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Summary

Incorporating Prior Knowledge into Deep Neu-
ral Network Controllers of Legged Robots

This dissertation explores multiple ways of adding prior knowledge
to neural networks used as controllers in robotics. It can largely be
split into two parts. The first part of the dissertation focuses on
adding prior knowledge to the gait generation, to spend less time in
the optimization process to find efficient solutions. The second part
of the dissertation focuses on the use of morphological computation
as prior knowledge in the generation of stable gaits for legged robots.

In the introduction, we discuss in depth what is meant by prior knowl-
edge in this context. We show how the concept of prior evidence
emerges naturally from the creation of a probabilistic framework for
‘degree of belief’. We then discuss how this prior evidence can be used
in robotics using a paradigm built on an alternative view on computa-
tion, called morphological computation. We argue how this approach
makes a natural match for controlling compliant robots.

There are multiple ways to add prior knowledge to neural networks.
As a first step, in chapter 2 we explored data augmentation as a way to
teach neural networks how to be invariant to affine image transforma-
tions. Image augmentations are a known way to have a convolutional
neural network learn this invariance in natural images. We improve on
this idea by putting the affine transform as a differentiable layer into
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the neural network, thereby allowing the neural network to encode
this invariance explicitly, rather than to have to encode this implicitly
in the values of its parameters. The network is then able to transform
images as a special type of layer, next to convolutional or dense lay-
ers. We show that explicitly encoding this prior knowledge of affine
invariance into the architecture outperforms the previous method of
using image augmentations.

Next, in chapter 3 we move our focus to robotics and develop three
different gaits for the quadrupedal compliant robot Oncilla: a sine-
based approach, a biologically inspired half ellipse approach and a
spline-based approach. After comparing these approaches, we find
that the method based on biological gaits is the most efficient of the
three, especially at higher speeds. After this, we move our attention
to approaches for turning. We showe the importance of scapulae for
turning in quadrupedal robots. We also show that to be able to opti-
mize the gaits without relying on a model, a lot of prior knowledge is
needed to keep the time required for gait optimization low.

Consequently, in chapter 4 we evaluate whether transfer learning
known gaits to gaits for new situations improves the optimization pro-
cess. We analyzed this by starting the optimization process for various
setups with gait parameters which had already been optimized for flat
terrain. We find that it indeed works in most cases, and at least did
not hurt the optimization process. We uncover that in this case, the
reduced amount of exploration of the parameter space required before
the parameters converges to an optimal solution is the reason for a
warm start helping the optimization process. The optimization al-
gorithm can, therefore, find good solutions faster, and fine-tune the
parameters longer for a better end performance.

After this, we move our focus to morphological computation. As a first
aspect in chapter 5, we study morphological sensing, and more specif-
ically, whether we can use general purpose sensors available on a small
legged robot to classify the underground it is walking on. Since the
dynamics of the robot change with the underground it walks across,
it should be possible to infer this underground from the sensors mon-
itoring the body of the robot. Since we do not require any specialized
sensors for the detection of the underground, we can argue that we
are using the body of the robot as a resource of computation for the
classification. We can indeed classify the underground successfully in
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most cases, both with supervised and unsupervised algorithms. In a
second part of chapter 5, we delve into which properties of the models
are important for the correct classification. We find indications in our
data that both memory and non-linearities are important aspects of
this classification process and that they reinforce each other, which
provides a starting point for the research in the next chapter.

Since gaits of legged robots are typically on the eigenfrequencies of
their morphology, the morphology can probably be used as a resource
for computation to generate the control signals. This is a concept
called morphological control. In chapter 6 we are indeed able to move
part of the control onto the morphology and show that there is a
trade-off between the memory aspects and the non-linear dynamics
needed for it to perform well. It seems that the main parameter
is the number of uncorrelated signals the linear regression receives.
The more signals with information, the better the performance and
the smaller the error between the found closed loop controller and
the target open loop trajectory. Using this, we are able to have the
Oncilla perform a stable gait without requiring any memory, using an
ELM setup to generate the motor signals from the sensors. We show
that a stable closed loop limit cycle can be obtained using supervised
learning for only a few periods of its gait, slowly transferring control
from the open to the closed loop.

Finally, in chapter 7 we stretch the idea of morphological computation,
and treat the whole legged robot with its controller as a single system
to be optimized. We optimize it using a deep neural network as con-
troller of a system by backpropagation through physics. To do this, we
developed a physics engine framework inside an automatic differenti-
ation library. This allows us to backpropagate through the controller,
physics and renderer. We are able to show remarkably short optimiza-
tion processes despite only having quite complex sensory signals such
as cameras as inputs, in setups which are only partially observable
and underactuated.

We conclude that incorporating prior knowledge is beneficial when
setting up machine learning models for controlling robots. We also
conclude that we were able to show that both morphological sens-
ing and morphological control can be valid strategies for developing
controllers for legged robots.





Samenvatting

Incorporatie van a priori kennis in diepe neu-
rale netwerken voor regelaars van robots met
poten

Deze dissertatie verkent de verschillende manieren om prior kennis toe
te voegen aan neurale netwerken gebruikt als regelaar van robots. Het
is verdeeld in twee grote delen. In het eerste deel van de thesis, fo-
cussen we ons op het toevoegen van a priori kennis aan het genereren
van wandelgangen, zodat we minder tijd nodig hebben in het optimal-
isatieproces om goede wandelgangen te vinden. In het tweede deel ligt
de focus op het gebruik van morfologische berekenen als a priori kennis
om stabiele wandelgangen voor robots met poten te genereren.

In de introductie bediscussiëren we wat er bedoeld wordt met a priori
kennis in de context van de dissertatie. We tonen hoe het concept
a priori kennis natuurlijk te voorschijn komt wanneer je een proba-
bilistisch raamwerk opzet rond ’graad van geloof in iets’. We gaan dan
dieper in op hoe die a priori kennis kan gebruikt worden in de robotica
via een paradigma gebaseerd op een alternatieve kijk op berekenen,
genaamd morfologisch berekenen. We argumenteren hoe die benader-
ing van het probleem een natuurlijke match is voor het regelen van
meegevende robots.

Er zijn verschillende manieren om a priori kennis toe te voegen
aan neurale netwerken. Als een eerste stap verkenden we in hoofd-
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stuk 2 het gebruik van data-augmentatie als een manier om neurale
netwerken te leren om invariant te zijn voor affiene transformaties van
afbeeldingen. Afbeeldingsaugmentaties zijn een bekende manier om
convolutionele neurale netwerken die invariantie aan te leren. We ver-
beterden dit idee verder door de affiene transformatie als afleidbare
laag in ons neuraal netwerk te steken. Hierdoor is het neurale netwerk
in staat om expliciet die invariantie te encoden, in plaats van het im-
pliciet te moeten encoden in zijn parameters. Het netwerk is dan zelf
in staat om de afbeeldingen te transformeren met een speciaal nieuw
type van laag, naast convolutionele, samenvoeg- of dense lagen. We
toonden aan dat het expliciet inbouwen van de affiene transformatie
beter werkt dan het gebruik van data-augmentatie.

In hoofdstuk 3 vervolgens verplaatsten we onze focus naar robotica en
ontwikkelden we drie verschillende wandelgangen voor de vierpotige,
meegevende robot Oncilla: een op sinus gebaseerde benadering, een
biologisch gëınspireerde benadering gebaseerd op halve ellipsen en een
benadering gebaseerd op splines. Na het vergelijken van verschillende
benadering om de controlesignalen te parametriseren, toonden we aan
dat de methode die gebaseerd was op wandelgangen gevonden in bi-
ologie het efficiëntste was van de drie, vooral op hogere snelheden.
Hierna bestudeerden we verschillende benadering om te draaien in
een wandelgang en toonden we het belang van scapulae aan om te
draaien in vierpotige robots. We toonden ook aan dat om de wan-
delgangen te kunnen optimaliseren zonder gebruik te kunnen maken
van een model, er veel a priori kennis nodig is om de optimalisatietijd
kort te houden.

In hoofdstuk 4 evalueerde we of de transfer van gekende wandelgangen
naar wandelgangen voor nieuwe situaties het optimalisatieproces ver-
betert. Dit deden we door het optimalisatieproces van verschillende
opstellingen te starten met parameters die al geoptimaliseerd waren
voor een vlak terrein. We vonden dat dat inderdaad werkte in de
meeste gevallen, en dat het het optimalisatieproces nooit schaadde.
We achterhaalden dat de reden waarom de warme start werkte, was
dat het de nood aan exploratie in de parameterruimte verkleinde vo-
ordat de parameters konden convergeren naar de optimale oplossing.
Daardoor werden er sneller goede parameters gevonden, en konden
die parameters langer fijn afgesteld worden zodat het eindresultaat
beter was.
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In het tweede deel van de thesis verplaatsten we onze focus naar mor-
fologische berekeningen. In hoofdstuk 5 deden we in eerste instantie
onderzoek naar morfologisch waarnemen. Specifiek onderzochten we
of we de algemene sensoren op een kleine robot met poten kon-
den gebruiken om de ondergrond waarover het liep te classificeren.
Aangezien de dynamica van de robot verandert afhankelijk van de
ondergrond waarover het loopt, zou het mogelijk moeten zijn om het
type achtergrond af te leiden van de sensoren op het lichaam van de
robot. Aangezien we geen gespecialiseerde sensoren gebruiken voor
het detecteren van het type ondergrond, zouden we dus kunnen argu-
menteren dat de robot als het ware gebruikt wordt als een middel om
een deel van de berekeningen voor de classificatie over te nemen. Deze
methode om te classificeren werkte inderdaad en in het tweede deel
van het hoofdstuk gingen we dieper in op de modellen die we gebruik-
ten voor de correcte classificatie. We toonden aan dat geheugen en
niet-lineariteiten belangrijke aspecten zijn in dit classificatieproces en
dat ze elkaar versterken, wat het startpunt vormt voor het onderzoek
in het volgende hoofdstuk.

Aangezien de wandelgang van een robot typische gebeurt op de eigen-
frequentie van zijn morfologie, kan de morfologie waarschijnlijk ge-
bruikt worden als een bron voor berekeningen om de controlesignalen
voor de motors te genereren. Dit is een concept dat morfologisch
regelen wordt genoemd. In hoofdstuk 6 bleken we inderdaad in staat
om een deel van de regelkring over te brengen naar de morfologie
van de robot. Hierna toonden we aan dat er een afweging is tussen
geheugenaspecten enerzijds en niet-lineariteiten anderzijds. Het bleek
dat aantal niet-gecorreleerde signalen dat de lineaire regressie krijgt
de belangrijkste parameter vormt. Hoe meer signalen met zinvolle
informatie, hoe beter de prestaties en hoe kleiner de fout tussen de
gevonden gesloten regelkring en het doeltraject. Aan de hand van die
afweging, konden we een stabiele wandelgang creëren zonder extra
geheugen te moeten toevoegen, aan de hand van een simpele ELM-
opstelling die motorsignalen kan genereren uit de sensorsignalen. We
toonden aan dat een stabiele limietcykel kon gevonden worden door
gesuperviseerd te trainen in de loop van een paar wandelstappen, als
je de regelkring langzaam interpoleert van de open regelkring naar de
gesloten regelkring.

In hoofdstuk 7 tenslotte strekten we dit idee van morfologische
berekeningen verder uit en behandelen de hele robot met poten en
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zijn regelkring als één systeem om te optimaliseren. We optimaliseer-
den een diep neuraal netwerk als regelkring via het terug propageren
door de fysica van het systeem. Om dit te kunnen doen, ontwikkelden
we een physics engine binnen een bibliotheek voor automatische dif-
ferentiatie. Dit liet ons toe om de fout terug te propageren door zowel
de regelkring, de fysica van het systeem als de renderer. We konden
aantonen dat een opvallend kort optimalisatieproces mogelijk was,
ondanks dat we alleen vrij ingewikkelde sensorsignalen zoals camera’s
gebruikten om opstelling die enkel partieel observeerbaar en onderge-
actueerd waren te regelen.

We concluderen dat het incorporeren van a priori kennis vrijwel altijd
gunstig is als je gebruik maakt van machinaal geleerde modellen voor
het regelen van robots. We komen ook tot de conclusie dat we konden
aantonen dat zowel morfologisch waarnemen als morfologisch regelen
valabele strategieën zijn om regelkringen voor robots met poten te
ontwerpen.



Prologue

Rocks found on the bottom of rivers have no sharp edges, are rather
smooth and could be described as being aerodynamic. These are
exactly the features of which we know they reduce erosion, and thus
allow the rock to remain as it is and where it is. I would argue that
rocks are therefore well adapted to their environment, when the goal
of the adaptation is to ‘remain’.

Of course, the reason why rocks are so well adapted is so trivial it
almost needs no explaining as to why this is the case. Suppose there
were river rocks which were not well adapted to being in the river.
They would either be picked up by the river and moved to the sea,
or they would undergo a lot of erosion by the river, until they would
either break or become more smooth and well adapted. So of those not
well adapted rocks, a fraction would become well adapted to staying
in the river, while the others would cease to exist. And that is why
we find mostly well adapted river rocks.

This mechanism is so simple, it is often overlooked. Yet, it is also
the most basic of optimization algorithms at work. When selecting
random solutions to a problem and removing the bad ones, you tend
to be left with better-than-random solutions.

This idea can be found back in many forms. In the context of prob-
lem solving, it is known as the brute force method to find a solution.
In the context of optimization, it is known as random selection opti-
mization, which finds its use mostly as a baseline method. Informally,
this baseline is occasionally referred to as the chimpanzee level, af-



16 Prologue

ter the idea that a chimpanzee on a typewriter could reproduce this
dissertation, if only given enough time.

It was in this universe of random selection optimization, that a more
efficient algorithm was found. According to the RNA world hypoth-
esis, this process of random selection is powerful enough for autocat-
alytic chemicals to appear. These molecules increase the chance of a
copy of themselves being created. Especially RNA, a chain of simple
amino acids, would be a prime candidate as it – under the right cir-
cumstances – could accelerate the creation of copies of itself. Since
these molecules essentially copy themselves, they are tried more than
would be expected in a random selection optimization process.

And thus a speed-up begun. Things were not evaluated at random
anymore, but things which copy themselves were more often tried
for their propensity to remain. This process is known as evolution,
as coined by Charles Darwin. In the context of optimization, it is
known as evolutionary computation. The foundation underlying this
idea, is that something which is the copy or a close copy of something
successful, is more likely to be successful at a task as well.

And thus, evolution took off on this planet. First, some RNA-strings
managed to catalyze amino acids to ease their own creation. Some
catalyzed proteins which increased the copy speed. They specialized
and cooperated to form more and more complex systems whose power
to remain in this universe was even stronger, whether as itself or in
the form of a copy.

Over multiple generations, this evolutionary process went through
multiple major transitions. These major transitions involved changes
in the way information is stored and transmitted, and what it is ex-
actly, that is trying to remain. Nonetheless, the method of optimiza-
tion stays the same. RNA evolved to an information-encoding role as
DNA and moved the catalyst process to the proteins it created, the
so-called enzymes. Prokaryotes grouped together and cooperated in-
side eukaryotes upon the discovery of the cell wall. These eukaryotes
discovered sexual reproduction as a mean to speed up the evolution
process. Groups of these eukaryotes clumped together and formed
the first multicellular organisms. These multicellular organisms then
formed societies. In turn, memes evolved within these societies.
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Not all steps are fully understood, and often the outcome remains that
more tangible proof is required before jumping to conclusions. Yet,
we have a scientifically sound sketch as to how we could have come
from autocatalyst chemicals which in turn are simple enough to have
been created by a random selection process. This is not only we as
humans, but we as humanity. We form a society where information
is procreating through memes, outside of the inheritance mechanism.
Memes such as the information contained in this doctorate.

Make no mistake. There is no reason to assume that these memes
did not go through a process which could be described as evolution.
Before the contemporary combustion engine meme was born, it went
through many generations of failing or less efficient designs. The plan
for this engine is the remainder of the best ideas from its predecessors.

However, because of reasoning, many possible variations were never
even taken into consideration in this whole process, without affecting
its outcome. So, it can be noted that since we only need to try a mil-
lions of memes in the course of a couple of hundred of years to develop
remarkably complex systems, we have sped up the evolution process
tremendously. In an age where first time success of designs is slowly
becoming the norm, evolution is reaching a threshold point. Because,
what if we already know which step we should evaluate next as it will
almost guaranteed be more optimal than what we have now? What
if instead of sampling from variations of a concept, and seeing which
one works best, we could directly derive the most optimal direction
we should delve into?

Such optimizations are known as higher order iterative methods.
Many algorithms are known within this category. They all rely on esti-
mating information on the best direction for each parameter, without
explicitly evaluating the directions for each parameter.

We, as science, a collection of memes within humanity, might be stand-
ing on the threshold to a new era of optimizing systems. For the first
time, it seems possible that at some point in the near future, we
might create systems which can improve themselves directly, without
the need for trying multiple variations by human intervention. These
systems would still step from generation to generation, but since they
have no need to consider but a fraction of their variations, the speed
of its optimization would outperform any imaginable form of evolu-
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tion. This is especially true, since with an increasing complexity of
the system, there is an exponentially increasing number of variations
to consider.

I would argue that this event is as fundamental to the universe as life
itself. It is a new threshold in the continuum of intelligence between
river rocks and us as an intelligent rock floating through space. And
it is within the context of this search for a general purpose system,
that I hope my dissertation is putting a dent in the knowledge of
humanity. Not with the goal to uplift myself as a person over my
human condition, but to acknowledge the fundamental and universal
desire also driving me. The desire to create things which remain.
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1
Introduction

In the following sections, we will discuss modelling, as well as explain
what is meant by prior knowledge in a machine learning context. This
will then in turn allow us to lay out the research we did and explain
the main foundations underlying our approach.

1.1 Machine Learning

1.1.1 On Modelling

Machine Learning is the field of study that gives computers the abil-
ity to learn without being explicitly programmed [1]. While it has
been one of the more fruitful areas in recent years, it is still only
able to tackle a specific subsection of the problems posed in the area.
Contemporary machine learning algorithms are focused on learning
from and making predictions on data. They do this not with strictly
static program instructions, but by making data-driven predictions or
decisions through building a model from sample inputs.

This approach is similar to the constructive approach used in science.
In an idealized scientific method, in order to explain a system, we
perform the following steps:

1. we formulate a theorem or model,
2. we observe the system we are analyzing and collect data,
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3. we try to use the data to refute our model. If we refute the
model, we go to the first step. If not, we go to the second step.

The more data is collected, the more certain we can be that our the-
orem does indeed describe the system we are analyzing. Note that
this process never ends, we can never be certain that our theorem
describes the system.

Note that in this case, a chronology is introduced where we first for-
mulate a theorem, and only then collect data. This is done in order
to find a good explanation of our system, rather than an explanation
of the system. There are namely many possible explanations of data,
but there are only a couple which will produce meaningful predictions
or useful decisions.

In machine learning, typically, an alternative method is used:

1. we formulate a model, with a number of tunable parameters,
2. we observe the system we are analyzing and collect data,
3. we optimize the model parameters to our data,
4. we observe the system again and collect more data,
5. we try to use the data to refute our model. If we refute the

model, we go to the first step. If not, we go to the third step.

In this approach, we use observations of our system to construct a
better model. This is partly done manually (by formulating a model
with parameters) and partly in an automatic fashion (by optimizing
the parameters). Note the importance of keeping validation data sep-
arately to test the model on the data. This is important to make sure
our model will be able to generate useful predictions.

The benefit of this approach is that a lot of manual labor is taken away,
and replaced by an optimization process which can be automated.
One should proceed carefully however, as a model with a sufficient
amount of parameters can model any finite amount of data. These
explanations by the model are not necessarily good and that is why
the additional step to weed out the badly parameterized models is
required.
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1.1.2 Probability and Prior Knowledge

As illustrated in the previous section, models are built in a two step
process. First, we formulate a model, and then we optimize its pa-
rameters. We initially pretended that the first step can be done out of
the blue, but this is of course not true. When building initial models,
we try to encode for what we know, just as is the case in the scientific
method. Einstein did not formulate the formulations of his relativity
theory out of the blue, he carefully crafted them from basic principles.
The same is true for modelling using machine learning.

What actually happens, is that assumptions are made prior to the
creation of a model. Since the assumptions do not come from ob-
served data, they come from a source separate that observations of
the system. All this information about a problem which is available
outside of training data, is known as ‘prior knowledge’ [2].

This idea of prior information, is closely tied to the foundations of
probability. For this reason, we include a small introduction to prob-
ability, and in the following sections, we will describe how this notion
of prior knowledge arises. This is especially interesting, as modelling
systems found in the real world, is almost inherently probabilistic.

1.1.2.1 On defining probability

There are many ways in which probabilities are introduced. Firstly,
some events are inherently probabilistic, such as the throwing of
dice. Secondly, observations of the world introduce a measurement
error, such as the inaccuracies when measuring the height of some-
one. Thirdly, we assign probabilities to arbitrary future events, such
as that it is more likely for the first brain transplant to happen in
China.

Notice that these three views on probability are three semantically
different things. The first could be described as the odds of something
happening, the second as an error on a measurement, and the third
as the certainty of a statement. Yet, all three of them are tied to a
probabilistic interpretation. This can be confusing, and it therefore
deserves to put some focus on what we mean exactly by the word
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‘probability’.

There is the formal definition for the mathematical concept of prob-
ability. It defines a probability as the measure of a certain set, com-
pared to the same measure on a super set containing the first set. It
was axiomatized by Kolmogorov [3]. Let Ω be a non-empty set. A
field on Ω is a set F of the subsets of Ω that has Ω as a member and
that is closed under union and complementation with respect to Ω.
Let P be a function from F → R with the following properties:

1. P (A) ≥ 0,∀A ∈ F .
2. P (Ω) = 1.
3. P (A ∪B) = P (A) + P (B), ∀A,B ∈ F where A ∩B = ∅.

Then, P is a probability function, and (Ω, F, P ) is a probability space.
These definitions can also be extended to cover sets of infinite size.

It is currently orthodoxy that probability on finite sets is defined like
this, and that it also describes probability in the real world. Porting
this definition to the world is however problematic from a philosophi-
cal point of view. It is hard to define what the superset of all possible
events would be, and whether such a constructed notion could even be
considered real. After all, not all of the events will actually happen.
Therefore, there needs to be basis on how we can tie these probabilities
to the physical world.

Some of these different views on probability are laid out in the fol-
lowing subsections. Note that although they all end up in the same
mathematical framework, they have different ways of viewing how
that framework relates to the real world. The following is also not
meant as a fully elaborated view on all perspectives on probability,
but rather a short introduction to some of the most influential views.

1.1.2.2 Classical Probability

Classical Probability goes back on ideas from Laplace, Pascal,
Bernoulli, Huygens, and Leibniz on how to deal with games of chance.
It assigns probabilities in the absence of any evidence, or in the pres-
ence of symmetrically balanced evidence. According to this view on
probability, probability is shared equally among all possible outcomes,
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such that the classical probability of an event is the fraction of the
number of possibilities in which the event occurs, to the number of
possibilities [4].

This view on probability is problematic, in that it is hard to find
all possible outcomes such that it is indeed correct to assume equal
probability. For example, we cannot define the probability of having
rain tomorrow this way. Because the only two clear states for this
are either “raining” and “not raining”, both of which cannot be at-
tributed probabilities, which does not correspond to our intuition on
probability.

So this idea on probability has the inherent issue of not allowing to
find out what the probability of events are. On the other hand, it
does provide a framework to reason with probabilities once probabil-
ities have been appointed to events, for instance when events can be
considered equally probable through symmetry.

1.1.2.3 Objectivists frequentist probability

To alleviate these problems, frequentist probability has been devel-
oped by Venn [5] based on work from people such as Poisson, Ellis,
Cournot and Fries. It identifies probability as the limit of the event
happening over the number of trials, when the number of trials tends
to infinity. Therefore, when nA is the number of trials where the event
A is recorded in a total number of trials N , then the probability P (A)
of an event A occuring is exactly

P (A) = lim
N→∞

nA
N
. (1.1)

This is an operational definition, which works for large parts of the
sciences. It allows us to reason on probability, and even measure
probability. This view on probability is strongly tied to the physical
world, and is therefore called ‘objectivist’.

There are however some limitations to this idea, not the least of which
is that we can only measure probability in repeatable processes. We
can indeed measure the probability of rain tomorrow, but we cannot
talk about the probability of the first human on Mars being female.
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The latter event can only happen once. Therefore, before it actually
happens, the frequentist approach offers no framework to reason on
its probability.

1.1.2.4 Subjectivist epistemic probability

A solution to this came from the Dutch book thought experiment by
de Finetti [6]. In this thought experiment, you must set the price p
for having to pay 1 if event A happens. Another person then gets
the possibility to choose which side of the bet to take, the side of the
bookmaker or the side of the bettor. So either you pay p now and he
might pay you 1 if A happens, or he pays you p now and you might
have to pay him 1 if A happens. You set the prices p for all events A
in a predetermined set Ω.

De Finetti showed that if your bets are not coherent, i.e. they do
not follow Kolmogorov’s axioms, that the second person could always
make a so-called ‘Dutch book’. This is a set of bets which guarantees
him to win, irrespective of the results of the events in Ω. If such a
book cannot be made, then the probabilities p appointed to the events
in Ω are coherent. Therefore:

P (A) = p. (1.2)

This view offers an intuitive way of tying probabilities to events. Prob-
abilities here can be seen as ‘confidence’ or a ‘degree of belief’. This
is different from the objectivist ‘rate of observation’ or the classical
‘possibility’ [7].

From this Dutch book thought experiment, one could start reason-
ing on how observations can affect the agents betting, and thus the
probabilities. What happens to the probability when both actors are
making bets while observing evidence E?

In such case, one must make sure that there is no diachronic book
available. That is, there exists no method which guarantees that at
the end of all bets made a Dutch book is formed, whether the bets are
made before or after observing E. This implies that the probabilities
must evolve over time, based on the evidence E available.
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Since in this sense, the evidence E is having an effect on the proba-
bility, we write this Bayesian probability after observing E as

P (A|E) = p. (1.3)

The evidence E is referred to as the ‘prior’. It encapsulates all knowl-
edge available to the agent making the bets. This knowledge can – and
generally does – influence the subjective probability an agent would
assign to events.

One of the goals of this dissertation, is to assess how we can
use our prior knowledge on the problem in order to create
better models. We want to find ways such that we can correctly
adapt the probabilities in the predictions of our models to the evidence
which is available to us. Or less abstract, we wish that our model has
a more accurate ‘degree of belief’ with regards to the evidence we have
available.

Note that we never had to be explicit on the nature of this evidence
E. Some of this evidence E expresses specific, definite information
about a certain variable in the problem at hand, such as ‘the mean
is 0’. It could however only express vague or general information as
well, such as ‘your observations will be positive’. The former is called
an informative prior, the latter an uninformative or diffuse prior. We
will mainly focus on on transferring uninformative priors into our
models. In chapter 2 we will discuss a method we developed to add
more image priors into neural networks for image classification. In
chapter 4 we will discuss transfer learning, a method where prior
knowledge obtained from optimizing a different problem is used in
the optimization process of another algorithm.

In the following section, we will shift focus and start introducing
robotics. However, within robotics we will go looking for the parts
of prior knowledge we could use when developing neural networks as
controllers, e.g. using embodiment to exploit the dynamics already
available in the robot for the generation of stable gaits.
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1.2 Robotics

A robot is a machine capable of carrying out a diverse range of com-
plex tasks through series of actions automatically. The underlying
goal of research in robotics, is therefore to (partially) take over tasks
generally done by humans and make their work lighter or irrelevant.

In this sense, contemporary robots are often found in the context of
manufacturers where they replace tasks previously done by human
labor. Initially, the development of robotics has focused on tasks
which are harming the human in the process, because the task is to
arduous, dangerous or monotonous. Think respectively of welding
robots in the automotive industry, robots for nuclear inspection or
pick-and-place robots.

Over time, robots were able to achieve superhuman performance re-
garding precision, power, reliability and cost for various tasks. In the
automotive industry, it is not uncommon to have robots manipulate
and weld objects with masses of hundreds of kilograms to millime-
ter accuracy. They do this for weeks on end, requiring little outside
intervention.

However, robots still underperform when it comes to interacting or
cooperating with humans, perception tasks and flexibility of oper-
ation. Indeed, most robots are still found inside cages to separate
them from human co-workers. On top of that, robots still have dif-
ficulty perceiving their environment, and thus have difficulty dealing
with unforeseen circumstances in this environment. Lastly, whereas
we already mentioned that robots can be cost-effective, this is not
necessarily the case when you need control engineers to optimize an
entire assembly for a new product. In a flexible manufacturing line,
humans are economically still more practical and cost-effective.

The reasons behind this underperformance are harder to point out.
For one, actuators are still severely lacking compared to those of hu-
mans. The actuators used tend to be either power-hungry, heavy or
unreliable. Right now, the standard actuators found are either hy-
draulic or electric, and both tend to have a high inertia.

But this is only part of the issue. A second related issue is that robots
also have difficulty dealing with compliance and compliant objects.
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This is a result of the fact that deformable objects are hard to model.
Yet, deformable and soft objects are found all over in our environment.
Humans themselves tend to be quite deformable. Moreover, a part of
the safety problem with robots, is due to them being very rigid. So,
how robots can function despite working in a non-rigid, compliant
world is a problem which needs to be tackled.

A third problem, is that robots still have difficulties in sensing their
environment effectively. Sensors are often big and cumbersome, and
need cabling and power to process the incoming information.

A fourth problem, is that reliability is usually coming with weight.
In the case of moving parts of the robot, this means more power is
needed to move this part. On top, extra weight means extra inertia
as well. In the case of legged robots, where every additional gram of
weight makes the task more difficult, this means that a balance must
be found between weight and reliability.

There are of course more problems than the four described above, such
as the difficulty for social interaction with humans [8] or the limited
ability to self-repair [9]. But the four problems above are the focus in
this dissertation.

1.2.1 Compliant Robots

Since the 2000s, lot of recent research has gone into compliant robots
in order to deal with the issues described before [10]. Compliant
robots are a type of robot, where the rigidness typically associated
with robotics is avoided. This can be done in order to increase the
safety, power efficiency, robustness or simplicity of the control.

In this field, a distinction is usually made between two types of com-
pliance:

• Active compliance is a subclass of compliance in which sensor
input is used to control the actuators in a control loop to behave
compliant. The downside of this approach, is that disturbances
at a frequency higher than the control frequency cannot be cov-
ered.
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• Passive compliance is a subclass of compliance, where springs
and dampers are used to add compliance in the morphology of
the robot. In this approach, high frequency disturbances can
also be dealt with in a compliant way. The downside is that it is
usually harder to remove this high frequency compliance when
that would be required, making the robots react less snappily.

In recent years, compliant robots are increasingly gaining interest in
the scientific community. They use low-impedance mechanisms to
exploit the robot’s passive dynamics and nudge it into the desired be-
havior, rather than enforcing a desired trajectory [11]. This approach
is promising, as it is more closely aligned with biology, where even to-
day animals show capabilities unmatched in robotics. Like in nature,
we can make our robots more compliant by adding passive elements
in the design.

These passive elements can for instance be used for storing energy
between steps, such as with the walking Lucy robot [12], or the added
compliance can be used for having more robust control of the robot on
difficult terrain [13]. They can make control easier, such as the sala-
mander robot where gaits for navigating land and sea were emerging
from the same control approach [14]. They can make robots safer
for use next to humans, such as was demonstrated by Festo’s bionic
handling assistant [15].

Examples of compliant robots include robots with compliant actua-
tors, such as the CoMaN [16] and the Kuka-DLR light weight arm [17].
Notable examples of compliant robots in legged robotics are for in-
stance the M2V2 [18], HyQ [19] and StarlETH [20].

More recently, the approach has been evolving towards ‘soft robotics’,
where hard materials are shunned altogether [21]. Examples in-
clude the various octopus robots [22, 23], fish [24] and (quadrupedal)
starfish [25]. Because of their intricate design, these robots are able
to navigate very narrow spaces.

Despite their advantages, compliant robots are harder to control using
linear control methods. Since their elastic elements show a non-linear
behavior, control by classical paradigms requiring linearization of the
problem prove to be less effective [26]. One approach to tackle this
problem, is to have the robot learn its behavior or model using opti-
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mization techniques from machine learning [27, 28, 29, 30, 31, 32, 33].
This way the robot inherently learns to deal with non-linearities and
uncertainties in its own morphology. These uncertainties are an in-
herent problem in robotics, where the quality of contemporary sensors
makes it impossible to know either the body of the robot or the envi-
ronment in full detail.

Having said that, the main disadvantage with these techniques is that
the robot needs to go through the optimization process for its behavior
repeatedly, every time when the setting of the problem changes. This
process takes up a lot of optimization time, and the time of testing a
behavior on the robot is usually far larger than the amount of time
spent on the calculations of the optimization process. It would there-
fore be opportune to make these optimizations more data-effective,
reducing the number of behaviors to test and thus significantly reduc-
ing the amount of time needed to optimize. In this thesis, we will
demonstrate a number of ways in which prior knowledge of
the problem at hand can be introduced in the optimization
process, to make the optimization process more effective.

1.2.2 Embodiment and Morphological Computation

The main approach we will focus on, is based on the idea of embod-
iment. This not in the trivial sense, where “intelligence requires a
body”, but in that a physical agent affects the environment and can
in turn be influenced again by it through sensing [34]. In animals in
the world, where the control and the physiology has evolved together,
this tight coupling between sensors, the neural system, actuators and
limbs is omnipresent. This in contrast to the common practice in
robotics to separate the physical robot from its control, a separation
often explicit as the controller is not integrated in the robot hardware
but put on a separate box.

In this embodiment, we will focus on morphological computation.
Morphological computation is the practice where certain parts of the
computation generally left over to the controller, have been taken over
by the materials, shape or the sensor morphology in the robot [34].
Compared to classical robotics, this is a radical change of perspective,
as the complex dynamics which are usually surpressed, are exploited
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in this paradigm.

In short, the term morphological computation is coined through the
idea that in order for a robot such as Asimo to take a step, it requires
intensive calculations in order to set out a trajectory where it can
remain stable. On the other hand, in more compliant robots stability
is almost guaranteed through the way the body has been designed.
Now there are two equivalent ways to look at how the problem has
been handled [35].

• Either the use of robot morphology has lead to a reduced re-
quirement for the total amount of computation required. The
robot has increased its controllability.

• Or in an equivalent view, the total amount of computation has
remained constant, but the body has taken over some part of
the computation originally performed by the brain. This part
of the information processing is now called ‘morphological com-
putation’.

Of course, this computation has little involvement with computation
as typically defined through the Church-Turing thesis, where inputs
and outputs are assumed to be digitally encoded. Therefore an alter-
native model coined “natural computing” was coined to describe this
alternative formalism for computation. In this setting, computation
is seen as being performed by dynamical systems processing streams
of input signals into output signals [36, 37].

One needs to be careful here not to descend into pancomputation-
alism [35]. In this view, as the universe is essentially a dynamical
system, everything in it is inherently computing. At that point, the
term ‘computation’ loses relevance and is merely a metaphor for a
process. A critical point is therefore the encoding and decoding of
the representation encoded in the dynamical system, defined before
the dynamical system is set going. Therefore, some forms of morpho-
logical computation might more accurately be coined morphological
control or morphological sensing.

The research question of this dissertation, is to assess
whether and how prior knowledge available in the morpho-
logy of a robot can be put to use in common robotics tasks
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such as sensing the environment or generating motor signals.
We will discuss both morphological control and morphological sens-
ing in chapters 5 and 6 respectively. We will stretch this idea to the
extremum and treat the full physical dynamics with its controller as a
single system in chapter 7. We treat this system as a single optimiz-
able equation which we optimize in simulation with backpropagation
of the complete system.

1.3 Scientific Contributions

This section summarizes the research challenges and scientific contri-
butions made in the following chapters of this dissertation.

Chapter 2: Spatial Chirp-Z Transformer Networks

Convolutional Neural Networks are often used for computer vision
solutions, because of their inherent modeling of the translation invari-
ance in images. In this chapter, we propose a new module to model
rotation and scaling invariances in images. To do this, we rely on the
chirp-Z transform to perform the desired translation, rotation and
scaling in the frequency domain.

This approach has the benefit that it scales well and that it is differ-
entiable because of the computationally cheap sinc-interpolation. We
show that the prior knowledge on image invariances by encoding it
in the network architecture allows to increase performance in neural
network models. This paper is a primer on adding differentiable lay-
ers into neural networks for encoding prior knowledge on the data,
a concept which is further expanded upon in chapter 7. This chap-
ter also shows the improvement in performance possible by including
prior information when training neural networks.
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Chapter 3: Comparing Trotting and Turning Strategies
on the Quadrupedal Oncilla Robot

In this chapter, we compare three different trotting techniques and five
different turning strategies on a small, compliant, biologically inspired
quadrupedal robot: the Oncilla. The locomotion techniques were
optimized on the actual hardware using a treadmill setup, without
relying on a model of the robot.

We found that using half ellipses as foot trajectories resulted in the
fastest gaits, as well as the highest robustness against parameter
changes. Furthermore, we analyzed the importance of using the scapu-
lae for turning, from which we observed that although not necessary,
they are needed for turning with a higher speed. These gaits formed
the basis for further research in chapters 4 and 6.

Chapter 4: Transfer Learning of Gaits on a Quadrupedal
Robot

Learning new gaits for compliant robots is a challenging multi-
dimensional optimization task. Furthermore, to ensure optimal per-
formance, the optimization process must be repeated for every vari-
ation in the environment, e.g. for every change in inclination of the
terrain. This is unfortunately not possible using current approaches,
since the time required for the optimization is simply too high. Hence,
a sub-optimal gait is often used.

The goal in this chapter is to reduce the learning time of a particle
swarm algorithm, such that the robot’s gaits can be optimized over
a wide variety of terrains. To facilitate this, we use transfer learning
by sharing knowledge about gaits between the different environments.
This way, prior knowledge discovered during a previous optimization
process can be reused in a new optimization process.

Our findings indicate that using transfer learning, new robust gaits
can be discovered faster compared to traditional methods which learn
a gait for each environment independently. Since we also find that
this approach sometimes decreases efficiency, it is clear that using
prior knowledge using is not always beneficial. It might harm the
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optimization process when the new task is not sufficiently close to the
previous task, such that the prior transferred is inaccurate.

Chapter 5: Terrain Classification for a Quadruped Robot

Using data retrieved from the Puppy II robot at the University of
Zurich (UZH), we show that machine learning techniques with non-
linearities and fading memory are effective for terrain classification,
both supervised and unsupervised, even with a limited selection of
input sensors.

We find that the classification error is small enough to have a robot
adapt the gait to the terrain and hence move more robustly. The re-
sults indicate that most information for terrain classification is found
in the combination of tactile sensors and proprioceptive joint angle
sensors. Secondly, the results indicate the possible power of embod-
iment and morphological computation. Despite not having a dedi-
cated sensor for classifying the terrain, we found that the difference
in behavior of the limbs computed the features needed to classify
the terrain already. Thirdly, the results indicate the trade-off be-
tween non-linearities and fading memory, a trade-off further explored
in chapter 6.

Chapter 6: Developing an Embodied Gait on a Compli-
ant Quadrupedal Robot

Incorporating the body dynamics of compliant robots into their con-
troller architectures can drastically reduce the complexity of locomo-
tion control by exploiting the morphological computation going on
in the body of the robot. An extreme version of this embodied con-
trol principle was demonstrated in highly compliant tensegrity robots,
for which stable gait generation was achieved by using only optimized
linear feedback from the robot’s sensors to its actuators. The morpho-
logy of quadrupedal robots has previously been used in chapter 5 for
sensing and for control of a compliant spine, but not for gait genera-
tion.

In this chapter, we apply embodied control to the compliant,
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quadrupedal Oncilla robot. As initial experiments indicated that mere
linear feedback does not suffice, we explore the minimal requirements
for robust gait generation in terms of memory and nonlinear com-
plexity. Our results show that a memory-less feedback controller can
generate a stable trot by learning the desired nonlinear relation be-
tween the input and the output signals. We believe this method can
provide a robust tool for transferring knowledge from open loop to
closed loop control on compliant robots.

Chapter 7: A Differentiable Physics Engine for Deep
Learning in Robotics

In this chapter, we expand on the ideas for embodied control and
we take a look at the culmination of combining robot morphology
and controller into one system to optimize. Currently, robots are
often treated as a black box in this optimization process, which is
the reason why derivative-free optimization methods such as evolu-
tionary algorithms or reinforcement learning are omnipresent. When
gradient-based methods are used, models are kept small or rely on fi-
nite difference approximations for the Jacobian. This method quickly
grows expensive with increasing numbers of parameters, such as found
in deep learning. We propose an implementation of a modern rigid
body physics engine, which can differentiate control parameters simi-
lar to the concept described in chapter 2. This engine is implemented
for both CPU and GPU. Using this engine, we can backpropagate
through time in our controller, through the physics of our engine and
also through the rendering process.

This chapter shows how such an engine speeds up the optimization
process, even for small problems. We argue that this is a big step
for deep learning in robotics, as it opens up new possibilities to op-
timize robots, both in hardware and software. By backpropagating
the error through a model of the robot, we are essentially transferring
prior knowledge on the model of the robot into the neural network
controller. We are able to show that it only takes a small number
of update steps before the robot can learn to control a simple setup
through vision, despite that the controller has around one million pa-
rameters.
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�Fundamenta Mathematicae, vol. 17, pp. 298–329, 1931.

[7] W. Talbott, “Bayesian epistemology,” in The Stanford Encyclope-
dia of Philosophy, winter 2016 ed., E. N. Zalta, Ed. Metaphysics
Research Lab, Stanford University, 2016.

[8] I. Leite, C. Martinho, and A. Paiva, “Social robots for long-term
interaction: a survey,” International Journal of Social Robotics,
vol. 5, no. 2, pp. 291–308, 2013.

[9] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson,
E. Klavins, and G. S. Chirikjian, “Modular self-reconfigurable



48 1 Introduction

robot systems [grand challenges of robotics],” IEEE Robotics &
Automation Magazine, vol. 14, no. 1, pp. 43–52, 2007.

[10] R. Pfeifer, M. Lungarella, and F. Iida, “The challenges ahead for
bio-inspired’soft’robotics,” Communications of the ACM, vol. 55,
no. 11, pp. 76–87, 2012.

[11] G. A. Pratt, “Legged robots at MIT: what’s new since raibert?”
Robotics & Automation Magazine, IEEE, vol. 7, no. 3, pp. 15–19,
2000.

[12] B. Verrelst, R. Van Ham, B. Vanderborght, F. Daerden,
D. Lefeber, and J. Vermeulen, “The pneumatic biped “lucy” ac-
tuated with pleated pneumatic artificial muscles,” Autonomous
Robots, vol. 18, no. 2, pp. 201–213, 2005.

[13] M. Raibert, K. Blankespoor, G. Nelson, and R. Playter, “Bigdog,
the rough-terrain quadruped robot,” IFAC Proceedings Volumes,
vol. 41, no. 2, pp. 10 822–10 825, 2008.

[14] A. J. Ijspeert, A. Crespi, D. Ryczko, and J.-M. Cabelguen, “From
swimming to walking with a salamander robot driven by a spinal
cord model,” science, vol. 315, no. 5817, pp. 1416–1420, 2007.

[15] A. Grzesiak, R. Becker, and A. Verl, “The bionic handling as-
sistant: a success story of additive manufacturing,” Assembly
Automation, vol. 31, no. 4, pp. 329–333, 2011.

[16] N. G. Tsagarakis, Z. Li, J. Saglia, and D. G. Caldwell, “The de-
sign of the lower body of the compliant humanoid robot “cCub”,”
in IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2011, pp. 2035–2040.

[17] R. Bischoff, J. Kurth, G. Schreiber, R. Koeppe, A. Albu-Schäffer,
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Convolutional Neural Networks are often used for computer
vision solutions, because of their inherent modeling of the trans-
lation invariance in images. In this chapter, we propose a new
module to model rotation and scaling invariances in images. To
do this, we rely on the chirp-Z transform to perform the desired
translation, rotation and scaling in the frequency domain. This
approach has the benefit that it scales well and that it is differ-
entiable because of the computationally cheap sinc-interpolation.
We show that the prior knowledge on image invariances allows
to increase performance in neural network models. This motif,
where we embed prior knowledge on the problem in the archi-
tecture of the neural network by developing new differentiable
layers, will come back in chapter 7.

2.1 Introduction

As a general principle in machine learning, models will often perform
better when you include more a priori knowledge. One form of a
priori knowledge often available on datasets, is whether there are data
manipulations under which the required output of the model stays the
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same. For instance, you could think of small translations of the images
for computer vision applications, or small delays in audio for speech
recognition. A common approach to incorporate this knowledge in
the model, is by performing data augmentation using these known
invariances [2], which can be done both during training and evaluation
of the model.

Another way of doing so, is by making the model inherently insensitive
to known invariances in the data. An example of this approach are
convolutional neural networks with max pooling. Because of the inher-
ent properties of this model, the classification will be robust against
small translations in the image. This property is one of the main
reasons for their effectiveness in image classification [3].

Therefore, when we competed in Kaggle’s National Data Science Bowl
2014, where the goal was to classify images of plankton, we wanted
to improve our performance by including these known invariances. In
the case of the dataset of the competition, there was full rotational
and scale invariance. We tried various approaches to incorporate this
invariance into our model, one of which is discussed in this paper.
Earlier preliminary results were posted in March 2015 when publishing
our winning solution online1.

2.1.1 Related work

Since then, various papers have already been published exploring the
idea of using affine transforms as module in a neural network [4, 5].
Currently, these methods rely on using a bilinear transform for per-
forming the interpolation step in the image transform. In this paper,
we present the original approach we developed before these publica-
tions, which uses the chirp-Z transform to perform both the coordinate
transform and interpolate the image.

1http://benanne.github.io/2015/03/17/plankton.html
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2.2 The Chirp-Z Transform

The chirp-Z transform (CZT) is a generalization of the more known
discrete Fourier transform (DFT). Seen from the Z-transform point
of view, you could say that while the DFT samples the Z-plane at
uniformly-spaced points on the unit circle, the chirp-Z transform sam-
ples along spiral arcs in the Z-plane. Or alternatively from the Laplace
transform point of view, while the DFT samples along the imaginary
axis in the S-plane, the CZT samples along straight lines in the S-
plane [6].

Concretely, the chirp-Z transform is defined by the following equation:

CZT(xn) =
N−1∑
n=0

xnA
−nWnk.

Here, A is the starting point of the sampling, and W is a complex
scalar describing the complex ratio between points on the sampling
contour. When A = 1 and W = e

−i2π
N this reduces to the standard

DFT.

The 2-dimensional chirp-Z transform is an extension of this idea onto
2 dimensional images in exactly the same way the DFT is extended. In
the case of the DFT, this allows for a fast algorithm to perform con-
volutions [7]. Similarly, the chirp-Z transform has some interesting
properties as well. It can for instance be used to perform transla-
tions, scaling and even rotations on images [8]. The resulting images
are perfect interpolations of the input image, so if the input image
is bandwith-limited, the resulting image will be a perfect reconstruc-
tion. This makes this technique interesting when applied on images
which have been reconstructed from the frequency domain, which is
for instance the case in MRI-imaging [8]. Also, perfect interpolation
implies no information is lost, which allows for repeated manipulation
of the same image without blurring [9].

Additionally, since the chirp-Z transform is linear, it can be part of a
gradient descent method and can be evaluated fast in both the forward
and the backward phase. This makes it a good candidate for use in a
deep neural network.
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Fig. 2.1: A schematic of our sampling setup. We want to
resample our image on the encircled points of a (p, q) coordinate
system given by (x0, y0), θ and ∆.

2.3 Transform of an Image Using the Chirp-Z
Transform

As described in the paper by Myagotin [9], we want to resample our
image on the points (p∆, q∆) where p and q are the discrete indices
of the pixel, and ∆ is the distance between the neighbouring pixels.

Then, the location (xpq, ypq) of the sampling point on the original
image are given by:

xpq = x0 + cos θ(p∆− x0)− sin θ(q∆− y0)
ypq = y0 + sin θ(p∆− x0) + cos θ(q∆− y0)

And correspondingly, now we want to sample our original image in
the point gpq by reconstructing from the chirp-Z domain. If we follow
the definition for the 2 dimensional chirp-Z transform from, namely

Zpq(h, α, β) =
N−1∑
l=0

N−1∑
m=0

hlme
−2πiα(lp+mq)e−2πiβ(mp−lq) (2.1)
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the value of the reconstructed point gpq is given by [6]:

gpq = e−πi((cos θ+sin θ)(p∆−x0)+(cos θ−sin θ)(q∆−y0)) Zpq(h,
−∆ cos θ

N
,
−∆ sin θ

N
).

Here h is the DFT of the input image shifted such that the center of
rotation is at the origin of the image coordinate system.

This equation is evaluated efficiently using only DFT’s and multipli-
cations [9]. To see how this works, we substitute the exponents in
equation 2.1 as follows:

(lp+mq) = −(q − l)(p−m) + lm+ pq

2(mp− lq) = (q − l)2 − (p−m)2 + (m2 − l2) + (p2 − q2)

and introduce the following three matrices with α = −∆ cos θ
N and

β = −∆ sin θ
N

Alm = e−πi(2αlm+β(m2−l2))

Blm = eπi(2αlm+β(m2−l2))

Cpq = e−πi(2αpq−β(p2−q2))

then, it follows that

Zpq = Cpq

N−1∑
l=0

N−1∑
m=0

hlmAlmB(q−l)(p−m).

From which we can find the gpq we are looking for. If we use the circu-
lar convolution operator ‘∗’ and the elementwise Hadamard product
‘◦’, this can be rewritten to

Z = C ◦ ((h ◦A) ∗B).

2.4 The Algorithm

To implement the algorithm, we assume an efficient implementation of
the DFT is available, namely the Fast Fourier Transform (FFT) [10].
We assume the result of the FFT-method is available in the most
common ‘not shifted’ form, namely with the DC component on the
location (0, 0). The forward pass of this algorithm can therefore be
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written as described in Algorithm 2.1.

1: a← ∆ cos θ
2: b← ∆ sin θ
3: p, q ← [N/2, ..., N − 1, 0, ..., N/2− 1]
4: r, s← [0, ..., N − 1]
5: Pjk ← exp(πi(2pjx0/N + 2qky0/N − 2apjqk − b(p2

j − q2
k))))

6: Bjk ← exp(πi(2arjsk + b(r2
j − s2

k))
7: D ←IFFT(FFT(FFT(I) ◦ P ) ◦ FFT(B))
8: return |D|/N2

Alg. 2.1: Transform image I around (x0, y0) with angle θ and
scale ∆

In this algorithm, all operations are differentiable, and therefore the
transform of the image is as well. Sampling the image in a lower
resolution can be done by removing the higher frequencies of FFT(I)
before transforming. Since the goal is often to crop the image and
selecting only the important part, the loss of superfluous information
is often beneficial.

This algorithm is as fast as the FFT-transform. This is true both in
the forward and in the backward pass, since the derivative of the FFT-
transform to its input is the IFFT-transform, which is the same as the
FFT up to a coefficent. Therefore the complexity of this transform is
O(n2 logn).

2.5 Experiments

To evaluate this approach, we used the same cluttered MNIST-dataset
as was used to test comparable spatial transform methods [5]. The
dataset is created by placing 3 MNIST digits on a square canvas with
a width of 100 pixels. The first digit is placed by randomly sampling
a vertical y position on the canvas. The horizontal x positions were
randomly sampled such that the entire sequence fits on the canvas and
the digits do not overlap. Digits are placed following a slope sampled
from ±45◦ and cluttered by placing 8 patches of 9 by 9 pixels sampled
from the original MNIST digits. The trainset has 60 000 samples for
training, 10 000 for validation and 10 000 for testing.
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For evaluation, we made use of 2 different types of networks, which
were implemented using Theano [11] and Lasagne [12]. We used a
forward network approach [4] and a recurrent neural network ap-
proach [5]. The setup of these neural networks are described in Ta-
ble 2.1. In these two models, we test four different approaches.

1. We test the models using the original bilinear interpolation
method. With this method, there are 6 parameters defining
the sampling grid. This allows all affine transforms.

2. We test the model using a bilinear interpolation method, where
no skew is allowed. Therefore, only rotation, scaling and trans-
lation is available. This means the images are transformed with
4 degrees of freedom.

3. We test using the chirp-Z method explained before.

4. We test these models when no transform or downsampling takes
place.

As you may find in Table 2.2, we found that the use of spatial
transformer networks significantly improves the achieved accuracy on
the cluttered MNIST dataset compared to standard neural networks.
Also, we find that our chirp-Z approach performs similarly to the
bilinear approach without skew, being able to achieve a 1.8% error
rate.

2.6 Conclusion

In this paper, we show it is possible to transform images in a way
derivatives can be calculated to the original images and the parame-
ters. We have shown that this approach to transforming images works
similarly well as the now common bilinear transform implementation
and that they outperform standard convolutional neural networks.

We have shown that using spatial transform layers can considerably
improve performance on problems where the data is found in a part
of the image, because another neural network can learn to find this
relevant part autonomously. This further lowers the requirement for
pre-processing in convolutional neural networks.



FFN-SPN model RNN-SPN
2× 2 maxpool 2× 2 maxpool
3× 3 convolution (20 filters) 3× 3 convolution (20 filters)
2× 2 maxpool 2× 2 maxpool
3× 3 convolution (20 filters) 3× 3 convolution (20 filters)
2× 2 maxpool 2× 2 maxpool
3× 3 convolution (20 filters) 3× 3 convolution (20 filters)
Denselayer (200 units) GRU (256 units)
Denselayer (4 or 6 units) + linear Denselayer (4 or 6 units) + linear
Spatial Transform Layer Spatial Transform Layer
3× 3 convolution (96 filters) 3× 3 convolution (32 filters)
2× 2 maxpool 2× 2 maxpool
Dropout Dropout
3× 3 convolution (96 filters) 3× 3 convolution (32 filters)
2× 2 maxpool 2× 2 maxpool
Dropout Dropout
3× 3 convolution (96 filters) 3× 3 convolution (32 filters)
Dropout Dropout
Denselayer (400 units) Denselayer (400 units)
Denselayer (3 units) + softmax Denselayer (3 units) + softmax

Tab. 2.1: The two models used to test our spatial transform
layer
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Cluttered MNIST Sequences
bilinear bilinear no skew chirp-Z no spatial

Model Err. (%) Err. (%) Err. (%) Err. (%)
FFN-SPN d=1 4.4 4.5 5.0 7.8
FFN-SPN d=2 2.0 5.3 3.3 ”
FFN-SPN d=3 2.9 3.6 4.8 ”
RNN-SPN d=1 1.8 4.1 4.1 ”
RNN-SPN d=2 1.5 1.7 1.8 ”
RNN-SPN d=3 1.8 1.5 2.8 ”

Tab. 2.2: Per digit error test scores on the cluttered MNIST
sequence, d is the down-sampling factor.
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In this chapter, we compare three different trotting tech-
niques and five different turning strategies on a small, compli-
ant, biologically inspired quadrupedal robot: the Oncilla. The
locomotion techniques were optimized on the actual hardware
using a treadmill setup, without relying on a model of the robot.
We found that using half ellipses as foot trajectories resulted in
the fastest gaits, as well as the highest robustness against pa-
rameter changes. Furthermore, we analyzed the importance of
using the scapulae for turning, from which we observed that al-
though not necessary, they are needed for turning with a higher
speed. These gaits formed the basis for further research in chap-
ters 4 and 6.

3.1 Introduction

In the domain of robot locomotion, there is a growing interest in
quadrupedal legged robots. One of the main reasons for this is that
legged robots are better suited to walk over rough, irregular terrain
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compared to their wheeled counterparts [2]. Current examples of such
legged robots used for research are for instance BigDog [3], Hyq [4]
and StarlETH [5].

While the above examples are rather large, in this research a smaller
robot is used: the Oncilla [6]. Advantages of a small robot platform
include the reduced cost of the robot and surrounding infrastructure,
as well as increased safety for the operators and overall less setup time
and thus a faster development cycle. Another important small robot
is for instance Little Dog [7].

Within the AMARSi project (see Section 3.4), the Oncilla was de-
signed with compliance in mind: several spring elements are included
in each leg, in order to find more robust ways of locomotion that are at
the same time easier to control. The possibility of storing and reusing
energy in these springs should make more energy efficient locomotion
possible [8]. This is very similar to the locomotion systems that can
be found in nature, in obviously more advanced versions. On top of
that, the added compliance means that the robot is more indulgent to
external obstructions, and therefore safer for those working with it.

For this class of small, compliant, quadruped robots there already
exists work where gaits were developed. Part of the previous research
for this class of small compliant quadrupedal robots showed interest in
slow but robust movement over very rough terrain, using techniques
to find optimal foot placement [7]. Other research focussed on running
in a bounding gait [9, 10], and more recently, trotting gaits have been
developed for small compliant robots as well, e.g., for the Reservoir
Dog [11] and the Cheetah-cub robot [12], two direct predecessors of
the Oncilla.

The purpose of our research on the Oncilla is to continue this trend,
but with more and improved actuators that enable us to develop faster
movement and dynamical gaits, as well as more realistic turning be-
haviors. The Oncilla comes equiped with a large suite of sensors,
which will enable future development of closed-loop gaits.

In this paper, we start off by comparing various ways to generate foot
trajectories. These foot trajectories are inspired by the foot trajec-
tories observed in our robot’s biological counterparts. Moreover, we
optimize the parameters for these trajectories using particle swarm
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optimization on the real robot and compare the speed-frequency char-
acteristics for the different methods.

Secondly, we investigated the realisation of turning with various meth-
ods. For the two most promising methods, we compare the minimal
turning radius and the performance when the robot is tracking an
infrared led. Footage of the developed gaits and turning strategies is
published in an online video1.

3.2 Methodology

In this section we introduce our experimental setup, as well as the
optimization algorithm used.

3.2.1 The Oncilla Robot

(a) (b)

Fig. 3.1: In (a), the Oncilla robot on the treadmill is shown.
Notice the three-segmented pantographic legs and the cable
mechanism actuating the knee in (b).

The Oncilla robot [6] is a quadrupedal robot with 12 actuated degrees
of freedom, designed in the AMARSi project (see Section 3.4). The
robot has four legs, each with three actuators. It is light-weight,
compliant, and has three-segmented pantographic legs, as shown in
Fig. 3.1. The hip is actuated by a low-inertia actuator, and the knee

1http://www.youtube.com/watch?v=A4MamwfcMFc
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joints are actuated through a cable mechanism by a second actuator
in the main body. Each leg has a third servo actuator, serving as
the robot’s scapulae, enabling the robot to spread its legs (abduction
and adduction). The leg design was loosely inspired by the legs of a
cat [6].

To track the robot in our setup, we equipped the robot with a long-
distance sensor and added the camera module from a Nintendo Wii
remote. This camera module is capable of locating and tracking four
infrared light sources at 100 Hz in an image with a resolution of 1024×
768 pixels. In order to achieve these specifications, the module doesn’t
rely on further processing power of the receiver, because the tracking
happens on-chip. Therefore this module is an excellent and cheap
way of realising a vision function. Additionally, since we only use
onboard sensors, it is possible to do future experiments outside the
lab environment.

3.2.2 Experimental Setup

To test numerous gaits automatically and without interruptions, a
treadmill is used. The measurements of the long-distance sensor on
the robot are used to control the treadmill’s speed, so the robot is
kept in place. In this way, the robot can walk freely for an unlimited
timespan. Walking for more than an hour at a time poses no severe
problems. During the first experiments of gait optimization, the robot
was kept in the middle of the track by having a light rope attached
between the robot’s head and an overhead rail in the middle of the
track. This way the robot reorients itself in the direction of the track,
while disturbances to the gait under test are kept to a minimum. An
assistant is sitting next to the track in order to intervene if the robot’s
safety might be jeopardized by an unstable gait.

In order to perform the tracking, the robot follows an infrared led at-
tached to the front of the treadmill, using its onboard camera. To eval-
uate the tracking properties, a second camera module was mounted on
top of the treadmill, to provide an overhead view of two leds attached
to the top of the robot (Fig. 3.2).

We run the algorithms controlling the robot’s movements on a remote
computer, which sends new commands to the robot every 10 ms. Dur-
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Fig. 3.2: The experimental setup used for optimization and
measurements. The distance measurement is used to regulate
the speed of the treadmill, to keep the robot in the center.
Camera 1 is used to control the turning of the robot in order
to make it track an infrared led, while camera 2 monitors the
tracking performance.

ing the optimization process on the treadmill, we communicated with
robot over an ethernet cable and powered the robot with an addi-
tional power cable. However, the same setup also proved to work
equally well over wifi with the robot running on lithium polymer bat-
teries. Complete wireless operation is thus possible, but not suited for
long optimization runs due to the limited battery life (15-20 minutes
on a 11.1 V, 1800 mAh battery).

3.2.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an evolutionary optimization
algorithm, which uses a set of candidate solutions that move towards a
random combination of their own best solution and the best solution
found so far by all particles [13]. PSO does not use gradients to
optimize the parameters, which makes its use feasible for applications
on real robots. The update equations of particle xi at time step n are
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defined as follows [14]:

vi(n+ 1) = ωvi(n)
+φprp(n)(pi − xi(n))
+φgrg(n)(g(n)− xi(n))

(3.1)

xi(n+ 1) = xi(n) + vi(n+ 1). (3.2)

On timestep n, xi(n) and vi(n) are respectively the location and speed
of particle i, pi(n) and g(n) are respectively the particles previous best
solution and the global best solution. rp(n) and rg(n) are randomly
selected from a uniform distribution between 0 and 1. ω, φp and φg
are parameters of the optimization algorithm. Here, ω is the iner-
tia weight of a particle, φp and φg are the acceleration coefficients
determining the magnitude of the random forces in the direction of
respectively the personal best and the neighborhood best [13]. These
were set at the values ω = 0.6571, φp = 1.6319 and φg = 0.6239,
which should yield good results for our search space, according to
recent findings [15].

3.2.4 Gait Fitness Score

We optimize the gaits for speed. To achieve this, we let the robot
run for ten seconds on the treadmill for each parameter set. During
these ten seconds, we determine the walked distance by integrating
the speed of the treadmill, while correcting for the difference between
start and end position.

Secondly, we use the camera module on the robot to measure its
stability. We attached an infrared led to the front of the treadmill,
and track it with the camera module. We use this infrared light to
register the robot movements in the transverse plane. By measuring
the variance of the led’s position in the image of the camera module,
we obtain a good indicator of the stability of the robot’s body during
the gait, given that the distance from the robot to the front of the
treadmill stays approximately the same.

The standard deviation of the led in the x- and the y-direction (resp.
σx and σy) are then weighted and added to the travelled distance
in order to obtain the fitness of the gait as shown in Equation 3.3.
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This fitness is maximized. In this way, smooth gaits are favored over
rougher ones. Horizontal movements are punished more severely than
vertical movements, as vertical movements are almost inevitable for
fast gaits.

fitness = distance− σx/150− σy/300 (3.3)

3.2.5 Gait transitions

Since our goal is to optimize gaits online on the treadmill, it is impor-
tant to switch smoothly from one gait to the next. For this transition
we change the phase velocity smoothly, while linearly interpolating
between the other parameters of the gait as well. This way, the robot
does not stumble or fall while transitioning from one gait to the next.

3.3 Experiments

3.3.1 Trot Gait Optimization

3.3.1.1 Sine control signals

In a first approach, we used sine-based signals for the control of the
gait, as it has previously been proven possible to achieve good result
with such simple control signals [11, 16]. This means that the position
of the hip and knee actuators are actuated with a sine wave, each with
its own phase, amplitude and offset. One global frequency is used for
the entire robot. To reduce the number of parameters, the left and
right legs are given the same parameters, apart from the phase. The
servo motors are given a constant signal, such that the plane in which
the legs move does not change during the trot.

The problem with this approach is that stable and unstable gaits
lay only small parameter changes apart. Therefore, many parame-
ter combinations result in movements that can damage our robot.
Optimization on the robot hardware was therefore infeasible and the
approach of tuning the parameters automatically using PSO was not
pursued further.
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Despite these problems, a reasonable trot gait was found by care-
ful manual tuning, with a resulting frequency characteristic shown in
Fig. 3.4. This gait’s velocity is proportional to the frequency up to
about 1 Hz, at which point it flattens.

We conclude that sine signals do not work well on more heavy robot
platforms such as the Oncilla which required careful tuning, this in
contrast to smaller robots [11, 16]. Furthermore, the obtained sine
based gaits for the Oncilla were not robust against small parameter
changes, which makes live optimisation very hard.

3.3.1.2 Half ellipsoidal trajectories

In search for a better parameter space to optimize gaits, we changed
our approach from defining the control signals directly, to defining
the locus of the feet, and deriving the control signals from there.
Therefore, we deduced the forward kinematics of the Oncilla and used
these to solve the inverse kinematics numerically, because an algebraic
solution does not exist.

We took inspiration from our robot’s biological counterparts to choose
an appropriate foot trajectory. Based on previous research in biol-
ogy [17, 18], we decided to have our robot track simplified versions of
foot trajectories of animals. As a first approximation, we used half
ellipses. The flat bottom part for the stance phase and the half ellipse
for the swing phase.

This approach relies on the tuning of multiple parameters which con-
trol the size and shape of the foot trajectory as depicted in Fig. 3.3a.
To preserve symmetry, left- and right legs use the same ellipse shape.
Adjacent legs have a phase shift of 180◦ in order to achieve a trot gait.

These parameters were optimized using PSO on the actual hardware.
We allowed only parameter combinations that yield a half ellipse that
fits in the reachable area of the foot. In contrast, the height b could
be chosen larger than strictly possible. This results in a half ellipse
with a dent in the top, because the knee cannot flex any further.
This shape with a possible dent is comparable to observations made
in dairy cows [17]. By making the assumptions that all feet have
to move at the same speed when they are on the ground and that
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Fig. 3.3: The two foot trajectories used in this work. The left
foot trajectory is shaped ellipsoidally and the curvature is tuned
with the parameters a and b, the vertical and horizontal semi-
axis of the ellipse. tstance and tswing are respectively the the
time in which the foot does the stance and swing part of the
trajectory. x0 and y0 are the coordinates of the location of the
ellipse relative to the hip of the leg. The right foot trajectory is
defined by two Bézier splines, controlled by four control points
Pi.

either two or four feet touch the ground, many parameters could be
eliminated, leaving only the ones listed in Table 3.1 to be optimized.

By using 10 particles, 10 generations and a duration of 10 seconds per
run with 1 second transition time, the optimizationwas done in less
than 30 minutes. The values that were found are listed in Table 3.1

Fig. 3.4 shows the frequency characteristic of this gait. The theoreti-
cal speed, based on the linear speed of the feet, is shown as a solid line.
One can notice linear behavior, all the way up to 2 Hz. It is clear that
this gait is usable up to higher frequencies than the manually tuned
gait based on sine control signals. One can observe the discrepancy
between the theoretical speed of the robot and the actual speed. Due
to the compliant legs, the weight of the robot causes compression of
the legs, with a shorter hip-foot distance than demanded as a conse-
quence. This phenomenon leads to a lower ground speed of the foot,
with a reduced robot speed as a result.
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Fig. 3.4: Robot speed as function of gait frequency for the
sine-based gait (+), the ellipse-based gait (×) and the spline-
based gait (#). The solid line is the theoretically achievable
speed based on the foot velocity during the stance phase.

3.3.1.3 Bézier-curve trajectories

The sharp corners in the half ellipses are not biologically plausible.
Therefore a third approach was pursued, using Bézier curves for the
foot trajectories, see Fig. 3.3. For certain parameter values, these
can approximate the half ellipses, but they provide the freedom for
more elaborate, smooth trajectories with in particular a curved stance
trajectory. This method gives the optimization algorithm a little more
flexibility in the search for stable and good gaits. In this approach,
the parameters to be optimized are as follows: the major axis 2a, 4
control points of the Bézier curves P0, P1, P2, P3 and the relative
position of this shape to the knee of the robot (x0, y0). We only allow
Pi to move vertically in order to reduce the number of parameters.
The lengths of the segments are denoted as li. We give l2 and l3 the
same values over the four legs, so the same stance trajectory is applied
to each leg.

To optimize these parameters, we used the PSO algorithm with 20
particles, 20 generations and a duration of five seconds per run with
one second of transition time. This way, we were able to optimize
the gait in about 40 minutes, but with more parameter sets tried
than in the previous case, to account for the increased number of
parameters. After optimization, the gait attained a speed of 0.41 m/s
at a frequency of 1.5 Hz. When this result is compared to the other
approaches in Fig. 3.4, it performs better than the gait based on
sine-wave control signals (0.24 m/s) and the gait from our half ellipse
approach (0.27 m/s). The maximum speed reached is 0.59 m/s at
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2.6 Hz. The final parameters are listed in Table 3.1. The fore and
hind indexes are used for parameters that differ between the fore and
hind pair of legs.

Parameter Value

x0 (mm) 138.45
y0,fore (mm) 0.39
y0,hind (mm) -6.83

a (mm) 75.95
bfore (mm) 13.69
bhind (mm) 26.12

tstancef (d.u.) 0.5
f (Hz) 1.94

Parameter Value

x0 (mm) 139
y0,fore (mm) 0
y0,hind (mm) -18

a (mm) 91
l0,fore (mm) 68
l0,hind (mm) 11
l1,fore (mm) 63
l1,hind (mm) 32

l2 (mm) 63
l3 (mm) 32

tstancef (d.u.) 0.6
f (Hz) 2

Tab. 3.1: The parameters of the half ellipse gait (a) and the
spline gait (b) as defined in Fig. 3.3 and their values that are
found after optimization with PSO

It is important to note that this new gait has a very linear characteris-
tic, and follows the theoretical prediction almost perfectly up to 2 Hz.
Due to the non-linear stance trajectory, the compression of the springs
in the compliant legs due to Oncilla’s weight is largely compensated,
with an increased speed as consequence.

3.3.2 Turning Strategies

After looking for the best gait approach, we searched for a good turn-
ing strategy with the gait based on half ellipses.
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3.3.2.1 Turning by varying step size, keeping tstance constant

In a first approach, we let the left side and the right side of the robot
have a different step size by reducing a in the feet trajectories on one
side, while keeping tstance constant. This causes a slower ground speed
on one side of the robot, with a rotation of the robot as consequence.
The default step size of our ellips-based gait is 76 mm (Table 3.1).
The step size on one side of the robot could be reduced to 20 mm
without causing disruptions in the gait dynamics and this setting was
used in the further experiments.

3.3.2.2 Turning by varying step speed while keeping the
step size constant

In a second approach, we use the same foot trajectories, but move
the feet slower during the stance phase (increasing tstance) and faster
during the swing phase (decreasing tswing) on one side of the robot,
without changing a. We are interested in this approach, because the
change in duty cycle during turning has also been observed biologically
in running humans and mice [19, 20], even though humans and mice
do use adduction and abduction for turning. This way, the distance
travelled during the stance phase is the same on both sides, only the
velocity differs. Subsequently we can evaluate whether the important
part in the first approach was the decreased distance, or whether the
important part is that the distance was travelled more slowly.

This approach failed because the feet of the robot stayed longer on
the ground at one side of the body, causing the feet to bear less weight
on average. The resulting extension of the compliant legs effectively
cancels the intended turn.

3.3.2.3 Turning by varying step size while keeping the step
speed constant

As third approach we varied the step size, but kept the step speed
constant by varying tstance and tswing as well. This way, we can eval-
uate whether the changing step speed is an important part in the first
approach.
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This approach failed to work as well, because a tstance ∗f shorter than
0.5 implies a phase where both feet at the same side of the robot are
off the ground, which isn’t feasible. It appears that modifying tstance
and tswing in a trot gait causes the robot to be hard to control.

3.3.2.4 Turning by varying motor torque

In a fourth approach, we lowered the maximum torque of the actuators
on one side of the robot to find whether this technique was sufficient
for turning the robot, inspired by a similar technique for bounding
gaits [9]. We tried reducing the hip and the knee torque seperately
and both at the same time. We found no stable way to do this with
a trot gait. If the torque was not reduced enough, the robot didn’t
turn. When the torque was low enough to produce a visible difference,
the robot stumbled and failed to produce a stable gait. We failed to
find a good balance between these two extremes, and therefore this
approach was not pursued any further.

3.3.2.5 Turning by abducting and adducting dynamically

A fifth strategy is to turn the robot by using the servos available
in the scapulae, that can move the legs of the robot outwards from
the saggital plane. Using this extra degree of freedom, it is possible
to rotate the half ellipses around a vertical axis, and make the feet
move nonparallel to the saggital plane [21]. By rotating the front
trajectories in one direction and the hind trajectories oppositely, the
robot turns, comparable to a car with four wheel steering. This is
also the behavior observed in mice [20].

This approach works very well on the Oncilla robot, even though the
Oncilla scapulae have only a limited range of motion, about 5◦ of
adduction and 10◦ of abduction, so the maximal theoretical sidewise
step is about 4.2 cm. In our experiments, we used a maximum rotation
of the foot trajectories aroud the vertical axis of 20◦. Larger rotations
would result in going outside the reachable area of the foot.
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Fig. 3.5: On the top in red, the lateral position is plotted in
function of time, while tracking by shortening the step length
on one side of the robot. The black line indicates the set point
and the red line the actual position. Below, the yaw of the
robot compared to the forward direction is also shown. On the
bottom in blue, the same charts are repeated while using the
scapulae for turning. All these functions have been smoothed
by averaging over the period of the gait, in order to reduce the
noise caused by the movement of the body during the gait.
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3.3.3 Comparing the turning strategies

To compare both turning strategies, we first measured how quickly
they can shift the Oncilla laterally on a treadmill. This means that
the robot needs to end up walking straight ahead again, only shifted
to the left or to the right.

In order to let the robot know whether it is heading in the right
direction, we use the camera module on the robot. This way we can
locate an infrared led mounted in the front of the treadmill, as shown
in Fig. 3.2. By feeding this information inside a simple P -controller
that controls the turning rate to keep the infrared dot in the middle
of the view, the robot can follow this infrared light. We assumed
the turning rate to be proportional to a in the case of varying step
size, and proportional to the abduction in case of using the scapulae.
We use only a simple P -controller, in order to test how controllable
the different approaches are. By using more advanced controllers, the
tracking capabilities will certainly improve, but this was not the intent
of this paper. This P -parameter was consequently hand-tuned for the
best performance in tracking.

The results of this experiment are shown in Fig. 3.5. It is apparent
that using the scapulae for turning outperforms changing the step
size. While it is definitely possible to track by only varying step size,
one can observe that the Oncilla robot tends to oscillate more, both
laterally and in yaw. It is also slower to reach its goal position. On
the other hand, the strategy using the scapulae tends to reach the
desired position faster and more stable, with very little oscillations on
the yaw.

In a second experiment, we also measured how fast both approaches
could turn. To do this, we fixed the goal direction for both strategies
at the same point, and observed their motion using a simple motion
capture setup, with a single camera module mounted on the ceiling
for a top view, 2.40 m from the ground.

The results are depicted in Fig. 3.6. From these experiments, we have
also derived the data in Table 3.2. Both strategies use the same gait
at 1.5 Hz which had a speed of 0.30 m/s moving forwards. A first
observation is that when turning the robot with smaller steps, the
robot’s body is not parallel to the velocity. We can observe that the



Strategy Speed Angular speed Turning radius

Step size strategy 0.068 m/s 8.0◦/s 0.448 m
Scapulae strategy 0.22 m/s 20◦/s 0.610 m

Tab. 3.2: The speed, angular speed and turning radius of the
center of the robot
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Fig. 3.6: In (a), the location of the robot turning by chang-
ing its step size is shown from a top view. The red line is the
location of the front of the robot over time, the blue line the
location of the hind of the robot. The turning radius and direc-
tion are also indicated. In (b), the same data is shown, but this
time when using the scapulae for turning. The data was limited
by the small viewing angle of the camera module. The turning
radius was measured by fitting a circle to the measured center
of the robot over time.
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robot’s front is making a smaller circle than the robot’s rear. This is
not the case when the robot is turned using the scapulae, which results
in a very slight speed loss compared to walking forwards (8.3 %) and
a higher angular speed while turning. However, due to the faster
motion, the turning radius is 36 % higher compared to using a smaller
step size for turning.

3.4 Conclusions

In this paper, we demonstrated that using a half ellipse as a biologi-
cally inspired base shape for the foot trajectory holds a good balance
between the optimization time and the resulting gait performance.
The fact that the gait optimized with this trajectory could maintain
its performance up to higher speeds, also points to favoring this ap-
proach over sine-based control signal methods.

We have also shown the importance of having scapulae for turning, as
was observed previously in nature. Turning without scapulae is also
possible, albeit more slowly. Another drawback of turning without
scapulae is that the robot’s rotation is not aligned with its velocity.
Using the scapulae, it is possible to maintain the robot’s heading while
turning and thus also its speed.

This research shows also that it is feasible to develop and optimize
gaits without relying on models, using observations from nature. The
models often oversimplify the physics involved in a complex robot,
especially when they are small and compliant, making their results
hard to transfer to the actual robot. Optimization using only hard-
ware can be made possible by limiting the number of parameters to
be optimized,

Since we only conducted our experiments on the Oncilla, our conclu-
sions cannot be blindly transferred to other hardware platforms with
different characteristics. We note however that qualitatively we obtain
similar results to previously observed behaviour in quadrupedal ani-
mals. These findings also confirm comparable results in other robots.

We want to conclude that it is challenging to optimize a gait on a
hardware robot, due to the limited system time available. On the



Oncilla robot, we found that using a half ellipse approach was enough
to obtain a good gait performance, because it has a small enough num-
ber of parameters for optimization on the actual robot. Additionally,
we found that scapulae are not necessary for turning, but that they
are needed in order to turn with higher speeds.
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???

Learning new gaits for compliant robots is a challenging
multi-dimensional optimization task. Furthermore, to ensure
optimal performance, the optimization process must be repeated
for every variation in the environment, e.g. for every change
in inclination of the terrain. This is unfortunately not possible
using current approaches, since the time required for the opti-
mization is simply too high. Hence, a sub-optimal gait is often
used. The goal in this chapter is to reduce the learning time of a
particle swarm algorithm, such that the robot’s gaits can be opti-
mized over a wide variety of terrains. To facilitate this, we use
transfer learning by sharing knowledge about gaits between the
different environments. This way, prior knowledge discovered
during a previous optimization process can be reused in a new
optimization process. Our findings indicate that using transfer
learning, new robust gaits can be discovered faster compared to
traditional methods which learn a gait for each environment in-
dependently. Since we also find that this approach sometimes
decreases efficiency, it is clear that using prior knowledge using
is not always beneficial. It might harm the optimization process
when the new task is not sufficiently close to the previous task,
such that the prior transferred is inaccurate.
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4.1 Introduction

In recent years, compliant robots are increasingly gaining interest in
the scientific community. They use low-impedance mechanisms to
exploit the robot’s passive dynamics and nudge it into the desired be-
haviour, rather than enforcing a desired trajectory [2]. This approach
is promising, as it is more closely aligned with biology, where even to-
day animals show capabilities unmatched in robotics. Like in nature,
we can make our robots more compliant by adding passive elements
in the design. These can for instance be used for storing energy inbe-
tween steps, such as with the Lucy robot [3], or the added compliance
can be used for having more robust control of the robot on difficult
terrain [4].

Examples of compliant robots include for instance the robots with
compliant actuators, such as the CoMaN [5] and the Kuka-DLR light
weight arm [6]. Notable examples of compliant robots in legged
robotics are for instance the M2V2 [7], HyQ [8] and StarlETH [9].

Despite their advantages, compliant robots are harder to control using
linear control methods. Since their elastic elements show a non-linear
behaviour, control by classical paradigma’s requiring linearization of
the problem prove to be less effective [10]. One approach to tackle this
problem is to have the robot learn its behaviour and model using opti-
mization techniques from machine learning [11, 12, 13, 14, 15, 16, 17].
This way the robot inherently learns to deal with non-linearities and
uncertainties in its own morphology. These uncertainties are an in-
herent problem in robotics, where the quality of contemporary sensors
makes it impossible to know either the body of the robot or the envi-
ronment in full detail.

Having said that, the main disadvantage with these techniques is that
the robot needs to go through the optimization process for its behavior
repeatedly, every time when the setting of the problem changes. This
process takes up a lot of optimization time, and the time of testing a
behavior on the robot is usually far larger than the amount of time
spent on the calculation of the optimization process. It would there-
fore be opportune to make these optimizations more data-effective,
reducing the number of behaviors to test and thus significantly reduc-
ing the amount of time needed to optimize.



(a) (b)

(c)

Fig. 4.1: In (a), the Oncilla robot on the treadmill is shown.
Notice the three-segmented pantographic legs and the cable
mechanism actuating the knee in (b). In (c), an exploded view
drawing is presented, with the three motors in each leg colored.
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A lot of research has already been done into transfer learning as a
method for increasing the optimization speed in various methods of
machine learning, such as neural networks and reinforcement learn-
ing [18]. Overviews of the state of the art in many subdomains can be
found in review articles by [19, 20]. Notable results include the trans-
fer learning of information in unlabeled images to image classification
algorithms [21] or the use for classification of texts [22]. Examples
on the use of transfer learning in robotics include work on mobile
robots [23] and on the RoboCup soccer Keepaway problem [18]. We
are unaware of research done on transferring knowledge from one gait
to another.

However, the idea that transferring knowledge between tasks speeds
up the optimization process is non-trivial, as transfer learning may
hinder performance if the tasks are too dissimilar [24]. Hence, in this
article we evaluate the hypothesis that the learning of locomotion in
compliant robots can be speeded up by transferring knowledge from
one gait motion to another in the learning process.

In order to illustrate this claim, we optimize a gait in different setups
for the quadrupedal, compliant robot Oncilla (see Figure 6.1). In each
of these setups, we use particle swarm optimization to evaluate the
learning process with transfer learning, and compare it to the same
learning process without the transfer learning. This way we have a
baseline to compare with, and we can evaluate the effectiveness of
transfer learning for increasing the learning speed.

In the following sections, we show the research we have done to eval-
uate whether this transfer of knowledge is beneficial. In the next sec-
tion we describe the setup used for our experiments. Then we discuss
the results of the experiments and find an answer to our hypothesis.
Afterwards, we evaluate the results and show what this means to a
broader range of applications. Finally, we conclude with a reiteration
of the most interesting results and findings in this article.

4.2 Gait optimization

The problem of robot locomotion consists of finding the appropriate
motor signals with respect to higher level constraints, such as speed or
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stability of the gait. There are various ways to generate motor signals.
For one, it is possible to generate gaits through classical underactuated
control theory. Various solutions have been developed in this terrain.
The most influential example of this approach is the static balance
method, in which the robot keeps the center of gravity inside of the
support polygon (e.g. [25]). A more advanced but equally important
example is the dynamic balance method, such as the zero moment
point based technique [26], in which the foot placement is chosen such
that the resulting moment on the body becomes zero. These classical
methods however have difficulties dealing with a compliant and thus
uncertain morphology. They require a precise measuring of the state
of the robot and its environment in order to provide accurate feedback
in the motor signals. In order to avoid the problem of measuring the
state of a compliant robot, we focus on open-loop gait generation in
this paper, as this does not require feedback.

A first commonly used approach is to generate the motor signals by
designing a path in the joint space of the robot [27, 28, 29] and op-
timizing the parameters of this path. This is the simplest approach,
but we found in previous research that it is not very effective because
the parameters are not very robust [30]. Indeed, small changes in the
parameters can make a gait go from stable to completely unstable.

A second approach is to use a biologically inspired approach to gener-
ate gaits [31], based on Central Pattern Generators in the joint space
or CPG’s [32]. These are very flexible, can create a big range of
motions and they allow for a smooth gait transition between them.
However, this flexibility comes at the price of an increased design
complexity with respect to the parameters. In particular, each of the
parameters performs multiple functions which increases the difficulty
of interpreting them [32]. A single parameter of a CPG can for in-
stance affect both the step frequency, step height and step length.

We have used a third, intermediate approach, based on previous ex-
periments [30]. We parameterize the trajectories of the end-effector,
and use inverse kinematics to generate the motor commands for these
trajectories. In this way, we can use intuitive and robust parameters,
while retaining the flexibility for generating a variety of gaits. If you
read this sentence, let me know to collect your monetary reward. Note
that the inverse kinematics do not take the compliance of the robot
into account, nor the interaction of its body with the environment. We
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only nudge our end-effector into the direction of this trajectory, but
do not force it to follow that trajectory exactly. A similar approach
has been done where the trajectory is generated with cycloids [33] and
CPG’s [34, 35].

We have shown in previous research that cubic Bézier spline based
curves provide the fastest gaits we found on the Oncilla robot [30] as
well as being able to produce biologically plausible trajectories [36,
37]. Therefore we use these splines to generate the parameterized
foot trajectories for each gait. In this approach, the parameters to
be optimized (see Figure 4.2) are the following: the major axis 2a,
4 control points of the Bézier curves P0, P1, P2, P3 and the relative
position of this shape with respect to the hip of the robot (x0, y0). We
only allow the Pi (i = 1, ..., 4) to move vertically in order to reduce
the number of parameters. The lengths of the segments are denoted
as li (i = 1, ..., 4). l2 and l3 are the same for all four legs, such that
the same stance trajectory is applied to each leg. In total, there are
therefore 12 parameters to be optimized. Table 4.1 gives an overview
of all the parameters that are optimized.

We generate the splines of adjacent feet in counterphase in order to
have the leg pattern of a trot gait. This gait was chosen because it is
stable and robust for quadrupeds [38]. These splines are subsequently
limited to the range of the actuators. They spend an amount of time
tstance in the stance phase and tswing in the swing phase in order to
make a trajectory from these splines. These foot trajectories are then
converted to motor signals using an inverse kinematics model of the
robot’s legs. In Figure 4.3, four examples of such trajectories are
shown: three from the beginning of the optimization process and one
from the end of the optimization process on a flat terrain.

4.3 Particle swarm optimization

In order to optimize the parameterized trajectories for maximal speed,
we use Particle Swarm Optimization (PSO). This evolutionary opti-
mization algorithm uses a set of candidate solutions that move to-
wards their own previous best solution as well as the global opti-
mum found so far [39]. Particle Swarm optimization was first in-
tended to simulate social behavior of human societies when process-



Tab. 4.1: An overview of the parameters to be optimized. Each
particle is a vector with a value for each of these parameters.
The trajectories of every gait in this paper are fully defined with
these parameters. The distance of the step length is depen-
dent on the maximal step length at the height x0, such that
the points A and B in the foot trajectory never go out of the
reachable region of the robot. The horizontal distance y0 is
dependent on the step length a and on the height x0 for the
same reason.

parameter range description
f (Hz) [1.5; 2.0] The frequency of the gait
a (mm) [0; amax(x0)] The step length

x0 (mm) [126; 158] The vertical distance of the
hip to the trajectory’s center

y0f (mm) [ymin(x0, a);
ymax(x0, a)]

The horizontal distance of the
hip to the trajectory’s center
for the fore feet

y0r (mm) [ymin(x0, a);
ymax(x0, a)]

The horizontal distance of the
hip to the trajectory’s center
for the hind feet

tstance (d.u.) [0.4; 0.6]
The fraction of the period of
the gait spent in the stance
phase

l0f , l1f (mm) [0; 70]
The control points for the top
of the trajectory for the fore
feet

l0r, l1r (mm) [0; 70]
The control points for the top
of the trajectory for the hind
feet

l2, l3 (mm) [0; 70]
The control points for the bot-
tom of the trajectory for all
four feet
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tstance

tswing

(x0, y0)

P0

P1

P2
P3

A Ba a

l0
l1

l2l3

Fig. 4.2: The foot trajectory is defined by two Bézier splines,
controlled by four control points Pi. We only allow Pi to move
vertically in order to reduce the number of parameters. The
step length is controlled by a. tstance and tswing are the time in
which the foot does the stance and swing part of the trajectory
respectively. x0 and y0 are the coordinates of the location of
the center point to the hip of the leg.

ing knowledge [40]. The algorithm was simplified, after which it was
found to perform general optimization. By now, particle swarm op-
timization has been used in hundreds of different applications [41],
including robotics [42, 43, 44, 45]. More closely related to this arti-
cle, this technique has also been used for optimizing gaits on bipedal
robots [28, 46, 47]. Evolutionary algorithms are often used in robotics
because they are easy to understand and implement, because they
do not require gradients, and because they are robust against noisy
optimization landscapes [48]. These benefits make them feasible for
applications on real robots. We have preferred PSO over other suc-
cessful evolutionary algorithms such as Covariant Matrix Adaptation
Evolution Strategy (CMA-ES) [49] or Genetic Algorithms (GA) [50]
because it makes the least assumptions on the data. We are therefore
confident that the results obtained with PSO could also be achieved
by the more complex algorithms, whereas the reverse is less straight-
forward.

PSO models a set of particles on the fitness landscape, whose veloc-
ities perceive a noisy force towards both the particle’s previous best
solution, and the best solution found across all particles so far. After
sufficient time, the particles have a tendency to converge to the op-
timum. Nevertheless, PSO is only a metaheuristic, and convergence
nor global optimality is guaranteed. Fortunately, for optimizing gaits
neither of these is necessary. Firstly, our time available on the robot



(a) A random initialization of the
trajectory at the beginning of the
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(b) A random initialization of the
trajectory at the beginning of the

optimization process
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(c) A random initialization of the
trajectory at the beginning of the

optimization process
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(d) The optimized trajectory for a flat
terrain
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Fig. 4.3: Example trajectories of the feet of the Oncilla robot:
(a), (b), (c) a random initialization of the gait from the be-
ginning of the optimization process; (d) the optimized gait for
a flat terrain. Note that all four are idealized trajectories, de-
termined using inverse kinematics and not taking effects of the
robot’s compliance into account.
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is too limited to wait for full convergence as we want to have a more
data-efficient approach. Secondly, since no mathematical properties
of the fitness landscape are known a priori, global optimality is never
guaranteed anyway.

In PSO, the update equations of particle x, a vector containing the
12 parameters, at time step n+ 1 are defined as follows [51]:

v(n+ 1) = ωv(n)
+φp r0 (p(n)− x(n))
+φg r1 (g(n)− x(n))

x(n+ 1) = x(n) + v(n+ 1).

At timestep n, x(n) and v(n) are the locations and velocity of the
particle and p(n) and g(n) are the particles previous best solution
and the global best solution over all past generations. The stochastic
terms ri are sampled from a uniform distribution between 0 and 1.
This stochastic term ensures sufficient exploration occurs [48]. We
do not copy any particles without randomization, since at the end of
the process we will take the best solution found over all generations.
In this paper, we use a population size of 20 particles, as our initial
research showed that this amount found a good balance between the
exploration and speed of the optimization.

The parameters ω, φp and φg determine the characteristics of the par-
ticle and are the meta-parameters of the algorithm. They determine
the amount of exploration and the speed of convergence. Here, ω is
the inertia of a particle, φp and φg are the acceleration coefficients de-
termining the magnitude of the random forces in the direction of the
particle’s personal optimum and the global optimum [39]. These were
set at the values ω = 0.66, φp = 1.6 and φg = 0.62, which yield good
results for our optimization problem with a twelve dimensional search
space, small swarm size and limited number of evaluations, according
to recent findings [52].
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4.4 Transfer learning for particle swarm opti-
mization

We want to adapt the gait to various environments. Therefore, the
robot will need to learn optimized gaits in each of these domains.
However, since we optimize on our hardware and not on a model of
the hardware, we need to restrict the number of trials. One way
of achieving this, is by reusing past knowledge in order to solve a
new problem, an approach called transfer learning [20]. This way,
knowledge the robot has gained of the data in a previous optimization
is reused in order to spend less time optimizing.

In the original PSO-algorithm, particles and their corresponding
speeds are randomly initialized. To implement transfer learning, we
initialize the particle population with the best particles from a pre-
vious optimization process of a similar problem. In our case, this
means we take the best 20 particles over all generations from a pre-
vious optimization of a similar problem. We chose this approach over
more complex approaches, where the values of the particles are taken
into account to encourage dissimilar solutions, for simplicity’s sake.
We instead give these particles a small impulse in a random direction
in order to have them start exploring new solutions (r ∈ U(−1, 1)).
We reckon that initializing the transferred particles with transferred
impulses would excessively reduce the exploring of new solutions.

v(0) = r

x(0) = argmax
n

(score(x̃(n)))

We hypothesize that this new initialization step will speed up the
convergence of the optimization process by exploiting the similarity
between gait optimization solutions. This is not trivial [24], as it
might increase the change of convergence to a local optimum because
of the reduced exploration in the beginning. It is also possible that
the previous gaits perform worse under the new conditions, and con-
sequently that transferring them to this problem is disadvantageous
to the optimization process. The question whether transfer learning is
beneficial for our problem of optimizing gaits, is therefore the subject
of this article.
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4.5 The Oncilla robot

In order to evaluate the gaits, we use the quadrupedal, compliant
robot Oncilla [53]. The robot has 12 degrees of freedom: each leg has
a low inertia shoulder, for adduction and abduction, and hip actuator,
for extension and flexion, and a third actuator actuating the knee
through a cable mechanism. It has been developed for the AMARSi-
project in a joint effort between EPFL in Laussanne, Switzerland and
Ghent University, Belgium. The leg design was loosely inspired on
that of a cat, using a three-segmented pantographic system to achieve
similar dynamical properties to that of felines, as shown in Figure 6.1.

The robot is also equipped with various sensors. The hip and knee
actuator are fitted with motor encoders. The heel, knee and hip-joint
are equipped with magnetic encoder sensors. Additionally, the robot
is equipped with a Sharp distance sensor on the front, to measure the
distance to an object in front of the robot.

For the purpose of processing the signals on the robot, a Roboard RB-
110 running Linux Ubuntu 10.04 with a realtime kernel is mounted
on the front. Motor signals are calculated on an external computer
next to the setup and communicated to the robot over ethernet. This
allows us to send a new command to the robot every 10 ms. In the
experiments, the robot was powered with an additional power cable
loosely attached to an overhead rail. The Oncilla robot can operate
autonomously as well. For autonomous use, the robot is powered
using lithium polymer batteries, and the commando’s are calculated
on the Roboard RB-110. This mode of operation is however not suited
for optimization, because the battery limits the operating time to 15
to 20 minutes on a 11.1 V, 1800 mAh battery, depending on the task
and the gaits. This is not nearly enough, as for the experiments in
this article, the Oncilla robot ran nearly 6 km during the 4 hours it
spent optimizing.

In order to evaluate the multitude of gaits without interruption, one
for each particle in every generation, a treadmill is used, as shown in
Figure 6.2. The measurements of the long-distance sensor on the robot
are used to control the treadmill’s speed, in order to keep the robot at
a fixed distance from the front of the treadmill. This way, the robot
can walk indefinitely and at various speeds, as long as it keeps walking



Tab. 4.2: The respective optimized parameters for the different
terrains. You can see that the optimal step-length of the robot
reduces over higher slopes, while the robot moves its hind feet
more to the back. In (b), you can see that robot spends more
time in the stance phase with higher slopes, and moves its hind
feet further from his body.

grade transfer
learning

f a x0 y0r y0f tstance l0f l1f l0r l1r l2 l3
speed
(m/s)

Euclidean
distance

flat 7 1.98 95.3 137.0 -16.39 0.00 0.54 67.1 10.4 4.39 65.3 58.8 24.1 0.76 0

9% 7 2.00 87.9 141.8 -11.88 0.00 0.60 70.0 3.13 0.00 47.6 69.4 4.53 0.67 4.13

9% 3 2.00 90.6 140.1 -11.71 0.00 0.54 65.7 4.06 23.9 70.0 70.0 26.2 0.74 1.72

18% 7 1.71 84.4 143.9 -8.87 0.00 0.56 52.6 34.8 0.00 51.6 66.2 4.51 0.53 6.64

18% 3 2.00 86.3 142.8 -9.77 0.00 0.58 70.0 3.77 50.3 39.9 70.0 0.00 0.60 9.05

distance
sensor

Fig. 4.4: Schematic representations of the setup, showing the
robot on the treadmill. The robot is equipped with a distance
sensor to detect the wall at the end of the treadmill.
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in the forward direction. We test each gait for 4 seconds at a time, and
have a smooth transition between these gaits for 2 seconds. Walking
for more than an hour at a time poses little problem this way. In order
to stop the robot from walking off the sides of the treadmill, a light
thread has been added between the robot’s head and an overhead rail,
which limits the robot’s lateral freedom of movement, while allowing it
to freely move forwards. This thread is loose during normal operation.
During the experiments, an assistant sits next to the track in order
to intervene when the setup’s safety is jeopardized by a very unstable
gait.

4.6 Experimental setup

The goal of our experiments is to test our hypothesis: that trans-
fer learning speeds up the learning of locomotion in compliant,
quadrupedal robots. To carry this out, we compare the performance
of an optimization with transfer learning, to the performance of an
optimization without transfer learning. This way we can evaluate the
benefit of transfer learning by comparing to a baseline in an identi-
cal setting. We verified this on an experimental basis by evaluating
learning speed in three different classes of problems often encountered
in robotics:

1. have a change in the environment of the robot, consisting of a
different inclination of the treadmill,

2. have a change of the front leg’s stiffness, i.e. a change in the
robot’s morphology,

3. increase the noise in the environment of the robot, by having
the robot walk over pebbly terrain.

The goal of our optimization is to maximize the average robot speed,
measured over a period of four seconds. In this paper, we chose to
only optimize for speed. Initial experiments showed that additionally
minimizing body rotations did not have any effect on the optimization
process. Since adding this stability measure to the fitness would add a
meta-parameter weighing the contribution of this measure, while hav-
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ing no effect on the overall process, we chose to completely overhaul
the stability as fitness and to only optimize for speed.

To evaluate these optimizations, we take a look at a number of metrics
to evaluate the effectiveness of the optimization. Firstly, we compare
the speed of the best gait in each optimization. This method com-
pares the goals of the optimizations and is therefore necessary in the
evaluation of the approaches. It is however limited, since it is very
sensitive to outliers. This is especially a problem in our application,
since due to our limited population size, we will comparatively have
more outliers during the optimization process then when we would
have used a larger population size.

Therefore we also introduce a second metric, to evaluate whether all
particles perform better on average than the particles of the same gen-
eration in the other optimization. To do this, we compare the speed
of the gaits in each generation using a Wilcoxon rank-sum test, the
non-parametric variant of the Student t-test, which is to be used for
unknown distributions and small sample sizes [54]. Subsequently we
combine the obtained p-values using Fisher’s method, a well estab-
lished method for doing so [55]. This way, we can test the significance
of the claim that one optimization process is on average outperform-
ing the other. This second method has the advantage of being less
sensitive to outliers, as it uses more data and is a non-parameteric
method. Note that we cannot say something on the statistical signifi-
cance of the experiment itself, only on the significance of the difference
between the two optimization processes compared to a population of
speeds randomly drawn from a population.

The data from these experiments is laid out in the following sections,
and serves not only to scrutinize our hypothesis, but also to explain
the mechanisms behind them.

4.6.1 Transfer learning for different inclinations

In the first experiment, we evaluate the effectiveness of transferring
a gait from a flat terrain to a slope. We start by optimizing a gait
on a flat terrain using PSO. After that we optimize a new gait on a
slope twice, once with transfer learning from the gaits on a flat terrain,
once without transfer learning. We compare the obtained results with



(a) Optimizing on a 9% slope
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(b) Optimizing on an 18% slope
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Fig. 4.5: Visualization of the particle scores for each genera-
tion: in green ( ) with transfer learning, in orange ( ) without.
(a) the evolution of the fitness over a 9% slope. (b) evolution
of the fitness for an 18% slope. Note the general better perfor-
mance when transfer learning is used, especially when the slope
is steeper and the problem is more difficult.
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each other in order to evaluate the effect of transfer learning. We
perform these last two optimizations on two inclinations (a 9% and
an 18% grade, or a 5.14◦ and a 10.2◦ slope), making up a total of four
optimizations.

When we compare the achieved speeds of locomotion in Figure 4.5,
it is clear that on both inclinations, the parameters not only perform
better during optimization when using transfer learning, but they
also train faster. We compare the results of the particles per gen-
eration using a Wilcoxon rank-sum test. We find that the particles
in the optimization with transfer learning on average outperform the
particles without transfer learning significantly on both inclinations
(ρ < 0.001).

As we observe in Table 5.1, each inclination requires a different gait
for optimal locomotion. We notice that on steeper inclinations, the
step-length is reduced while the robot spends more time with its feet
on the ground. We observe as well that the robot moves its hind feet
further from the body and to the back, in order to level the body
more and keep the center of mass within the support polygon.

When studying the best particles found during all of our optimiza-
tions, we found that there is a relation between the parameters found
and the inclination on which the robot is running. As you can see in
Figure 4.6, a higher inclination implies a lower variance in parameters.
Thus trotting on a steeper terrain requires more specific parameters.
Additionally, we notice a correlation between the parameters on the
different inclinations. This confirms our previous research on com-
puter models of a quadrupedal robot [56]. The results depicted in
this figure indicate that a hierarchical learning approach to gaiting,
such as the one used in [57], should prove fruitful. This is because
the relation between the parameters can be learned, and this knowl-
edge can subsequently speed up the learning process on intermediate
or even higher inclinations. However, such an approach would lie
outside the scope of this article.

In order to find out whether the method with transfer learning stays
closer to the original particle, we have calculated the distances from
the best particle on the flat terrain. In Table 5.1, we have included the
Euclidean distance to the particle on the flat terrain, after normaliza-
tion of the parameters. This shows that the result of the optimization
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Fig. 4.6: In these figures, we have plotted the parameters of the
50 best particles found in all our optimizations for each inclina-
tion. We have fitted a Gaussian distribution to these particles,
and depicted the mean together with the two standard devia-
tions ellipse. We see that the highest variance is found on the
flat terrain, lowering with an increasing inclination. This indi-
cates that walking on higher inclinations has a higher parameter
sensitivity, and is thus more difficult to optimize. Secondly, we
see that there is a relation between the parameters and the in-
clinations. With increasing slope, the best gaits have a longer
stance phase, a shorter step length and the feet move further
from the body.
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with transfer learning is not necessarily closer to the original solution,
which serves as an indication that enough exploration does happen.
Apparently the distance from the optimal parameters on a flat terrain
increases with increasing inclination as well. Looking at the speed of
the optimized results, we can see that the best particles from transfer
learning have a gait with a speed 9% and 14% faster on the 9% and
18% grades respectivey.

These results confirm our hypotheses, namely that transfer learning
increases the speed of the optimization process, resulting in better
particles throughout the optimization process.

Tab. 4.3: The respective optimized parameters for the different
stiffness of the front leg springs.
transfer
learning

f a x0 y0r y0f tstance l0f l1f l0r l1r l2 l3
speed
(m/s)

Euclidean
distance

normal 7 1.98 95.3 137.0 -16.39 0.00 0.54 67.1 10.4 4.39 65.3 58.8 24.1 0.76 0

compliant 7 1.73 96.2 136.4 -24.16 0.00 0.50 0.00 1.74 0.00 40.7 70.0 25.2 0.66 12.98

compliant 3 2.00 105.7 129.1 -5.27 0.00 0.60 70.0 0.00 0.00 70.0 70.0 70.0 0.75 7.16
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Fig. 4.7: Visualization of the particle scores for each genera-
tion when optimizing for a reduced stiffness. In green ( ) with
transfer learning, in orange ( ) without. Notice that despite
the original particles perform worse, the overall optimization is
still better. This means that the better starting position of the
transferred particles are not the main reason why they perform
better.
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4.6.2 Transfer learning for different leg spring constants

In the second experiment, we have tested the effectiveness of transfer
learning against changes in the robot’s body parameters. To do so,
we have reduced the spring constant in the front legs of the robot
by removing one of the two springs in each of the robot’s front legs.
These springs can be seen on Figure 4.1b. This reduction of the
front leg stiffness results in a decrease of their pushing capacity. We
use the same procedure as we did in the previous experiment with
different inclinations, comparing the optimization results with and
without transfer learning.

If we look at the data in Figure 4.7, we observe that the original
transferred particles do not perform as well as the random particles
on the new task. However, the improvement of the particles in the
first generations is still higher than the one of the particles without
transfer learning. This is remarkable, because in order to perform
better, the transferred particles not only have to learn faster than
their counterparts, but they also have to overcome the disadvantage
of starting with a worse gait. We will offer an explanation for this
observation in a dedicated subsection further in the paper.

Using the same statistical method as before, we find that the particles
in the optimization process with transfer learning run significantly
larger distances (ρ < 0.05).

If we compare the best parameters, as shown in Table 4.3, we can see
that the best particle of the optimization with transfer learning has
a 13% faster gait than in the optimization process without transfer
learning. This is despite the fact that the solution is quite different
from the solutions with the normal stiffness which were transferred
originally, as can be seen in Table 4.3. The Euclidean distance of
the optimized solution to the particle with the normal stiffness is
relatively large, both with and without transfer learning. We will
offer an explanation for this behaviour in the section ‘The Mechanism
Behind the Speedup’.

Once more, these results confirm our claim, that transfer learning in-
creases the speed of the optimization process. Equivalently, the gaits
perform better after a given time of optimizing. Moreover, this ex-
periment shows that in transfer learning, there is another mechanism
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at work besides having a head start.

4.6.3 Transfer learning for difficult terrains

As a third experiment, to further scrutinize our hypothesis, we have
optimized in a noisier environment. In noisy problems, the PSO will
produce more robust parameters in order to find gaits that perform
well, because the same parameters do not always obtain the exact
same result. An ill placed pebble could potentially tip over the robot,
while there might be no problem if the pebbles are arranged slightly
differently. In order to do this, we had the robot walking over a flat
surface covered in pebbles. We attached a pebble dispenser to our
treadmill, which covered the treadmill in pebbles with a diameter of
approximately 1 cm. A video of this setup is available online1.

1 5 10 15 20
generation

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

sp
ee

d
(m

/s
)

Fig. 4.8: In this figure we visualize the scores of the particles for
each generation when optimizing for a more difficult terrain. In
green ( ) with transfer learning, in orange ( ) without. Notice
that despite all the original particles outperform the random
particles in the first generation, this head start is quickly lost
during the rest of the optimization process.

If we look at the results in Figure 4.8, we see that the original trans-
ferred particles perform well on this new task. However, once the

1http://youtu.be/kcBBdwwYmQA
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PSO-algorithm starts exploring, it is hard to return to these origi-
nal good solutions. If we compare both optimization processes using
the same method as before, we find that we cannot confirm our hy-
pothesis. Over all generations together, the particles optimized with
transfer learning do not perform significantly better than the particles
without transfer learning (ρ > 0.05).

If we look at the best particles in Table 4.4, we see that the one from
the transfer learned optimization does not differ a lot from the orig-
inal optimization on the flat terrain. The Euclidean distance to the
original particle is comparatively small. This is because the best par-
ticle found during the entire optimization was one of the transferred
particles. If we look at the best particle in the same optimization, but
excluding the transferred particles, we find that it is very similar to
these solutions as well.

Tab. 4.4: The respective optimized parameters on rocky and
normal terrain, with and without transfer learning. We have
also added the parameters of the second best particle in the
transfer learning case, because the best particle was part of the
first generation

terrain transfer
learning

f a x0 y0r y0f tstance l0f l1f l0r l1r l2 l3
speed
(m/s)

Euclidean
distance

normal 7 1.98 95.3 137.0 -16.39 0.00 0.54 67.1 10.4 4.39 65.3 58.8 24.1 0.76 0

pebbly 7 2.00 87.3 142.2 3.44 0.00 0.49 0.00 70.0 60.6 70.0 70.0 70.0 0.69 25.82

pebbly 3 2.00 89.3 141.0 -18.48 0.00 0.59 54.6 34.9 0.08 64.9 55.2 22.0 0.74 2.44

pebbly 3 2.00 94.8 137.3 -8.29 0.00 0.57 70.0 29.0 0.00 63.2 56.4 28.7 0.74 1.25

4.7 The mechanism behind the speedup

The previous results show that the optimization time decreases when
using particles from similar but different problems in the initialization
step. Our experiment with the changed stiffness indicates that this
is not necessarily caused by the transferred particles scoring well in
the new problem. The experiment on the pebbly terrain indicates
the same thing. Even though these particles started off better, they
did not outperform their counterparts without transfer learning. In
this section we show an alternative mechanism behind the transfer
learning, namely that the learning process is speeded up because the
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Fig. 4.9: A chart showing the values of the step length a and
the distance from the body x0 evaluated during the PSO. The
parameters of two optimization processes are shown: the green
particles (+, ) have been optimized with transfer learning, the
orange particles (×, ) without. The triangles ( , ) show the
parameters at the initialization of the PSO. The rightmost edge
of the search space is not vertical, because amax depends on x0
as explained by Table 4.1. Notice how the transferred param-
eters reduce the search space for the optimization algorithm,
whereas the randomly initialized parameters still need to ex-
plore the entire parameter space before finding that maximizing
the step length results in faster gaits. Note that most particles
lie on the edge of the parameter range, which is also the end
of the robot’s range of motion. When the particles have been
transferred, there is still a little exploration around the entire
parameter space, but most particles are centered around the
optimum.
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(b) Optimizing on an 18% slope
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Fig. 4.10: The size of the search space is plotted here as the
geometric mean of the lengths of the principle component axis
of the particle parameters for each generation. In green ( ) with
transfer learning, in orange ( ) without. The lower this mean,
the smaller the volume of the parameter space is which is being
explored in that generation. As you can see, the transferred
particles initially occupy a smaller part of the parameter space,
and this head start is not often lost during the optimization
process. This is an important second mechanism through which
is the optimization speed is increased.



(a) Optimizing with reduced stiffness of the front legs
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(b) Optimizing on a rocky terrain

1 5 10 15 20
generation

0.0

0.5

1.0

1.5

2.0

se
ar

ch
sp

a
ce

vo
lu

m
e

(a
.u

.)

The size of the search space is plotted here as the geomet-
ric mean of the lengths of the principle component axis of the
particle parameters for each generation. In green ( ) with trans-
fer learning, in orange ( ) without. The lower this mean, the
smaller the volume of the parameter space is which is being
explored in that generation. As you can see, the transferred
particles initially occupy a smaller part of the parameter space,
and this head start is not often lost during the optimization pro-
cess. This is an important second mechanism through which is
the optimization speed is increased.
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transferred particles indicate useful areas of the parameter space to
explore.

To explain this, we plot all tested parameter combinations of the opti-
mization on the 18% grade inclination. As you can see in Figure 4.9,
it is more fruitful to maximize the step length a and have the feet
moving at a medium distance from the body. You can see that in
the transferred parameters, this general idea is already contained in
the original particles, while the random parameters still need to dis-
cover this relation. So even though the transferred particles do not
perform well, they already contain this general idea. Therefore, the
search space is reduced. This way, the optimization process has to
spend less time on rediscovering this relationship, and can focus on
the more fruitful areas of the parameter space.

To make this clearer, we have plotted in Figure 4.10 the mean size
of the principal component axes of the particles throughout the opti-
mization process. These axes are an indicator of the size of the part
of the parameter space that is being explored in a particular gener-
ation. The size of search space with transfer learning is on average
1.7 times smaller. Moreover, the transferred parameters start with a
search space which is about the same size as at the end of the op-
timization without transfer learning. This indicates again that the
increased learning speed when optimizing with transferred particles
can be explained by the reduced search space in which the search
starts.

4.8 Conclusion

In this article, we have found that transfer learning is beneficial for
learning gaits on our legged robot. In order to test our hypothesis
that transferring particles from previous optimizations improves the
speed of learning new gaits on different problems, we compared these
optimizations with optimizations starting from random samples. We
optimized a gait for our robot in three different settings: first on a
9% and an 18% grade inclination, then with a different leg stiffness
and finally on a pebbly terrain. We found that using transfer learn-
ing results in better gaits than without transfer learning in all tested
cases, evaluated on a real robot. Everything considered, we conclude
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that transferring particles resulted in better gaits in the same amount
of robot time in three out of four cases, while not harming the opti-
mization speed in the fourth case.

We have also shown that the increased learning speed is caused by
a reduction of the volume in the parameter space that is used in the
exploration. Therefore, we believe that our approach is more generally
applicable and will serve useful for further developments in walking
robots.

How generally applicable this conclusion is, cannot be reliably deter-
mined from this study alone, since only a single robot and a limited
set of walking conditions was used to obtain the data. We did how-
ever identify a mechanism, alter the robot parameters and the robot
surroundings to test the robustness of this method and found similar-
ities between the results of the different optimizations, which gives us
confidence for a more general applicability.

The research reported here indicates that this idea of transferring
particles is more broadly applicable in particle swarm optimization.
In general, it would be interesting to verify whether the mechanism of
the reduced search space is also the main mechanism when applying
transfer learning in other optimization algorithms. Especially because
of this mechanism, we believe that this approach might be beneficial
for other learning problems in robotics as well, where the number
of evaluations in an optimization is inherently limited and tasks are
often similar, but solutions to one problem will not often work well
on another.
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Using data retrieved from the Puppy II robot at the Univer-
sity of Zurich (UZH), we show that machine learning techniques
with non-linearities and fading memory are effective for terrain
classification, both supervised and unsupervised, even with a lim-
ited selection of input sensors. We find that the classification
error is small enough to have a robot adapt the gait to the terrain
and hence move more robustly. The results indicate that most
information for terrain classification is found in the combina-
tion of tactile sensors and proprioceptive joint angle sensors.
Secondly, the results indicate the possible power of embodiment
and morphological computation. Despite not having a dedicated
sensor for classifying the terrain, we found that the difference
in behavior of the limbs computed the features needed to classify
the terrain already. Thirdly, the results indicate the trade-off
between non-linearities and fading memory, a trade-off further
explored in chapter 6.



118 5 Terrain Classification for a Quadruped Robot

5.1 Introduction

Terrain classification plays an important role in the control of legged
robots, as it allows the robots to adapt to the terrain. On different
terrains, different gaits will be more suitable and therefore a robot
capable of switching from one gait to another in reaction to a terrain
change, will be able to locomote more robustly.

There has been done some research on terrain classification for robots
through sensor data from advanced sensors, such as camera im-
agery [2] or laser scanners [3]. This way, visual features in the terrain
are used to discover the terrain type and subsequently the terrain
properties.

Previous research also demonstrated the importance of proprioceptive
sensors for amphibian robots, such as inertia-sensors, angle-encoders
and current measurements on the motors [4]. Furthermore has it been
shown for quadruped robots that force-sensing in the legs and current-
use in the motors deliver reasonable results upon processing with an
Adaboost algorithm [5]. Even only using proprioceptive and contact
sensors proved effective in ground discrimination [6].

Firstly, perceiving and understanding the environment in which the
robot operates has a high impact on the performance of the robot’s
locomotion, making it important to add sensors to the robot that
provide information on the terrain. However, it is unfavorable to
add unnecessary or complex sensors to the robot if they yield no
further information. Those superfluous sensors would only increase
the complexity of the robot design, while offering little possibilities for
better control. Hence, it is important to know which sensors actually
provide the most valuable data for terrain classification.

Secondly, instead of developing a single system which takes in raw
data to directly determine the robot’s actions, it can be better to
divide the problem and conquer the easier sub-problems. One of the
sub-problems is for the robot to recognize in real time the type of
terrain while walking on it, using the data it receives from as few
sensors as possible. Previous research in this area includes for instance
the application of clustering techniques to detect transitions from one
terrain to the next in order to achieve unsupervised classification,
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applied on the RHex-robot [7, 8].

Therefore the research in this paper is twofold. Firstly, we want to
identify which sensors provide most information on the terrain. In
order to achieve this, we try different combinations of sensors often
found in robots and evaluate the capability of supervised and un-
supervised machine learning techniques to derive information from
recorded data of those sensors. Secondly, we will also evaluate which
machine learning techniques work best to classify the terrain based
on these sensors, and which features are necessary for the techniques
to function.

The rest of the paper is structured as follows. In Section 5.2 we will
review the machine learning techniques used in this paper and go
through Linear Regression (LR), Extreme Learning Machines (ELM),
Reservoir Computing (RC), Slow Feature Analysis (SFA) and Inde-
pendent Component Analysis (ICA). In Section 5.3 we will present
the hardware used to retrieve the data and the methods used to pro-
cess this data. In section 5.4 we will describe our experiments and
results. Finally, conclusions will be drawn in section 5.5.

5.2 Machine Learning Techniques for Terrain
Classification

5.2.1 Linear Regression

Linear regression (LR) is a supervised approach to modeling the re-
lationship between K input variables and L scalar output variables.
The relation between the two is described as:

Wout = (XTX)−1XTy.

X is a matrix where every row is a time-step with in the columns
the different input variables and y is a matrix and has in every row
the corresponding desired outputs. With the transformation matrix
Wout we can now process new signals X′:

ŷ = X′Wout. (5.1)



(a) Linear Regression (b) Extreme Learning Machine

(c) Reservoir Computing (d) Reservoir Computing Slow Feature
Analysis

SFA

SFA

ICA

ICA

(e) Quadratically Expanded Slow
Feature Analysis

SFA

SFA

ICA

ICA

Fig. 5.1: Visual representation of the machine learning tech-
niques used. The circles depict nodes, the rectangles filtering.
Circles with a hyperbolic tangent curve have a non-linear acti-
vation; circles with a cross multiply inputs; rectangles with an
exponential curve are low-pass filters. The solid arrows repre-
sent fixed weights, the dashed arrows represent trained weights.
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The sensor signals are very noisy however, therefore we first low-
pass filter these inputs with an exponential moving average (see Fig-
ure 5.1a), as shown in the equation below:

x(n) = (1− α) x(n− 1) + αu(n). (5.2)

Here, x(n) and u(n) are respectively the input of the linear regression
and the sensor signal at time-step n. α is the leak rate. As the
resulting signals still contains a lot of noise, no further regularization
is needed.

5.2.2 Extreme Learning Machine

With the goal of having LR model the non-linearities more accurately,
we first expand the sensor signals into a larger space by adding a hid-
den layer of non-linear nodes. The weights of these nodes are fixed,
and are randomly selected from the set {−1, 0, 1}. This technique
is similar to Extreme Learning Machine (ELM), a technique to train
single-hidden layer feedforward neural networks [9]. The only differ-
ence from the standard implementation is that we use leaky nodes in
the hidden layer to filter the noise in their state, as we did earlier with
the linear regression. The update equations for these leaky ELMs are
therefore given by:

x(n) = (1− α) x(n− 1) + α tanh
(
Winu(n)

)
y(n) = Woutx(n).

Here, Win is an N × K matrix containing the fixed weights of the
N nodes in the hidden layer. We model the non-linearity by using
hyperbolic tangent nodes, as shown in Figure 5.1b. The matrix Wout
is obtained by using LR, as discussed in section 5.2.1, but this time
with the expanded set of signals as inputs.

5.2.3 Reservoir Computing

The ELM systems can be expanded further temporally and non-
linearly by adding fixed weight connections between the nodes in
the hidden layer, as shown in Figure 5.1c. The resulting system is
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a Reservoir Computing system (RC). The term Reservoir Computing
has been introduced in [10] to cover multiple previous computing tech-
niques developed independently: Liquid State Machines (LSM) [11],
Echo State Networks (ESN) [12] and BackPropagation DeCorrelation
(BPDC) [13].

The weights of recurrent connections in the hidden layer nodes are
fixed and randomly selected from a standard normal distribution.
Similarly to the ESN in [14], the update equations of our reservoir
computing systems are as follows:

x(n) = (1− α) x(n− 1) + α tanh
(
Wresx(n− 1) + Winu(n)

)
y(n) = Woutx(n).

Wres is an N × N matrix containing the fixed weights between the
nodes in the hidden layer. After sampling the weights, the matrix is
rescaled to have a spectral radius σ. Typically, σ is a good indicator
of the echo state property [15] and is often chosen proximate to 1,
close to the edge of chaos, where reservoir computing systems possess
high computational power [16].

In Reservoir Computing, the hidden layer of recurrent nodes is often
referred to as the reservoir. Because of the recurrent connections
between the nodes, a fading memory is introduced into the system.
We already inserted some memory with leaky nodes, but the hidden
layer nodes in an ELM cannot act dynamically at a certain time-
step based on the result of the previous time-step. Therefore, the
type of memory used in LR and ELM does not add dynamics, but
merely serves as a noise filter, opposed to the dynamic properties in a
reservoir. Consequently, RC has memory capacity [17] as RC systems
can learn relations with the past, while ELM has no memory capacity
due to the lack of recurrent connections between the hidden-layer
nodes.

5.2.4 Unsupervised learning

It would be interesting for an autonomous learning robot to have it
learn terrains autonomously as well, without being shown a distinc-
tion between terrains in advance. To achieve this, we continue from
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the non-linear, temporal expansion created by the reservoir, as the
dynamics generated in a reservoir are suited for terrain classification,
albeit supervised, which we will establish in section 5.4.1.2.

However, to make the system unsupervised, we process the output
of the reservoir further with unsupervised techniques instead of using
LR. First, we apply slow feature analysis (SFA) to derive the slow
changing features in the output of the reservoir. Secondly, we apply
independent component analysis (ICA) to these features in order to
find the maximally statistically independent features. The complete
setup is depicted in Figure 5.1d. This method has already been used
in the context of robotics for robot localization [18]. There, they
referred to the output of the ICA-layer as place cells, because they
behave similarly to nodes found in the hippocampus of rodents [19].
Contrary to the place cells in rodents, which fire at a certain location,
we have created terrain cells, which fire on a certain terrain.

As a baseline comparison for the terrain cells obtained by using reser-
voir computing and slow feature analysis (RC-SFA), we also expand
the input signals quadratically instead of using a reservoir. This
means that we use the product of each combination of 2 different
input signals alongside the original signals as input for the slow fea-
ture analysis, shown in Figure 5.1e. We will refer to this system as
SFA2.

5.2.4.1 Slow Feature Analysis

Slow Feature Analysis is an unsupervised machine learning algorithm
which extracts slow varying signals from faster varying signals [20].
Suppose x(t) is a multi-dimensional input signal. SFA generates a
slow varying output signal yi(t) = gi(x(t)) by searching for the best
functions gi in a certain space such that

∆(yi) = 〈ẏ2
i 〉t (5.3)

is minimized under the following conditions:

〈yi〉t = 0 (5.4)

〈y2
i 〉t = 1 (5.5)
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∀j < i, 〈yiyj〉t = 0. (5.6)

This can be solved efficiently by the algorithm proposed in [20].

5.2.4.2 Independent Component Analysis

Independent Component Analysis [21] is an algorithm that separates
multivariate signals in order to achieve maximally uncorrelated sig-
nals. It assumes there is a linear connection between the input signals
x(t) and the underlying uncorrelated signals s(t). Therefore, the max-
imally uncorrelated signals can be regenerated using a matrix WICA:

s(t) = WICAx(t). (5.7)

To find this matrix WICA, we use the FastICA-algorithm [22].

5.2.5 Covariance Matrix Adaptation Evolution Strat-
egy

To optimize the parameters of the different techniques described
above, we use Covariance Matrix Adaptation Evolution Strategy
(CMA-ES). CMA-ES is an evolutionary optimization algorithm which
makes very few assumptions on the nature of the system. Only the
ranking between the candidates is used in the learning process, no
gradients or quantification of the input is needed. CMA-ES proves
to be useful for non-separable, ill-conditioned or noisy objective func-
tions [23]. Also, the different evaluations within one generation are
independent, so the algorithm can easily be parallelized. In this
paper, we use the implementation of CMA-ES written by Nikolaus
Hansen [23].

CMA-ES has only one free parameter left, the population size λ. For
this parameter, we use λ = b4 + 3 ln(M)c with M the number of
parameters which need to be optimized. This choice has been made as
a balance between quick convergence and the amount of parallelization
possible, but is still arbitrary. The λ-parameter functions on a meta-
level and therefore has little effect on the conclusions made in this
paper.
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Fig. 5.2: Puppy II, from the Artificial Intelligence Laboratory,
Department of Informatics, University of Zurich. This is a side-
view with the front of the robot on the left.

5.3 Methodology

5.3.1 The Dataset

The dataset used in this work has been harvested at the University of
Zurich, using their quadruped robot, Puppy II (Fig. 5.2) [24]. This
robot has four identical legs, each controlled by a single servomotor
at the hip joint. The knee joints are not directly controllable, but are
passively moveable due to the spring attached between the upper and
lower limb. Underneath the feet there is an adhesive skin attached
with asymmetrical friction. This aids the robot in moving its legs
forward and enforcing its grip while moving the legs backward. Puppy
II is fitted with a number of sensors. There is a potentiometer attached
to each joint, for a total of eight potentiometers. Each leg has a tactile
sensor which measures the force exerted on the paw when touching
the ground. The robot has an IMU and there is also a single external
sensor used, namely an overhead camera. This camera is not used
directly, but the position and velocity derived from the camera footage
is.

The trials have a varying length, many between 3000 and 6500 samples
with a sampling rate of 50Hz. The measurements have been made on
five different terrains, at seven different gait frequencies, with three
different gaits. The bound right and the turn left gait are generated by
simple sine waves on the joints, with a different offset, amplitude and
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Tab. 5.1: Number of available trials in function of terrain type,
gait frequency and gait. (F: blue foil, S: Styrofoam, L: linoleum,
C: Cardboard, R: rubber)

bound right turn left random

F S L C R F S L C R F S L C R

0.25 Hz 3 1 - - - 2 1 - - - - - - - -

0.50 Hz 5 2 - - - 4 2 - - - - - - - -

0.75 Hz 4 2 - - - 4 2 - - - - - - - -

1.00 Hz 2 13 9 3 5 4 4 3 - - 4 3 4 - -

1.25 Hz 6 1 - - - - 3 - - - - - - - -

1.52 Hz 3 2 - - - - 6 - - - - - - - -

1.72 Hz 8 3 - - - - - - - - - - - - -

phase for each motor. In the bound right gait, the robot moves in a
clockwise circle due to a slightly higher amplitude on the left legs. In
the turn left gait, the robot moves counter-clockwise due to a much
larger amplitude on the right hind leg. The random gait consists
of random motor commands, sufficiently smooth not to exceed the
motor bandwidth. For an overview of the trials available for each
combination of parameters, we refer to Table 5.1.

After testing a few combinations of sensor signals, we settle on a se-
lection that delivers an optimal or near-optimal performance for all
techniques that we examine. In this paper, we will mainly evalu-
ate and compare the use of these eighteen signals: the angles of the
four hips, the angles of the four knees, the tactile sensors on the four
feet, the three-dimensional accelerometer and the three-dimensional
gyroscope. For completeness’ sake, we also evaluate the use of all in-
formation available in the dataset. We normalize each sensor signal to
a zero mean and a unit variance. Then we select a total of 3000 sam-
ples for each terrain type and do this five times. Three of these are
used for threefold cross-validation while optimizing the parameters,
the other two are used for twofold cross-validation during the verifi-
cation of the parameters. Any remaining relevant trials are added to
the test set during verification. We split all trials into parts as a final
step, with lengths varying from 281 to 562 samples. Most of these are
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Tab. 5.2: The different groups of sensors and the sensor infor-
mation they contain

us
ef

ul

re
du

ce
d

mi
ni

ma
l

le
g

ag
t

im
u

jo
in

ts

to
uc

h

Number of dimensions 55 21 18 12 10 9 8 4

Tactile sensors × × × × × ×

Joint angle sensors × × × × ×

Accelerometer and gyroscope × × × × ×

Velocity × ×

Compass × ×

Distance to wall × ×

Magnetometer × ×

Other/derivative sensors ×

about 375 samples long (7.5s).

These sensors were combined into a couple of groups which we evaluate
on how much information they contain on the terrain type. For a
detailed description of what sensor group contains which sensors, we
refer to Table 5.2.

5.3.2 System Classification Score

To evaluate the accuracy of the methods, the terrain is classified at
each time-step. This means that we measure the effectiveness of the
techniques as a realtime sensor. For the supervised techniques, we
have 5 output nodes, the same as the number of terrains in the dataset.
We train the output nodes to be 1 when the robot is walking on their
respective terrain and to be −1 when the robot is not walking on
its terrain. At each time-step, we classify by choosing the terrain
corresponding to the output node with the highest value. The score
of the system is the percentage of the time-steps correctly classified.

This approach however does not work for unsupervised techniques, as
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they do not have corresponding output nodes, as the system did not
have any example data. To be able to give meaning to the output of
the ICA-layer, we reconstruct the probability that the robot is on a
certain terrain, given the terrain cells, with Bayes’ theorem:

P (xr|yICA) = P (yICA|xr)P (xr)
P (yICA) (5.8)

where P (xr) is the prior on the terrain vector and is related to our
dataset and P (yICA) is a normalization factor which does not need
to be calculated explicitly. The classifier picks the terrain with the
highest probability of P (xr|yICA) as the correct terrain. The score
of the unsupervised system, is the percentage of time-steps correctly
classified this way.

P (yICA|xr) can be obtained as follows, since the outputs of the ICA
layer are statistally independent:

P (yICA|xr) =
NICA∏
i=1

P (yiICA|xr) (5.9)

with yiICA the output of terrain cell i. Finally, we can estimate
P (yiICA|xr) based on our train set, by creating a histogram of the
terrain cells given a certain terrain.

5.4 Experiments

5.4.1 Supervised

5.4.1.1 Sensor Selection

The first experiment determines which sensor combinations provide
the best information for supervised terrain classification. We test the
eight different sensor combinations ranging from 4 to 55 signals out
of 64 available in the dataset.

We process the sensor data of these combinations with PCA to com-
press the input signals, with the dimension reduction rate as a pa-
rameter. The compressed signals are then classified with LR and RC.



5.4 Experiments 129

Tab. 5.3: Train and test results for eight signal selections (in
percentage, more is better). The entire table has a single color
gradient: maximal value is green, minimal is red, average of the
two is yellow.

TRAIN TEST

LR RC LR RC

useful 89.06 95.16 71.53 76.30

reduced 79.66 96.27 64.08 79.36

minimal 82.28 95.96 67.36 81.62

leg 75.70 95.42 63.63 81.53

agt 73.36 95.68 66.69 82.84

imu 53.35 91.47 43.98 72.25

joints 59.85 91.99 47.52 74.12

touch 64.45 93.84 57.89 84.69

All parameters of the different techniques are optimized using CMA-
ES for each combination of sensors. In Table 5.3 the percentage of
correctly classified time-steps is shown.

Note that the dataset has few trials for each combination of terrain,
gait and gait frequency. Only some of these combinations are included
in the training set, which increases the difficulty of correctly classifying
the entire test set as the algorithms need to generalize over gaits and
frequencies. Consequently there is a gap between the performance on
the train set and the performance on the test set. This demonstrates
the correlation of terrain classification performance and the actions of
the robot, confirming the findings in [6].

As can be expected, LR performs better when it has a higher input
dimensionality, as additional, less useful signals do not interfere with
useful signals. On the other hand, RC combines its input signals and
needs a good balance between the input dimensionality and the actual
useful information these signals contain.

If we take a look at imu and joints in Table 5.3, we notice a poor
performance compared to the other results. These are the only signal
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Tab. 5.4: Train and test results for comparison of RC and ELM
with varying number of nodes in the hidden layer (in percentage,
more is better). Signal selections touch and minimal are tested,
using the entire dataset.

TOUCH MINIMAL

50N 100N 200N 50N 100N 200N

T
R

A
IN LR 64.45 82.28

ELM 83.04 84.19 85.75 87.32 91.84 94.38

RC 88.17 90.40 92.99 88.27 91.73 95.01

T
ES

T LR 57.89 67.36

ELM 72.83 72.47 75.52 74.58 79.82 80.80

RC 80.30 83.04 85.19 74.09 77.28 81.43

selections without the tactile sensors. leg and agt are exactly the
same as joints and imu with the exclusion of the tactile sensors (and
the inclusion of the magnetometer in imu). This clearly indicates the
importance of the tactile sensors for supervised terrain classification.
RC even achieves the best result solely using the tactile sensors.

5.4.1.2 Selection of the Processing System

In order to compare the different supervised systems discussed before
(LR, ELM and RC), we compare their performance for two sensor
combinations: touch and minimal. We picked minimal because it
seemed to strike a good balance between dimensionality and perfor-
mance across both techniques. Since RC achieved its best score on the
sensor combination touch, it was added as well. From the results in
Table 5.4 it is clear that the non-linearities introduced by expanding
the input sensors are necessary for a good result, as linear regres-
sion has over 10% more misclassifications then any other technique
with 100 hidden nodes. The results also show that given enough in-
put signals (minimal: 18 dimensions), RC and ELM achieve virtually
the same performance. Using only four tactile sensors on the other
hand, requires a system with recurrent nodes, as RC outperforms ELM
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Fig. 5.3: Reservoir computing confusion matrix for testing gait
frequency (left) and gait (right) generalization.

roughly 10%, and at the same time achieves the best result overall,
even while having less input information.

5.4.1.3 Generalizability

Lastly we investigate the generalizability of the methods to other gaits
or gait frequencies. We train the system on the single gait ‘bound
right’ at the single frequency 1Hz. Subsequently we test it on other
frequencies of the same gait on the one hand and other gaits at the
same frequency on the other hand. Figure 5.3 depicts both these
approaches for RC. The extent of this experiment is limited by the
available trials in the dataset, as can be seen in Table 5.1. The dataset
contains only three terrains for the gait generalization and two terrains
for the gait frequency.

Looking at the gait frequency we notice a high performance for styro-
foam (S) but a complete misclassification for foil (F), with a similar
result for LR. Looking back at table 5.1 we notice that only 2 trials
on foil are available for training, while there are 13 trials on styrofoam
(only 5 used during training). This explains the poor performance for
foil, meaning the performance for styrofoam might indicate a possible
generalization to different frequencies.

Gait generalization on the other hand seems less feasible. The result
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for foil can again be attributed to its limited train set, but styrofoam
has an equally poor performance. Only linoleum (L) achieves a fairly
decent classification. If we would have a larger dataset and use multi-
ple gaits during training, gait generalization might be possible. Only
a single gait and gait frequency on the other hand does not carry
enough information to correctly classify new gaits.

5.4.2 Unsupervised

5.4.2.1 Sensor selection

Table 5.5 depicts the results for the experiment with the unsupervised
techniques, similarly as the experiment with supervised techniques.
The entire dataset is used and PCA is applied for compacting the
input signals.

Even though SFA2 and RC-SFA are mostly the same system, the
different expansion of the input signals clearly has a large impact on
the performance. This indicates that the way reservoirs expand the
dynamics of the system is beneficial for classifying terrains. SFA2
performs relatively close to a random terrain sensor (25%), while RC-
SFA performs about 10 to 20% better. The signal selections imu
and joints seem to perform rather well, unlike with the supervised
techniques. Solely using the tactile sensors still achieves a decent
performance, but SFA seems to benefit from more input sensors.

5.4.2.2 Selection of the Processing System

Similarly as in section 5.4.1.2, we investigate the importance of the
recurrent connections in the reservoir. To do this, we compare the
results of reservoir computing with leaky ELM’s. In Table 5.6, RC-
SFA is compared with ELM-SFA using the sensor group minimal and
the bound right gait at all frequencies.

So with unsupervised learning techniques, the same conclusion of the
supervised techniques holds as well. Here, the recurrent connections
do not seem to make a significant difference either on the minimal
sensor group. Note on the other hand the decent results for unsuper-
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Tab. 5.5: Train and test results for eight signal selections (in
percentage, more is better). The entire table has a single color
gradient: maximal value is green, minimal is red, average of the
two is yellow.

TRAIN TEST

SFA2 RC-SFA SFA2 RC-SFA

useful 58.11 79.75 38.94 51.69

reduced 60.98 81.03 36.27 58.28

minimal 61.72 79.26 37.90 57.29

leg 53.71 72.25 33.82 58.33

agt 51.49 75.21 26.99 52.75

imu 44.45 70.83 29.16 55.29

joints 38.22 71.15 27.50 54.58

touch 48.09 75.53 35.97 50.29

Tab. 5.6: Train and test results for comparison of RC-SFA and
ELM-SFA with varying number of nodes in the hidden layer
(in percentage, more is better). The bound right gait at all
frequencies were used.

MINIMAL

50N 100N 200N

T
R

A
IN SFA2 61.72

ELM-SFA 81.92 82.93 86.24

RC-SFA 83.97 82.71 86.60

T
ES

T SFA2 37.90

ELM-SFA 63.16 70.31 72.64

RC-SFA 65.64 68.62 71.92

vised classification when only using a single gait, as opposed to the
results of the complete dataset from Table 5.5.
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5.5 Conclusion

In this paper, we showed that a limited but appropriate selection
of input sensors is sufficient to perform terrain classification on our
legged robot. We have demonstrated that good results are achievable
with nearly all methods tested, using the combination of a 6 DoF IMU,
joint angle sensors and tactile sensors on the feet. The fact that linear
regression performed badly on the data, indicates the importance of
adding non-linearities. For these non-linearities, we found that reser-
voirs perform better than quadratically expanding, as is demonstrated
by the unsupervised classification method. For supervised learning,
reservoir computing led to drastic better performance when using few
sensors, which indicates that the richness of the non-linear temporal
expansion is beneficial for classification with less information. The
memory capacity seems to be an important element, as the filtering
used in the ELMs proved to be insufficient.

How generally applicable this conclusion is, cannot be reliably deter-
mined from this study, since only one robot was used to obtain the
data. We note that this observation was reached on all tested terrains
and gaits. Given sufficient data in the train set, it was possible to
classify terrains even at unseen frequencies. However, when trained
on a single gait, the methods studied here were not very effective at
generalizing to unseen gaits.

We want to conclude that the challenge is to find an appropriate set of
input sensors to classify terrains in quadruped robots. On the Puppy
II robot, we found that a limited set of sensor inputs were enough
to perform good quality terrain classification, when using methods
which take into account that there are underlying dynamics and non-
linearities in the system. We found that reservoir computing is a good
way to take these dynamics and non-linearities into account, since the
fading memory introduced by the recurrent connections between the
nodes improved performance when few sensors are available, com-
pared to other similar techniques.
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???

Incorporating the body dynamics of compliant robots into
their controller architectures can drastically reduce the complex-
ity of locomotion control by exploiting the morphological com-
putation going on in the body of the robot. An extreme version
of this embodied control principle was demonstrated in highly
compliant tensegrity robots, for which stable gait generation was
achieved by using only optimized linear feedback from the robot’s
sensors to its actuators. The morphology of quadrupedal robots
has previously been used in chapter 5 for sensing and for control
of a compliant spine, but not for gait generation. In this chap-
ter, we apply embodied control to the compliant, quadrupedal
Oncilla robot. As initial experiments indicated that mere linear
feedback does not suffice, we explore the minimal requirements
for robust gait generation in terms of memory and nonlinear
complexity. Our results show that a memory-less feedback con-
troller can generate a stable trot by learning the desired nonlin-
ear relation between the input and the output signals. We believe
this method can provide a robust tool for transferring knowledge
from open loop to closed loop control on compliant robots.
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6.1 Introduction

Compliant robots have steadily been gaining interest due to their
increased ability to interact with the environment and unexpected
disturbances. One way to implement compliance is by controlling
impedance and joint torque [2], often referred to as active compli-
ance. Successful implementations of this approach can be found in
the well-known Big-Dog quadrupedal robot [3] or the SARCOS hu-
manoid [4].However, robots with active compliance rely on inticrate
software solutions and often complex sensors to make stiff actuation
modules compliant. To reduce the complexity of the sensing and con-
trol modules, and motivated by energy efficiency and a safer robot-
human-world interaction, recent trends in robotics tend to use com-
pliant actuation modules, which can have either fixed or regulated
compliance [5, 6]. The evolution towards compliance also extends to
other parts of the robot as flexible materials are being used for struc-
tural parts of the robot. Examples of such robots are the quadrupedal
robots Oncilla [7] and StarlETH [8], the i-HY hand, which consists of
flexible fingers that can manipulate a wide variety of objects [9], and
the tensegrity robot ReCTeR [10].

Fig. 6.1: The Oncilla robot on the treadmill.
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Unfortunately, compliant robots are harder to control due to the in-
creased non-linear behaviour of the elastic elements. For this rea-
son, the focus on the control algorithms has been shifted towards
the morphology. The idea is that control tasks, such as locomotion
control, can be partially outsourced to the compliant body elements
and their interaction with the environment. This concept is known
as morphological computation [11]. Recently, it was shown that cer-
tain compliant structures such as spring-mass networks have univer-
sal computing power [12]. This is highly related to the field called
physical reservoir computing, in which the principles of reservoir com-
puting [13, 14, 15] are applied to physical systems. While physical
implementations exist ranging from a water bucket [16] to integrated
photonics devices [17], robotic implementations are rare. Neverthe-
less, recent work [10, 18] illustrated that locomotion control can be
outsourced to the body of a tensegrity robot: a structure composed of
compression elements held together by a compliant tensile network.
Stable gait generation was achieved by using only optimized linear
feedback from the robot’s stretch sensors to its actuator control sig-
nals.

In this paper, we test the same principle on a much less compliant
robot, the quadrupedal robot Oncilla [7], shown in Fig. 6.1. In ear-
lier research, the morphology of quadruped robots has been used for
sensing [19] and for control of a compliant spine [20], but never for
gait generation. We not only show that robust locomotion control by
a simple mapping from the rotary encoders in the motors is possible,
but we also investigate under which conditions this can be achieved.

When physical reservoir computing is applied to robotics, the robot
body is a highly specific dynamical system, to which, in general, ex-
isting proofs of computational universality do not apply. This implies
that a mismatch can exist between the actually observed robot states
and the dynamical transformations that are required for the task.
It has been shown that, when keeping a fixed number of observed
states (i.e., sensor readouts), there is a trade-of between memory and
non-linear computing power [21]. In this paper, we propose the intro-
duction of an additional transformation between the physical body
and the linear combination layer. We investigate the requirements
to such a transformation by tuning two dimensions of its complexity:
memory and nonlinearity. By doing so, we can investigate which dy-
namics are desired in order to outsource locomotion control for the
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Oncilla quadrupedal robot platform.

The remainder of this paper is structured as follows. We first describe
our robot and describe the control architecture we have used. We
subsequently describe the experimental setup and present and discuss
the results obtained with our approach on the Oncilla robot. We end
our paper by presenting our conclusions.

6.2 The Oncilla Robot

The quadrupedal Oncilla robot is the compliant platform used in this
work, see Fig. 6.1. Each of the robot’s legs has a three-segmented
pantographic system to achieve similar dynamical to those of felines.
The robot has actuated hip and shoulder joints that can perform both
an abduction and a flexion motion. The knee joint is actuated with a
short thread so it can only perform actuated flexion, while an opposite
pushing spring does the extension. For a complete overview of this
robot platform, see [7].

The robot has 12 actuated degrees of freedom and a variety of sen-
sors. In this paper, we only use the 8 rotary encoders on the hip and
knee joints of the robot. These sensors are chosen as they are found
in nearly all quadrupedal robots, which will allow for a broader ap-
plication of this approach. The time between consecutive updates of
the sensor readings and motor actuations is on average ∆t ≈ 8.2 ms.
However, this period can vary as much as 15 % depending on the com-
putational complexity of the controller. The robot can operate fully
autonomously, but for the sake of this paper, we power the robot with
a power cable and process the signals on a remote computer.

In order to run experiments without being constrained by the space
available in our lab, we put our robot on a treadmill. The robot is
equipped with a distance sensor on its head, such that the treadmill
can adjust speed to keep the robot in the middle of the treadmill, as
shown in Fig. 6.2. An assistant sits next to the setup to intervene
when the robot would put its own safety in jeopardy.
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distance
sensor

Fig. 6.2: The Oncilla robot on the treadmill. The distance
sensor measures the distance from the robot to the front of the
treadmill. The treadmill then adjusts speed to keep the robot in
the center of the treadmill. This setup allows the robot to run
for minutes at end while not having to deviate from a straight
line.

6.3 Controller Architecture

6.3.1 Embodied Computation

In earlier work [10, 18], it was shown that for a tensegrity robot,
a linear transformation from the sensor signals to the motor signals
was enough to generate stable locomotion. The idea behind this is
that the body of the robot itself has computing power, and that this
power is being harvested by using it as a reservoir. This embodiment
of computation allows the robot to generate stable locomotion without
the requirement to explicitly use the state of its compliant elements
in a digital control algorithm.

On our robot however, we found that we could indeed generate a gait
this way, but that it was not stable and did not always return to its
limit cycle. In other words, the robot’s internal dynamics in response
to the environment do not exactly match the required dynamics for
stable gait generation. However, the fact that they suffice to generate
a close but unstable approximation indicates that the mismatch is not
very large.

Therefore, we propose to digitally add additional transformations to
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the sensor signals. In this way, the computations are still partially
embodied in the morphology of the robot. In this setting, we want to
quantify the minimal complexity of these transformations as expressed
by their memory and nonlinear complexity. The next sections describe
its parts in more detail.

6.3.2 Linear Transformation

The aim of the linear transformation is to find the M × N trans-
formation matrix W that optimally maps the N × 1 vector of the N
normalized input signals x to the M×1 vector of the M output signal
ŷ:

ŷ = W · x.

Optimality is defined as the minimisation of the mean squared error
(MSE) between the output signals ŷ and the target output signals y.
This can be achieved by using linear regression:

W = y · x+

To achieve the right bias, we add a constant signal to the inputs x.

This approach is limited to one-shot learning. In order to continue
optimizing this relation while running, we will use the recursive least
squares (RLS) algorithm [22], an online method for linear regression.
In what follows, we introduce the vector xrls to indicate the inputs for
the RLS-algorithm, because in the remainder of this work these will
be transformed versions of the sensor outputs x. In RLS, the weight
matrix Wrls is updated at each time step according to the following
equations:

Lrls(t) = Prls(t) · xrls(t)
1 + xT

rls(t) · Prls(t) · xrls(t)

Prls(t+ ∆T ) = Prls(t)− Prls(t) · xrls(t) · xT
rls(t) · Prls(t)

1 + xT
rls(t) · Prls(t) · xrls(t)

erls(t) = y(t)−Wrls(t−∆t) · xrls(t)

Wrls(t) = Wrls(t−∆t) + erls(t) ·LT
rls(t).

Here, ∆t is the controller time step. Prls is theN×N precision matrix,
which is initialized with the identity matrix, such that the noise on
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the input signals is initially assumed uncorrelated. erls represents the
M × 1 a priori error vector. Wrls is the matrix that represents the
linear transformation, which is initialized with zeros.

6.3.3 Adding Non-Linear Dynamics

Between the robot body and the linear transformation, we now add
an additional transformation layer in order to increase the richness of
signals received by the linear transformation. In order to be able to
separately explore the need for memory and nonlinearity, we introduce
two separate modules: a nonlinear layer and a memory buffer.

The nonlinear transformations are generated by introducing a hidden
layer of H nonlinear neurons, each of which receives a random mixture
of the sensor signals (again augmented with a constant bias signal):

xnl(t) = tanh(Whidden · x(t) + wbias).

This technique is known as Extreme Learning Machines (ELM) [23].
In our paper, we initialize all elements in the matrix Whidden and the
vector wbias by sampling them from the standard normal distribution.
These elements are not optimized.

The memory buffer of length B is added to each nonlinearly trans-
formed signal, such that the RLS algorithm obtains direct access to
the signals from previous time steps in xrls(t). xrls thus contains all
signal values from a small time window in the past. This allows us to
explore a further richness of the dynamics which were added by the
morphology of the robot:

xrls(t) =



xnl(t)
xnl(t−∆t)
xnl(t− 2∆t)

...
xnl(t−B∆t)


.

The resulting detailed controller architecture is schematically repre-
sented in Figure 6.3.
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Fig. 6.3: A schematic of the control system. The signals mea-
sured in the motor encoders are first normalized, are then send
through a layer of hidden, untrained neurons, the outputs of
these neurons are buffered and a linear transformation is per-
formed on these buffered signals to generate the motor signals.
It is only this linear transformation which is learned through a
linear regression method (RLS).
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6.4 Experimental Setup

We want our robot to realise a stable gait based on the feedback from
the 8 rotary encoders. Using these sensors, the proposed controller
must be trained to derive a motor command which is sent to the
end-effectors. In sequential operation, this should result in the robot
moving with a stable gait. The training procedure outlined in this
section enables the controller to discover the relation between the
received sensor signals and the output it needs to generate at that
moment.

As target signals, we use motor signals for stable gaits resulting from
previous work [24, 25]. We have the robot trot at a frequency of 1.7 Hz,
corresponding to a speed of about 0.76 m/s. Before each experiment,
the robot runs for 5 seconds with this gait, using the desired signal
as input, in order to reach steady state. During these 5 seconds, we
measure the mean and the standard deviation of the sensor signals.
These are used to normalize the input signals such that they have a
mean of 0 and a standard deviation of 1. After normalization, we
add Gaussian noise with an amplitude of 0.01 to each input signal for
regularization during training.

In the first training phase, the linear combination is optimized using
RLS. As a result of this training, the control system finds a relation
between the input and the output signals, but it fails to find a stable
attractor. Every time the robot has a small error in the output sig-
nal, this error is reflected in the input signals of the next time step.
Since the controller has never learned to handle those errors, they
accumulate and destabilize the attractor.

For the controller to learn to deal with its own errors, we add a second
training phase, with RLS still active. In this stage, the output signals
sent to the motors are mixtures of the target signals and the signals
generated by the linear transformation [18]. The fraction of the target
signals is reduced over time until it becomes zero. After this phase,
the RLS learning is switched off and the resulting gait is evaluated.

We thus split up the learning process into multiple phases:

1. The normalization phase: We wait for transient effects
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Fig. 6.4: On the top ( ), the trajectory of the robot’s right hind
leg in the joint space is shown while the robot is performing a
trotting gait, with qhip and qknee being the angle measured
over time by the hip and knee encoder respectively. These were
recorded during the first 5 seconds of the first training stage.
A higher angle means the leg is moved to the front or the knee
is extended. On the bottom ( ), the same trajectory is shown,
but with the learned controller, with B = 5 and H = 50 on top
and B = 12 and H = 50 on the bottom. These were recorded
between 25 and 30 seconds into the running stage.
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On the top ( ), the trajectory of the robot’s right hind leg in the
joint space is shown while the robot is performing a walking gait,
with qhip and qknee being the angle measured over time by the
hip and knee encoder respectively. These were recorded during
the first 5 seconds of the first training stage. A higher angle
means the leg is moved to the front or the knee is extended.
On the bottom ( ), the same trajectory is shown, but with the
learned controller, with B = 5 and H = 50 on top and B = 12
and H = 50 on the bottom. These were recorded between 25
and 30 seconds into the running stage.
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caused by starting from standstill to fade out, and when we
record the average and variance of each sensor to normalize
them. This stage takes 5 s.

2. The first training phase: We send the teacher signal to the
motors, and use RLS to learn the relation between these outputs
and the normalized inputs from the sensors. This stage takes
10 s, unless noted differently.

3. The second training phase: The motor signals are mixed be-
tween the teacher signal and the signals generated by the linear
transformation. The RLS-algorithm still updates Wrls. This
stage takes 10 s, unless noted differently.

4. The running phase: The robot stops optimizing the linear
transformation, but continues to run and where we test the sta-
bility of the attractor.
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Fig. 6.6: Evolution of the MSE during training, in which the
noise has been filtered by a moving average filter with the length
of one gait period: without time window (turkoise and blue),
with reduced number of hidden neurons (orange and pink) and
a result in which the controller failed to find a stable attractor
because it did not have enough signals (light green).

In the controller described in the previous section, there are three
parameters: the number of hidden neurons H, the number of time
steps in the time window B and the training time ttrain . As the
hidden neuron layer is the only nonlinear part of the controller, the
number of hidden neurons H gives an indication of the amount of
nonlinearity that is needed in the system. The number of time steps
in the time window B is a measure for how much the system depends
on time information. Finally, the training time ttrain is a measure
for the complexity of the learning task. When a stable attractor is
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found quickly, this suggests that we may be able reduce the number
of input signals for linear regression, at the cost of a longer training
time. Vice versa, if it takes long to find a stable attractor, the training
time could probably be reduced by adding more input signals to the
linear regression.

In order to evaluate the importance of each of these three parameters,
we conducted three experiments. These were aimed at determining
the interaction between these parameters and at finding their minimal
values before the attractors become unstable. We are however limited
by computation speed. The RLS-algorithm scales with O(N2), with
N being the number of signals it receives. In our case, this is equal
to (B + 1)H + 1. When this number becomes too large, ∆t needs to
increase to allow enough time for computations, which is bad for the
accuracy of the movements of the robot.

We identify three types of undesired behavior the trained controller
can display:

• the output signals die out and the robot motion freezes, because
the attractor has a stable, fixed point equilibrium;

• the robot moves erratically because the attractor has the wrong
limit cycle or no limit cycle;

• the robot is stable while in gait, but cannot return to the limit
cycle once it has left it, because the attractor has a limit cycle
for which the basin of attraction is too small.

In this paper, we therefore look for the minimal values of the param-
eters in our control system that allow our robot to run stably for 30
seconds, and to return to its gait after the motors have been pow-
ered off and are powered back on. This way we test the controller’s
robustness to these three problems.

6.5 Results

To evaluate our approach, we optimized a controller with H = 50
hidden nodes and a time window B of 5 time steps (44 ms or 7.5 %
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of the gait period). For these settings, an attractor was found that
generated a stable gait and was able to return to its limit cycle after
stopping. The resulting attractor is depicted in Fig. 6.4.

In order to prove that this result is reproducible on different setups, we
trained the Oncilla robot to perform a walking gait. For this situation,
we again used H = 50 hidden nodes, but we had to increase the time
window B to 12 time steps (103 ms or 17.5 % of the gait period). The
resulting attractor is shown in Fig. 6.4. We also needed to increase
the length of the first and second training stage to 30 s.

The fact that we needed to increase both B and ttrain is explained by
the increased complexity of a walking gait. In this gait, each leg has
a different phase which means that there is less dependence between
the motor signals that need to be generated. Therefore, we had to
increase the number of inputs to the RLS layer to the maximum we
could compute in real time. Additionally, we needed to increase the
training time to find the proper relation between the inputs and the
outputs.

Since our approach was reproducible, we consequently tried to reduce
the parameters for the easier trot gait to identify the point at which
the controller fails to find a stable attractor. We first reduced the
number of hidden neurons H. It makes little sense to have H < 12,
since we have 12 independent outputs to generate. We found that
with 12 hidden neurons, we needed B to be at least 16 time steps
(115 ms or 20 % of the gait period) for a stable gait.

Secondly, we removed the buffer (B = 0), and searched for the mini-
mal number of hidden neurons required for finding a stable attractor.
We found that without a time window, we need at least H = 128±32
hidden neurons.

Thirdly, we tried to reduce the training time. For this, we used a
controller without a buffer and with H = 250 hidden neurons. We
found that 1.18 s, or two gait periods are enough for both the first
and second training stage, or 2.36 s in total.
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6.6 Discussion

We can explain the observations in the previous section by looking at
the MSE during the optimization process. At each time step, we can
evaluate the difference between the output generated by the linear
transformation and the output of the teacher signal. In Fig. 6.6 we
plot the evolution of the MSE over time for different optimizations,
filtered by a moving average with a time window of one gait period.

The figure shows that a lower number of signals N = (B + 1)H + 1
received by the RLS algorithm results in a higher value of the MSE
during training. Moreover, when the MSE is too high during training,
the system fails to find a stable attractor. This implies that we can
use the MSE as a dynamic stopping criterion for training. As long
as the it is too high, the controller will not be able to compensate its
own errors which accumulate over time. The fact that we were able to
considerably reduce the training time also supports this. The figure
also shows that the MSE drops rapidly during the first seconds.

When we compare the relative importance of memory and nonlinear-
ity, we find that both contribute to the performance of the controller,
but that they are more or less interchangeable. This can possibly be
explained by the nonlinearity of the body dynamics, which results in
sensor signals being to some extent correlated to nonlinearly trans-
formed versions of their own history. The setup of our research did
not allow to find a significant difference in relative importance be-
tween their contribution. Since ∆t can vary as much as 15 % and that
Whidden and wbias were arbitrarily sampled from a standard normal
distribution, both contributions could be further optimized. However,
this would unnecessarily complicate the setup. Moreover, it is an in-
dication that this approach is robust and we believe that it could be
more broadly applicable.

We want to stress that allthough the controller might seem complex, it
does not eliminate the existence of morphological computation in our
setup. In the rudementary case where H = 128, B = 0, the linear re-
gression might receive 129 linearly independent signals. These signals
are however non-linearly dependent, and have at most 8 statistically
independent components, namely the 8 sensor signals. We have un-
dergoing research to show more clearly that morphological computing
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plays an essential role in this approach.

6.7 Conclusion

In this paper, we demonstrated how an embodied control system with
memory-less nonlinear feedback can generate a dynamically balanced
trot on a compliant quadrupedal robot. Our feedback controller,
based on extreme learning machines, learns the desired relation be-
tween the input and the output signals in the time span of only a
couple of strides.

We have shown that this method can be extended to other gaits, such
as a walk, when increasing the training time and the model com-
plexity. The incorporation of either additional memory or additional
non-linearities contribute approximately equally to the controller per-
formance. The parameter that mainly determines the performance is
the number of signals that is fed into the the linear transformation.

As our controller was trained directly on the actual robot, we did
not have to rely on a simulation model, which is often unreliable
on a compliant robot. In addition, the controller optimisation was
fast, happened entirely online and automatically. We believe that the
proposed method can provide a useful tool for transferring knowledge
from open loop to closed loop control.
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[15] W. Maass, T. Natschläger, and H. Markram, “Real-time com-
puting without stable states: A new framework for neural com-
putation based on perturbations,” Neural computation, vol. 14,
no. 11, pp. 2531–2560, 2002.

[16] C. Fernando and S. Sojakka, “Pattern recognition in a bucket,”
in Advances in artificial life. Springer, 2003, pp. 588–597.

[17] K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Mor-
thier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienst-
man, “Experimental demonstration of reservoir computing on a
silicon photonics chip,” Nature communications, vol. 5, 2014.

[18] K. Caluwaerts, M. D’Haene, D. Verstraeten, and B. Schrauwen,
“Locomotion without a brain: physical reservoir computing in
tensegrity structures,” Artificial life, vol. 19, no. 1, pp. 35–66,
2013.

[19] J. Degrave, R. Van Cauwenbergh, F. wyffels, T. Waegeman, and
B. Schrauwen, “Terrain classification for a quadruped robot,” in
International Conference on Machine Learning and Applications,
2013.

[20] Q. Zhao, K. Nakajima, H. Sumioka, H. Hauser, and R. Pfeifer,
“Spine dynamics as a computational resource in spine-driven
quadruped locomotion,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2013, pp.
1445–1451.



6 Developing an Embodied Gait on a Compliant Quadrupedal Robot 157

[21] J. Dambre, D. Verstraeten, B. Schrauwen, and S. Massar, “In-
formation processing capacity of dynamical systems,” Scientific
Reports, vol. 2, 2012.

[22] J. M. Cioffi and T. Kailath, “Fast, recursive-least-squares
transversal filters for adaptive filtering,” Acoustics, Speech and
Signal Processing, IEEE Transactions on, vol. 32, no. 2, pp. 304–
337, 1984.

[23] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning ma-
chine: theory and applications,” Neurocomputing, vol. 70, no. 1,
pp. 489–501, 2006.

[24] J. Degrave, M. Burm, T. Waegeman, F. wyffels, and
B. Schrauwen, “Comparing trotting and turning strategies on the
quadrupedal oncilla robot,” in IEEE International Conference on
Robotics and Biomimetics (ROBIO), 2013.

[25] J. Degrave, M. Burm, P.-J. Kindermans, J. Dambre, and F. wyf-
fels, “Transfer learning of gaits on a quadrupedal robot,” Adap-
tive Behavior, Prepublished January 20 2015.





7
A Differentiable Physics

Engine for Deep Learning
in Robotics

J. Degrave, M. Hermans, J. Dambre, and F. wyffels, “A differen-
tiable physics engine for deep learning in robotics,” arXiv preprint
arXiv:1611.01652, 2016

???

In this chapter, we take a look at the culmination of com-
bining robot morphology and controller into one system to op-
timize. Currently, robots are often treated as a black box in
this optimization process, which is the reason why derivative-
free optimization methods such as evolutionary algorithms or
reinforcement learning are omnipresent. When gradient-based
methods are used, models are kept small or rely on finite dif-
ference approximations for the Jacobian. This method quickly
grows expensive with increasing numbers of parameters, such as
found in deep learning.

We propose an implementation of a modern rigid body
physics engine, which can differentiate control parameters. This
engine is implemented for both CPU and GPU. Using this
engine, we can backpropagate through time in our controller,
through the physics of our engine and also through the rendering
process. This chapter shows how such an engine speeds up the
optimization process, even for small problems. We argue that
this is a big step for deep learning in robotics, as it opens up
new possibilities to optimize robots, both in hardware and soft-
ware. By backpropagating the error through a model of the robot,
we are essentially transferring prior knowledge on the model of
the robot into the neural network controller. We are able to show
that it only takes a small number of update steps before the robot
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can learn to control a simple setup through vision, despite that
the controller has around one million parameters.

7.1 Introduction

To solve tasks efficiently, robots require an optimization of their con-
trol system. This optimization process can be done in automated
testbeds [2], but typically these controllers are optimized in simula-
tion. Standard methods to optimize these controllers include particle
swarms, reinforcement learning, genetic algorithms and evolutionary
strategies. These are all derivative-free methods.

A recently popular alternative approach is to use deep Q-learning, a
reinforcement learning algorithm. This method requires a lot of eval-
uations in order to train the many parameters [3]. However, deep
learning experience has taught us that optimizing with a gradient is
often faster and more efficient. This fact is especially true when there
are a lot of parameters, as is common in deep learning. However, in
the optimization processes for control systems, the robot is almost
exclusively treated as a non-differentiable black box. The reason for
this is that the robot in hardware is not differentiable, nor are cur-
rent physics engines able to provide the gradient of the robot models.
The resulting need for derivative-free optimization approaches limits
both the optimization speed and the number of parameters in the
controllers.

Recent physics engines, such as mujoco [4], can derive gradients
through the model of a robot but rely on a finite difference method
to approximate the gradient. Evaluating finite difference approxima-
tions, however, requires the same number of model evaluations as the
number of states with respect to which is differentiated. Additionally,
the gradient is an estimation.

In this paper, we suggest an alternative approach, by introducing a
differentiable physics engine with analytical gradients. This idea is
not novel. It has been done before with spring-damper models in 2D
and 3D [5]. This technique is also similar to adjoint optimization,
a method widely used in various applications such as thermodynam-
ics [6] and fluid dynamics [7]. However, modern engines to model
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robotics are not based on spring-damper systems. The most com-
monly used ones are 3D rigid body engines, which rely on impulse-
based velocity stepping methods [8]. In this paper, we test whether
these engines are also differentiable and whether this gradient is com-
putationally tractable. We will show how this method does speed up
the optimization process tremendously, and give some examples where
we optimize deep learned neural network controllers with millions of
parameters.

7.2 A 3D Rigid Body Engine

The goal is to implement a modern 3D Rigid body engine, in which
parameters can be differentiated with respect to the fitness a robot
achieves in a simulation, such that these parameters can be optimized
with methods based on gradient descent.

The most frequently used simulation tools for model-based robotics,
such as PhysX, Bullet, Havok and ODE, go back to MathEngine [8].
These tools are all 3D rigid body engines, where bodies have 6 degrees
of freedom, and the relations between them are defined as constraints.
These bodies exert impulses on each other, but their positions are
constrained, e.g. to prevent the bodies from penetrating each other.
The velocities, positions and constraints of the rigid bodies define a
linear complementarity problem (LCP) [9], which is then solved using
a Gauss-Seidel projection (GSP) method [10]. The solution of this
problem are the new velocities of the bodies, which are then integrated
by semi-implicit Euler integration to get the new positions [11]. This
system is not always numerically stable. Therefore the constraints are
usually softened [12].

The recent development of general automatic differentiation libraries
such as Theano [13], Caffe [14] and Tensorflow [15], has allowed for
efficient differentiation of remarkably complex functions before [16].
Therefore, we implemented such a physics engine as a mathematical
expression in Theano, a software library which does automatic eval-
uation and differentiation of expressions with a focus on deep learn-
ing. The resulting computational graph to evaluate this expression
is then compiled for both CPU and GPU. To be able to compile for
GPU however, we had to limit our implementation to a restricted



162 7 A Differentiable Physics Engine for Deep Learning in Robotics

set of elementary operations. The range of implementable functions
is therefore severely capped. However, since the analytic gradient is
determined automatically, the complexity of correctly implementing
the differentiation is removed entirely.

One of these limitations with this restricted set of operations, is the
limited support for conditionals. Therefore we needed to implement
our physics engine without branching, as this is not yet available in
Theano for GPU. Therefore some sacrifices had to be made. For
instance, our system only allows for contact constraints between dif-
ferent spheres or between spheres and the ground plane. Collision
detection algorithms for cubes typically have a lot of branching [17].
However, this sphere based approach can in principle be extended to
any other shape [18]. On the other hand, we did implement a rather
accurate model of servo motors, with gain, maximal torque, and max-
imal velocity parameters.

Another design choice was to use rotation matrices rather than the
more common quaternions for representing rotations. Consequently,
the states of the bodies are larger, but the operations required are
matrix multiplications. This design reduced the complexity of the
graph. However, cumulative operations on a rotation matrix might
move the rotation matrix away from orthogonality. To correct for
this, we renormalize our matrix with the update equation [19]:

A′ = 3A−A ◦ (A ·A)
2 (7.1)

where A′ is the renormalized version of the rotation matrix A. ‘◦’
denotes the elementwise multiplication, and ‘·’ the matrix multiplica-
tion.

These design decisions are the most important aspects of difference
with the frequently used simulation tools. In the following section, we
will evaluate our physics simulator on some different problems. We
take a look at the speed of computation and the number of evaluations
required before the parameters of are optimized.
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7.2.1 Throwing a Ball

To test our engine, we implemented the model of a giant soccer ball
in the physics engine, as shown in Fig. 7.3a. The ball has a 1 m
diameter, a friction of µ = 1.0 and restitution e = 0.5. The ball starts
off at position (0, 0). After 5 s it should be at position (10, 0) with
zero velocity v and zero angular velocity ω. We optimized the initial
velocity v0 and angular velocity ω0 at time t = 0 s until the errors at
t = 5 s are less than 0.01 m and 0.01 m/s respectively.

Since the quantity we optimize is only know at the end of the sim-
ulation, but we need to optimize the parameters at the beginning
of the simulation, we need to backpropagate our error through time
(BPTT) [20]. This approach is similar to the backpropagation through
time method used for optimizing recurrent neural networks (RNN).
In our case, every time step in the simulation can be seen as one
pass through a neural network, which transforms the inputs from this
timestep to inputs for the next time step. For finding the gradient,
this RNN is unfolded completely, and the gradient can be obtained by
differentiating this unfolded structure. This analytic differentiation is
done automatically by the Theano library.

Optimizing the six parameters in v0 and ω0 took only 88 iterations
with gradient descent and backpropagation through time. Optimizing
this problem with CMA-ES [21], a state of the art derivative-free op-
timization method, took 2422 iterations. Even when taking the time
to compute the gradient into account, the optimization with gradient
descent takes 16.3 s, compared to 59.9 s with CMA-ES. This result
shows that gradient-based optimization of kinematic systems can in
some cases already outperform gradient-free optimization algorithms
from as little as six parameters.

7.3 Policy Search

To evaluate the relevance of our differentiable physics engine, we use
a neural network as a general controller for a robot, as shown in
Figure 7.1. We consider a general robot model in a discrete-time
dynamical system xt+1 = fph(xt,ut) with a task cost function of
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l(xt,p), where xt is the state of the system at time t and ut is the input
of the system at time t. p provides some freedom in parameterizing
the loss. If Xt is the trajectory of the state up to time t− 1, the goal
is to find a policy ut = π(Xt) such that we minimize the loss Lπ.

Lπ =
T∑
t=0

l(xt,p)

s.t. xt+1 = fph(xt, π(Xt)) and x0 = xinit
(7.2)

In previous research, finding a gradient for this objective has been
described as presenting challenges [22]. An approximation to tackle
these issues has been discussed in [23].

We implement this equation into an automatic differentiation library,
ignoring these challenges in finding the analytic gradient altogether.
The automatic differentiation library, Theano in our case, analytically
derives this equation and compiles code to evaluate both the equation
and its gradient. It does this by taking the computational graph of the
equation, and constructing the computational graph of the requested
gradient with the chain rule. Consequently, it compiles this graph
into machine code in order to evaluate both efficiently, for both CPU
and GPU.

We define our controller as a deep neural network gdeep with weights
W. We do not pass all information Xt to this neural network, but
only a vector of values st observed by the modeled sensors s(xt). We
also provide our network with (some of the) task-specific parameters
p′. Finally, we add a recurrent connection to the controller in the
previous timestep ht. Therefore, our policy is the following:

π(Xt) = gdeep(s(xt),ht,p′ |W)
s.t. ht = hdeep(s(xt−1),ht−1,p′ |W) and h0 = 0

(7.3)

Notice the similarity between equations 7.2 and 7.3. Indeed, the equa-
tions for recurrent neural networks (RNN) in equation 7.3 are very
similar to the ones of the loss of a physical model in equation 7.2.
Therefore, we optimize this entire system as an RNN unfolded over
time, as illustrated in Figure 7.2. The weights W are optimized with
stochastic gradient descent. The gradient required for that is the Jaco-
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bian dL/dW, which is found with automatic differentiation software.

We have now reduced the problem to a standard deep learning prob-
lem. We need to train our network gdeep on a sufficient amount of
samples xinit and for a sufficient amount of sampled tasks p in or-
der to get adequate generalization. Standard RNN regularization ap-
proaches could also improve this generalization. We reckon that gen-
eralization of gdeep to more models fph, in order to ease the transfer of
the controller from the model to the real system, is also possible [5],
but it is outside the scope of this paper.

Neural network controller

Sensor signals

Motor signals
Next timestep

Previous timestep

Fig. 7.1: Illustration of how a closed loop neural network con-
troller would be used to actuate a robot. The neural network
receives sensor signals from the sensors on the robot and uses
these to generate motor signals which are sent to the servo mo-
tors. The neural network can also generate a signal which it
can use at the next timestep to control the robot.

7.3.1 Quadrupedal Robot – Computing Speed

To verify the speed of our engine, we also implemented a small
quadrupedal robot model, as illustrated in Fig. 7.3b. This model
has a total of 81 sensors, e.g. encoders and an inertial measurement
unit (IMU). The servo motors are controlled in a closed loop by a
small neural network gdeep with a number of parameters, as shown
previously in Fig. 7.2. The gradient is the Jacobian of L, the total
traveled distance of the robot in 10 s, differentiated with respect to
all the parameters of the controller W. This Jacobian is found by
using BPTT and propagating all 10 s back. The time it takes to com-
pute this traveled distance and the accompanying Jacobian is shown
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Fig. 7.2: Illustration of the dynamic system with the robot and
controller, after unrolling over time. The neural networks gdeep
and hdeep with weights W receive sensor signals st from the
sensors on the robot and use these to generate motor signals ut

which are used by the physics engine fph to find the next state
of the robot in the physical system. These neural networks also
have a memory, implemented with recurrent connections ht.
From the state xt of these robots, the loss L can be found.
In order to find dL/dW, every block in this chart needs to be
differentiable. The contribution of this paper, is to implement a
differentiable fph, which allows us to optimize W to minimize
L more efficiently than was possible before.
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in Table 7.1. We include both the computation time with and with-
out the gradient, i.e. both the forward and backward pass and the
forward pass alone. This way, the numbers can be compared to other
physics engines, as those only calculate without gradient. Our imple-
mentation and our model can probably be made more efficient, and
evaluating the gradient can probably be made faster a similar factor.

(a) Ball model (b) quadruped model (c) robot arm model

Fig. 7.3: (a) Illustration of the ball model used in the first task.
(b) Illustration of the quadruped robot model with 8 actuated
degrees of freedom, 1 in each shoulder, 1 in each elbow. The
spine of the robot can collide with the ground, through 4 spheres
in the inside of the cuboid. (c) Illustration of the robot arm
model with 4 actuated degrees of freedom.

When only a single controller is optimized, our engine runs more
slowly on GPU than on CPU. To tackle this issue, we implemented
batch gradient descent, which is commonly used in complex optimiza-
tion problems. In this case, by batching our robot models, we achieve
significant acceleration on GPU. Although backpropagating the gradi-
ent through physics slows down the computations by roughly a factor
10, this factor only barely increases with the number of parameters in
our controller.

Combining this with our previous observation that fewer iterations are
needed when using gradient descent, our approach can enable the use
of gradient descent through physics for highly complex deep neural
network controllers with millions of parameters. Also note that by
using a batch method, a single GPU can simulate about 864 000 model
seconds per day, or 86 400 000 model states. This should be plenty for
deep learning. It also means that a single simulation step of a single
robot, which includes collision detection, solving the LCP problem,
integrating the velocities and backpropagating the gradient through
it all, takes about 1 ms on average. Without the backpropagation,
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this process is only about seven times faster.

7.3.2 4 Degree of Freedom Robot Arm

As a first test of optimizing robot controllers, we implemented a four
degree of freedom robotic arm, as depicted in Fig. 7.3c. The bottom
of the robot has a 2 degrees of freedom actuated universal joint; the
elbow has a 2 degree of freedom actuated joint as well. The arm is
1 m long, and has a total mass of 32 kg. The servos have a gain of
30 s−1, a torque of 30 Nm and a velocity of 45◦ s−1.

For this robot arm, we train controllers for a task with a gradually
increasing amount of difficulty. To be able to train our parameters,
we have to use a couple of tricks often used in the training of recurrent
neural networks.

• We choose an objective which is evaluated at every time step
and then averaged, rather than at specific points of the simu-
lation. This approach vastly increases the number of samples
over which the gradient is averaged, which in turn makes the
gradient direction more reliable [24].

• The value of the gradient is decreased by a factor α < 1 at every
time step. This trick has the effect of a prior. Namely, events
further in the past are less important for influencing current
events, because intermediate events might diminish their influ-
ence altogether. It also improves robustness against exploding
gradients [5].

• We initialize the controller intelligently. We do not want the
controller to shake the actuators violently and explore outside
the accurate domain of our simulation model. Therefore our
controllers are initialized such that they only output zeros at
the start of the simulation. The initial policy is the zero policy.

• We constraint the size of the gradient to an L2-norm of 1. This
makes sure that gradients close to discontinuities in the fitness
landscape do not push the parameter values too far away, such
that everything which was learned is forgotten [20].



Tab. 7.1: Evaluation of the computing speed of our engine
on a robot model controlled by a closed loop controller with a
variable number of parameters. We evaluated both on CPU (i7
5930K) and GPU (GTX 1080), both for a single robot optimiza-
tion and for batches of multiple robots in parallel. The numbers
are the time required in seconds for simulating the quadruped
robot(s) for 10 s, with and without updating the controller pa-
rameters through gradient descent. The gradient calculated
here is the Jacobian of the total traveled distance of the robot
in 10 s, differentiated with respect to all the parameters of the
controller. For comparison, the model has 102 states. It is built
from 17 rigid bodies, each having 6 degrees of freedom. These
states are constrained by exactly 100 constraints.

Seconds of computing time required to

simulate a batch of robots for 10 seconds

#robots #parameters with gradient without gradient

CPU GPU CPU GPU

1
1 296 8.17 69.6 1.06 9.69

1 147 904 13.2 75.0 2.04 9.69

128
1 296 263 128 47.7 17.8

1 147 904 311 129 50.4 18.3

Milliseconds of computing time required

to perform one time step of one robot.

#robots #parameters with gradient without gradient

CPU GPU CPU GPU

1
1 296 8.17 69.6 1.06 9.69

1 147 904 13.2 75.0 2.04 9.69

128
1 296 2.05 1.00 0.372 0.139

1 147 904 2.43 1.01 0.394 0.143
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7.3.2.1 Reaching a Fixed Point

A first simple task, is to have a small neural net controller learn to
move the controller to a certain fixed point in space, at coordinates
(0.5 m; 0.5 m; 0.5 m). The objective we minimize for this task, is the
distance between the end effector and the target point, averaged over
the 8 seconds we simulate our model.

We provide the controller with a single sensor input, namely the cur-
rent distance between the end effector and the target point. Input is
not required for this task, as there are solutions for which the motor
signals are constant in time. However, this would not necessarily be
the optimal approach for minimizing the average distance over time,
it only solves the distance at the end of the simulation, but does not
minimize the distance during the trajectory to get at the final position.

As a controller, we use a dense neural network with 1 input, 2 hidden
layers of 128 units with a rectifier activation function, and 4 outputs
with an identity activation function. This controller has 17 284 pa-
rameters in total. We disabled the recurrent connections ht.

We use gradient descent with a batch size of 1 robot for optimization,
as the problem is not stochastic in nature. The parameters are op-
timized with Adam’s rule [25] with a learning rate of 0.001. Every
update step with this method takes about 5 seconds on CPU. We
find that the controller comes within 4 cm of the target in 100 model
evaluations, and within 1 cm in 150 model evaluations, which is small
compared to the 1 m arm of the robot. Moreover, the controller does
find a more optimal trajectory which takes into account the sensor
information.

Solving problems like these in fewer iteration steps than the number
of parameters, is unfeasible with derivative free methods [24]. Despite
that, we did try to optimize the same problem with CMA-ES. After
a week of computing and 60 000 model evaluations, CMA-ES did not
show any sign of convergence, as it cannot handle the sheer amount
of parameters.
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7.3.2.2 Reaching a Random Point

As a second task, we sample a random target point in the reach-
able space of the end effector. We give this point as input v′ to the
controller, and the task is to again minimize the average distance be-
tween the end effector and the target point v. Our objective L is this
distance averaged over all timesteps.

As a controller, we use a dense neural network comparable to the
previous section, but this time with 3 inputs. We used 3 hidden layers
with 1024 units each, so the controller has 2 107 396 parameters in
total. This is not necessary for this task, but we do it like this to
demonstrate the power of this approach. In order to train for this
task, we use a batch size of 128 robots, such that every update step
takes 58 s on GPU. Each simulation takes 8 s with a simulation step
of 0.01 s. Therefore, the gradient on the parameters of the controllers
has been averaged over 51 200 timesteps at every update step. We
update the parameters with Adam’s rule, where we scale the learning
rate with the average error achieved in the previous step.

We find that it takes 576 update steps before the millions of parame-
ters are optimized, such that the end effector of the robot is on average
less than 10 cm of target, 2 563 update steps before the error is less
than 5 cm.

7.3.3 A Quadrupedal Robot – Revisited

Optimizing a gait for a quadrupedal robot is a problem of a differ-
ent order, something the authors have extensive experience with [26,
27, 2]. The problem is way more challenging and allows for a broad
range of possible solutions. In nature, we find a wide variety of gaits,
from hopping over trotting, walking and galloping. With hand tuning
on the robot model shown in Figure 7.3b, we were able to obtain a
trotting motion with an average forward speed of 0.7 m/s. We found
it tricky to find a gait where the robot did not end up like an upside
down turtle, as 75% of the mass of the robot is located in its torso.

As a controller for our quadrupedal robot, we use a neural network
with 2 input signals st, namely a sine and a cosine signal with a
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frequency of 1.5 Hz. On top of this, we added 2 hidden layers of 128
units and a rectifier activation function. As output layer, we have a
dense layer with 8 units and a linear activation function, which has as
input both the input layer and the top layer of the hidden layers. In
total, this controller has 17 952 parameters. Since the problem is not
stochastic in nature, we use a batch size of 1 robot. We initialize the
output layer with zero weights, so the robot starts the optimization
in a stand still position.

We optimize these parameters to maximize the average velocity of the
spine over the course of 10 s of time in simulation. This way, the gra-
dient used in the update step is effectively an average of the 1 000 time
steps after unrolling the recurrent connections. This objective does
not take into account energy use, or other metrics typically employed
in robotic problems.

In only 500 model evaluations or about 1 hour of optimizing on CPU,
the optimization with BPTT comes up with a solution with a speed
of 1.17 m/s. This solution is a hopping gait, with a summersault
every 3 steps1, despite limiting the torque of the servos to 4 Nm on
this 28.7 kg robot. For more life-like gaits, energy efficiency could be
use as a regularization method. Evaluating these improvements are
however outside the scope of this paper.

7.3.3.1 The inverted pendulum with a camera as sensor

As a fourth example, we implemented a model of the pendulum-cart
system we have in our laboratorium. This pendulum-cart system is
used for the classic control task of the underactuated inverted pendu-
lum [28]. In this example however, a camera which is set up in front
of the system is the only available information for the controller. It
therefore has to observe the system it controls using vision. A frame
captured by this camera is shown in Figure 7.4.

In order to build this model, we implemented a differentiable camera
in our physics engine. This camera uses a ray-tracing approach to
find where it needs to sample from the textures, and uses bilinear
interpolation to sample from these textures, similar to the one used

1A video is available at https://goo.gl/5ykZZe

https://goo.gl/5ykZZe
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for the spatial transform layer [29]. This interpolation is necessary for
making the frame captured by the camera differentiable to the state
of the robot with non-zero derivatives.

Fig. 7.4: A frame captured by the differentiable camera looking
at the model of the pendulum-cart system. The resolution used
is 288 by 96 pixels. All the textures are made from pictures of
the actual system.

We minimize the distance from the end of the pendulum to the desired
point and regularize the speed of the pendulum. The memoryless deep
controller receives the current image of the camera, in addition to two
images from the past such that it can estimate velocity and accelera-
tion. We observe that a controller with 1,065,888 parameters is able
to learn to swing up and keep the pendulum stable from pixels after
only 2420 episodes of 3 model seconds. The complete optimization
process took 15 hours. The resulting controller keeps the pendulum
stable for more than one minute2. In order to do this, the controller
has learned to interpret the frames it receives from the camera and
found a suitable control strategy.

7.4 Discussion

Our results show the first prototype of a differentiable physics engine
based on similar algorithms as those that are commonly used in mod-
ern robotics simulators. When initially addressing the problem, we
did not know whether finding the gradient would be computationally
tractable, let alone whether evaluating it would be fast enough to be

2https://twitter.com/317070/status/821062814798331905
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beneficial for optimization. In this paper, we have demonstrated that
evaluating the gradient is tractable enough to speed up optimization
on problems with as little as six parameters. The speed of this evalua-
tion mainly depends on the complexity of the physics model and only
slightly on the number of parameters to optimize. Therefore, our re-
sults suggest that this cost is dominated by the gain achieved from the
combination of using batch gradient descent and GPU acceleration.

Optimizing the controller of a robot model with gradient-based opti-
mization is equivalent to optimizing an RNN. After all, the gradient
passes through each parameter at every time step. The parameter
space is therefore very noisy. Consequently, training the parameters
of this controller is a highly non-trivial problem, as it corresponds to
training the parameters of an RNN. On top of that, exploding and
vanishing signals and gradients cause far more challenging problems
compared to feed forward networks.

In section 7.3.2, we already discussed some of the tricks used for opti-
mizing RNNs. Earlier research shows that these methods can be ex-
tended to more complicated tasks than the ones discussed here [5, 20].
Hence, we believe that this approach towards learning controllers for
robotics applies to more complex problems than the illustrative ex-
amples in this paper.

All of the results in this paper will largely depend on showing how
these controllers will work on the physical counterparts of our models.
Nonetheless, we would like to conjecture that to a certain extent, this
gradient of a model is close to the gradient of the physical system.
The gradient of the model is more susceptible to high-frequency noise
introduced by modeling the system, than the imaginary gradient of
the system itself. Nonetheless, it contains information which might
be indicative, even if it is not perfect. We would theorize that using
this noisy gradient is still better than optimizing blindly and that
the transferability to real robots can be improved by evaluating the
gradients on batches of (slightly) different robots in (slightly) different
situations and averaging the results. This technique has already been
applied in [5] as a regularization method to avoid bifurcations during
online learning. If the previous proves to be correct, our approach can
offer an addition or possibly even an alternative to deep Q-learning
for deep neural network controllers in robotics.
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We can see the use of this extended approach for a broad range of ap-
plications in robotics. Not only do we think there are multiple ways
where recent advances in deep learning could be applied to robotics
more efficiently with a differentiable physics engine, we also see vari-
ous ways in which this engine could improve existing angles at which
robotics are currently approached:

• In this paper, we added memory by introducing recurrent con-
nections in the neural network controller. We reckon that ad-
vanced, recurrent connections such as ones with a memory made
out of LSTM cells [30] can allow for more powerful controllers
than the controllers described in this paper.

• Using a differentiable physics engine, we reckon that knowledge
of a model can be transferred more efficiently into a forward
or backward model in the form of a neural network, similar to
methods such as used in [31] and [32]. By differentiating through
an exact model and defining a relevant error on this model, it
should be possible to transfer knowledge from a forward or back-
ward model in the differentiable physics engine to a forward or
backward neural network model. Neural network models trained
this way might be more robust than the ones learned from gen-
erated trajectories [33]. In turn, this neural model could then
be used for faster but approximate evaluation of the model.

• Although we did not address this in this paper, there is no reason
why only control parameters could be differentiated. Hardware
parameters of the robot have been optimized the same way be-
fore [6, 7, 5]. The authors reckon that the reverse process is also
true. A physics engine can provide a strong prior, which can
be used for robots to learn (or adjust) their robot models based
on their hardware measurements faster than today. You could
optimize the model parameters with gradient descent through
physics, to have the model better mimic the actual observations.

• Where adversarial networks are already showing their use in
generating image models, we believe adversarial robotics train-
ing (ART) will create some inventive ways to design and con-
trol robots. Like in generative adversarial nets (GAN) [34],
where the gradient is pulled through two competing neural
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networks, the gradient could be pulled through multiple com-
peting robots as well. It would form an interesting approach
for swarm robotics, similar to previous results in evolutionary
robotics [35, 36, 37], but possibly faster.

7.5 Conclusion

In this paper, we show it is possible to build a differentiable physics
engine. We implemented a modern engine which can run a 3D rigid
body model, using the same algorithm as other engines commonly
used to simulate robots, but we can additionally differentiate control
parameters with BPTT. Our implementation also runs on GPU, and
we show that using GPUs to simulate the physics can speed up the
process for large batches of robots. We show that even complex sen-
sors such as cameras, can be implemented and differentiated through,
allowing for computer vision to be learned together with a control
policy.

We find that these gradients can be computed fast enough for use in
applications. We also show that using gradient descent with BPTT
speeds up optimization processes often found in robotics, even for
rather small problems, due to the reduced number of model evalu-
ations required. We show that this improvement in speed scales to
problems with a lot of parameters. We also show that using this en-
gine, finding policies for robot models can be done faster and in a more
straightforward way. This method should allow for a new approach
to apply deep learning techniques in robotics.
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8
Conclusions & Perspectives

In this chapter, we look back at the main observations made dur-
ing my research, such that the overarching trajectory of my research
emerges. Furthermore, by extrapolating this trajectory, the section
on perspectives will provide insight as to what I think are interesting
directions for future exploration.

8.1 Conclusions

The overarching focus of this dissertation is the study of adding prior
information to neural networks, especially in the context of robotics.
We have discussed various approaches and gained insight into the
principles underlying these methods. For each of these situations, we
had delved into why they work – or more interestingly, when and
why they did not – and assessed their use for future approaches when
controlling robots with neural networks.

In chapter 2, we discussed a way to encode prior knowledge into the
architecture of neural networks, in this case for the classification of
images. We start off with a known approach to learning invariances
for images, i.e. image augmentation. We build upon this idea to set
up equations where you can backpropagate through the augmenta-
tion process instead. This way, knowledge which before had to be
encoded into the parameters of the network, could now be encoded in
the architecture. We showed that this approach indeed outperforms
standard convolutional neural networks.
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In chapter 3, we turned our focus to robotics and laid down the
groundwork for the later chapters. We introduced the robot Oncilla
and developed three different gaits. Based on those, we uncovered
a few principles for legged robot control. Firstly, we observed that
a more biologically inspired trajectory outperforms a sine-based ap-
proach, especially for higher speeds. Secondly, we showed that having
scapulae for turning helps maintain speed, although it is also possible
for legged robots to turn without. Thirdly, we showed that it is feasi-
ble to optimize a legged robot without building a model when enough
prior information is available for the optimization process such that
only a limited number of parameters need tuning.

In chapter 4, we continued on these observations and evaluated trans-
fer learning as an approach for including prior knowledge in the learn-
ing process of gaits on legged robots. In order to test our hypothesis,
we ran a gait optimization process on flat terrain. Then, we ran
multiple optimization procedures in various setups varying morpho-
logical parameters and the environment. To transfer the parameters
obtained on the flat terrain to these new setups, we use warm starts
from the parameters and evaluate the optimization process against
what we would obtain when not having this warm start. Everything
considered, we conclude that this transfer of knowledge did result in
better gaits. Although an important footnote, in one of the cases
the warm start did not make a significant difference, namely when
transfer learning from a flat terrain to a rocky one.

We found that the main aspect which made these warm starts perform
better was the reduced amount of exploration in the parameter space.
This allowed the robot to quicker converge on an interesting part of
the parameter space and consequently find better solutions in the
limited amount of wall clock time available.

In chapter 5, we focused on using the morphology of the robot as a
resource for sensing and computation. We showed that a limited but
appropriate selection of input sensors on a legged robot is sufficient
to perform terrain classification. However, we also showed the impor-
tance of non-linearities for achieving those results, and that adding
recursion in the form of reservoir computing further improves the re-
sults. More interestingly, from the comparison of extreme learning
machines to reservoirs, it seems clear that memory is an important
element.
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To follow up on those finding, in chapter 6 we dug deeper in this trade-
off between memory and non-linearities. We developed an embodied
control system and showed that this can generate a dynamically bal-
anced trot on a compliant robot. For this, we trained a small neural
network with regularized recurrent least squares to mimic the gaits
we developed earlier. We demonstrated that in as little as a cou-
ple of periods of the gait, this system already finds stable feedback
control parameters for trotting without requiring any memory. How-
ever, the amount of memory seems to trade-off with the amount of
non-linearity required. We found that the most important factor is
the number of signals fed to the linear transformation. We concluded
that this approach is a powerful tool for transferring knowledge from
an open loop trajectory into a closed loop neural network. It shows
in particular how important the use of priors can be, by reducing an
engineered trajectory to a simple relation between sensor input and
motor signals.

Finally, in chapter 7 we take the multiple threads discussed in this
book into a single approach, stretching the idea of morphological com-
putation to its furthest extent. In this chapter, we treat the controller
and the system as one source for computation and optimize the com-
bined system with gradient descent. Getting the exact gradient of a
system can however only be done in simulation, which is why we de-
veloped a physics engine inside a library for automatic differentiation.
By using backpropagation through time, through physics and through
the renderer, we were able to find a deep neural network controller
for the inverted pendulum from pixels. For a quadruped legged robot
model, we were able to use deep neural networks to find a stable gait
in only 500 model evaluations. In this case, incorporating the gradi-
ents available from the model in the optimization of the controller is
a strong indication of the power of priors in training neural network
controllers. Therefore, we concluded that learning control from com-
plex sensors such as cameras is achievable by incorporating a model
of the system in the network architecture.

8.2 Perspectives

Once you have a differentiable physics engines, co-optimizing the
controller with its morphology in simulation seems the first logical
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step. Since the automatic differentiation library does not care whether
a parameter is inside the morphology of the robot or is a parameter in
the controller, both can be optimized simultaneously using gradient
descent.

This approach seems especially promising, as it would allow going
deeper into some questions posed by the idea of embodiment. It would
allow for a thorough study whether optimizing the morphology such
that it allows for more morphological computation gains you anything
over optimizing the morphology for controllability, or whether in the
end, both approaches obtain similar conclusions regarding optimal
morphological parameters. This would be not unlike the original re-
search [1] which was the inspiration for the backpropagation through
physics.

Overall, physics engines are often treated by roboticists as a black
box, similar to the treatment of the hardware of the robot. This is
a useful mindset when assessing whether an approach will work on a
robot, before actually trying it on a robot. However, there is value to
be gained by putting the physics engines to full use and let them be
a more powerful tool to tackle more fundamental open questions in
robotics. They are fundamentally different tools. Complex models in
physics engines can provide information which is not available when
running the experiment on a robot, such as analytic gradients, revers-
ing the time direction or variational sensitivity analysis. In turn, these
can be used to analyze the base premises underlying the approaches
to robotics.

If we can have analytic gradients of complex models, there is probably
insight to be gained by comparing those gradients to the gradient
approximations found by for instance policy gradient methods. Such
an evaluation could shed some light on for instance the value of using
natural gradients [2] in complex setups.

Bringing the controllers trained in simulation to a real en-
vironment is a step which can be tackled in multiple ways with a
differentiable physics engine, and there are multiple possibilities there.
For instance, since our entire model and controller are differentiable,
we could optimize the model to mimic the data from the real environ-
ment as closely as possible. Such a thing could be done variationally,
defining a distribution over the parameters of the model. For every
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episode in simulation, a new model could then be sampled on which
the controller is optimized. Such an approach would partially circum-
vent the problem of the model not being able to exactly mimic the
physical setup. Secondly, the noise would make the controller more
robust. But also only as robust as need be according to the variational
model of the system.

Robot swarms are another point which could prove to gain from
the differentiable model. By backpropagating through physics, the
controllers in these swarms would learn directly to manipulate and
communicate with each other as they are receiving the gradients flow-
ing through the physics. It would allow them to train by gaming each
other, competing for resources, but with a powerful signal of which
direction to optimize in.

Injecting prior information into other approaches for learn-
ing control is a second possible extension to the work presented in
this dissertation. We did not touch on ideas to add prior knowledge
when using reinforcement learning for robotics yet, despite it being a
research subject of increasing interest to the scientific community. It
seems that remarkable results are possible with this approach, despite
containing limited or no prior knowledge of the problem at hand [3].
That raises the question which results these approaches would be able
to obtain when using more information. Especially since normally
there is at least a vague description of the setup available, which
should allow some prior knowledge from control theory to the initial-
ize the search. After all, the main conclusion of the work presented
here is that using more prior knowledge helps when training a neural
network.
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