
SAFE ROBOT PLANNING AND CONTROL USING UNCERTAINTY-AWARE DEEP
LEARNING

A Dissertation
Presented to

The Academic Faculty

By

David D. Fan

Towards the Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy in Robotics

Georgia Institute of Technology

August 2021

Copyright © David D. Fan 2021

SAFE ROBOT PLANNING AND CONTROL USING UNCERTAINTY-AWARE DEEP
LEARNING

Approved by:

Dr. Evangelos Theodorou, Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Patricio Vela
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Samuel Coogan
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Fumin Zhang
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Ali-akbar Agha-mohammadi,
Co-Advisor
NASA Jet Propulsion Laboratory
California Institute of Technology

Date Approved: July 14, 2021

By seeking and blundering we learn.

Johann Wolfgang von Goethe

To my parents and grandparents.

ACKNOWLEDGEMENTS

I would like to thank several individuals for their help and support in completing this thesis.

First, I would like to thank my advisor Evangelos Theodorou, for his support, guidance, and

patience throughout this journey. I am particularly grateful for his taking a chance on me, sending

opportunities my way, and being patient and understanding in times of difficulty.

Heartfelt thanks goes to my co-advisor, Dr. Ali Agha, whose enthusiasm and mentorship has

been invaluable in the latter part of my PhD, and who has helped to make my time spent at JPL

most memorable. I would also like to thank the rest of the committee, Dr. Patricio Vela, Dr. Samuel

Coogan, and Dr. Fumin Zhang for their comments, time, and insights.

I am indebted to the many collaborators and co-authors whom I have been lucky to know and

learn from. I am grateful to Rohan Thakker for many interesting discussions and good advice, as

well as to Kyohei Otsu, for his encouragement and guidance. I am grateful to the entire CoSTAR

team at JPL, especially Ben Morrell, Angel Santamaria-Navarro, Brett Lopez, Sung Kim, Anushri

Dixit, Amanda Bouman, Thomas Touma, Nikhilesh Alatur, Thomas Lew, Yuki Kubo, Jenn Nguyen,

Jesus Tordesillas, Tara Bartlett, Leon Kim, Fadhil Ginting, and many others.

I would like to thank Dr. John Reeder for his support and mentorship in navigating the SMART

program.

And, I am lucky to have known and worked with the members of the ACDS Lab, and am

grateful for many interesting discussions and collaborations - Kaivalya Bakshi, Yunpeng Pan, Grady

Williams, Keuntaek Lee, Marcus Pereira, Pat Wang, Bogdan Vlahov, Harleen Brar, and Manan

Gandhi.

I would like to thank my friends and family for their love and support, especially my parents,

Howard and Mary, and my brother, Philip, as well as Jason, for his encouragement and many taco

runs.

Finally, I would like to thank Hannah, for always believing in me.

This research was partially carried out at the Jet Propulsion Laboratory, California Institute of

Technology, and was sponsored by the Year-round Internship Program and the National Aeronautics

and Space Administration (80NM0018D0004).

TABLE OF CONTENTS

Acknowledgments .

List of Tables . i

List of Figures . ii

Summary . 1

Chapter 1: Introduction . 2

1.1 Motivation . 2

1.1.1 Current State of Practice . 2

1.1.2 Neural Networks in Robotics . 2

1.1.3 Exploration of Extreme Environments . 3

1.2 Objective and Scope of this Thesis . 5

1.2.1 Safety in Learning for Control . 5

1.2.2 Learning Uncertainty for Trajectory Optimization 6

1.2.3 Stochastic Traversability and Planning in Extreme Environments 7

1.2.4 Learning Tail-risk Traversability . 8

1.2.5 Contributions and Outline . 9

Chapter 2: Bayesian Learning-Based Adaptive Control for Safety Critical Systems . . . 11

2.1 Summary . 11

2.2 Introduction . 11

2.2.1 Related Work . 13

2.2.2 Contributions . 14

2.3 Safety and Stability under Model Learning via Stochastic CLF/CBFs 14

2.3.1 Stochastic Control Lyapunov Functions for Switched Systems 17

2.3.2 Stochastic Control Barrier Functions for Switched Systems 20

2.3.3 Safety and Stability under Model Adaptation 21

2.4 Application to Fast Autonomous Driving . 22

2.4.1 Validation of BALSA in Simulation . 23

2.4.2 Comparing Different Modeling Methods in Simulation 24

2.4.3 Hardware Experiments on Martian Terrain 27

2.5 Conclusion . 28

Chapter 3: Deep Learning Tubes for Tube MPC . 29

3.1 Summary . 29

3.2 Introduction . 29

3.3 Deep Learning Tubes . 33

3.3.1 Learning Tubes For Robust and Tube MPC 33

3.3.2 Quantile Regression . 35

3.3.3 Enforcing Monotonicity . 37

3.3.4 Epistemic Uncertainty . 37

3.4 Extension to Tubes Defined by a Metric . 39

3.4.1 Quantile Metric Tube Loss . 40

3.4.2 Enforcing Metric Monotonicity in ω . 41

3.5 Three Ways to Learn Tubes for Tube MPC . 42

3.5.1 Learning Tube Dynamics for a Given Controller 43

3.5.2 Learning Tracking Error Dynamics and Tube Dynamics 45

3.5.3 Learning System Dynamics and Tube Dynamics 47

3.6 Experimental Details . 50

3.6.1 Evaluation on a 6-D problem . 50

3.6.2 Comparison with analytic bounds . 51

3.6.3 Ablative Study . 51

3.6.4 Evaluation on Quadrotor Dynamics . 53

3.7 Conclusion . 56

Chapter 4: Stochastic Traversability Evaluation and Planning for Risk-aware Off-road
Navigation . 57

4.1 Summary . 57

4.2 Introduction . 57

4.3 Related Work . 60

4.4 Risk-Aware Traversability and Planning . 62

4.4.1 Problem Statement . 62

4.4.2 Hierarchical Risk-Aware Planning . 63

4.5 STEP for Unstructured Terrain . 65

4.5.1 Modeling Assumptions . 66

4.5.2 Traversability Assessment Models . 68

4.5.3 Risk-aware Geometric Planning . 68

4.5.4 Risk-aware Kinodynamic Planning . 70

4.5.5 Optimization Costs and Constraints . 74

4.5.6 Dynamic Risk Adjustment . 77

4.6 Experiments . 78

4.6.1 Simulation Study . 78

4.6.2 Hardware Results . 79

4.7 Conclusion . 81

Chapter 5: Costmap Learning for Risk-Aware Traversability in Challenging Environ-
ments . 82

5.1 Summary . 82

5.2 Introduction . 83

5.3 Method . 86

5.3.1 Traversability as a random variable . 86

5.3.2 Risk Metrics, VaR and CVaR . 87

5.3.3 Learning VaR and CVaR . 88

5.3.4 Obtaining Ground Truth Labels . 91

5.4 Implementation Details . 92

5.4.1 Dataset . 92

5.4.2 Computing Traversability Cost . 93

5.4.3 Transforming Pointclouds to Costmaps 94

5.4.4 Training . 97

5.5 Evaluation and Results . 99

5.5.1 Evaluation Metrics . 100

5.5.2 In-distribution (ID) Performance . 103

5.5.3 Out-of-Distribution (OOD) Performance 103

5.5.4 Comparisons against baselines . 107

5.6 Conclusion . 110

Chapter 6: Conclusion . 111

References . 126

LIST OF TABLES

2.1 Average tracking error in position for different modeling methods in sim, split into
the first minute and second minute. 26

2.2 Mean, standard deviation, and max tracking error on our rover platform for a figure-8
task. 28

5.1 Details of datasets, with number of data samples, duration of the runs, approximate
distance traveled, and average width of the passages in the environment. Abbrevia-
tion key: SA - Subway Atrium, SO - Subway Office, LM - Limestone Mine, LC -
Limestone Cave, TA - Lava Tube A, TB - Lava Tube B. 94

5.2 Neural network architecture details. PConv are partial convolutions, with PConv1-4
encoding and PConv5-8 decoding. BN indicates if the layer is followed by Batch
Normalization. Concat∗ indicates skip links, which concatenate the output of
previous layers. 99

5.3 Computation time for Handcrafted costmap vs. CVaR-learning costmap, com-
puted from N=250 samples. Also shown are times for preprocessing steps, i.e.
ground segmentation and creating the 2.5 elevation map. Using a CVaR learning
costmap to replace the handcrafted costmap would improve total computation time
by approximately 48%. 110

i

LIST OF FIGURES

1.1 Robots used in this thesis autonomously exploring unknown and hazardous envi-
ronments. Difficult-to-traverse terrain is often the cause of robot malfunction and
damage. Top left: Clearpath’s Husky and Boston Dynamic’s Spot robots exploring
an underground lava tube. Top right: Spot exploring a limestone cave. Bottom left:
Husky exploring an industrial coal mine. Bottom right: Spot exploring a boulder
field within a lava tube. 4

2.1 The left image depicts a 1/5th scale RC car platform driving at the Mars Yard at
JPL; and the right is a platform from the Mars Explore Rover (MER) mission. . . . 12

2.2 Comparison of the performance of four algorithms in tracking and avoiding barrier
regions (red ovals). ref is the reference trajectory. ad is an adaptive controller
(µrm + µpd− µad). qp is a non-adaptive safety controller (µrm + µpd + µqp). pd is a
proportional derivative controller (µrm + µpd). rob is a robust controller which uses a
fixed σi(x) to compensate for modeling errors. balsa is the full adaptive CLF-CBF-
QP approach outlined in this paper and in Algorithm 1, i.e. (µrm +µpd−µad +µqp).
. 24

2.3 Top: Velocities of each algorithm. Red dotted line indicates safety barrier. Middle:
Output prediction error of model, decreasing with time. Solid and dashed lines
indicate both output dimensions. Bottom: Uncertainty σi(x), also decreasing with
time. Predictions are made after 10 seconds to accumulate enough data to train the
network. During this time we choose an upper bound for σ0 = 1.0. 25

2.4 Comparison of adaptation performance in a Gazebo simulation using three different
probabilistic model learning methods. 26

2.5 Left: A high-speed rover vehicle. Right: Figure-8 tracking on our rover platform on
rough and sandy terrain, comparing adaptation vs. no adaptation. 27

ii

2.6 Vehicle avoids collision despite localization drift and unmodeled dynamics. Blue
line is the reference trajectory, colored pluses are the vehicle pose, colored points
are obstacles. Colors indicate time, from blue (earlier) to red (later). Note that
localization drift results in the obstacles appearing to shift position. Green circle
indicates location of the obstacle at the last timestep. Despite this drift the vehicle
does not collide with the obstacle. 28

3.1 A learned tube (green) with learned mean (blue) that captures the distribution of
trajectories (cyan) on a full quadrotor model tracking a target trajectory (black),
propagated for 200 timesteps forward from the initial states (dots). 30

3.2 Comparison of 3-σ bounds on distributions of trajectories using GP moment match-
ing (red) and the proposed quantile regression method (green). 100 sampled tra-
jectories are shown (cyan) along with starting and ending distributions (blue, left
and right histograms). Left: GP moment matching overestimates the distribution
for the dynamics ẋ = −x|x|, while our method models it well. Right: GP moment
matching underestimates the distribution for the dynamics ẋ = − sin(4x), while
our method captures the tails of the distribution. 32

3.3 Diagram of a tube around the dynamics of z, within which x stays invariant. Note
that the tube set Ωt is time-varying. 34

3.4 Learning tube dynamics from data. Left: The predicted tube at t+ 1 is too small.
The gradient of the loss function will increase its size. Middle: The predicted
tube at t + 1 is larger than the actual trajectory in x taken, and will be shrunk.
Right: The mapping fω(ω, zt, vt, t) is monotonic with respect to ω, which results in
Ω1
t ⊆ Ω2

t =⇒ Ω1
t+1 ⊆ Ω2

t+1. 36

3.5 Estimating epistemic uncertainty for a 1-D function. Black dots indicate noisy data
used to train the models, black line indicates the true function. Green colors indicate
trained neural network models with green line indicating mean, and green dotted
lines indicating learned 99% quantile bounds. Green shading indicates increased
quantile bounds scaled by the learned epistemic uncertainty. Blue line and shading
is GP regression with 99% bounds for comparison. 39

3.6 (a) Learning error dynamics fe along with tube dynamics fω. Black line is the
nominal trajectory fz, blue line is data collected from the system. Cyan indicates
tracking errors, whose dynamics are learned. Grey tube denotes fω, which captures
the error between the true dynamics and zt + et. (b) Fitting learned dynamics to
actual data. Blue inline indicates data collected from the system, black line is a
learned dynamics trajectory fitted to the data. 46

iii

3.7 Comparison of 3 tube MPC approaches with learned tubes. Red circles denote
obstacles, magenta cross denotes goal. Cyan lines indicate sampled trajectories
from the system xt with randomized initial conditions. Top: Algorithm 1, learning
a tube around the reference z (black) used for tracking. Green circles indicate
the tube width obtained at each timestep. Mid: Algorithm 2, learning tracking
error dynamics (blue line) for the center of the tube. Bot: Algorithm 3, tube MPC
problem using learned policy, dynamics, and tube dynamics. Red lines indicate
planned NN dynamics trajectories at each MPC timestep, along with the forward
propagated tube dynamics (green), shown every 20 timesteps. Blue line indicates
actual path taken (xt). 52

3.8 Learned 95% quantile error bounds (green) vs. 95% analytic bounds (dotted red) for
the linear triple-integrator system, with 100 sampled trajectories, tracking a random
reference trajectory. 53

3.9 Evaluation of learned tube dynamics fω on triple integrator system with varying α
(left) and varying number of datapoints (right). Red indicates fraction of validation
samples that exceed the bound, while blue indicates average distance in excess of the
bound. Models learned with the epistemic loss along with the quantile loss (circles,
solid lines) perform better vs. models without epistemic uncertainty (triangles,
dotted lines). Gray lines mark the best possible values. 54

3.10 Algorithm 3 working on quadrotor dynamics, showing 5 individual MPC solutions
at different times along the path taken. Thinner lines (black and blue) indicate
planned future trajectories z·|t and e·|t, respectively. 55

3.11 Tube widths fω for quadrotor dynamics, 10 episodes of 200 timesteps each, tracking
random reference trajectories. From top to bottom, we plot (px, py, pz, vx, vy, vz).
Green lines indicate the quantile bound ωt, with α = 0.9, and cyan lines show 100
sampled error trajectories, |xt − et|. Black stars indicate the start of a new episode. 55

4.1 Top left: Boston Dynamics Spot quadruped robot exploring Valentine Cave at
Lava Beds National Monument, CA. Top right, bottom left: Clearpath Husky
robot exploring Arch Mine in Beckley, WV. Bottom middle, right: Spot exploring
abandoned Satsop power plant in Elma, WA. 58

4.2 Comparison of the mean, VaR, and CVaR for a given risk level α ∈ (0, 1]. The
axes denote the values of the stochastic variable ζ, which in our work represents
traversability cost. The shaded area denotes the (1− α)% of the area under p(ζ).
CVaRα(ζ) is the expected value of ζ under the shaded area. 61

iv

4.3 Overview of system architecture for STEP. From left to right: Odometry aggregates
sensor inputs and relative poses. Next, Risk Map Processing merges these point-
clouds and creates a multi-layer risk map. The map is used by the Geometric Path
Planner and the Kinodynamic MPC Planner. An optimal trajectory is found and
sent to the Tracking Controller, which produces control inputs to the robot. 65

4.4 Multi-layer traversability risk analysis, which first aggregates recent pointclouds
(top). Then, each type of analysis (slope, step, collision, etc.) generates a risk map
along with uncertainties (middle rows). These risks are aggregated to compute the
final CVaR map (bottom). 67

4.5 Diagram of kinodynamic MPC planner, which begins with evaluating various paths
within a trajectory library. The lowest cost path is chosen as a candidate and
optimized by the QP solver. 70

4.6 Diagram of kinodynamic MPC planner while running live, showing global plan,
trajectory library, planned robot footprint, and risk map with convexified obstacle
cells. 71

4.7 Left: Computing convex to convex signed distance function between the robot
footprint and an obstacle. Signed distance is positive with no intersection and
negative with intersection. Right: Robot pitch and roll are computed from the
surface normal rotated by the yaw of the robot. Purple rectangle is the robot footprint
with surface normal nw. g denotes gravity vector, nrx,y,z are the robot-centric surface
normal components used for computing pitch and roll. 75

4.8 Path distributions from four simulated runs. The risk level α spans from 0.1 (close
to mean-value) to 0.95 (conservative). Smaller α typically results in a shorter path,
while larger α chooses statistically safe paths. 78

4.9 Distance vs risk trade-off from 50 Monte-Carlo simulations. Left: Distributions of
path distance. Right: Distributions of max risk along the traversed paths. Box plot
uses standard quartile format and dots are outliers. 79

4.10 Traversability analysis results for the Valentine Cave experiment. From left to right:
Third-person view, elevation map (colored by normal direction), risk map (colored
by risk level. white: safe (r <= 0.05), yellow to red: moderate (0.05 < r <= 0.5),
black: risky (r > 0.5)), and planned geometric/kinodynamic paths (yellow lines/red
boxes). 80

5.1 Top: Spot autonomously exploring Valentine Cave, Lava Beds National Monument,
CA, USA. Bottom: LiDAR point cloud and computed costmap in the same envi-
ronment. In this work, we aim to infer a CVaR costmap from the LiDAR point
cloud. 83

v

5.2 Modified quantile Huber loss lh(e, α), for varying values of α and h. 89

5.3 Learned VaR and CVaR on a toy 1D problem. Top: Samples drawn from a distribu-
tion which is multimodal and heteroskedastic. Solid and dotted lines show learned
VaR and CVaR levels, respectively, for different values of α. Bottom: PDF of the
true distribution for varying values of x. Also marked are the learned VaR (solid
vertical line) and CVaR (dotted vertical line) values. 91

5.4 Datasets collected in 6 different environments. Top row: Photo of the environment.
Second row: LiDAR pointcloud and elevation map produced after ground segmen-
tation. Third row: Handcrafted risk map with varying risk (white: safe (r <= 0.1),
yellow to red: moderate (0.1 < r <= 0.9), black: risky (r > 0.9)). Pointclouds are
also shown. Bottom row: Map of the entire environment, generated by aggregating
LiDAR pointclouds during each data collection run. Scale (in meters) is shown in
the lower right corner. 93

5.5 Input features converted from LiDAR pointclouds, showing different features in
columns from left to right, while each row corresponds to one sample from each of
the 6 datasets. Features are, from left to right: 1) elevation, 2) number of LiDAR
points, 3) obstacle points (older points have a lower intensity), 4-8) number of points
in each of 5 z-height bins, relative to the elevation map, with a bin height of 0.1m,
9) distance from the robot location, 10) ”known” region mask, which marks regions
which have sensor coverage. 95

5.6 Some examples of α input channel images. Left: Randomly generated Gaussian
filter, renormalized to have a uniform distribution. Middle: Randomly generated
Voronoi-regions, again with uniformly distributed α values. Right: A radially
decaying α input, which is an example of a custom desired variation of risk level
for the resulting CVaR costmap. This type of variation may be useful for trying
to ensure a greater degree of caution for obstacles near the robot. In this example,
α = 1 within 5 meters of the robot, and decays linearly down to 0 at 20m from the
robot. 96

5.7 Our pointcloud-to-costmap pipeline. From left to right: Raw point clouds are
aggregated and used to create 2d image-like input features and the mask. A 2d α
channel also provides input to the network. The PartialConv U-Net architecture
maps these input features to 2 output channels, namely VaR and CVaR − VaR.
These two outputs are combined with the handcrafted cost labels to compute the loss. 97

vi

5.8 Network outputs on the same input examples shown in Figure 5.5. Columns from
left to right: 1) Handcrafted cost label, 2-4) CVaR values with α = 0.1, 0.5, 0.9
respectively, 5-7) CVaRα − VaR0.1 for varying α = 0.1, 0.5, 0.9 respectively. This
enables us to more clearly see the differences between values of α. It also shows
the difference between CVaR and VaR. 8) CVaRα − VaR0.1 when α is a radially
decaying output (See Figure 3.9c). Notice that the risk also decays radially from the
center of the map. 98

5.9 Learning curves for one training session, showing the three losses (CVaR loss,
monotonic loss, and VaR loss). 100

5.10 Case study for a low wall obstacle. Top left: On-board camera image of the obstacle.
Top right: Point cloud and elevation map. Spot has placed one foot on top of the
wall. Top right: Handcrafted traversability cost. The wall appears in the center of
the map in a line. Middle row: CVaR at varying levels of α = 0.1, 0.3, 0.5, 0.7, 0.9
respectively. Bottom row: CVaRα − VaR0.1 at varying levels of alpha. The risk
of the wall increases greatly as α is increased, while other regions increase in risk
more gradually. Color scale of all maps range from 0 to 1. 101

5.11 Case study of localization artifact removal. Left: Handcrafted traversability cost.
Right: CVaR network output when α = 0.5. We observe that artifacts arising from
localization error and sensor sparsity are not present in the predicted risk map. In
this particular case, this has significant impact on path planning through the narrow
passage. 102

5.12 ID performance: Boxplot of evaluation metrics for model trained on all 6 datasets,
evaluated on held-out test data from all 6 datasets. The evaluation metrics were
computed on each sample individually, and are aggregated in ths box plot shown
here. Red dots mark outliers. 104

5.13 ID performance: Evaluation metrics for model trained on all 6 datasets, evaluated
on held-out test data from 6 datasets individually. Some datasets have better perfor-
mance than others, with the Limestone Cave having the worst performance, it being
the most challenging. 105

5.14 OOD performance: (Left) Boxplot of evaluation metrics for model trained on all
datasets except the Subway Atrium, evaluated on held-out data from the Subway
Atrium. Performance is similar to the ID performance, i.e. when the model is
trained on all data, and evaluated on the Subway Atrium data (Right). 106

5.15 OOD performance: (Left) Boxplot of evaluation metrics for model trained on all
datasets except the Limestone Cave, evaluated on held-out data from the Limestone
Cave. Performance is worse than the ID performance, i.e. when the model is trained
on all data, and evaluated on the Limestone Cave data (Right). 107

vii

5.16 OOD performance: Evaluation metrics for model trained on Subway Atrium data
only, testing on all datasets. Despite not seeing any of the other environments during
training, the model is able to generalize quite well. 108

5.17 Comparing CVaR-learning model against handcrafted CVaR cost model, L1-loss
model, and NLL-loss model. The learned model was trained on all 6 datasets.
Shown here are evaluation metrics computed over the held-out test data for all 6
datasets. The CVaR-learning method outperforms by a clear margin. Dotted line in
first plot indicates ideal implied α values. 109

viii

SUMMARY

In order for robots to autonomously operate in novel environments over extended periods of

time, they must learn and adapt to changes in the dynamics of their motion and the environment.

Neural networks have been shown to be a versatile and powerful tool for learning dynamics and

semantic information. However, there is reluctance to deploy these methods on safety-critical

or high-risk applications, since neural networks tend to be black-box function approximators.

Therefore, there is a need for investigation into how these machine learning methods can be safely

leveraged for learning-based controls, planning, and traversability. The aim of this thesis is to

explore methods for both establishing safety guarantees as well as accurately quantifying risks

when using deep neural networks for robot planning, especially in high-risk environments. First,

we consider uncertainty-aware Bayesian Neural Networks for adaptive control, and introduce a

method for guaranteeing safety under certain assumptions. Second, we investigate deep quantile

regression learning methods for learning time-and-state varying uncertainties, which we use to

perform trajectory optimization with Model Predictive Control. Third, we introduce a complete

framework for risk-aware traversability and planning, which we use to enable safe exploration of

extreme environments. Fourth, we again leverage deep quantile regression and establish a method

for accurately learning the distribution of traversability risks in these environments, which can be

used to create safety constraints for planning and control.

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

1.1.1 Current State of Practice

In 1970, Marvin Minsky, commonly regarded as the ”father of artificial intelligence”, told Life

Magazine, “from three to eight years we will have a machine with the general intelligence of an

average human being.” 50 years later, great advances have been made in various AI fields such as

computer vision, natural language processing, and reinforcement learning. However, currently no

field-deployed robot can be said to match the intelligence of a human being. Indeed, robots today

tend to be over-engineered for safety, specificity, and reliability, and tend to be tele-operated by

humans, rather than relying on intelligence to gracefully navigate hostile environments[1]. For

robots to be truly autonomous in fields ranging from health care, exploration, rescue, monitoring,

and surveying, they must possess enough intelligence to adapt and learn, grow from experience, yet

at the same time assess risk and remain safe. Particularly when it comes to exploration of unknown

environments, robots can not be pre-engineered for every situation and must adapt to new terrains,

respond to changes in dynamics, and exercise caution when encountering novel dangers.

1.1.2 Neural Networks in Robotics

Neural networks have been shown to be a versatile and powerful tool for learning and adaptation,

frequently out-performing any hand-engineered solutions [2, 3]. There is great potential, therefore,

in using them to solve high-dimensional problems in robots, from learning dynamics to semantic

understanding of the environment. However, there is currently reluctance to deploy these methods

on safety-critical or high-risk applications, since neural networks tend to be black-box function

approximators [4]. Therefore, with the motivation to outperform classical methods, there is a need

2

for investigation into how neural networks can be used to solve safety-critical problems in robotics.

One such way is to construct a network which knows-what-it-knows, i.e. it can give some measure

of confidence or signal of trust that it is producing a reliable or meaningful output. Uncertainty

quantification is the process of determining a quantitative description of the unknown of a system,

and is a key element in the safe use of neural networks in safety critical applications [5].

Using neural networks to quantify uncertainty has been gaining recognition as an important

field of study in its own right, perhaps beginning with Yarin Gal’s seminal work on using dropout as

a means for neural networks to perform Bayesian inference and model uncertainty [6]. Since then, a

wide range of network architectures and training methods have been introduced, which offer varying

degrees of efficiency and accuracy [7, 8, 9, 8, 10, 11, 6, 5, 12]. For any uncertainty-estimating

network, the objective is for it to be well-calibrated, i.e., its quantification of uncertainty should

match the true distribution of the underlying random variable it seeks to approximate [13].

As the field of uncertainty quantification in deep learning progresses in its own right, roboticists

can make use of better and stronger tools to solve difficult problems that involve uncertainty. The

immediate and gratifying result should be to endow robots with more adaptability, resilience, and

intelligence in more challenging environments. The needs and challenges of this endeavor are

elucidated by examining problems which lie at the boundaries of current robotic capability. Indeed,

it is an aim of this thesis to address problems which lie at these boundaries, especially with respect

to autonomous exploration of unknown, unstructured, and extreme environments, where both the

magnitude and effects of uncertainty are strongly present (Figure 1.1).

1.1.3 Exploration of Extreme Environments

A good example of one such boundary is the DARPA Subterranean Challenge [14]. This three

year challenge seeks to find an integrated solution for teams of heterogeneous robots to rapidly

explore and search an unknown underground environment for objects of representative interest. The

challenge presents three classes of underground environments to surmount: 1) tunnels, which are

many kilometers in length and include highly constrained passages, multiple levels and vertical

3

Figure 1.1: Robots used in this thesis autonomously exploring unknown and hazardous environments.
Difficult-to-traverse terrain is often the cause of robot malfunction and damage. Top left: Clearpath’s
Husky and Boston Dynamic’s Spot robots exploring an underground lava tube. Top right: Spot
exploring a limestone cave. Bottom left: Husky exploring an industrial coal mine. Bottom right:
Spot exploring a boulder field within a lava tube.

shafts; 2) urban environments, which include complex layouts, clutter, rubble, and hazards; and

3) caves, which contain a wide range of geological features which make navigation difficult for

humans. Developing solutions to address novel problems presented by these environments forms

the motivational backdrop to much of the work in this thesis.

Exploration of unknown, unstructured, and extreme environments is an important problem

in robotics. Robots are meant to perform tasks which humans would rather not do. Such tasks

include exploration of far-away worlds for furthering scientific understanding; search and rescue of

humans from cave-ins, earthquakes, and natural disasters; surveying and mapping of ocean-beds for

scientific or industrial purposes; and everyday navigation through a cluttered room to find the car

keys. In all of these applications, certain common problems appear in which uncertainty plays a

large role within localization, mapping, traversability, planning, and control. This thesis aims to

point out and address some of these problems arising from uncertainty, with particular emphasis on

4

control, planning, and traversability.

1.2 Objective and Scope of this Thesis

In this section, we introduce the research topics that will be covered in this thesis as well as the

structure of this thesis.

1.2.1 Safety in Learning for Control

A main theme of this thesis is using learning methods to capture unknown dynamics, disturbances,

and environmental factors in order to maintain safety. These objectives are often conflicting - using

black box learning methods such as neural networks can lead to better representational power, but

this often comes at a cost of safety guarantees. This thesis presents an approach to guaranteeing

safety at the controls layer of a system, while enabling adaption and learning using neural networks.

The notion of safety is considered from the perspective of Control Barrier Functions [15], which

provide an approach to guaranteeing set invariance. The objective here is to construct a control

policy which guarantees that the robot will never enter a predetermined, undesirable state. Because

learned dynamics contain an element of uncertainty, this control policy must take a margin of safety

proportional to this uncertainty into account [16].

Key to this approach is the use of uncertainty-aware Bayesian Neural Networks [17, 6], which

are useful for capturing both aleatoric and epistemic uncertainty. Aleatoric uncertainty is uncer-

tainty which is inherent to the variable of interest, while epistemic uncertainty arises from having

incomplete information or insufficient data to characterize the variable of interest [11]. The use of

Bayesian Neural Networks aims to characterize both types of uncertainty. As a result, we are able

to make claims about the set-invariance of a controller even under insufficient data, as well as over

the course of adaptation and learning.

5

1.2.2 Learning Uncertainty for Trajectory Optimization

Continuing the theme of robustness to uncertainty in control, this thesis also aims to apply a similar

view to the level of trajectory optimization and planning. While controls in robotics tends to be

concerned with one-timestep optimization at very high rates to track a given trajectory, the problem

of trajectory optimization is concerned with finding the best trajectory to track. This thesis aims to

leverage uncertainty-based learning methods to provide robust guarantees for a trajectory optimizer

when optimizing over unknown or uncertain dynamics. Different from other methods which make

parametric assumptions on the distribution of the underlying random variables, in this work, a

non-parametric point of view is taken in which data is used to directly characterize the chance of

exceeding some robust bounds with some probability [9].

Within the various classes of trajectory optimization methods, Model Predictive Control (MPC)

plays a central role for its robustness, speed, efficiency, and ease of design [18]. When designing an

MPC controller, one must take into account the notion of recursive feasibility. If an MPC controller

is recursively feasible, then it is guaranteed to be able to find a feasible solution at each timestep,

given a feasible solution at the previous timestep. When introducing neural network methods to

characterize robust bound and uncertainty in the context of MPC therefore, we aim to take care to

ensure recursive feasibility [19].

This thesis introduces a method for learning uncertainties in dynamics and/or controls using

deep quantile regression, for use in an MPC controller, while maintaining recursive feasibility. Deep

quantile regression is an approach to uncertainty quantification which uses a deep neural network

to learn the quantiles of an underlying distribution [20]. This approach has advantages over other

methods which propagate probability distributions through time by making strong assumptions on

the distribution of the dynamics. In contrast, our method has no need for these assumptions, instead

inferring margins of safety from the data directly.

6

1.2.3 Stochastic Traversability and Planning in Extreme Environments

As we move further up the planning stack, we arrive at the question of ”where” to move as opposed

to ”how” to move, i.e. traversability. Classic methods for assessing traversability often rely on

restrictive or simplistic assumptions of the environment: e.g. a known and well-mapped building,

or a set of well-paved street roads. Moreover, these assessments are often binary, with no notion

of risk or penalty to the robot’s health over different terrains. In reality, the situation is far more

complex and requires careful treatment, especially in unknown, unmapped, and extreme terrain.

Examples range from rovers exploring a new planet across varying terrain, to robots which search

for trapped survivors in vast cave systems. In these types of environments, deciding ”where” to

move involves a high degree of uncertainty and risk.

With this view, this thesis aims to establish a framework for risk-aware traversability and

planning, in which the motion of a vehicle and its interaction with the terrain are considered

jointly when assessing risk. Naturally, the concept of risk arises when thinking about robotic

safety combined with uncertainty, and of particular interest is the concept of tail-risk. Tail-risks

are important to consider because while we are concerned with keeping the robot within some

safe set, we should also reason about what happens when the robot inevitably exits that safe set,

and the consequences of doing so. One consistent and mathematically sound way to quantify and

optimize for these consequences is through the concept of risk measures [21], and more specifically,

the concepts of Value-at-Risk (VaR) and Conditional-Value-At-Risk (CVaR). Given a level of

probability of risk α ∈ [0, 1], VaR is equivalent to the α-quantile for a given distribution, while

CVaR is the expected value of the tail of the distribution outside the α-quantile bounds. Historically,

these concepts come from the field of finance1, but they find immediate and well-suited application

to the evaluation of risk in robotics [23].

The contribution of this thesis is a hierarchical traversability assessment and planning framework

which takes into account uncertainties arising from localization error, sensor sparsity and noise,

1As an aside, the 2008 financial crisis was perhaps triggered or exacerbated by the widespread use of VaR, which
underestimated the risk of loss of portfolios of subprime mortgages [22].

7

and unknown ground-vehicle interactions. The framework is tested and field-hardened on a wide

range of vehicles and in various extreme environments, including underground caves and mines,

and large, hazardous industrial environments. This framework is used to compete in the DARPA

Subterranean Challenge, as an integral part of the JPL Team CoSTAR’s winning solution (2nd place

Tunnel circuit, 1st place Urban circuit).

1.2.4 Learning Tail-risk Traversability

A central theme of this thesis is using learning to ensure safety for robot autonomy in challenging

environments. The stochastic traversability and planning framework mentioned uses a model-based

geometric risk assessment pipeline using 3D point cloud data. While this analysis performs very well

on real systems in difficult environments, it does have a few drawbacks. First, it relies on having

accurate estimation of localization uncertainty as well as having accurate sensor measurement

models. This assumption is often difficult to satisfy in practice. Second, it is occasionally subject

to certain artifacts from noise, occlusion, or localization error, and while these artifacts may occur

infrequently, they can severely impede the progress of the robot. Third, it is computationally

expensive, relying on 3D geometric analyses of hundreds of thousands of points. Fourth, it relies on

assumptions of the underlying distribution of the traversability cost, which may be inaccurate or

restrictive.

The final contribution of this thesis is to provide a method for addressing all these drawbacks

through uncertainty-aware deep learning. We leverage the deep quantile regression theory men-

tioned previously and extend it to capturing CVaR traversability risk. The result is a CVaR-based

traversability risk pipeline which directly maps point cloud data to the traversability risk, bypassing

the need for computationally burdensome risk analyses. Moreover, this approach makes no assump-

tions on the distribution of traversability costs, gracefully handles errors in localization and sensors,

and smooths out infrequently occurring artifacts.

8

1.2.5 Contributions and Outline

The aim of this thesis is to explore methods for both establishing safety guarantees as well as

accurately quantifying risks when using deep neural networks for robot planning and control,

especially in high-risk environments. The rest of the chapters are organized as follows:

• Chapter 2: Bayesian Learning-Based Adaptive Control for Safety Critical Systems This

chapter presents the use of uncertainty-aware Bayesian Neural Networks for adaptive control,

leveraging the theory of stochastic CLFs (Control Lyapunov Functions) and stochastic CBFs

(Control Barrier Functions). Under reasonable assumptions, we guarantee stability and safety

while adapting to unknown dynamics with probability 1. We demonstrate this architecture for

high-speed terrestrial mobility targeting potential applications in safety-critical high-speed

Mars rover missions. This chapter is based on the previously published article:

– D. D. Fan, J. Nguyen, R. Thakker, N. Alatur, A.-a. Agha-mohammadi, and E. A.

Theodorou, “Bayesian learning-based adaptive control for safety critical systems,” in

International Conference on Robotics and Automation, 2020

• Chapter 3: Deep Learning Tubes for Tube MPC This chapter presents the use of deep

learning to obtain expressive and flexible models of how distributions of trajectories behave,

which are then used for nonlinear Model Predictive Control (MPC). We introduce a deep

quantile regression framework for control that enforces probabilistic quantile bounds and

quantifies epistemic uncertainty. Using our method we explore three different approaches for

learning tubes that contain the possible trajectories of the system, and demonstrate how to use

each of them in a Tube MPC scheme. We prove these schemes are recursively feasible and

satisfy constraints with a desired margin of probability. We present experiments in simulation

on a nonlinear quadrotor system, demonstrating the practical efficacy of these ideas. This

chapter is based on the previously published article:

– D. D. Fan, A.-a. Agha-mohammadi, and E. A. Theodorou, “Deep learning tubes for

9

tube MPC,” Robotics: Science and Systems (RSS), 2020

• Chapter 4: Stochastic Traversability Evaluation and Planning for Risk-aware Off-road

Navigation This chapter presents an approach for assessing traversability in challenging,

off-road environments, and planning a safe, feasible, and fast trajectory in real-time. This

approach relies on rapid uncertainty-aware mapping and traversability evaluation, tail risk

assessment using the Conditional Value-at-Risk (CVaR), and efficient risk and constraint-

aware kinodynamic motion planning using sequential quadratic programming-based (SQP)

model predictive control (MPC). We analyze our method in simulation and validate its efficacy

on wheeled and legged robotic platforms exploring extreme terrains including an underground

lava tube. This chapter is based on the previously published article:

– D. D. Fan, K. Otsu, Y. Kubo, A. Dixit, J. Burdick, and A.-A. Agha-Mohammadi, “STEP:

Stochastic traversability evaluation and planning for safe off-road navigation,” Robotics:

Science and Systems (RSS), 2021

• Chapter 5: Costmap Learning for Risk-Aware Traversability in Challenging Environ-

ments This chapter introduces a neural network architecture for robustly learning the dis-

tribution of traversability costs. The learning problem is presented from the perspective of

learning tail-risks, i.e. the Conditional Value-at-Risk (CVaR). We show that this approach

reliably learns the expected tail risk given a desired probability risk threshold between 0

and 1, producing a traversability costmap which is more robust to outliers, more accurately

captures tail risks, and is more computationally efficient, when compared against baselines.

We validate our method on data collected a legged robot navigating challenging, unstructured

environments including an abandoned subway, limestone caves, and lava tube caves.

10

CHAPTER 2

BAYESIAN LEARNING-BASED ADAPTIVE CONTROL FOR SAFETY CRITICAL

SYSTEMS

2.1 Summary

Deep learning has enjoyed much recent success, and applying state-of-the-art model learning

methods to controls is an exciting prospect. However, there is a strong reluctance to use these

methods on safety-critical systems, which have constraints on safety, stability, and real-time

performance. We propose a framework which satisfies these constraints while allowing the use of

deep neural networks for learning model uncertainties. Central to our method is the use of Bayesian

model learning, which provides an avenue for maintaining appropriate degrees of caution in the face

of the unknown. In the proposed approach, we develop an adaptive control framework leveraging

the theory of stochastic CLFs (Control Lyapunov Functions) and stochastic CBFs (Control Barrier

Functions) along with tractable Bayesian model learning via Gaussian Processes or Bayesian neural

networks. Under reasonable assumptions, we guarantee stability and safety while adapting to

unknown dynamics with probability 1. We demonstrate this architecture for high-speed terrestrial

mobility targeting potential applications in safety-critical high-speed Mars rover missions.

2.2 Introduction

The rapid growth of Artificial Intelligence (AI) and Machine Learning (ML) disciplines has created

a tremendous impact in engineering disciplines, including finance, medicine, and general cyber-

physical systems. The ability of ML algorithms to learn high dimensional dependencies has

expanded the capabilities of traditional disciplines and opened up new opportunities towards the

development of decision making systems which operate in complex scenarios. Despite these

recent successes [27], there is low acceptance of AI and ML algorithms to safety-critical domains,

11

Figure 2.1: The left image depicts a 1/5th scale RC car platform driving at the Mars Yard at JPL;
and the right is a platform from the Mars Explore Rover (MER) mission.

including human-centered robotics, and particularly in the flight and space industries. For example,

both recent and near-future planned Mars rover missions largely rely on daily human decision

making and piloting, due to a very low acceptable risk for trusting black-box autonomy algorithms.

Therefore there is a need to develop computational tools and algorithms that bridge two worlds: the

canonical structure of control theory, which is important for providing guarantees in safety-critical

applications, and the data driven abstraction and representational power of machine learning, which

is necessary for adapting the system to achieve resiliency against unmodeled disturbances.

Towards this end, we propose a novel, lightweight framework for Bayesian adaptive control for

safety critical systems, which we call BALSA (BAyesian Learning-based Safety and Adaptation).

This framework leverages ML algorithms for learning uncertainty representations of dynamics

which in turn are used to generate sufficient conditions for stability using stochastic CLFs and

safety using stochastic CBFs. Treating the problem within a stochastic framework allows for a

cleaner and more optimal approach to handling modeling uncertainty, in contrast to deterministic,

discrete-time, or robust control formulations. We apply our framework to the problem of high-speed

agile autonomous vehicles, a domain where learning is especially important for dynamics which

are complex and difficult to model (e.g., fast autonomous driving over rough terrain). Potential

Mars Sample Return (MSR) missions are one example in this domain. Current Mars rovers (i.e.,

Opportunity and Curiosity) have driven on average ∼3km/year [28, 29]. In contrast, if MSR

launches in 2028, then the rover has only 99 sols (∼102 days) to complete potentially 10km [30,

12

31]. After factoring in the intermittent and heavily delayed communications to earth, the need for

adaptive, high-speed autonomous mobility could be crucial to mission success.

Along with the requirements for safety and adaptation, computational efficiency is of paramount

importance for real systems. Hardware platforms often have severe power and weight requirements,

which significantly reduce their computational power. Probabilistic learning and control over deep

Bayesian models is a computationally intensive problem. In contrast, we shorten the planning

horizon and rely on a high-level, lower fidelity planner to plan desired trajectories. Our method then

guarantees safe trajectory tracking behavior, even if the given trajectory is not safe. This frees up

the computational budget for other tasks, such as online model training and inference.

2.2.1 Related Work

Machine-learning based planning and control is a quickly growing field. From Model Predictive

Control (MPC) based learning [32, 33], safety in reinforcement learning [34], belief-space learning

and planning [35], to imitation learning [36], these approaches all demand considerations of safety

under learning [37, 38, 39, 40]. Closely related to our work is Gaussian Process-based Bayesian

Model Reference Adaptive Control (GP-MRAC) [41], where modeling error is approximated with a

Gaussian Process (GP). However, computational speed of GPs scales poorly with the amount of

data (O(N3)), and sparse approximations lack representational power. Another closely related work

is that of [42], who showed how to formulate a robust CLF which is tolerant to bounded model

error. Extensions to robust CBFs were given in [43]. A stated drawback of this approach is the

conservative nature of the bounds on the model error. In contrast, we incorporate model learning

into our formulation, which allows for more optimal behavior, and leverage stochastic CLF and

CBF theory to guarantee safety and stability with probability 1. Other related works include [44],

which uses GPs in CBFs to learn the drift term in the dynamics f(x), but uses a discrete-time,

deterministic formulation. [45] combined L1 adaptive control and CLFs. Learning in CLFs and

CBFs using adaptive control methods (including neuro-adaptive control) has been considered in

several works, e.g. [46, 47, 48, 49].

13

2.2.2 Contributions

- Here we take a unique approach to address the aforementioned issues, with the requirements of

1) adaptation to changes in the environment and the system, 2) adaptation which can take into

account high-dimensional data, 3) guaranteed safety during adaptation, 4) guaranteed stability

during adaptation and convergence of tracking errors, 5) low computational cost and high control

rates. Our contributions are fourfold: First, we introduce a Bayesian adaptive control framework

which explicitly uses the model uncertainty to guarantee stability, and is agnostic to the type of

Bayesian model learning used. Second, we extend recent stochastic safety theory to systems

with switched dynamics to guarantee safety with probability 1. In contrast to adaptive control,

switching dynamics are used to account for model updates which may only occur intermittently.

Third, we combine these approaches in a novel online-learning framework (BALSA). Fourth, we

compare the performance of our framework using different Bayesian model learning and uncertainty

quantification methods. Finally, we apply this framework to a high-speed driving task on rough

terrain using an Ackermann-steering vehicle and validate our method on both simulation and

hardware experiments.

2.3 Safety and Stability under Model Learning via Stochastic CLF/CBFs

Consider a stochastic system with SDE (stochastic differential equation) dynamics:

dx1 = x2dt, dx2 = (f(x) + g(x)u)dt+ Σ(x)dξ(t) (2.1)

where x1, x2 ∈ Rn, x = [x1, x2]ᵀ, the controls are u ∈ Rn, the diffusion is Σ(x) ∈ Rn×n, and

ξ(t) ∈ Rn is a zero-mean Wiener process. For simplicity we restrict our analysis to systems of this

form, but emphasize that our results are extensible to systems of higher relative degree [50], as well

as hybrid systems with periodic orbits [51]. A wide range of nonlinear control-affine systems in

robotics can be transformed into this form. In general, on a real system, f , g, and Σ may not be

fully known. We assume g(x) is known and invertible, which makes the analysis more tractable. It

will be interesting in future work to extend our approach to unknown, non-invertible control gains,

14

or non-control affine systems (e.g. ẋ = f(x, u)). Let f̂(x) be a given approximate model of f(x).

We formulate a pre-control law with pseudo-control µ ∈ Rn:

u = g(x)−1(µ− f̂(x)) (2.2)

which leads to the system dynamics being

dx1 = x2dt, dx2 = (µ+ ∆(x))dt+ Σ(x)dξ(t) (2.3)

where ∆(x) = f(x)− f̂(x) is the modeling error, with ∆(x) ∈ Rn.

Suppose we are given a reference model and reference control from, for example, a path planner:

dx1rm = x2rmdt, dx2rm = frm(xrm, urm)dt

The utility of the methods outlined in this work is for adaptive tracking of this given trajectory

with guaranteed safety and stability. We assume that frm is continuously differentiable in xrm, urm.

Further, urm is bounded and piecewise continuous, and that xrm is bounded for a bounded urm.

Define the error e = x− xrm. We split the pseudo-control input into four separate terms:

µ = µrm + µpd + µqp − µad (2.4)

where we assign µrm = dx2rm and µpd to a PD controller:

µpd = [−KP −KD]e (2.5)

Additionally, we assign µqp as a pseudo-control which we optimize for and µad as an adaptive

element which will cancel out the model error. Then we can write the dynamics of the model error

e as:

de =

de1

de2

 =

 0 I

−KP −KD

 edt+

0

I

((µqp − µad + ∆(x))dt+ Σ(x)dξ(t)
)

= (Ae+G(µqp − µad + ∆(x)))dt+GΣ(x)dξ(t) (2.6)

15

where the matrices A and G are used for ease of notation. The gains KD, KP should be chosen

such that A is Hurwitz. When µad = ∆(x), the drift modeling error term is canceled out from the

error dynamics.

Next, we require a method for learning or approximating the drift and diffusion terms ∆(x) and

Σ(x). Such methods include Bayesian SDE approximation methods [52], Neural-SDEs [53], or

differential GP flows [54], to name a few. This model should know what it doesn’t know [55], and

should capture both the epistemic uncertainty of the model, i.e., the uncertainty from lack of data,

as well as the aleatoric uncertainty, i.e., the uncertainty inherent in the system [56]. We expect that

these methods will continue to be improved by the community. We can use the second equation

in (2.3) to generate data points to use for learning these terms in the SDE. In discrete time, the

learning problem is formulated as finding a mapping from input data X̄t = x(t) to output data

Ȳt = (x2(t+dt)−x2(t))/dt−(f̂(x(t))+g(x(t))u(t)). Given the ith datasetDi = {X̄t, Ȳt}t=0,dt,...,ti

with i ∈ N, we can construct the ith model {mi(x), σi(x)}, where mi(x) approximates the drift

term ∆(x) and σi(x) approximates the diffusion term Σ(x). Note that we do not require updating

the model at each timestep, which significantly reduces computational load requirements and allows

for training more expressive models (e.g., neural networks).

In practical terms, in this work we opt for an approximate method for learning {mi(x), σi(x)},

in which we view each data point in Di as an independently and identically distributed sample, and

set up a single timestep Bayesian regression problem, in which we model ∆(x) as a multivariate

Gaussian random variable, i.e. ∆̄i(x) ∼ N (mi(x), σi(x)). This approximation ignores the SDE

nature of (2.3) and will not be a faithful approximation (See [57] for insightful comments on this

problem). However, until Bayesian SDE approximation methods improve, we believe this approach

to be reasonable in practice. Methods for producing reliable confidence bounds include a large class

of Bayesian neural networks ([7, 58, 6]), Gaussian Processes or its many approximate variants ([59,

60]), and many others. We compare several methods in our experimental results. We leave a more

principled learning approach using Bayesian SDE learning methods for future work.

After obtaining the joint model {mi(x), σi(x)}, Equation (2.6) can be written as the following

16

switching SDE:

de = (Ae+G(µqp + εmi (x))dt+Gσi(x)dξ(t) (2.7)

with e(0) = x(0)− xrm(0) and where εmi (x) = mi(x)−∆(x). i ∈ N is a switching index which

updates each time the model is updated. The main problem which we address is how to find a

pseudo-control µqp which provably drives the tracking error to 0 while simultaneously guaranteeing

safety.

Since ∆(x) is not known a priori, one approach is to assume that ‖εmi (x)‖ is bounded by

some known term. The size of this bound will depend on the type of model used to represent the

uncertainty, its training method, and the distribution of the data Di. See [41] for such an analysis

for sparse online Gaussian Processes. For neural networks in general there has been some work on

analyzing these bounds [61, 62]. For simplicity, let us assume the modeling error εmi (x) = 0, and

instead rely on σi(x) to fully capture any remaining modeling error in the drift. Then we have the

following dynamics:

de = (Ae+Gµqp)dt+Gσi(x)dξ(t) (2.8)

with e(0) = x(0)− xrm(0). This is valid as long as σi(x) captures both the epistemic and aleatoric

uncertainty accurately. Note also that if the bounds on ‖εmi (x)‖ are known, then our results are

easily extensible to this case via (2.7).

2.3.1 Stochastic Control Lyapunov Functions for Switched Systems

We establish sufficient conditions on µqp to guarantee convergence of the error process e(t) to 0.

The result is a linear constraint similar to deterministic CLFs (e.g., [43]). The difference here is the

construction a stochastic CLF condition for switched systems. The switching is needed to account

for online updates to the model as more data is accumulated.

In general, consider a switched SDE of Itô type [63] defined by:

dX(t) = a(t,X(t))dt+ σi(t,X(t))dξ(t) (2.9)

where X ∈ Rn1 , ξ(t) ∈ Rn2 is a Wiener process, a(t,X) is a Rn1-vector function, σi(t,X) a

17

n1 × n2 matrix, and i ∈ N is a switching index. The switching index may change a finite number

of times in any finite time interval. For each switching index, a and σ must satisfy the Lipschitz

condition ‖a(t, x)− a(t, y)‖+ ‖σi(t, x)−σi(t, y)‖ ≤ L‖x− y‖,∀x, y ∈ D with D compact. Then

the solution of (2.9) is a continuous Markov process.

Definition 2.3.1. X(t) is said to be exponentially mean square ultimately bounded uniformly in

i if there exists positive constants K, c0, τ such that for all t,X0, i, we have that EX0‖X(t)‖2 ≤

K + c0‖X0‖2e−τt.

We first restate the following theorem from [41]:

Theorem 2.3.1. Let X(t) be the process defined by the solution to (2.9), and let V (t,X) be a

function of class C2 with respect to X , and class C1 with respect to t. Denote the Itô differential

generator by L. If 1) −α1 + c1‖X‖2 ≤ V (t,X) ≤ c3‖X‖2 + α2 for real α1, α2, c1 > 0; and 2)

LV (t,X) ≤ βi − c2V (t,X) for real βi, c2 > 0, and all i; then the process X(t) is exponentially

mean square ultimately bounded uniformly in i. Moreover, K = α2

c1
+ maxi(

|βi|
c1c2

+ α1

c1
), c0 = c3

c1
,

and τ = c2.

Proof. See [41] Theorem 1.

We use Theorem 2.3.1 to derive a stochastic CLF sufficient condition on µqp for the tracking

error e(t). Consider the stochastic Lyapunov candidate function V (e) = 1
2
eᵀPe where P is the

solution to the Lyapunov equation AᵀP + PA = −Q, where Q is any symmetric positive-definite

matrix.

Theorem 2.3.2. Let e(t) be the switched stochastic process defined by (2.8), and let ε > 0 be a

positive constant. Suppose for all t, µqp and the relaxation variable d1
i ∈ R satisfy the inequality:

Ψ0
i + Ψ1µqp ≤ d1

i (2.10)

Ψ0
i = −1

2
eᵀQe+

1

ε
V (e) +

1

2
tr(Gσiσ

ᵀ
iG

ᵀP)

Ψ1 = eᵀPG.

18

Then e(t) is exponentially mean-square ultimately bounded uniformly in i. Moreover if (2.10) is

satisfied with d1
i < 0 for all i, then e(t)→ 0 exponentially in the mean-squared sense.

Proof. The Lyapunov candidate function V (e) is bounded above and below by 1
2
λmin(P)‖e‖2 ≤

V (e(t)) ≤ 1
2
λmax(P)‖e‖2. We have the following Itô differential of the Lyapunov candidate:

LV (e) =
∑
j

∂V (e)

∂ej
Aej +

1

2

∑
j,k

[Gσiσ
ᵀ
iG

ᵀ]jk
∂2V (e)

∂ek∂ej

= −1

2
eᵀQe+ eᵀPGµqp +

1

2
tr(Gσiσ

ᵀ
iG

ᵀP). (2.11)

Rearranging, (2.10) becomesLV (e) ≤ −1
ε
V (e). Setting α1 = α2 = 0, βi = d1

i , c1 = 1
2
λmin(P), c2 =

1
ε
, c3 = 1

2
λmax(P), we see that the conditions for Theorem 2.3.1 are satisfied and e(t) is exponen-

tially mean square ultimately bounded uniformly in i. Moreover,

Ee0‖e(t)‖2 ≤ κ(P)‖e0‖2e−
t
ε + max

i
(

|d1
i |

4λmin(P)λmax(P)
) (2.12)

where κ(P) is the condition number of the matrix P . Therefore if d1
i < 0 for all i, e(t) converges to

0 exponentially in the mean square sense.

The relaxation variable d1
i allows us to find solutions for µqp which may not always strictly

satisfy a Lyapunov stability criterion LV ≤ 0. This allows us to incorporate additional constraints

on µqp at the cost of losing convergence of the error e to 0. Fortunately, the error will remain

bounded by the largest d1
i . In practice we re-optimize for a new d1

i at each timestep. This does not

affect the result of Theorem 2.3.2 as long as we re-optimize a finite number of times for any given

finite interval.

One highly relevant set of constraints we want to satisfy are control constraints Hu ≤ b, where

H ∈ Rnc×Rn is a matrix and b ∈ Rnc is a vector. Let µd = µrm+µpd−µad. Recall the pre-control

law (2.2). Then the control constraint is:

Hg−1(x)µqp ≤ Hĝ−1(x)(µd − f̂(x)) + b. (2.13)

Next we formulate additional constraints to guarantee safety.

19

2.3.2 Stochastic Control Barrier Functions for Switched Systems

We leverage recent results on stochastic control barrier functions [64] to derive constraints linear

in µqp which guarantee the process x(t) satisfies a safety constraint, i.e., x(t) ∈ C for all t. The

set C is defined by a locally Lipschitz function h : Rn → R as C = {x : h(x) ≥ 0} and

∂C = {x : h(x) = 0}. We first extend the results of [64] to switched stochastic systems.

Definition 2.3.2. Let X(t) be a switched stochastic process defined by (2.9). Let the function

B : Rn → R be locally Lipschitz and twice-differentiable on int(C). If there exists class-K functions

γ1 and γ2 such that for allX , 1/γ1(h(X)) ≤ B(X) ≤ 1/γ2(h(X)), thenB(x) is called a candidate

control barrier function.

Definition 2.3.3. Let B(x) be a candidate control barrier function. If there exists a class-K function

γ3 such that LB(X) ≤ γ3(h(X)), then B(x) is called a control barrier function (CBF).

Theorem 2.3.3. Suppose there exists a CBF for the switched stochastic process X(t) defined by

(2.9). If X0 ∈ C, then for all t, Pr(X(t) ∈ C) = 1.

Proof. [64] Theorem 1 provides a proof of the result for non-switched stochastic processes. Let

ti denote the switching times of X(t), i.e., when t ∈ [0, t0), the process X(t) has diffusion matrix

σ0(X), and when t ∈ [ti−1, ti) for i > 0, the process X(t) has diffusion matrix σi(X). If X0 ∈ C,

then Xt ∈ C for all t ∈ [0, t0) with probability 1 since the process X(t) does not switch in the time

interval t ∈ [0, t0). By similar argument for any i > 0 if Xti−1
∈ C then Xt ∈ C for all t ∈ [ti−1, ti)

with probability 1. This also implies that Xti ∈ C, since X(t) is a continuous Markov process. Then

Xt ∈ C for all t ∈ [ti, ti+1) with probability 1. Then by induction, for all t, Pr(X(t) ∈ C) = 1.

Next, we establish a linear constraint condition sufficient for µqp to guarantee safety for (2.8).

Rewrite (2.8) in terms of x(t) as:

dx = (A0x+G(µd + µqp))dt+Gσi(x)dξ(t) (2.14)

A0 =

0 I

0 0

 , µd = µrm + µpd − µad.

20

Theorem 2.3.4. Let x(t) be a switched stochastic process defined by (2.15). LetB(x) be a candidate

control barrier function. Let γ3 be a class-K function. Suppose for all t, µqp satisfies the inequality:

Φ0
i + Φ1µqp ≤ 0 (2.15)

Φ0
i =

∂B

∂x

ᵀ

(A0x+Gµd)− γ3(h(x)) +
1

2
tr(Gσiσ

ᵀ
iG

ᵀ∂
2B

∂x2
)

Φ1 =
∂B

∂x

ᵀ

G (2.16)

Then B(x) is a CBF and (2.16) is a sufficient condition for safety, i.e., if x0 ∈ C, then x(t) ∈ C for

all t with probability 1.

Proof. We have the following Itô differential of the CBF candidate B(x):

LB(x) =
∂B

∂x

ᵀ

(A0x+G(µd + µqp)) +
1

2
tr(Gσiσ

ᵀ
iG

ᵀ∂
2B

∂x2
). (2.17)

Rearranging (2.16) it is clear that LB(x) ≤ γ3(h(x)). Then B(x) is a CBF and the result follows

from Theorem 2.3.3.

2.3.3 Safety and Stability under Model Adaptation

We can now construct a CLF-CBF Quadratic Program (QP) in terms of µqp incorporating both the

adaptive stochastic CLF and CBF conditions, along with control limits (Equation (2.18)):

arg min
µqp,d1,d2

µᵀ
qpµqp + p1d

2
1 + p2d

2
2 (2.18)

s.t. Ψ0
i + Ψ1µqp ≤ d1 (Adaptive CLF)

Φ0
i + Φ1µqp ≤ d2 (Adaptive CBF)

Hg−1(x)µqp ≤ Hg−1(x)(µd − f̂(x)) + b

In practice, several modifications to this QP are often made ([50],[65]). In addition to a relaxation

term for the CLF in Theorem 2.3.2, we also include a relaxation term d2 for the CBF. This helps

to ensure the QP is feasible and allows for slowing down as much as possible when the safety

constraint cannot be avoided due to control constraints, creating, e.g., lower impact collisions.

21

Safety is still guaranteed as long as the relaxation term is less than 0. For an example of guaranteed

safety in the presence of this relaxation term see [43], also see [47] for an approach to handling

safety with control constraints. The emphasis of this work is on guaranteeing safety in the presence

of adaptation so we leave these considerations for future work. Our entire framework is outlined in

Algorithm 1.

Algorithm 1: BAyesian Learning-based Safety and Adaptation (BALSA)

1 Require: Prior model f̂(x), known g(x), reference trajectory xrm, choice of modeling
algorithm ∆̄i(x) ∼ N (mi(x), σi(x)), dt, A, Hu ≤ b.

2 Initialize: i = 0, Dataset D0 = ∅, t = 0, solve P
3 while true do
4 Obtain µrm = dx2rm(t) and compute µpd
5 Compute model error and uncertainty µad = mi(x(t)), and σi(x(t))
6 µqp ← Solve QP (2.18)
7 Set u(t) = g(x)−1(µrm + µpd + µqp − µad − f̂(x))
8 Apply control u(t) to system.
9 Step forward in time t← t+ dt.

10 Append new data point to database:
11 X̄t = [x(t)], Ȳt = (x2(t+ dt)− x2(t))/dt− (f̂(x(t)) + g(x(t)u(t)).
12 Di ← Di ∪ {X̄t, Ȳt}
13 if updateModel then
14 Update model ∆̄i(x, µ) with database Di
15 Di+1 ← Di, i← i+ 1

2.4 Application to Fast Autonomous Driving

In this section we validate BALSA on a kinematic bicycle model for car-like vehicles. We model

the state x = [px, py, θ, v]ᵀ as position in x and y, heading, and velocity respectively, with dynamics

ẋ = [v cos(θ), v sin(θ), v tan(ψ)/L, a]ᵀ. where a is the input acceleration, L is the vehicle length,

and ψ is the steering angle. We employ a simple transformation to obtain dynamics in the form of

(2.1). Let z = [z1, z2, z3, z4]ᵀ where z1 = px, z2 = py, z3 = ż1, z4 = ż2, and c = tan(ψ)/L. Let the

controls u = [c, a]ᵀ. Then ż fits the canonical form of (2.1). To ascertain the importance of learning

22

and adaptation, we add the following disturbance to [ż3, ż4]ᵀ to use as a “true” model:

δ(z) =

cos(θ) − sin(θ)

sin(θ) cos(θ)


− tanh(v2)

−(0.1 + v)

 (2.19)

This constitutes a non-linearity in the forward velocity and a tendency to drift to the right.

We use the following barrier function for pointcloud-based obstacles. Similar to [43], we

design this barrier function with an extra component to account for position-based constraints

which have a relative degree greater than 1. This is done by including the time-derivative of the

position-based constraint as an additional term in the barrier function, which penalizes velocities

(or higher order derivatives) leading to a decrease of the level set function h. Let our safety set

C = {x ∈ Rn|h(x, x′) ≥ 0}, where x′ is the position of an obstacle. Let h(x, x′) = ‖(x− x′)‖2− r

where r > 0 is the radius of a circle around the obstacle. Then construct a barrier function

B(x;x′) = 1/(γph(x, x′)+ d
dt
h(x, x′)). As shown by [50], B(x) is a CBF, where γp helps to control

the rate of convergence. We chose γ1(x), γ2(x) = x and γ3(x) = γ/x.

2.4.1 Validation of BALSA in Simulation

One iteration of the algorithm for this problem takes less than 4ms on a 3.7GHz Intel Core i7-8700K

CPU, in Python code which has not been optimized for speed. We make our code publicly available1.

Because training the model occurs on a separate thread and can be performed anytime online, we

do not include the model training time in this benchmark. We use OSQP [66] as our QP solver.

In Figure 2.2, we compare BALSA with several different baseline algorithms. We use a

Neural Network trained with dropout and a negative-log-likelihood loss function for capturing

the uncertainty [6]. We place several obstacles in the direct path of the reference trajectory. We

also place velocity barriers for driving too fast or too slow. We observe that the behavior of the

vehicle using our algorithm maintains good tracking errors while avoiding barriers and maintaining

safety, while the other approaches suffer from various drawbacks. The adaptive controller (ad) and

PD controller (pd) violate safety constraints. The (qp) controller with an inaccurate model also

1https://github.com/ddfan/balsa.git

23

https://github.com/ddfan/balsa.git

0 10 20 30 40 50 60
X Position

−3

−2

−1

0

1

2

Y
Po

sit
io

n
ref ad qp pd rob balsa

Figure 2.2: Comparison of the performance of four algorithms in tracking and avoiding barrier
regions (red ovals). ref is the reference trajectory. ad is an adaptive controller (µrm + µpd − µad).
qp is a non-adaptive safety controller (µrm + µpd + µqp). pd is a proportional derivative controller
(µrm + µpd). rob is a robust controller which uses a fixed σi(x) to compensate for modeling errors.
balsa is the full adaptive CLF-CBF-QP approach outlined in this paper and in Algorithm 1, i.e.
(µrm + µpd − µad + µqp).

violates constraints and exhibits highly suboptimal behavior (Figure 2.3). A robust (rob) formulation

which uses a fixed robust bound which is meant to bound any model uncertainty [43], while not

violating safety constraints, is too conservative and non-adaptive, has trouble tracking the reference

trajectory. In contrast, BALSA adapts to model error with guaranteed safety. We also plot the model

uncertainty and error in (Figure 2.3).

2.4.2 Comparing Different Modeling Methods in Simulation

Next we compared the performance of BALSA on three different Bayesian modeling algorithms:

Gaussian Processes, a Neural Network with dropout, and ALPaCA [58], a meta-learning approach

which uses a hybrid neural network with Bayesian regression on the last layer. For all methods

we retrained the model intermittently, every 40 new datapoints. In addition to the current state, we

also included as input to the model the previous control, angular velocity in yaw, and the current

roll and pitch of the vehicle. For the GP we re-optimized hyperparameters with each training. For

the dropout NN, we used 4 fully-connected layers with 256 hidden units each, and trained for 50

epochs with a batch size of 64. Lastly, for ALPaCA we used 2 hidden layers, each with 128 units,

and 128 basis functions. We used a batch size of 150, 20 context data points, and 20 test data

24

0

2

Ve
l (

m
/s

)

ref ad qp pd rob balsa

0

1

Pr
ed

 e
rr

0 10 20 30 40 50 60
Time(s)

10−3

10−1

σ i
(x

)
Figure 2.3: Top: Velocities of each algorithm. Red dotted line indicates safety barrier. Middle:
Output prediction error of model, decreasing with time. Solid and dashed lines indicate both output
dimensions. Bottom: Uncertainty σi(x), also decreasing with time. Predictions are made after 10
seconds to accumulate enough data to train the network. During this time we choose an upper bound
for σ0 = 1.0.

25

−5

0

5
No Learning

ref 0-60s 60-120s
GP

−2.5 0.0 2.5
−5

0

5
Dropout NN

−2.5 0.0 2.5

ALPaCA

Figure 2.4: Comparison of adaptation performance in a Gazebo simulation using three different
probabilistic model learning methods.

Table 2.1: Average tracking error in position for different modeling methods in sim, split into the
first minute and second minute.

No learn GP Dropout ALPaCA
0-60s 0.580 0.3992 0.408 0.390

60-120s 0.522 0.097 0.105 0.110

points. The model was trained using 100 gradient steps and online adaption (during prediction) was

performed using 20 of the most recent context data points with the current observation (see [58] for

details of the meta-learning capabilities of ALPaCA). At each training iteration we retrain both the

neural network and the last Bayesian linear regression layer. Figure (2.4) and Table (2.1) show a

comparison of tracking error for these methods. We found GPs to be computationally intractable

with more than 500 data points, although they exhibited good performance. Neural networks with

dropout converged quickly and were efficient to train and run. ALPaCA exhibited slightly slower

convergence but good tracking as well.

26

−2 0 2 4 6 8 10 12 14
−3

−2

−1

0

1

2

3 No adaptation
Adaptation
Reference

Figure 2.5: Left: A high-speed rover vehicle. Right: Figure-8 tracking on our rover platform on
rough and sandy terrain, comparing adaptation vs. no adaptation.

2.4.3 Hardware Experiments on Martian Terrain

To validate that BALSA meets real-time computational requirements, we conducted hardware

experiments on the platform depicted in Figure (2.5). We used an off-the shelf RC car (Traxxas

Xmaxx) in 1/5-th scale (wheelbase 0.48 m), equipped with sensors such as a 3D LiDAR (Velodyne

VLP-16) for obstacle avoidance and a stereo camera (RealSense T265) for on-board for state

estimation. The power train consists of a single brushless DC motor, which drives the front and

rear differential, operating in current control mode for controlling acceleration. Steering commands

were fed to a servo position controller. The on-board computer (Intel NUC i7) ran Ubuntu 18.04

and ROS [67].

Experiments were conducted in a Martian simulation environment, which contains sandy soil,

gravel, rocks, and rough terrain. We gave figure-eight reference trajectories at 2m/s and evaluated

the vehicle’s tracking performance (Figure 2.5). Due to large achieving good tracking performance

at higher speeds is difficult. We observed that BALSA is able to adapt to bumps and changes in

friction, wheel slip, etc., exhibiting improved tracking performance over a non-adaptive baseline

(Table 2.2).

We also evaluated the safety of BALSA under adaptation. We used LiDAR pointclouds to create

barriers at each LiDAR return location. Although this creates a large number of constraints, the

QP solver is able to handle these in real-time. Figure 2.6 shows what happens when an obstacle is

27

Table 2.2: Mean, standard deviation, and max tracking error on our rover platform for a figure-8
task.

Mean Err Std Dev Max
No Learn 1.417 0.568 6.003
Learning 0.799 0.387 2.310

−4 −2 0 2 4 6 8 10

−4

−2

0

2

Figure 2.6: Vehicle avoids collision despite localization drift and unmodeled dynamics. Blue line is
the reference trajectory, colored pluses are the vehicle pose, colored points are obstacles. Colors
indicate time, from blue (earlier) to red (later). Note that localization drift results in the obstacles
appearing to shift position. Green circle indicates location of the obstacle at the last timestep.
Despite this drift the vehicle does not collide with the obstacle.

placed in the path of the reference trajectory. The vehicle successfully slows down and comes to a

stop if needed, avoiding the obstacle altogether.

2.5 Conclusion

In this work, we have described a framework for safe, fast, and computationally efficient probabilistic

learning-based control. The proposed approach satisfies several important real-world requirements

and take steps towards enabling safe deployment of high-dimensional data-driven controls and

planning algorithms.

28

CHAPTER 3

DEEP LEARNING TUBES FOR TUBE MPC

3.1 Summary

Learning-based control aims to construct models of a system to use for planning or trajectory

optimization, e.g. in model-based reinforcement learning. In order to obtain guarantees of safety

in this context, uncertainty must be accurately quantified. This uncertainty may come from errors

in learning (due to a lack of data, for example), or may be inherent to the system. Propagating

uncertainty forward in learned dynamics models is a difficult problem. In this work we use

deep learning to obtain expressive and flexible models of how distributions of trajectories behave,

which we then use for nonlinear Model Predictive Control (MPC). We introduce a deep quantile

regression framework for control that enforces probabilistic quantile bounds and quantifies epistemic

uncertainty. Using our method we explore three different approaches for learning tubes that contain

the possible trajectories of the system, and demonstrate how to use each of them in a Tube MPC

scheme. We prove these schemes are recursively feasible and satisfy constraints with a desired

margin of probability. We present experiments in simulation on a nonlinear quadrotor system,

demonstrating the practical efficacy of these ideas.

3.2 Introduction

In controls and planning, the idea of adapting to unknown systems and environments is appealing;

however, guaranteeing safety and feasibility in the midst of this adaptation is of paramount concern.

The goal of robust MPC is to take into account uncertainty while planning, whether it be from

modeling errors, unmodeled disturbances, or randomness within the system itself [68]. In addition to

safety, other considerations such as optimality, real-time tractability, scalability to high dimensional

systems, and hard state and control constraints make the problem more difficult. In spite of these

29

Figure 3.1: A learned tube (green) with learned mean (blue) that captures the distribution of
trajectories (cyan) on a full quadrotor model tracking a target trajectory (black), propagated for 200
timesteps forward from the initial states (dots).

difficulties, learning-based robust MPC continues to receive much attention [69, 70, 71, 39, 72, 73,

37, 74, 75, 76]. However, in an effort to satisfy the many competing design requirements in this

space, certain restrictive assumptions are often made, which include predetermined error bounds,

restricted classes of dynamics models, or fixed parameterizations of the uncertainty.

Consider the following nonlinear dynamics equation that describes a real system:

xt+1 = f(xt, ut) + wt (3.1)

where x ∈ X ⊆ Rn is the state, u ∈ U ⊆ Rm are controls, and w ∈ Rn is noise or disturbance.

When attempting to find a model which captures the behavior of xt, there will be error that results

from insufficient data, lack of knowledge of wt, or unknown or unobserved higher-dimensional

dynamics not observed in xt. One traditional approach has been to find robust bounds on the

model error and plan using this robust model, i.e. |wt| ≤ W . However, this approach can be

too conservative since it is not time or space varying and does not capture the distribution of the

disturbance [75, 8]. To partially address this one could extend W to be time and state-varying, i.e.

W = W (xt, ut, t), as is commonly done in the robust MPC and control literature. For example, [77]

takes this approach for feedback linearizable systems using boundary layer control, [16] leverages

contraction theory and sum-of-squares optimization to find stabilizing controllers for nonlinear

30

systems under uncertainty, and [78] solves for forward invariant tubes using min-max differential

inequalities (See [79] for a recent overview of other related approaches). In this work we aim to

learn this uncertainty directly from data, which allows us to avoid structural assumptions of the

system of interest or restrictive parameterizations of uncertainty. We learn a quantile representation

of the bounds of the distribution of possible trajectories, in the form of a tube around some nominal

trajectory (Figure 1).

More closely related to our approach is the wide range of recent work in learning-based planning

and control that seeks to handle model uncertainty probabilistically, where a model is constructed

from one-step prediction measurements, and it is assumed that the true underlying distribution of

the function is Gaussian [24, 80, 81, 12, 34]:

P (xt+1|xt, ut) = N (µ(xt, ut), σ(xt, ut)). (3.2)

where the mean function µ : X × U → X and variance function σ : X × U → X2 capture the

uncertainty of the dynamics for one time step. Various approaches for approximating this posterior

distribution have been developed [82, 17]. For example, in PILCO and related work [80], moment

matching of the posterior distribution is performed to find an analytic expression for the evolution of

the mean and the covariance in time. The main problem with this approach is the one-step nature of

this model, whereas for trajectory optimization we wish to propagate the distribution over multiple

timesteps. Consider the two-timestep propagation:

P (xt+2|xt, ut, ut+1) =

∫
P (xt+2|xt+1, ut+1)P (xt+1|xt, ut)dxt+1

=

∫ [
N (xt+2|µ(xt+1, ut+1), σ(xt+1, ut+1))N (xt+1|µ(xt, ut), σ(xt, ut))

]
dxt+1 (3.3)

The two-timestep distribution will no longer be Gaussian, and marginalizing over the intermediate

state xt+1 is intractable. As we do so, the true distribution may become multi-modal and highly

non-Gaussian, and as the number of timesteps grows, the situation will grow worse. In order to

arrive at these analytic expressions, assumptions must be made which lower the descriptive power

for the model to capture the true underlying distribution, which may be multi-modal and highly

31

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

x

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

x

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

Figure 3.2: Comparison of 3-σ bounds on distributions of trajectories using GP moment matching
(red) and the proposed quantile regression method (green). 100 sampled trajectories are shown
(cyan) along with starting and ending distributions (blue, left and right histograms). Left: GP
moment matching overestimates the distribution for the dynamics ẋ = −x|x|, while our method
models it well. Right: GP moment matching underestimates the distribution for the dynamics
ẋ = − sin(4x), while our method captures the tails of the distribution.

non-Gaussian. Furthermore, conservative estimates of the variance of the distribution will grow

in an unbounded manner as the number of timesteps increases [83]. The result is that any chance

constraints derived from these approximate models may be inaccurate. In Figure 3.2 we compare

the classic GP-based moment matching approach for propagating uncertainty with our own deep

quantile regression method on two different functions. While GP-moment matching can both

underestimate and overestimate the true distribution of trajectories, our method is less prone to

failures due to analytic simplifications or assumptions.

An alternative approach to Bayesian modeling for robust MPC has been to use quantile bounds

to bound the tails of the distribution. This has the advantage that for planning in safety-critical

contexts, we are generally not concerned with the full distribution of the trajectories, but the tails of

these distributions only; specifically, we are interested in the probability of the tail of the distribution

violating a safe set. A few recent works have taken this approach in the context of MPC; for

example, [84] computes back-off sets with Gaussian Processes, and [76] uses an adaptive control

approach to parameterize quantile bounds.

We are specifically interested in the idea of learning quantile bounds using the expressive power

of deep neural networks. Quantile bounds give an explicit probability of violation at each timestep

and allow for quantifying uncertainty which can be non-Gaussian, skewed, asymmetric, multimodal,

and heteroskedastic [85]. Quantile regression itself is a well-studied field with the first results from

32

[86], see also [20, 87]. Quantile regression in deep learning has been also recently considered as a

general statistical modeling tool [88, 89, 90, 91, 85]. Bayesian quantile regression has also been

studied [92, 93]. Recently quantile regression has gained popularity as a modeling tool within the

reinforcement learning community [94].

In addition to introducing a method for deep learning quantile bounds for distributions of

trajectories, we also show how this method can be tailored to a tube MPC framework. Tube MPC

[95, 96] was introduced as a way to address some of the shortcomings of classic robust MPC;

specifically that robust MPC relied on optimizing over an open-loop control sequence, which does

not predict the closed-loop behavior well. Instead, tube MPC seeks to optimize over a local policy

that generates some closed-loop behavior, which has advantages of robust constraint satisfaction,

computational efficiency, and better performance. The use of tube MPC allows us to handle high

dimensional systems, as well as making the learning problem more efficient, tractable, and reliable.

To the best of our knowledge, our work is the first to combine deep quantile regression with

tube-based MPC, or indeed any learning-based robust MPC method.

The structure of the paper is as follows: In Section 3.3 we present our approach for learning

tubes, which includes deep quantile regression, enforcing a monotonicity condition with a negative

divergence loss function, and quantifying epistemic uncertainty. In Section 3.5 we present three

different learning tube MPC schemes that take advantage of our method. In Section 3.6 we perform

several experiments and studies to validate our method, and conclude in Section 3.7.

3.3 Deep Learning Tubes

3.3.1 Learning Tubes For Robust and Tube MPC

We propose learning time-varying invariant sets as a way to address the difficulties with propagating

uncertainty for safety critical control, as well as to characterize the performance of a learned model

33

zt

zt+1

xt xt+1

ꭥt

ꭥt+1

Figure 3.3: Diagram of a tube around the dynamics of z, within which x stays invariant. Note that
the tube set Ωt is time-varying.

or tracking controller. Consider the following quantile description of the dynamics:

xt+1 = f(xt, ut) + wt (3.4)

zt+1 = fz(zt, vt)

ωt+1 = fω(ωt, zt, vt, t)

P (d(xt, zt) ≤ ωt) ≥ α, ∀t ∈ N

where z ∈ Z ⊆ Rnz is a latent state of equal or lower dimension than x, i.e. nz ≤ n, and

v ∈ V ⊆ Rmz is a pseudo-control input, also of equal or lower dimension than u, i.e. mz ≤ m. In

the simplest case, we can fix vt = ut and/or zt = xt. Also, ω ∈ Rnz is a vector that we call the tube

width, with each element of ω > 0.

This defines a ”tube” around the trajectory of z within which x will stay close to z with

probability greater than α ∈ [0, 1] (Figure 3.3). More formally, we can define the notion of

closeness between some x and z by, for example, the distance between z and the projection of x

onto Z: d(x, z) = |PZ(x)− z| ∈ Rnz , where PZ is a projection operator. Let Ωω(z) ⊂ X be a set in

X associated with the tube width ω and z:

Ωω(z) := {x ∈ X : d(x, z) ≤ ω}. (3.5)

where the ≤ is element-wise. Other tube parameterizations are possible, for example Ωω(z) :=

{x ∈ X : ‖PZ(x)− z‖ω ≤ 1}, where ω ∈ Rnz×nz instead. Further discussion of this case will be

34

provided in Section (3.4).

The coupled system (3.4) induces a sequence of sets {Ωωt(zt)}Tt=0 that form a tube around zt.

Our goal is to learn how this tube changes over time in order to use it for planning safe trajectories.

3.3.2 Quantile Regression

Our challenge is to learn the dynamics of the tube width, fω. Given data collected as trajectories

D = {xt, ut, xt+1, zt, vt, zt+1, t}Tt=0, we can formulate the learning problem for fω as follows.

Let fω be parameterized with a neural network, f θω. For a given t and data point

{xt, ut, xt+1, zt, vt, zt+1, t}, let ωt = d(xt, zt) be the input tube width to fω, and ωt+1 = d(xt+1, zt+1)

the candidate output tube width. The candidate tube width at t+ 1 must be less than the estimate of

the tube width at t+ 1, i.e: ωt+1 ≤ f θω(ωt, zt, vt, t). To train the network f θω to respect these bounds

we can use the following check loss function:

Lαω(θ, δ) = Lα(ωt+1, f
θ
ω(ωt, zt, vt, t)) (3.6)

Lα(y, r) =


α|y − r| y > r

(1− α)|y − r| y ≤ r

where the loss is a function of each data sample δ = {ωt+1, ωt, zt, vt, t}. With the assumption of

i.i.d. sampled data, when Lαω(θ, δ) is minimized the quantile bound will be satisfied, (see Figure 3.4

and Theorem 3.3.1). In practice we can smooth this loss function near the inflection point y = r

with a slight modification, by multiplying Lαω with a Huber loss [97, 94].

Theorem 3.3.1. Let θ∗ minimize Eδ[Lαω(θ, δ)]. Then with probability α, f θ
∗
ω (ω, z, v, t) is an upper

bound for fω(ω, z, v, t).

Proof. With a slight abuse of notation, let x denote the input variable to the loss function, and

consider the expected loss Ex[Lα(y(x), r(x))]. We find the minimum of this loss w.r.t. r by setting

35

zt zt+1

xt
xt+1

ꭥt ꭥt+1

vt

ut

zt zt+1

xt
xt+1

ꭥt

vt

ꭥt+1

ut

zt zt+1

ꭥt ꭥt+1

ꭥt ꭥt+1
2

1 1

2

Figure 3.4: Learning tube dynamics from data. Left: The predicted tube at t+ 1 is too small. The
gradient of the loss function will increase its size. Middle: The predicted tube at t+ 1 is larger than
the actual trajectory in x taken, and will be shrunk. Right: The mapping fω(ω, zt, vt, t) is monotonic
with respect to ω, which results in Ω1

t ⊆ Ω2
t =⇒ Ω1

t+1 ⊆ Ω2
t+1.

the gradient to 0:

∂

∂r∗
Ex[Lα(y(x), r∗(x))] (3.7)

=

∫
y(x)>r∗(x)

αp(x)dx−
∫
y(x)≤r∗(x)

(1− α)p(x)dx

= αp(y(x) > r∗(x))− (1− α)p(y(x) ≤ r∗(x)) = 0

=⇒ p(y(x) ≤ r∗(x)) = α

Replacing r∗(x) with f θ∗ω (ω, z, v, t) and y(x) with fω(ω, z, v, t) completes the proof.

Note that quantile regression gives us tools for learning tube dynamics fω(ω, z, v, t, α) that are

a function of the quantile probability α as well. This opens the possibility to dynamically varying

the margin of safety while planning, taking into account acceptable risks or value at risk [98]. For

example, in planning a trajectory, one could choose a higher α for the near-term and lower α in the

later parts of the trajectory, reducing the conservativeness of the solution.

Additionally, we note that we can train the tube bounds dynamics in a recurrent fashion to

improve long sequence prediction accuracy. While we present the above and following theorems in

the context of one timestep, they are easily extensible to the recurrent case.

36

3.3.3 Enforcing Monotonicity

In addition to the quantile loss we also introduce an approach to enforce monotonicity of the tube

with respect to the tube width (Figure 3.4, right). This is important for ensuring recursive feasibility

of the MPC problem, as well as allowing us to shrink the tube width during MPC at each timestep if

we obtain measurement updates of the current state, or, in the context of state estimation, an update

to the covariance of the estimate of the current state. Enforcing monotonicity in neural networks

has been studied with a variety of techniques [99, 100]. Here we adopt the approach of using a loss

function that penalizes the network for having negative divergence, similar to [101]:

Lm(θ, δ) = −min(0, divωfω(ω, z, v, t)) (3.8)

where divω is the divergence of fω with respect to ω. In practice we find that under gradient-

based optimization, this loss decreases to 0 in the first epoch and does not noticeably affect

the minimization of the quantile loss. Minimizing Lm(θ, δ) allows us to make claims about the

monotonicity of the learned tube:

Theorem 3.3.2. Suppose θ∗ minimizes Eδ[Lm(θ, δ)] and Eδ[Lm(θ∗, δ)] = 0. Then for any zt ∈

Z, vt ∈ V, t ∈ N and ω1
t , ω

2
t ∈ Rnz , if Ωω1

t
(zt) ⊆ Ωω2

t
(zt), then Ωω1

t+1
(zt+1) ⊆ Ωω2

t+1
(zt+1).

Proof. Since ∀θ, δ, Lm(θ, δ) > 0 and E[Lm(θ∗, δ)] = 0, then Lm(θ∗, δ) = 0. Then

∇ωfω(ω, z, v, t) > 0 and fω is nondecreasing with respect to ω. Since Ωω1
t
⊆ Ωω2

t
, then ω1

t ≤ ω2
t ,

so fω(ω1
t , zt, vt, t) ≤ fω(ω2

t , zt, vt, t), which implies that Ωω1
t+1

(zt+1) ⊆ Ωω2
t+1

(zt+1).

3.3.4 Epistemic Uncertainty

Finally, in order to account for uncertainty in regions where no data is available for estimating

quantile bounds, we incorporate methods for estimating epistemic uncertainty. Such methods can

include Bayesian neural networks, Gaussian Processes, or other heuristic methods in deep learning

[6, 94, 102]. For the experiments in this work we adopt an approach that adds an additional output

layer to our quantile regression network that is linear with respect to orthonormal weights [85]. We

37

emphasize that a wide range of methods for quantifying epistemic uncertainty are available and

we are not restricted to this one approach; however, for the sake of clarity, we present in detail

our method of choice. Let g(z, v, t) be a neural network with either fixed weights that are either

randomly chosen or pre-trained, with l dimensional output. We branch off a second output with

a linear layer: Cᵀg(z, v, t), where C ∈ Rl×k. The estimate of epistemic uncertainty is chosen as

ue(z, v, t) = ‖Cᵀg(z, v, t)‖2. Then, the parameters C are trained by minimizing the following loss:

Lu(C, δ) = ‖Cᵀg(z, v, t)‖2 + λ‖CᵀC − Ik‖. (3.9)

where λ > 0 weights the orthonormal regularization. Minimizing this loss produces a network

that has a value close to 0 when the input data is in-distribution, and increases with known rate as

the input data moves farther from the training distribution (Figure 3.5, and see [85] for detailed

analysis). We scale the predicted quantile bound by the epistemic uncertainty, then add a maximum

bound to prevent unbounded growth as ω grows:

fω(ω, z, v, t)← min{(1 + βue(z, v, t))fω(ω, z, v, t),W} (3.10)

where β > 0 is a constant parameter that scales the effect of the epistemic uncertainty, and W is

a vector that provides an upper bound on the total uncertainty. Finding an optimal β analytically

may require some assumptions such as a known Lipschitz constant of the underlying function,

non-heteroskedastic noise, etc., which we leave for future investigation. We set β and W by hand

and find this approach to be effective in practice.

We expect that as the field matures, methods for providing guarantees on well-calibrated

epistemic uncertainty in deep learning will continue to improve. In the meantime, we make the

assumption that we have well-calibrated epistemic uncertainty, an assumption similar to those

made with other learning-based controls methods, such as choosing noise covariances, disturbance

magnitudes, or kernel types and widths. The main benefit of leveraging epistemic uncertainty

modeling is that it allows us to maintain guarantees of safety and recursive feasibility when we have

a limited amount of data to learn from. In the case when no reliable epistemic estimate is available,

we can proceed if we simply assume there is sufficient data to learn a good model offline.

38

−3 −2 −1 0 1 2 3
−4

−2

0

2

4

Figure 3.5: Estimating epistemic uncertainty for a 1-D function. Black dots indicate noisy data
used to train the models, black line indicates the true function. Green colors indicate trained neural
network models with green line indicating mean, and green dotted lines indicating learned 99%
quantile bounds. Green shading indicates increased quantile bounds scaled by the learned epistemic
uncertainty. Blue line and shading is GP regression with 99% bounds for comparison.

3.4 Extension to Tubes Defined by a Metric

In the previous section we considered tubes defined in the following manner (Equation 3.4):

xt+1 = f(xt, ut) + wt (3.11)

zt+1 = fz(zt, vt)

ωt+1 = fω(ωt, zt, vt, t)

P (d(xt, zt) ≤ ωt) ≥ α, ∀t ∈ N

By this definition, the tube is defined element-wise, i.e. d(xt, zt) ≤ ωt is an element-wise inequality

which defines a ”box”-shaped tube, where each dimension of the state must satisfy the inequality

independently. As mentioned, other tube parameterizations are possible, which require slight

modifications to the proofs presented in Section 3.3. Here, we consider the case where the tube is

39

defined using a distance metric:

xt+1 = f(xt, ut) + wt (3.12)

zt+1 = fz(zt, vt)

ωt+1 = fω(ωt, zt, vt, t)

P (d(xt, zt;ωt) ≤ 1) ≥ α, ∀t ∈ N

Here the inequality d(xt, zt;ωt) ≤ 1 is no longer element-wise, and we define d(·, ·;ω) as a distance

metric which depends on a vector of parameters ω ∈ Rnω . This parameter vector has its own tube

dynamics fω. Different from the previous approach, we require d to be non-increasing with respect

to ω, which we will define for multivariate functions. This will be useful for ensuring recursive

feasibility, as we will show.

Definition 3.4.1. Let f(x) : RK → R be a multivariate function. Let x, y ∈ RK be such that x is

less than or equal to y element-wise, i.e. x(k) ≤ y(k),∀k = 1, · · · , K. Then if f(x) ≤ f(y) we

say the function f is non-decreasing, and if f(x) ≥ f(y), we say f is non-increasing.

3.4.1 Quantile Metric Tube Loss

We can formulate the tube learning problem similarly as follows. We modify the check loss function

(Equation 3.7) in terms of this metric tube:

Lαω(θ, y) = Lα(d(xt+1, zt+1; f θω(ωt, zt, vt, t)), 1) (3.13)

Lα(a, b) =


α|a− b| a > b

(1− α)|a− b| a ≤ b

With the assumption of i.i.d. sampled data, when Lαω(θ, y) is minimized the quantile bound will be

satisfied (Theorem 3.4.1). In practice we can still smooth this loss function near the inflection point

a = b with a slight modification, by multiplying Lαω with a Huber loss [97, 94].

Theorem 3.4.1. Let θ∗ minimize Ey[Lαω(θ, y)]. Then with probability ≥ α, d(x, z;ω) ≤ 1.

40

Proof. Consider the expected loss Ey[Lα(a(y), 1)]. We find the minimum of this loss w.r.t. a by

setting the gradient to 0 at the optimal a∗:

∂

∂a∗
Ex[Lα(a∗(y), 1)] (3.14)

=

∫
a∗(y)>1

αp(y)dy −
∫
a∗(y)≤1

(1− α)p(y)dy

= αp(a∗(y) > 1)− (1− α)p(a∗(y) ≤ 1) = 0

=⇒ p(a∗(y) ≤ 1) = α

Replacing a∗(y) with d(x, z;ω) completes the proof.

3.4.2 Enforcing Metric Monotonicity in ω

Next we must enforce monotonicity of the tube size with respect to the tube dynamics. This is

important for ensuring recursive feasibility of the MPC problem. Again, we use a loss function that

penalizes the network for having negative divergence, similar to [101]:

Lm(θ, y) = −min(0, divωfω(ω, z, v, t)) (3.15)

where divω is the divergence of fω with respect to ω. In practice we find that under gradient-

based optimization, this loss decreases to 0 in the first epoch and does not noticeably affect

the minimization of the quantile loss. Minimizing Lm(θ, y) allows us to make claims about the

monotonicity of the learned tube (Theorem 3.4.3).

Definition 3.4.2. Let Ωω(z) ⊂ X be called a tube set associated with the tube parameters ω and

tube center z:

Ωω(z) := {x ∈ X : d(x, z;ω) ≤ 1}. (3.16)

Lemma 3.4.2. If Ωω1(z) ⊆ Ωω2(z), then ω1 ≤ ω2 element-wise, i.e. ω1(k) ≤ ω2(k),∀k =

1, · · · , nω.

Proof. (Contrapositive) Suppose ω1 � ω2. We want to show that ∃x ∈ Ωω1(z) such that x /∈ Ωω2(z).

This can be done with a trivial example. Suppose ω1 = [1, 0]ᵀ, ω2 = [0, 1]ᵀ, and d(x, z;ω) =

41

(x − z)ᵀωωᵀ(x − z). Pick z = [0, 0]ᵀ and x = [1, 2]ᵀ. Then d(x, z, ω1) = 1, so x ∈ Ωω1(z). But

d(x, z, ω2) = 4, so x /∈ Ωω2(z).

Theorem 3.4.3. Suppose θ∗ minimizes Ey[Lm(θ, y)] and Ey[Lm(θ∗, y)] = 0. Then for any zt ∈

X, ut ∈ U and ω1
t , ω

2
t ∈ Rnz , if Ωω1

t
(zt) ⊆ Ωω2

t
(zt), then Ωω1

t+1
(zt+1) ⊆ Ωω2

t+1
(zt+1).

Proof. Since ∀θ, y, Lm(θ, y) > 0 and E[Lm(θ∗, y)] = 0, then Lm(θ∗, y) = 0. Then

∇ωfω(ω, z, u) > 0 and fω is nondecreasing with respect to ω. Since Ωω1
t
⊆ Ωω2

t
, Lemma 3.4.2

implies that ω1
t ≤ ω2

t element-wise. Then because fω is nondecreasing, ω1
t+1 ≤ ω2

t+1. And be-

cause d(·, ·;ω) is non-increasing with respect to ω, then d(x, zt+1;ω1
t+1) ≥ d(x, zt+1;ω2

t+1). So if

x ∈ Ωω1
t+1

(zt+1), then d(x, zt+1;ω2
t+1) ≤ 1, which implies x ∈ Ωω2

t+1
(zt+1).

While we have presented the above theorems in the context of one timestep, by summing the

accumulated losses over multiple timesteps, we can train both latent dynamics and tube dynamics

functions in a recurrent fashion. This improves long sequence prediction accuracy and reduces

compounding errors.

In the next sections we present various methods for applying this deep quantile regression

approach to MPC problems. For simplicity, we assume that the tubes are defined in the manner of

Equation 3.4.

3.5 Three Ways to Learn Tubes for Tube MPC

In this section we present three variations for applying our deep quantile regression approach to MPC

problems, whose applicability may vary based on what components are available to the designer.

By leveraging the previously described theorems for ensuring accurate quantiles, monotonicity,

and uncertainty of the tube width dynamics, we can guarantee recursive feasibility of these MPC

schemes, while ensuring that the trajectory of the system xt remains within a safe set xt ∈ C ⊂ Rn

with probability α at each timestep. The three different approaches require different elements of the

system to be known or given, and are summarized as:

42

1. Given a tracking control law u = π(x, z) and reference trajectory dynamics fz, construct an

invariant tube with the reference trajectory at its center (Figure 3.3).

2. Given a tracking control law π and reference trajectory dynamics fz, construct a model of the

dynamics of the error e = x− z, then learn an invariant tube with z + e as its center (Figure

3.6a).

3. From data generated from any control law, random or otherwise, learn a reduced representation

of the dynamics fz (and optionally, a policy π to track it), along with tube bounds on the

tracking error (Figure 3.6b).

3.5.1 Learning Tube Dynamics for a Given Controller

We first consider the case where we are given a fixed ancillary controller π(x, z) : X× Z→ U (or

potentially π(x, z, v) with a feed-forward term v), along with nominal dynamics fz that are used for

planning and tracking in the classic tube MPC manner [103]. For now our goal is to learn fω alone.

We sum the three losses discussed in the previous section:

L(θ, C, δ) = Lαω(θ, δ) + Lm(θ, δ) + Lu(C, δ) (3.17)

to learn f θω, and find θ∗ and C∗ via stochastic gradient descent. Next, we perform planning on the

coupled z and tube dynamics in the following nonlinear MPC problem. Let T ∈ N denote the

planning horizon. We use the subscript notation vk|t to denote the variable vk for k = 0, · · · , T

within the MPC problem at time t. Let v·|t denote the set of variables {vk|t}Tk=0. Then, at time t, the

43

MPC problem is:

min
v·|t∈V

JT (v·|t, z·|t, ω·|t) (3.18a)

s.t. ∀k = 0, · · · , T :

zk+1|t = fz(zk|t, vk|t) (3.18b)

ωk+1|t = f θω(ωt, zt, vt, t) (3.18c)

ω0|t = d(xt, z0|t) (3.18d)

zT |t = fz(zT |t, vT |t) (3.18e)

ωT |t ≥ f θω(ωT |t, zT |t, vT |t, T) (3.18f)

Ωωk|t(zk|t) ⊆ C (3.18g)

Let v∗·|t, z
∗
·|t denote the minimizer of the problem at time t. Note that we include ω·|t in the cost, which

allows us to encourage larger or smaller tube widths. The tube width ω0|t is updated based on a

measurement xt from the system, or can also be updated with information from a state estimator. In

the absence of measurements we can also carry over the past optimized tube width, i.e. ω0|t = ω∗1|t−1,

as long as xt ∈ Ωω0|t(z0|t). The closed-loop control is set to vt = v∗0|t and the tracking target for

the underlying policy is zt+1 = z∗1|t. Under these assumptions we have the following theorem

establishing recursive feasibility and safety:

Theorem 3.5.1. Suppose that the MPC problem (3.18) is feasible at t = 0. Then the problem is

feasible for all t > 0 ∈ N and at each timestep the constraints are satisfied with probability α.

Proof. The proof is similar to that in [79] for general set-based robust adaptive MPC. Let z0|t+1 =

z∗1|t and choose any ω0|t+1 such that xt+1 ∈ Ωω0|t+1
(z0|t+1) (if measurements xt+1 are unavailable,

one can use ω0|t+1 = ω∗1|t). With probability α, Ωω0|t+1
(z0|t+1) ⊆ Ωω∗

1|t
(z∗1|t) due to Theorem 3.3.1.

Let vk|t+1 = v∗k+1|t for k = 0, · · · , T − 1, and let vT |t+1 = v∗T |t. Then v·|t+1 is a feasible solution for

the MPC problem at t = 1, due to the terminal constraints (3.18e,3.18f) as well as the monotonicity

of fω with respect to ω (Theorem 3.3.2).

44

Algorithm 2: Tube Learning for Tube MPC
1 Require: Ancillary policy π, Latent dynamics fz , Safe set C, Quantile probability α. MPC horizon

T .
2 Initialize: Neural network for tube dynamics fθω. Dataset D = {xti , uti , xti+1, zti , vti , zti+1, ti}Ni=1.

Initial states x0, z0, Initial feasible controls v·|0.
3 for t = 0, · · · do
4 if updateModel then
5 Train fθω on dataset D by minimizing tube dynamics loss (3.17).

6 if xt measured then
7 Initialize tube width ω0|t = d(xt, zt)

8 Solve MPC problem (3.18) with warm-start v·|t, obtain vt, zt+1

9 Apply control policy to system ut = π(xt, zt+1)
10 Step forward for next iteration:

vk|t+1 = v∗k+1|t, k = 0, · · · , T − 1, vT |t+1 = v∗T |t, z0|t+1 = z∗1|t, ω0|t+1 = ω∗1|t
11 Append data to dataset D ← D ∪ {xt, ut, xt+1, zt, vt, zt+1, t}

Since f θω(ωt, zt, vt) is nonlinear we find solutions to the MPC problem via iterative linear

approximations, yielding an SQP MPC approach [104, 105]. Other optimization techniques are

possible, including GPU-accelerated sampling-based ones [33]. We outline the entire procedure in

Algorithm 2.

3.5.2 Learning Tracking Error Dynamics and Tube Dynamics

Next we show how to learn error dynamics et+1 = fe(et, zt, vt) along with a tube centered along

these dynamics, where et = PZ(x) − z is the error between x and z, with x projected onto Z.

These error dynamics function as the mean of the distribution of dynamics xt+1 = f(xt, ut) when

the tracking policy is used ut = π(xt, zt+1, vt). This allows the tube to take on a more accurately

parameterized shape (Figure 3.6a). Setting up the learning problem in this way offers several distinct

advantages. First, rather than relying on an accurate nominal model fz and learning the bounds

between this model and the true dynamics, we directly characterize the difference between the

two models with fe. This means that fz can be chosen more arbitrarily and does not need to be a

high-fidelity dynamics model. Second, using the nominal dynamics zt as an input to fe and learning

the error ”anchors” our prediction of the behavior of xt to zt. This allows us to predict the expected

45

zt
fe(e,z,v)

fz(z,v)
fω(ω,z,v)

zt+1

ꭥt ꭥt+1

et et+1

f(x,u)

(a) Learning Tracking Error

zt

xtf(x,u)

ꭥt

fz(z,v)

fω(ω,z,v)

ꭥt+1

xt+1

zt+1

(b) Learning Model Error

Figure 3.6: (a) Learning error dynamics fe along with tube dynamics fω. Black line is the nominal
trajectory fz, blue line is data collected from the system. Cyan indicates tracking errors, whose
dynamics are learned. Grey tube denotes fω, which captures the error between the true dynamics
and zt + et. (b) Fitting learned dynamics to actual data. Blue inline indicates data collected from
the system, black line is a learned dynamics trajectory fitted to the data.

distribution of xt with much higher accuracy for long time horizons, in contrast to the approach of

learning a model f directly and propagating it forward in time, where the error between the learned

model and the true dynamics tends to increase with time.

As before, we assume we have a known π and nominal dynamics fz. Let Ωe
ω(z, e) ⊂ X be a set

in X associated with the tube width ω,z, and e:

Ωe
ω(z, e) := {x ∈ X : d(x, z + e) ≤ ω}. (3.19)

where the ≤ is element-wise. We have the following description of the error dynamics:

et+1 = fe(et, zt, vt) (3.20)

ωt+1 = fω(ωt, zt, vt)

P (|(zt + et) + xt| ≤ ωt) ≥ α, ∀t ∈ N

Given a dataset D = {xt, ut, xt+1, zt, vt, zt+1, t}Nt=0, we minimize the following loss over data

samples δ = {xt, xt+1, zt, zt+1, vt} in order to learn fe(et, zt, vt), which we parameterize with ξ:

Le(ξ, δ) = ‖f ξe (PZ(xt)− zt, vt)− PZ(xt+1)− zt+1‖2 (3.21)

Next, we learn fω by minimizing the quantile loss (3.17). However, while in the previous section

ωt = d(xt, zt), here we approximate the tube width with ωt = d(xt, zt + et). We obtain et by

46

propagating the learned dynamics f ξe forward in time, given zt, vt. Then we can solve a similar

tube-based robust MPC problem (3.22):

min
v·|t∈V

JT (v·|t, z·|t + e·|t, ω·|t) (3.22a)

s.t. ∀k = 0, · · · , T :

zk+1|t = fz(zk|t, vk|t) (3.22b)

ek+1|t = f ξe (et, zt, vt) (3.22c)

ωk+1|t = f θω(et, zt, vt, t) (3.22d)

ω0|t = d(xt, z0|t + e0|t) (3.22e)

zT |t + eT |t = fz(zT |t, vT |t) + f ξe (eT |t, zT |t, vT |t) (3.22f)

ωT |t ≥ f θω(ωT |t, zT |t, vT |t, T) (3.22g)

Ωe
ωk|t

(zk|t) ⊆ C (3.22h)

Notice that the cost and constraints are now a function of zt + et and do not depend on zt only.

This means that we are free to find paths zt for the tracking controller π to track, which may violate

constraints. We maintain the same guarantees of feasibility and constraint satisfaction as in Theorem

3.5.1. Since the proof is similar we omit it for brevity. See Algorithm 3.

Theorem 3.5.2. Suppose that the MPC problem (3.22) is feasible at t = 0. Then the problem is

feasible for all t > 0 ∈ N and at each timestep the constraints are satisfied with probability α.

3.5.3 Learning System Dynamics and Tube Dynamics

In our third approach to learning tubes, we wish to learn the dynamics directly without a prior

nominal model fz. We restrict Z = X and V = U, and treat z as an approximation of x. Our goal is

to learn fz to approximate f , along with fω that will determine a time-varying upper bound on the

model error. Typically the open-loop model error will increase in time in an unbounded manner,

which may make it difficult to find a feasible solution to the MPC problem. One approach is to

assume the existence of a stabilizing controller and terminal set, and use a terminal condition that

47

Algorithm 3: Learning Tracking Error Dynamics and Tube Dynamics for Tube MPC
1 Require: Ancillary policy π, Latent dynamics fz , Safe set C, Quantile probability α. MPC horizon

T .
2 Initialize: Neural network for error dynamics f ξe . Neural network for tube dynamics fθω. Dataset
D = {xti , uti , xti+1, zti , vti , zti+1, ti}Ni=1. Initial states x0, z0, e0, Initial feasible controls v·|0.

3 for t = 0, · · · do
4 if updateModels then
5 Train f ξe on dataset D by minimizing error dynamics loss (3.21).
6 Forward propagate learned model f ξx on dataset D to obtain {eti}Nt=1. Append to D.
7 Train fθω on dataset D by minimizing tube dynamics loss (3.17), but replace

ωti = d(xti , xti + eti).

8 if xt measured then
9 Initialize tube width ω0|t = d(xt, zt + et)

10 Solve MPC problem (3.22) with warm-start v·|t, obtain vt, zt+1

11 Apply control policy to system ut = π(xt, zt+1, vt)
12 Step forward for next iteration:

vk|t+1 = v∗k+1|t, k = 0, · · · , T−1, vT |t+1 = v∗T |t, z0|t+1 = z∗1|t, e0|t+1 = e∗1|t, ω0|t+1 = ω∗1|t
13 Append data to dataset D ← D ∪ {xt, ut, xt+1, zt, vt, zt+1, t}

ensures the trajectory ends in this set [106, 83]. A second approach is to find a feedback control law

π to ensure bounded tube widths. We describe the latter approach in more detail, but do not restrict

ourselves to it.

Using a standard L2 loss function, we first learn an approximation of f , call it fφz with parameters

φ:

Lf (φ, δ) = ‖fφz (xt, ut)− xt+1‖2 (3.23)

Next, we learn a policy πψ with parameters ψ by inverting the dynamics:

Lπ(ψ, δ) = ‖πψ(xt, xt+1)− ut‖2 (3.24)

By learning a policy in this manner we decouple the potentially inaccurate model fφz (xt, ut) from

the true dynamics, in a learning inverse dynamics fashion [107]. To see this, suppose we have some

zt and vt, and zt+1 = fφz (zt, vt). If xt 6= zt and we apply vt to the real system, xt+1 = f(xt, vt),

then the error ‖xt+1 − zt+1‖ will grow, i.e. ‖xt − zt‖ ≤ ‖xt+1 − zt+1‖. However, if instead we

use the policy πψ, then f(xt, π
ψ(xt, zt+1)) should be closer to zt+1, and the error is more likely

to shrink. Other approaches are available for learning π, including reinforcement learning [108],

48

Algorithm 4: Learning Dynamics and Model Error Bounds for Tube MPC
1 Require: Safe set C, Quantile probability α. MPC horizon T .
2 Initialize: Neural network for policy πψ, dynamics fφz , and tube dynamics fθω. Dataset
D = {xti , uti , xti+1}Ni=1. Initial state x0.

3 Solve MPC problem (3.18) for initial feasible control sequence v·|0.
4 for t = 0, · · · do
5 if updateModel then
6 Train fφz on dataset D by minimizing dynamics loss (3.23).
7 Train πψ on dataset D by minimizing policy loss (3.24).

8 Create Dz =
⋃
t

[
{xt+k, xt+k+1, zk|t, vk|t, zk+1|t}Tk=0

]
by solving (3.25).

9 Train fθω on dataset Dz by minimizing tube dynamics loss (3.17).

10 if xt measured then
11 Initialize tube width ω0|t = d(xt, zt)

12 Solve MPC problem (3.18) with warm-start v·|t, obtain vt, zt+1

13 Apply control policy to system ut = πψ(xt, zt+1)
14 Step forward for next iteration:

vk|t+1 = v∗k+1|t, k = 0, · · · , T − 1, vT |t+1 = v∗T |t, z0|t+1 = z∗1|t, ω0|t+1 = ω∗1|t
15 Append data to dataset D ← D ∪ {xt, ut, xt+1}

imitation learning [36], etc. Finally, we learn fω in the same manner as before by minimizing the

quantile loss in (3.17). We generate data for learning the tube dynamics by fitting trajectories of the

learned model fφz to closely approximate the real data xt (Figure 3.6b). We randomly initialize z0|t

along the trajectory xt by letting z0|t = N (xt, σI). We solve the following problem for each t:

min
v·|t∈V

T∑
k=1

‖zk|t − xt+k‖ (3.25a)

s.t. zk+1|t = fφz (zk|t, vk|t), ∀k = 0, · · · , T − 1 (3.25b)

From the fitted dynamics model data, we collect tube training data Dz =⋃
t

[
{xt+k, xt+k+1, zk|t, vk|t, zk+1|t}Tk=0

]
and proceed to train the tube model. We can now

solve the same tube-based robust MPC problem (3.18), with fz replaced with fφz . This allows us to

maintain the same guarantees of feasibility and safety with probability α as before. See Algorithm

4.

49

3.6 Experimental Details

3.6.1 Evaluation on a 6-D problem

In this section we validate each of our three approaches to learned tubes for tube MPC on a

6-state simulated triple-integrator system. We introduce two sets of dynamics for f and fz to

demonstrate our method. Consider the following 2D triple-integrator system with 6 states, where

x = [px, py, vx, vy, ax, ay]
ᵀ, along with the 4 state 2D double-integrator dynamics for the reference

system: z = [pzx, p
z
y, v

z
x, v

z
y]. Let these systems have the following dynamics (we show the x-axis

only for brevity sake):

d

dt


px

vx

ax

 =


0 1 0

0 0 1

0 0 −kf



px

vx

ax

+


0

0

1

ux +


0 0

1 0

0 1

w (3.26)

d

dt

pzx
vzx

 =

0 1

0 −kzf


pzx
vzx

+

0

1

 vx (3.27)

where w ∼ N (0, εI2×2), and with similar dynamics for the y-axis. We construct the following

cascaded PD control law:

πx(px, p
z
x) = kd(kp(p

z
x − px)− vx + vzx) + ka(−ax) (3.28)

We choose kf = 0.1, kzf = 1.0, kp = 1, kd = 10, ka = 5, and ε = 0.05. We also bound ‖vx‖, ‖vy‖ ≤

1. We simulate in discrete time with dt = 0.1.

We collect∼100 episodes with randomly generated controls, with episode lengths of∼100 steps.

Following each algorithm, we then set up an MPC task to navigate through a forest of obstacles

(see Figure 3.7). We found an MPC planning horizon of 20-30 steps to be effective. We ran each

MPC algorithm for 100 steps, or until the system reaches the goal. We also plot 100 rollouts of the

”true” system xt to evaluate the learned bounds. For each learned network, we use 3 layers with

256 units each. When calculating constraints for the tube, we treat the tube width ωt as axes for an

ellipse rather than a box. This alleviates the need for solving a mixed integer quadratic program, at

50

the cost of a slightly larger tube. We use a quadratic running cost that penalizes deviation from the

goal and excessively large velocities.

With Algorithm 2, we note that the tube widths are quite large. This is because this algorithm

uses the reference trajectory itself as the center of the tube. While the tube encloses the trajectories,

it does not create a tight bound. In Algorithm 3, we address this issue directly. We learn dynamics

of the mean tracking error and use this as our tube center. The resulting tube dynamics bound the

state distribution more closely. Note that when solving the MPC problem, the optimized reference

trajectory zt is free to violate the constraints, as long as the system trajectories xt do not. This

approach allows for much more aggressive behaviors. For Algorithm 3, without a good tracking

controller, the tube width increases over time. However, because we replan at each timestep with

a finite horizon, the planner is still able to fit through narrow passages. In the example shown we

replan from the current state xt, with the assumption that it is measured. This allows us to create

aggressive trajectories with narrow tube widths.

3.6.2 Comparison with analytic bounds

We compare our learned tubes with an analytic solution for robust bounds on the system (3.27).

We derive these analytic bounds by assuming worst-case noise perturbations of the closed-loop

system. We find the bound W such that P (|wt| ≤ W) ≥ α (with α = 0.95). The worst-case error

at each timestep is wt = ±W . We compare these bounds with those learned with our quantile

method (Figure 3.8). Our method tends to underestimate the true bounds slightly, which is due to

the training data rarely containing worst-case adversarial noise sequences.

3.6.3 Ablative Study

We perform an ablative study of our tube learning method. Using Algorithm 2, we learn error

dynamics and tube dynamics. We collect randomized data (400 episodes of 40 timesteps) and train

fω under varying values of α. We then evaluate the accuracy of fω by sampling 100 new episodes of

10 timesteps, and plot the frequency that fω overestimates the true error, along with the magnitude

51

Figure 3.7: Comparison of 3 tube MPC approaches with learned tubes. Red circles denote obstacles,
magenta cross denotes goal. Cyan lines indicate sampled trajectories from the system xt with
randomized initial conditions. Top: Algorithm 1, learning a tube around the reference z (black)
used for tracking. Green circles indicate the tube width obtained at each timestep. Mid: Algorithm
2, learning tracking error dynamics (blue line) for the center of the tube. Bot: Algorithm 3, tube
MPC problem using learned policy, dynamics, and tube dynamics. Red lines indicate planned NN
dynamics trajectories at each MPC timestep, along with the forward propagated tube dynamics
(green), shown every 20 timesteps. Blue line indicates actual path taken (xt).

52

0.00

0.25

0.50

0.75

x
er

r
0.00

0.25

0.50

0.75

y
er

r

0 20 40
steps

0.00

0.25

0.50

0.75

v x
 e

rr

0 20 40
steps

0.00

0.25

0.50

0.75

v y
 e

rr
Figure 3.8: Learned 95% quantile error bounds (green) vs. 95% analytic bounds (dotted red) for the
linear triple-integrator system, with 100 sampled trajectories, tracking a random reference trajectory.

of overestimation (Figure 3.9, left). We compare networks learned with the epistemic loss and

without it, and find that our method produces well-calibrated uncertainties when using the epistemic

loss, along with the quantile and monotonic losses (3.17). We evaluated ablation of the monotonic

loss but found no noticeable differences.

We also evaluate estimation of epistemic uncertainty with varying amounts of data (from 10

to 400 episodes), with a fixed value of α = 0.95. We find that estimating epistemic uncertainty is

particularly helpful in the low-data regimes (Figure 3.9, right). As expected, the network maintains

good quantile estimates by increasing the value of fω, which results in larger tubes. This creates

more conservative behavior when the model encounters new situations.

3.6.4 Evaluation on Quadrotor Dynamics

To validate our approach scales well to high-dimensional non-linear systems, we apply Algorithm 3

to a 12 state, 4 input quadrotor model, with dynamics:

ẋ = v mv̇ = mge3 − TRe3

Ṙ = RΩ̂ JΩ̇ = M + w − Ω× JΩ

53

0
.9

9

0
.9

5

0
.9

0
.8

5

0
.8

α

0.8

0.9

1.0

Fr
a
ct

io
n
 f

ω
>

 ω
t

N=400

0.3

0.4

0.5

0.6

0.7

1
0

5
0

1
0

0

1
5
0

2
0

0

3
0

0

4
0

0

N episodes

0.5

0.6

0.7

0.8

0.9

1.0
α = 0.95

0.4

0.6

0.8

1.0

1.2

A
v
g
 m

a
x
(f

ω
−

 ω
t,
 0

)

w/ Epistemic w/o Epistemic

Figure 3.9: Evaluation of learned tube dynamics fω on triple integrator system with varying α (left)
and varying number of datapoints (right). Red indicates fraction of validation samples that exceed
the bound, while blue indicates average distance in excess of the bound. Models learned with the
epistemic loss along with the quantile loss (circles, solid lines) perform better vs. models without
epistemic uncertainty (triangles, dotted lines). Gray lines mark the best possible values.

where ·̂ : R3 → SO(3) is the hat operator. The states are the position x ∈ R3, the translational

velocity v ∈ R3, the rotation matrix from body to inertial frameR ∈ SO(3), and the angular velocity

in the body frame Ω ∈ R3. m ∈ R is the mass of the quadrotor, g ∈ R denotes gravitational force,

and J ∈ R3×3 is the inertia matrix in body frame. The inputs to the model are the total thrust T ∈ R

and the total moment in the body frame M ∈ R3. Noise enters through the control channels, with

w ∼ N (0, εI3×3). Our state is xt = {x,v, R,Ω} ∈ R18 and control input is ut = {T,M} ∈ R4.

We use a nonlinear geometric tracking controller that consists of a PD controller on position and

velocity, which then cascades to an attitude controller [109]. For the nominal model fz we use

a double integrator system on each position axis. The nominal state is zt = {x,v} ∈ R6 with

acceleration control inputs vt = {ax, ay, az} ∈ R3. See Figures 3.10 and 3.11.

54

Figure 3.10: Algorithm 3 working on quadrotor dynamics, showing 5 individual MPC solutions
at different times along the path taken. Thinner lines (black and blue) indicate planned future
trajectories z·|t and e·|t, respectively.

Figure 3.11: Tube widths fω for quadrotor dynamics, 10 episodes of 200 timesteps each, tracking
random reference trajectories. From top to bottom, we plot (px, py, pz, vx, vy, vz). Green lines
indicate the quantile bound ωt, with α = 0.9, and cyan lines show 100 sampled error trajectories,
|xt − et|. Black stars indicate the start of a new episode.

55

3.7 Conclusion

We have introduced a deep quantile regression framework for learning bounds on controlled

distributions of trajectories. For the first time we combine deep quantile regression in three robust

MPC schemes with recursive feasibility and constraint satisfaction guarantees. We show that

these schemes are useful for high dimensional learning-based control on quadrotor dynamics. We

hope this work paves the way for more detailed investigation into a variety of topics, including

deep quantile regression, learning invariant sets for control, handling epistemic uncertainty, and

learning-based control for non-holonomic or non-feedback linearizable systems.

56

CHAPTER 4

STOCHASTIC TRAVERSABILITY EVALUATION AND PLANNING FOR

RISK-AWARE OFF-ROAD NAVIGATION

4.1 Summary

Although ground robotic autonomy has gained widespread usage in structured and controlled

environments, autonomy in unknown and off-road terrain remains a difficult problem. Extreme,

off-road, and unstructured environments such as undeveloped wilderness, caves, and rubble pose

unique and challenging problems for autonomous navigation. To tackle these problems we propose

an approach for assessing traversability and planning a safe, feasible, and fast trajectory in real-time.

Our approach, which we name STEP (Stochastic Traversability Evaluation and Planning), relies on:

1) rapid uncertainty-aware mapping and traversability evaluation, 2) tail risk assessment using the

Conditional Value-at-Risk (CVaR), and 3) efficient risk and constraint-aware kinodynamic motion

planning using sequential quadratic programming-based (SQP) model predictive control (MPC). We

analyze our method in simulation and validate its efficacy on wheeled and legged robotic platforms

exploring extreme terrains including an underground lava tube.

4.2 Introduction

Consider the problem of a ground robot tasked to autonomously traverse an unknown environment.

In real-world scenarios, environments which are of interest to robotic operations are highly risky,

containing difficult geometries (e.g. rubble, slopes) and non-forgiving hazards (e.g. large drops,

sharp rocks) (See Figure 4.1) [110]. Determining where the robot may safely travel is a non-trivial

problem, compounded by several issues: 1) Localization error affects how sensor measurements are

accumulated to generate dense maps of the environment. 2) Sensor noise, sparsity, and occlusion

induces biases and uncertainty in analysis of traversability. 3) Environments often pose a mix of

57

Figure 4.1: Top left: Boston Dynamics Spot quadruped robot exploring Valentine Cave at Lava
Beds National Monument, CA. Top right, bottom left: Clearpath Husky robot exploring Arch Mine
in Beckley, WV. Bottom middle, right: Spot exploring abandoned Satsop power plant in Elma, WA.

various sources of traversability risk, including slopes, rough terrain, low traction, narrow passages,

etc. 4) These various risks create highly non-convex constraints on the motion of the robot, which

are compounded by the kinodynamic constraints of the robot itself.

To address these issues we adopt an approach in which we directly quantify the traversal cost

along with the uncertainties associated with that cost. We refer to this cost as traversability, e.g. a

region of the environment in which the robot will suffer or become damaged has a high traversability

cost. Building upon previous work on traversability in extreme terrains [111], we formulate the

problem as a risk-aware, online nonlinear Model Predictive Control (MPC) problem, in which

the uncertainty of traversability is taken into account when planning a trajectory. Our goal is to

minimize the traversability cost, but directly minimizing the mean cost leads to an unfavorable

result because tail events with low probability of occurrence (but high consequence) are ignored

(Figure 4.2). Instead, in order to quantify the impact of uncertainty and risk on the motion of the

robot, we employ a formulation in which we find a trajectory which minimizes the Conditional

58

Value-at-Risk (CVaR) [112]. Because CVaR captures the expected cost of the tail risk past a given

probability threshold, we can dynamically adjust the level and severity of uncertainty and risk we

are willing to accept (which depends on mission-level specifications, user preference, etc.). While

online chance-constrained nonlinear MPC problems often suffer from a lack of feasibility, our

approach allows us to relax the severity of CVaR constraints by adding a penalizing loss function.

We quantify risk via a traversability analysis pipeline (for system architecture, see Figure 4.3).

At a high level, this pipeline creates an uncertainty-aware 2.5D traversability map of the environment

by aggregating uncertain sensor measurements. Next, the map is used to generate both environment

and robot induced costs and constraints. These constraints are convexified and used to build an

online receding horizon MPC problem, which is solved in real-time. As we will demonstrate, we

push the state-of-the-art in making this process highly efficient, allowing for re-planning at rates

which allow for dynamic responses to changes and updates in the environment, as well as high

travel speeds.

In this work, we propose STEP (Stochastic Traversability Evaluation and Planning), that pushes

the boundaries of the state-of-the-art to enable safe, risk-aware, and high-speed ground traversal of

unknown environments. Specifically, our contributions include:

1. Uncertainty-aware 2.5D traversability evaluation which accounts for localization error, sensor

noise, and occlusion, and combines multiple sources of traversability risk.

2. An approach for combining these traversability risks into a unified risk-aware CVaR planning

framework.

3. A highly efficient MPC architecture for robustly solving non-convex risk-constrained optimal

control problems.

4. Real-world demonstration of real-time CVaR planning on wheeled and legged robotic plat-

forms in unknown and risky environments.

59

4.3 Related Work

Our work is related to other classical approaches to traversability. Most traversability analyses are

dependent on sensor type and measured through geometry-based, appearance-based, or propriocep-

tive methods [113]. Geometry-based methods often rely on building a 2.5D terrain map which is

used to extract features such as maximum, minimum, and variance of the height and slope of the

terrain [114]. Planning algorithms for such methods take into account the stability of the robot on

the terrain [115]. In [116, 117], the authors estimate the probability distributions of states based on

the kinematic model of the vehicle and the terrain height uncertainty. Furthermore, a method for

incorporating sensor and state uncertainty to obtain a probabilistic terrain estimate in the form of a

grid-based elevation map was considered in [118]. Our work builds upon these ideas by performing

traversability analyses using classical geometric methods, while incorporating the uncertainty of

these methods for risk-aware planning [119, 111].

Risk can be incorporated into motion planning using a variety of different methods, including

chance constraints [120, 121], exponential utility functions [122], and distributional robustness

[123]. Risk measures, often used in finance and operations research, provide a mapping from a

random variable (usually the cost) to a real number. These risk metrics should satisfy certain axioms

in order to be well-defined as well as to enable practical use in robotic applications [23]. Conditional

value-at-risk (CVaR) is one such risk measure that has this desirable set of properties, and is a part

of a class of risk metrics known as coherent risk measures [124] Coherent risk measures have been

used in a variety of decision making problems, especially Markov decision processes (MDPs) [125].

In recent years, Ahmadi et al. synthesized risk averse optimal policies for partially observable MDPs

and constrained MDPs [126, 127]. Coherent risk measures have been used in a MPC framework

when the system model is uncertain [128] and when the uncertainty is a result of measurement noise

or moving obstacles [129]. In [130, 129], the authors incorporated risk constraints in the form of

distance to the randomly moving obstacles but did not include model uncertainty. Our work extends

CVaR risk to a risk-based planning framework which utilizes different sources of traversability risk

60

VaRα(ζ)E(ζ) CVaRα(ζ)

Probability 1− α

ζ

p(ζ)

Figure 4.2: Comparison of the mean, VaR, and CVaR for a given risk level α ∈ (0, 1]. The axes
denote the values of the stochastic variable ζ , which in our work represents traversability cost. The
shaded area denotes the (1 − α)% of the area under p(ζ). CVaRα(ζ) is the expected value of ζ
under the shaded area.

(such as collision risk, step risk, slippage risk, etc.)

Model Predictive Control has a long history in controls as a means to robustly control more

complex systems, including time-varying, nonlinear, or MIMO systems [18]. While simple linear

PID controllers are sufficient for simpler systems, MPC is well-suited to more complex tasks while

being computationally feasible. In this work, MPC is needed to handle a) complex interactions

(risk constraints) between the robot and the environment, including non-linear constraints on robot

orientation and slope, b) non-linear dynamics which include non-holonomic constraints, and c)

non-convex, time-varying CVaR-based constraints and cost functions. In particular, we take an

MPC approach known as Sequential Quadratic Programming (SQP), which iteratively solves locally

quadratic sub-problems to converge to a globally (more) optimal solution [131]. Particularly in the

robotics domain, this approach is well-suited due to its reduced computational costs and flexibility

for handling a wide variety of costs and constraints [132, 133]. A common criticism of SQP-based

MPC (and nonlinear MPC methods in general) is that they can suffer from being susceptible to local

minima. We address this problem by incorporating a trajectory library (which can be predefined

and/or randomly generated, e.g. as in [134]) to use in a preliminary trajectory selection process.

We use this as a means to find more globally optimal initial guesses for the SQP problem to refine

locally. Another common difficulty with risk-constrained nonlinear MPC problems is ensuring

recursive feasibility [19]. We bystep this problem by dynamically relaxing the severity of the risk

constraints while penalizing CVaR in the cost function.

61

4.4 Risk-Aware Traversability and Planning

4.4.1 Problem Statement

We first give a formal definition of the problem of risk-aware traversability and motion planning.

Let xk, uk, zk denote the state, action, and observation at the k-th time step. A path x0:N =

{x0, x1, · · · , xN} is composed of a sequence of poses. A policy is a mapping from state to control

u = π(x). A map is represented as m = (m(1),m(2), · · ·) where mi is the i-th element of the map

(e.g., a cell in a grid map). The robot’s dynamics model captures the physical properties of the

vehicle’s motion, such as inertia, mass, dimension, shape, and kinematic and control constraints:

xk+1 = f(xk, uk) (4.1)

g(uk) � 0 (4.2)

where g(uk) is a vector-valued function which encodes control constraints/limits.

Following [113], we define traversability as the capability for a ground vehicle to reside over

a terrain region under an admissible state. We represent traversability as a cost, i.e. a continuous

value computed using a terrain model, the robotic vehicle model, and kinematic constraints, which

represents the degree to which we wish the robot to avoid a given state:

r = R(m,x, u) (4.3)

where r ∈ R, andR(·) is a traversability assessment model. This model captures various unfavorable

events such as collision, getting stuck, tipping over, high slippage, to name a few. Each mobility

platform has its own assessment model to reflect its mobility capability.

Associated with the true traversability value is a distribution over possible values based on the

current understanding about the environment and robot actions. In most real-world applications

where perception capabilities are limited, the true value can be highly uncertain. To handle this

uncertainty, consider a map belief, i.e., a probability distribution p(m|x0:k, z0:k), over a possible set

M. Then, the traversability estimate is also represented as a random variableR : (M×X ×U) −→

62

R. We call this probabilistic mapping from map belief, state, and controls to possible traversability

cost values a risk assessment model.

A risk metric ρ(R) : R → R is a mapping from a random variable to a real number which

quantifies some notion of risk. In order to assess the risk of traversing along a path x0:N with a

policy π, we wish to define the cumulative risk metric associated with the path, J(x0, π). To do this,

we need to evaluate a sequence of random variables R0:N . To quantify the stochastic outcome as a

real number, we use the dynamic, time-consistent risk metric given by compounding the one-step

risk metrics [135]:

J(x0, π;m) = R0 + ρ0

(
R1 + ρ1

(
R2 + . . .+ ρN−1

(
RN)

))
(4.4)

where ρk(·) is a one-step coherent risk metric at time k. This one-step risk gives us the cost incurred

at time-step k + 1 from the perspective of time-step k. Any distortion risk metric compounded

as given in (4.4) is time-consistent (see [23] for more information on distortion risk metrics and

time-consistency). We use the Conditional Value-at-Risk (CVaR) as the one-step risk metric:

ρ(R) = CVaRα(R) = inf
z∈R
E

[
z +

(R− z)+

1− α

]
(4.5)

where (·)+ = max(·, 0), and α ∈ (0, 1] denotes the risk probability level.

We formulate the objective of the problem as follows: Given the initial robot configuration xS

and the goal configuration xG, find an optimal control policy π∗ that moves the robot from xS to xG

while 1) minimizing time to traverse, 2) minimizing the cumulative risk metric along the path, and

3) satisfying all kinematic and dynamic constraints.

4.4.2 Hierarchical Risk-Aware Planning

We propose a hierarchical approach to address the aforementioned risk-aware motion planning

problem by splitting the motion planning problem into geometric and kinodynamic domains. We

consider the geometric domain over long horizons, while we solve the kinodynamic problem over

a shorter horizon. This is convenient for several reasons: 1) Solving the full constrained CVaR

minimization problem over long timescales/horizons becomes intractable in real-time. 2) Geometric

63

constraints play a much larger role over long horizons, while kinodynamic constraints play a much

larger role over short horizons (to ensure dynamic feasibility at each timestep). 3) A good estimate

(upper bound) of risk can be obtained by considering position information only. This is done by

constructing a position-based traversability modelRpos by marginalizing out non-position related

variables from the risk assessment model, i.e. if the state x = [px, py, xother]
ᵀ consists of position

and non-position variables (e.g. orientation, velocity), then

Rpos(m, px, py) ≥ R(m,x, u) ∀xother, u (4.6)

Geometric Planning: The objective of geometric planning is to search for an optimistic risk-

minimizing path, i.e. a path that minimizes an upper bound approximation of the true CVaR value.

For efficiency, we limit the search space only to the geometric domain. We are searching for a

sequence of poses x0:N which ends at xG and minimizes the position-only risk metric in (4.4),

which we define as Jpos(x0:N). The optimization problem can be written as:

x∗0:N = arg min
x0:N

[
Jpos(x0:N) + λ

N−1∑
k=0

‖xk − xk+1‖2

]
(4.7)

s.t. φ(m,xk) � 0 (4.8)

where the constraints φ(·) encode position-dependent traversability constraints (e.g. constraining

the vehicle to prohibit lethal levels of risk) and λ ∈ R weighs the tradeoff between risk and path

length.

Kinodynamic Planning: We then solve a kinodynamic planning problem to track the optimal

geometric path, minimize the risk metric, and respect kinematic and dynamics constraints. The goal

is to find a control policy π∗ within a local planning horizon T ≤ N which tracks the path X∗0:N .

The optimal policy can be obtained by solving the following optimization problem:

64

Figure 4.3: Overview of system architecture for STEP. From left to right: Odometry aggregates
sensor inputs and relative poses. Next, Risk Map Processing merges these pointclouds and creates a
multi-layer risk map. The map is used by the Geometric Path Planner and the Kinodynamic MPC
Planner. An optimal trajectory is found and sent to the Tracking Controller, which produces control
inputs to the robot.

π∗ = arg min
π∈Π

[
J(x0, π)+λ

T∑
k=0

‖xk − x∗k‖2

]
(4.9)

s.t. ∀k ∈ [0, · · · , T] : xk+1 = f(xk, uk) (4.10)

g(uk) � 0 (4.11)

h(m,xk) � 0 (4.12)

where the constraints g(u) and h(m,xk) are vector-valued functions which encode controller limits

and state constraints, respectively.

4.5 STEP for Unstructured Terrain

Having outlined our approach for solving the constrained CVaR minimization problem, in this

section we discuss how we compute traversability risk and efficiently solve the risk-aware trajectory

optimization problem. At a high level, our approach takes the following steps (see Figure 4.3): 1)

Assuming some source of localization with uncertainty, aggregate sensor measurements to create an

uncertainty-aware map. 2) Perform ground segmentation to isolate the parts of the map the robot

can potentially traverse. 3) Compute risk and risk uncertainty using geometric properties of the

65

pointcloud (optionally, include other sources of risk, e.g. semantic or other sensors). 4) Aggregate

these risks to compute a 2.5D CVaR risk map. 5) Solve for an optimistic CVaR minimizing path

over long ranges with a geometric path planner. 7) Solve for a kinodynamically feasible trajectory

which minimizes CVaR while staying close to the geometric path and satisfying all constraints.

4.5.1 Modeling Assumptions

Among many representation options for rough terrain, we use a 2.5D grid map in this paper for its

efficiency in processing and data storage [136]. The map is represented as a collection of terrain

properties (e.g., height, risk) over a uniform grid.

For different vehicles we use different robot dynamics models, and our general approach is

applicable to any vehicle dynamics model. For example, a differential drive model, the state and

controls are specified as:

x = [px, py, pθ, vx]
ᵀ (4.13)

u = [ax, vθ]
ᵀ (4.14)

The dynamics xk+1 = f(xk, uk) for a simple differential-drive system can be written as:

xk+1 = xk + ∆t



vx cos(pθ)

vx sin(pθ)

γvx + (1− γ)vθ

ax


(4.15)

where γ ∈ [0, 1] is a constant which adjusts the amount of turning-in-place the vehicle is permitted.

for a system which produces longitudinal/lateral velocity and steering (e.g. legged platforms),

the state and controls can be specified as:

x = [px, py, pθ, vx, vy, vθ]
ᵀ (4.16)

u = [ax, ay, aθ]
ᵀ (4.17)

66

Figure 4.4: Multi-layer traversability risk analysis, which first aggregates recent pointclouds (top).
Then, each type of analysis (slope, step, collision, etc.) generates a risk map along with uncertainties
(middle rows). These risks are aggregated to compute the final CVaR map (bottom).

xk+1 = xk + ∆t



vx cos(pθ)− vy sin(pθ)

vx sin(pθ) + vy cos(pθ)

γvx + (1− γ)vθ

ax

ay

aθ


(4.18)

67

4.5.2 Traversability Assessment Models

The traversability cost is assessed as the combination of multiple risk factors. These factors are

designed to capture potential hazards for the target robot in the specific environment (Figure 4.4).

Such factors include:

• Collision: quantified by the distance to the closest obstacle point.

• Step size: the height gap between adjacent cells in the grid map. Negative obstacles can also

be detected by checking the lack of measurement points in a cell.

• Tip-over: a function of slope angles and the robot’s orientation.

• Contact Loss: insufficient contact with the ground, evaluated by plane-fit residuals.

• Slippage: quantified by geometry and the surface material of the ground.

• Sensor Uncertainty: sensor and localization error increase the variance of traversability

estimates.

To efficiently compute the CVaR traversability cost, we assume the combined factors contribute

to a random variable which follows a normal distribution R ∼ N (µ, σ2). Let ϕ and Φ denote the

probability density function and cumulative distribution function of a standard normal distribution

respectively. The corresponding CVaR is computed as:

ρ(R) = µ+ σ
ϕ(Φ−1(α))

1− α
(4.19)

We construct R such that the expectation of R is positive, to keep the CVaR value positive.

4.5.3 Risk-aware Geometric Planning

In order to optimize (4.7) and (4.8), the geometric planner computes an optimal path that minimizes

the position-dependent dynamic risk metric in (4.4) along the path. Substituting (4.19) into (4.4),

68

we obtain:

Jpos(x0:N) = µ0 +
N∑
k=1

[
µk + σk

ϕ(Φ−1(α))

1− α

]
(4.20)

This is easily proved by expanding the terms:

J(x0, π) = R0 + ρ0

(
R1 + ρ1

(
R2 + . . .+ ρT−1(RT)

))
= R0 + ρ

(
R1 + ρ

(
R2 + . . .+ ρ(RT−1+

µT + σT
ϕ(Φ−1(α))

1− α
)
))

= R0 + ρ

(
R1 + ρ

(
R2 + . . .+ ρ(RT−2+

µT−1 + µT + (σT−1 + σT)
ϕ(Φ−1(α))

1− α
)
))

...

= R0 +
T∑
i=1

(
µi + σi

ϕ(Φ−1(α))

1− α

)

=
T∑
i=0

ρ(Ri)

We use the A∗ algorithm to solve (4.7) over a 2D grid. A∗ requires a path cost g(n) and a

heuristic cost h(n), given by:

g(n) = Jpos(x0:n) + λ
n−1∑
k=0

‖xk − xk+1‖2 (4.21)

h(n) = λ ‖xn − xG‖2 (4.22)

For the heuristic cost we use the shortest Euclidean distance to the goal. The value of lambda is a

relative weighting between the distance penalty and risk penalty and can be thought of as having

units of (traversability cost / m). We use a relatively small value, which means we are mainly

concerned with minimizing traversability costs.

69

Figure 4.5: Diagram of kinodynamic MPC planner, which begins with evaluating various paths
within a trajectory library. The lowest cost path is chosen as a candidate and optimized by the QP
solver.

4.5.4 Risk-aware Kinodynamic Planning

The geometric planner produces a path, i.e. a sequence of poses. We wish to find a kinodynamically

feasible trajectory which stays near this path, while satisfying all constraints and minimizing the

CVaR cost. To solve (4.9)-(4.12), we use a risk-aware kinodynamic MPC planner, whose steps we

outline (Figures 4.5 and 4.6, Algorithm 5).

Trajectory library: Our kinodynamic planner begins with selecting the best candidate trajectory

from a trajectory library, which stores multiple initial control and state sequences. The selected

trajectory is used as initial solution for solving a full optimization problem. The trajectory library

can include: 1) the trajectory accepted in the previous planning iteration, 2) a stopping (braking)

trajectory, 3) a geometric plan following trajectory, 4) heuristically defined trajectories (including

v-turns, u-turns, and varying curvatures), and 5) randomly perturbed control input sequences.

QP Optimization: Next, we construct a non-linear optimization problem with appropriate costs

and constraints (4.9–4.12). We linearize the problem about the initial solution and solve iteratively

in a sequential quadratic programming (SQP) fashion [137]. Let {x̂k, ûk}k=0:T denote an initial

solution. Let {δxk, δuk}k=0:T denote deviation from the initial solution. We approximate (4.9-4.12)

70

Figure 4.6: Diagram of kinodynamic MPC planner while running live, showing global plan,
trajectory library, planned robot footprint, and risk map with convexified obstacle cells.

by a problem with quadratic costs and linear constraints with respect to {δx, δu}:

{δx∗, δu∗} = arg min
δx,δu

T∑
k=0

‖x̂k + δxk − x∗k‖Qk + λJ(x̂k + δxk, ûk + δuk) (4.23)

s.t. ∀k ∈ [0, · · · , T] :

x̂k+1 + δxk+1 = f(x̂k, ûk) +∇xf · δxk +∇uf · δuk (4.24)

g(ûk) +∇ug · δuk � 0 (4.25)

h(m, x̂k) +∇xh · δxk � 0 (4.26)

where J(x̂k + δxk, ûk + δuk) can be approximated with a second-order Taylor approximation (for

now, assume no dependence on controls):

J(x̂+ δx) ≈ J(x̂) +∇xJ · δx+ δxᵀH(J)δx (4.27)

and H(·) denotes the Hessian. The problem is now a quadratic program (QP) with quadratic costs

71

Algorithm 5: Kinodynamic MPC Planner (sequences {·k}k=0:T are expressed as {·} for
brevity)

Input: current state x0, current control sequence (previous solution) {u∗}(j)
Output: re-planned trajectory {x∗}(j+1), re-planned control sequence {u∗}(j+1)

Initialization
1: {xr} = updateReferenceTrajectory()
2: {u∗}(j) = stepControlSequenceForward({u∗}(j))

Loop process
3: for i = 0 to qp iterations do
4: l = generateTrajectoryLibrary(x0)
5: [{xc}, {uc}] = chooseCandidateFromLibrary(l)
6: [{δx∗}, {δu∗}] = solveQP({xc}, {uc}, {xr})
7: [η, solved] = lineSearch({xc}, {δx∗}, {uc}, {δu∗})
8: uck = uc

k + ηδu∗k, ∀k = 0 : T
9: {xc} = rollOutTrajectory(x0, {uc})

10: end for
11: if solved then
12: {x∗}(j+1), {u∗}(j+1) = {xc}, {uc}
13: else
14: {x∗}(j+1), {u∗}(j+1) = getStoppingTrajectory()
15: end if
16: return {x∗}(j+1), {u∗}(j+1)

and linear constraints. To solve Equations (4.23-4.26), we introduce the solution vector variable X:

X =

[
δxT

0 · · · δxT
T δuT

0 · · · δuT
T

]T

(4.28)

We can then write Equations (4.23-4.26) in the form:

minimize
1

2
XTPX + qTX (4.29)

subject to l ≤ AX ≤ u (4.30)

where P is a positive semi-definite weight matrix, q is a vector to define the first order term in the

objective function, A defines inequality constraints and l and u provide their lower and upper limit.

Our MPC problem stated in Equations (4.9-4.12) is non-linear. In order to efficiently find a

solution we linearize the problem about an initial solution, and solve iteratively, in a sequential

quadratic programming (SQP) fashion [137]. Let {x̂k, ûk}k=0,··· ,T denote an initial solution. Let

{δxk, δuk}k=0,··· ,T denote deviation from the initial solution.

72

In the next subsection we describe these costs and constraints in detail. This is a quadratic

program, which can be solved using commonly available QP solvers. In our implementation we use

the OSQP solver, which is a robust and highly efficient general-purpose solver for convex QPs [66].

Linesearch: The solution to the SQP problem returns an optimized variation of the control

sequence {δu∗k}k=0:T . We then use a linesearch procedure to determine the amount of deviation

η > 0 to add to the current candidate control policy π: uk = uk + ηδu∗k, using Algorithm 6. The

resulting correction coefficient is carried over into the next path-planning loop.

Algorithm 6: Linesearch Algorithm
Input: candidate control sequence {uc

k}k=0:T , QP solution {δu∗k}k=0:T

Output: correction coefficient η
Initialization

1: initialize η by default value or last-used value
2: [c, o] =getCostAndObstacles({uc

k}k=0:T)
Linesearch Loop

3: for i = 0 to max iteration do
4: for k = 0 to T do
5: u

c(i)
k = uc

k + ηδu∗k
6: end for
7: [c(i), o(i)] =getCostAndObstacles({uc(i)

k }k=0:T)
8: if (c(i) ≤ c and o(i) ≤ o) then
9: η = min(2η, ηmax)

10: break
11: else
12: η = max(η/2, ηmin)
13: end if
14: end for
15: return η

Stopping Sequence: If no good solution is found from the linesearch, we pick the lowest cost

trajectory from the trajectory library with no collisions. If all trajectories are in collision, we

generate an emergency stopping sequence to slow the robot as much as possible (a collision may

occur, but hopefully with minimal energy).

Tracking Controller: Having found a feasible and CVaR-minimizing trajectory, we send it to

a tracking controller to generate closed-loop tracking behavior at a high rate (¿100Hz), which is

specific to the robot type (e.g. a simple cascaded PID, or legged locomotive controller).

73

4.5.5 Optimization Costs and Constraints

Costs: Note that (4.9) contains the CVaR risk. To linearize this and add it to the QP matrices, we

compute the Jacobian and Hessian of ρ with respect to the state x. We efficiently approximate this

via numerical differentiation.

Kinodynamic constraints: Similar to the cost, we linearize (4.10) with respect to x and u.

Depending on the dynamics model, this may be done analytically.

Control limits: We construct the function g(u) in (4.11) to limit the range of the control

inputs. For example in the 6-state dynamics case, we limit maximum accelerations: |ax| < amax
x ,

|ay| < amax
y , and |aθ| < amax

θ .

State limits: Within h(m,x) in (4.12), we encode velocity constraints: |vx| < vmax
x , |vy| < vmax

y ,

and |vθ| < vmax
θ . We also constrain the velocity of the vehicle to be less than some scalar multiple

of the risk in that region, along with maximum allowable velocities:

|vθ| < κθ ρ(Rk) (4.31)√
v2
x + v2

y < κv ρ(Rk) (4.32)

This reduces the energy of interactions the robot has with its environment in riskier situations,

preventing more serious damage.

Position risk constraints: Within h(m,xk) we would like to add constraints on position and

orientation to prevent the robot from hitting obstacles. The general form of this constraint is:

ρ(Rk) < ρmax (4.33)

To create this constraint, we locate areas on the map where the risk ρ is greater than the maximum

allowable risk. These areas are marked as obstacles, and are highly non-convex. To obtain a convex

and tractable approximation of this highly non-convex constraint, we decompose obstacles into

non-overlapping 2D convex polygons, and create a signed distance function which determines the

minimum distance between the robot’s footprint (also a convex polygon) and each obstacle [132].

74

Figure 4.7: Left: Computing convex to convex signed distance function between the robot footprint
and an obstacle. Signed distance is positive with no intersection and negative with intersection.
Right: Robot pitch and roll are computed from the surface normal rotated by the yaw of the robot.
Purple rectangle is the robot footprint with surface normal nw. g denotes gravity vector, nrx,y,z are
the robot-centric surface normal components used for computing pitch and roll.

Let A,B ⊂ R2 be two sets, and define the distance between them as:

dist(A,B) = inf{‖T‖ | (T +A) ∩ B 6= ∅} (4.34)

where T is a translation. When the two sets are overlapping, define the penetration distance as:

penetration(A,B) = inf{‖T‖ | (T +A) ∩ B = ∅} (4.35)

Then we can define the signed distance between the two sets as:

sd(A,B) = dist(A,B)− penetration(A,B) (4.36)

We then include within h(m,xk) a constraint to enforce the following inequality:

sd(Arobot,Bi) > 0 ∀i ∈ {0, · · · , Nobstacles} (4.37)

Note that the robot footprint Arobot depends on the current robot position and orientation:

Arobot(px, py, pθ), while each obstacle Bi(m) is dependent on the information in the map (See

Figure 4.7).

Orientation constraints: We wish to constrain the robot’s orientation on sloped terrain in such a

way as to prevent the robot from rolling over or performing dangerous maneuvers. To do this, we

75

add constraints to h(m,xk) which limit the roll and pitch of the robot as it settles on the surface of

the ground. Denote the position as p = [px, py]
ᵀ and the position/yaw as s = [px, py, pθ]

ᵀ. Let the

robot’s pitch be ψ and roll be φ in its body frame. Let ω = [ψ, φ]ᵀ. The constraint will have the

form |ω| ≺ ωmax. At p, we compute the surface normal vector, call it nw = [nwx , n
w
y , n

w
z]ᵀ, in the

world frame. Let nr = [nrx, n
r
y, n

r
z]

ᵀ, be the surface normal in the body frame, where we rotate by

the robot’s yaw: nr = Rθn
w (see Figure 4.7), where Rθ is a basic rotation matrix by the angle θ

about the world z axis.

Then, we define the robot pitch and roll as ω = g(nr) where:

ω = g(nr) =

 atan2(nrx, n
r
z)

−atan2(nry, n
r
z)

 (4.38)

Note that ω is a function of s. Creating a linearly-constrained problem requires a linear approxima-

tion of the constraint:

Rθ =


cos pθ sin pθ 0

− sin pθ cos pθ 0

0 0 1

 (4.39)

Let the robot pitch and roll vector ω be defined as ω = g(nr), where:

ω = g(nr) =

 atan2(nrx, n
r
z)

−atan2(nry, n
r
z)

 (4.40)

Creating a linearly-constrained problem requires a linear approximation of the constraint:

|∇sω(s)δs+ ω(s)| <= ωmax (4.41)

Conveniently, computing∇sω(s) reduces to finding gradients w.r.t position and yaw separately. Let

∇sω(s) = [∇pω(s),∇θω(s)]ᵀ, then:

∇pω(s) = (∇nrg)(Rθ)(∇pn
w) (4.42)

∇θω(s) = (∇nrg)(
d

dθ
Rθ)(n

w) (4.43)

76

where:

∇nrg =

 nrz
(nrx)2+(nrz)2

0 −nrx
(nrx)2+(nrz)2

0 −nrz
(nry)2+(nrz)2

nry
(nry)2+(nrz)2

 (4.44)

and

∇pn
w =


∂nwx
∂px

∂nwx
∂py

∂nwy
∂px

∂nwy
∂py

∂nwz
∂px

∂nwz
∂py

 (4.45)

The terms with the form ∂nwx
∂px

amount to computing a second-order gradient of the elevation on the

2.5D map. This can be done efficiently with numerical methods [136].

Box Constraint: Note that if δx and δu are too large, linearization errors will dominate. To

mitigate this we also include box constraints within (4.11) and (4.12) to maintain a bounded

deviation from the initial solution: |δx| < εx and |δu| < εu.

Adding Slack Variables: To further improve the feasibility of the optimization problem we

introduce auxilliary slack variables for constraints on state limits, position risk, and orientation.

For a given constraint h(x) > 0 we introduce the slack variable ε, and modify the constraint to be

h(x) > ε and ε < 0. We then penalize large slack variables with a quadratic cost: λεε2. These are

incorporated into the QP problem (4.29) and (4.30).

4.5.6 Dynamic Risk Adjustment

The CVaR metrics allows us to dynamically adjust the level and severity of risk we are willing

to accept. Selecting low α reverts towards using the mean cost as a metric, leading to optimistic

decision making while ignoring low-probability but high cost events. Conversely, selecting a high

α leans towards conservatism, reducing the likelihood of fatal events while reducing the set of

possible paths. We adjust α according to two criteria: 1) Mission-level states, where depending on

the robot’s role, or the balance of environment and robot capabilities, the risk posture for individual

robots may differ. 2) Recovery Behaviors, where if the robot is trapped in an unfavorable condition,

by gradually decreasing α, an escape plan can be found with minimal risk. These heuristics are

especially useful in the case of risk-aware planning, because the feasibility of online nonlinear MPC

77

10 5 0 5 10
X [m]

0

5

10
Y

[m
]

0.05
0.25
0.50
0.75
0.95

10 5 0 5
X [m]

0

5

10

Y
[m

]

0.05
0.25
0.50
0.75
0.95

10 5 0 5 10
X [m]

5

0

Y
[m

]

0.05
0.25
0.50
0.75
0.95

5 0 5 10
X [m]

0

5

10

Y
[m

]

0.05
0.25
0.50
0.75
0.95

Figure 4.8: Path distributions from four simulated runs. The risk level α spans from 0.1 (close to
mean-value) to 0.95 (conservative). Smaller α typically results in a shorter path, while larger α
chooses statistically safe paths.

is difficult to guarantee. When no feasible solution is found for a given risk level α, a riskier but

feasible solution can be quickly found and executed.

4.6 Experiments

In this section, we report the performance of STEP. We first present a comparative study between

different adjustable risk thresholds in simulation on a wheeled differential drive platform. Then, we

demonstrate real-world performance using a legged platform deployed at a lava tube environment.

4.6.1 Simulation Study

To assess statistical performance, we perform 50 Monte-Carlo simulations with randomly generated

maps and goals. Random traversability costs are assigned to each grid cell. The following assump-

78

0.050.250.500.750.95
Risk Level [-]

8

10

12

14
Di

st
an

ce
 [m

]

0.050.250.500.750.95
Risk Level [-]

0.0

0.2

0.4

M
ax

 R
isk

 [-
]

Figure 4.9: Distance vs risk trade-off from 50 Monte-Carlo simulations. Left: Distributions of path
distance. Right: Distributions of max risk along the traversed paths. Box plot uses standard quartile
format and dots are outliers.

tions are made: 1) no localization error, 2) no tracking error, and 3) a simplified perception model

with artificial noise. We give a random goal 8 m away and evaluate the path cost and distance. We

use a differential-drive dynamics model (no lateral velocity).

We compare STEP using different α levels. Figure 4.8 shows the distribution of paths for

different planning configurations. The optimistic (close to mean-value) planner α = 0.05 typically

generates shorter paths, while the conservative setting α = 0.95 makes long detours to select

statistically safer paths. The other α settings show distributions between these two extremes,

with larger α generating similar paths to the conservative planner and smaller α generating more

time-optimal paths. Statistics are shown in Figure 4.9.

4.6.2 Hardware Results

We deployed STEP on a Boston Dynamics Spot quadruped robot at the Valentine Cave in Lava Beds

National Monument, Tulelake, CA. The robot was equipped with custom sensing and computing

units, and driven by JPL’s NeBula autonomy software [138]. The main sensor for localization and

traversability analysis is a Velodyne VLP-16, fused with Spot’s internal Intel realsense data to cover

blind spots. The entire autonomy stack runs on an Intel Core i7 CPU. The typical CPU usage for

the traversability stack is about a single core.

79

Figure 4.10 shows the interior of the cave and algorithm’s representations. The rough ground

surface, rounded walls, ancient lava waterfalls, steep non-uniform slopes, and boulders all pose

significant traversability stresses. Furthermore, there are many occluded places which affect the

confidence in traversability estimates.

Figure 4.10: Traversability analysis results for the Valentine Cave experiment. From left to right:
Third-person view, elevation map (colored by normal direction), risk map (colored by risk level.
white: safe (r <= 0.05), yellow to red: moderate (0.05 < r <= 0.5), black: risky (r > 0.5)), and
planned geometric/kinodynamic paths (yellow lines/red boxes).

We tested our risk-aware traversability software during our fully autonomous runs. The planner

was able to navigate the robot safely to the every goal provided by the upper-layer coverage planner

[138] despite the challenges posed by the environment. Figure 4.10 shows snapshots of elevation

maps, CVaR risk maps, and planned paths. The risk map captures walls, rocks, high slopes, and

ground roughness as mobility risks. STEP enables Spot to safely traverse the entire extent of the

80

lava tube, fully exploring all regions. STEP navigates 420 meters over 24 minutes, covering 1205

square meters of rough terrain.

4.7 Conclusion

We have presented STEP (Stochastic Traversability Evaluation and Planning), our approach for

autonomous robotic navigation in unsafe, unstructured, and unknown environments. We believe

this approach finds a sweet-spot between computation, resiliency, performance, and flexibility when

compared to other motion planning approaches in such extreme environments. Our method is

generalizable and extensible to a wide range of robot types, sizes, and speeds, as well as a wide

range of environments.

81

CHAPTER 5

COSTMAP LEARNING FOR RISK-AWARE TRAVERSABILITY IN CHALLENGING

ENVIRONMENTS

5.1 Summary

One of the main challenges in autonomous robotic exploration and navigation in unknown and

unstructured environments is determining where the robot can or cannot safely move. A significant

source of difficulty in this determination arises from stochasticity and uncertainty, coming from

localization error, sensor sparsity and noise, difficult-to-model robot-ground interactions, and distur-

bances to the motion of the vehicle. Classical approaches to this problem rely on geometric analysis

of the surrounding terrain, which can be prone to modeling errors and can be computationally

expensive. Moreover, modeling the distribution of uncertain traversability costs is a difficult task,

compounded by the various error sources mentioned above. In this work, we take a principled

learning approach to this problem. We introduce a neural network architecture for robustly learning

the distribution of traversability costs. Because we are motivated by preserving the life of the robot,

we tackle this learning problem from the perspective of learning tail-risks, i.e. the Conditional

Value-at-Risk (CVaR). We show that this approach reliably learns the expected tail risk given a

desired probability risk threshold between 0 and 1, producing a traversability costmap which is more

robust to outliers, more accurately captures tail risks, and is more computationally efficient, when

compared against baselines. We validate our method on data collected a legged robot navigating

challenging, unstructured environments including an abandoned subway, limestone caves, and lava

tube caves.

82

Figure 5.1: Top: Spot autonomously exploring Valentine Cave, Lava Beds National Monument, CA,
USA. Bottom: LiDAR point cloud and computed costmap in the same environment. In this work,
we aim to infer a CVaR costmap from the LiDAR point cloud.

5.2 Introduction

Uncertainty is ever-present in robotic sensing and navigation. Localization error can severely

degrade the quality of a robot’s environment map, leading to a robot over-estimating or under-

estimating the safety of traversing some particular terrain [111]. Sensor noise, sparsity, and

occlusion can similarly degrade localization and mapping performance, especially in perceptually

degraded environments such as in dark, dust, or featureless environments [139]. Moreover, the

environment itself is a constant source of mobility uncertainty, as ground-vehicle interactions are

notoriously difficult to model and even more difficult to accurately compute in real time - especially

in unstructured environments such as those filled with slopes, rough terrain, low traction, rubble,

narrow passages, and the like (Figure 5.1) [110]. In each case, modeling these uncertainties often

relies on computationally tractable but distributionally restrictive assumptions. For example, an

EKF used for localization assumes a Gaussian distribution and known process and observation noise

[140]. Or, often computing traversability means calculating worst-case bounds on the uncertainty of

the robot’s settled pose on a patch of terrain [116]. Note that these uncertainties are not additive,

often compounding and interacting. Localization error can lead to a degraded map, which and

result in poor traversability estimates. These poor estimates can lead the robot into dangerous and

out-of-nominal actions, which in turn may affect sensor measurement quality, which then affects

localization error.

83

To escape this vicious cycle, we would like to have a system which more accurately quantifies

the uncertainty of computing traversability costs. Classically, traversability methods do not take

into account this uncertainty, instead relying on building a 2.5D terrain map which is used to extract

features such as maximum, minimum, and variance of the height and slope of the terrain [114].

Planning algorithms for such methods take into account the stability of the robot on the terrain

[115].

Computing uncertainties allows the robot to have some measure of control over the level of

risk it is willing to take. The concept of risk arises naturally when talking about uncertainty and

its effect on robot safety. Always planning for the worst-case scenario is often not desirable as it

can lead to too conservative behavior, which will not allow the robot to accomplish its task. On the

other hand, ignoring uncertainties entirely will also lead to task failure if the robot does not survive.

It is therefore advantageous to have fine-grained control over the level of risk the robot should take -

this control can be used by task or mission-level planners which weigh a variety of factors to decide

the best course of action [141].

Risk measures, often used in finance and operations research, provide a mapping from a random

variable (usually the cost) to a real number. These risk metrics should satisfy certain axioms in

order to be well-defined as well as to enable practical use in robotic applications [23]. Conditional

value-at-risk (CVaR) is one such risk measure that has this desirable set of properties, and is a part

of a class of risk metrics known as coherent risk measures [124].

Accurately constructing these risk measures poses a challenge, often relying on distributional

assumptions such as Gaussianity. For example, in [116, 117], the authors estimate the probability

distributions of states based on the kinematic model of the vehicle and the terrain height uncertainty.

A method for incorporating sensor and state uncertainty to obtain a probabilistic terrain estimate

in the form of a grid-based elevation map was considered in [118]. In our previous work [26], we

model traversability risks as Gaussian random variables and use them to efficiently construct risk

measures which are useful for kinodynamic planning. While these approaches have the advantage of

allowing for efficient, kinodynamic, risk-aware planning, they may suffer from relying too heavily

84

on these modeling assumptions. Such assumptions include: 1) Localization error is accurately

known (and is Gaussian), 2) various component risks can be accurately determined from a map

(such as slope, step size, roughness, collision), and 3) these risks are normally distributed and both

mean and variances can be accurately modeled.

Learning CVaR from data is an attractive approach to bypassing these complex issues. The

concept of learning CVaR itself has generated much theory and has been applied to various fields

including finance and reinforcement learning [112, 142, 143]. These methods have recently begun

to gain interest to the deep learning community. Since [20] showed that minimizing a quantile

loss function results in unbiased prediction of the VaR, or quantile function, many deep learning

applications of this idea have been examined [144, 94]. However, there is little work on predicting

CVaR directly. Instead, it is typically computed by sampling from the risk variable of interest [145],

or relies on assumptions of the underlying distribution. More recently, [146] propose a method

for predicting CVaR with a deep neural network under assumptions of i.i.d. samples, and prove

convergence of the scheme. In this work, we propose an approach for distribution-free CVaR

learning which scales to images and large datasets. We construct loss and evaluation functions for

both VaR and CVaR which enforce monotonicity with respect to the risk probability.

Learning-based costmaps have seen more recent development for robotics and autonomous driv-

ing [147]. The concept is attractive due to possibly for bypassing traditional modeling approaches,

reducing computation, improving performance from data [148]. Recent work on CVaR based

costmaps rely on assumptions of distribution (gaussian) or sampling to estimate CVaR [149]. [150]

learns an approximating CVaR costmap from precomputed CVaR values on a collision-avoidance

task. Our contribution to this space is to propose learning CVaR directly in a distribution-free

manner, with a novel application to navigation in challenging terrain.

We propose an architecture in which raw or minimally processed point cloud data is transformed

and fed into a CNN (Convolutional Neural Network). In contrast to other approaches, the network

directly produces a CVaR costmap which encodes the traversability risk, given a desired probability

of confidence. Note that in this work we treat the risks in each cell in the costmap as static and

85

independent of the others, that is, we do not consider the risk of traversing multiple cells sequentially.

(See recent work [26, 23] which addresses the notion of dynamic risk metrics in the context of

planning and assessing risk over a path). We restrict our approach to assessing point-wise risks

which can then be used to commit the robot to finding a path which uses these risks as a constraint,

avoiding the riskiest regions and thereby remaining safe. (In contrast, in [26] we minimize the

CVaR of the risk along an entire path.)

Our contributions are summarized as follows:

• A novel neural network architecture for transforming pointcloud data into risk-aware

costmaps.

• A loss function which trains this network to produce quantile and CVaR values without

distribution assumptions.

• A solution to a challenging traversability learning task in unknown environments, validated

on a wide range of unstructured and difficult terrain.

• Evaluation metrics which assess the goodness-of-fit of the network and comparison between

different baseline approaches.

5.3 Method

In this section we establish definitions and describe our method for learning CVaR costmaps. We

first formally define our notion of ”traversability”. Then we discuss risk metrics, Value-at-Risk

(VaR) and Conditional Value-at-Risk (CVaR). We discuss the losses used to train a network to

produce these values, and describe how we obtain training labels.

5.3.1 Traversability as a random variable

We define traversability as the capability for a ground vehicle to reside over a terrain region under

an admissible state [113]. We represent traversability as scalar value which indicates the magnitude

86

of damage (or cost of repair) the robot will experience if placed in that state :

r = R(m,x) (5.1)

where x ∈ X is the robot position in 2d coordinates, m ∈ M represents the current belief of the

local environment, r ∈ R, and R(·) is a traversability assessment model. This model captures

various unfavorable events such as collision, getting stuck, tipping over, high slippage, to name a

few. A mobility platform has a unique assessment model which reflects its mobility capability.

Associated with the true traversability value is a distribution over possible values based on

the current understanding about the environment and robot state. In most real-world applications

where perception capabilities are limited, the true value can be highly uncertain. To handle this

uncertainty, consider a map belief, i.e., a probability distribution p(m|x0:k, z0:k) over a possible set

M, where z0:k are sensor observations. Then, the traversability estimate is also represented as a

random variable R : (M×X) −→ R. We call this probabilistic mapping from map belief and state

to possible traversability cost values a risk assessment model.

5.3.2 Risk Metrics, VaR and CVaR

A risk metric ρ(R) : R→ R is a mapping from a random variable to a real number which quantifies

some notion of risk. Local environment information is encoded within m. This can be raw sensor

data, e.g. observations, or processed map data (e.g. represented as m = (m(1),m(2), · · ·) where mi

is the i-th element of the map). In the case of a 2D or 2.5D representation, i represents the cell index.

Risk metrics can be coherent, which mean they satisfy six properties with respect to the random

variables they act upon, namely: normalized, monotonic, sub-additive, positive homogeneity, and

translation invariant. [23] argues that the consideration of risk in robotics should utilize coherent

risk metrics for their intuitive and well-formulated properties. In this work we isolate the risk

quantification problem from the planning problem. This avoids the need to ensure the construction

of a dynamic risk metric, in the language of [23], which will make learning more tractable. This

comes at a cost that minimizing the total risk along a path is not as simple as adding up the risks of

individual states. Instead, we consider risks point-wise, and seek a path which does not exceed a

87

tolerable level of risk at any point in time. In this work we are concerned with right-tail risk only,

since the random variable R is a positive ”cost” for which we seek to avoid high values.

Let α ∈ [0, 1] denote the risk probability level. High values of α imply more risk. The

Value-at-Risk of the random variable R(m,x) can be defined by (we write R for brevity):

VaRα(R) :=inf{z ∈ R|P (R < z) > α} (5.2)

This is also known as the α-quantile. While there are multiple ways to define the Conditional

Value-at-Risk, one common definition is as follows:

CVaRα(R) := E[R|R ≥ VaRα(R)]. (5.3)

Building on the work of [112], [151] shows that CVaR can also be written as:

CVaRα(R) = VaRα(R) +
1

1− α
E[(R− VaRα(R))+] (5.4)

where (·)+ = max(·, 0).

5.3.3 Learning VaR and CVaR

We wish to construct a model with inputsm, x, and α, and outputs CVaRα(R(m,x)), parameterized

by network weights θ. We denote this model asCθ(m,x, α). To learn CVaR we take a joint approach

where we learn both VaR and CVaR together. We construct a similar VaR model, also as a function

of m and x as VaRα(R(m,x)), which we denote Vθ(m,x, α). Learning VaR can be accomplished

by minimizing the Koenker-Bassett error with respect to θ [20]:

lVα (θ) = α(R(m,x)− Vθ(m,x, α))+ + (1− α)(R(m,x)− Vθ(m,x, α))− (5.5)

where (·)+ = max(·, 0) and (·)− = min(·, 0). From the estimated VaR, we can compute the

expected CVaR and construct an L1-loss for Cθ:

lCα (θ) = |Cθ(m,x, α)−R(m,x)|1R(m,x)≥Vθ(m,x,α) (5.6)

88

With the assumption of i.i.d. sampled data, when lVα (θ) and lCα (θ) are minimized, Vθ will approximate

VaR and Cθ will approximate CVaR. If during training we uniformly randomly sample values of

α ∈ [0, 1], then the input α to these models should be meaningful as well.

In practice, a few modifications to these losses are needed to improve numerical stability. First,

similar to [94], we smooth the quantile loss function lVα near the inflection point Vθ = R by using a

modified Huber loss [97]:

lh(e, α) =



(1− α)|e| if e ≤ −h
1−α

1
2h

((1− α)|e|)2 + h
2

if −h
1−α < e ≤ 0

1
2h

(α|e|)2 + h
2

if 0 < e ≤ h
α

α|e| if h
α
< e

(5.7)

where h ∈ R+ controls how much smoothing is added (Figure 5.2). The new VaR loss is then:

l̂Vα (θ) = lh(R(m,x)− Vθ(m,x, α), α). (5.8)

-1 e 1

l h
(e
)

α=0.5

-1 e 1

α=0.7

-1 e 1

α=0.9

h=0.1 h=0.2 h=0.3 lV

Figure 5.2: Modified quantile Huber loss lh(e, α), for varying values of α and h.

Second, instead of learning Cθ directly, we can learn the residual between Cθ and Vθ. Suppose

we construct a model Ĉθ instead of Cθ, and let Cθ = Vθ + Ĉθ. Then the loss lCα (θ) can be written as:

lCα (θ) = |Ĉθ − (R(m,x)− Vθ(m,x, α))|1R≥Vθ (5.9)

This serves to separate the error signals between the two models.

Third, we introduce a monotonic loss to enforce that increasing values of α result in increasing

values of Vθ(m,x, α) and Cθ(m,x, α). This can be done by penalizing negative divergence of the

89

output with respect to α [101, 25]. We also introduce a smoothing function to prevent instability

near the inflection point when the divergence equals 0. The total monotonic loss is:

dV = (∇αVθ(m,x, α))− (5.10)

dC = (∇αCθ(m,x, α))− (5.11)

s(d) = exp(d)− d− 1.0 (5.12)

lm(θ) = s(dV) + s(dC) (5.13)

In practice we find that under gradient-based optimization, this loss decreases to near 0 in the first

epoch and does not noticeably affect the minimization of the quantile and CVaR losses.

To summarize, the total loss function is the sum of the modified huber quantile loss (5.8), the L1

residual CVaR loss (5.9), and the monotonic loss (5.13):

L(θ;R,m, x, α) = λV l̂
V
α (θ) + λC l

C
α (θ) + λml

m(θ) (5.14)

We minimize this loss over a dataset, sampled i.i.d from the distribution ofR, which is a function

of m and x. We also sample from a uniform distribution for α. In other words, we seek to minimize

the expected loss with respect to θ:

ER,α[L(θ;R,m, xα)] =

∫
L(θ;R,m, x, α)p(R)p(α)dRdα

=

∫
L(θ;R,m, x, α)p(R|m,x)p(m,x)p(α)dmdxdα (5.15)

This expectation is approximated using stochastic gradient descent [152]. Given the dataset

D = {mn, xn}n, the distribution p(m,x) is sampled from the distribution of data collected by the

robot as it moves in the environment, observing samples of its position x and its environment data m.

The distribution p(R|m,x) is sampled by determining the traversability cost given a sampled (m,x).

This determination may be stochastic or imprecise, and may possibly come from any traversability

assessment method. Happily, our learning approach should capture this stochasticity. In Figure

5.3, we demonstrate this learning approach on a toy 1D problem. We use a 3 layer feed-forward

MLP neural network to learn the state-varying VaR and CVaR values of a random variable. We

90

−3 −2 −1 0 1 2 3
x

−4

−2

0

2

4

y

α=0.1
α=0.5
α=0.9

−3 −2 −1 0 1 2 3
y

0.0

0.1

0.2

0.3

0.4

p(
y)

x= -2
x=0
x=2

Figure 5.3: Learned VaR and CVaR on a toy 1D problem. Top: Samples drawn from a distribution
which is multimodal and heteroskedastic. Solid and dotted lines show learned VaR and CVaR levels,
respectively, for different values of α. Bottom: PDF of the true distribution for varying values of x.
Also marked are the learned VaR (solid vertical line) and CVaR (dotted vertical line) values.

notice that our learning approach captures the risk of the known distributions accurately. Next, we

describe the application of this loss function to learning unknown distributions of 2D traversability

costs from 3D point clouds.

5.3.4 Obtaining Ground Truth Labels

As mentioned, computing traversability costs from sensor data is a rich field in itself. Computing

these costs may include geometric analysis [114], semantic understanding and detection [153],

proprioceptive sensing [154], or hand-labeling. Our approach is extensible to both dense and sparse

ground truth labels in the costmap. In this work we focus on costs arising through geometric analysis.

We leverage prior work ([26]), which itself follows a tradition of geometric analyses for ground

vehicle traversal [116, 114]. These analyses are based on point cloud data and provide model-based

costs which are computed in a dense local region around the robot, but are affected by sensor

91

occlusion, sparsity, noise, and localization error. These sources of ambiguity and stochasticity are

exactly what we aim to capture with our risk-aware model. However, instead of having to explicitly

model these uncertainties, we simple compute a mean value best-guess at the traversability cost,

and use learning to aggregate the variation of these costs.

5.4 Implementation Details

In this section, we discuss details of the dataset, data processing, network architecture, and training

procedures.

5.4.1 Dataset

Our motivation for tackling this problem comes from extensive field testing in various underground

and decaying urban environments. These environments pose significant traversability challenges for

wheeled, legged, and tracked robots [111]. We collected data from autonomous exploration runs

in six different environments of various types (Figure 5.4, Table 5.1). These environments are: an

abandoned subway station in Los Angeles, CA, consisting of two floors - a large open atrium with

pillars (Subway Atrium / SA) and a basement floor with offices and narrow corridors (Subway Office

/ SO); Kentucky Underground Storage in Lexington, KY, which consists of very large cavernous

grids of tunnels (Limestone Mine / LM); Wells Cave in Pulaski County, KY, which is a natural

limestone cave with very rough floors, narrow passages, low ceilings, and rubble (Limestone Cave /

LC); Valentine Cave at Lava Beds National Park, CA, which is an naturally formed ancient lava

tube, with sloping walls and rough, rocky floors (Lava Tube A / TA); and Mammoth Cave at Lava

Beds National Park, CA, which is also a lava tube but with sandy, sloping floors and occasional large

piles of rubble (Lava Tube B / TB). A new data sample was added to the dataset at approximately

0.5Hz, while the average top speed of the robot is 1m/s.

Data was collected using Boston Dynamics’s Spot legged robot equipped with JPL’s NeBula

payload [14]. The payload includes onboard computing, one VLP-16 Velodyne LiDAR sensor, and

a range of other cameras and sensors. Spot is equipped with 5 Intel RealSense depth cameras which

92

Figure 5.4: Datasets collected in 6 different environments. Top row: Photo of the environment.
Second row: LiDAR pointcloud and elevation map produced after ground segmentation. Third
row: Handcrafted risk map with varying risk (white: safe (r <= 0.1), yellow to red: moderate
(0.1 < r <= 0.9), black: risky (r > 0.9)). Pointclouds are also shown. Bottom row: Map of the
entire environment, generated by aggregating LiDAR pointclouds during each data collection run.
Scale (in meters) is shown in the lower right corner.

are pointed at the ground.

5.4.2 Computing Traversability Cost

Traversability costs are computed online and saved along with dataset. These costs are generated

via a risk-aware traversability pipeline [26], which we will briefly summarize here. First, LiDAR

point clouds and odometry are fused to aggregate a more dense LiDAR pointcloud. Next, we

perform ground segmentation to isolate ”ground” points, ”obstacle” points, and ”ceiling” points.

Ground points are those which lie near the ground, while obstacle points are those which lie above

the ground which will restrict the robot’s movement. We then perform elevation mapping, which

probabilistically builds a 2.5D elevation map using the ”ground” points. Localization noise and

delay are taken into account here, resulting in elevation variance information as well. We then

compute costs as a function of various geometric information arising the the elevation map and the

point cloud, such as slope, step size, roughness, negative obstacles, and collision obstacles. These

costs are then aggregated into a combined mean cost (as well as a cost variance). The traversability

cost is scaled between 0 and 1, with 1 being lethal and 0 being safe. The mean cost and variance of

93

Table 5.1: Details of datasets, with number of data samples, duration of the runs, approximate
distance traveled, and average width of the passages in the environment. Abbreviation key: SA -
Subway Atrium, SO - Subway Office, LM - Limestone Mine, LC - Limestone Cave, TA - Lava
Tube A, TB - Lava Tube B.

SA SO LM LC TA TB
Samples 1585 2883 942 331 852 1148

Duration (min) 53 96 31 11 28 38
Distance (m) 1000 1000 600 300 600 800

Min Width (m) 5 1 10 0.5 1 3
Max Width (m) 50 10 20 5 10 10

the cost are then used to compute CVaR, with assumption of a gaussian distribution. In our dataset

we only use the mean cost which represents R. We aim to predict CVaR from the distribution of

costs that arise through this analysis and the environment itself.

5.4.3 Transforming Pointclouds to Costmaps

We aim to construct a network whose inputs are the LiDAR pointcloud, and whose output is a

CVaR costmap (2D). There are many different approaches for processing LiDAR data using neural

networks [155, 156]. For point-cloud-to-image translation, however, there are fewer more recent

approaches [157]. Engineering a pointcloud-to-image neural network architecture is beyond the

scope of this work. For simplicity, we restrict ourselves to using an image-to-image autoencoder

type of network (namely, U-Net with partial convolutions [158]), leaving the difficult task of

transforming a LiDAR pointcloud to images for future work. To adapt our pipeline for this approach,

we leverage the same point cloud processing and elevation mapping as mentioned in the above

traversability cost analysis. We aggregate pointclouds in time, perform ground segmentation, and

generate a 2.5D elevation map on the ground points. We then bin the pointcloud into 5 z-height

bins relative to the elevation map. We count the number of points which fall into these bins and

generate an image from these counts. We end up with the following input features, each feature

channel is a 2D image: the elevation map (rescaled), the total number of LiDAR points in the

aggregated pointcloud to be found in a location, the obstacle points (with more recent points having

higher intensity), 5 z-height LiDAR point histogram bins, and a channel which encodes the distance

94

Figure 5.5: Input features converted from LiDAR pointclouds, showing different features in columns
from left to right, while each row corresponds to one sample from each of the 6 datasets. Features
are, from left to right: 1) elevation, 2) number of LiDAR points, 3) obstacle points (older points
have a lower intensity), 4-8) number of points in each of 5 z-height bins, relative to the elevation
map, with a bin height of 0.1m, 9) distance from the robot location, 10) ”known” region mask,
which marks regions which have sensor coverage.

from the robot position in the map (Figure 5.5). Image sizes are 400x400 pixels, with each pixel

representing 0.1m, for a total area of 40m x 40m covered.

The presence of gaps and occlusions in LiDAR data lead to known and unknown regions in

the image-translated input data. These unknown regions need to be handled by the network. A

naive approach would be to use zero-padding, i.e. replacing unknown pixels with 0. However,

this can lead to blurring and other spurious artifacts at the edges. We take inspiration from recent

work on neural network architectures use for in-painting, which naturally lend themselves to this

image-to-image learning task with unstructured, unknown masks [158]. We include a mask of the

known regions as input to the network.

Additionally, we provide the desired α level as an image to the input of the network. Since

95

Figure 5.6: Some examples of α input channel images. Left: Randomly generated Gaussian filter,
renormalized to have a uniform distribution. Middle: Randomly generated Voronoi-regions, again
with uniformly distributed α values. Right: A radially decaying α input, which is an example of a
custom desired variation of risk level for the resulting CVaR costmap. This type of variation may be
useful for trying to ensure a greater degree of caution for obstacles near the robot. In this example,
α = 1 within 5 meters of the robot, and decays linearly down to 0 at 20m from the robot.

α is an image it can vary spatially. The loss function takes this desired α into account per-pixel,

and trains the network to produce the correct risk level according to the desired input pattern.

During training, we use a uniformly distributed smoothed random pattern, whose distribution spans

α ∈ [0, 1].

Figure 5.7 outlines the costmap network architecture used in our approach. The pipeline consists

of three components: 1) Pointcloud-to-image features transform, 2) an image-to-costmap translation

network using a PartialConv U-Net, and 3) VaR (Vθ(m,x, α)) and CVaR (Ĉθ(m,x, α)) outputs,

which are fed into the loss function (Equation 5.14). The loss is averaged pixel-wise across the

known mask regions only. This implies that each α value is independent from its neighbors. In

practice, during both training and inference time, we expect to use only a certain distribution of

patterns of α. A smoothly varying α pattern may emphasize correlations between neighboring

pixels, while a completely random α image might encourage less correlations (See Figure 5.6).

See Table 5.2 for network architecture details. The network has approximately 1.1 million

parameters. At the last layer, we clamp the output between 0 and 1 with leaky ReLU activation

functions, since we expect both Vθ and Ĉθ to remain within this range. This is specific to the

distribution of the traversability costs used in this work and are not required in general.

Output of the network

96

Figure 5.7: Our pointcloud-to-costmap pipeline. From left to right: Raw point clouds are aggregated
and used to create 2d image-like input features and the mask. A 2d α channel also provides input to
the network. The PartialConv U-Net architecture maps these input features to 2 output channels,
namely VaR and CVaR− VaR. These two outputs are combined with the handcrafted cost labels
to compute the loss.

Figure 5.8 shows corresponding outputs for the inputs shown in Figure 5.5. The leftmost column

shows the ground truth traversability cost, while the next 3 columns show CVaR at varying α levels

(α = 0.1, 0.5, 0.9). Note that CVaR steadily increases as α increases, and generally is a greater

value than the traversability cost. The next three columns show CVaR at the same varying alpha

levels, minus the VaR output of the network when α = 0.1. This provides more insight into the

changes in VaR and CVaR as α is increased. The final column shows the same CVaR − VaR0.1

except with a varying α input, in a radially decaying pattern, with high α = 1 in the center, and

low α = 0 at the edges (See Figure 3.9c). This kind of pattern could be useful for a risk-aware

system which wishes to be more conservative when planning motions in the regions near the robot.

Such a behavior could be useful when the user believes he can rely more on data closer to the robot

with greater sensor coverage, as well as wishing to allow for a relaxed commitment to avoiding

traversability risks further away.

5.4.4 Training

Next we describe some details of training and hyperparameters. We used weights for the CVaR

loss (5.14) of λV = 10.0, λC = 1.0 λm = 1.0e − 4. We used a Huber smoothing coefficient of

h = 1.0e− 3. The network was trained on a 90 : 5 : 5 split of training, validation, and test data. We

used Adam optimization with an initial learning rate of 0.0005, and batch size of 1. No pre-training

of the network was used, weights were initialized with Xavier random weights. During training,

data augmentation was used - including rotation, translation, scaling, shearing, and flipping. Figure

97

Figure 5.8: Network outputs on the same input examples shown in Figure 5.5. Columns from
left to right: 1) Handcrafted cost label, 2-4) CVaR values with α = 0.1, 0.5, 0.9 respectively, 5-7)
CVaRα − VaR0.1 for varying α = 0.1, 0.5, 0.9 respectively. This enables us to more clearly see
the differences between values of α. It also shows the difference between CVaR and VaR. 8)
CVaRα − VaR0.1 when α is a radially decaying output (See Figure 3.9c). Notice that the risk also
decays radially from the center of the map.

98

Table 5.2: Neural network architecture details. PConv are partial convolutions, with PConv1-4
encoding and PConv5-8 decoding. BN indicates if the layer is followed by Batch Normalization.
Concat∗ indicates skip links, which concatenate the output of previous layers.

Layer Name Filter # Filters/ Stride/ BN Activation
Size Channels UpFactor

PConv1 7×7 32 2 - ReLU
PConv2 5×5 64 2 Y ReLU
PConv3 5×5 128 2 Y ReLU
PConv4 3×3 256 2 Y ReLU

UpSample1 256 2 - -
Concat1(w/ PConv3) 256+128 - -

PConv5 3×3 128 1 Y LeakyReLU(0.2)
UpSample2 128 2 - -

Concat2(w/ PConv2) 128+64 - -
PConv6 3×3 64 1 Y LeakyReLU(0.2)

UpSample3 64 2 - -
Concat3(w/ PConv1) 64+32 - -

PConv7 3×3 32 1 Y LeakyReLU(0.2)
UpSample4 32 2 - -

Concat4(w/ Input) 32+2 - -
PConv8 3×3 2 1 - -

5.9 shows loss curves over the course of training on the dataset. Note that the VaR loss steadily

decreases while CVaR loss is slower to converge. This is expected since the CVaR loss is a moving

target which depends on VaR. Also, we see that the monotonic loss stays relatively small and does

not increase. Training took about 16 hours on a 12GB NVIDIA Tesla K80 GPU.

5.5 Evaluation and Results

In this section, we evaluate the method on data which is both in-distribution and out-of-distribution,

compare against different baselines, and investigate the behavior of the network. We first present

some qualitative observations about the performance of the model. Figure 5.10 shows an interesting

case where the traversability cost of an obstacle is difficult to determine. In this case (taken from

the Limestone Cave dataset), a row of cinderblocks (0.15-0.2m in height) blocks Spot’s path. Spot

is usually capable of traversing such obstacles but they do pose some risk. (In this particular

instance, the robot tripped over and fell down.) We observe the network has learned the concept

of the variation of this risk as α is increased from 0.1 to 0.9. While the handcrafted traversability

99

0 50 100 150
Epoch

0.015

0.020

0.025

0.030

0.035
cvar

train
val

0 50 100 150
Epoch

0.001

0.002

0.003

mono
train
val

0 50 100 150
Epoch

0.015

0.020

0.025

0.030
var

train
val

Figure 5.9: Learning curves for one training session, showing the three losses (CVaR loss, monotonic
loss, and VaR loss).

cost shows a risky region on the wall for this sample, other samples or other similar situations

have shown less traversability cost, so the network has learned to smoothly interpolate along this

distribution. Note that this change is more than simple scaling up all costs in the output, as can be

seen from the plots of CVaRα − VaR0.1. As α increases, we see a much stronger increase in CVaR

at the location of the low wall relative to the rest of the costmap.

We also observe the network learns to remove spurious noise and artifacts from the costmap

(Figure 5.11). In this example (from Lava Tube A), several artifacts are visible in the handcrafted

costmap, arising from localization noise and sparse sensor coverage. The worst offending artifact

entirely blocks a passageway - this is caused by localization noise which creates artifacts in the

elevation map. The network produces a clean risk map which ignores these artifacts.

5.5.1 Evaluation Metrics

We introduce three evaluation metrics for assessing the quality of VaR and CVaR learning for a

given value of α. First, we compute the implied-α (Iα) value, which is a measure of how closely

the predicted VaR value matches the true quantile:

Iα =

∑
D I[R <= Vθ(α)]∑
D I[mask]

(5.16)

An accurate model should have a value of Iα ≈ α. Note that we sum over all valid (non-masked)

pixels and data samples. The denominator counts the number of non-masked pixels.

100

Figure 5.10: Case study for a low wall obstacle. Top left: On-board camera image of the obstacle.
Top right: Point cloud and elevation map. Spot has placed one foot on top of the wall. Top right:
Handcrafted traversability cost. The wall appears in the center of the map in a line. Middle row:
CVaR at varying levels of α = 0.1, 0.3, 0.5, 0.7, 0.9 respectively. Bottom row: CVaRα − VaR0.1 at
varying levels of alpha. The risk of the wall increases greatly as α is increased, while other regions
increase in risk more gradually. Color scale of all maps range from 0 to 1.

101

Figure 5.11: Case study of localization artifact removal. Left: Handcrafted traversability cost. Right:
CVaR network output when α = 0.5. We observe that artifacts arising from localization error and
sensor sparsity are not present in the predicted risk map. In this particular case, this has significant
impact on path planning through the narrow passage.

The R2 coefficient of determination metric is useful for comparing the explanatory power of

a model relative to the distribution of the data. To quantify the modeling capacity of the network

when compared to another other baselines, we use a pseudo-R2, which is a function of α. For

assessing pseudo-R2 for VaR, we use the following metric [159]:

R2
V (α) = 1−

∑
D
[
α|R− Vθ(α)|+ + (1− α)|R− Vθ(α)|−

]∑
D
[
α|R− V̄α|+ + (1− α)|R− V̄α|−

] (5.17)

where V̄α is the constant α-quantile computed from the training data. This metric compares the

Koenker-Bassett error of a quantile regression model against the total absolute deviation of the

data from a independent α quantile. A value of 1 is the best, reflecting total explanation of the

dependent variable, while a value less than 0 is poor, implying worse explanatory power than the

simple quantile.

Finally, to assess the CVaR modeling, we construct a similar pseudo-R2 metric for CVaR. Instead

of the Koenker-Bassett error, we use the empirical CVaR error (see [160] for a rigorous discussion

of a similar but computationally less tractable approach). Our CVaR pseudo-R2 metric compares

the total absolute error between our CVaR model and an average empirical CVaR computed form

102

the training data:

R2
C(α) = 1−

∑
D

∣∣Cθ(α)−
(
Vθ(α) + 1

1−α(R− Vθ(α))+

)∣∣∑
D

∣∣C̄α − (V̄α + 1
1−α(R− V̄α)+

)∣∣ (5.18)

where C̄α is the constant α-CVaR computed from the training data.

5.5.2 In-distribution (ID) Performance

We begin by evaluating the in-distribution (ID) performance of the network. Figure 5.12 shows

a boxplot of the three evaluation metrics described above, testing on the held-out test data, for

a network trained on all 6 datasets. The box plots show the distribution of metrics computed

per-sample. Implied α holds up well, forming tracking α, while VaR R2 and CVaR R2 are close

to 1 for most values of α. As α nears 0.9 and 0.95, the CVaR R2 drops closer to 0, implying less

of the data is being accurately explained by the model. This is likely due to the distribution of

traversability costs lying between 0 and 1. When α is high, both VaR and CVaR are more frequently

predicted to be 1. This results in a lower CVaR R2 since the denominator will be small.

Next, we plot evaluation metrics on each of the 6 dataset categories individually (Figure 5.13).

This allows us to evaluate the differences between each dataset. We note that the Limstone Cave

dataset has the highest levels of risk, which results in more frequent distortion the CVaR R2 metric

for high α levels. Nevertheless, all datasets perform well, with pseudo-R2 values close to 1.0.

5.5.3 Out-of-Distribution (OOD) Performance

To evaluate out-of-distribution (OOD) performance, we train the network on all data except the

one dataset, and then evaluate the network on the OOD dataset (which the network has not seen

during training). We do this by holding out the Subway Atrium dataset (Figure 5.14) as well as

the Limestone Cave dataset (Figure 5.15). These two datasets show interesting differences, as the

Subway Atrium dataset tends to have clear pillars and walls, large rooms, and moderate amounts of

industrial clutter with clear, sharp edges. On the other hand the Limestone Cave dataset has the most

different and challenging terrain with the highest average risks, and with many features not present

103

0.0

0.5

1.0

Im
pl
ie
d
α

Test Performance

0.0

0.5

1.0

Va
R
R

2

.05.1 .2 .3 .4 .5 .6 .7 .8 .9.95
α

0.0

0.5

1.0

CV
aR

R
2

Figure 5.12: ID performance: Boxplot of evaluation metrics for model trained on all 6 datasets,
evaluated on held-out test data from all 6 datasets. The evaluation metrics were computed on each
sample individually, and are aggregated in ths box plot shown here. Red dots mark outliers.

104

0.0

0.5

1.0

Im
pl
ie
d
α LM

TB
SO
SA

TA
LC

0.0

0.5

1.0

Va
R
R
2

.05.1 .2 .3 .4 .5 .6 .7 .8 .9.95
α

0.0

0.5

1.0

CV
aR

R
2

Figure 5.13: ID performance: Evaluation metrics for model trained on all 6 datasets, evaluated on
held-out test data from 6 datasets individually. Some datasets have better performance than others,
with the Limestone Cave having the worst performance, it being the most challenging.

105

0.0

0.5

1.0
Im

pl
ie
d
α

Test Performance

0.0

0.5

1.0

Va
R
R

2

.05.1 .2 .3 .4 .5 .6 .7 .8 .9.95
α

0.0

0.5

1.0

CV
aR

R
2

0.0

0.5

1.0

Im
pl
ie
d
α

Test Performance

0.0

0.5

1.0

Va
R
R

2

.05.1 .2 .3 .4 .5 .6 .7 .8 .9.95
α

0.0

0.5

1.0

CV
aR

R
2

Figure 5.14: OOD performance: (Left) Boxplot of evaluation metrics for model trained on all
datasets except the Subway Atrium, evaluated on held-out data from the Subway Atrium. Perfor-
mance is similar to the ID performance, i.e. when the model is trained on all data, and evaluated on
the Subway Atrium data (Right).

in the other datasets, such as sharp jagged rocks, narrow passages, channels of water, and rough

floors. We see that while OOD performance is similar to ID performance for the Subway Atrium

dataset, the Limestone Cave dataset fairs less well, where the OOD performance is noticeably worse.

This shows that indeed the Limestone Cave dataset contains unique features different from the

other datasets. However, even with this difference, the Limestone Cave OOD model is still able to

maintain healthy pseudo-R2 statistics (> 0) for a large range of α.

We also examine whether the network can overfit to one dataset, by training it exclusively on

the Subway Atrium dataset. We then test and compute evaluation metrics on all dataset and show a

comparison in Figure 5.16. All models perform well, with performance slightly worse than when

the model was trained on all the data (Figures 5.12 and 5.13). However, when testing on the ID

Subway Atrium dataset, the performance is very slightly better than the model trained on all the

data. This may imply a small degree of overfitting.

106

0.0

0.5

1.0
Im

pl
ie
d
α

Test Performance

0.0

0.5

1.0

Va
R
R

2

.05.1 .2 .3 .4 .5 .6 .7 .8 .9.95
α

0.0

0.5

1.0

CV
aR

R
2

0.0

0.5

1.0

Im
pl
ie
d
α

Test Performance

0.0

0.5

1.0

Va
R
R

2

.05.1 .2 .3 .4 .5 .6 .7 .8 .9.95
α

0.0

0.5

1.0

CV
aR

R
2

Figure 5.15: OOD performance: (Left) Boxplot of evaluation metrics for model trained on all
datasets except the Limestone Cave, evaluated on held-out data from the Limestone Cave. Perfor-
mance is worse than the ID performance, i.e. when the model is trained on all data, and evaluated
on the Limestone Cave data (Right).

5.5.4 Comparisons against baselines

Finally, we compare our approach against three baselines: 1) the handcrafted traversability risk

model which relies on assumptions of Gaussianity and accurate mean and variance, 2) a model

trained to predict the traversability cost using an L1 loss function only, and 3) a model trained to

predict both traversability mean and variance using a Gaussian negative log likelihood (NLL) loss

[11], which is then used to compute VaR and CVaR assuming a Gaussian distribution. We computed

metrics by taking the average over all test datasets, shown in Figure 5.17. The L1 Loss model does

not capture any quantile information and does not depend on α. Therefore, it does not capture the

VaR or CVaR as well as the trained model. The hand-crafted traversability cost model also does not

perform well - it fails to accurately capture the quantile (VaR) for most values of α. It also does not

provide as accurate CVaR values as the learned model. The NLL loss model fairs relatively well

predicting CVaR, but less-so for VaR. However, the learned CVaR model still outperforms it in the

CVaR statistic.

107

0.0

0.5

1.0

Im
pl
ie
d
α LM

TB
SO
SA

TA
LC

0.0

0.5

1.0

Va
R
R
2

.05.1 .2 .3 .4 .5 .6 .7 .8 .9.95
α

0.0

0.5

1.0

CV
aR

R
2

Figure 5.16: OOD performance: Evaluation metrics for model trained on Subway Atrium data only,
testing on all datasets. Despite not seeing any of the other environments during training, the model
is able to generalize quite well.

108

0.0

0.5

1.0

Im
pl
ie
d
α

0.0

0.5

1.0

Va
R
R

2

.05.1 .2 .3 .4 .5 .6 .7 .8 .9.95
α

0.0

0.5

1.0

CV
aR

R
2

Handcrafted
L1 Loss

NLL Loss
CVaR-Learning

Figure 5.17: Comparing CVaR-learning model against handcrafted CVaR cost model, L1-loss
model, and NLL-loss model. The learned model was trained on all 6 datasets. Shown here are
evaluation metrics computed over the held-out test data for all 6 datasets. The CVaR-learning
method outperforms by a clear margin. Dotted line in first plot indicates ideal implied α values.

109

We also consider the computation time of using the handcrafted traversability cost method vs.

our CVaR learning method (Table 5.3). The CVaR learning approach tends to be almost 5x more

efficient then the handcrafted approach. (Both methods currently rely on ground segmentation

and elevation mapping steps.) We see that replacing the handcrafted costmap with the learned one

removes the largest bottleneck in the traversability assessment pipeline.

Table 5.3: Computation time for Handcrafted costmap vs. CVaR-learning costmap, computed
from N=250 samples. Also shown are times for preprocessing steps, i.e. ground segmentation and
creating the 2.5 elevation map. Using a CVaR learning costmap to replace the handcrafted costmap
would improve total computation time by approximately 48%.

Computation Time µ (ms) σ (ms)
Ground Segmentation 13.97 3.88

Elevation Mapping 140.19 65.48
Handcrafted Costmap 241.92 30.11

CVaR-Learning Costmap 48.94 15.36

5.6 Conclusion

In this work, we introduced a novel neural network architecture for transforming point cloud

data into risk-aware costmaps. We also introduced a novel formulation of CVaR and VaR loss

functions which train the network to accurately capture tail risk, without relying on cumbersome

modeling or distribution assumptions. We demonstrated this approach on a robotic navigation task

in unstructured and challenging terrain. We evaluated the method using metrics which show that this

approach reliably learns the expected tail risk given a desired probability risk threshold between 0

and 1 and produces a traversability costmap which is robust to outliers, accurately captures tail risks,

generalizes well to out-of-distribution data, and is more computationally efficient. Future work

includes investigation of architectures which directly map LiDAR points to costs, investigating the

use of importance sampling to improve risk estimates for high values of α [161], and investigation

of learning dynamic risk metrics [23].

110

CHAPTER 6

CONCLUSION

The aim of this thesis is to explore methods for both establishing safety guarantees as well as

accurately quantifying risks when using deep neural networks for robot planning and control,

especially in high-risk environments. This has been demonstrated by novel contributions at multiple

layers of the robotics stack, from controls, trajectory optimization, planning, and traversability. At

each layer we have introduced a novel approach for uncertainty quantification using deep neural

networks. Each of our contributions does not rely on a specific deep learning method; rather, we seek

to show the feasibility and advantages of using black-box function approximators for safety-critical

applications.

At the controls layer, we have presented an approach to guaranteeing safety while enabling

adaption and learning using Bayesian neural networks. As methods for Bayesian neural network

learning improve, our method will benefit. At the trajectory optimization layer, we have presented a

means for tackling the difficult problem of accurately quantifying the propagation of uncertainty

over many timesteps, by using deep quantile regression. Again, as methods for quantile regression

in deep learning improve, our method will likewise benefit in terms of scalability, efficiency, and

accuracy. At the level of planning, this thesis has presented a unified framework for risk-aware

traversability and kinodynamically feasible planning by quantifying and optimizing over CVaR

tail-risks in a computationally efficient manner. We then leverage this framework to enable directly

learning CVaR costmaps from raw point cloud data, improving the baseline approach in accuracy,

robustness, and computational efficiency. Again, this approach benefits from further advances in

deep quantile regression as well as deep point-cloud to image transformation architectures.

One point that has not yet been addressed in detail is the question of why deep learning is such

a useful tool, and why one should go to the effort of bringing a deep learning method into a domain

which has been previously dominated by traditional model-based methods which potentially offer

111

stronger guarantees in safety-critical applications. One answer might be that before deep learning,

the intelligence of machines was bounded by human intelligence - i.e., how clever of an algorithm

can a group of humans design. Now, deep learning has broken this bound, and the intelligence

of machines is now bounded by the amount of data and the size of the network that is feasible

to manage. In many nascent fields seeking to supplant traditional methods by neural networks,

the traditional methods may at first outperform neural network prototypes and graduate student

researchers with limited data and budgets. However, Moore’s law implies that this is sure to change.

It is the author’s hope that this thesis adds some strong datapoints towards more widespread

investigation and use of deep learning, specifically for controls and planning in safety-critical

systems, in order to achieve greater autonomy and intelligence for robots working on these tasks.

By advancing these technologies, perhaps humans might further extend their consciousness to the

stars, reduce the hazardous impacts of natural disasters or industrial accidents, and improve the

lives of every individual.

112

REFERENCES

[1] L. Kunze, N. Hawes, T. Duckett, M. Hanheide, and T. Krajnik, “Artificial intelligence for
long-term robot autonomy: A survey,” IEEE Robotics and Automation Letters, vol. 3, no. 4,
pp. 4023–4030, 2018.

[2] A. P. Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi, Z. D. Guo, and C. Blun-
dell, “Agent57: Outperforming the atari human benchmark,” in International Conference
on Machine Learning, PMLR, 2020, pp. 507–517.

[3] Q. Yu, Y. Yang, F. Liu, Y.-Z. Song, T. Xiang, and T. M. Hospedales, “Sketch-a-net: A deep
neural network that beats humans,” International journal of computer vision, vol. 122, no. 3,
pp. 411–425, 2017.

[4] Z. Kurd, T. Kelly, and J. Austin, “Developing artificial neural networks for safety critical
systems,” Neural Computing and Applications, vol. 16, no. 1, pp. 11–19, 2007.

[5] M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu, M. Ghavamzadeh, P. Fieguth,
X. Cao, A. Khosravi, U. R. Acharya, et al., “A review of uncertainty quantification in deep
learning: Techniques, applications and challenges,” Information Fusion, 2021.

[6] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representing model
uncertainty in deep learning,” in international conference on machine learning, 2016,
pp. 1050–1059.

[7] D. Hafner, D. Tran, T. Lillicrap, A. Irpan, J. Davidson, T. Lillicrap, and J. Davidson,
“Reliable uncertainty estimates in deep neural networks using noise contrastive priors,”
arXiv preprint arXiv:1807.09289, 2018. arXiv: 1807.09289.

[8] M. Segú, A. Loquercio, D. Scaramuzza, M. Segu, and D. Scaramuzza, “A general framework
for uncertainty estimation in deep learning,” arXiv preprint arXiv:1907.06890, vol. 5, no. 2,
pp. 3153–3160, 2019.

[9] N. Tagasovska and D. Lopez-Paz, “Frequentist uncertainty estimates for deep learning,”
2018. arXiv: 1811.00908.

[10] I. Osband, “Risk versus uncertainty in deep learning: Bayes, bootstrap and the dangers of
dropout,” in NIPS workshop on bayesian deep learning, vol. 192, 2016.

[11] A. Kendall and Y. Gal, “What Uncertainties Do We Need in Bayesian Deep Learning for
Computer Vision?,” 2017. arXiv: 1703.04977.

113

https://arxiv.org/abs/1807.09289
https://arxiv.org/abs/1811.00908
https://arxiv.org/abs/1703.04977

[12] A. Liu, G. Shi, S.-J. Chung, A. Anandkumar, and Y. Yue, “Robust Regression for Safe
Exploration in Control,” arXiv preprint arXiv:1906.05819, 2019. arXiv: 1906.05819.

[13] V. Kuleshov, N. Fenner, and S. Ermon, “Accurate uncertainties for deep learning using
calibrated regression,” in International Conference on Machine Learning, PMLR, 2018,
pp. 2796–2804.

[14] A. Agha, K. Otsu, B. Morrell, D. D. Fan, R. Thakker, A. Santamaria-Navarro, S.-K.
Kim, A. Bouman, X. Lei, J. Edlund, et al., “Nebula: Quest for robotic autonomy in chal-
lenging environments; team costar at the darpa subterranean challenge,” arXiv preprint
arXiv:2103.11470, 2021.

[15] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control
barrier functions: Theory and applications,” in 2019 18th European Control Conference
(ECC), IEEE, 2019, pp. 3420–3431.

[16] S. Singh, A. Majumdar, J.-J. Slotine, and M. Pavone, “Robust online motion planning via
contraction theory and convex optimization,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, 2017, pp. 5883–5890.

[17] Y. Gal, R. T. Mcallister, and C. E. Rasmussen, “Improving PILCO with Bayesian Neural
Network Dynamics Models,” Data-Efficient Machine Learning Workshop, ICML, pp. 1–7,
2016. arXiv: 1706.08495.

[18] E. F. Camacho and C. B. Alba, Model predictive control. Springer Science & Business
Media, 2013.

[19] J. Löfberg, “Oops! I cannot do it again: Testing for recursive feasibility in MPC,” Automatica,
vol. 48, no. 3, pp. 550–555, 2012.

[20] R. Koenker and K. F. Hallock, “Quantile regression,” Journal of economic perspectives,
vol. 15, no. 4, pp. 143–156, 2001.

[21] F. Riedel, “Dynamic coherent risk measures,” Stochastic processes and their applications,
vol. 112, no. 2, pp. 185–200, 2004.

[22] F. C. I. Commission et al., The financial crisis inquiry report: The final report of the National
Commission on the causes of the financial and economic crisis in the United States including
dissenting views. Cosimo, Inc., 2011.

[23] A. Majumdar and M. Pavone, “How should a robot assess risk? Towards an axiomatic theory
of risk in robotics,” in Robotics Research, Springer, 2020, pp. 75–84. arXiv: 1710.11040.

114

https://arxiv.org/abs/1906.05819
https://arxiv.org/abs/1706.08495
https://arxiv.org/abs/1710.11040

[24] D. D. Fan, J. Nguyen, R. Thakker, N. Alatur, A.-a. Agha-mohammadi, and E. A. Theodorou,
“Bayesian learning-based adaptive control for safety critical systems,” in International
Conference on Robotics and Automation, 2020.

[25] D. D. Fan, A.-a. Agha-mohammadi, and E. A. Theodorou, “Deep learning tubes for tube
MPC,” Robotics: Science and Systems (RSS), 2020.

[26] D. D. Fan, K. Otsu, Y. Kubo, A. Dixit, J. Burdick, and A.-A. Agha-Mohammadi, “STEP:
Stochastic traversability evaluation and planning for safe off-road navigation,” Robotics:
Science and Systems (RSS), 2021.

[27] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, p. 354, 2017.

[28] NASA, Where is Curiosity? - NASA Mars Curiosity Rover.
https://mars.nasa.gov/msl/mission/whereistherovernow/, 2018.

[29] ——, Opportunity Updates. https://mars.nasa.gov/mer/mission/rover-
status/opportunity/recent/all/, 2018.

[30] E. Klein, E. Nilsen, A. Nicholas, C. Whetsel, J. Parrish, R. Mattingly, and L. May, “The
Mobile MAV concept for Mars Sample Return,” in 2014 IEEE Aerospace Conference, 2014,
pp. 1–9.

[31] A. Nelessen, C. Sackier, I. Clark, P. Brugarolas, G. Villar, A. Chen, A. Stehura, R. Otero,
E. Stilley, D. Way, K. Edquist, S. Mohan, C. Giovingo, and M. Lefland, “Mars 2020 Entry,
Descent, and Landing System Overview,” in 2019 IEEE Aerospace Conference, 2019,
pp. 1–20.

[32] N. Wagener, C.-A. Cheng, J. Sacks, and B. Boots, “An Online Learning Approach to Model
Predictive Control,” CoRR, vol. abs/1902.0, 2019. arXiv: 1902.08967.

[33] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, “Information-
theoretic model predictive control: Theory and applications to autonomous driving,” IEEE
Transactions on Robotics, vol. 34, no. 6, pp. 1603–1622, 2018.

[34] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe Model-based Reinforce-
ment Learning with Stability Guarantees,” in Advances in neural information processing
systems, 2017, pp. 908–918.

[35] S.-K. Kim, R. Thakker, and A.-A. Agha-Mohammadi, “Bi-Directional Value Learning for
Risk-Aware Planning Under Uncertainty,” IEEE Robotics and Automation Letters, vol. 4,
no. 3, pp. 2493–2500, 2019.

115

https://arxiv.org/abs/1902.08967

[36] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning and structured
prediction to no-regret online learning,” in Proceedings of the fourteenth international
conference on artificial intelligence and statistics, 2011, pp. 627–635.

[37] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Robust Constrained Learning-based
NMPC enabling reliable mobile robot path tracking,” The International Journal of Robotics
Research, vol. 35, no. 13, pp. 1547–1563, 2016.

[38] K. Pereida and A. P. Schoellig, “Adaptive Model Predictive Control for High-Accuracy
Trajectory Tracking in Changing Conditions,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), IEEE, 2018, pp. 7831–7837, ISBN: 978-1-5386-
8094-0.

[39] L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious Model Predictive Control using
Gaussian Process Regression,” arXiv, 2017. arXiv: 1705.10702.

[40] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anandkumar, Y. Yue, and
S.-J. Chung, “Neural Lander: Stable Drone Landing Control using Learned Dynamics,”
2018. arXiv: 1811.08027.

[41] G. Chowdhary, H. A. Kingravi, J. P. How, and P. A. Vela, “Bayesian Nonparametric
Adaptive Control Using Gaussian Processes,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 26, no. 3, pp. 537–550, 2015.

[42] Q. Nguyen and K. Sreenath, “Optimal Robust Control for Bipedal Robots through Control
Lyapunov Function based Quadratic Programs.,” cmu.edu, 2015.

[43] Q. Nguyen and K. Sreenath, “Optimal robust control for constrained nonlinear hybrid
systems with application to bipedal locomotion,” in 2016 American Control Conference
(ACC), IEEE, 2016, pp. 4807–4813.

[44] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-End Safe Reinforcement
Learning through Barrier Functions for Safety-Critical Continuous Control Tasks,” arXiv,
2019. arXiv: 1903.08792.

[45] Q. Nguyen and K. Sreenath, “L1 adaptive control for bipedal robots with control Lyapunov
function based quadratic programs,” in 2015 American Control Conference (ACC), IEEE,
2015, pp. 862–867, ISBN: 978-1-4799-8684-2.

[46] A. J. Taylor, V. D. Dorobantu, M. Krishnamoorthy, H. M. Le, Y. Yue, and A. D. Ames,
“A Control Lyapunov Perspective on Episodic Learning via Projection to State Stability,”
arXiv, 2019. arXiv: 1903.07214.

[47] T. Gurriet, A. Singletary, J. Reher, L. Ciarletta, E. Feron, and A. Ames, “Towards a
framework for realizable safety critical control through active set invariance,” in Proceedings

116

https://arxiv.org/abs/1705.10702
https://arxiv.org/abs/1811.08027
https://arxiv.org/abs/1903.08792
https://arxiv.org/abs/1903.07214

of the 9th ACM/IEEE International Conference on Cyber-Physical Systems, IEEE Press,
2018, pp. 98–106.

[48] V. Azimi and P. A. Vela, “Robust Adaptive Quadratic Programming and Safety Performance
of Nonlinear Systems with Unstructured Uncertainties,” in 2018 IEEE Conference on
Decision and Control (CDC), IEEE, 2018, pp. 5536–5543.

[49] ——, “Performance Reference Adaptive Control: A Joint Quadratic Programming and
Adaptive Control Framework,” in 2018 Annual American Control Conference (ACC), IEEE,
2018, pp. 1827–1834.

[50] Q. Nguyen and K. Sreenath, “Exponential Control Barrier Functions for enforcing high
relative-degree safety-critical constraints,” in 2016 American Control Conference (ACC),
IEEE, 2016, pp. 322–328, ISBN: 978-1-4673-8682-1.

[51] A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly exponentially stabilizing
control lyapunov functions and hybrid zero dynamics,” IEEE Transactions on Automatic
Control, vol. 59, no. 4, pp. 876–891, 2014.

[52] A. Look and M. Kandemir, “Differential bayesian neural nets,” arXiv preprint
arXiv:1912.00796, 2019.

[53] X. Liu, S. Si, Q. Cao, S. Kumar, and C.-J. Hsieh, “Neural sde: Stabilizing neural ode
networks with stochastic noise,” arXiv preprint arXiv:1906.02355, 2019.

[54] P. Hegde, M. Heinonen, H. Lähdesmäki, S. Kaski, et al., “Deep learning with differential
gaussian process flows,” in International Conference on Artificial Intelligence and Statistics,
PMLR, 2019.

[55] L. Li, M. L. Littman, T. J. Walsh, and A. L. Strehl, “Knows what it knows: a framework for
self-aware learning,” Machine learning, vol. 82, no. 3, pp. 399–443, 2011.

[56] C. J. Roy and W. L. Oberkampf, “A comprehensive framework for verification, validation,
and uncertainty quantification in scientific computing,” Computer Methods in Applied
Mechanics and Engineering, vol. 200, no. 25-28, pp. 2131–2144, 2011.

[57] T. Lew, A. Sharma, J. Harrison, and M. Pavone, “On the Problem of Reformulating Systems
with Uncertain Dynamics as a Stochastic Differential Equation. http://asl.stanford.edu/wp-
content/papercite-data/pdf/dynsSDE.pdf,” Technical Report, 2020.

[58] J. Harrison, A. Sharma, and M. Pavone, “Meta-Learning Priors for Efficient Online Bayesian
Regression,” arXiv, 2018. arXiv: 1807.08912.

117

https://arxiv.org/abs/1807.08912

[59] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the human out
of the loop: A review of Bayesian optimization,” Proceedings of the IEEE, vol. 104, no. 1,
pp. 148–175, 2015.

[60] Y. Pan, X. Yan, E. A. Theodorou, and B. Boots, “Prediction under uncertainty in sparse
spectrum Gaussian processes with applications to filtering and control,” in Proceedings
of the 34th International Conference on Machine Learning-Volume 70, JMLR. org, 2017,
pp. 2760–2768.

[61] D. Yarotsky, “Error bounds for approximations with deep ReLU networks,” Neural Net-
works, vol. 94, pp. 103–114, 2017.

[62] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anandkumar, Y. Yue, and
S.-J. Chung, “Neural lander: Stable drone landing control using learned dynamics,” in 2019
International Conference on Robotics and Automation (ICRA), IEEE, 2019, pp. 9784–9790.

[63] R. Khasminskii, Stochastic stability of differential equations. Springer Science & Business
Media, 2011, vol. 66.

[64] A. Clark, “Control Barrier Functions for Complete and Incomplete Information Stochastic
Systems,” in 2019 American Control Conference (ACC), 2019, pp. 2928–2935.

[65] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic
programs for safety critical systems,” IEEE Transactions on Automatic Control, vol. 62,
no. 8, pp. 3861–3876, 2016.

[66] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “{OSQP}: An Operator
Splitting Solver for Quadratic Programs,” ArXiv e-prints, pp. 1–36, 2017. arXiv: 1711.
08013 [math.OC].

[67] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.
Ng, “ROS: an open-source Robot Operating System,” in ICRA Workshop on Open Source
Software, 2009.

[68] A. Bemporad and M. Morari, “Robust model predictive control: A survey,” in Robustness
in identification and control, Springer, 1999, pp. 207–226.

[69] L. Hewing and M. N. Zeilinger, “Stochastic Model Predictive Control for Linear Systems
using Probabilistic Reachable Sets,” 2018. arXiv: 1805.07145.

[70] K. P. Wabersich and M. N. Zeilinger, “Linear model predictive safety certification for
learning-based control,” 2018. arXiv: 1803.08552.

[71] H. Ravanbakhsh and S. Sankaranarayanan, “Learning Control Lyapunov Functions from
Counterexamples and Demonstrations,” 2018. arXiv: 1804.05285.

118

https://arxiv.org/abs/1711.08013
https://arxiv.org/abs/1711.08013
https://arxiv.org/abs/1805.07145
https://arxiv.org/abs/1803.08552
https://arxiv.org/abs/1804.05285

[72] Y. Gao, A. Gray, H. E. Tseng, and F. Borrelli, “A tube-based robust nonlinear predictive
control approach to semiautonomous ground vehicles,” Vehicle System Dynamics, vol. 52,
no. 6, pp. 802–823, 2014.

[73] D. D. Fan and E. A. Theodorou, “Differential Dynamic Programming for time-delayed
systems,” in 2016 IEEE 55th Conference on Decision and Control (CDC), IEEE, 2016,
pp. 573–579, ISBN: 978-1-5090-1837-6.

[74] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Learning-based nonlinear model pre-
dictive control to improve vision-based mobile robot path-tracking in challenging outdoor
environments,” in 2014 IEEE International Conference on Robotics and Automation (ICRA),
IEEE, 2014, pp. 4029–4036, ISBN: 978-1-4799-3685-4.

[75] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably safe and robust learning-
based model predictive control,” Automatica, vol. 49, no. 5, pp. 1216–1226, 2013.

[76] M. Bujarbaruah, X. Zhang, M. Tanaskovic, and F. Borrelli, “Adaptive MPC under time
varying uncertainty: Robust and Stochastic,” arXiv preprint arXiv:1909.13473, 2019.

[77] B. T. Lopez, J. P. How, and J.-J. E. Slotine, “Dynamic tube MPC for nonlinear systems,” in
2019 American Control Conference (ACC), IEEE, 2019, pp. 1655–1662.

[78] M. E. Villanueva, R. Quirynen, M. Diehl, B. Chachuat, and B. Houska, “Robust MPC via
min–max differential inequalities,” Automatica, vol. 77, pp. 311–321, 2017.

[79] J. Köhler, P. Kötting, R. Soloperto, F. Allgöwer, and M. A. Müller, “A robust adap-
tive model predictive control framework for nonlinear uncertain systems,” arXiv preprint
arXiv:1911.02899, 2019.

[80] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger, “Learning-Based Model
Predictive Control: Toward Safe Learning in Control,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 3, 2019.

[81] M. Deisenroth and C. E. Rasmussen, “PILCO: A model-based and data-efficient approach
to policy search,” in Proceedings of the 28th International Conference on machine learning
(ICML-11), 2011, pp. 465–472.

[82] A. Girard, C. E. Rasmussen, J. Q. Candela, and R. Murray-Smith, “Gaussian process priors
with uncertain inputs application to multiple-step ahead time series forecasting,” in Advances
in neural information processing systems, 2003, pp. 545–552.

[83] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-Based Model Predictive
Control for Safe Exploration,” in 2018 IEEE Conference on Decision and Control (CDC),
IEEE, 2018, pp. 6059–6066, ISBN: 978-1-5386-1395-5.

119

[84] E. Bradford, L. Imsland, and E. A. del Rio-Chanona, “Nonlinear model predictive control
with explicit back-offs for Gaussian process state space models,” in 58th Conference on
decision and control (CDC). IEEE, 2019.

[85] N. Tagasovska and D. Lopez-Paz, “Single-Model Uncertainties for Deep Learning,” in
Advances in Neural Information Processing Systems, 2019, pp. 6414–6425.

[86] R. Koenker and G. Bassett Jr, “Regression quantiles,” Econometrica: journal of the Econo-
metric Society, pp. 33–50, 1978.

[87] J. W. Taylor, “A quantile regression approach to estimating the distribution of multiperiod
returns,” The Journal of Derivatives, vol. 7, no. 1, pp. 64–78, 1999.

[88] F. Rodrigues and F. C. Pereira, “Beyond expectation: Deep joint mean and quantile regres-
sion for spatio-temporal problems,” arXiv preprint arXiv:1808.08798, 2018.

[89] F. Zhang, X. Fan, H. Xu, P. Zhou, Y. He, and J. Liu, “Regression via Arbitrary Quantile
Modeling,” arXiv preprint arXiv:1911.05441, 2019.

[90] J. Sadeghi, M. De Angelis, and E. Patelli, “Efficient training of interval Neural Networks
for imprecise training data,” Neural Networks, vol. 118, pp. 338–351, 2019.

[91] X. Yan, W. Zhang, L. Ma, W. Liu, and Q. Wu, “Parsimonious quantile regression of financial
asset tail dynamics via sequential learning,” in Advances in Neural Information Processing
Systems, 2018, pp. 1575–1585.

[92] H. Kozumi and G. Kobayashi, “Gibbs sampling methods for Bayesian quantile regression,”
Journal of statistical computation and simulation, vol. 81, no. 11, pp. 1565–1578, 2011.

[93] Y. Yang, H. J. Wang, and X. He, “Posterior inference in Bayesian quantile regression with
asymmetric Laplace likelihood,” International Statistical Review, vol. 84, no. 3, pp. 327–
344, 2016.

[94] W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos, “Distributional reinforcement
learning with quantile regression,” in Thirty-Second AAAI Conference on Artificial Intelli-
gence, 2018.

[95] W. Langson, I. Chryssochoos, S. V. Raković, and D. Q. Mayne, “Robust model predictive
control using tubes,” Automatica, vol. 40, no. 1, pp. 125–133, 2004.

[96] D. Q. Mayne, “Model predictive control: Recent developments and future promise,” Auto-
matica, vol. 50, no. 12, pp. 2967–2986, 2014.

[97] P. J. Huber, “Robust estimation of a location parameter,” in Breakthroughs in statistics,
Springer, 1992, pp. 492–518.

120

[98] W. P. Gaglianone, L. R. Lima, O. Linton, and D. R. Smith, “Evaluating value-at-risk models
via quantile regression,” Journal of Business & Economic Statistics, vol. 29, no. 1, pp. 150–
160, 2011.

[99] J. Sill, “Monotonic networks,” in Advances in neural information processing systems, 1998,
pp. 661–667.

[100] S. You, D. Ding, K. Canini, J. Pfeifer, and M. Gupta, “Deep lattice networks and par-
tial monotonic functions,” in Advances in Neural Information Processing Systems, 2017,
pp. 2981–2989.

[101] A. Gupta, N. Shukla, L. Marla, and A. Kolbeinsson, “Monotonic Trends in Deep Neural
Networks,” arXiv preprint arXiv:1909.10662, 2019.

[102] C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer School on Machine
Learning, Springer, 2003, pp. 63–71.

[103] D. Q. Mayne, E. C. Kerrigan, E. J. van Wyk, and P. Falugi, “Tube-based robust nonlinear
model predictive control,” International Journal of Robust and Nonlinear Control, vol. 21,
no. 11, pp. 1341–1353, 2011.

[104] M. Diehl, H. J. Ferreau, and N. Haverbeke, “Efficient numerical methods for nonlinear
MPC and moving horizon estimation,” in Nonlinear model predictive control, Springer,
2009, pp. 391–417.

[105] R. Camacho, R. King, and A. Srinivasan, Inductive Logic Programming: 14th International
Conference, ILP 2004, Porto, Portugal, September 6-8, 2004, Proceedings. Springer Science
& Business Media, 2004, vol. 3194.

[106] E. C. Kerrigan and J. M. Maciejowski, “Robust feasibility in model predictive control:
Necessary and sufficient conditions,” in Proceedings of the 40th IEEE Conference on
Decision and Control, IEEE, vol. 1, 2001, pp. 728–733.

[107] D. Nguyen-Tuong, J. Peters, M. Seeger, and B. Schölkopf, “Learning inverse dynamics: a
comparison,” in European symposium on artificial neural networks, 2008.

[108] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient methods for
reinforcement learning with function approximation,” in Advances in neural information
processing systems, 2000, pp. 1057–1063.

[109] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control of a quadrotor
UAV on SE (3),” in 49th IEEE conference on decision and control (CDC), IEEE, 2010,
pp. 5420–5425.

121

[110] H. Kalita, S. Morad, A. Ravindran, and J. Thangavelautham, “Path planning and navigation
inside off-world lava tubes and caves,” in IEEE/ION Position, Location and Navigation
Symposium, 2018, pp. 1311–1318.

[111] R. Thakker, N. Alatur, D. D. Fan, J. Tordesillas, M. Paton, K. Otsu, O. Toupet, and A. Agha-
mohammadi, “Autonomous Off-road Navigation over Extreme Terrains with Perceptually-
challenging Conditions,” International Symposium on Experimental Robotics, 2020.

[112] R. T. Rockafellar, S. Uryasev, et al., “Optimization of conditional value-at-risk,” Journal of
Risk, vol. 2, no. 3, pp. 21–41, 2000.

[113] P. Papadakis, “Terrain traversability analysis methods for unmanned ground vehicles: A
survey,” Engineering Applications of Artificial Intelligence, vol. 26, no. 4, pp. 1373–1385,
2013.

[114] S. B. Goldberg, M. W. Maimone, and L. Matthies, “Stereo vision and rover navigation
software for planetary exploration,” in IEEE Aerospace Conference, IEEE, 2002.

[115] A. Haı̈t, T. Simeon, and M. Taı̈x, “Algorithms for rough terrain trajectory planning,” Ad-
vanced Robotics, vol. 16, no. 8, pp. 673–699, 2002.

[116] K. Otsu, G. Matheron, S. Ghosh, O. Toupet, and M. Ono, “Fast approximate clearance
evaluation for rovers with articulated suspension systems,” Journal of Field Robotics, vol. 37,
no. 5, pp. 768–785, 2020.

[117] S. Ghosh, K. Otsu, and M. Ono, “Probabilistic Kinematic State Estimation for Motion
Planning of Planetary Rovers,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2018, pp. 5148–5154.

[118] P. Fankhauser, M. Bloesch, and M. Hutter, “Probabilistic Terrain Mapping for Mobile
Robots With Uncertain Localization,” IEEE Robotics and Automation Letters, vol. 3, no. 4,
pp. 3019–3026, 2018.

[119] A. Agha-Mohammadi, E. Heiden, K. Hausman, and G. Sukhatme, “Confidence-rich grid
mapping,” The International Journal of Robotics Research, vol. 38, no. 12-13, pp. 1352–
1374, 2017.

[120] M. Ono, M. Pavone, K. Kuwata, and J. Balaram, “Chance-constrained dynamic program-
ming with application to risk-aware robotic space exploration,” Autonomous Robots, vol. 39,
no. 4, pp. 555–571, 2015.

[121] A. Wang, A. Jasour, and B. Williams, “Non-gaussian chance-constrained trajectory planning
for autonomous vehicles under agent uncertainty,” Robotics and Automation Letters, vol. 5,
no. 4, pp. 6041–6048, 2020.

122

[122] S. Koenig and R. G. Simmons, “Risk-sensitive planning with probabilistic decision graphs,”
in Principles of Knowledge Representation and Reasoning, Elsevier, 1994, pp. 363–373.

[123] H. Xu and S. Mannor, “Distributionally robust Markov decision processes,” in Advances in
Neural Information Processing Systems, 2010, pp. 2505–2513.

[124] P. Artzner, F. Delbaen, J. Eber, and D. Heath, “Coherent measures of risk,” Mathematical
finance, vol. 9, no. 3, pp. 203–228, 1999.

[125] Y. Chow, A. Tamar, S. Mannor, and M. Pavone, “Risk-sensitive and robust decision-making:
a CVaR optimization approach,” in Advances in Neural Information Processing Systems,
2015, pp. 1522–1530.

[126] M. Ahmadi, M. Ono, M. D. Ingham, R. M. Murray, and A. D. Ames, “Risk-Averse Planning
Under Uncertainty,” in American Control Conference, 2020, pp. 3305–3312.

[127] M. Ahmadi, U. Rosolia, M. D. Ingham, R. M. Murray, and A. D. Ames, “Constrained
Risk-Averse Markov Decision Processes,” in AAAI Conference on Artificial Intelligence,
2021.

[128] S. Singh, Y. Chow, A. Majumdar, and M. Pavone, “A Framework for Time-Consistent,
Risk-Sensitive Model Predictive Control: Theory and Algorithms,” IEEE Transactions on
Automatic Control, vol. 64, no. 7, pp. 2905–2912, 2018.

[129] A. Dixit, M. Ahmadi, and J. W. Burdick, “Risk-Sensitive Motion Planning using Entropic
Value-at-Risk,” arXiv 2011.11211, 2020.

[130] A. Hakobyan, G. C. Kim, and I. Yang, “Risk-aware motion planning and control using
CVaR-constrained optimization,” IEEE Robotics and Automation Letters, vol. 4, no. 4,
pp. 3924–3931, 2019.

[131] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta numerica, pp. 529–
562, 1995.

[132] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Goldberg,
and P. Abbeel, “Motion planning with sequential convex optimization and convex collision
checking,” The International Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270,
2014.

[133] T. Lew, R. Bonalli, and M. Pavone, “Chance-constrained sequential convex programming
for robust trajectory optimization,” in 2020 European Control Conference (ECC), IEEE,
2020, pp. 1871–1878.

123

[134] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal, “STOMP: Stochastic
trajectory optimization for motion planning,” in IEEE International Conference on Robotics
and Automation, 2011, pp. 4569–4574.

[135] A. Ruszczynski, “Risk-averse dynamic programming for Markov decision processes,” Math-
ematical Programming, vol. 75, no. 2, pp. 235–261, 2014.

[136] P. Fankhauser and M. Hutter, “A Universal Grid Map Library: Implementation and Use Case
for Rough Terrain Navigation,” Robot Operating System (ROS), The Complete Reference,
pp. 99–120, 2016.

[137] J. Nocedal and S. Wright, Numerical optimization. Springer Science & Business Media,
2006.

[138] A. Bouman, M. F. Ginting, N. Alatur, M. Palieri, D. D. Fan, T. Touma, T. Pailevanian,
S. Kim, K. Otsu, J. Burdick, and A. Agha-mohammadi, “Autonomous Spot: Long-range
autonomous exploration of extreme environments with legged locomotion,” IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2020.

[139] Angel Santamaria, Rohan Thakker, David D. Fan, Benjamin Morrell, and Ali Agha, “To-
wards Resilient Autonomous Navigation of Drones,” Proceedings of the International
Symposium on Robotics Research, 2019.

[140] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” Proceedings
of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[141] S.-K. Kim, A. Bouman, G. Salhotra, D. D. Fan, K. Otsu, J. Burdick, and A.-a. Agha-
mohammadi, “PLGRIM: Hierarchical value learning for large-scale exploration in unknown
environments,” in Proceedings of the International Conference on Automated Planning and
Scheduling, vol. 31, 2021, pp. 652–662.

[142] X. Warin, “Deep learning for efficient frontier calculation in finance,” arxiv.org, 2021. arXiv:
2101.02044.

[143] Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone, “Risk-constrained reinforcement
learning with percentile risk criteria,” The Journal of Machine Learning Research, vol. 18,
no. 1, pp. 6070–6120, 2017.

[144] D. Kivaranovic, K. D. Johnson, and H. Leeb, “Adaptive, distribution-free prediction intervals
for deep networks,” in International Conference on Artificial Intelligence and Statistics,
PMLR, 2020, pp. 4346–4356.

[145] A. Tamar, Y. Glassner, and S. Mannor, “Optimizing the CVaR via sampling,” in Proceedings
of the National Conference on Artificial Intelligence, vol. 4, 2015, pp. 2993–2999, ISBN:
9781577357025. arXiv: 1404.3862.

124

https://arxiv.org/abs/2101.02044
https://arxiv.org/abs/1404.3862

[146] C. Peng, S. Li, Y. Zhao, and Y. Bao, “Sample average approximation of CVaR-based hedging
problem with a deep-learning solution,” North American Journal of Economics and Finance,
vol. 56, 2021.

[147] P. Drews, G. Williams, B. Goldfain, E. A. Theodorou, and J. M. Rehg, “Aggressive deep driv-
ing: Combining convolutional neural networks and model predictive control,” in Conference
on Robot Learning, PMLR, 2017, pp. 133–142.

[148] M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and I. Posner, “Large-scale cost function
learning for path planning using deep inverse reinforcement learning,” The International
Journal of Robotics Research, vol. 36, no. 10, pp. 1073–1087, 2017.

[149] A. Choudhry, B. Moon, J. Patrikar, C. Samaras, and S. Scherer, “CVaR-based Flight
Energy Risk Assessment for Multirotor UAVs using a Deep Energy Model,” arXiv preprint
arXiv:2105.15189, 2021. arXiv: 2105.15189.

[150] A. Hakobyan and I. Yang, “Distributionally robust risk map for learning-based motion plan-
ning and control: A semidefinite programming approach,” arXiv preprint arXiv:2105.00657,
2021. arXiv: 2105.00657.

[151] G. C. Pflug, “Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk,” in,
2000, pp. 272–281.

[152] O. Shamir and T. Zhang, “Stochastic gradient descent for non-smooth optimization: Con-
vergence results and optimal averaging schemes,” in International conference on machine
learning, PMLR, 2013, pp. 71–79.

[153] I. Kostavelis and A. Gasteratos, “Semantic mapping for mobile robotics tasks: A survey,”
Robotics and Autonomous Systems, vol. 66, pp. 86–103, 2015.

[154] T. Lew, T. Emmei, D. D. Fan, T. Bartlett, A. Santamaria-Navarro, R. Thakker, and A.-a.
Agha-mohammadi, “Contact Inertial Odometry: Collisions are your Friends,” arXiv preprint
arXiv:1909.00079, 2019.

[155] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learning on
point sets in a metric space,” arXiv preprint arXiv:1706.02413, 2017.

[156] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud based 3d object detec-
tion,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4490–4499.

[157] S. Milz, M. Simon, K. Fischer, and M. Pöpperl, “Points2pix: 3d point-cloud to image trans-
lation using conditional generative adversarial networks,” arXiv preprint arXiv:1901.09280,
2019.

125

https://arxiv.org/abs/2105.15189
https://arxiv.org/abs/2105.00657

[158] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro, “Image inpainting for
irregular holes using partial convolutions,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 85–100.

[159] R. Koenker and J. A. Machado, “Goodness of Fit and Related Inference Processes for
Quantile Regression,” Journal of the American Statistical Association, vol. 94, no. 448,
pp. 1296–1310, 1999.

[160] R. T. Rockafellar, J. O. Royset, and S. I. Miranda, “Superquantile regression with appli-
cations to buffered reliability, uncertainty quantification, and conditional value-at-risk,”
European Journal of Operational Research, vol. 234, no. 1, pp. 140–154, 2014.

[161] A. Deo and K. Murthy, “Optimizing tail risks using an importance sampling based extrapo-
lation for heavy-tailed objectives,” in 2020 59th IEEE Conference on Decision and Control
(CDC), IEEE, 2020, pp. 1070–1077.

126

	Title Page
	Acknowledgments
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Summary
	Introduction
	Motivation
	Current State of Practice
	Neural Networks in Robotics
	Exploration of Extreme Environments

	Objective and Scope of this Thesis
	Safety in Learning for Control
	Learning Uncertainty for Trajectory Optimization
	Stochastic Traversability and Planning in Extreme Environments
	Learning Tail-risk Traversability
	Contributions and Outline

	Bayesian Learning-Based Adaptive Control for Safety Critical Systems
	Summary
	Introduction
	Related Work
	Contributions

	Safety and Stability under Model Learning via Stochastic CLF/CBFs
	Stochastic Control Lyapunov Functions for Switched Systems
	Stochastic Control Barrier Functions for Switched Systems
	Safety and Stability under Model Adaptation

	Application to Fast Autonomous Driving
	Validation of BALSA in Simulation
	Comparing Different Modeling Methods in Simulation
	Hardware Experiments on Martian Terrain

	Conclusion

	Deep Learning Tubes for Tube MPC
	Summary
	Introduction
	Deep Learning Tubes
	Learning Tubes For Robust and Tube MPC
	Quantile Regression
	Enforcing Monotonicity
	Epistemic Uncertainty

	Extension to Tubes Defined by a Metric
	Quantile Metric Tube Loss
	Enforcing Metric Monotonicity in

	Three Ways to Learn Tubes for Tube MPC
	Learning Tube Dynamics for a Given Controller
	Learning Tracking Error Dynamics and Tube Dynamics
	Learning System Dynamics and Tube Dynamics

	Experimental Details
	Evaluation on a 6-D problem
	Comparison with analytic bounds
	Ablative Study
	Evaluation on Quadrotor Dynamics

	Conclusion

	Stochastic Traversability Evaluation and Planning for Risk-aware Off-road Navigation
	Summary
	Introduction
	Related Work
	Risk-Aware Traversability and Planning
	Problem Statement
	Hierarchical Risk-Aware Planning

	STEP for Unstructured Terrain
	Modeling Assumptions
	Traversability Assessment Models
	Risk-aware Geometric Planning
	Risk-aware Kinodynamic Planning
	Optimization Costs and Constraints
	Dynamic Risk Adjustment

	Experiments
	Simulation Study
	Hardware Results

	Conclusion

	Costmap Learning for Risk-Aware Traversability in Challenging Environments
	Summary
	Introduction
	Method
	Traversability as a random variable
	Risk Metrics, VaR and CVaR
	Learning VaR and CVaR
	Obtaining Ground Truth Labels

	Implementation Details
	Dataset
	Computing Traversability Cost
	Transforming Pointclouds to Costmaps
	Training

	Evaluation and Results
	Evaluation Metrics
	In-distribution (ID) Performance
	Out-of-Distribution (OOD) Performance
	Comparisons against baselines

	Conclusion

	Conclusion
	References

