the left end effector given the action

vector and posl(t) the corresponding desired goal position for time point t. effr(at) and

posr(t) return the actual and desired positions, respectively, for the right end effector.

Then the 15 best trajectories are chosen for the computation of the parameters for

each algorithm as described in [51].

2.4.2 Results

Fig. 2.4 depicts the results of the explained experiment. For each algorithm ten

different runs were executed and both mean and standard deviation computed. As

can be seen in the figure, PePPEr outperforms both PoWER and NAC, as well as

our method in case only one group spanning all variables is used. However, using

two groups (one for each arm) already leads to comparable performance. Finally, the

32

Iterations
0 200 400 600 800 1000

S
u
m

.
D

is
ta

n
ce

s

0

20

40

60

80

100

120

140

160

180

Swap1
Swap2
Swap3
4 Groups

Figure 2.5: Comparison between the original chosen four groups and three permutations
of the Groups. Values correspond to the summarized distance between each end effector
and its desired position for each time step given the current policy for the iteration.

GrouPS algorithm with 4 different groups significantly outperforms the comparison

methods.

2.4.3 Importance of the Choice of Groups

In order to investigate the effect of choosing joint groups we conducted an addi-

tional experiment. Our working hypothesis throughout the chapter is that structural

information about inherent groups of correlated variables will improve the search.

Conversely, if we provide wrong information about groupings the performance of

the algorithm should deteriorate. To evaluate this hypothesis, we took the original

partitioning of the joints into four groups and swapped two, later three pairs of joints

randomly. As described above, the original group partitioning is

{(1l, 2l, 3l, 4l), (5l, 6l), (1r, 2r, 3r, 4r), (5r, 6r)}. (2.32)

33

Iterations
0 200 400 600 800 1000

S
u
m

.
D

is
ta

n
ce

s

0

20

40

60

80

100

120

140

160

180

Swap4
Swap5
4 Groups

Figure 2.6: Comparison between the original grouping and two other variants with a
different splitting point. Again, the values represent the summarized distances and
shaded ares corresponds to the standard deviation given ten executions.

Performing two random swaps between the left and right side (Fig. 2.6, Swap4) results

in

{(1l, 2l, 2r, 4l), (5l, 5r), (1r, 3l, 3r, 4r), (6l, 6r)}. (2.33)

For three swaps the resulting partition (Fig. 2.6, Swap5) is

{(1l, 6r, 2r, 4l), (3r, 6l), (1r, 3l, 5l, 4r), (5r, 2l)} . (2.34)

Furthermore, three other groupings with different splitting points were evaluated:

{(1l, 2l), (3l, 4l, 5l, 6l), (1r, 2r), (3r, 4r, 5r, 6r)} (Fig. 2.5, Swap1), (2.35)

{(1l, 2l), (3l, 4l), (5l, 6l), (1r, 2r), (3r, 4r), (5r, 6r)} (Fig. 2.5, Swap2), (2.36)

and {(1l, 2l, 3l), (4l, 5l, 6l), (1r, 2r, 3r), (4r, 5r, 6r)} (Fig. 2.5, Swap3). (2.37)

The result of executing GrouPS with these groupings can be seen in Fig. 2.5 and

Fig. 2.6. All new groupings (resulting from above swaps) are clearly outperformed by

34

Figure 2.7: Final policy found by the GrouPS algorithm after 100 iterations. A high
reward is given if the head as well as the left foot of the robot are high above the
ground.

the original partition. This result corroborates our assumption that a proper selection

of groups can ameliorate the performance of the policy search algorithm.

2.5 Experiment: Lifting a Leg

To test the GrouPS algorithm in experiments following the real world closely, we

reproduced the experiment stated in [44]: We simulate a NAO robot [53] using the

V-REP framework [54] in the task of lifting its left leg without falling. The same

reward function was used as presented in [44, Eq. (22)] with parameters α = 5,

β = 10, γ = 10 and λmax = 6. The V-REP framework [54] allows for simulations

with high physical accuracy by utilizing the bullet physics library. In this experiment,

the actions represent the 26 joint velocities for each of the 15 points in time. Again,

for feature functions Gaussian distributions were used and the same parameters for

GrouPS were chosen like given in the evaluation above.

We ran GrouPS for 100 iterations. In each iteration, we used a set of 20 samples,

of which ten were randomly selected from the set of 20 in the previous iteration and

35

ten generated by the current policy. We used ten best samples out of this set of 20

for computing the new policy parameters. The groups were created in such a manner

that the joints of each arm or leg form a single group as well as the joints of the head.

The results are given in Fig. 2.7, where we find that the GrouPS algorithm is able to

find a satisfactory solution even with a relatively small number of samples: the head

and left leg of the NAO robot are at high positions corresponding to a high reward.

2.6 Experiment: Learning Locomotion on Granular Media

To highlight the sample-efficiency of GrouPS further, an experiment was conducted

in which a robot manufactured from paper has to learn an effective locomotion strategy

on granular media[55]. Due to its properties, granular media such as sand is difficult

to simulate and thus policies trained in simulation are not effective in the real world.

Therefore, the training was conducted in the real world in absence of any prior data

or simulations. The robot has four degrees-of-freedom in total, two per fin. Three

experiments were conducted: In a lab-environment using poppy seeds, the execution

of the policy trained on poppy seeds in a desert environment, and the training and

evaluation of GrouPS in the desert of Arizona (Fig. 2.8). In all experiments, the

reinforcement learning algorithm has to learn policies which are effective movement

strategies, covering as much distance from the start position as possible. Ten iterations

were executed, with a total of 210 policy executions. The results (Fig. 2.9) show that

training policies in the real environment outperform policies trained on a substitute,

in this case poppy seeds. This shows the effect of the lab-to-reality gap, here between

experiments conducted in the laboratory and in the desert of Arizona. Furthermore,

the results show that GrouPS is able to find policies with only a small number of

samples in a difficult environment.

36

Figure 2.8: A policy trained by GrouPS in the desert of Arizona. The white line shows
the initial position of the robot. [55]

Figure 2.9: The evaluation of GrouPS on a bio-inspired robot manufactured from a
paper-laminate. Experiments were conducted in the lab and the desert of Arizona.
It can be seend that learning a locomotion policy in the real environment leads to
significantly better movements than using a pre-trained strategy, which was trained
on poppy seeds in the lab. [55]

2.7 Conclusion

In this chapter, we introduced a novel algorithm for reinforcement learning in low-

dimensional latent spaces. To this end, we derived a Variational Inference framework for

policy search that takes prior structural information into account. The resulting policy

search algorithm can efficiently learn new policy parameters, while also uncovering

the underlying latent space of solutions, and incorporating prior knowledge about

groups of correlated parameters. In experiments using motor skill learning tasks,

37

we showed that the introduced GrouPS algorithm efficiently learns new motor skills.

It significantly outperformed state-of-the-art policy search methods, whenever prior

information about structural groups was provided.

So far, the dimensionality of the latent space needs to be provided as a parameter

to the reinforcement learning algorithm. We plan to investigate automatic adjustments

of the dimensionality using current rewards. In this chapter, we focused on intra-group

correlations. In future work, we plan to investigate correlations among extracted

group factors, e.g., correlations between arms and legs.

38

CHAPTER 3

Extracting Bimanual Synergies with Sample-Efficient Reinforcement

Learning

(Previously published as Luck, and Ben Amor 2017)

https://doi.org/10.1109/IROS.2017.8206356

c©2017 IEEE. Reprinted, with permission, from [56].

ABSTRACT

Motor synergies are an important concept in human motor control. Through the

co-activation of multiple muscles, complex motion involving many degrees-of-freedom

can be generated. However, leveraging this concept in robotics typically entails using

human data that may be incompatible for the kinematics of the robot. In this chapter,

the goal is to enable a robot to identify synergies for low-dimensional control using

trial-and-error only. I discuss how synergies can be learned through latent space

policy search and introduce an extension of the algorithm for the re-use of previously

learned synergies for exploration. The application of the algorithm on a bimanual

manipulation task for the Baxter robot shows that performance can be increased

by reusing learned synergies intra-task when learning to lift objects. But the reuse

of synergies between two tasks with different objects did not lead to a significant

improvement.

39

https://doi.org/10.1109/IROS.2017.8206356

3.1 Introduction

The ability to manipulate objects in the environment is an important skill for

humans and robots and has attracted a large body of research. Motor skills for

reaching and grasping, for example, allow robots to physically interact with their

immediate surroundings. Yet, generating control policies for these tasks is highly

challenging due to the high number of involved degrees-of-freedom (DOF) and the

inherent uncertainty.

An important concept in motor control that has helped to overcome these challenges,

is the concept of motor synergies [40]; joint co-activations of a set of muscles from a

smaller number of neural commands. A combination of a small number of synergies,

leads to a large range of different possible movements. In humans, such synergies

reduce the dimensionality of the control task and, in turn, reduce the cognitive effort

during learning and execution [30, 41, 42]. Similarly, in robotics, synergies have

been shown to improve grasp planning performance, while at the same time reducing

the computational complexity [28, 57]. However, it is unclear how to identify and

extract such synergies for different robot types and morphologies. Existing approaches

typically rely on human demonstrations recorded through motion capture systems.

Yet, synergies highly depend on the underlying kinematics and mechanics of the

system and may not be easily transferred between a human and a robot.

Going beyond uni-manual manipulation, there are also many tasks that require

the coordinated use of multiple limbs. Research in human motor control has presented

evidence for the existence of bimanual synergies during object manipulation [58].

Different motor synergies may span both arms at the same time, or each arm separately.

The ability to identify synergies that affect one or multiple groups of variables at

the same time, would allow robots to efficiently learn bimanual manipulation tasks,

40

Figure 3.1: A bimanual robot learns to lift an object while simultaneously identifying
synergies among the control variables.

e.g., pouring, turning a valve, or picking up a box. In this chapter, we present a

reinforcement learning method that jointly learns motor synergies, as well as control

policies for bimanual robot manipulation. Based on our previous discussion of Group

Factor Policy Search (GrouPS) [59], we will show how sample-efficient reinforcement

learning can be performed on a physical robot, without the need for potentially

inaccurate simulations. In particular, we will show how GrouPS can autonomously

learn dual-arm lifting of objects (see Fig. 3.1), without relying on prior human

demonstrations. The algorithm extracts custom-made synergies that best fit the

current robot and task. This is achieved through a combination of dimensionality

reduction and policy search. Both, synergies and control policies, are updated while

learning, thus exhausting the information provided by the sampling set executed in

41

each iteration. The result is a fast motor skill learning method for tasks that involve

the coordination of multiple limbs. In our experiments, the robot autonomously

learned object lifting strategies within a relatively small number of trials, i.e., about 1

hour of training time.

The presented method also allows visualizing the extracted bimanual synergies.

Visualizing motor synergies enables users to better understand the couplings between

control variables. Additionally, extracted synergies typically form basic movement

“building blocks” which can be superimposed to generate a large variety of different

behaviors.

In the remainder of this chapter, we will first introduce our policy search method

and subsequently present its application to bimanual manipulation tasks.

3.2 Related Work

Human beings and animals are capable of producing a wide variety complex

behaviors and motions that involve the coordinated activation of a large number of

muscles. This ability poses the question of whether each muscle, or degree-of-freedom

is independently controlled by the brain and the central nervous system. Research in

neuroscience indicates that groups of muscles may be organized in a modular fashion

to form muscle synergies. Activating a synergy will jointly co-activate all involved

muscles and related joints. The result is a significant reduction in the number of

controlled DOFs. In the case of grasping, Santello et al. [30] showed that ≈ 90% of

the variance during human grasping can be explained using only three synergies. To

this end, human demonstration of grasps were first collected and, then, processed

using Principal Component Analysis (PCA). Dimensionality reduction techniques,

such as PCA, can uncover the lower-dimensional manifold in which the recorded data

points are embedded. Using a similar strategy, other researcher teams have found

42

evidence for synergies in walking [41], running [60], or balancing [42]. Safavynia et

al. [61] showed that the acquisition of new motor skills can enable the formation of

new synergies. Hence, the composition of synergies is not static but can change as a

result of repeated practice and reinforcement learning. This also means, that synergies

across different subjects may converge towards the same optimal composition that is

induced by the task constraints. Hug et al. [62] reported evidence for the formation of

similar muscles synergies across expert cyclists over time.

In robotics, motor synergies such as Eigengrasps [28] are typically generated by

applying PCA on a set of training data. In the field of grasping and manipulation,

this methodology has found wide spread application such as in [29, 57, 63, 64] since

it significantly reduces the number of control parameters, while at the same time

generating interpretable principal components. Besides grasping, dimensionality

reduction was also used to extract synergies for various other robotics tasks. In [65],

linear and non-linear manifold learning techniques are used to extract postural synergies

for walking and standing-up. The majority of these approaches relies on a large training

set of (approximate) solutions, prior simulations, or human demonstrations to perform

dimensionality reduction. Even if such data exists, it may drastically bias the search

by limiting it to the subspace of initially provided solutions. Especially human

demonstrations may be ill-suited for identifying robot synergies. In [66], an approach

is present in which robot manipulator can learn synergies from random movements.

However, synergies are often required for a specific task at hand. Hence, methods

are needed that can generate a set of synergies from a task specification. In [44], we

presented a first approach in which synergies can be learned through reinforcement.

However, the approach did not allow for the specification of groups of variables within

a synergy. In contrast to that, the work presented in the remainder of this chapter

allows for users to identify specific connected groups of variables, e.g., left arm vs.

43

right arm. Providing this structural information, the algorithm generates synergies

that can both model inter-group, as well as intra-group correlations [59]. This is

particularly useful for tasks that involve multiple limbs. Synergies can be used to

seed the learning algorithm with information about the structure of the manifold to

explore. In the case of Group Factor Analysis, a first approach for transfer learning

was introduced in [67]. Although, we build upon the same general idea of reusing

previously learned factors, we focus in this chapter on a reinforcement learning setup

rather than a supervised learning setup. Furthermore, we investigate the use of learned

synergies for exploration in similar tasks.

3.3 Extracting Synergies with Policy Search

Synergies for robot motions are typically generated through the application of

dimensionality reduction methods on existing data, e.g., joint angles recorded from a

human subject. Our approach uses Group Factor Analysis (GFA) as introduced by

Klami et al. [23]. However, in contrast to other work that relies on training data, we

derive a reinforcement learning method that inherently performs factor analysis. In

this section, we will introduce Group Factor Analysis briefly, describe its properties,

and then proceed to show how Group Factor Analysis and Policy Search can be

combined to yield the Group Factor Policy Search (GrouPS) algorithm. We close this

section with the introduction of a new prior distribution for the transformation matrix

in GrouPS, which enables the re-use of learned synergies for exploration.

3.3.1 Group Factor Analysis for Synergies

Based upon Factor Analysis, GFA assumes that the dimensions of a dataset can

be split into groups of variables. The approach inherently assumes the existence of

a strong correlation between variables of the same group, e.g., because they form a

44

logical unit such as the leg of a robot, a regions of the brain, or a gene set [23]. The

model equation of GFA for M groups reads

a(m) = W(m)z + µ(m) + ε(m), (3.1)

where W(m) is the transformation matrix, µ(m) the mean vector, and isotropic noise

ε(m) ∼ N
(
0, τ̃−1

(m)I
)

(3.2)

defined by the precision τ̃(m). The random vector z ∼ N (0, I) is the same for all

groups while the action a(m) contains the dimensions of the m-th group. Klami and

colleagues introduced prior distributions over the parameters of the model equation

given above. The most important prior distribution is

p (W|α) =
M∏
m=1

K∏
k=1

Dm∏
d=1

N
(
w

(m)
d,k

∣∣∣0, α−1
m,k

)
, (3.3)

which defines a normal distribution over each entry of the transformation matrix W,

such that the matrix becomes structurally sparse. The parameter αm,k is specific to

each group m and component k and is given by the log-linear model

logα = UVT + µu1
T + 1µT

v . (3.4)

The two matrices U ∈ RM×R and V ∈ RK×R are distributed according to a normal

distribution with zero mean and λ precision. The rank factor R ≤ min(M,K)

influences how sensitive the components are to inter-group correlations. For R =

min(M,K) the log-linear model is equal to a gamma distributed model assuming

independent groups [24]. In order to compute the parameters of GFA given a data set,

Variational Inference is used while assuming a factorization of parameters according

to

p (θ) = q(W)q(τ)q(U)q(V)
T∏
t

q(zt) (3.5)

45

with q being the approximated distributions. For q(U) and q(V), point estimators

are chosen in order to compute the parameters with an optimization method such as

L-BFGS [68].

3.3.2 Group Factor Policy Search

In its traditional form, GFA requires a dataset of examples in order to extract

a low-dimensional manifold. However, in our case we would like to uncover the

low-dimensional manifold without prior access to any such dataset. Instead, our goal

is to enable a robot to identify synergies for low-dimensional control using trial-and-

error only. To this end, we derive a reinforcement algorithm that jointly estimates

parameters for dimensionality reduction, as well as a control policy [59].

In our framework, a trajectory consisting of actions a and states s is defined by

τ = (s1, a1, . . . , sT , aT , sT+1) (3.6)

where T is the number of time steps, and sT+1 is the final state. The objective of

policy search is to maximize the expected reward over all possible trajectories given

by

Ep(τ) [r = 1] =

∫∫
p(τ , θ)p(r = 1|τ)dθdτ , (3.7)

where the reward r is defined as a binary variable with probability

p(r = 1|τ) ∝ exp(−c(τ)) (3.8)

and the cost function c(·) [50]. The parameters of the policy are defined by θ. Assuming

the Markov property, the probability p(τ , θ) of the trajectory can be written as

p(τ , θ) = p(θ)p(s1)
T∏
t=1

p(st+1|st, at)π(at|st, θ), (3.9)

with a prior distribution p(θ) over the parameters θ, state probabilities p(s1) and

p(st+1|st, at) and the stochastic policy π(at|st, θ).

46

Input: Reward function R (·) and initializations of parameters. Choose
number of latent dimension n and rank r. Set hyper-parameter and
define groupings of actions. Set Ŵ either to a previously learned
synergy or to zero.

while reward not converged do

for h=1:H do # Sample H rollouts

for t=1:T do

at = WiZφ + Mφ + Eφ

with Z ∼ N (0, I) and E ∼ N (0, τ̃), where τ̃ (m) = τ̃−1
m I

Execute action at

Observe and store reward R (τ)

Initialization of q-distribution

while not converged do

Update q (M), q (W), q
(
Z̃
)

, q (α) and q (τ̃)

M = Eq(M) [M]

W = Eq(W) [W] with Eq. (9)

α = Eq(α) [α] with Eq. (11-14)

τ̃ = Eq(τ̃) [τ̃]

Result: Linear weights M for the feature vector φ, representing the final
policy. The columns of W represent the factors of the latent space.

Algorithm 2: Outline of the Group Factor Policy Search (GrouPS) algorithm.

The algorithm is compatible to the previous version presented in [59] since

setting Ŵ to zero results in the original update equations.

47

The model equation for our algorithm Group Factor Policy Search (GrouPS) reads

similar to Group Factor Analysis with

a
(m)
t =

(
W(m)Zt + M(m) + E

(m)
t

)
φ(st, t), (3.10)

where a
(m)
t ∈ RDm represents the joint or action vector and φ(st, t) ∈ Rp the feature

vector containing the basis functions in its entries. The actual values of the basis

functions depend on the current state or time step. For notational clarity, we are

going to omit states and actions for the feature vector φ in the remainder of the

chapter. The matrices Zt and E
(m)
t are distributed according to matrix-variate normal

distributions: each entry of the latent matrix Zt is sampled from a standard normal

distribution, whereas the entries of E
(m)
t model the isotropic noise with N (0, τ̃−1

m).

The mean policy is given by matrix M(m) ∈ RDm×p whose parameters, i.e. entries,

have to be estimated. The transformation matrix is given by W(m) and contains the

extracted synergies in its columns. As shown in [44], the term Ztφ can be rewritten

as

z̃t = Ztφ ∼ N
(
0,φTφI

)
, (3.11)

indicating that the noise depends on the values of the basis functions. In the case

of normalized basis functions, i.e. ‖ φ ‖2= 1, this term is distributed according to a

standard normal distribution. Finally, given above distributions, the stochastic policy

π(at|st, θ) (Eq. 3.9) of Group Factor Analysis can be found with

M∏
m=1

N
(
a

(m)
t

∣∣∣W(m)z̃t + M(m)φ, (φTφ)τ̃−1
m I
)
. (3.12)

As stated in [59], Group Factor Policy Search does not perform Factor Analysis for

each group separately. Rather, Eq. 3.12 in combination with the prior distribution of

W from Eq. 3.3 allows us to uncover components, i.e. columns, in W with a strong

correlation among the groups. For the computation of the parameters we utilize a

48

Variational Inference approach and determine approximated distributions given by

the factorization

q(θ) = q(Z̃)q(W)q(τ̃)q(M)q(α). (3.13)

The final update equations of the algorithm (Alg. 2) and more details regarding Group

Factor Policy Search can be found in [59].

3.3.3 Transfer Learning with GrouPS

One possibility to incorporate the idea of transfer learning into Group Factor

Policy Search is to use the latent space found in one experiment as prior information

for a subsequent experiment. The prior of the latent space is given by the normal

distribution

p(w
(m)
d,k |αm,k) = N (w

(m)
d,k |0, α

−1
m,k). (3.14)

for each entry w
(m)
d,k of the transformation matrix W = (W 1T

,W 2T
, . . .)T. The pa-

rameter αm,k is the variance parameter controlling the inter-group flexibility of each

dimension, i.e. column of W. We can now incorporate a previously learned latent

space by changing the prior of W to

p
(
w

(m)
d,k |αm,k

)
= N

(
w

(m)
d,k

∣∣∣ŵ(m)
d,k , α

−1
m,k

)
(3.15)

with ŵ
(m)
d,k being the entries of Ŵ learned in a previous experiment. This new prior

changes the update equations for both α and W for the Variational Bayes update.

For the transformation matrix W only the update of the mean [59, Eq. 21] has to be

changed to

µWm,j = ΣW
m · Ep(τ)

p(r = 1|τ)

R̂

T∑
t=1

(
a

(m)
t,j − EM

[
m

(m)
j,:

]
φ
)
Ez̃

[
z̃T
t

]
φTφEτ̃m [τ̃m]−1 − ŵ

(m)
j,: αm,K

(3.16)

49

while for the log-linear model of α the derivatives change: Since the prior distribution

of the transformation matrix W depends on α, the update rule for the log-linear

model has also to be updated. Changing the prior of W leads to a slightly different

log-likelihood for the optimization of the parameters as stated in [23] with Γ being

Γ = EW

[
(w

(m)
k,: −w

(m)′
k,:)(w

(m)
k,: −w

(m)′
k,:)T

]
. (3.17)

The final gradients are then given with

∂LU,V(θ)

∂Um,:
= 2λUm,: +

K∑
k=1

DmVk,: −
K∑

K=1

Γ exp
(
Um,:V

T
k,: + µUm

+ µVk

)
Vk,:, (3.18)

∂LU,V(θ)

∂Vm,:
= 2λVk,: +

M∑
m=1

DmUm,: −
M∑

m=1

Γ exp
(
Um,:V

T
k,: + µUm

+ µVk

)
Um,:, (3.19)

∂LU,V (θ)

∂µUm

= DmK −
K∑

K=1

Γ exp
(
Um,:V

T
k,: + µUm

+ µVk

)
, (3.20)

∂LU,V (θ)

∂µVk

= DmM −
M∑

m=1

Γ exp
(
Um,:V

T
k,: + µUm

+ µVk

)
. (3.21)

Introducing this new prior offers the possibility to infuse the algorithm with

transformation matrices from different runs or tasks (Alg. 1). The intuition behind

sparsity for the transformation matrix W is now slightly different: instead of driving

the entries of the transformation matrix to zero the sparsity prior is trying to maintain

the mean and α controls if deviations are added to one group or several groups per

column of W.

3.4 Experiments

In order to evaluate the ability of the GrouPS algorithm to extract meaningful

synergies during reinforcement learning, we performed experiments with bimanual

50

manipulation tasks on the Baxter robot. In the following experiments, the robot was

tasked to learn how to lift an object with both arms. The goal is to lift the object

as high as possible while retaining stability. The initial policy consist of a zeroed

M-matrix, i.e., the robot performs no action.

3.4.1 Experimental Setup

Each Object was placed on a table of height 77cm in front of a Baxter robot with

the same initial position of the arms. Then the GrouPS algorithm was executed for

five latent dimensions and rank three over ten iterations. In each iteration but the

first, ten samples were newly generated and executed. Each sample constitutes a full

lifting trajectory. The samples were included in a sample set of size twenty, from

which only the ten best samples were selected for processing while the others were

discarded. This is similar to the importance sampling process used in [44, 59, 69].

In the very first iteration, twenty samples were generated. The motivation behind

this approach is to allow failure during learning in the real world and compensate for

any noise in the reward function. The actions at represent velocities in joint angles

of the Baxter robot, thus the action space has 14 dimensions. The whole learning

process was performed with real executions on the robot only, and using only rewards

generated from the real world (Fig. 3.2). A kinematic validation process was only

used for the purpose of detecting hazardous trajectories before execution (Validation).

If a trajectory is deemed dangerous, the process can deny its execution and assign a

reward of zero to the trajectory, thus effectively removing the trajectory from the set

used for the estimation of the parameters.

51

Validation

Check

collisions

Repeat Validation

Figure 3.2: In each iteration a sample, i.e. trajectory, is first simulated and to be
accepted by the process (or a human operator) for execution. Then the trajectory is
executed on the real robot and a reward is generated, which will be used by GrouPS
to compute the updates of the policy parameters.

3.4.2 Groups

For the experiments on the Baxter robot, four groups were chosen in total, two for

each arm. The first group for each arm contains four joints with all rotational and one

twisting joint, while the second group consists of three twisting joints (see Table 3.1).

3.4.3 Used Basis Functions

As basis functions φ, eight radial basis functions, i.e. Gaussian distributions, with

a variance of three were used. The mean values were equidistant distributed over the

15 time steps of the trajectory starting with time step −3 and ending with time step

18.

52

(a) The 800x1280 image delivered by Bax-

ter’s head camera.

(b) The image after using color and me-

dian filtering.

Figure 3.3: The current height of an object is approximated by color filtering.

3.4.4 Reward Function

As input for the reward function, we chose the height of the object in the picture

delivered by the integrated head camera of the Baxter robot. In order to detect the

object during lifting, we used basic color filtering and reflective green tape on the

objects (Fig. 3.3).

For each time step in the trajectory, we create and process one image and detect

the maximal height of green pixels in the image. Thus, our reward function does

not use the actual height of the object, but the pixel height h in the projected 2D

image. Since we employed episodic rewards in our experiments, we used the sum

of the exponential cost function resulting in equation
∑T

t=1 exp(−(1− ht
800

)) for the

reward. The height ht is here normalized with the image height of 800 pixel. Due to

the angle of the camera, the reward function is sensitive to horizontal movements of

the objects, thus leading to noticeable noise in the generated reward values.

53

Figure 3.4: The four different objects lifted next to each other with the ICRA duck as
size reference.

Figure 3.5: The final sequence of actions for lifting a cardboard box found by GrouPS.

3.4.5 Objects

Experiments were performed with four different objects: An orange ball with

diameter 33cm, a yellow ball with diameter 27cm, a black ball with diameter 22cm,

and a cardboard box with dimensions 26cm× 13.5cm× 18cm (Fig. 3.4). While the

cardboard box is a rigid object, all balls are soft, non-rigid and deformable. This

property makes them particularly challenging to handle for the robot. While the

evaluations concentrate on comparisons between the orange ball and box, final results

of the remaining two balls will be shown to demonstrate the general capability of

GrouPS to solve the task.

54

Figure 3.6: One final sequence of actions for lifting the orange ball found by GrouPS.

3.4.6 Time and Sample Size

In all but the first iterations, ten samples were generated while in the very first

iteration twenty samples were produced. Thus, the total sample size is 110 samples

for one experiment. Each execution of a sample requires about 25 seconds and

one complete iteration about four minutes. Accordingly, one experiment requires

approximately one hour.

3.4.7 Reproducibility

All involved items are internationally available through the company IKEA R©. The

cardboard box is a standard parcel size with dimensions 26cm× 13.5cm× 18cm and

is used by several international logistics companies.

3.4.8 Experiments

While not the main scope of this chapter, a comparison was performed between

GrouPS and the Policy Learning by Weighting Exploration with the Returns algorithm

(PoWER) [69] on the task of lifting the orange ball (Fig. 3.6). PoWER was used

in a configuration with a full covariance matrix over the number of basis functions.

PoWER and GrouPS are naturally two very similar algorithms based on stochastic

search. While PoWER makes use of an Expectation Maximization framework, the

55

Figure 3.7: A comparison between the GrouPS and PoWER algorithm on a lifting task
with the orange ball. The presented variant of GrouPS using a synergy matrix from
the same task outperforms both GrouPS and PoWER. Each algorithm was executed
four times and the mean and standard variance were calculated. The vertical axis
shows the total cost over 15 time steps and is based on the height of the ball.

GrouPS algorithm is based on Variational Inference. Also, exploration in PoWER is

solely in the high dimensional space without exploiting latent structures for directed

exploration while GrouPS incorporates this feature due to its more complex model.

Both algorithms made use of the same number of samples over ten iterations.

In order to evaluate the introduced modification of initializing GrouPS with

previously learned synergies, three experiments were conducted: First, GrouPS was

initialized with synergies found while learning to lift the orange ball (Fig. 3.9) and

then executed four times on the same task. Then, the same initialization was used to

learn to lift the box with the Baxter robot. Finally, Groups with random initialization

and without pre-initialized mean was applied on the box lifting task and the learned

synergies used to initialize GrouPS for lifting the orange ball. All above described

experiments were performed four times each.

56

3.5 Results

The GrouPS algorithm (without extension) was able to find trajectories for lifting

non-rigid objects of different sizes such as the orange ball (Fig. 3.6), as well as for a

rigid cardboard box (Fig. 3.5). All of the trajectories resulted in a stable final position

holding the object in a higher position (Fig. 3.8). One sequence of synergy matrices

W is shown in Figure 3.9, where the color of the squares indicates whether the values

are negative (gray) or positive (black) and their size correspond to their absolute value.

The depicted transformation matrices were computed during an experiment aiming to

learn how to lift the orange ball. The extracted synergies can now be found in the

columns of W and replayed directly on the robot for evaluation. Figure 3.10 shows

two synergies found by GrouPS during the learning process which encodes movements

for both arms. The first synergy is an opening and closing movement of both arms,

while the second synergy showcases a movement to up or down. Both synergies can

be combined to generate more complex movements like an upward, closing movement.

Fig. 3.7 depicts a comparison of results between GrouPS, GrouPS using synergies,

and PoWER on the task of lifting the orange ball. While GrouPS outperforms

PoWER, pre-initializing GrouPS with learned synergies from the same task leads to

another increase in performance. The comparison between using synergies learned

from different tasks and GrouPS without modification is presented in Table 3.2 which

shows that the differences between both variants are not significant.

3.6 Discussion

The purpose of the experiments presented above was to evaluate the ability of the

Group Factor Policy Search algorithm to extract not only a successful policy [59], but

also uncover latent synergies specific to the task and robot during the learning process.

57

(a) Orange Ball (b) Yellow Ball

(c) Box (d) Black Ball

Figure 3.8: The final pose of trajectories for lifting an object.

58

1 2 3 4 5

J
o

in
ts

2

4

6

8

10

12

14

T=1

1 2 3 4 5

T=3

G
ro

u
p

 1
 G

ro
u

p
 2

 G
ro

u
p

 3

T=6

1 2 3 4 5 1 2 3 4 5

T=10

G
ro

u
p

 4

Figure 3.9: A sequence of transformation matrices W computed in each iteration t.
The transformation matrix contains the uncovered synergies and is forced to be sparse
by the prior distribution on W. The color of the squares represent the sign of the
value for this entry: Gray color means negative values and black positive values. The
size of the squares are corresponding with the absolute value in such a way that a
square is small for small values and the opposite for bigger values.

Figure 3.10: Two synergies and their combinations found during the execution of the
GrouPS algorithm for learning to lift the orange ball. The horizontal axis is showing
a synergy of closing and opening motions whereas the vertical axis represents a up-
and downwards movement of both arms. Different combinations of those synergies
are shown in the four corners of this figure.

59

Table 3.1: The groups for the joints of the Baxter robot chosen for the experiments
presented in this chapter. The joint names correspond to the technical documentation
by Rethink Robotics

Group Left Arm

1 W1

1 S1

1 E0

1 E1

2 W0

2 S0

2 W2

Group Right Arm

3 W1

3 S1

3 E0

3 E1

4 W0

4 S0

4 W2

Table 3.2: Comparison of GrouPS with the proposed modification for reusing synergies
from different tasks. For the task of lifting the orange ball one set of synergies, the
transformation matrix W, learned in the eight iteration on the box lifting task were
used and vice-versa for the box-lifting task. The table shows the final mean cost and
standard deviation.

Algorithm Cost (Orange Ball)

GrouPS 9.55± 0.19

GrouPS initialized with Synergies 9.47± 0.22

Algorithm Cost (Box)

GrouPS 9.26± 0.27

GrouPS initialized with Synergies 9.28± 0.25

60

It was found that Group Factor Policy Search is in fact able to uncover synergies (Fig.

3.9 and Fig. 3.10) while developing a successful policy for a bi-manual lifting task.

Figure 3.10 also demonstrates, that these synergies can be combined in a meaningful

way to produce new or adapted motions which may be used for similar tasks or

initializations of other learning algorithms. Interestingly, the algorithm uncovers two

synergies which resemble the nature of the task very well (Fig. 3.10): While different

values of one synergy lead to an opening or closing movement, the second synergy

controls the vertical movement of both hands.

An analysis of the transformation matrices in Figure 3.9 shows that weak corre-

lations between groups disappear over time and strong ones reinforce. However, it

can be noted that the transformation matrix is thinning out towards the end of the

learning process, very likely due to the convergence to an optimal policy. Thus, it is

more likely to find useful synergies in earlier iterations. The most usable synergies

were be found in iterations seven and eight.

An variant of the GrouPS algorithm was presented which can make use of uncovered

synergies for directed exploration. While it was found that GrouPS initialized with

synergies learned from the same task indeed leads to an increase in performance (Fig.

3.7) it is surprising to find that is not the case when using synergies learned from

another task. This applies for both directions: using synergies from lifting the orange

ball to learn to lift the box, and using synergies learned from lifting the box to learn

to lift the orange ball. Both objects, box and ball, are naturally different in shape and

so is the optimal strategy for lifting them. Especially the box posed challenges for the

robot, since the endeffectors can slide easily along the sides of the box. However, the

robot learned to exploit this property over time in order to change the orientation of

the box such that one corner of the box points upwards.

61

3.7 Conclusions

In this chapter, I presented a methodology and algorithm for extracting synergies

for motor skill learning in robots and using them to accelerate learning. The approach

does not require any prior data from human demonstrations or other sources. Instead,

we presented a reinforcement learning method that naturally combines dimensionality

reduction and policy search. We have shown in experiments with a real-world robot

that this combination leads to sample-efficient reinforcement learning. In addition, we

have discussed how the generated synergies can be visualized in order to introspect

the learning process and better understand the generated coupling of joints.

The potential for speeding up learning in inter- or intra-task transfer using synergies

was evaluated. It was found that the presented variant of GrouPS can outperform the

base algorithm when reusing synergies from the same task. However, using synergies

from a different task did not lead to an increased performance. In future work we will

investigate if this insight applies to the general case of transfer learning with GrouPS.

62

CHAPTER 4

Improved Exploration through Latent Trajectory Optimization in Deep

Deterministic Policy Gradient

ABSTRACT

Model-free reinforcement learning algorithms such as Deep Deterministic Policy Gra-

dient (DDPG) often require additional exploration strategies, especially if the actor

is of deterministic nature. This work evaluates the use of model-based trajectory

optimization methods used for exploration in Deep Deterministic Policy Gradient when

trained on a latent image embedding. In addition, an extension of DDPG is derived

using a value function as critic, making use of a learned deep dynamics model to

compute the policy gradient. This approach leads to a symbiotic relationship between

the deep reinforcement learning algorithm and the latent trajectory optimizer. The

trajectory optimizer benefits from the critic learned by the RL algorithm and the latter

from the enhanced exploration generated by the planner. The developed methods

are evaluated on two continuous control tasks, one in simulation and one in the real

world. In particular, a Baxter robot is trained to perform an insertion task, while only

receiving sparse rewards and images as observations from the environment.

63

4.1 Introduction

Reinforcement learning (RL) methods enabled the development of autonomous

systems that can autonomously learn and master a task when provided with an

objective function. RL has been successfully applied to a wide range of tasks including

flying [21, 22], manipulation [13–15, 17, 56], locomotion [18, 55], and even autonomous

driving [70, 71]. The vast majority of RL algorithms can be classified into the two

categories of (a) inherently stochastic or (b) deterministic methods. While inherently

stochastic methods have their exploration typically built-in [72, 73], their deterministic

counterparts require an, often independent, exploration strategy for the acquisition of

new experiences within the task domain [51, 74]. In deep reinforcement learning, simple

exploration strategies such as Gaussian noise or Ornstein-Uhlenbeck (OU) processes

[75], which model Brownian motion, are standard practice and have been found to be

effective [74]. However, research has shown that advanced exploration strategies can

lead to a higher sample-efficiency and performance of the underlying RL algorithm

[44]. In practice, there are two ways to incorporate advanced exploration strategies

into deterministic policy search methods. Where possible, one can reformulate the

deterministic approach within a stochastic framework, such as by modeling the

actions to be sampled as a distribution. Parameters of the distribution can then be

trained and are tightly interconnected with the learning framework. One example

for this methodology, is the transformation of Policy Search with Weighted Returns

(PoWER) [51] into Policy Search with Probabilistic Principal Component Exploration

(PePPEr) [44]. Instead of using a fixed Gaussian distribution for exploration, the

noise generating process in PePPEr is based on Probabilistic Principal Component

Analysis (PPCA) and generates samples along the latent space of high-reward actions.

Generating explorative noise from PPCA and sampling along the latent space was

64

Figure 4.1: A Baxter robot learning a visuo-motor policy for an insertion task using
efficient exploration in latent spaces. The peg is suspended from a string.

shown to outperform the previously fixed Gaussian exploration. Alternatively, one

can choose to optimize the exploration strategy itself. Examples of this methodology

are count-based exploration strategies [76], novelty search [77] or curiosity-driven

approaches [78] which can be transferred with ease to other algorithms or frameworks.

Typically, when incorporating these techniques into reinforcement learning, they are

limited to local exploration cues based on the current state. This chapter aims to

combine the model-free deep deterministic policy gradient method with a model-based

exploration technique for increased sample-efficiency in real world task domains. The

proposed method generates exploratory noise by optimizing a (latent) trajectory from

the current state to ideal future states, based on value functions learned by an RL

algorithm. This experience is, in turn, used by the RL algorithm to optimize policy

and value functions in an off-policy fashion, providing an improved objective function

65

(a) Rand. initial position (b) Insertion started

Figure 4.2: The experimental setup in which a Baxter robot has to insert a blue
cylinder into a white tube (b). The cylinder is with a string attached to the end-
effector of the robot. Camera images are recorded with the integrated end-effector
camera. The sensor detecting the state of insertion is integrated into the white tube.
Experiments on this platform were run fully autonomously without human intervention
or simulations.

for the trajectory optimizer. We investigate whether this strategy of formulating

exploration as a latent trajectory optimization problem leads to an improved learning

process both in simulation, as well as in a robotic insertion task executed solely in the

real world. In particular, we apply our approach to a challenging, flexible insertion

task as seen in Fig. 4.1.

4.2 Related Work

The advancement of deep reinforcement learning in recent years has lead to the

development of a number of methods combining model-free and model-based learning

techniques, in particular to improve the sample complexity of deep reinforcement

66

learning methods. Nagabandi et al. [79] present a model-based deep reinforcement

learning approach which learns a deep dynamic function mapping a state and action

pair (st, at) to the next state st+1. The dynamics function is used to unroll a trajectory

and to create an objective function based on the cumulative reward along the trajectory.

This objective function is, then, used to optimize the actions along the trajectory and

thereafter the first action is executed. The procedure is repeated whenever the next

state is reached. After a dataset of executed trajectories is collected by the planning

process, the policy of a model-free reinforcement learning algorithm is initialized in

a supervised fashion by training it to match the actions produced by the planner.

This technique is different to our approach in that we do not force the actor to match

the executed action, but rather see it as an exploration from which we generate

off-policy updates. Furthermore, it is implicitly assumed in [79] that a reward function

is available for each state during the planning process. This can be a rather strong

assumption, especially when learning in the real world without access to a simulation

of the task and only providing minimal human supervision. Using executions in the

environment during the planning process would be too costly since each change in

state would require a re-execution of the whole trajectory. Since our insertion task

provides only sparse rewards during execution, the trajectory planning algorithm

would fail when relying only on rewards due to flat regions with zero reward and

require additional reward engineering. This leaves a large and mostly flat region in

the state space with a reward of zero.

In [80], Chua et al. introduce the model-based probabilistic ensembles with trajectory

sampling method. This work builds upon [79], but also makes use of a reward function.

It makes use of a probabilistic formulation of the deep dynamics function by using

an ensemble of bootstrapped models encoding distributions to improve the sample

67

complexity and improves the properties of the trajectory planner. Both approaches

do not explicitly train an actor or a critic network.

Similarly to us, Universal planning networks [81] introduced by Srinivas et al. use a

latent, gradient-based trajectory optimization method. However, the planner requires

a goal state for the trajectory optimization. In certain tasks such as walking or running,

it might be hard to acquire such a goal state to use in place of a velocity-based reward

function. It is mentioned in [81] that to achieve walking, it was necessary to re-render

images or reformulate the objective function by including an accessible dense reward

function.

In contrast to previous work, we focus explicitly on the impact of using trajectory

optimization as an additional technique for exploration and its impact on the learning

process when used by a deep reinforcement learning algorithm such as Deep Determin-

istic Policy Gradient. Furthermore, using an actor-critic architecture is a key element

in our work to allow off-policy updates in a fast manner during the training process

and to inform the trajectory optimization process initially.

4.3 Method

The following sections introduce the different components used to generate explo-

rative actions via trajectory optimization. We first describe the image embedding

used, then the training process of the dynamics function and Deep Deterministic

Policy Gradient (DDPG) [74], as well as its extension for the use of a value function.

The section ends with a description of our trajectory optimization based exploration

for DDPG.

68

4.3.1 Image Embedding

All tasks used throughout this chapter are setup such that they use only images

as observations, which have to be projected into a latent image embedding. This

serves two main purposes: First, the number of parameters is greatly reduced since the

actor, critic, and the dynamics network can be trained directly in the low dimensional

latent space. Second, it is desirable to enforce temporal constraints within the latent

image embedding, namely that subsequent images are close to each other after being

projected into the latent space. Therefore, we make use of the recently introduced

approach of time-contrastive networks [26]: the loss function enforces that the distance

between latent representations of two subsequent images are small but the distance

between two randomly chosen images is above a chosen threshold α. Enforcing a

temporal constraint in the latent space improves the learning process of a consistent

deep dynamics function in the latent space [26]. Time-contrastive networks make use

of two losses. The first is defined on the output of the decoder network and the input

image as found in most autoencoder implementations. The second loss, the triplet

loss, takes the latent representation zt and zt+1 of two temporally close images and

the latent representation zr of a randomly chosen image.

Thus, given two temporal images Imt and Imt+1 and a randomly chosen image

Imr, the loss functions for each element in the batch is given by

L(Imt, Imt+1, Imr) = Lae(Imt) + Lcontr(Imt, Imt+1, Imr). (4.1)

The classical autoencoder loss Lae and the contrastive loss Lcontr are here defined as

Lae =‖ Imt −D(E(Imt)) ‖,

Lcontr (Imt, Imt+1, Imr) =‖ E(Imt)− E(Imt+1) ‖

+ max(α− ‖ E(Imt)− E(Imr) ‖, 0),

(4.2)

69

with E being the encoder and D being the decoder network. The scalar value α

defines the desired minimum distance between two random images in the latent

embedding. Thus the classic autoencoder loss Lae trains both the encoder and decoder

network to learn a reconstructable image embedding. The contrastive loss Lcontr, on

the other hand, generates only a learning signal for the encoder network and places

a temporal constraint on the image embedding. The encoder and decoder consist

of three convolutional networks with a kernel shape of (3, 3) and a stride of (2, 2),

followed by a linear layer of size 20 and an l2-normalized embedding which projects

the states on a unit sphere [26]. All activation functions are rectified linear units

(ReLU).

4.3.2 Latent Dynamics

Using a trajectory optimization algorithm in latent space requires a dynamics

function which maps a latent state zt and an action at to a subsequent latent state

zt+1. This allows us to unroll trajectories into the future. In the case of a single image

with zt = E(Imt), we learn a dynamics mapping of Ψ(zt, at) = z̃t+1. In the other case,

when our latent state is derived from several stacked images, then we project each

image into the latent space, for example by
E(Imt−2)

E(Imt−1)

E(Imt)

 =

zt−2
t

zt−1
t

ztt

 = zt. (4.3)

To predict the next latent state, the dynamics function simply has to rotate the state

and only predict the third latent sub-state. This function can be described with

zt =

zt−2
t

zt−1
t

ztt

 7→

zt−1
t

ztt

Ψ(zt, at)

 = z̃t+1, (4.4)

70

where Ψ is the output of the neural network while we will use the notation Ψ(zt, at) =

z̃t+1 for the whole operation, and z̃i+1 is the predicted next latent state. The loss

function for the dynamics network is then simply the difference between the predicted

latent state and the actual latent state. Therefore, the loss is given as

Ldyn(Imt−2:t, at, Imt+1) = ‖Ψ(zt, at)− E(Imt+1) ‖, (4.5)

for each state-action-state triple (Imt−2:t, at, Imt−1:t+1) observed during execution. The

dynamics networks is constructed out of 3 fully connected layers of size 400, 400 and

20 with ReLUs as nonlinear activation functions.

4.3.3 Deep Reinforcement Learning

We make use of the Deep Deterministic Policy Gradient (DDPG) algorithm since

action and state/latent space are continuous. DDPG is based on the actor-critic model

which is characterized by the idea to generate a training signal for the actor (network)

from the critic (network). In turn, the critic utilizes the actor to achieve an off-policy

update and models usually a Q-value function. In DDPG, the actor is a network

mapping (latent) states to an action with the goal of choosing optimal actions under

a reward function. Hence, the loss function for the actor is given by

Lactor(zt) = −Q(zt, π(zt)), (4.6)

where only the parameters of the actor π(zt) are optimized (see Eq. 6 in [74]). In

the case of classical DDPG, the critic is a Q-function network, which maps state and

action pairs to a Q-value: Q(zt, at) = r(zt, at) + γQ(zt+1, π(zt+1)). The scalar gamma

is a discount factor and r(zt, at) is the reward. The loss function of the critic network

is based on the Bellman equation:

Lcritic(zt, at, rt+1, zt+1) =‖ Q(zt, at)− (rt+1 + γQ′(zt+1, π
′(zt+1))) ‖, (4.7)

71

(a) Q-Value based actor update (b) Value based actor update

Figure 4.3: The original DDPG algorithm (a) can be reformulated such that a value
function (b) is used. In the case of a value function the policy gradient (red arrow) is
computed via a neural dynamics function.

where Q′ and π′ are target networks. For more details on DDPG we refer the interested

reader to [74]. It is worth noting that DDPG can be reformulated such that the critic

resembles a value function instead of a Q-value function (Fig. 4.3, see also [82]). A

naive reformulation of the loss function given above is

Lcritic(zt, at, rt, zt+1) = ‖ V(zt)− (rt+1 + γV′(zt+1)) ‖, (4.8)

given an experience (zt, at, rt+1, zt+1). But this reformulation updates only on-policy

and lacks the off-policy update ability of classical DDPG. Even worse, we would fail

to use such a critic to update the actor since no action gradient can be computed due

to the sole dependency on the state. However, since we have access to a dynamics

function we reformulate for our extension of DDPG the loss function and incorporate

off-policy updates with

Lcritic(zt, at, rt, zt+1) =‖ V(zt)− (rt + γV′(Ψ(zt, π
′(zt))) ‖ . (4.9)

72

Figure 4.4: The proposed exploration strategy unrolls the trajectory in the latent
space and uses the Value/Q-Value to optimize the actions of the trajectory. Dotted
connections might not be used when using a Value function as critic.

This formulation allows for off-policy updates given the experience (zt, at, rt, zt+1),

for which we assume that the reward r(z) is only state-dependent. While this might

appear to be a strong assumption at first, it holds true for most tasks in robotics. The

insertion task presented in the remainder of this chapter is such a case in which the

reward is fully described by the current position of both end-effector and the object

to be inserted.

The loss function for the actor is then given with

Lactor(zt) = −V(Ψ(zt, π(zt))), (4.10)

which is fully differentiable and, again, only used to optimize the parameters of the

actor network. We use for both actor and critic two fully connected hidden layers of

size 400 and 300 with ReLUs as nonlinear activation functions.

73

4.3.4 Optimized Exploration

Due to the deterministic nature of the actor network in DDPG and similar al-

gorithms, the standard approach for exploration is to add random noise to actions.

Random noise is usually generated from an Ornstein-Uhlenbeck process or a Gaus-

sian distribution with fixed parameters. Such parameters, like the variance for a

Gaussian distribution, are usually chosen by intuition or have to be optimized as

hyper-parameter, for example with grid-search. In preliminary experiments we found

Ornstein-Uhlenbeck processes with σ = 0.5 and θ = 0.15 most effective on the chosen

simulated task. In the presented approach we make use of the fact that we can access

a dynamics function and therefore unroll trajectories throughout the latent space.

The basic idea is to first unroll a trajectory using the actor network a number of

steps into the future from the current point in time. We then optimize the actions

at, · · · , at+n such that we maximize the Q-values/rewards along the latent trajectory.

We characterize a latent trajectory, given a start state zt = E(Imt), as a sequence

of state-action pairs (zt, at, · · · , zt+H , at+H , zt+H+1). We can then formulate a scalar

function to be maximized by the trajectory optimizer based on the Q-value or reward-

functions available. This process is visualized in Fig. 4.4. The Q-function in the

following equations can be substituted with a learned value function. An intuitive

objective function to optimize is to simply sum up all Q-values for each state-action

pair of the trajectory

fQ(at:t+H , zt) = w0Q(zt, at) +
H∑
j=1

wjQ(zt+j, at+j), (4.11)

with zt+j = Ψ(zt+j−1, at+j−1) and zt being the current state from which we start

unrolling the trajectory. The time-dependent weight wi determines how much actions

are going to be impacted by future states and their values and can be uniform, linearly

increasing or exponential. We consider in our experiments the special case of wi = 1
H

.

74

Alternatively, if one has access to a rewards function or learns a state-to-reward

mapping simultaneously, then an objective function can be used which accumulates

all rewards along the latent trajectory and adds only the final q-value:

fr+Q(at:t+H , zt) =
H−1∑
j=1

wjr(zt+j) + wHQ(zt+H , at+H). (4.12)

Clearly, this objective function is especially useful in the context of tasks with dense

rewards. Both objective functions will be evaluated on the simulated cheetah task,

which provides such dense rewards. While executing policies in the real world, we

unroll a planning trajectory from the current state for n steps into the future. Then,

the actions at:t+H are optimized under one of the introduced objectives from above

with a gradient-based optimization method such as L-BFGS [83]. After a number of

iterations of trajectory optimization, here 20, the first action of the trajectory, namely

at, is executed in the real world (Alg. 3).

4.4 Experiments

We compare in our experiments the classical approach of exploration in DDPG

with an optimized Ornstein-Uhlenbeck process against the introduced approach of

exploration through optimization. First, an experiment in simulation was conducted

using the DeepMind Control Suite [84]. The cheetah task, in which a two-dimensional

bipedal agent has to learn to walk, is especially interesting because it involves contacts

with the environment that makes the dynamics hard to model. In the second experi-

ment, we evaluate the algorithms directly on a robot and aim to solve an insertion

task in the real world.

75

Require: Horizon H, Encoder network

for number of episodes do

while end of episode not reached do

Compute latent state zt from images with encoder

Initialize action with at = π(zt)

if training then

for k = t+ 1 : t+H do

Initialize action with ak = π(zk)

Predict latent state zk+1 = Ψ(zk, ak)

end for

Optimize maxat:t+H
f(at:t+H , zt)

end if

Execute step in environment with action at

Store (zt, at, rt, zt+1) in replay buffer

end while

Optimize dynamics network

Optimize actor network

Optimize critic network

Update target networks

end for

Algorithm 3: Exploration through trajectory optimization in DDPG

76

4.4.1 Evaluation in Simulation on the Cheetah Task

The cheetah environment of the DeepMind control suite [84] has six degrees-of-

freedom in its joints and we only use camera images as state information. The actions

are limited to the range of [−1, 1] and camera images are of the size 320× 240 px in

RGB and were resized to 64 × 64 px. Each episode consists of 420 time steps and

actions are repeated two times per time step. First, a dataset of 50 representative

episodes was collected through the use of DDPG on the original state space of joint

positions, joint velocities, relative body pose and body velocity of cheetah. This

dataset was used to train the time-contrastive autoencoder as described above. The

same parameters for the neural encoder were use for all exploration strategies. This

was done to allow the sole evaluation of the exploration strategies independently of the

used embedding. Since cheetah is a quite dynamic task and rewards depend on the

forward velocity, this velocity must be inferable from each state. Hence, we project

three subsequent images (Imt−2, Imt−1, Imt) down by using the encoder network and

define the current state zt as the three stacked latent states zt = [zt−2, zt−1, zt]
T . For

each of the presented evaluations 25 experiments were executed and the mean and

standard deviations of the episodic cumulative rewards are shown in Figures 4.5-4.8.

Comparison between Ornstein-Uhlenbeck and optimized exploration

As a first step we optimized the hyperparameter σ of DDPG and found that an

Ornstein-Uhlenbeck process with σ = 0.5 and θ = 0.15 achieve a better result for

DDPG on this task than the variance of σ = 0.2 proposed in [74], especially in the

early stages of the training process. A planning horizon of ten steps was used to

generate the optimized noise. We make comparisons between the training process, in

which we use the exploration strategies, and the test case, in which we execute the

77

(a) Deterministic Policy (Q-Value) (b) Exploration (Q-Value)

(c) Deterministic Policy (Value) (d) Exploration (Value)

Figure 4.5: Comparison between DDPG using exploration with optimization (orange)
and classical exploration using an Ornstein-Uhlenbeck process (blue) on the simulated
cheetah task. The exploitation graph shows the evaluation of actions produced by the
deterministic actor while exploration strategies are applied during training.

Figure 4.6: Comparison between DDPG using exploration with optimization (orange)
and classical exploration using an Ornstein-Uhlenbeck process (blue) on the simulated
cheetah task while using a value function as critic. The number of training iterations
per episode were raised from 1000 (Fig. 4.5-d) to 3000 for this evaluation.

78

Figure 4.7: Exploration through optimization evaluated with different horizons for
the planning trajectory on the simulated cheetah task.

deterministic actions produced by the actor without noise. Throughout the training

process we evaluate the current policy of the actor after each episode. The results are

presented in Fig. 4.5.

Comparison between different planning horizons

The main hyperparameter for optimized noise is the length of the planning horizon.

If it is too short, actions are optimized greedily for immediate or apparent short-term

success; if it is too long, the planning error becomes too large. Figure 4.7 shows the

optimized exploration strategy with three different step-sizes: one step, ten steps and

20 steps into the future from the current state.

Comparison between different objectives

We introduced two potential objective functions, based on Q-values (Eq. 4.11)

and a mix of reward- and Q-function (Eq. 4.12). We compare both of these against

another objective where we only optimize for the q-value of the very last state-action

pair of the unrolled trajectory (Fig. 4.8).

79

Figure 4.8: Comparison between three different objective functions for optimized
exploration on the simulated cheetah task.

Table 4.1: The average success rate of insertion for policies trained by DDPG with
standard Ornstein-Uhlenbeck exploration or trajectory optimization with varying
planning horizons. The individual success rates for each experiment were computed
over a window of 50 subsequent episodes of 500 executions total. The average success
rates and standard deviations were then computed with the highest success rate
achieved in each experiment. A total of five experiments were executed for each
method.

Method Avg. Success rate (±std)

Ornstein-Uhlenbeck Exploration 75.2% (±11.7%)

1 Step Planning Horizon 93.2% (±5.2%)

3 Steps Planning Horizon 91.6% (±1.5%)

5 Steps Planning Horizon 84.0% (±14.1%)

15 Steps Planning Horizon 84.4% (±9%)

80

0 100 200 300 400 500
Episodes

1

0

1

2

3

4

5

6

7

R
ew

ar
d

Ornstein-Uhlenbeck
Trajectory Optimization

(a) Deterministic Policy

0 100 200 300 400 500
Episodes

1

0

1

2

3

4

5

6

7

R
ew

ar
d

Ornstein-Uhlenbeck
Trajectory Optimization

(b) Exploration

Figure 4.9: Comparison between exploration with an Ornstein-Uhlenbeck (blue) and
exploration through optimization (red) on the insertion task in the real world. The
planning horizon is three steps. The figures show the cumulative rewards averaged over
five experiments in light colours and in bold colours, for better interpretability due to
the sparse reward, the mean smoothed with a Savitzky-Golay filter with window size
21 and 1st order polynomials.

81

4.4.2 Insertion in the real world

Fast exploration is especially important when tasks have to be solved in a real

world environment and training needs to be executed on the real robot. An insertion

task was set up in which a Baxter robot had to insert a cylinder into a tube where both

training and testing were performed in the real world environment, without the use of

simulation (Fig. 4.2). Cylinder and tube were 3D-printed. The cylinder was attached

to the right end-effector of the robot with a string. The position control mode was used

because there is a variable delay in the observations. Image observation were acquired

from the end-effector camera of the Baxter robot via ethernet. The six dimensional

actions are in the range of [−0.05, 0.05] radians and represent the deviation for each

joint of the arm at a point in time. This restriction ensures a strong correlation between

subsequent camera images throughout the execution and allows the task to be solved in

20 steps. The initial position (radians) of the robot arm was randomized by sampling

from a normal distribution with mean µ1:6 = (0.48,−1.23,−0.15, 1.42, 0.025, 1.35) and

variances σ1:6 = (0.05, 0.05, 0.05, 0.05, 0.05, 0.1), ensuring that the tube is in the image.

As a simplification of the task, we excluded the last rotational wrist joint of the robot

arm. Because of the adynamic nature of this task and the necessity to use position

control mode it is sufficient to use the latent representation of the current image versus

a stack of images as in simulation. Larger movements of the cylinder appear as blur

in the images. Each episode consists of 20 time steps and a sparse reward is used:

For safety reasons, if the end-effector left the designated workspace area, the episode

ended and a reward of −1 is assigned. When the cylinder is inserted into the tube,

the extent of insertion is transformed into a reward from [0, 1.0] and an episode stops

if a reward of 0.9 or higher is assigned. The state of insertion is measured with a

laser-based time-of-flight sensor (VL6180). The reward for all other possible states is

82

zero. Five experiments were conducted on the robot: DDPG with a value function as

critic and Ornstein-Uhlenbeck exploration, DDPG with exploration using trajectory

optimization and a varying planning horizon (1, 3, 5 and 15 steps). We use a reduced

planning horizon in this task due to the low number of time steps per episode. The

comparison between Ornstein-Uhlenbeck exploration and optimized exploration with

a horizon of three is shown in Fig. 4.9. Every episode which ends with a negative

cumulative reward violated the workspace boundaries and episodes reaching a reward

of 0.9 or more were successful insertions. Table 4.1 shows the comparison between

exploration with Ornstein-Uhlenbeck noise and using planning horizons of different

lengths in terms of successful insertions. Each experiment was repeated five times and

the cumulative reward for each episode is used to compute the mean shown in Figure

4.9. For better interpretability, the figures show, in bold lines, additionally a smoothed

version of the mean where a Savitzky-Golay filter was applied with a window size of

21 and polynomials of order one. The autoencoder network as well as the dynamics

network were trained with a demonstration dataset of 50 trajectories. Of these, 19

were positive demonstrations, in which the cylinder was successfully inserted. At the

beginning of each training process, 5 of these 19 trajectories were added to the replay

buffer to ensure convergence of the training process due to the difficulty of the task

caused by using sparse reward.

4.5 Discussion

We start with a discussion of the results from the simulated bipedal cheetah

task which uses a dense reward function: The first insight is that both actors seem

to perform equally well after 20 episodes, with the actor trained with optimized

noise outperforming classical DDPG throughout the first 20 episodes (Fig. 4.5 (a)).

However, during training the optimized exploration does not only perform better

83

than exploration with an Ornstein-Uhlenbeck process (Fig. 4.5 (b)) but also performs

better than the actions produced by both actors during test time (Fig. 4.5 (a)).

We found that using a critic network modelling the Q-function (Fig. 4.5 (b))

outperformed the formulation of DDPG using a value network when using optimized

exploration (Fig. 4.5 (d)), while DDPG with Ornstein-Uhlenbeck noise performs

slightly better with a Value network (Fig. 4.5 (a,d)). One could argue, that the effects

of using optimized noise could vanish when increasing the number of trainings per

episode, giving DDPG more time to find an optimal actor given the current training

set. Following this line of thought we increased the number of training iterations

per episode three times to 3000 (Fig. 4.6). The evaluation shows that while DDPG

with OU noise improves in the later stages of the learning process, the trajectory

optimization uncovers valuable training experience now much faster early on. This

strongly indicates that the data distribution generated by the exploration strategy has

an impact on the performance of DDPG. Evaluating the step-lengths we could find

that trajectory optimization improved up to a planning horizon of 20 steps, although

we opted for our experiments with a conservative planning horizon of 10 steps to reduce

the overall training time. The evaluation of the three introduced objective functions

show that the summation of Q-values along the planning trajectory yields better

performance in the early training stages, up to episode 25, for the dense reward task

(Fig. 4.8). This is an interesting result given that many other trajectory optimization

approaches use a Bellman-inspired sum of weighted rewards [79, 80]. It is also worth to

notice that the Q-Value is the more suitable objective function for optimizing actions

in the presented real-world insertion task due to the reward function being zero for

the majority of time steps.

The results showing the learning progress on the insertion task in the real world

draw a clearer picture of the benefit of exploration through optimization (Fig. 4.9,

84

Table 4.1). Generally, after roughly 50 training episodes, the networks trained with

optimized exploration outperformed DDPG with OU and also achieved higher rewards

in later stages of the learning process (Fig. 4.9). An evaluation of the length of the

planning horizon shows, as expected, that longer planning horizons lead to a decreases

performance (Table 4.1). This is very likely due to the accumulating error of predicted

future states from the dynamics network. However, even with longer planning horizons

the presented approach outperformed exploration using OU noise.

4.6 Conclusion

This work investigated the possibility of combining an actor-critic reinforcement

learning method with a model-based trajectory optimization method for exploration.

By using trajectory optimization only to gain new experience, the ability of DDPG to

learn an optimal policy is not affected and we can furthermore make use of DDPG’s off-

policy training ability. We were able to show that by using this strategy, a performance

gain can be achieved, especially in the presented real world insertion task learned from

images. It is worth noting that this performance gain can be mainly attributed to the

change in exploration strategy since a fixed image embedding was used, reducing the

possibility of performance differences caused by using different image embeddings. This

work only considered using reward, Q-Value or value functions as objective functions

for optimizing the latent trajectory. In future work we plan to investigate the possibility

of using additional cost terms, eg. safety and state-novelty. Furthermore, another

natural next step would be to use probabilistic dynamics networks and advanced

trajectory optimization algorithms to evaluate their impact on deep reinforcement

learning algorithms when used for exploration in this setup.

85

86

CHAPTER 5

Data-efficient Co-Adaptation of Morphology and Behaviour with Deep

Reinforcement Learning

ABSTRACT

Humans and animals are capable of quickly learning new behaviours to solve new

tasks. Yet, we often forget that they also rely on a highly specialized morphology that

co-adapted with motor control throughout thousands of years. Although compelling,

the idea of co-adapting morphology and behaviours in robots is often unfeasible

because of the long manufacturing times, and the need to re-design an appropriate

controller for each morphology. In this chapter, I propose a novel approach to

automatically and efficiently co-adapt a robot morphology and its controller. Our

approach is based on recent advances in deep reinforcement learning, and specifically

the soft actor critic algorithm. Key to our approach is the possibility of leveraging

previously tested morphologies and behaviors to estimate the performance of new

candidate morphologies. As such, we can make full use of the information available

for making more informed decisions, with the ultimate goal of achieving a more

data-efficient co-adaptation (i.e., reducing the number of morphologies and behaviors

tested). Simulated experiments show that our approach requires drastically less design

prototypes to find good morphology-behaviour combinations, making this method

particularly suitable for future co-adaptation of robot designs in the real world.

87

5.1 Introduction

In nature, both morphology and behaviour of a species crucially shape its physical

interactions with the environment [85]. For example, the diversity in animal locomotion

styles is an immediate result of the interplay between different body structures,

e.g., different numbers, compositions and shapes of limbs, as well as as different

neuromuscular controls, e.g., different sensory-motor loops and neural periodic patterns.

Adaptation of a species to new ecological opportunities often comes with changes

to both body shape and control signals – morphology and behaviour are co-adapted.

Building upon this insight, we investigate in this chapter a methodology for co-

adaptation of the morphology and behaviour for computational agents using deep

reinforcement learning. Without loss of generality, we focus in particular on legged

locomotion. The goal of legged robots in such locomotion tasks is to transform as

much electric energy as possible into directional movement [86–88]. To this end, two

approaches exist: 1) optimization of the behavioural policy, and 2) optimization of

the robot design, which affects the achievable locomotion efficiency [86, 89, 90]. Policy

optimization is, especially in novel or changing environments, often performed using

reinforcement learning [4]. Design optimization is frequently based on evolutionary

algorithms or evolution-inspired and use a population of design prototypes for this

process (Fig. 5.1a) [86, 89, 91]. However, manufacturing and evaluating a large

quantity of design candidates is often infeasible in the real world due to cost and

time constraints, especially for larger robots. Therefore, the evaluation of designs is

often restricted to simulation, which is feasible but suffers from the simulation-to-

reality-gap [92, 93]. Designs and control policies optimized in simulation are often

not the best possible choice for the real world, especially if the robotics system is

complex and the environmental parameters hard to model. For example, in the work

88

of Lipson and Pollack [94] designs were first optimized in simulation in an evolutionary

manner and then manufactured in the real world. However, the performances of the

manufactured designs in the real world were significant lower than in simulation in all

but one case (see Table 1 in [94]), even though efforts were undertaken to close the

simulation-to-reality gap for the described robot.

The method proposed in this work caters towards the need of roboticists for

data-efficiency in respect to the number of prototypes required to achieve an optimal

design. We are combining design optimization and reinforcement learning in such a

way that the reinforcement learning process provides us with an objective function

for the design optimization process (Fig. 5.1b). Thus, eliminating the need for a

population of prototypes and requiring only one functioning prototype at a time.

5.2 Related Work

The work of Schaff et al. [90] is a relatively recent approach to combine reinforce-

ment learning and design optimization into one framework. The common idea is to

consider the design parameter ξ as an additional input to the policy π(s, ξ) and to

optimize the expected reward E [R] given the policy and design. The policy is trained

such that it is able to generalize over many designs and is iteratively updated with

experience collected from a population of n prototypes. The algorithm maintains a

distribution over designs, whose parameters are optimized to maximize the expected

reward. However, this approach [90] requires the maintenance of a population of

designs, which is updated every t timesteps and relies on the simulator to compute the

fitness of designs. Similarly, the work of David Ha [1] uses the design parameters ξ as

input to the policy π(s, ξ) but uses REINFORCE [95] to update the design param-

eters. Again, this approach requires a population of design prototypes to compute

the introduced population-based policy gradient for the design as well as rewards

89

1

Design Prototype

2

Design Prototype

n

Design Prototype...

Design
Optimization

Design Prototype Reinforcement
Learning

...

(a) Traditional approach in which designs
are evaluated in simulation during the de-
sign optimization process.

Design
Optimization

Design Prototype Reinforcement
Learning

(b) Proposed method which evaluates de-
signs with the learned Q- and policy net-
work and thus reduces the amount of sim-
ulations or physical prototypes required
during the design optimization process.

Original Design Design 6 Design 8 Design 10 Design 12 Design 14 Design 18 Design 16

Design 22 Design 24 Design 26 Design 28 Design 30 Design 32 Design 20 Design 34

Design 38 Design 40 Design 42 Design 44 Design 46 Design 48 Design 36 Design 50

(c) Designs ξOpt selected by the proposed method for the Half-Cheetah task.

Figure 5.1: We propose to (b) use an actor and critic for design exploration instead of
(a) creating design prototypes and evaluating their performance in simulation or the
real world. Our goal is to reduce the amount of time needed to (c) evolve a robotic
prototype in the real world.

collected from the simulator. The recent method introduced by Liao et al. [96] employs

Batch Bayesian Optimization to improve morphology and policies. The expected

performance of designs is here learned and inferred by Gaussian Processes (GP),

a second GP is also used to optimize the parameters of central pattern generators

representing movement policies. The chapter demonstrates the design optimization of

a simulated micro-robot with three parameters defining the morphology. While the

presented results are using a prototype population of 5 designs, the authors mention

that the proposed method can handle a single prototype as well. One drawback of

[96] is, however, that the GP predicting the fitness of designs is trained only with a

single value per design: the single highest reward achieved for a design. Since the

90

maximum reward is potentially affected by the initial state a robot is in, this approach

has a reduced applicability to tasks with noisy or random start states. In [86], the leg

lengths and controller of a quadruped robot were optimized in the real world. The

controller was here based on the inverse kinematics of the robot and defined by tuning

eight parameters. All leg segment lengths were described by a two-dimensional design

vector. Two different evolutionary algorithms were used to optimize these parameters

over eight generations with a population size of eight and based on the reward received.

While this experiment is an impressive demonstration of the potential of adapting

behaviour and morphology in the real world, the task was simplified through the

use of a re-configurable robot which is able to adapt its leg-lengths automatically.

This decreases the setup-time required between experiments because manufacturing

of leg-segments or other body parts are not necessary. All four of these approaches

rely on a population of design prototypes whose performance must be evaluated in

simulation or the real world, or rely on a single reward.

5.3 Problem Statement

We formalize the problem of co-adapting morphology and behavior as the opti-

mization

θ∗ = arg maxθ R|θ , (5.1)

of the reward R w.r.t. the variables θ = [ξ, π] were ξ are the morphological properties

of the agent, and π the behavior. There are multiple ways to tackle this problem. One

commonly used way is to decompose it as bi-level optimization, where we iteratively

optimize the morphology first ξ, and after fixing it, we optimize the behavior π. One

advantage of this formulation is that by decoupling the two optimization, we can take

into consideration the fact that evaluating different morphologies has an associated

91

cost (e.g., manufacturing a physical robot) which can be substantially higher than

evaluating different behaviors (e.g., running multiple controllers). In this chapter, we

frame the learning of the behaviors as an extension of the standard Markov decision

process (MDP) [97] given the additional design variable ξ (i.e., the context). In this

model, the transition probability to reach a state st after performing action at is

given by p(st+1|st, a, ξ) and depends on design properties ξ of the agent. The reward

function r(s, a, ξ) can be dependent on the design as well. For notational clarity, we

will generally use r(s) in the remainder of the chapter. The actions are generated from

the policy π(s, ξ) and the goal is to maximize the expected future reward given by

Eπ

[
∞∑
i=0

γir(st+i+1, at+i+1, ξ)

∣∣∣∣∣st = s, ai = π(si), ξ

]
, (5.2)

with γ ∈ [0, 1] being a discount factor and future states st+i+1 produced by the

transition function. Our goal is hence to maximize this objective function for both

the policy π and the design ξ using deep reinforcement learning.

5.4 Optimization of Morphology and Behaviour

We now introduce our proposed framework for sample-efficient optimization of

behaviour and design for robotic prototypes. We first describe our novel objective

function based on an actor and critic to remove the dependency on prototypes and

simulations during design optimization. Thereafter, a method is described for fast

behaviour adaptation by training a copy of actor and critic primarily on experience

collected with the current design prototype. We continue with an explanation of

two different design exploration mechanisms, random selection and novelty search.

The chapter closes with a description of the reinforcement learning algorithms and

optimization routines used.

92

5.4.1 Using the Q-Function for Design Optimization

Optimizing the behaviour of an agent usually requires learning a value or Q-value

function and a policy π by the means of reinforcement learning. The rationale of

our approach is to extend this methodology to the evaluation of the space of designs,

thereby reducing the need for large numbers of simulations or manufactured robot

prototypes.

The goal of design optimization is to increase the efficiency of the agent given an

optimal policy for each design. The objective function for this case can be the sum of

rewards collected by evaluating the behaviour of the agent with this design, given by

max
ξ
Eπ

[
T∑
i=0

rt

]
, (5.3)

where the rewards are collected through the execution of a policy π on the agent with

design ξ in the real world or in simulation.

To alleviate the aforementioned problems with the evaluation through executions

in simulation or real world, we instead propose to reuse the Q-function learned by a

deep reinforcement learning algorithm and re-formulate our objective as

max
ξ
Eπ [Q(s, a, ξ)|a = π(s, ξ)] , (5.4)

where the action a is given by the policy π(s, ξ). This creates a strong coupling between

the design optimization and reinforcement learning loop: We effectively reduce the

problem of finding optimal designs to the problem of training a critic which is able to

generate an estimated performance of a design given state and action. This means,

while optimizing a policy for a design, we also train the objective function given above

at the same time. We hypothesize that, during the training process, the critic learns to

distinguish and interpolate between designs due to the influence of the design on the

reward of transitions. We further reformulate Eq. 5.4 to optimize over the distribution

93

of start states encountered in trajectories (s0, a0, s1, · · · , sT). The objective function

becomes then the expected future reward given a design choice ξ. This could be, for

example, the case if the leg lengths of a robot are optimized and the initial position

is a standing one. Here, the initial height of the robot would vary with the design

choice. Thus, we reformulate the objective function in Eq. 5.4 such that we optimize

over the distribution of start states with

max
ξ
Es0∼p(s0|ξ) [Eπ [Q(s0, a0, ξ)|a0 = π(s0, ξ)]] . (5.5)

The motivation to optimize this function over the distribution of start states is to take

potential randomness in the initial positions, or even inaccuracies when resetting the

initial position of a robot, into account. Since the distribution of start states might be

unknown or even depend on the design, we approximate the expectation by drawing a

random batch of start states s0 from a replay buffer, which contains exclusively all

start states seen so far. If we use a deterministic deep neural network for policy π, Eq.

5.5 reduces to

max
ξ

1

n

∑
s∈sbatch

Q(s, π(s, ξ), ξ), (5.6)

with sbatch = (s1
0, s

2
0, · · · , sn0) containing n randomly chosen start states. This objective

function can be optimized with classical global optimization methods such as Particle

Swarm Optimization (PSO) [98, 99] or Covariance Matrix Adaptation - Evolution

Strategy (CMA-ES) [100].

5.4.2 Design Generalization and Specialization of Actor and Critic

A naive solution to input the design variable into the actor and critic network would

be to append the design vector to the state and train a single set of networks using the

experience of all designs. A more promising approach is to have two sets of networks:

One population actor and critic network which is trained on the training experience

94

from all designs, and individual networks which are initialized with the population

network but use primarily training experience from the current design. In practice, we

found it helpful to allocate 10% of the training batch for samples from the population

replay buffer when training the individual networks. Essentially, this approach allows

the individual networks QIndvd. and πIndvd. to specialize in a fast manner to the current

design and its nuances to quickly achieve maximum performance. In parallel, we are

training the population networks QPop. and πPop. with experience from all designs

seen so far by selecting samples with equal probability from the population replay

buffer ReplayPop.. These population networks are then able to better generalize across

different designs and provide initial weights for the individual networks. Hence, policies

do not have to be learned from scratch for each new prototype. Instead, previously

collected training data is used so that different designs can inform each other and

make efficient use of all the experiences collected thus far.

5.4.3 Exploration and Exploitation of Designs

We alternate between design exploration and exploitation to increase the diversity

of explored designs, improve generalization capabilities of the critic and avoid an

early convergence to regions of the design space. Therefore, every time we find an

optimal design during the design optimization process with the objective function

(Eq. 5.6) and conclude the subsequent reinforcement learning process, we next choose

one design using the exploration strategy. To this end, we implemented two different

approaches: sampling new designs 1) randomly, and 2) using Novelty search [101].

Novelty search is an exploration strategy in which the objective maximizes distance

to the closest neighbours. The objective function is given by

max
ξ

1

m

∑
ξ̃∈NN(ξ,Ξ̄)

‖ ξ − ξ̃ ‖2, (5.7)

95

where the function NN(ξ, Ξ̄) returns the m nearest neighbors of a design ξ from the

set Ξ̄ of chosen designs so far. This set includes only designs which were selected for

evaluation in the real world or simulation, i.e., were handed over to the reinforcement

learning algorithm as ξOpt (Fig. 5.1b).

5.4.4 Fast Evolution through Actor-Critic Reinforcement Learning

The proposed algorithm, Fast Evolution through Actor-Critic Reinforcement

Learning, is presented in Algorithm 4. We will now discuss the specifics of the used

reinforcement learning algorithm and global optimization method. However, it is

worth noting that our methodology is agnostic to the specific algorithms used for

design and behaviour optimization.

Reinforcement Learning Algorithm While in principal every reinforcement

learning method can be employed to train the Q and policy functions necessary

to optimize the designs, we use a deep reinforcement learning method due to the

continuous state and action domains of our tasks. Specifically, we employed the

Soft-Actor-Critic (SAC) algorithm [72], a state-of-the-art deep reinforcement learning

method based on the actor-critic architecture. All neural networks had three hidden

layers with a layer size of 200. Per episode we train the individual networks πIndvd.

and QIndvd. 1000 times while the population networks πPop. and QPop. are trained 250

times. The motivation was to assign more processing power to the individual networks

to adapt quickly to a design and specialize. A batch size of 256 was used for each

training updated.

Optimization Algorithm To optimize the objective function given in Eq. 5.6,

the global optimization method Particle Swarm Optimization (PSO) [98, 99] was

96

Initialize replay buffers: ReplayPop., ReplayIndvd. and Replays0

Initialize first design ξ

for i ∈ (1, 2, · · · ,M) do

πIndvd. = πPop.

QIndvd. = QPop.

Initialize and empty ReplayIndvd.

while not finished optimizing local policy do

Collect training experience (s0, a0, r1, s1, · · · , sT, rT) for

current design ξ with policy network πIndvd.

Add quadruples (si, ai, ri+1, si+1) to ReplayIndvd.

Add quintuples (si, ai, ri+1, si+1, ξ) to ReplayPop.

Add start state s0 to Replays0

Train networks πIndvd. and QIndvd. with random batches from ReplayIndvd.

Train networks πPop. and QPop. with random batches from ReplayPop.

end while

if i is even then

Sample batch of start states sbatch = (s1
0, s

2
0, · · · , sn0) from Replays0

Exploitation: Compute optimal design ξ with objective function

maxξ
1
n

∑
s∈sbatch

QPop.(s, πPop.(s, ξ), ξ)

else

Exploration: Sample design ξ with exploration strategy

end if

end for

Algorithm 4: Fast Evolution through Actor-Critic Reinforcement Learn-

ing (FEAR)

97

used. We chose PSO primarily because of its ability to search the design space

exhaustively using a large number of particles. The objective function (Eq. 5.6)

was optimized using about 700 particles, each representing a candidate design, and

updated over 250 iterations. Accordingly, PSO used a total contingent of 175.000

objective function evaluations to find an optimal design. To optimize the design using

rollouts in simulation, we had to reduce this number to about 1050 design candidates,

i.e. 35 particles updated over 30 iterations. Although this contingent is only about

0.6% of the size of the Q-function contingent, it takes about two times longer to

evaluate this number of designs in simulation. For example, on a system with an Intel

Xeon CPU E5-2630 v4 CPU equipped with an NVIDIA Quadro P6000, the design

optimization via simulation takes approximately 30 minutes while the optimization

routine using the critic requires only 15 minutes. To put this into perspective, the

reinforcement learning process on a single design requires approximately 60 minutes

for 100 episodes.

5.5 Experimental Evaluation

I now experimentally evaluate the proposed approach, with the aim of answering the

following questions: 1) Can we obtain with our algorithm comparable task performance

as optimizing the design by performing extensive trials, by instead relying on the

learned model? 2) If so, how much can the proposed approach reduce the number of

trials? 3) Can the proposed approach help us to get insight into the design space that

we are trying to optimize for a specific task?

5.5.1 Experimental Setting

To evaluate our algorithm, we considered the four control tasks simulated using

PyBullet [103] shown in Fig. 5.2. The design of agents for each task is described as a

98

(a) Half Cheetah (b) Walker

(c) Hopper (d) Daisy Hexapod

Figure 5.2: An overview of locomotion tasks used for evaluation. Three are standard
tasks and part of PyBullet which were adapted to allow changes in morphology. Image
5.2d shows HEBI’s Daisy robot [102] for which a simulation in PyBullet was created.

continuous design vector ξ ∈ Rd The initial five designs for each task were pre-selected

with the original design and four randomly chosen designs which were consistent over

all experiments. All experiments were repeated five times. For the standard PyBullet

tasks (Figures 5.2a to 5.2c) we executed 300 episodes for the initial five designs and

100 episodes thereafter. The latter was increased to 200 episodes for the more complex

Daisy Hexapod task (Fig. 5.2d) [102]. I will give a short description of the simulated

locomotion tasks and state for each task the number of states, actions and design

parameters as a vector (s, a, ξ).

Half-Cheetah (17, 6, 6) The half cheetah task has an 17 dimensional state space

consisting of joint positions, joint velocities, horizontal speed, angular velocity, vertical

99

speed and relative height. Actions have six dimensions and are accelerations of joints.

The original reward function used in PyBullet was adapted to be design independent

and is given by

r(s) = max(
∆x

10
, 0), (5.8)

where ∆x is the horizontal speed to encourage forward motion. This function is

inspired by the reward used in the Deepmind Control Suite. The continuous design

vector is a scaling factor of the original leg lengths of Half-Cheetah:

(ξ1 · 0.29, ξ2 · 0.3, ξ3 · 0.188, ξ4 · 0.29, ξ5 · 0.3, ξ6 · 0.188). (5.9)

The dimensions of the design vector are in the interval ξi ∈ [0.8, 2.0].

Walker (17, 6, 6) Similar to the Half-Cheetah task, the state space of the Walker

task is given by joint positions, joint velocities, horizontal speed, angular velocity,

vertical speed and relative height and has 17 dimensions. The two legs of Walker are

controlled through acceleration with a six dimensional action. Again, the original

reward was adapted to be design agnostic. The term encouraging maximum height of

the torso of walker was replaced by two terms favouring vertical orientation yrot of the

torso and reaching a minimal height htorso of 0.8. The full reward function is given by

r(s) =
1

10
((htorso > 0.8) · (max(∆x, 0) + 1)− ‖ yrot ‖2 0.1) . (5.10)

The design vector is a scaling factor of the leg and foot lengths of the Walker agent:

(ξ1 · 0.45, ξ2 · 0.5, ξ3 · 0.2, ξ4 · 0.45, ξ5 · 0.5, ξ6 · 0.2) (5.11)

Each design dimension lies in the interval ξi ∈ [0.5, 1.5].

Hopper (13, 4, 5) In the planar Hopper task a one-legged agent has to learn

jumping motions in order to move forward. The state space of this task has thirteen

100

dimensions and four dimensions in the action space. We use the same reward function

as for the Walker task with

r(s) =
1

10
((htorso > 0.8) · (max(∆x, 0) + 1)− ‖ yrot ‖2 0.1) . (5.12)

In addition to the length of the four movable leg segments, the length of the nose-like

feature of walker is an additional design parameter, here ξ1. The full design vector is

given by

ξ = (ξ1 · 0.7, ξ2 · 0.15, ξ3 · 0.33, ξ4 · 0.32, ξ5 · 0.25) (5.13)

with ξ2:5 being the length of each movable segment from pelvis to foot. The design

parameters were bounded with ξ1 ∈ [0.5, 4.0] for the length of the nose and ξ2:5 ∈

[0.5, 2.0] for all leg lengths.

Daisy Hexapod (43, 18, 9) For a preliminary study and to evaluate whether the

proposed method is suitable for real world applications, a simulation of the six-legged

Daisy robot by HEBI Robotics [102] was created in PyBullet. Each leg of the robot

has three motors and hence the action space has 18 dimensions. The state space has

60 dimensions and consists of joint positions, joint velocities, joint accelerations, the

velocity of the robot in x/y/z directions and the orientation of the robot in Euler

angles. The task of the robot is to learn to walk forward while keeping its orientation

and thus the reward function is given by

r(s) =
max(∆y, 0)

0.066
− 0.25 · diff(eoriginal, ecurrent), (5.14)

with ∆y being the dislocation along the y-axis, the direction the robot faces at

initialization, and diff(eoriginal, ecurrent) representing the angle between the original and

current orientation in quaternions. This function encourages the robot to keep its

original orientation and move forward. The design vector consists of two parts: leg

101

lengths, and movement range of the motors at the base of the legs. All parameters

are symmetric between the left and right side of the robot. The leg lengths are in

ξ1:6 ∈ [0.12, 0.5] for the two leg segments of each leg. Additionally, we allowed the

algorithm to optimize the movement range of the first out of three motors on each

leg. The base motors are restricted in movement between (−0.35 + ξ7:9, 0.35 + ξ7:9)

radians with the design parameters ξ7:9 ∈ [−0.2, 0.2].

5.5.2 Co-adaptation Performance

I compared the proposed framework, using actor-critic networks for design evalua-

tion, and the classical approach, optimizing the design through candidate evaluations

in simulation, on all four locomotion tasks (Fig. 5.3). We can see that, especially in the

Half-Cheetah task, using actor-critic networks might perform worse over the first few

designs but quickly reaches a comparable performance and even surpasses the baseline.

It is hypothesized that the better performance in later episodes is due to the ability of

the critic to interpolate between designs while the evaluations of designs in simulation

suffers from noise during execution. Interestingly, using simulations to optimize the

design does not seem to lead to much improvement in the case of the Walker task.

This could be due to the randomized start state, which often leads to the agent being

in an initial state of falling backwards or forwards, which would have an immediate

effect on the episodic reward. Additionally, we compared the proposed method using

the introduced objective function for evaluating design candidates against the method

used for design optimization in [1]. Fig. 5.6 shows that the evolution strategy OpenAI-

ES [104], using the simulator to evaluate design candidates with a population size

of 256, is outperformed by our proposed method. Moreover, we verified that for all

experiments, designs selected randomly, with a uniform distribution, performed worse

than designs selected through optimization (see Fig. 5.5).

102

Design Optim. via Critic (Ours) Design Optim. via Trials

10 20 30 40 50
Designs

200

300

400

500

600
C

u
m

.
E
p
is

o
d
ic

 R
e
w

a
rd

5 10 15 20 25 30
Designs

0

500

1000

1500

2000

2500

C
u
m

.
E
p
is

o
d
ic

 R
e
w

a
rd

Walker

Hopper Daisy Hexapod

Half-Cheetah

10 20 30 40 50
Designs

0

500

1000

1500

2000

C
u
m

.
E
p
is

o
d
ic

 R
e
w

a
rd

10 20 30 40 50
Designs

500

1000

1500

2000

2500

3000

C
u
m

.
E
p
is

o
d
ic

 R
e
w

a
rd

Figure 5.3: Comparison of the proposed approach (red) and using trials to evaluate the
optimality of candidate designs (blue). The plots each show the mean and standard
deviation of the highest reward achieved over five experiments for optimal designs ξOpt.
We can see that the proposed method has a comparable or even better performance
than optimization via simulation.

Design Optim. via Critic (Ours) Design Optim. via Trials

0 2500 5000 7500 10000 12500 15000 17500
Trials

0

500

1000

1500

2000

2500

C
u
m

.
E
p
is

o
d
ic

 R
e
w

a
rd

0 5000 10000 15000 20000 25000
Trials

0

500

1000

1500

2000

C
u
m

.
E
p
is

o
d
ic

 R
e
w

a
rd

Hopper

Trials Trials
0 5000 10000 15000 20000 25000

200

300

400

500

600

C
u
m

.
E
p
is

o
d
ic

 R
e
w

a
rd

0 5000 10000 15000 20000 25000
0

500

1000

1500

2000

2500

3000

C
u
m

.
E
p
is

o
d
ic

 R
e
w

a
rd

Half-Cheetah

Daisy Hexapod

Walker

Figure 5.4: Comparison between the our proposed approach of using the actor and
critic to optimize the design parameters (red) and using trials to evaluate the optimality
of candidate designs (blue). The plots show the mean and standard deviation of
the highest reward achieved over five experiments. The x-axis shows the number of
episodes executed in simulation. We can see that removing the need to simulate design
candidates leads to comparable performance in a much shorter time.

103

10 20 30 40 50
Designs

200

300

400

500

600

Cu
m

. E
pi

so
di

c
Re

wa
rd

CMA-ES PSO

(a) Comparison of CMA-ES and PSO when using rollouts from the simulator to

optimize designs.

10 20 30 40 50
Designs

200

300

400

500

600

Cu
m

. E
pi

so
di

c
Re

wa
rd

Design Optim. via Critic Only Random Designs

(b) Comparison of selecting designs randomly instead of optimizing the proposed

objective.

Figure 5.5: (a) Evaluation on the Half-Cheetah task of two different global optimization
algorithms when optimizing the design via rollouts. PSO and CMA-ES lead to the
same performance for optimization. (b) Comparison of the proposed method and
sampling only random designs instead of optimizing the objective function. The
plots show the mean and standard deviation of the highest reward achieved over five
experiments. The proposed approach outperformes the random baseline.

104

Comparison to Population-Based Approaches The proposed framework was

evaluated against two previously used approaches, CMA-ES and OpenAI-ES, as

proposed in [1]. In these methods, a population of design candidates is generated

and evaluated in simulation. Then, a single iterative update is performed and the

best design seen is trained on with reinforcement learning. This is different from

the proposes method and evaluations above, where multiple iterations of PSO and

CMA-ES can be performed between two learning phases. Figure 5.6 shows that the

proposed algorith shows a better performance than the previously used approaches.

Efficiency of Using Population and Individual Networks As mentioned above,

the proposed method uses individual networks which a primarily trained on experience

collected from the current design and population networks, which are trained on

all experience collected thus far. The individual networks are initialized from the

population networks, and are able to adapt and specialize quickly to the current design.

Additionally, the population networks are used in the proposed objective function. An

evaluation between the proposed approach and using only a single set of population

networks (Fig. 5.7) highlights the importance of being able to quickly adapt to the

current design.

Using Batches of Start States The use of batches of start states in the proposed

objective function in Eq. 5.6 is evaluated in Fig. 5.8. The figure shows that larger

batches of start states lead indeed to an increase in performance. This is because values

of states might depend on the design of an agent and, thus, the objective function

should be evaluated over several start states from different designs. An example for

this is the current height of Half-Cheetah, which is part of the state space. Using a

single start state might biase the objective function towards a specific design from

105

10 20 30 40 50
Designs

200

300

400

500

600

Cu
m

. E
pi

so
di

c
Re

wa
rd

Design Optim. via Critic Evolutionary CMA-ES via Simulation

(a) Comparison between the proposed method (red) and a population-based
version of CMA-ES (blue) in which a population of 9 design candidates is
evauated in simulation, a single iteration executed and the best design seen
selected.

10 20 30 40 50
Designs

200

300

400

500

600

Cu
m

. E
pi

so
di

c
Re

wa
rd

Design Optim. via Critic OpenAI-ES via Simulation

(b) Comparison between the proposed method (red) and the OpenAI Evolution
Strategy (blue) in which a population of 256 design candidates is evauated in
simulation, a single iteration executed and the best design seen selected.

Figure 5.6: Comparison between the proposed method and population-based ap-
proaches from [1] using the simulator to evaluate design candidates. Both graphs show
the performance on the Half-Cheetah task with the mean and standard deviation
over five experiments. The dotted line shows the best performance achieved on the
standard design of Half-Cheetah.

106

5 10 15 20 25 30
Designs

200

300

400

500

600
Cu

m
. E

pi
so

di
c

Re
wa

rd
Population/Individual Networks Only Population Network

Figure 5.7: Using individual networks which are solely trained on experience collected
from the current design in addition to population networks, which are trained on all
experience, shows an increased performance than unsing a single set of neural networks
trained on all experience (Population). The local networks are initialized from the
population networks initially. Five experiments were performed on the Half-Cheetah
task and the means and standard deviations are reported.

10 20 30 40 50
Designs

200

300

400

500

600

Cu
m

. E
pi

so
di

c
Re

wa
rd

Batch of 32 start states
Batch of 16 start states
Single start state

Figure 5.8: Evaluation of using batches of start states in the objective function in Eq.
5.6. Batches of 32, 16 and a single start state are compared against each other. It can
be seen that the performance increases with the number of start states used.

which the state originates. This can be seen in Figure 5.8 by the poor performance

when using a single start state.

Simulation Efficiency To evaluate the suitability of the proposed method for

deployment in the real world, we compared the methods based on the number of

simulations required. As we can see in Fig. 5.4, the actor-critic approach quickly

107

Figure 5.9: First two principal components of the six dimensional design space of
Half-Cheetah as computed with PCA. Colours indicate the Q-value given by the critic
on a batch of 256 start states after 50 evaluated designs, with red indicating regions
of higher expected reward, and blue the regions of low expected reward. The designs
chosen by our approach are depicted as yellow dots, the white dots are the designs
selected when optimizing via simulation, and the black shows randomly selected
design. Numbers indicate the order in which the designs were chosen for reinforcement
learning.

reaches a high performance quickly with a low number of simulations. As explained

above, this is due to the design optimization via simulation requiring 1050 simulations

to find an optimal design while the proposed method requires none.

Visualization of Reward Landscapes for Designs A major advantage of the

proposed method is the possibility to visualize the expected reward for designs. Instead

of selecting a number of designs to evaluate, which would take a significant effort

in the real world as well as computationally, we are able to query the introduced

objective function (Eq. 5.6) in a fast manner. This allows us to visually inspect the

reward landscape of designs and take a closer look at what makes designs perform

better or worse. In Fig. 5.9, the first two principal components were computed based

on the designs selected for learning in the Half-Cheetah task. We can see, for example,

that a shorter second segment of the back leg and as well as a shorter first segment of

the front leg seems to be desirable.

108

1.0 1.5 2.0
Design Dim. 1

1.0

1.5

2.0

De
sig

n
Di

m
. 2

1.0 1.5 2.0
Design Dim. 1

1.0

1.5

2.0

De
sig

n
Di

m
. 3

1.0 1.5 2.0
Design Dim. 1

1.0

1.5

2.0

De
sig

n
Di

m
. 4

1.0 1.5 2.0
Design Dim. 1

1.0

1.5

2.0

De
sig

n
Di

m
. 5

1.0 1.5 2.0
Design Dim. 1

1.0

1.5

2.0

De
sig

n
Di

m
. 6

1.0 1.5 2.0
Design Dim. 2

1.0

1.5

2.0

De
sig

n
Di

m
. 3

1.0 1.5 2.0
Design Dim. 2

1.0

1.5

2.0

De
sig

n
Di

m
. 4

1.0 1.5 2.0
Design Dim. 2

1.0

1.5

2.0

De
sig

n
Di

m
. 5

1.0 1.5 2.0
Design Dim. 2

1.0

1.5

2.0

De
sig

n
Di

m
. 6

1.0 1.5 2.0
Design Dim. 3

1.0

1.5

2.0

De
sig

n
Di

m
. 4

1.0 1.5 2.0
Design Dim. 3

1.0

1.5

2.0

De
sig

n
Di

m
. 5

1.0 1.5 2.0
Design Dim. 3

1.0

1.5

2.0

De
sig

n
Di

m
. 6

1.0 1.5 2.0
Design Dim. 4

1.0

1.5

2.0

De
sig

n
Di

m
. 5

1.0 1.5 2.0
Design Dim. 4

1.0

1.5

2.0

De
sig

n
Di

m
. 6

1.0 1.5 2.0
Design Dim. 5

1.0

1.5

2.0

De
sig

n
Di

m
. 6

Figure 5.10: The visualized cost landscape of the design space of Half Cheetah for
ξ = (1.27, 0.87, 1.17, 0.84, 0.80, 0.82). A batch of 256 start states was used. The designs
chosen by our approach are depicted as yellow dots, the white dots are the designs
selected when optimizing via simulation, and the black shows randomly selected design.

5.5.3 Visualization of the Latent Design Space

For a better understanding of the cost landscape a low dimensional design space

was computed with principal component analysis. Figures 5.10, 5.11, 5.12 shows the

low-dimensional projection of the design space as well as the designs ξOpt chosen by

the proposed method (yellow) and randomly selected designs for exploration (black)

In white designs chosen by the optimization via simulation method are shown. We

can see that the convergence rate of optimization via simulation appears to be slower

than our method. To see what properties of the design lead to a better performance

we visualized the design along the two principal components (Fig. 5.15). We can see

that just longer leg do not appear to lead automatically to better performance but

shorter front legs and slightly longer back legs do.

109

0.5 1.0 1.5
Design Dim. 1

0.5

1.0

1.5

De
sig

n
Di

m
. 2

0.5 1.0 1.5
Design Dim. 1

0.5

1.0

1.5

De
sig

n
Di

m
. 3

0.5 1.0 1.5
Design Dim. 1

0.5

1.0

1.5

De
sig

n
Di

m
. 4

0.5 1.0 1.5
Design Dim. 1

0.5

1.0

1.5

De
sig

n
Di

m
. 5

0.5 1.0 1.5
Design Dim. 1

0.5

1.0

1.5

De
sig

n
Di

m
. 6

0.5 1.0 1.5
Design Dim. 2

0.5

1.0

1.5

De
sig

n
Di

m
. 3

0.5 1.0 1.5
Design Dim. 2

0.5

1.0

1.5

De
sig

n
Di

m
. 4

0.5 1.0 1.5
Design Dim. 2

0.5

1.0

1.5

De
sig

n
Di

m
. 5

0.5 1.0 1.5
Design Dim. 2

0.5

1.0

1.5

De
sig

n
Di

m
. 6

0.5 1.0 1.5
Design Dim. 3

0.5

1.0

1.5

De
sig

n
Di

m
. 4

0.5 1.0 1.5
Design Dim. 3

0.5

1.0

1.5

De
sig

n
Di

m
. 5

0.5 1.0 1.5
Design Dim. 3

0.5

1.0

1.5

De
sig

n
Di

m
. 6

0.5 1.0 1.5
Design Dim. 4

0.5

1.0

1.5

De
sig

n
Di

m
. 5

0.5 1.0 1.5
Design Dim. 4

0.5

1.0

1.5

De
sig

n
Di

m
. 6

0.5 1.0 1.5
Design Dim. 5

0.5

1.0

1.5

De
sig

n
Di

m
. 6

Figure 5.11: The visualized cost landscape of the design space of Walker for ξ =
(0.50, 0.52, 1.35, 0.66, 0.57, 1.49). A batch of 256 start states was used. The designs
chosen by our approach are depicted as yellow dots, the white dots are the designs
selected when optimizing via simulation, and the black shows randomly selected design.

5.5.4 Evolution of Walker

Figure 5.16 shows the evolution of designs with the proposed objective function.

We can see that the start states are random and lead to different poses of Walker,

sometimes falling for- or backwards. It can be seen that while shorter legs seem

desirable, the larger the foot length the better the performance.

5.6 Conclusion

In this chapter, I studied the problem of data-efficiently co-adapting morphologies

and behaviors of robots. My contribution is a novel algorithm, based on recent

advances in deep reinforcement learning, which can better exploit previous trials to

estimate the performance of morphologies and behaviors before testing them. As a

result, the approach can drastically reduce the number of morphology designs tested

110

2 4
Design Dim. 1

0.5

1.0

1.5

2.0

De
sig

n
Di

m
. 2

2 4
Design Dim. 1

0.5

1.0

1.5

2.0

De
sig

n
Di

m
. 3

2 4
Design Dim. 1

0.5

1.0

1.5

2.0

De
sig

n
Di

m
. 4

2 4
Design Dim. 1

0.5

1.0

1.5

2.0

De
sig

n
Di

m
. 5

0.5 1.0 1.5 2.0
Design Dim. 2

0.5

1.0

1.5

2.0

De
sig

n
Di

m
. 3

0.5 1.0 1.5 2.0
Design Dim. 2

0.5

1.0

1.5

2.0

De
sig

n
Di

m
. 4

0.5 1.0 1.5 2.0
Design Dim. 2

0.5

1.0

1.5

2.0

De
sig

n
Di

m
. 5

0.5 1.0 1.5 2.0
Design Dim. 3

0.5

1.0

1.5

2.0

De
sig

n
Di

m
. 4

0.5 1.0 1.5 2.0
Design Dim. 3

0.5

1.0

1.5

2.0

De
sig

n
Di

m
. 5

0.5 1.0 1.5 2.0
Design Dim. 4

0.5

1.0

1.5

2.0

De
sig

n
Di

m
. 5

Figure 5.12: The visualized cost landscape of the design space of Hopper for ξ =
(3.41, 1.95, 0.52, 0.52, 1.90). A batch of 256 start states was used. The designs chosen
by our approach are depicted as yellow dots, the white dots are the designs selected
when optimizing via simulation, and the black shows randomly selected design.

(and their eventual manufacturing time/cost). Experimental results on 4 simulated

robots show strong performance and a drastically reduced number of design prototypes,

with one robot requiring merely 50 designs compared to the 24177 of the baseline –

that is about 3 orders of magnitudes less data. It highlights the ability of the method

to optimize the behaviour and morphology of robots and opens an exciting avenue

and first stepping stone for future experiments in the real world. The unparalleled

data-efficiency of our approach opens exciting venues towards the use in the real world

of robots that can co-adapt both their morphologies and their behaviors to more

efficiently learning to perform the desired tasks with minimal expert knowledge. In

future work, I aim to demonstrate the capabilities of this algorithm on a robot in the

real world.

111

0.2 0.4
Design Dim. 1

0.2

0.4

De
sig

n
Di

m
. 2

0.2 0.4
Design Dim. 1

0.2

0.4

De
sig

n
Di

m
. 3

0.2 0.4
Design Dim. 1

0.2

0.4
De

sig
n

Di
m

. 4

0.2 0.4
Design Dim. 1

0.2

0.4

De
sig

n
Di

m
. 5

0.2 0.4
Design Dim. 1

0.2

0.4

De
sig

n
Di

m
. 6

0.2 0.4
Design Dim. 1

0.2

0.0

0.2

De
sig

n
Di

m
. 7

0.2 0.4
Design Dim. 1

0.2

0.0

0.2

De
sig

n
Di

m
. 8

0.2 0.4
Design Dim. 1

0.2

0.0

0.2

De
sig

n
Di

m
. 9

0.2 0.4
Design Dim. 2

0.2

0.4

De
sig

n
Di

m
. 3

0.2 0.4
Design Dim. 2

0.2

0.4

De
sig

n
Di

m
. 4

0.2 0.4
Design Dim. 2

0.2

0.4

De
sig

n
Di

m
. 5

0.2 0.4
Design Dim. 2

0.2

0.4

De
sig

n
Di

m
. 6

0.2 0.4
Design Dim. 2

0.2

0.0

0.2

De
sig

n
Di

m
. 7

0.2 0.4
Design Dim. 2

0.2

0.0

0.2

De
sig

n
Di

m
. 8

0.2 0.4
Design Dim. 2

0.2

0.0

0.2

De
sig

n
Di

m
. 9

0.2 0.4
Design Dim. 3

0.2

0.4

De
sig

n
Di

m
. 4

0.2 0.4
Design Dim. 3

0.2

0.4

De
sig

n
Di

m
. 5

0.2 0.4
Design Dim. 3

0.2

0.4

De
sig

n
Di

m
. 6

0.2 0.4
Design Dim. 3

0.2

0.0

0.2

De
sig

n
Di

m
. 7

0.2 0.4
Design Dim. 3

0.2

0.0

0.2

De
sig

n
Di

m
. 8

0.2 0.4
Design Dim. 3

0.2

0.0

0.2

De
sig

n
Di

m
. 9

0.2 0.4
Design Dim. 4

0.2

0.4

De
sig

n
Di

m
. 5

0.2 0.4
Design Dim. 4

0.2

0.4
De

sig
n

Di
m

. 6

0.2 0.4
Design Dim. 4

0.2

0.0

0.2

De
sig

n
Di

m
. 7

0.2 0.4
Design Dim. 4

0.2

0.0

0.2

De
sig

n
Di

m
. 8

0.2 0.4
Design Dim. 4

0.2

0.0

0.2

De
sig

n
Di

m
. 9

0.2 0.4
Design Dim. 5

0.2

0.4

De
sig

n
Di

m
. 6

0.2 0.4
Design Dim. 5

0.2

0.0

0.2

De
sig

n
Di

m
. 7

0.2 0.4
Design Dim. 5

0.2

0.0

0.2

De
sig

n
Di

m
. 8

0.2 0.4
Design Dim. 5

0.2

0.0

0.2

De
sig

n
Di

m
. 9

0.2 0.4
Design Dim. 6

0.2

0.0

0.2

De
sig

n
Di

m
. 7

0.2 0.4
Design Dim. 6

0.2

0.0

0.2

De
sig

n
Di

m
. 8

0.2 0.4
Design Dim. 6

0.2

0.0

0.2

De
sig

n
Di

m
. 9

0.2 0.0 0.2
Design Dim. 7

0.2

0.0

0.2

De
sig

n
Di

m
. 8

0.2 0.0 0.2
Design Dim. 7

0.2

0.0

0.2

De
sig

n
Di

m
. 9

0.2 0.0 0.2
Design Dim. 8

0.2

0.0

0.2

De
sig

n
Di

m
. 9

Figure 5.13: Design space of the Daisy Hexapod for ξ =
(1.27, 0.87, 1.18, 0.84, 0.80, 0.83). A batch of 256 start states was used. The
designs chosen by our approach are depicted as yellow dots, the white dots are the
designs selected when optimizing via simulation, and the black shows randomly
selected design.

112

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25
1st PC

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
2n

d
PC

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21
22 23

24

25

26

27

28

29
30

31

32

33

34
35

36
37

38 39

40

41

42 43
44

45

46

47

48

49

50

51

2

4

6

8

10

12

14 16

18
20

22

2426

28

303234
36

38

40
42

44

46

48

50

20

21

22

23

24

25

26

27

28

29

(a) Half-Cheetah

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
1st PC

0.6

0.4

0.2

0.0

0.2

0.4

0.6

2n
d

PC

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

17

18

19

20

21

22

23

24 25

26 27

28

29

30

31

32

33

34

35

36

37

38

39

40 4142

43

44

45

46

47

48

49

50

51

2

4

6

8

10

12
14

16
18

20

22

24

26

28

30
32

34
36

38

40
42

44

464850

27.0

31.5

36.0

40.5

45.0

49.5

54.0

58.5

63.0

67.5

(b) Walker

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1st PC

1.0

0.5

0.0

0.5

1.0

1.5

2n
d

PC

1

2

3

4

5

6

7

8

9

10

11

1213

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

2

4
6

8

10
12

14
16

18

20

22

2426

28

30

32

34
36

38

40

42

44

4648
50

9

18

27

36

45

54

63

72

81

90

(c) Hopper

0.3 0.2 0.1 0.0 0.1 0.2
1st PC

0.2

0.1

0.0

0.1

0.2

2n
d

PC

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

2

4

6

8

10

12

14

16

18

20

22

24

26
28

30

27

45

63

81

99

117

135

153

171

189

(d) Daisy Hexapod

Figure 5.14: First two principal components of each design space as computed with
PCA. Colours indicate the Q-value given by the critic on a batch of 256 start states
after 50 (30 for the Daisy Hexapod) evaluated designs, with red indicating regions of
higher expected reward, and blue the regions of low expected reward. The designs
chosen by our approach are depicted as yellow dots, the white dots are the designs
selected when optimizing via simulation, and the black shows randomly selected
design. Numbers indicate the order in which the designs were chosen for reinforcement
learning.

27.74 26.78 21.68

29.22

29.18 28.13 23.18 22.72

0.5

0

-0.5

-0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25

25.79 24.72 23.85 23.15 22.59 22.1322.13

28.21 27.14 25.94 24.88 23.36 22.52 22.09 21.79

27.04 25.95 25.23 24.84 23.87

PC 1

P
C

 2

Figure 5.15: A selection of designs for Half-Cheetah, generated from the principal
components in Fig. 5.14a. Designs which are outside of the bounds set for the design
space are reduced in opacity. Each design is evaluated with the objective function
stated in Eq. 5.6.

113

Original Design Design 6 Design 8 Design 10 Design 12 Design 14 Design 16 Design 18

Design 20 Design 22 Design 24 Design 26 Design 28 Design 30 Design 32 Design 34

Design 36 Design 38 Design 40 Design 42 Design 44 Design 46 Design 48 Design

Figure 5.16: Designs ξOpt selected by the proposed method for the Half-Cheetah task.

114

CHAPTER 6

Future Work

6.1 Bridging the Gap from Simulation to Reality for the Co-Adaptation

of Morphology and Behaviour

The question arises about how the cost of design- and behaviour adaptation can be

further reduced. One possible approach is to make use of transfer learning approaches

in order to transfer motor skills learned in simulation or a previous environment to

the new environment the robot is currently interacting with. This section will outline

a possible approach and discuss the underlying assumptions necessary for a successful

transfer of skills between environments. This deviates slightly from the classical idea

of transfer learning, namely to adapt to new tasks quickly. In this section, we will

instead discuss the idea of exploiting prior knowledge about previous environments in

new scenarios.

6.1.1 Assumptions Required for Successful Transfer Learning between

Environments

This section describes the underlying assumptions for transfer learning between

environments in the case of reinforcement learning. Assume we have two environments,

let them be E1 and E2, each described by a quintuple (Si,Ai,Ξi, p
i
transition, p

i
initial, r

i).

S describes here the set of possible states and A the set of possible actions the agent

can take 1 . The set of Ξ describes the set of all possible designs ξ which our agent,

respectively the robot, can have in the environment. This set is is specific to the

1Without loss of generality and for simplicity, we assume here that every action can be taken in
any state. This is usually the case in most robotic tasks.

115

described scenario of co-adaptation in this thesis and represents an extension of the

standard reinforcement learning framework. The probability distribution ptransition

describes the transition probability of reaching a state st+1 after being in state st

with design ξ and taking the action a, in other words ptransition(st+1|st, at, ξ) 2 . The

distribution pinitial represents the distribution of the initial start states s0 and might

also depend on the design: pinitial(s|ξ). A simple example for this dependency would

be if the state vector encodes the current height of a robot and the design parameters

vary the lengths of its legs. Generally, we will assume that these distributions are

unknown but fixed in nature. The function r : S×A→ R maps state-action tuples

to a scalar values and describes the reward function. It assigns values to transitions,

with higher values to desired transitions which bring us closer to our goal/solving the

task.

We can make the following observations and assumptions for successful transfers

of motor skills between environments requiring only minimal re-adaptation:

• The sets of states, actions and designs have to be equal between environments.

Thus S0 = S1,A0 = A1 and Ξ0 = Ξ1.

• The inherent assumption is that the transition probability function ptransition is

not equal between environments, thus p1
transition 6= p2

transition for two environments

E1 and E2. That this must hold is intuitive: Assume E1 is a simulation of

environment E2. As described in the introduction of this thesis, the simulation-

to-reality gap describes the effect that simulations are, by definition, only a

limited representation of the real world. For example, the modeling of contact

forces are routinely simplified in simulation. Thus, discrepancies must exist

between the transition functions although they might only occur in a limited

2This formulation makes use of the standard Markov assumption, which was introduced earlier.

116

number of states. However, as I stated above, we are interested in cases in which

only minimal re-adaptation through reinforcement learning is required. This

implies that the differences between the two transition probabilities p1
transition and

p2
transition are sufficiently small. In other words, for all possible state-action-design

triples (s, a, ξ) the term KL (p1
transition(S|s, a, ξ)||p2

transition(S|s, a, ξ)) should be as

small as possible, with KL(·||·) describing the Kullback-Leibler divergence. A

similar statement can be made about the initial state distribution piinitial.

• As discussed above we assume that the task remains the same between envi-

ronments. In order to exploit a previously trained Q-function it is proposed to

ensure that the reward function of the new environment, r2, is proportional to

r1 with a positive, constant scaling factor λ such that r1(s, a) ∝ λr2(s, a) for all

possible state-action pairs. This assumption implies that the theoretical Q-values

are proportional as well between the two environments, which means that the

action maximizing maxaQ1(s, a) maximizes maxaQ2(s, a) as well. However,

note that this implication would only hold true if p1
transition = p2

transition. By as-

suming p1
transition 6= p2

transition, but with only a small values in the Kullback-Leibler

divergence, the action a(1) maximizing Q1(s, a(1)) will be close to the action a(2)

maximizing Q2(s, a(2)). In other words, it is expected that a(2) = δ + a(1) holds

with a sufficiently small δ for continous actions. This means, that a policy π1

which is optimal for Q1 will be a good intitial policy when starting the training

process in environment E2. Relaxing this assumptions will lead to a considerably

decrease of sample-efficiency when training on the new environment E2 due to

the necessary corrections to the policy.

117

It is hypothesized that, if the assumptions given above hold, we require only a

limited amount of re-adaptation between two environments, thus leading to sample-

efficient transfer learning between environments.

6.1.2 Proposed Approach for Transfer Learning between two

Environments

I will describe in this section how the algorithm introduced in chapter 5 can

adapt quickly to a new environment E2, when its network were previously trained on

environment E1. I will assume that the assumptions stated in the previous section

hold, especially that the nature of the task remains the same. This means, we expect to

see only deviations between the transition probabilities of both environments but only

proportional changes in the reward functions. In this case it is sufficient to execute

Algorithm 4 on environment E1 until convergence in the design parameters is reached

and transfer the two global networks QGlobal and πGlobal to the new environment E2.

The global networks of Algorithm 4 are now initialized with the previously trained

networks QGlobal and πGlobal. It is expected that this approach would decrease the

amount of design prototypes which have to be manufactured/created in environment

E2 considerably. It is hypothesized that the amount of designs/samples required to

reach optimality in the new environment will be proportional with some unknown

factor to the Kullback-Leibler divergence between the two transition probabilities

p1
transition and p2

transition.

6.1.3 Proposed Experiment for Evaluating the use of Transfer

Learning for the Co-Adaptation of Morphology and Design

A set of three experiments is proposed in order to evaluate the hypothesis described

in the sections above. The goal of these experiments is to learn the design and

118

behaviour of agents tasked with learning movement policies for running fast. The first

experiment will be on a simulated and artificial agent introduced previously, namely

the Half-Cheetah agent. The subsequent tasks will be on a four-legged robot, for

example the ANYmal C robot, the Minitaur robot or the Spot Mini produced by

Boston Dynamics. The motivation for the selection of these robots are the small

contact surfaces of their legs and thus it is anticipated that the differences between

the transition probabilities from different environments will be small. Thus, it is

hypothesized that such a task would be ideal for evaluating the possibility to use

transfer networks between environments and reducing the sample-complexity of the

algorithm.

• It is proposed that the first experiment is a simulated locomotion task such as

Half-Cheetah. In this experiment, Algorithm 4 is first executed in a simulation

with a lateral friction coefficient of x. After the algorithm converged and

produced a design adapted to the environment, the lateral friction coefficient is

changed to y such that x 6= y. This causes the agent to either slip more or less

on the ground and thus alters the transition probability slightly. Subsequently,

Algorithm 4 is executed again with pre-initialized global networks for the Q-

and policy networks. This experiment will help to validate the approach before

moving to real-world experiments which will require considerably more time and

effort than evaluations in simulation.

• The second experiment has the goal to pre-train the global networks on a

simulation of a four-legged robot, for example as the ANYmal C robot. After

finding an optimal design parameter (describing, for example, the lengths of

the legs) the experiment is repeated in the real world on a concrete floor. The

assumption is that the differences in the transition probabilities, caused by

119

different properties of the simulation ground and the concrete floor in the real

world, will be sufficiently small.

• If the previous experiment succeeds and an increased sample-efficiency can be

shown, the natural next step would be to vary the real world environment itself.

For example, one could vary the type of ground the robot has to move on by

using glass, sand, wood and different types of soil. This exchange of material

is expected to cause only small differences in the Kullback-Leibler divergence

between the transition probabilities.

The proposed experiments will prove to be important stepping stones for the

increase of sample-efficiency of the proposed algorithm for the co-adaptation of

morphology and behaviour. The sample-efficiency will be increased by transferring

policies and value functions between environments in which agents have to achieve

the same goal.

6.2 Using latent Design-dependent Action Spaces

Another potential avenue for future wok related to the co-adaptation of morphology

and behaviour is to improve the sample-complexity of the reinforcement learning

method used. One could exploit latent movement synergies which are design-dependent

in the same vein as methodologies introduced in previous sections of this thesis. For

example, one could train an autoencoder network to extract latent representations of

actions given the current state s and design ξ. This means two neural networks are

trained: An encoding network e(a, s, ξ) = z which maps an action-state-design triple

to a low-dimensional latent space. The latent representation z can then be re-projected

by the decoding network back into the original action space by d(z, s, ξ) = ã. The

goal is to find encoding and decoding networks such that a ≈ d(e(a, s, ξ), s, ξ). In

120

order to find a latent space which models latent movement synergies, it is proposed to

use a weighted loss using the Q-Value with

L =
∑

(s,a,ξ)∈D

‖ a− d(e(a, s, ξ), s, ξ) ‖ max(Q(s, a, ξ), 0), (6.1)

with D being the data set containing the experience collected from several designs. A

latent action space uncovered in this manner can be used to improve the exploration

abilities of a reinforcement learning algorithm, for example, by adding a correlated

noise term to the actions with ã = π(s) + d(z, s, ξ), with the latent variable z

being distributed with a standard normal distribution. In an initial experiment an

autoencoder was trained using Eq. 6.1 to uncover a latent action space for the

Half-Cheetah task introduced in chapter 5 over 50 designs. A visualization of the

latent action space for two different designs ξ can be seen in Fig. 6.1. The figure

shows the regions of latent actions which achieve high Q-values (red). If this latent

space is projected back to the six-dimensional action space of the Half-Cheetah task

the ability of the decoder to adapt the latent space to the design can be seen (Fig.

6.2). It can be seen how latent trajectories are contracted or expand for longer and

shorter legs. It is hypothesized that exploiting this latent space for exploration leads

to an increase in sample-efficiency for deep reinforcement learning algorithms during

the design adaptation process. Evaluating this potential could proof to be a fruitful

avenue.

121

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Latent Dim. 1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
La

te
nt

 D
im

. 2

(a) Design ξi = 1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Latent Dim. 1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

La
te

nt
 D

im
. 2

(b) Design ξi = 0.3

Figure 6.1: Latent action space extracted with a neural autoencoder network trained
on the Half-Cheetah task given a start state s0. Colours indicated the value of the
Q-function when taking a latent action with blue being the lowest possible value and
red the highest.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Action 2

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ac
tio

n
4

(a) Design ξi = 1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Action 2

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ac
tio

n
4

(b) Design ξi = 0.3

Figure 6.2: The 2-dimensional action space found by an autoencoder network sampled
in the original 6-dimensional action space for an initial start state s0. Colours indicated
the value of the Q-function when taking a latent action with blue being the lowest
possible value and red the highest. The pots show action 2 and 4 of the Half-Cheetah
task given two different designs and start states.

122

CHAPTER 7

Conclusion

”But the reason I call myself by my childhood name is to remind myself that a scientist

must also be absolutely like a child. If he sees a thing, he must say that he sees it,

whether it was what he thought he was going to see or not. See first, think later, then

test. But always see first. Otherwise you will only see what you were expecting.

Most scientists forget that.”

by Douglas Adams

in So Long, and Thanks for All the Fish

This thesis introduced a number of methodologies for the exploitation of latent

spaces in dynamical real world tasks such as locomotion and manipulation. First,

the algorithm Group Factor Policy Search was introduced which uncovers latent

movement synergies for improved exploration by combining Group Factor Analysis

with reinforcement learning. The method was evaluated on a number of simulated

and real-world tasks such as balancing and lifting (non-) deformable objects with a

bimanual robot. The ability of GrouPS to adapt quickly to new environments was

shown in an experiment in which a robot had to learn how to crawl over granular media

both in the laboratory and the desert of Arizona. Following the idea of exploiting

latent spaces for improved exploration, a methodology was introduced which extracts

a latent image embedding from camera images acquired from the endeffector-camera

of a robotic arm. By training a dynamics network in this latent space it became

possible to use trajectory optimization methods in the latent space for solving an

123

insertion task. The initial trajectory would be unrolled by exploiting the current

policy and subsequently optimized using optimization methods and the learned Q-

function. This leads to deviations from the current policy which are optimal given

the current Q-function. This method was evaluated in a real-world experiment with

sparse rewards and found to outperform random noise, which is the standard approach

used for exploration in (deep) policy search. Finally, it was demonstrated how we

can use sample-efficient reinforcement learning algorithms for the co-adaptation of

design and behaviour of robots. This new paradigm opens exciting avenues for future

developments of sample-efficient algorithms and the extraction of latent movement

synergies which take the current design of an agent into account. Taken together,

the methods introduced in this dissertation enable robots to quickly adapt to their

environments both in behaviour and morphology.

124

REFERENCES

[1] D. Ha, “Reinforcement learning for improving agent design,” arXiv preprint
arXiv:1810.03779, 2018.

[2] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

[3] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

[4] M. P. Deisenroth, G. Neumann, J. Peters, et al., “A survey on policy search
for robotics,” Foundations and Trends R© in Robotics, vol. 2, no. 1–2, pp. 1–142,
2013.

[5] K. C. Berridge, “Reward learning: Reinforcement, incentives, and expectations,”
in Psychology of learning and motivation, vol. 40, pp. 223–278, Elsevier, 2000.

[6] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley,
“Google vizier: A service for black-box optimization,” in Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 1487–1495, ACM, 2017.

[7] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Master-
ing the game of go with deep neural networks and tree search,” nature, vol. 529,
no. 7587, p. 484, 2016.

[8] M. Moravč́ık, M. Schmid, N. Burch, V. Lisỳ, D. Morrill, N. Bard, T. Davis,
K. Waugh, M. Johanson, and M. Bowling, “Deepstack: Expert-level artificial
intelligence in heads-up no-limit poker,” Science, vol. 356, no. 6337, pp. 508–513,
2017.

[9] N. Brown and T. Sandholm, “Superhuman ai for multiplayer poker,” Science,
vol. 365, no. 6456, pp. 885–890, 2019.

[10] M. Campbell, A. J. Hoane Jr, and F.-h. Hsu, “Deep blue,” Artificial intelligence,
vol. 134, no. 1-2, pp. 57–83, 2002.

[11] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo,
A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser, et al., “Starcraft ii: A
new challenge for reinforcement learning,” arXiv preprint arXiv:1708.04782,
2017.

[12] O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg, W. Czarnecki,
A. Dudzik, A. Huang, P. Georgiev, R. Powell, T. Ewalds, D. Horgan, M. Kroiss,
I. Danihelka, J. Agapiou, J. Oh, V. Dalibard, D. Choi, L. Sifre, Y. Sulsky, S. Vezh-
nevets, J. Molloy, T. Cai, D. Budden, T. Paine, C. Gulcehre, Z. Wang, T. Pfaff,
T. Pohlen, D. Yogatama, J. Cohen, K. McKinney, O. Smith, T. Schaul, T. Lilli-
crap, C. Apps, K. Kavukcuoglu, D. Hassabis, and D. Silver, “AlphaStar: Master-
ing the Real-Time Strategy Game StarCraft II.” https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/, 2019.

125

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

[13] F. Li, Q. Jiang, S. Zhang, M. Wei, and R. Song, “Robot skill acquisition in
assembly process using deep reinforcement learning,” Neurocomputing, 2019.

[14] M. Večeŕık, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess,
T. Rothörl, T. Lampe, and M. Riedmiller, “Leveraging demonstrations for deep
reinforcement learning on robotics problems with sparse rewards,” arXiv preprint
arXiv:1707.08817, 2017.

[15] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and
D. Fox, “Closing the sim-to-real loop: Adapting simulation randomization with
real world experience,” arXiv preprint arXiv:1810.05687, 2018.

[16] J. Kober and J. Peters, “Policy search for motor primitives in robotics,” Machine
Learning, vol. 84, no. 1, pp. 171–203, 2011.

[17] A. Colome, F. Amadio, and C. Torras, “Exploiting symmetries in reinforcement
learning of bimanual robotic tasks,” IEEE Robotics and Automation Letters,
2019.

[18] T. Li, A. Rai, H. Geyer, and C. G. Atkeson, “Using deep reinforcement learning
to learn high-level policies on the atrias biped,” arXiv preprint arXiv:1809.10811,
2018.

[19] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, “Deeploco: Dynamic loco-
motion skills using hierarchical deep reinforcement learning,” ACM Transactions
on Graphics (TOG), vol. 36, no. 4, p. 41, 2017.

[20] M. Zhang, X. Geng, J. Bruce, K. Caluwaerts, M. Vespignani, V. SunSpiral,
P. Abbeel, and S. Levine, “Deep reinforcement learning for tensegrity robot lo-
comotion,” in 2017 IEEE International Conference on Robotics and Automation
(ICRA), pp. 634–641, IEEE, 2017.

[21] G. Reddy, J. Wong-Ng, A. Celani, T. J. Sejnowski, and M. Vergassola, “Glider
soaring via reinforcement learning in the field,” Nature, vol. 562, no. 7726, p. 236,
2018.

[22] R. Tedrake, Z. Jackowski, R. Cory, J. W. Roberts, and W. Hoburg, “Learning to
fly like a bird,” in 14th International Symposium on Robotics Research. Lucerne,
Switzerland, Citeseer, 2009.

[23] A. Klami, S. Virtanen, E. Leppaaho, and S. Kaski, “Group Factor Analysis,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 9,
pp. 2136–2147, 2014.

[24] S. Virtanen, A. Klami, S. A. Khan, and S. Kaski, “Bayesian group factor
analysis.,” in AISTATS, pp. 1269–1277, 2012.

[25] H. H. Harman, Modern factor analysis. University of Chicago Press, 1976.

126

[26] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, S. Levine,
and G. Brain, “Time-contrastive networks: Self-supervised learning from video,”
in 2018 IEEE International Conference on Robotics and Automation (ICRA),
pp. 1134–1141, IEEE, 2018.

[27] M. E. Tipping and C. M. Bishop, “Probabilistic principal component analysis,”
Journal of the Royal Statistical Society: Series B (Statistical Methodology),
vol. 61, no. 3, pp. 611–622, 1999.

[28] M. T. Ciocarlie and P. K. Allen, “Hand posture subspaces for dexterous robotic
grasping,” The International Journal of Robotics Research, vol. 28, no. 7, pp. 851–
867, 2009.

[29] R. Deimel and O. Brock, “A novel type of compliant and underactuated robotic
hand for dexterous grasping,” Int. J. Rob. Res., vol. 35, pp. 161–185, Jan. 2016.

[30] M. Santello, M. Flanders, and J. Soechting, “Postural hand synergies for tool
use,” The Journal of Neuroscience, vol. 18, no. 23, 1998.

[31] S. Bitzer, M. Howard, and S. Vijayakumar, “Using dimensionality reduction to
exploit constraints in reinforcement learning,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 3219–
3225, IEEE, 2010.

[32] H. P. Shum, T. Komura, T. Shiratori, and S. Takagi, “Physically-based character
control in low dimensional space,” in International Conference on Motion in
Games, pp. 23–34, Springer, 2010.

[33] R. E. Bellman, Adaptive control processes: a guided tour, vol. 2045. Princeton
university press, 2015.

[34] R. Johansson, A. Robertsson, K. Nilsson, and M. Verhaegen, “State-space
system identification of robot manipulator dynamics,” Mechatronics, vol. 10,
no. 3, pp. 403–418, 2000.

[35] J. Swevers, C. Ganseman, D. B. Tukel, J. De Schutter, and H. Van Brussel,
“Optimal robot excitation and identification,” IEEE transactions on robotics and
automation, vol. 13, no. 5, pp. 730–740, 1997.

[36] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, “An introduction
to variational methods for graphical models,” in Learning in graphical models,
pp. 105–161, Springer, 1998.

[37] H. Attias, “Inferring parameters and structure of latent variable models by
variational bayes,” in Proceedings of the Fifteenth conference on Uncertainty in
artificial intelligence, pp. 21–30, Morgan Kaufmann Publishers Inc., 1999.

[38] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press,
2004.

127

[39] J. Peters, K. Mülling, J. Kober, D. Nguyen-Tuong, and O. Krömer, “Towards
motor skill learning for robotics,” in Robotics Research, pp. 469–482, Springer,
2011.

[40] N. A. Bernstein, The co-ordination and regulation of movements. Pergamon
Press, 1967.

[41] X. Wang, N. O’Dwyer, and M. Halaki, “A review on the coordinative structure
of human walking and the application of principal component analysis,” Neural
Regeneration Research, vol. 8, no. 7, pp. 662–670, 2013.

[42] G. Torres-Oviedo and L. H. Ting, “Subject-specific muscle synergies in human
balance control are consistent across different biomechanical contexts,” Journal
of Neurophysiology, vol. 103, no. 6, pp. 3084–3098, 2010.

[43] J. Z. Kolter and A. Y. Ng, “Learning omnidirectional path following using
dimensionality reduction,” in Proceedings of the Robotics: Science and Systems
(R:SS) conference, The MIT Press, 2007.

[44] K. S. Luck, G. Neumann, E. Berger, J. Peters, and H. B. Amor, “Latent space
policy search for robotics,” in 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1434–1440, IEEE, 2014.

[45] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from
Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical Society.
Series B (Methodological), vol. 39, no. 1, pp. 1–38, 1977.

[46] G. Neumann, “Variational inference for policy search in changing situations,” in
Proceedings of the 28th International Conference on Machine Learning (ICML),
pp. 817–824, 2011.

[47] J.-W. van de Meent, D. Tolpin, B. Paige, and F. Wood, “Black-box policy search
with probabilistic programs,” arXiv preprint arXiv:1507.04635, 2015.

[48] Y. E. Sagduyu and A. Ephremides, “The problem of medium access control
in wireless sensor networks,” IEEE Wireless Communications, vol. 11, no. 6,
pp. 44–53, 2004.

[49] M. Toussaint and A. Storkey, “Probabilistic inference for solving discrete and
continuous state Markov Decision Processes,” in Proceedings of the 23rd Inter-
national Conference on Machine Learning (ICML), pp. 945–952, 2006.

[50] M. Toussaint, “Robot trajectory optimization using approximate inference,” in
Proceedings of the 26th annual international conference on machine learning,
pp. 1049–1056, ACM, 2009.

[51] J. Kober and J. R. Peters, “Policy search for motor primitives in robotics,” in
Advances in neural information processing systems, pp. 849–856, 2009.

[52] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomputing, vol. 71, no. 7,
pp. 1180–1190, 2008.

128

[53] D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P. Lafourcade,
B. Marnier, J. Serre, and B. Maisonnier, “The nao humanoid: a combination of
performance and affordability,” arXiv preprint arXiv:0807.3223, 2008.

[54] E. Rohmer, S. P. Singh, and M. Freese, “V-REP: A versatile and scalable
robot simulation framework,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 1321–1326, IEEE,
2013.

[55] K. S. Luck, J. Campbell, M. A. Jansen, D. M. Aukes, and H. Ben Amor, “From
the lab to the desert: Fast prototyping and learning of robot locomotion,” in
Robotics: Science and Systems, 2017.

[56] K. S. Luck and H. B. Amor, “Extracting bimanual synergies with reinforcement
learning,” in 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 4805–4812, IEEE, 2017.

[57] H. Ben Amor, G. Heumer, B. Jung, and A. Vitzthum, “Grasp synthesis from
low-dimensional probabilistic grasp models,” Computer Animation and Virtual
Worlds, vol. 19, no. 3-4, pp. 445–454, 2008.

[58] N. Kang and J. H. Cauraugh, “Force control improvements in chronic stroke:
bimanual coordination and motor synergy evidence after coupled bimanual
movement training,” Experimental Brain Research, vol. 232, no. 2, pp. 503–513,
2014.

[59] K. S. Luck, J. Pajarinen, E. Berger, V. Kyrki, and H. B. Amor, “Sparse latent
space policy search,” in Thirtieth AAAI Conference on Artificial Intelligence,
2016.

[60] S. Hagio, F. M., and K. M., “Identification of muscle synergies associated with
gait transition in humans,” Frontiers in Human Neuroscience, vol. 9, no. 48,
2015.

[61] S. A. Safavynia, G. Torres-Oviedo, and L. H. Ting, “Muscle synergies: implica-
tions for clinical evaluation and rehabilitation of movement,” Topics in spinal
cord injury rehabilitation, vol. 17, no. 1, p. 16, 2011.

[62] F. Hug, N. A. Turpin, A. Guével, and S. Dorel, “Is interindividual variability of
emg patterns in trained cyclists related to different muscle synergies?,” Journal
of Applied Physiology, vol. 108, no. 6, pp. 1727–1736, 2010.

[63] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp synthesis-a
survey,” Trans. Rob., vol. 30, pp. 289–309, Apr. 2014.

[64] S. Andrews and P. G. Kry, “Technical section: Goal directed multi-finger
manipulation: Control policies and analysis,” Comput. Graph., vol. 37, pp. 830–
839, Nov. 2013.

129

[65] H. B. Amor, E. Berger, D. Vogt, and B. Jung, “Kinesthetic bootstrapping:
Teaching motor skills to humanoid robots through physical interaction,” in
Annual conference on artificial intelligence, pp. 492–499, Springer, 2009.

[66] K. C. D. Fu, F. D. Libera, and H. Ishiguro, “Extracting motor synergies from
random movements for low-dimensional task-space control of musculoskeletal
robots,” Bioinspiration and Biomimetics, vol. 10, no. 5, p. 056016, 2015.

[67] E. Leppäaho, “Transfer Learning with Group Factor Analysis,” Master’s thesis,
Aalto University, Finland, 2013.

[68] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large scale
optimization,” Mathematical programming, vol. 45, no. 1, pp. 503–528, 1989.

[69] J. Kober and J. R. Peters, “Policy search for motor primitives in robotics,” in
Advances in neural information processing systems, pp. 849–856, 2009.

[70] M. Jaritz, R. De Charette, M. Toromanoff, E. Perot, and F. Nashashibi, “End-to-
end race driving with deep reinforcement learning,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 2070–2075, IEEE, 2018.

[71] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D. Lam, A. Be-
wley, and A. Shah, “Learning to drive in a day,” arXiv preprint arXiv:1807.00412,
2018.

[72] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor,” in
International Conference on Machine Learning, pp. 1856–1865, 2018.

[73] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[74] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv
preprint arXiv:1509.02971, 2015.

[75] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian motion,”
Physical review, vol. 36, no. 5, p. 823, 1930.

[76] H. Tang, R. Houthooft, D. Foote, A. Stooke, O. X. Chen, Y. Duan, J. Schulman,
F. DeTurck, and P. Abbeel, “# exploration: A study of count-based exploration
for deep reinforcement learning,” in Advances in neural information processing
systems, pp. 2753–2762, 2017.

[77] B. C. Stadie, S. Levine, and P. Abbeel, “Incentivizing exploration in reinforce-
ment learning with deep predictive models,” arXiv preprint arXiv:1507.00814,
2015.

[78] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven explo-
ration by self-supervised prediction,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pp. 16–17, 2017.

130

[79] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network dynamics
for model-based deep reinforcement learning with model-free fine-tuning,” in
2018 IEEE International Conference on Robotics and Automation (ICRA),
pp. 7559–7566, IEEE, 2018.

[80] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep reinforcement
learning in a handful of trials using probabilistic dynamics models,” in Advances
in Neural Information Processing Systems, pp. 4759–4770, 2018.

[81] A. Srinivas, A. Jabri, P. Abbeel, S. Levine, and C. Finn, “Universal planning
networks,” in International Conference on Machine Learning (ICML), 2018.

[82] N. Heess, G. Wayne, D. Silver, T. Lillicrap, T. Erez, and Y. Tassa, “Learning
continuous control policies by stochastic value gradients,” in Advances in Neural
Information Processing Systems, pp. 2944–2952, 2015.

[83] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-bfgs-b: Fortran
subroutines for large-scale bound-constrained optimization,” ACM Transactions
on Mathematical Software (TOMS), vol. 23, no. 4, pp. 550–560, 1997.

[84] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden,
A. Abdolmaleki, J. Merel, A. Lefrancq, et al., “Deepmind control suite,” arXiv
preprint arXiv:1801.00690, 2018.

[85] R. C. Bertossa, “Morphology and behaviour: functional links in development
and evolution introduction,” Philosophical transactions of the Royal Society of
London. Series B, Biological sciences, vol. 366, pp. 2056–68, 07 2011.

[86] T. F. Nygaard, C. P. Martin, E. Samuelsen, J. Torresen, and K. Glette, “Real-
world evolution adapts robot morphology and control to hardware limitations,”
in Proceedings of the Genetic and Evolutionary Computation Conference, pp. 125–
132, ACM, 2018.

[87] S. Seok, A. Wang, M. Y. M. Chuah, D. J. Hyun, J. Lee, D. M. Otten, J. H.
Lang, and S. Kim, “Design principles for energy-efficient legged locomotion
and implementation on the mit cheetah robot,” Ieee/asme transactions on
mechatronics, vol. 20, no. 3, pp. 1117–1129, 2014.

[88] R. M. Alexander, “Walking and running: Legs and leg movements are subtly
adapted to minimize the energy costs of locomotion,” American Scientist, vol. 72,
no. 4, pp. 348–354, 1984.

[89] K. Sims, “Evolving virtual creatures,” in Proceedings of the 21st annual con-
ference on Computer graphics and interactive techniques, pp. 15–22, ACM,
1994.

[90] C. Schaff, D. Yunis, A. Chakrabarti, and M. R. Walter, “Jointly learning to
construct and control agents using deep reinforcement learning,” arXiv preprint
arXiv:1801.01432, 2018.

131

[91] F. Corucci, M. Calisti, H. Hauser, and C. Laschi, “Novelty-based evolutionary
design of morphing underwater robots,” in Proceedings of the 2015 annual
conference on Genetic and Evolutionary Computation, pp. 145–152, ACM, 2015.

[92] J. C. Zagal, J. Ruiz-del Solar, and P. Vallejos, “Back to reality: Crossing the
reality gap in evolutionary robotics,” in IAV 2004 the 5th IFAC Symposium on
Intelligent Autonomous Vehicles, Lisbon, Portugal, 2004.

[93] S. Koos, J.-B. Mouret, and S. Doncieux, “The transferability approach: Crossing
the reality gap in evolutionary robotics,” IEEE Transactions on Evolutionary
Computation, vol. 17, no. 1, pp. 122–145, 2012.

[94] H. Lipson and J. B. Pollack, “Automatic design and manufacture of robotic
lifeforms,” Nature, vol. 406, no. 6799, p. 974, 2000.

[95] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Machine learning, vol. 8, no. 3-4, pp. 229–256, 1992.

[96] T. Liao, G. Wang, B. Yang, R. Lee, K. Pister, S. Levine, and R. Calandra,
“Data-efficient learning of morphology and controller for a microrobot,” arXiv
preprint arXiv:1905.01334, 2019.

[97] R. Bellman, “A Markovian decision process,” Journal of Mathematics and
Mechanics, pp. 679–684, 1957.

[98] M. R. Bonyadi and Z. Michalewicz, “Particle swarm optimization for single
objective continuous space problems: a review,” 2017.

[99] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in
MHS’95. Proceedings of the Sixth International Symposium on Micro Machine
and Human Science, pp. 39–43, Oct 1995.

[100] N. Hansen and A. Ostermeier, “Adapting arbitrary normal mutation distributions
in evolution strategies: The covariance matrix adaptation,” in Proceedings of
IEEE international conference on evolutionary computation, pp. 312–317, IEEE,
1996.

[101] J. Lehman and K. O. Stanley, “Exploiting open-endedness to solve problems
through the search for novelty,” Artificial Life, vol. 11, p. 329, 2008.

[102] HEBI Robotics, “Hebi robotics x-series hexapod data sheet.” http://docs.hebi.
us/resources/kits/assyInstructions/A-2049-01_Data_Sheet.pdf, 2019.
Accessed: 06.07.2019.

[103] E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for
games, robotics and machine learning.” http://pybullet.org, 2016–2019.

[104] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution strategies as a
scalable alternative to reinforcement learning,” arXiv preprint arXiv:1703.03864,
2017.

132

http://docs.hebi.us/resources/kits/assyInstructions/A-2049-01_Data_Sheet.pdf
http://docs.hebi.us/resources/kits/assyInstructions/A-2049-01_Data_Sheet.pdf
http://pybullet.org

CHAPTER A

COAUTHOR APPROVAL FOR CHAPTER 2

133

The chapter titled “Sparse Latent Space Policy Search” was published earlier –

2016 – in the Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence.

The paper had five contributing authors. Kevin Sebastian Luck was the first and

corresponding author. The original publication can be found at: https://www.aaai.

org/ocs/index.php/AAAI/AAAI16/paper/viewPaper/12275

Joni Pajarinen, Erik Berger, Ville Kyrki and Heni Ben Amor have all consented

for the publication to be included in this dissertation by Kevin Sebastian Luck.

134

https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewPaper/12275
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewPaper/12275

CHAPTER B

COAUTHOR APPROVAL FOR CHAPTER 3

135

The chapter titled “Extracting Bimanual Synergies with Sample-Efficient Reinforce-

ment Learning” was published earlier – 2017 – in the Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). The paper had

two contributing authors. Kevin Sebastian Luck was the first and corresponding

author. The original publication can be found at: https://doi.org/10.1109/IROS.

2017.8206356

Heni Ben Amor has consented for the publication to be included in this dissertation

by Kevin Sebastian Luck.

136

https://doi.org/10.1109/IROS.2017.8206356
https://doi.org/10.1109/IROS.2017.8206356

	LIST OF TABLES
	LIST OF FIGURES
	1
	1.1 Problem Statement
	1.2 Contributions
	1.2.1 Methodical Contributions
	1.2.2 Contributions towards Real-World Applications
	1.2.3 Algorithmic Properties

	1.3 Thesis Outline

	2
	2.1 Introduction
	2.2 Problem Statement
	2.3 Group Factor Policy Search
	2.3.1 Variational Inference for Policy Search
	2.3.2 Formulation of Group Factor Policy Search
	2.3.3 Derivation of Update Equations
	2.3.4 Algorithm

	2.4 Evaluation
	2.4.1 Setup of the Evaluation
	2.4.2 Results
	2.4.3 Importance of the Choice of Groups

	2.5 Experiment: Lifting a Leg
	2.6 Experiment: Learning Locomotion on Granular Media
	2.7 Conclusion

	3
	3.1 Introduction
	3.2 Related Work
	3.3 Extracting Synergies with Policy Search
	3.3.1 Group Factor Analysis for Synergies
	3.3.2 Group Factor Policy Search
	3.3.3 Transfer Learning with GrouPS

	3.4 Experiments
	3.4.1 Experimental Setup
	3.4.2 Groups
	3.4.3 Used Basis Functions
	3.4.4 Reward Function
	3.4.5 Objects
	3.4.6 Time and Sample Size
	3.4.7 Reproducibility
	3.4.8 Experiments

	3.5 Results
	3.6 Discussion
	3.7 Conclusions

	4
	4.1 Introduction
	4.2 Related Work
	4.3 Method
	4.3.1 Image Embedding
	4.3.2 Latent Dynamics
	4.3.3 Deep Reinforcement Learning
	4.3.4 Optimized Exploration

	4.4 Experiments
	4.4.1 Evaluation in Simulation on the Cheetah Task
	Comparison between Ornstein-Uhlenbeck and optimized exploration
	Comparison between different planning horizons
	Comparison between different objectives
	4.4.2 Insertion in the real world

	4.5 Discussion
	4.6 Conclusion

	5
	5.1 Introduction
	5.2 Related Work
	5.3 Problem Statement
	5.4 Optimization of Morphology and Behaviour
	5.4.1 Using the Q-Function for Design Optimization
	5.4.2 Design Generalization and Specialization of Actor and Critic
	5.4.3 Exploration and Exploitation of Designs
	5.4.4 Fast Evolution through Actor-Critic Reinforcement Learning

	5.5 Experimental Evaluation
	5.5.1 Experimental Setting
	5.5.2 Co-adaptation Performance
	5.5.3 Visualization of the Latent Design Space
	5.5.4 Evolution of Walker

	5.6 Conclusion

	6
	6.1 Bridging the Gap from Simulation to Reality for the Co-Adaptation of Morphology and Behaviour
	6.1.1 Assumptions Required for Successful Transfer Learning between Environments
	6.1.2 Proposed Approach for Transfer Learning between two Environments
	6.1.3 Proposed Experiment for Evaluating the use of Transfer Learning for the Co-Adaptation of Morphology and Design

	6.2 Using latent Design-dependent Action Spaces

	7
	REFERENCES
	A
	B

